
14th Finite Element Workshop — Ulm, July 2007

Finite Element Simulation
of Bone Microstructures

Tobias Preusser ∗ Martin Rumpf † Lars Ole Schwen†

The geometric construction of finite element spaces suitable for complicated shapes
or microstructured materials is discussed. As an application, the efficient computation
of linearized elasticity is considered on them. Geometries are supposed to be implicitly
described via 3D voxel data (e. g. µCT scans) associated with a cubic grid. We place
degrees of freedom only at the grid nodes and incorporate the complexity of the domain
in the hierarchy of finite element basis functions, i. e. constructed by cut off operations
at the reconstructed domain boundary. Thus, our method inherits the nestedness of
uniform hexahedral grids while still being able to resolve complicated structures. In
particular, the canonical coarse scales on hexahedral grid hierarchies can be used in
multigrid methods.

AMS Subject Classifications: 65N30, 65N55, 65N50.

1 Introduction

Three-dimensional objects with complicated microstructure are a challenge in FE simulations. For
classical FE, the two main difficulties are to find a suitable mesh (typically a non structured mesh)
and to provide sufficient computational resources for setting up and solving the system of equa-
tions obtained by discretizing the partial differential equations (PDEs) associated to the physical
process under consideration.

High quality tetrahedral mesh generation has been worked on for many years and still is a
nontrivial problem. We refer to [10, 49] for an overview on methods for mesh generation and still
challenging problems, [42] for an overview of mesh quality measures and [3] for an efficient, recent
method.

The main disadvantage of unstructured FE meshes is that (unlike for uniform, e. g. cubic meshes)
explicit storage of the location of grid points and the connectivity structure is necessary and that
there are no canonical coarse versions of the mesh. The corresponding systems of equations are
sparse but the sparsity structure also needs to be stored.

For uniform cubic meshes, geometric locations and connectivity information of grid points and
sparsity structure of systems of equations are known implicitly which saves a big amount of mem-
ory, moreover canonical coarse scales allow to use multigrid (MG) methods based on the geomet-
ric hierarchy. Multigrid methods are solvers for linear systems of equations that are of optimal
computational complexity and have proved to be very efficient in many applications. In case of

∗Center of Complex Systems and Visualization, University of Bremen, tp@cevis.uni-bremen.de
†Institute for Numerical Simulation, University of Bonn, {martin.rumpf,ole.schwen}@ins.uni-bonn.de

1

mailto:tp@cevis.uni-bremen.de
mailto:martin.rumpf@ins.uni-bonn.de
mailto:ole.schwen@ins.uni-bonn.de


C
T

→

se
gm

en
t

→

C
FE

→

Figure 1: The image based computing pipeline is depicted: From the anatomical structure of in-
terest, a sample is extracted and scanned in µ-CT. A three dimensional model for the
boundary of the object is obtained by image-segmentation. Finally, a physical simulation
is performed on the perviously segmented object.

unstructured meshes, where purely geometric coarsening is impossible, so-called algebraic multi-
grid methods (AMG) can be used. AMG only makes use of the sparsity structure in the matrix,
which frequently is not the optimal approach if geometric information is available. We refer to
[12] where MG was introduced and [13] for an introduction to AMG, [53, 47, 14] are overviews of
different methods and applications of (A)MG.

Here, we make use of the composite finite element (CFE) concept first introduced in [22, 23]. The
main idea is to incorporate the complexity of the microstructure in the FE basis functions (rather
than in the mesh) and use an underlying structured cubic mesh. This way, we are able to use
efficient data structures for structured meshes and corresponding geometric multigrid solvers.

After a review of related methods, we explain the CFE method and a corresponding MG method
presented in [35] and show some results obtained the implementation of linearized elasticity, where
many technical details were originally implemented in [34].

2 Review of related methods

The idea of using regular grids for complicated domains has been used in a number of different
methods. We present a few of these, not claiming this list to be exhaustive.

Many of those methods deal with the case of a two-phase material with complicated interface
and different material parameters. This is a more general setting because the case of a single object
of complicated shape can be viewed as a special case (the limiting case) of an object embedded
in an “infinitely soft” or “infinitely insulating” material. However, we consider CFE for objects
with complex shape as a problem in its own right and treat discontinuous coefficients across
complicated interfaces as a separate problem [41].

