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Abstract. For scalar and vector-valued elliptic boundary value problems with discontinuous
coefficients across geometrically complicated interfaces, a composite finite element approach is de-
veloped. Composite basis functions are constructed, mimicking the expected jump condition for the
solution at the interface in an approximate sense. The construction is based on a suitable local
interpolation on the space of admissible functions. We study the order of approximation and the
convergence properties of the method numerically. As applications, heat diffusion in an aluminum
foam matrix filled with polymer and linear elasticity of micro-structured materials, in particular
specimens of trabecular bone, are investigated. Furthermore, a numerical homogenization approach
is developed for periodic structures and real material specimens which are not strictly periodic but
are considered as statistical prototypes. Thereby, effective macroscopic material properties can be
computed.
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1. Introduction. Simulations in materials science or bio-medical applications
are frequently faced with multi-phase materials having interfaces of complicated struc-
ture. Examples are heat conduction in chip design [26], the elastic behavior of com-
posite materials [59], electric fields in the human body [85] in the context of electro-
cardiography [30], the brain shift in neurosurgery [82], and effects of vertebroplasty on
macroscopic properties of trabecular microstructure [46]. The standard finite element
(FE) procedure in this context is to generate a geometrically complicated simplicial
(i.e. triangular or tetrahedral in 2D or 3D, respectively) FE mesh that resolves the in-
terface between the different materials. On these meshes standard FE basis functions
are used for the discretization of the physical quantities. However, generating 3D
meshes suitable for FE simulations is difficult [13, 75, 69] and may require substantial
user interaction.

Composite Finite Elements. Composite finite elements (CFE) are based on the
idea of incorporating the geometric complexity of physical domains [34, 33, 35, 61] or
interfaces between subdomains with different material properties [65] into the shape
of basis functions rather than in the FE mesh. A corresponding multigrid method has
been investigated in [65]. The term ‘composite’ has also appeared in the FE literature
in Composite Triangles [31, 76]. Like our approach presented here, these methods also
use a virtual subdivision of tetrahedral elements, however, not as an adaptation to
the geometry of the underlying domains.

The approach presented in this paper is based on [65] for 2D problems. We
extend this construction to 3D anisotropic PDE and as a vector-valued problem to
3D linearized elasticity. In fact, we construct the composite element method in case
of level set described domains, where the level set functions is given an underlying
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hexahedral grid and in the applications frequently results from a segmentation process
on an associated 3D image (e.g. CT or MRI). For the corresponding 2D case and
a corresponding derivation in full detail, we refer to [67]. A corresponding CFE
approach for complicated single-phase domains is investigated in [50] and applied in
a homogenization framework in [68].

Our approach takes into account interfaces which are described on a fine mesh
via a level set function. Hence, the resulting computational tool is tailored to the
simulation on multi-phase domains, where the domains are described via 3D images
resulting e.g. from MRI or CT scans of objects. While the general CFE method can
effectively be combined with an adaptive mesh refinement (see e.g. [54, 23]), in our
case the domain description via image data naturally defines the finest computational
mesh as the one associated with the 3D image data. Far from the interface, the
CFE basis functions of our approach coincide with the standard basis functions on
an overlaid structured grid. In the vicinity of the interface, the standard basis is
modified to meet suitable coupling conditions at the interface. This is achieved by
an interpolation operator that evaluates admissible functions on the interface. A
function is admissible if it satisfies the problem-specific coupling condition across
the interface which follows from the flux or stress balance. Temporarily, a local
auxiliary mesh is considered in the assembly of local stiffness and mass matrices,
where the interpolation is encoded via weights for piecewise affine functions on this
local fine mesh. Our efficient algorithm for the local resolution of the interface via
a conforming tetrahedral mesh is inspired by the marching cubes [51] and marching
tetrahedra [77] algorithms. Lookup tables classify all possible topological variants,
thus making the local conforming tetrahedral mesh for the resolution of the interface
completely virtual. In the global matrix-assembly, appropriately scaled pre-computed
values are retrieved from the lookup tables.

Homogenization. For a microscopically inhomogeneous but macroscopically ho-
mogeneous material, ‘homogenization’ [74] or ‘upscaling’ [4, 81] methods allow to
determine effective material properties to be used e.g. in single-scale purely macro-
scopic or in two-scale FE simulations [42, 3, 52].

A particular focus in this paper is on microstructures which are not exactly peri-
odic but statistically characteristic specimens of a material, which is the usual case for
most real world specimens. Here, we propose a variant of the classical cell problem
in homogenization replacing periodic boundary conditions by appropriate Dirichlet
boundary conditions. The evaluation of stresses is restricted to a cell which is a sub-
set of the computational domain with sufficient distance from the boundary of the
specimen. We experimentally study the reliability of this approach and for example
show that the usual size of trabecular bone specimens indeed allows the identifica-
tion of macroscopic elastic properties of the bone microstructure. For first results
restricted to the case of periodic complicated domains we refer to [68].

Paper Outline. A review of related methods is given in Section 2. Section 3
discusses the class of problems suitable for our approach. The construction of the CFE
basis is presented in Section 4 for the isotropic scalar case and then extended to the
anisotropic scalar case and the vector-valued case. Details about the implementation
are discussed in Section 5 and numerical results are presented in Section 6. The
homogenization is discussed in detail in Section 7, where results are presented as well.

2. Review of Related Work. Besides the classical meshing, a variety of alter-
native approaches has been investigated. Publications in this field are numerous, and
this section is not meat to be a complete survey of related methods. A more detailed
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overview can be found in [66]. Interfaces to be dealt with in simulations can occur as
interfaces between ‘domain’ and ‘void’ or between two different ‘(sub-)domains’ with
different material properties. The idea of modifying finite difference stencils near
boundaries goes back to [70]. The Immersed Interface Method (IIM) [48] uses finite
differences on Cartesian grids with adapted stencils near the interface, permitting
multigrid solvers [1].

The bridge to the FE world for 1D and 2D problems is built by ‘Immersed Finite
Elements’ [47, 49]. The Partition of Unity Method (PUM) combines a finite partition
of unity covering of the object with a priori knowledge about the behavior of the
solution at the interface [8]. The Generalized Finite Element Method [53, 19, 7] is per
se a meshless method and was also developed under the name hp clouds [56]. It was
combined with classical FE to improve their approximation capabilities [20, 72, 21].
The Extended Finite Element Method (XFEM) [12] uses classical FE and ‘enriches’
them by additional basis functions to incorporate discontinuities. The enrichment
introduces additional degrees of freedom even though the meshes are independent
of the location of discontinuities. A major application is the simulation of crack
propagation [17, 71, 43] where frequent remeshing in classical methods [11] can be
avoided by using XFEM. The Fictitious Domain Method [44, 64, 6, 28, 60] uses a
domain-independent mesh for a superset of the computational domain on which the
partial differential equation being considered is extended appropriately. This approach
has been combined with the p version of FE for 2D and 3D problems in [58] and
[22], respectively. Weighted Extended B-Splines (WEB splines) [39, 38] use tensor
products of splines on uniform hexahedral grids multiplied by weight functions for
an adaptation to the geometric boundary. WEB splines are particularly well suited
for domains constructed via computer-aided design approaches. Unfitted meshes have
been analyzed for problems on curved domains [10] and for discontinuous coefficients
across curved interfaces [9, 36]. Here, FE basis functions are restricted via appropriate
quadrature rules to the actual computational domains which may be described by a
level set function.

Homogenization. Determining effective elastic properties of microstructured (but
not necessarily periodic) cellular solids has for instance been studied in biomechanics
in [40, 27] where the unit cells are referred to as ‘representative volume elements’
[41] or ‘representative elementary volumes’ [29]. In biomechanics, FE simulations
are used for the development and assessment of treatment techniques for vertebral
fractures [16, 62] and implants for osteoporotic bones [15], where a proper knowledge
of macroscopic parameters is needed for continuum models. In these applications,
full-scale resolution of the bone microstructure requires huge amounts of computa-
tional resources [79]. For microstructured elastic objects, one studies a ‘cell problem’
[2, Chapter 1], which is supposed to generate a periodic lattice. Then, based on a
suitable set of computations with uniaxial loading, one can evaluate the homogenized
(macroscopic) elasticity tensor. Multigrid coarsening strategies for upscaling have
been proposed in [55, 5, 14].

3. Interface Description and Coupling Conditions. In this section we in-
troduce level set descriptions of material interfaces in the computational domain and
investigate associated jump conditions, both for scalar and vector-valued problems.
In particular, we will rephrase the jump conditions to allow a later construction of
problem adapted local basis functions which respect in a suitable way these condi-
tions. Furthermore, we always begin with the case of a scalar problem and then in a
subsequent step generalize this to the vector-valued problem of linearized elasticity.
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We will explain our concepts for the unit cube Ω := (0, 1)3, which is decomposed in
two subdomains Ω± and an interface γ, where

Ω+ := {x ∈ Ω |ϕ(x) > 0} , Ω− := {x ∈ Ω |ϕ(x) < 0} , γ := {x ∈ Ω |ϕ(x) = 0} ,

and where ϕ : Ω → R is a (non-degenerate) level set function [57]. Thus we have
Ω̄ = Ω̄+ ∪ Ω̄− and the (material) interface is given as γ = Ω ∩ (Ω̄+ ∩ Ω̄−).