A similar method called the “Immersed Interface Method” (IIM) was developed by LeVeque,
Li and others starting in the 1990s. It was first used for finite difference computations where a
Cartesian grid for complicated interfaces requires adapting the finite difference stencils near the
interface. The IIM for discontinuous coefficients and possibly singular sources on the interface can
be found in [11, 27] in 1D / 2D and summarized in Li’s PhD dissertation [28], he extends it to 3D
in [29] and presents an efficient solver in [30].

Adams and Li present an MG solver for the IIM [1, 2], however they do not deal with the type of
problems we encountered in our multigrid scheme. An overview of the applications of IIM can be
found in [32]. Calhoun and LeVeque combine the IIM with a finite volume method using “capacity
functions” for partially filled cells in [16, 15]. Wiegmann and Bube apply the IIM to nonlinear
problems in 1D [52] and modify the method to the “Explicit Jump IIM” considering not only the

2



discontinuities in the coefficient but also the expected singularities in the solution. Li builds the
bridge to the finite element world by using “Immersed Finite Elements” in 1D and 2D in [31, 33].

Babuška and others start with the “Partition of Unity Method” [37, 7] (PUM) combining the par-
tition of unity subordinate to a finite cover of the object (classically supports of FE basis functions)
with a priori knowledge about the solution (discontinuities at interfaces) to obtain special PUM
finite element spaces. In the “Generalized Finite Element Method” (GFEM) [36, 45, 44, 46, 6, 43],
the PUM and classical FEM basis functions are used together to improve approximation.

Belytschko and others use so-called “Extended Finite Element Methods” (XFEM) [20, 9] starting
from classical FEM and “enriching” the FE spaces by additional basis functions to incorporate dis-
continuities. Their meshes do not depend on the location of the discontinuities, but the enrichment
does introduce additional unknowns. An important application of XFEM is the simulation of crack
growth [38, 19, 48, 26] where one tries to avoid repeated remeshing which is necessary in classical
approaches. Other applications of XFEM are found in [51, 18, 50].

Finally, we would like to mention the “Finite Cell Method” [39] which is based on the idea of
extending the PDE outside the actual object domain such that a domain-independent mesh for
FEM can be used.

3 Composite finite elements

In this Section, we discuss the method of [35] in the one– and two–dimensional case which most
easily explains the underlying ideas. For the actual application in 3D, we discuss the issue of
condition numbers. For a more detailed and algorithmic description of the three-dimensional
case, we refer to [35].

Consider an object with complicated boundary1 in 1D as the red line segments shown in Fig. 2.
The construction of CFE basis functions works as follows:

Step 1. We define an equidistant (and in particular domain-independent) grid (black dots) on
which we are going to place our unknowns (green circles). Unknowns are placed at all nodes
inside the object and on one layer of nodes outside the object.

Step 2. Next, we add the “virtual nodes” (not separately shown) at the object boundary to ob-
tain the “virtual grid”. On this grid, we imagine piecewise linear basis functions (cyan hat
functions) forming the “virtual basis”.

Step 3. As weighted sums of the virtual basis functions with zero weight outside the object, we
finally obtain the CFE basis functions (blue hat functions). The weights are chosen such that
the basis functions coincide with the standard piecewise linear basis inside the object.

3.1 Construction of basis functions in 1D

By construction, these basis functions satisfy the following properties: They are piecewise linear;
they are “nodal”, i. e. at each grid point in the interior, exactly one basis function has value 1
whereas all others have value 0; and they form a “partition of unity”, i. e. at each point in the
interior (not necessarily a grid point), all basis functions sum up to 1.

A hierarchy of coarsened grids (starting on the finest equidistant grid) is defined in the obvious
way: two fine cells form one coarse cell. This process introduces new degrees of freedom: “one
layer outside the object” on the coarse grid may be wider than one layer on the fine grid, see Fig. 3.

1Note that literally there is not much space in 1D for geometric complexity and that disconnectedness is not the generic
case in higher space dimension.

3



0.

1.

2.

3.

Figure 2: CFE in 1D: (from top to bottom) a “complicated” object, degrees of freedom associated
to nodes on an equidistant grid, the “virtual basis” and the CFE basis functions.

Figure 3: Coarsening in 1D: Canonical coarsening of the grid introduces new DOFs.

This figure also shows the coarse-grid basis functions obtained by the method described later in
Sect. 4.

3.2 Construction of basis functions in 2D

Computational domains extracted from images. In our applications, we do not have an exact
analytic description of our object and/or its boundary, but only a discrete (CT) image. The uniform
quadrilateral grid is immediately given by the pixel resolution of the image.

As input for our CFE method, we suppose the boundary of a physical domain to be given as the
zero level set of a function Φ : Rd → R. This function shall be continuous and strictly negative
in the interior of the domain. In explicit, the preimage of 0 under Φ is assumed to be a strictly
lower-dimensional subset of Rd.

In general, Φ is obtained from the image data via some pre-processing and segmentation steps.
In our computations (cf. Sect. 5) we first denoise the data applying a couple of time steps of an
edge-perserving anisotropic diffusion [40]. Given a suitable threshold value, this is substracted
from the function Φ, i. e. we subtract a threshold from the gray-values of the smoothed CT-image.
Finally, we usually invert the resulting gray values, because the original CT image intensity is high
inside interesting anatomic structures due to x-ray attenuation.

To illustrate the segmentation process, Fig. 4 shows an exemplary object (brown), a (noisy) pixel

4



Figure 4: An object in 2D and its boundary recovered in a pixel image of the object.

0. 1. 2. 3. 4.

Figure 5: 2D CFE construction: the actual object, a uniform grid underlying standard piecewise
linear FE, the recovered object boundary, the two-dimensional “virtual grid” and the
support of a CFE basis function.

image of the object, the corresponding uniform quadrilateral grid (blue) and the recovered object
boundary (red line).

Basis functions in 2D. Generalizing the construction of CFEs in 1D above, we now deal with
piecewise linear basis functions in 2D. An example is shown in Fig. 5:

Step 1. For piecewise linear FE in 2D, we need to subdivide the equidistant quadrilateral grid in
“regular triangles” (blue lines). Here, this is done in such a way that we do not cut through
the node with smallest global index for inverse lexicographical ordering. The object boundary
is shown as the green line and the object lies on the top left.

Step 2. On the edges of the regular triangles, we determine the zero-crossings of Φ to obtain the
approximate object boundary (red polygonal line).

Step 3. Adding those intersection points (“virtual nodes”, magenta dots) and subdividing the
resulting quadrilaterals, we obtain the virtual grid on which we imagine the “virtual basis
functions”.

Step 4. Weighted sums of the virtual basis functions again define the CFE basis functions. The
figure shows the support of the CFE basis function for the central node in dark green, whereas
in the light green region (the remaining support of the standard piecewise linear FE basis
function at that point) the CFE basis function is zero.

Note that the virtual grid in step 3 could also be used as an unstructured FE grid. The gener-
ation is fully automatic and the resulting grid is well-structured inside the object away from the
boundary. However, as the image suggests, triangles in the virtual grid can become arbitrarily bad
in almost any quality measure.

Again, a grid hierarchy can be defined in the canonical way: four fine level cells form one coarse
cell, or, in terms of basis functions, seven fine basis functions (one central and six surrounding
ones) are combined to one coarse basis function.

Let us emphasize that we are only interested in coarsening and not in refinement because our
finest computational grid is given by the image data which do not want to super sample.

5



Figure 6: Virtual nodes (red dots) for a complicated 3D object. Flat shading and the location of the
virtual nodes show the hexahedral structure of the underlying grid.

spire splinter spear spike spindle wedge sliver spade cap

Figure 7: The “zoo” of badly shaped tetrahedra in [17].

3.3 Construction of basis functions in 3D

In three space dimensions, the situation is more technical but not significantly more complicated.
We point out some analogies to the two-dimensional case and refer to [35] for more details.

Image data. All slices of the CT image are used as one 3D voxel data set. Denoising and segmen-
tation are performed on the 3D data set.

Regular grid. Our degrees of freedom are now placed on an equidistant cubic grid. Each cube
consists of six regular tetrahedra and the union of such regular tetrahedra incident to a given
node is the support of the corresponding standard piecewise linear basis function.

Virtual grid. The location of the interface is reconstructed on the edges of the regular tetrahedra,
again resulting in virtual nodes. An example is shown in Fig. 6.