Typically, ϕ is given as voxel image data interpreted as nodal values on a uniform
grid or as elements of a piecewise multi-linear FE space on a uniform hexahedral mesh.
Thus, ϕ is supposed to be continuously differentiable a.e. and non-degenerate in the
sense that ∇ϕ(z) 6= 0 on γ. Let n := |∇ϕ(z)|−1∇ϕ(z) denote the normal direction
to the interface and s, t two tangential directions such that n, s, t are pairwise orthog-
onal and normalized. Hence the gradient of a differentiable scalar-valued function
u : Ω→ R can be represented as

∇u = ∂nun+ ∂su s+ ∂tu t , (3.1)

where ∂nu = ∇u ·n, ∂su = ∇u · s, and ∂tu = ∇u · t. We will extensively use this local
coordinate system for the construction of CFE basis functions.

Let us finally note that the extension to more general Ω ⊂ R3 or multiple sub-
domains is possible. Also note that a single level set function as used here allows for
multiple subdomains, but rules out triple lines (T-junctions).

3.1. Scalar Elliptic Problem. We consider the scalar elliptic boundary value
problem in weak form

ˆ
Ω

a∇u · ∇v dx =

ˆ
Ω

fv dx ∀v ∈ H1
0 (Ω) (3.2)

for a right hand side f ∈ L2(Ω) and a second order, uniformly positive definite
tensor a (in the isotropic case a is just a scalar multiple of the identity). As usual,
H1

0 (Ω) denotes the Sobolev space of functions with weak derivatives bounded in L2

and vanishing trace on ∂Ω. We assume a(x) to be symmetric for each x ∈ Ω, and
bounded such that α1 ≥ a(x) ξ · ξ ≥ α0 > 0 for all ξ ∈ R3, |ξ| = 1. For the ease of the
presentation we assume a to be constant on the subdomains, a|Ω± =: a±.

Conservation of energy at a point z on the interface implies continuity of the
normal flux a∇u · n across the interface and continuity of u and thus, under suitable
smoothness assumptions, its derivatives in the tangential directions s and t. Weak
solutions satisfy the physically relevant interfacial coupling condition [a∇u · n]γ = 0
a.e. on γ. Here and in the following, [·]γ denotes the jump across the interface,
i.e. [a∇u · n]γ(z) := (a∇u · n)+(z)− (a∇u · n)−(z), where

g±(z) := lim
Ω±3x→z

g(x) (3.3)

for any scalar or vector-valued function g on Ω.
Moreover the solution to (3.2) solves piecewise sub-problems with continuous

coefficients on the sub-domains Ω±. Consequently for the construction of the CFE
space we introduce the vector space of admissible functions being continuous across
the interface, respecting the coupling condition, and fulfilling − div(a±∇u) ∈ L2(Ω±)
on both sides of the interface

V :=
{
u ∈ H1

0 (Ω)
∣∣ div(a±∇u|Ω±) ∈ L2(Ω±), [u]γ = 0 = [a∇u · n]γ

}
. (3.4)
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For this space we will deduce a local discrete counterpart in the construction of our
composite finite element function space.

In the isotropic case where a can be viewed as a scalar, we can define the kink
ratio κ := a−/a+. For a 1D diffusion problem κ is the ratio between the slopes of the
solution on both sides.

For the general anisotropic case we rewrite the interface conditions for u at some
point z on the interface as continuity of u across the interface and the jump condition

a−∇u−(z) · n = a+∇u+(z) · n . (3.5)

This observation leads to
Lemma 3.1. In the general anisotropic case with a piecewise constant, uniformly

positive definite tensor a, the Gâteaux derivatives of u on both sides of the interface
are coupled by the following linear system of equations∂nu+

∂su
+

∂tu
+

 =

Kn Ks Kt

0 1 0
0 0 1

∂nu−∂su
−

∂tu
−

 (3.6)

with

Kn =
a−n · n
a+n · n

, Ks =
(a− − a+)s · n

a+n · n
, Kt =

(a− − a+)t · n
a+n · n

.

Proof. The K{n,s,t} are well defined because a+ is strictly positive definite. Taking
into account the decomposition of the normal flux via (3.1), we immediately obtain

a∇u · n = a (∂nun+ ∂su s+ ∂tu t) · n
= ∂nu (an · n) + ∂su (a s · n) + ∂tu (a t · n) .

(3.7)

From this we deduce the first equation in (3.6). The second and third equation encode
the continuity of the tangential components of ∇u.

Hence, in the case of a truly anisotropic tensor a, the coupling of the derivatives
across the interface is not merely represented by a simple kink but reflects an interplay
of normal and tangential components of the diffusion tensor a.

3.2. Linearized Elasticity in 3D. To consider linearized elasticity, we in-
troduce the (symmetrized) strain tensor ε(u) = 1

2

[
Du+ (Du)T

]
for a displacement

u : R3 → R3 and the elliptic operator

u 7→ −div (Cε(u)) , (3.8)

which is supposed to be interpreted in the weak sense on H1(R3,R3). Here, C =
(Cijkl)ijkl=0,...,3 denotes the spatially varying fourth-order linear elasticity tensor
which satisfies the usual symmetry assumptions (Cijkl = Cjikl = Cijlk = Cklij)
and the ellipticity estimate

∑
ijkl Cijklξijξkl ≥ α‖ξ‖2F with α > 0 for all ξ ∈ R3×3,

where ‖ · ‖F denotes the Frobenius norm.
Elasticity tensors are defined in terms of Young’s modulus E > 0 and Poisson’s

ratio ν ∈ (−1, 0.5), which lead to the Lamé numbers λ = Eν
(1+ν)(1−2ν) , µ = E

2(1+ν) such

that Cijkl = λ(δijδkl) + µ(δilδjk + δikδjl).
The equilibrium configuration of an elastic solid is characterized by the continuity

of the normal stress Cε(u)n and the continuity of the displacement u. This leads to
the linear system of equations for a point z on the interface (cf. (3.5))

C+ε(u+(z))n = C−ε(u−(z))n , (3.9)
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where Cε(u)n = (
∑
jkl Cijklε(u(x))klnj)i=0,1,2. In analogy to the scalar case above

we have

Lemma 3.2. We can express the relation between Du− and Du+ by the 9 × 9
block structured linear system∂nu+

∂su
+

∂tu
+

 =

Kn Ks Kt

0 1 0
0 0 1

∂nu−∂su
−

∂tu
−

 . (3.10)

where ∂nu
± = Du±n, ∂su

± = Du±s, ∂tu
± = Du±t ∈ R3, Kn, Ks, Kt ∈ R3×3 with

Kn being invertible. An explicit form of these matrices is given in [67]. Furthermore,
0, 1 are the zero and identity matrix in R3×3, respectively.

Proof. The second and third line of equations in (3.10) follow from continuity of
the directional derivatives in tangential direction ∂su = Dus, ∂tu = Du t , cf. (3.6).
We need to verify that the relation (3.10) actually holds, or in other words that for
given Du−, the condition (3.9) can be rewritten in the form (3.10). Hence, it is
sufficient to demonstrate that, given the coupling conditions, Du− = 0 implies that
Du+ = 0. At first, we observe that ∂su

+ = ∂tu
+ = 0 because of ∂su

− = ∂tu
− = 0.

Hence, Du+(x) = wnT for some w = w(x) ∈ R3. Moreover, from the continuity of
the normal stress we deduce that C−ε(u−)n = 0. Scalar multiplication of this equation
by w leads to

0 =
(
C−ε(u−)n

)
· w =

∑
i

(∑
jkl
C+
ijklε(u

+)klnj

)
wi

=
∑

i

(∑
jkl
C+
ijkl(Du

+)klnj

)
wi =

∑
ijkl

C+
ijklwknlwinj ≥ α‖wn

T ‖2F ,

where we have used the symmetry assumption and the ellipticity estimate for the tensor
C. Hence wnT = 0, from which w = 0 and thus Du+ = 0 immediately follow.

4. Construction of Interface Sensitive Basis Functions. Now, we intro-
duce problem adapted local basis functions, which are never explicitly stored but
used in the local assembly of FE matrices. Therefore, the interface is locally re-
solved by the triangular facets of a local tetrahedral subdivision of the hexahedral
grid around the interface. At the vertices of this discrete triangular interface and for
locally averaged interface normals, the above description of the coupling conditions is
retrieved to construct local interface sensitive basis functions. As before, we deal at
first with the scalar case and then move on to the vector-valued case. It will turn out
that, for anisotropic and general vector-valued problems, the construction requires an
additional approximation argument.

The notation and terminology used in this section follow [50], where a similar
basic methodology is used and introduced for the construction of CFE on complicated
domains with continuous coefficients. Starting from standard affine FE basis functions
on a uniform mesh, our aim is to construct CFE basis functions associated with the
same nodes such that the corresponding nodal interpolation of a function satisfies the
appropriate coupling conditions (3.5) or (3.9) across the interface. For this purpose,
we first define a local auxiliary tetrahedral mesh that resolves a piecewise planar
approximation of the interface and define CFE basis functions as a weighted sum
of standard affine basis functions on this local auxiliary mesh. Our construction is
characterized by the following properties:
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Fig. 4.1. The six tetrahedra in G� of a subdivided hexahedron of G� are shown in the top row.
Angles between edges of these tetrahedra are bounded from above by 90◦. Furthermore, the splitting
of a tetrahedron into one pentahedron and one tetrahedron (middle row) or two pentahedra (bottom)
and the further subdivision into tetrahedra in G4 is depicted. Each pentahedron has two triangular
faces and three quadrilateral faces for which the subdivision of two neighboring pentahedra needs to
be consistent.