3.4 Condition numbers

In our sketches of the virtual grids in 2D, one notices that badly shaped triangles can occur. In
fact, in the 3D application, there is no lower bound on the aspect ratio of the virtual tetrahedra.
Following the classification of [17], the geometric construction of the virtual nodes allows spires
and splinters (but no spears, spikes and spindles) as well as wedges, slivers and spades (but no
caps), see Fig. 7.

So if we used the (unstructured) virtual grid (with more unknowns than for the CFE grid), we
expect arbitrarily large condition numbers of the matrices arising. The condition number κ of a

6



�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

Figure 8: Brick Object for which we determine condition numbers of the corresponding CFE sys-
tems of equations.

Matrix A, being defined as

κ(A) :=
largest absolute eigenvalue of A

smallest absolute eigenvalue of A
(1)

is an indicator how fast iterative solvers converge. For the Conjugate Gradient (CG) method [25],
we have

‖ek+1‖ ≤
√

κ − 1√
κ + 1

‖ek‖, (2)

hence the relative decrease η of the residual in one step of the iterative solver (= convergence rate) is
high for large condition numbers. A convergence rate η & 0 means fast convergence, η . 1 means
slow convergence and η > 1 means divergence. Note that for the CG method, the estimate (2) gives
an upper bound and that the speed of convergence in practice also depends on the distribution of
the eigenvalues. Techniques like preconditioning [5, 8] can help improve convergence, but only to
a certain extent.

A case study of the condition. To see the influence of bad tetrahedra for the CFE systems of
equations, let us consider a brick-shaped object that has size 1 in y and z direction and variable
size in x direction, see Fig. 8. We shift the interface in x direction from covering almost one full
layer of cubic cells to only a very small part of that layer. We refer to this part as the fractional part
of the width of the domain measured in grid cells or fractional width. Fig. 8 shows that the size
and the shape of the tetrahedra changes with the fractional width.

For this test we consider a diffusion problem ∂t − ∆u = f with homogeneous Neumann bound-
ary condition. We use grids with 53 and 173 nodes corresponding to grid widths h = 1

4 and h = 1
16 ,

respectively. Furthermore, we apply a implicit Euler scheme in time with a time step τ = h.
First, we set up the corresponding CFE matrices and use the numerical computing system oc-

tave [21] to compute the condition numbers of these matrices. Second, we solve the systems of
equations to an accuracy of 10−8 (relative to the initial residual) using a CG solver and count
the number of iterations. Each iterations requires O(#DOF) flops, so the number of iterations is
proportional to the cputime.

In Fig. 9 we show the condition number and the number of CG iterations versus the fractional
width. We see from the figures that for fractional width close to 1, small virtual tetrahedra in
the exterior and badly shaped interior virtual tetrahedra do not affect the condition number of the
systems. Furthermore, for small fractional width close to 0, small and badly shaped interior virtual
tetrahedra lead to big condition numbers. As expected, the CG method turns slower for bigger
condition numbers. Note that the increase of CG iterations is slower than Eq. (2) might suggest.

For these simple geometries, (diagonal) preconditioning does actually help, it can almost com-
pensate the influence of increasing badness of the tetrahedra on the number of PCG iterations.
However, for more complicated objects, simple preconditioning techniques like diagonal, block
diagonal, ILU0 and SSOR preconditioning have not proven to be effective.

7



10

100

1 000

10 000

100 000

0.5 0.55 0.6 0.65 0.7 0.75

co
nd

it
io

n
nu

m
be

r

interface location

0

20

40

60

80

100

120

0.5 0.55 0.6 0.65 0.7 0.75

nu
m

be
r

of
C

G
it

er
at

io
ns

interface location

Figure 9: Condition numbers and number of CG iterations for the time discrete diffusion problem
on the brick geometries shown in Fig. 8.

4 A multigrid solver for CFE matrices

Multigrid methods are renown as efficient methods to solve PDE problem and in particular to
resolve bad condition of the corresponding linear systems. Their construction is based on the
following observation [12]: simple iterative methods like Jacobi and Gauß-Seidel iterations quickly
reduce high frequency components of the error between the iterates and true solution whereas low
frequency components are damped very slowly. But these components could be reduced more
quickly by the same type of method for an approximation on a coarser grid where their relative
frequency is high.

Let us recall the basic structure of a two-grid method for solving a system Ax = b with starting
point x0. One iterates

Step 1. take a fixed number of iterations on the original system which gives an approximation xk

(“presmoothing”)

Step 2. Compute the residual rk = b− Axk

Step 3. Restrict the residual rk on a coarser grid by r̃ = R(r)

Step 4. Solve Ãẽ = −r̃ for the discretization of the coarser problem

Step 5. Prolongate (interpolate) ẽ on the finer grid to obtain ek = P(ẽ), a correcting term for xk

(“coarse grid correction”)

Step 6. Take xk− ek as a starting point for more iterations of the iterative method on the finest grid
(“postsmoothing”)

until the residual is sufficiently small. Again taking a two-grid method in step 4, we obtain a
multigrid method.

So we need the following building blocks:

Iterative method. In our computations, standard (block) Gauß-Seidel iterations, two for pre- and
postsmoothing, respectively, turned out to be a good choice.

Restriction operator R. We take the transpose of the prolongation operator (see below) as the
restriction operator.

Coarsening of the problem Ã. To obtain the coarsened problem matrix, we use the standard Ga-
lerkin product Ã = RAP [24].

8



Figure 10: The support of this coarse grid basis function has two disconnected components lying
in physically weakly related parts of the object (“horseshoe”-like geometry).

10 000

0.5 0.51 0.52 0.53 0.54 0.55 0.56

co
nd

it
io

n
nu

m
be

r

interface location

0

200

400

600

800

1 000

1 200

0.5 0.51 0.52 0.53 0.54 0.55 0.56

nu
m

be
r

of
C

G
it

er
at

io
ns

interface location

0

10

20

30

40

50

0.5 0.51 0.52 0.53 0.54 0.55 0.56

nu
m

be
r

of
M

G
cy

cl
es

interface location

Figure 11: Condition numbers, number of CG iterations and number of MG cycles for the elasticity
problem on the brick geometries shown in Fig. 8.

Prolongation operator P . The prolongation weights are obtained by evaluating the coarse grid
basis functions at the fine grid nodes. As we are dealing with underlying piecewise linear
FE, these weights are 1, 1

2 and 0.

The restriction and prolongation explained above also determine coarse grid basis functions.
Even though these are not needed and not computed explicitely, we state some properties. Being
weighted sums of fine grid basis functions, coarse grid basis functions are again piecewise linear,
and the weights are such that the coarse grid basis functions are nodal and form a partition of
unity.

Individual coarse grid basis functions may have disconnected support because coarse grids in
general cannot resolve the structure or topology of our complicated object. This is problematic if
those components correspond to parts of the object that are physically only very weakly related, as
shown in the “horseshoe”-like geometry in Fig. 10. This leads to poor coarse grid corrections in the
multigrid scheme and to slow convergence. An improvement of the coarsening scheme is currently
investigated to avoid such artificial numerical coupling and to significantly speed up convergence.

9



Figure 12: Compression of two “cheese”-like datasets. The color shading from blue to red in the
visualization indicates von Mises surface stresses.

5 Applications and results

On a domain Ω ⊂ R3, let us consider linear elasticity modeled by the Lamé-Navier-Equations with
Dirichlet boundary conditions and without volume forces. Given the elastic energy

Eelast[u] =
1
2

∫
Ω
E(u) : CE(u) with

E(u) =
1
2
[∇u +∇uT] and (3)

Cijmn = λδijδmn + µ[δimδjn + δinδjm],

we search for displacement fields u : Ω→ R3 which minimize the elastic energy. Solutions to this
minimization problem lie in the Sobolev space H1(Ω, R3) [4] and obey the equation∫

Ω
λ divu divv + 2µ E(u) : E(v) = 0 ∀v ∈ H1(Ω, R3). (4)

First we consider the same test geometry as in the last section. Again we assemble the CFE
system matrix and compute the condition number using the numerical computing system octave.
In Fig. 11 we depict the condition number of the system-matrix as well as the iteration numbers
for the CG- and the multigrid-method versus the fractional width. As before, we see an increase
of the iteration count for the CG-method whereas the number of MG cycles merely changes from
28 to 29 in this example. The number of MG cycles is proportional to the cputime needed by the
multigrid-solver.