(i) The CFE basis consists of nodal basis functions, whose nodes coincide with
the vertices of the uniform hexahedral mesh.

(ii) Far from the interface, the CFE basis functions are classical piecewise affine
nodal basis functions. In the vicinity of the interface, they are composed of affine
functions on the local auxiliary submesh which only contains ‘slave’ nodes [24], with
fixed interpolation weights depending solely on the geometry of the local auxiliary
mesh and on a± or C±, respectively.

(iii) The CFE basis functions have local support, which can be slightly larger
than the standard support of the piecewise affine basis functions.

4.1. Uniform and Local Auxiliary Meshes. In this section, we start from a
tetrahedral mesh resulting from a subdivision of a hexahedral mesh and construct the
local auxiliary mesh. Based on this, we define the CFE basis functions in the scalar
and the vector-valued case.

At first, we take into account a uniform hexahedral mesh G� discretizing Ω̄ =
[0, 1]3 by 23l elements, where hl = 2−l is the resulting mesh spacing and (2l + 1)3 the
number of nodes. The set of vertices of the mesh G� is denoted by N�. It turns out to
be more convenient to deal with piecewise affine functions instead of piecewise trilinear
ones, which would be the canonical choice for hexahedral meshes. Hence, we assume
each hexahedron to be subdivided into 6 tetrahedra (cf. Fig. 4.1 and [50]) in such
a way that the subdivision is consistent with neighboring cubes. Let us denote this
mesh by G� and the set of vertices by N�, which by construction coincides with the
vertex set of G�, i.e. N� = N�. On this mesh we define the classical piecewise affine
FE space V� with the nodal projection Π� and the nodal basis functions ψ�

i with
ψ�
i (xj) = δij for the nodes xj ∈ N�. Furthermore, let us index the corresponding

nodes by i = 1, . . . ,M .

Construction of the Local Auxiliary Mesh. Let ϕ� := Π�ϕ be the piecewise affine
approximation of the level set function ϕ describing the interface. This yields a piece-
wise planar approximation of the interface γ� :=

{
x ∈ Ω |ϕ�(x) = 0

}
and correspond-

ing domains Ω�
±. To avoid degeneracies in the following construction we assume that

intersections of γ� with G� lie at least a small fraction of the mesh spacing (‘safety
margin’) away from the nodes of the uniform hexahedral mesh. We enforce this by
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Fig. 4.2. Virtual nodes on part of a trabecular aluminum structure at resolution 173 and an
artificial rod dataset at resolution 333 are depicted as little red spheres. For the construction of the
local auxiliary mesh, γ has been approximated by γ� and thus appears non-smoothly shaded in the
image. The underlying uniform hexahedral mesh and the location of virtual nodes on its edges and
some of its diagonals is clearly visible from the left picture.

ensuring that the nodal values themselves satisfy |ϕ(x)| > δ for some δ > 0 via the
replacement of ϕ(x) by sign(ϕ(x)) max{|ϕ(x)|, δ}. Under the assumption that ϕ is the
output of a segmentation algorithm on a 3D image we assume that ϕ is an approximate
signed distance function. Hence, the resulting perturbation of the interface position
is O(δ). In our implementation we have chosen δ = 10−6, which is significantly below
the expected measurement and segmentation error in the image acquisition for ϕ using
CT (see e.g. [45]) or MRI and is thus negligible for real objects. Objects described by
analytically defined level set functions, however, may be distorted to a small extent.

Each tetrahedron in G� intersected by γ� is split in two polyhedra which are
again split in subtetrahedra, (cf. Fig. 4.1), where the splitting of two neighboring
polyhedra needs to be consistent. Thereby, we obtain the local auxiliary mesh G4
consisting solely of tetrahedral elements.

Virtual Nodes and Virtual Basis Functions. We denote the standard piecewise
affine basis function of the space V4 of piecewise affine functions on G4 by (ψ4i )i
and call them virtual basis functions. The set of nodes of G4 is denoted by N4 and
we call γ� ∩N4 = N4 \ N� the set of virtual nodes (cf. Fig. 4.2).

In total, we have the node sets and refinements (‘�’) of meshes

N� = N� ⊂ N4 ,
G� � G� � G4 . (4.1)

Notice that the superscript notation (�, �, 4) reflects the geometric structures. Let
us remark that γ� is a subset of tetrahedral faces of G4. Furthermore, note that the
topology of the splitting is uniquely determined by the sign of the level set function ϕ
at the vertices, whereas the geometry of the subdivision depends on the actual values
of ϕ at nearby vertices.

4.2. Composite Basis Functions for a Scalar Problem. The construction of
the CFE basis requires a suitable interpolation operator I : C0 → V4, which delivers
nodal values at the virtual interface nodes. These need to be consistent with the
interfacial coupling condition (3.5) or (3.9). Indeed, for a planar interface, I[u] = u
shall hold for any function u which is piecewise affine on both sides of the interface
and fulfills the coupling condition at the interface.

Local Interpolation Scheme. At first, we construct such an interpolation locally
on a tetrahedron T ∈ G� for a virtual node z and an interface-normal n = n(z) ∈ R3
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T0

T1

z

n

t

Fig. 4.3. 2D sketch of normal direction n and tangential direction t at one virtual node z,
averaged over the adjacent triangles T0 and T1.

(the corresponding tangential vectors are denoted by t and s as in Section 3). At the
virtual node z as intersection point of γ� with an edge of G� an approximate normal
n is defined as the normalized average of the normalized piecewise constant gradients
∇ϕ of the level set function ϕ on all adjacent tetrahedra of G� (cf. Fig. 4.3 for a 2D
sketch). Let V local[T, z, n] denote the space of functions which are affine on both sides
of the plane P :=

{
x ∈ R3 | (x− z) · n = 0

}
and which fulfill (3.5). A basis of this

space is given in the following lemma.
Lemma 4.1. In the scalar case a basis of V local[T, z, n] is given by the functions

η0(x) :=

{
Kn(x− z) · n for x ∈ P+

(x− z) · n for x ∈ P−
,

η1(x) :=

{
Ks (x− z) · n+ (x− z) · s for x ∈ P+

(x− z) · s for x ∈ P−
,

η2(x) :=

{
Kt (x− z) · n+ (x− z) · t for x ∈ P+

(x− z) · t for x ∈ P−
,

η3(x) := 1 .

(4.2)

where P± :=
{
x ∈ R3 | ± (x− z) · n ≥ 0

}
denote the two half-spaces separated by the

plane P defined above.
Proof. The dimension of the space of affine functions in R3 is 4. Hence, there are

8 degrees of freedom for the two affine functions on both sides of the interface. The
jump conditions require continuity across the interface, which leads to a constraint for
the value at the interface point z and two constraints for the tangential derivatives.
Furthermore, the actual jump condition is another constraint. Thus, there are 4 linear
constraints and hence the dimension of V local[T, z, n] is 4. Finally, we easily check
that η0, η1,η2, and η3 fulfill (3.6).

In the simpler isotropic case we can replace Kn by the kink ratio κ := a−/a+ as
defined before and set Ks = Kt = 0 in the above formulas.

Next, let us define the set of coefficients yielding a suitable approximation of a
function u ∈ C0 in V local[T, z, n]. Hence, we denote byMT,z,n[u] the set of coefficient
vectors α̃ = (α̃0, . . . , α̃3) which minimizes

∑3

i=0

(
u(xi)−

∑3

j=0
α̃jηj(xi)

)2

(4.3)

where the xi are the vertices of the tetrahedron T . We will verify in Lemma 4.4
that in the scalar isotropic case, there is a unique interpolation of any set of nodal
values u(x0), . . . , u(x3) in V local[T, z, n]. Thus, the minimum is zero and the associated
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Fig. 4.4. 2D CFE basis functions for isotropic scalar diffusion with kink ratio κ = 10 are shown.
Away from the interface (red line), CFE basis functions are identical to standard hat functions. At
the interface, they may have larger (but still local) support and may attain negative values.

coefficient vector α = (α0, . . . , α3) solves the linear system u(xi) =
∑
j=0,...,3 α

jηj(xi)
exactly for i = 0, . . . , 3. On the other hand, in the case of anisotropic tensors a±, there
can be an affine solution space of dimension at least 1 (see the Remark 4.5 below).
Correspondingly not every set of nodal values u(x0), . . . , u(x3) can be interpolated by
a function in V local[T, z, n]. Hence, to select a unique coefficient vector α for later use
in the interpolation we define

α = (α0, . . . , α3) := argmin
α̃∈MT,z,n[u]

|α̃|2`2 (4.4)

which is indeed unique because we minimize the Euclidean norm of (α̃0, . . . , α̃3) over
the affine subspace MT,z,n[u]. The local evaluation of this approximation at the
interface point z is then defined as

ET,z,n[u] :=
∑3

j=0
αjηj(z) . (4.5)

Interpolation Operator. Once we have constructed ET,z,n on each tetrahedron
T ∈ G� intersecting the interface γ�, we can construct a global interpolation via
local averaging in the vicinity of the interface. Indeed, we define I[u] : C0 → V4 via

I[u](v) :=


1

card{T∈G� | v∈T}
∑
T3v
ET,v,n(v)[u] for v ∈ N4 \ N� ,

u(v) for v ∈ N� .
(4.6)

Let us remark that, for z ∈ N4 \N�, the set
{
T ∈ G� | z ∈ T

}
is non-empty and its

cardinality is bounded by 8. By construction, I[u] is determined solely by the values
at nodes in the set N� of nodes of the uniform hexahedral mesh. An example of some
CFE basis functions for a 2D scalar isotropic problem with kink ratio κ = 10 is shown
in Fig. 4.4. Since for non-planar interfaces we determine an approximate interface
and approximate normals for every virtual node, the interpolation I[u] fulfills the
coupling condition (3.5) only approximately.