In a second example, we consider the compression of a “cheese”-like domain resolved on a 653

grid, using 3× 258 064 DOFs. Requiring about 560 MB of memory, this simulation can be run on
a regular desktop PC. The multigrid convergence is fairly good in this example (convergence rate
0.548) and on an Intel P4 3.6 GHz, the computation took 193 seconds for a solver accuracy of 10−8.
The resulting von Mises surface stresses are shown in Fig. 12. Fig. 12 also shows the same type
of geometry with significantly finer structures resolved on a 2573 grid, using 3× 16 458 648 DOFs.
Requiring about 30 GB of memory, this simulation cannot be run on a standard PC. The multigrid
convergence rate of 0.552 was equally good and the solver took 10 411 seconds, less than three
hours, on an Opteron 1.8 GHz processor.

Further examples are the compression of an array of 20× 20× 20 rods, resolved on a 2573 grid,
using 3× 5 028 836 DOFs and the same geometry with a random 10 percent of the connections
removed, using 3× 4 653 815 DOFs. These simulations require about 30 GB of memory and show

10



poor convergence rates (0.977, 0.996, resulting in approximately 1.4 and 4 days of cputime on an
Opteron 1.8 GHz processor. The resulting von Mises stresses are shown in Fig. 13.

Finally, we consider the shearing of a bone dataset (cylindrical sample of a porcine T1 vertebral
bone), again resolved on a 2573 grid using 3× 3 374 720 DOFs and with a memory requirement of
about 30 GB. The multigrid convergence is even worse (0.999) and the computation took about 7.6
days. The results of this computation are shown in Fig. 14.

6 Summary and Outlook

We have demonstrated that composite finite elements allow the effective simulation of elastic mi-
crostructured bone material. Computational efficiency, however, still suffers from slow conver-
gence of the multigrid solver. This is currently being investigated. As for the two geometries in
Fig. 13, a more detailed parameter study is planned.

In cooperation with Uwe Wolfram at the Institute for Biomechanics and Orthopaedic Research
at University of Ulm, the experimental validation of our elasticity simulations of Aluminum foams
and trabecular bone specimens is currently investigated.

Furthermore, the CFE construction and implementation is going to be generalized to the case of
two-phase materials with discontinuous material coefficient across a complicated interface.

Acknowledgments

The authors would like to thank Annette Kettler (Institute of Biomechanics and Orthopaedic Re-
search, University of Ulm) for the photo in Fig. 1, and Uwe Wolfram (Institute of Biomechanics
and Orthopaedic Research, University of Ulm) for the CT scan of the trabecular sample in Fig. 14.
Furthermore, we thank Stefan Sauter (Institute of Mathematics, University of Zurich) for his con-
tinuous advice concerning composite finite element methodology.

References

[1] Loyce Adams. A multigrid algorithm for immersed interface problems. In Proceedings of the
Seventh Copper Mountain Conference on Multigrid Methods, pages 1–14, 1996. SEE N97-13750

01-64.

[2] Loyce Adams and Zhilin Li. The immersed interface / multigrid methods for interface prob-
lems. SIAM J. Sci. Comput., 24(2):463–479, 2002.

[3] Pierre Alliez, David Cohen-Steiner, Mariette Yvinec, and Mathieu Desbrun. Variational tetra-
hedral meshing. ACM Transactions on Graphics, 24(3):617–625, July 2005.

[4] Hans Wilhelm Alt. Lineare Funktionalanalysis. Springer, 2002.

[5] O. Axelsson. A survey of preconditioned iterative methods for linear systems of algebraic
equations. BIT Numerical Mathematics, 25(1):165–187, March 1985.

[6] A. O. Ayhan and H. F. Nied. Stress intensity factors for three-dimensional surface cracks using
enriched finite elements. International Journal for Numerical Methods in Engineering, 54:899–921,
2002.

[7] I. Babuška and J. Melenk. The partition of unity method. Int. J. Numer. Meths. Eng., 40:727–758,
1997.

11



Figure 13: Compression of 20× 20× 20 rods and zoom to the top left corner (top row) and the
same geometry with ten percent of the connections removed and zoom to an “interesting
region” (bottom row).

Figure 14: Shearing of a bone dataset and zoom to the top right corner.

12



[8] Zhong-Zhi Bai. A class of modified block SSOR preconditioners for symmetric positive defi-
nite systems of linear equations. Advances in Computational Mathematics, 10:169–186, 1999.

[9] T. Belytschko, N. Moës, S. Usui, and C. Parimi. Arbitrary discontinuities in finite elements.
International Journal for Numerical Methods in Engineering, 50(4):993–1013, 2001.

[10] Marshall Bern and David Eppstein. Mesh generation and optimal triangulation, volume 1 of
Lecture Notes Series on Computing, pages 23–90. World Scientific, Singapore, 1992.

[11] R. P. Beyer and R. J. LeVeque. Analysis of a one-dimensional model for the immersed bound-
ary method. SIAM J. Numer. Anal., 29(2):332–364, 1992.

[12] Achi Brandt. Multi-level adaptive solutions to boundary-value problems. Mathematics of Com-
putation, 31(138):333–390, 1977.

[13] Achi Brandt. General highly accurate algebraic coarsening. Electronic Transaction on Numerical
Analysis, 10:1–20, 2000.

[14] Achi Brandt and Dorit Ron. Multigrid Solvers and Multilevel Optimization Strategies, volume 14

of Combinatorial Optimization, chapter 1, pages 1–69. Kluwer Academic Publishers, 2002.

[15] Donna Calhoun. A Cartesian grid method for solving the two-dimensional streamfunction-
vorticity equations in irregular regions. Journal of Computational Physics, 176:231–275, 2002.

[16] Donna Calhoun and Randall J. LeVeque. A Cartesian grid finite-volume method for the
advection-diffusion equation in irregular geometries. Journal of Computational Physics, 157:143–
180, 2000.

[17] Siu-Wing Cheng, Tamal K. Dey, Herbert Edelsbrunner, Michael A. Facello, and Shang-Hua
Teng. Sliver exudation. Journal of the ACM, 47(5):883–904, September 2000.

[18] Jack Chessa, Patrick Smolinski, and Ted Belytschko. The extended finite element method
(XFEM) for solidification problems. International Journal for Numerical Methods in Engineering,
53:1959–1977, 2002.

[19] Christophe Daux, Nicolas Moës, John Dolbow, Natarjan Sukumar, and Ted Belytschko. Arbi-
trary branched and intersecting cracks with the extended finite element method. International
Journal for Numerical Methods in Engineering, 48:1741:1760, 2000.

[20] John Dolbow. An Extended Finite Element Method with Discontinuous Enrichment for Applied
Mechanics. Dissertation, Northwestern University, 1999.

[21] John W. Eaton et al. GNU Octave, version 2.9.12. http://www.octave.org, 2007.

[22] W. Hackbusch and S. Sauter. Composite finite elements for the approximation of PDEs on
domains with complicated micro-structures. Numerische Mathematik, 75:447–472, 1997.

[23] W. Hackbusch and S. A. Sauter. Composite finite elements for problems containing small
geometric details. Part II: Implementation and numerical results. Comput. Visual. Sci., 1(1):15–
25, 1997.

[24] Wolfgang Hackbusch. Multi-Grid Methods and Applications, volume 4 of Springer Series in Com-
putational Mathematics. Springer, 1985.

[25] Magnus R. Hestenes and Eduard Stiefel. Methods of conjugate gradients for solving linear
systems. Journal of Research of the National Bureau of Standards, 49(6):409–436, 1952.

13



[26] R. Huang, N. Sukumar, and J.-H. Prévost. Modeling quasi-static crack growth with the ex-
tended finite element method. Part II: Numerical applications. International Journal of Solids
and Structures, 40(26):7539–7552, 2003.

[27] Randall J. LeVeque and Zhi Lin Li. The immersed interface method for elliptic equations
with discontinuous coefficients and singular sources. SIAM Journal on Numerical Analysis,
31(4):1019–1044, 1994.

[28] Zhilin Li. The Immersed Interface Method - A Numerical Approach for Partial Differential Equations
with Interfaces. Dissertation, University of Washington, Seattle, WA, USA, 1994.

[29] Zhilin Li. A note on immersed interface method for three-dimensional elliptic equations.
Computers and Mathematics with Applications, 31(3):9–17, February 1996.

[30] Zhilin Li. A fast iterative algorithm for elliptic interface problems. SIAM Journal on Numerical
Analysis, 35(1):230–254, 1998.

[31] Zhilin Li. The immersed interface method using a finite element formulation. Applied Numer-
ical Mathematics, 27:253–267, 1998.

[32] Zhilin Li. An overview of the immersed interface method and its applications. Taiwanese
Journal of Mathematics, 7(1):1–49, March 2003.