Composite Finite Element Basis Functions. Based on this interpolation we finally
define the CFE basis functions and the CFE space

ψcfe
i := I[ψ�

i ] , Vcfe := span
{
ψcfe
i | i = 1, . . . ,M

}
⊂ V4 . (4.7)
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z1

z2

z0

x3

x1

x2

x0

Fig. 4.5. An example for the possibly larger support of 3D CFE basis functions is shown. A
planar (transparent shaded plane) interface intersecting the uniform hexahedral mesh G� is depicted.
The virtual node z0 is constrained by the nodes x0 and x1 (among others) and the node z1 is con-
strained by the node x2 (among others), because each of the pairs z0, x0 and z1, x1 are node pairs of
tetrahedra (solid lines, left and right) of the mesh G�. Furthermore, there is a local auxiliary tetra-
hedron T (solid lines, middle) of G4 with nodes x3, z0, z1, z2. Hence, T ⊂ suppψcfe

{0,1} ∩ suppψcfe
2

which implies that the supports of the CFE basis functions corresponding the nodes x0 and x2 (on
the same side of the interface) and x1 and x2 (on different sides of the interface) overlap.

In these definition the term ‘composite’ reflects the fact that the CFE basis functions
ψcfe are composed of virtual basis functions ψ4. In fact, for a node xi ∈ N� we
denote by C(xi) the set of nodes v ∈ N4 which lie in a tetrahedron of G� with vertex
xi, v is then said to be ‘constrained’ by xi. Then ψcfe

i is the linear combination of
ψ4v for v ∈ C(xi) (with weights I[ψ�

i ](v)).

Lemma 4.2 (Estimate on the support of the CFE basis function). The support
of a CFE basis function is contained in a ball with diameter 6h with respect to the
maximum norm, where h is the grid size of the underlying hexagonal grid.

Proof. The support of a CFE basis function ψcfe
i can be larger than the support

of an underlying basis function ψ�
i from the auxiliary FE space since the node xi

may constrain virtual nodes z not lying on an edge whose end point is the correspond-
ing node of the uniform hexahedral mesh. Indeed, for such a node z with index j,
supp(ψ4j ) 6⊂ supp(ψ�

i ), and thus supp
(
ψcfe
i

)
= supp

(
ψ4i
)
∪
⋃
j∈C(xi)

supp
(
ψ4j
)

with
C(xi) defined as above.

For any two nodes of the underlying hexagonal grid lying in the support of a CFE
basis function the distance can be at most two times the distance between a virtual
node and a corresponding constraining node of the uniform hexahedral mesh plus the
maximal distance between two virtual nodes of the same local auxiliary tetrahedron.
This immediately leads to a an estimate for the support of a CFE basis functions in
the maximum norm of 6h (cf. Fig. 4.5 for an example configuration which proves this
bound to be sharp).

Let us remark that in 2D the bound is smaller and supports of basis functions
are contained in balls of diameter 4h in the maximum norm. Furthermore, some
additional properties of the CFE basis are listed in the following remark.

Remark 4.3.

(i) The ψcfe
i i = 1, . . . ,M form a nodal basis, i.e. u =

∑M
i=1 u(xi)ψ

cfe
i for every

u ∈ Vcfe.
(ii) Away from the interface, there are no virtual nodes constrained by nodes

of the uniform hexahedral mesh, so the construction of CFE basis functions simply
yields standard affine basis functions. Defined as a linear combination of virtual basis
functions near the interface the CFE basis functions are piecewise affine.
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(iii) A basis function ψcfe
i may attain negative values and values greater than 1.

Moreover, it need not satisfy the coupling condition (3.5) across γ� pointwise.

In the isotropic scalar case we obtain

Lemma 4.4. In the scalar isotropic case, there is a unique interpolation of
any set of nodal values u(x0), . . . , u(x3) in V local[T, z, n]. Hence, the minimum set
MT,v,n(v)[u] of the least square problem (4.3) consists of a single coefficient vector
and the minimum is zero.

Proof. We verify that the linear mapping defined by I : V local → R4, u 7→
(u(xi))i=0,··· ,3 is bijective. Preimage and image space have the same dimension, hence
it is sufficient to verify injectivity. Without loss of generality let us assume that x0, x1

are on one side and x3 on the other side of the planar local interface approximation
P as defined for (4.2) (x2 may be on either side). Moreover, assume that z2, z3 are
two points on P such that the tetrahedron (x0, x1, z2, z3) is non-degenerate. If I is not
injective, there exists w ∈ V local with w 6≡ 0 with I(w) = 0.

Without loss of generality let us assume that w(z2) 6= 0. The sets Z± := [w = 0]∩
H± are thus of codimension 1, i.e. planes parallel to P or halfplanes on one side of
the interface not containing z2. In the parallel case, the straight line through z2 in
normal direction n obviously intersects Z− and Z+, which implies a sign change of
∂nw at z2, contradicting the coupling condition (3.5) in the scalar isotropic case.

In the non-parallel case, continuity implies that Z−∩H = Z+∩H is a line. Since
the angles formed by the edges of the tetrahedron (x0, x1, x2, x3) in G� are bounded
from above by 90◦ (see Fig. 4.1) and its vertices lie in Z−∪Z+, also the angle between
the halfplanes Z− and Z+ is bounded by 90◦. This implies that the straight line through
z2 in normal direction n on P in fact still intersects the halfplanes Z− and Z+, leading
to the same contradiction as before.

In case the assumptions of Lemma 4.4 are fulfilled we can equivalently consider
the problem of finding weights ω0, . . . , ω3 solving the interpolation problem in V local,
which—expressed in terms of the basis (ηj)j=0,...,3—leads to the linear system of
equations

ηj(z) = ω0ηj(x0) + ω1ηj(x1) + ω2ηj(x2) + ω3ηj(x3) (4.8)

for j = 0, . . . , 3. From the last equation for η3 ≡ 1 we deduce that the weights always
sum up to 1. As a consequence, we observe that the CFE basis forms a partition
of unity because the nodal basis on V4 does. Let us remark that even though the
weights sum up to 1, they may lie outside [0, 1] and thus in general do not define a
convex combination, which is due to the fact that the ηj are not globally affine. In
this case, we can write the approximation problem (4.5) as the interpolation problem

ET,z,n[u] =
∑3

i=0
ωiu(xi) (4.9)

at the point z.

Remark 4.5 (Non-unique solvability of (4.3) in the scalar anisotropic case). As
already mentioned, in general equation (4.8) is not uniquely solvable in the scalar
anisotropic case, as shown by the following counterexample. Let us first consider the
2D setting shown in Fig. 4.6. Positive definiteness of a− and a+ is easily verified.
Moreover, let H := [x = 0], n = (1, 0)T , t = (0, 1)T , and w−(x, y) := −2x + y,
w+(x, y) := 4x+y. The resulting function w and its tangential derivatives are clearly
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a− :=

(
7 16
16 43

)
P

Z− Z+

x3
z2

x1

x0

∇w+∇w−

a+ :=

(
1/2 0
0 1/2

)

Fig. 4.6. Illustration of a counterexample for unique solvability of the construction system (4.8).

continuous across γ and the coupling condition is also satisfied, since

a−∇w−n =

(
7 16
16 43

)(
−2
1

)
·
(

1
0

)
=

(
2
11

)
·
(

1
0

)
= 2 ,

a+∇w+n =

(
1/2 0
0 1/2

)(
4
1

)
·
(

1
0

)
=

(
2

1/2

)
·
(

1
0

)
= 2 .

The sets Z± := [w± = 0] are two rays starting at the origin perpendicular to ∇w±.
Due to ∠(∇w−,∇w+) > 90◦ and ∠(Z−, Z+) < 90◦, a triangle x0, x1, x3 with x0, x1 ∈
Z+, x3 ∈ Z− with a 90◦ angle and catheti of the same length exists. Let z2 :=
[x0, x3] ∩ H, then w(z2) 6= 0 (w is zero at the origin but nowhere else on H) even
though w(xi) = 0 for i = 0, 1, 2. Constant extension in the third space direction, a
corresponding modification of the two diffusion tensors a±, and a fourth vertex x2

lying above x0 turns this into a 3D example with a regular tetrahedron with vertices
xi and w(xi) = 0 for i = 0, . . . , 3, then w ∈ V local[T, z2, n] does not imply w(z2) = 0.