[33] Zhilin Li, Tao Lin, and Xiaohui Wu. New Cartesian grid methods for interface problems using
the finite element formulation. Numerische Mathematik, 1996(1):61–98, November 2003.

[34] Florian Liehr. Ein effizienter Löser für elastische Mikrostrukturen. Diploma thesis, University
Duisburg, 2004.

[35] Florian Liehr, Tobias Preusser, Martin Rumpf, Stefan Sauter, and Lars Ole Schwen. Composite
finite elements for 3D image based computing. Submitted to Computing and Visualization in
Science, 2007.

[36] Jens Markus Melenk. On Generalized Finite Element Methods. Dissertation, University of Mary-
land, 1995.

[37] Jens Markus Melenk and Ivo Babuška. The partition of unity finite element method. Re-
search Report 96-01, Eidgenössische Technische Hochschule Zürich, Seminar für angewandte
Mathematik, January 1996.

[38] Nicolas Moës, John Dolbow, and Ted Belytschko. A finite element method for crack growth
without remeshing. International Journal for Numerical Methods in Engineering, 46:131–150, 1999.

[39] Jamshid Parvizian, Alexander Düster, and Ernst Rank. Finite cell method. Computational
Mechanics, Online First, 2007.

[40] T. Preußer and M. Rumpf. An adaptive finite element method for large scale image processing.
Journal of Visual Comm. and Image Repres., 11:183–195, 2000.

[41] Tobias Preusser, Martin Rumpf, Stefan Sauter, Lars Ole Schwen, et al. Three-dimensional
composite finite elements for scalar problems with jumping coefficients. 2007. in preparation.

[42] Jonathan Richard Shewchuk. What is a good linear element? Interpolation, conditioning, and
quality measures. In Proceedings of the 11th International Meshing Roundtable, pages 115–126.
Sandia National Laboratories, September 2002.

14



[43] F. L. Stazi, E. Budyn, J. Chessa, and T. Belytschko. An extended finite element method with
higher-order elements for curved cracks. Computational Mechanics, 31:38–48, 2003.

[44] M. Stolarska, D. L. Chopp, N. Moës, and T. Belytschko. Modelling crack growth by level sets in
the extended finite element method. International Journal for Numerical Methods in Engineering,
51:943–960, 2001.

[45] T. Strouboulis, I. Babuška, and K. Copps. The design andd analysis of the Generalized Finite
Element Method. Comput. Methods Appl. Mech. Engrg., 181:43–69, 2000.

[46] T. Strouboulis, K. Copps, and I. Babuška. The generalized finite element method. Comput.
Methods Appl. Mech. Engrg., 190:4081–4193, 2001.

[47] Klaus Stüben. A review of algebraic multigrid. Journal of Computational and Applied Mathemat-
ics, 128:281–309, 2001.

[48] N Sukumar and J.-H. Prévost. Modeling quasi-static crack growth with the extended finite
element method. Part I: Computer implementation. International Journal of Solids and Structures,
40(26):7513–7537, 2003.

[49] Shang-Hua Teng and Chi Wai Wong. Unstructured mesh generation: Theory, practice and
applications. International Journal of Computational Geometry & Applications, 10(3):227–266, 2000.

[50] Lara M. Vigneron, Jaques G. Verly, and Simon K. Warfield. On Extended Finite Element Method
(XFEM) for Modelling of Organ Deformations Associated with Surgical Cuts, volume 3078 of Lecture
Notes in Computer Science, pages 134–143. Springer, Berlin/Heidelberg, 2004.

[51] G. J. Wagner, N. Moës, K. W. Liu, and T. Belytschko. The extended finite element method
for rigid particles in Stokes flow. International Journal for Numerical Methods in Engineering,
51(3):293–313, 2001.

[52] Andreas Wiegmann and Kenneth P. Bube. The immersed interface method for nonlinear
differential equations with discontinuous coefficients and singular sources. SIAM Journal on
Numerical Analysis, 35(1):177–200, Feb. 1998.

[53] Jinchao Xu. Theory of Multilevel Methods. PhD dissertation, Cornell University, May 1989.

15


	Introduction
	Review of related methods
	Composite finite elements
	Construction of basis functions in 1D
	Construction of basis functions in 2D
	Construction of basis functions in 3D
	Condition numbers

	A multigrid solver for CFE matrices
	Applications and results
	Summary and Outlook