4.3. Composite Basis Functions for Linearized Elasticity. The construc-
tion of a CFE basis in the vector-valued case of linearized elasticity is performed in
analogy to the scalar case in Section 4.2 above, however some bookkeeping of the
additional indices is required.

Local Interpolation Scheme. Let us again denote the space of admissible vector-
valued, piecewise affine functions fulfilling the coupling condition (3.9) by V local[T, z, n].
In analogy to the scalar case we obtain

Lemma 4.6. The coupling condition (3.9) implies that the set of locally ad-
missible displacement profiles is spanned by the following 12 displacement functions
{ηi,j}i=0,...,3, j=0,1,2 (here the index i corresponds to the same index as in the scalar
case (4.2), whereas j refers to the jth vector component)

η0,j(x) :=

{
(x− z) · nKn

j for x ∈ P+

(x− z) · n ej for x ∈ P−
,

η1,j(x) :=

{
(x− z) · nKs

j + (x− z) · sej for x ∈ P+

(x− z) · sej for x ∈ P−
,

η2,j(x) :=

{
(x− z) · nKt

j + (x− z) · t ej for x ∈ P+

(x− z) · t ej for x ∈ P−
,

η3,j(x) := ej .

(4.10)

Here, ej is the jth canonical basis vector in R3 and Aj represents the jth column
of the matrix A = (Aij)i,j=0,1,2 for A = Kn, Ks, and Kt, respectively. P± :={
x ∈ R3 | ± (x− z) · n ≥ 0

}
are defined as above.
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Proof. The proof is a straightforward adaption of the proof of Lemma 4.1. The
space of vector-valued affine functions in R3 is 12, resulting in 24 degrees of freedom.
The interface conditions leads to 12 linear constraints, and thus dimV local[T, z, n] =
12. Finally, we again verify that the functions ηi,j for i = 0, . . . , 3 and j = 0, 1, 2
fulfill (3.10).

In analogy to the scalar case, let MT,z,n[u] to be the set of coefficient vectors
(α̃k,j)k=0,1,2, j=0,...,3 ∈ R12 minimizing (cf. (4.3))∑

i=0,...,3

∣∣∣∣u(xi)−
∑

k=0,1,2
j=0,...,3

α̃k,jηk,j(xi)

∣∣∣∣2 (4.11)

where | · | is the Euclidean norm. As in (4.4) we extract the unique coefficient vector

(αk,j)k=0,1,2, j=0,...,3 := argmin
(α̃k,j)∈MT,z,n[u]

∑
k=0,1,2
j=0,...,3

(α̃k,j)2 (4.12)

so that we can evaluate the associated approximation of a function u ∈ (C0)3 in
V local[T, z, n] at the interface point z as (cf. (4.5))

ET,z,n[u] :=
∑

k=0,1,2
j=0,...,3

αk,jηk,j . (4.13)

Again, if the minimum setMT,v,n(v)[u] consists of a single coefficient vector with

zero minimum, we can equivalently consider the interpolation problem in V local[T, z, n]
of finding ω0, . . . , ω3 ∈ R3×3 solving (cf. (4.8))

ηk,jl (z) =
∑

m=0,...,3
n=0,1,2

ωmlnη
k,j
n (xm) (4.14)

for k = 0, 1, 2, j = 0, . . . , 3, and all components l = 0, 1, 2. We can then write (4.13)
as the interpolation problem (cf. (4.9))

ET,z,n[u] =

( ∑
l=0,...,3
n=0,1,2

ωlnkun(xl)

)
k=0,1,2

. (4.15)

However, the scalar uniqueness proof can straightforwardly be extended to the isotropic
elasticity case only if ν = 0 (λ = 0). For discontinuous ν and E, again counterexam-
ples exist, see [66, Sect. 3.3].

Vector-Valued Composite Finite Element Basis Functions. Based on the evalua-
tion ET,z,n[u] of the local approximation, we proceed as in the scalar case in Section 4.2
and define the global interpolation I[u] : (C0)3 → V4 by the formulas (4.6), except
that the resulting interpolation is a vector-valued function. Finally, a CFE basis in
the vector-valued case and the CFE space are (cf. (4.7))

ψcfe
ik := I[ψ�

i ek] , Vcfe := span
{
ψcfe
ik | i = 1, . . . ,M, k = 0, 1, 2

}
. (4.16)

Note that ψ�
i ek discretizes the displacement in a single space direction whereas ψcfe

ik

(near the interface) may have contributions in all space directions. Again, ψcfe
ik are

composed of virtual basis functions ψ4v ek for all v ∈ C(xi) and for k = 0, 1, 2 by linear
combination, where C(xi) is defined as before.
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5. Sketch of the Algorithm and Implementational Issues. In this section
we comment on some implementational issues. Indeed, the usual paradigms of FE
matrix assembly apply. Based on the above described local and temporal preprocess-
ing of the auxiliary mesh near the interface, the degrees of freedom reside on the nodes
of the underlying regular hexahedral grid. The resulting matrix is still sparse with
a slightly enlarged stencil close to the interface and can be computed in O(cardN�)
time. For a comprehensive description of the mesh generation and the processing of
the interface described by level sets, we refer to [50].

Mesh Handling and Data Storage. In the algorithm, neither G� nor G4 are stored
explicitly. Instead when traversing the mesh, for every cell we compute its signature,
i.e. the signs of the level set function ϕ at the vertices. The local mesh topology of
G4 solely depends on this signature. Hence, given a signature of a mesh cell we can
extract the local interface topology from a lookup table, which is parameterized by the
signature of mesh cells. Via suitable scaling the actual intersection of the interface
with edges of G� is taken into account and a local matrix assembly is performed.
Obviously, during the mesh traversal, the geometric configuration around a virtual
node z ∈ N4 \ N� has to be retrieved for every tetrahedron containing z. To allow
a reuse of data describing the local geometry of G4 and the involved weights, in
different tetrahedra, we store them in an standard template library (STL) map data
structure. The sorted concatenated (64 bit) pair of the two (32 bit) indices of the end
points of the edge containing z are used as the key to retrieve the corresponding data
items from the STL data structure.

Robust Computation of the Construction Weights. The construction of the CFE
basis functions requires, for each auxiliary node z ∈ N4 \N� and every tetrahedron
T ∈ G4, the computation of Kn, Ks, Kt defined as coefficients in (3.6) for the scalar
case or matrices in (3.10) for the vector-valued case and of the set of weights wi or
weight matrices wl = (wlnk)nk (in the exact interpolation cases (4.9) and (4.15)).
Depending on the relative location of the auxiliary node z on the edge and on the
discontinuity between the coefficients on both sides of the interface (e.g. the ratio κ
in the scalar isotropic case), this can lead to an ill-conditioned problem. Especially
the linear systems of equations (4.8) and (4.14) can be difficult to solve accurately
in particularly degenerate cases. Hence, tetrahedra leading to such degenerate cases
are detected and the corresponding contributions to the averaging process in (4.6) are
skipped for the computation of the interpolation value. Denoting the numerical inverse
computed in finite precision by A∼1, we distinguish between reliable and unreliable
tetrahedra of G� depending on whether ‖AA∼1 − Id ‖F for the matrix in one of the
involved linear systems is smaller than some threshold. For the solution of (4.14) we
use the norm of the residuum as reliability measure. The threshold must be chosen
small enough to prevent unreliable tetrahedra from contributing numerical errors to
the CFE construction, but also big enough to allow at least one reliable tetrahedron
per virtual node. In fact, we start e.g. with a threshold of 2 · 10−15 and increase it
globally if there are virtual nodes for which no reliable tetrahedron is found. Let us
also mention that in our computations no configuration of tetrahedron T and virtual
z with interface normal n occurred for which least squares problem (4.3) or (4.11)
were degenerate in the sense that no interpolant existed. Hence, we effectively solved
the associated interpolation problems via (4.8) or (4.14).

Solvers and Preconditioners. We use a preconditioned conjugate gradient (PCG)
solver with SSOR preconditioning [32]. For the vector-valued elasticity problem, a
block variant [32] of SSOR is used, where 3 × 3 blocks are considered corresponding
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to nodal displacement vectors.
Although uniform hexahedral meshes contain canonical coarse scales, and thus are

candidates for geometric multigrid solvers [84, 78], these cannot easily be integrated
into the 3D CFE context (cf. [65]). Different interface resolutions at different mesh
levels lead to the problem that a coarsening scheme needs to simultaneously preserve
the partition of unity property and prevent artificial kinks in the basis functions
away from the interface. Thus, the design and implementation of a specialized CFE
multigrid method, possibly in combination with algebraic multigrid methods [73, 25],
still requires further investigation.

Memory Requirements. Due to the fact that CFE basis functions are associated
with nodes of G�, the memory requirement for a data vectors on a (2l)3 mesh is
O(23l). The total memory requirement to handle the data for a single virtual node is
typically about 300 bytes in the scalar case and 750 bytes in the vector-valued case. If
we assume that our interface is a smooth hypersurface, we deal with O(22l) interface
nodes. Without any regularity assumption on the interface, the worst bound on the
number of virtual nodes is the number of edges of G�, which is O(23l).

Both the time for the matrix assembly and the memory required to store a global
FE matrix scales essentially linearly in the number of interface nodes. Here, we take
into account that (if the coefficient is constant throughout a subdomain) matrix entries
corresponding to nodes apart from the interface can be retrieved from a lookup table
not only when assembling matrices but also when computing matrix-vector products.
The storage requirement for the lookup tables is negligible at about 2 MB.

The sparsity structure of CFE matrices is determined by the local geometry of
G4. In the scalar case, a matrix row has 15 entries for nodes apart form the interface
(as for piecewise affine FE) on G� and up to 89 entries for nodes near the interface. In
case of a underlying uniform hexahedral mesh with 1293 for the bone specimen A in
Fig. 7.5, approximately 619 MB are required to store one CFE matrix (in the scalar
case), where 90.1 % of the rows are explicitly stored.

Parallelization. For current shared-memory multi-core or multi-processor com-
puters, a straightforward parallelization of the code allows a significant speed-up at
low implementational effort. Indeed, SSOR preconditioning and matrix-vector multi-
plications in the solution step are easily parallelized based on an appropriate ordering
of the degrees of freedom, using OpenMP in our C++ implementation.

6. CFE Simulation for Composite Materials. Let us now present numerical
results obtained with the proposed CFE method. Subsection 6.1 deals with a study
of the mesh convergence of the approximation of given functions and the solution of
elliptic boundary value problems. In Subsections 6.2 and 6.3, we apply the com-
posite finite element approach to geometrically complicated domains either based on
fine structured lattices which are in addition modified using special random geometric
perturbations, or extracted from highly resolved 3D micro-CT images of aluminum
foam or bone microstructures. On these domains either heat conduction or linearized
elasticity is simulated. Based on these real world applications we underline the com-
putational advantages of the compute finite element approach in fine scale simulation
and numerical homogenization.

6.1. Approximation Properties. On the real line we consider prototype func-
tions which admit kinks of different ratios (cf. Fig. 6.1). From these we construct
cylindrically and spherically symmetric functions, respectively, whose approximation
with the CFE basis functions is studied. In the case of the cylindrical interface the
function is constant along the interface, in the case of the spherical interface we also
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0
0 interface

κ = 2
κ = 16

κ = 1000

Fig. 6.1. The figures shows two cylindrically and spherically symmetric objects (left). On
rays through the center, we use the one-dimensional piecewise smooth prototype function admitting
different kink ratios (second from right), where the test function for the sphere is multiplied by a
tangential modulation term (right).
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Fig. 6.2. The plots show the convergence of the CFE approximation error of cylindrically
symmetric (middle row) and tangentially modulated cylindrically symmetric (bottom row) functions
for different kink ratios κ ∈ {2, 16, 1000}, measured in the L∞, L2, and H1 norms (from left to
right), relative to the L2 norm of the function. For comparison, we also plot the expected optimal
order of convergence and the convergence of the error for standard affine interpolation (stdFE, for
kink ratio κ = 16) on the uniform hexahedral mesh, thus ignoring the kink and attaining orders 1.0,
1.5, and 0.5 only.

multiply by a tangential modulation which is shown in Fig. 6.1 as well. In both cases,
we compare the resulting analytically given function, which is piecewise smooth, with
its CFE interpolant. We evaluate the L2 and H1 approximation error by midpoint
quadrature over G4 and L∞ approximation error by examining all mesh and quadra-
ture points. For varying kink ratio between 1 (no kink) and 107, we observe second
and first order convergence in the L2 and H1 norms for decreasing mesh size, re-
spectively, where the approximate convergence rates lie within [1.95, 2.01] (L2) and
[1, 1.18] (H1) for h decreasing from 2−2 to 2−9. The L∞ approximation error exhibits
stable convergence rates in [1.85, 2.01] for the cylindrical example. However, for the
spherical test case the L∞ error suffers from outliers and lies within [1.1, 2.2]. The
result of our study for selected kink ratios κ ∈ {2, 16, 1000} is reported in Fig. 6.2. In
addition, we here compare the CFE method to a standard affine FE scheme without
any adaptation to the curved interface. From our numerical investigations we see that
the convergence of our CFE method is improved by approximately one order in the
L∞ norm and by approximately half an order in the integrated L2 and H1 norms
compared to standard affine FE.
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scalar problem elasticity problem
h L∞ error L2 error H1 error L∞ error L2 error H1 error

1/16 0.055279 0.008245 0.359515 0.266884 0.007583 0.564360
1/32 0.023502 0.003393 0.193077 0.108070 0.003046 0.268633
1/64 0.009512 0.001092 0.097312 0.051376 0.000939 0.121923
1/128 0.004850 0.000348 0.048578 0.049559 0.000230 0.056526
1/256 0.002119 0.000090 0.023283

Fig. 6.3. Numerical consistency analysis for a scalar and an elasticity boundary value problem
on the domain shown on the left.

t = 0.0 t = 0.05 t = 0.10 t = 1.0 t = 10.0 t = 20.0

Fig. 6.4. Heat conduction simulation on an Al foam embedded in PMMA. Temperatures
(194.65 K 373.15 K) are visualized on the interface (top row) and on a slice through the
composite material (bottom row). The temperature profiles for different times show that an almost
steady state is reached much faster in the metal than in the plastic.

Numerical Consistency of Boundary Value Problems. Furthermore, we consider
the 33 rod interface shown in Fig. 6.3. For this configuration we compute the solutions
of a scalar boundary value problem (isotropic coefficient, kink ratio κ = 42) and an
elasticity problem (compression in z direction, material parameters E = 5, ν = 0.2 in
the rods and E = 1, ν = 0.2 in the remaining matrix). The solutions are computed
at different resolution and compared to a ‘reference solution’, which is obtained at
resolution 5133 (scalar problem) and 2573 (elasticity problem). We evaluate the L∞,
L2, and H1 norm of the difference via midpoint quadrature on the finest G4. In the
elasticity case, pointwise Euclidean and Frobenius norm are used for differences of the
vector-valued quantity and its derivatives, respectively.

We observe in both problems that the convergence behavior in L∞ is clearly below
second order whereas convergence in L2 is close to second order and in H1, we have
almost perfect first order convergence.

6.2. Heat Conduction Simulation. Let us now consider a sample of alu-
minum foam (Al) embedded in polymethylmethacrylate (PMMA), on which we simu-
late the temporal evolution of temperature. The edge length of the sample is 7.71 mm
and the computational hexahedral mesh contains 2573 nodes. We use realistic volume-
specific heat capacities ρc = {2.43, 1.75} · 106 J/m3 K and thermal conductivities of
λ = {237.0, 0.19} W/m K for Al and PMMA, respectively. Thus, the thermal conduc-
tivity has a kink ratio of κ ≈ 1247. The initial condition is set to room temperature
293.15 K and boundary conditions are 194.65 K at the bottom and 373.15 K at the top.
For the time-stepping an implicit Euler scheme is used. Results of the computation
are depicted in Fig. 6.4.
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undeformed deformed z displacements von Mises stress

(scaled by 20) −0.001 0.0003 0 0.06 GPa 0 0.2 GPa

y displacements von Mises stressz y
x −7 7 · 10−5 0 0.15 GPa

Fig. 6.5. Top: Linear elasticity simulation on Al foam/PMMA dataset: torsion by 1◦ (scaled
by a factor of 20). Besides undeformed and deformed structure, we show on a slice (y = 1/6; in the
undeformed configuration) the induced z displacements and the von Mises stress on a slice through
the object and (for the Al structure) on the interface, making visible the effect of the 23-fold stiffness
of the Al foam. Bottom: 1 % compression of a porcine trabecular bone / PMMA dataset. The effect
of four times higher stiffness of the bone is visible in the y displacements and the von Mises stresses
on a slice. Note that in both examples the deformations haven been scaled by a factor of 20.

6.3. Linear Elasticity Simulation. Finally, we simulate elasticity of objects
with a complicated internal structure. First the Al/PMMA structure from the last
paragraph is considered with realistic stiffness parameters E = 70 GPa, ν = 0.35
and E = 3 GPa, ν = 0.38. Now the object is resolved at 120 µm, resulting in a
653 computational mesh. In Fig. 6.5 we show the result of a simulation of torsion by
1 degree.

The second sample is part of a porcine T1 vertebral body for which we assume
the elasticity parameters E = 13 GPa and ν = 0.32. These microscopic material
parameters are realistic for human vertebral bodies [83], whose pore size, however, is
bigger than the one in pigs. The object is scanned at 35 µm resolution, resulting in a
143×143×214 computational mesh. We assume the specimen to be filled with PMMA
as above (E = 3 GPa, ν = 0.38) and simulate a compression in longitudinal direction
by 1 percent. Again the results are shown in Fig. 6.5. Note that both deformations
are scaled by a factor of 20 to enhance the visual perception.

7. Numerical Homogenization Based on CFE. In what follows we aim at
computing macroscopic diffusion tensors and elasticity tensors for microstructured
composite materials. As in the above simulations, the material is supposed to be
described via 3D images of prototype structures or actual material specimens.

First, we consider the case of a periodic domain corresponding to material with
a regular periodic structures. However, real material specimens in general can not
be considered as cells of a periodic lattice. We will thus, in a second step, adapt
the homogenization approach for periodic domains to structures which are supposed
to be prototype cells in a statistical sense. Numerical experiments demonstrate that
the proposed modification actually allows to extract macroscopic properties of the
underlying composite material in a reliable fashion.



20 TOBIAS PREUSSER, MARTIN RUMPF, STEFAN SAUTER, OLE SCHWEN

7.1. Cell Problems for Periodic Domains. At first, let us briefly review how
to evaluate an effective, homogenized material property based on a corrector problem
on the fundamental cell of a periodic domain. For details we refer to [2, Chapter 1].
An implementation in the context of a CFE element method for complicated domains
but with continuous coefficient can be found in [68].

Scalar Model Problem. Given the scalar problem (3.2) on a macroscopic domain
Ω with an underlying periodic lattice and a fundamental cell Ω# = [0, 1]3, we consider
a splitting u = ũ + ū of the solution u into a microscopic quantity ũ reflecting the
microscopic fluctuations and a macroscopic quantity ū. We suppose that ũ satisfies
periodic boundary conditions on ∂Ω# = [0, 1]3 and that

ffl
Ω# ũdx = 0, whereas ū is

considered to be affine on Ω#. From (3.2) we deduce that

ˆ
Ω#

a∇ũ · ∇v dx = −
ˆ

Ω#

a∇ū · ∇v dx ∀v ∈ H1
#(Ω#), (7.1)

which can be used to solve for ũ for any given ū. H1
#(Ω#) here denotes the space

H1(Ω#) restricted to functions which fulfill periodic boundary conditions.
The effective diffusion tensor ā = (āij)ij describes the relation between macro-

scopic gradient and macroscopic heat flux via q̄ = ā∇ū where the macroscopic flux is
evaluated on the fundamental cell as q̄ =

ffl
Ω# a∇udx =

ffl
Ω# a∇ (ū+ ũ) dx. Choosing

ūi with ∇ūi = ei for i = 0, 1, 2 and denoting by ũi the corresponding solution of (7.1)
and by q̄i the corresponding macroscopic flux, we obtain āij = q̄ji = q̄j · ei. Even
though in the spatially continuous case the resulting homogenized diffusion tensor
ā is symmetric, we observe a slight lack of symmetry for the numerically computed
tensor, which vanishes in the asymptotic limit for successively refined meshes. Hence,
it turns out to be numerically more convenient to use the—in the spatially continuous
case—equivalent variational definition

 
Ω#

ā∇ū · ∇ū = inf
ṽ∈H1

#(Ω)

 
Ω#

a∇(ū+ ṽ) · ∇(ū+ ṽ) (7.2)

for a symmetric tensor ā. This definitions leads to the same Euler-Lagrange equation
as (7.1). The minimum in (7.2) is attained by ũ solving (7.1) for given ū. Hence, the
entries āik of ā are obtained taking into account that aik = aei · ek = aei+k · ei+k −
aei−k · ei−k for symmetric a and for ei±k := 1

2 (ei ± ek). Indeed, for ūi with ∇ūi = ei
we finally obtain

āik =

 
Ω#

ā∇ūi · ∇ūk =

 
Ω#

ā∇ūi+k · ∇ūi+k − ā∇ūi−k · ∇ūi−k (7.3)

=

 
Ω#

a∇(ūi+k + ũi+k) · ∇(ūi+k + ũi+k)− a∇(ūi−k + ũi−k) · ∇(ūi−k + ũi−k) ,

where ∇ūi±k = 1
2 (ei ± ek) and ũi±k is the corresponding solution of (7.1).

Linearized Elasticity. In the vector-valued case of linearized elasticity, the dis-
placement u is, in analogy to (7.1), decomposed into a macroscopic displacement ū
and a microscopic displacement component ũ with periodic boundary conditions andffl

Ω# ũdx = 0 solving

ˆ
Ω

Cε(ũ) : ε(v) dx = −
ˆ

Ω

Cε(ū) : ε(v) dx ∀v ∈ H1
#(Ω,R3) (7.4)
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due to (3.8). The effective elasticity tensor C̄ = (C̄ijkl)ijkl now couples macroscopic
strain ε(ū) and stress σ̄ via σ̄ = C̄ε(ū). Here, the effective stress is evaluated as
σ̄ =

ffl
Ω# Cε(ū+ ũ) dx, and we have to consider at least 6 (due to symmetry of stress

and strain) macroscopic displacements ū00, . . . , ū22 with linearly independent strain
tensors eij := ε(ūij) = 1

2 (ei ⊗ ej + ej ⊗ ei) for i, j ∈ {0, 1, 2} and i ≤ j. Then, we
achieve C̄··ij = σ̄ij :=

ffl
Ω# C

(
ε(ũij) + eij

)
dx , where ũij solves (7.4) for given ūij .

Again, we take into account the variational formulation (cf. (7.2)) 
Ω#

C̄ε(ū) : ε(ū) = inf
ṽ∈H1

#(Ω;R3)

 
Ω#

Cε(ū+ ṽ) : ε(ū+ ṽ) (7.5)

leading to the same Euler-Lagrange equation as (7.4) for the minimum ũ given the
macroscopic displacement ū.

Hence the entries C̄ijkl of the symmetric tensor C̄ are obtained using the for-
mula Cijkl = Ceij : ekl = 1

4 (Ceij+kl : eij+kl − Ceij−kl : eij−kl) for given microscopic
elasticity tensor C, eij±kl := 1

2 (eij±ekl), and ūij with ε(ūij) = eij . Indeed, we obtain

C̄ijkl =

 
Ω#

C̄ε(ūij) : ε(ūkl) dx

=

 
Ω#

C̄ε(ūij+kl) : ε(ūij+kl)− C̄ε(ūij−kl) : ε(ūij−kl) dx

=

 
Ω#

Cε(ūij+kl + ũij+kl) : ε(ūij+kl + ũij+kl)

− Cε(ūij−kl + ũij−kl) : ε(ūij−kl + ũij−kl) dx

(7.6)

where ε(ūij±kl) = 1
2 (eij ± ekl) and ũij±kl is the corresponding solution of (7.4).

Periodic Boundary Conditions. We implement periodic boundary conditions by
the usual identification of nodes on opposite boundary faces of the fundamental cell
Ω# and a corresponding merging of the corresponding basis functions. Furthermore, a
projecting preconditioned conjugate gradient method takes into account the constraintffl
ũdx = 0.

Homogenization of a Scalar Model Problem. For the scalar case of heat conduc-
tion, we consider a periodic cell problem where the fundamental cell is covered by a
3D lattice structure consisting of 10 × 10 × 10 cylindrical rods. We study different
diameter/length ratios in the three space directions and the case where a part of the
rods is randomly removed. The selected ratio of 237 : 0.19 between the two diffusion
coefficients reflects realistic values for aluminum and PMMA. In Fig. 7.1 we report
the resulting homogenized heat conductivity tensor. In Fig. 7.2 we moreover study
the convergence for increasing spatial resolution.

Homogenization of an Elasticity Model Problem. Next, we investigate homoge-
nization in the context of linearized elasticity. In a first numerical experiment we
again consider the object (b) in Fig. 7.1 having an edge length of 1 m and with an
underlying uniform hexahedral mesh having 1293 nodes. For the (microscopically)
isotropic linear elasticity parameters for Al (E = 13 GPa, ν = 0.32) and PMMA
(E = 3 GPa, ν = 0.38) we obtain the homogenized elasticity tensor in Voigt’s nota-
tion (see e.g. [18]) in units of GPa

C =


12.386 5.768 5.571
5.768 11.927 5.499
5.571 5.499 11.152

2.520
2.644

2.937
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a b c d109.3 −0.11 −0.02
−0.11 109.4 0.16
−0.02 0.16 109.6

  126 −0.14 −0.02
−0.14 109 0.11
−0.02 0.11 71.1

  93.1 0.13 0.22
0.13 93.1 0.40
0.22 0.40 93.1

  69.9 −0.43 −0.02
−0.43 106 0.17
−0.02 0.17 106


Fig. 7.1. Numerical homogenization of heat diffusion and elasticity is applied to periodic ma-

terial samples. (b) is a full 10 × 10 × 10 structure of cylindrical rods with diameter/length ratios
0.38, 1/3, 0.24 in the different space directions (a), (c), (d) have diameter/length ratios 1/3 in each
space direction where (a), (b) are full structures, (c) is missing (randomly chosen) 10 percent of the
connections (in each space direction), and (d) is missing 30 percent of the connections in x direction
only.

333 653 1293 2573 126.44 −0.1141 −0.0595
−0.1141 109.40 0.3583
−0.0595 0.3583 71.33

  125.37 −0.1366 0.0033
−0.1366 106.94 −0.0111

0.0033 −0.0111 69.88

  125.42 −0.0587 −0.0059
−0.0587 107.01 0.0117
−0.0059 0.0117 70.27

  125.46 −0.0213 0.0001
−0.0213 107.27 −0.0000

0.0001 −0.0000 69.95



Fig. 7.2. For 2× 2× 2 rods of diameter/length ratios 0.38, 0.33, 0.24 (left), we show a zoom to
one trabecular crossing at different computational resolutions ranging from 333 to 2573 nodes, along
with the numerically homogenized heat conductivity tensors obtained at the different resolutions.

where entries with absolute value smaller than 10−3 times the maximal entry have
been omitted.

Furthermore, we study a fundamental cell with a 3D trabecular structure, which
is rotated in the (y, z) plane by an angle α = arctan(1/5) ≈ 11.310◦, see Fig. 7.4.
The geometry is constructed in such a way that there is a smooth periodic extension.
Here, the edge length is 1 m, E = 10 Pa and ν = 0.1 inside the structure, E = 1 Pa
and ν = 0.3 in the surrounding matrix. For the computations we use an underlying
uniform hexahedral mesh with 653.

Once the homogenized elasticity tensor C is computed, we determine a rotation
matrix Q = (Qab)ab such that the appropriately rotated elasticity tensor minimizes
the non-orthotropy defect with respect to the canonical coordinate system in the
Frobenius norm. Following [80, 86] this means a numerical minimization of

F (Q) =
‖Ra[QmiQnjQpkQqlCijkl]‖2F
‖Rb[QmiQnjQpkQqlCijkl]‖2F

(7.7)

where Ra is the restriction to the entries not present in an orthotropic tensor and Rb
the restriction to those present (upper left block and diagonal of lower right block in
Voigt’s notation).

For the example considered here we obtain a rotation by −11.289◦ in the (y, z)-
plane, almost perfectly recovering the geometric rotation. The resulting elasticity



3D COMPOSITE FE FOR DISCONTINUOUS COEFFICIENTS 23

Fig. 7.3. For a 1 × 1 × 1 rod dataset, the difference between periodic (middle) and Dirichlet
(right) boundary conditions is shown for one tensile loading case. Dirichlet boundary conditions
prevent the longitudinal rods from thinning at the boundary and force the transverse rods to an
elliptic cross section at the boundary, leading to higher average stress for the same macroscopic
strain. Color encodes the von Mises stress at the interface.

tensors C and its back-rotated version C−α are

C =


1.822 0.607 0.606
0.607 1.794 0.630 −0.049
0.606 0.630 1.803 0.050

−0.049 0.050 0.485
0.465

0.463

 C−α =


1.822 0.607 0.607
0.607 1.815 0.610
0.607 0.610 1.823

0.465
0.465

0.463


where, as above, small entries have been omitted.

7.2. Statistical Prototype Cell Problems. Let us now assume that a mate-
rial specimen contains a (rescaled) cubic cell Ω#, which is considered to be a statistical
prototype realization of the material structure.

In a straightforward manner one might be tempted to periodize the material by
simple mirroring in all space directions and thereby constructing a new fundamental
domain consisting of eight copies of the initial cube Ω#. This approach can clearly
introduce artificial axial anisotropy and may destroy existing anisotropy. Simply
applying periodic boundary conditions in case of non-periodic media will not work
either, since this means identifying points on the boundary with different material
parameters leading to inconsistent geometric structures.

A better approach is obtained by replacing the periodic boundary conditions by
a Dirichlet boundary condition u = ū on ∂Ω#, where ū is again supposed to be affine.
In case of a periodic sample the solution of this modified cell problem will be strongly
impacted by the artificial boundary conditions. In fact compared to the realistic case
of physically natural periodic boundary conditions the Dirichlet boundary condition
in (7.4) lead to an artificial stiffening in a layer around the boundary of the cell.
This fact is illustrated in Fig. 7.3 where we compare the physically correct solution
with periodic boundary conditions with the case, where (artificial) Dirichlet boundary
conditions are imposed.

To reduce the influence of these boundary artifacts, fluxes q or stresses σ are
averaged over a subdomain Ω#

β := {x ∈ Ω# | dist(x, ∂Ω#) > β} only, with β ∈ (0, 1).
Thus we evaluate (7.2) and (7.5) on Ω#

β only. The proper choice of β can be tedious.
On the one hand, for decreasing β the impact of the boundary layer is increased. On
the other hand, for large values of β and fixed experimental material specimen the
statistical properties of the material are possibly no longer well represented on the
smaller domain Ω#

β .
To evaluate the effect of the Dirichlet boundary condition and the parameter β on

the homogenized effective parameter, we perform the following numerical experiment:
A structure with 8 × 8 × 8 cylindrical rods of diameter-to-length ratios 0.4, 0.35,
and 0.3 in x, y, and z direction, respectively, with microscopically isotropic lattice
material properties (E = 10 Pa, ν = 0.1) is embedded into a matrix with E = 1 Pa,
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Fig. 7.4. The left picture shows an orthotropic object rotated by arctan(1/5) so that its or-
thotropy axes are not aligned with the coordinate axes. In the right pictures, the evaluation subdo-

main Ω#
1/8

used in the homogenization approach for not necessarily periodic domains are highlighted,

while the simulation is performed on the whole domain. One corner of the object has been clipped
to enhance the visualization.

ν = 0.3, see Fig. 7.4. The domain of extent 1 m3 is resolved by a uniform hexahedral
mesh with 1293 nodes. Applying the homogenization method for periodic domains,
we obtain the macroscopic elasticity tensor in Pa

C =


2.698 0.652 0.650
0.652 2.505 0.649
0.650 0.649 2.314

0.581
0.611

0.642


Using the numerical homogenization method with Dirichlet boundary conditions

with β = 0 and β = 1/8, respectively, the resulting elasticity tensors are

Cβ=0 =


2.713 0.652 0.651
0.652 2.525 0.649
0.651 0.649 2.337

0.609
0.641

0.673

 , Cβ= 1
8 =


2.698 0.652 0.650
0.652 2.505 0.649
0.650 0.649 2.314

0.592
0.624

0.657


Obviously, for the evaluation of the effective stresses on the whole domain Ω# for
β = 0 boundary artifacts in fact play a significant role. Leaving out a boundary
layer of one pore size (in this case β = 1/8) almost completely eliminates this effect.
Further numerical experiments confirm that larger boundary layers do not improve
the result significantly, at the cost of using only a small portion of the domain on
which the simulation needs to be run.

The following table lists the Frobenius norm of the difference between the tensors
obtained with periodic boundary conditions and Dirichlet boundary conditions, where
we restrict the norm-computation to the entries appearing in an orthotropic tensor.

boundary layer β 0/8 1/8 2/8 3/8

Frobenius difference (relevant entries) 0.108 0.045 0.029 0.020
relative DOF usage 1.000 0.422 0.125 0.016

The numbers show that the difference decreases with increasing boundary layer, along
with the number of nodes used for evaluation divided by the number of nodes used
in the simulation.

Homogenized Elasticity of Trabecular Bone. Finally, we consider two different
cubic subsets of the single (porcine) bone specimen (cf. Fig. 7.5) and assume the
same material parameters as before (E = 13 GPa, ν = 0.32 in the bone, E = 3 GPa,
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A B

Fig. 7.5. Two cubic specimens of a porcine T1 vertebral body are shown at 35 µm resolution
(part of the ones shown in Fig. 6.5) used for numerical homogenization on statistically periodic cells.

ν = 0.38 in the PMMA). The cubic domain Ω# is resolved by a 1293 uniform hexa-
hedral mesh.

Following [37], the domain Ω#
β is sufficiently large if it covers at least five pore

sizes in each direction. Thus for the value β = 1/8 chosen here we are in the range of
a representative cell problem in the sense of [37].

For the specimen A in Fig. 7.5, we obtain in Voigt’s notation and in units of GPa

C =


8.369 4.585 4.575 −0.012 0.061
4.585 8.424 4.587 −0.017 0.075
4.575 4.587 9.040 −0.059 0.018

−0.057 1.996 0.033
−0.012 0.034 1.990 −0.020

0.061 0.075 0.018 −0.020 1.897

 CQ =


8.250 4.594 4.560
4.594 8.519 4.598 −0.012 −0.098 −0.014
4.560 4.598 9.055

−0.012 2.025
−0.098 1.958
−0.014 1.903


as the efficient elasticity tensor and its rotation CQ by roll, pitch, and yaw angles
7.37◦, 2.16◦, and −40.99◦. The rotation Q is obtained by the same optimization
already discussed above. Hence, CQ is the best approximation to an orthotropic
elasticity tensor in a rectangular coordinate system. We observe that the trabecular
bone material is almost orthotropic.

For specimen B in Fig. 7.5, we obtain

C =


7.929 4.433 4.427 0.030
4.433 8.072 4.442 0.053
4.427 4.442 8.629 −0.029

−0.029 1.879 0.021
0.021 1.863 −0.012

0.030 0.053 −0.012 1.783

 CQ =


7.902 4.422 4.424
4.422 8.120 4.444
4.424 4.444 8.633

1.890 0.009
0.009 1.851

1.772


where CQ again represents a transformed elasticity tensor with rotation angles 3.82◦,
7.26◦, and −25.12◦. We observe that the two homogenized elasticity tensors from sam-
ples A and B are very similar. This can be considered as an indication for the fact that
the specimen is statistically homogeneous with respect to the overall stress-strain rela-
tion but not with respect to the orientation of the anisotropy. Homogenization results
for these two specimens are meant as proof of concept, a more detailed biomechanical
study of trabecular structures of different species is ongoing research [63].
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