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A GRADIENT SAMPLING METHOD ON ALGEBRAIC VARIETIES AND

APPLICATION TO NONSMOOTH LOW-RANK OPTIMIZATION

SEYEDEHSOMAYEH HOSSEINI∗ AND ANDRÉ USCHMAJEW∗

Abstract. In this paper, a nonsmooth optimization method for locally Lipschitz functions on
real algebraic varieties is developed. To this end, the set-valued map ε-conditional subdifferential

x→ ∂Nε f(x) := ∂εf(x) + N(x) is introduced, where ∂εf(x) is the Goldstein-ε-subdifferential
and N(x) is a closed convex cone at x. It is proved that negative of the shortest ε-conditional
subgradient provides a descent direction in T (x), which denotes the polar of N(x). The

ε-conditional subdifferential at an iterate x` can be approximated by a convex hull of a finite
set of projected gradients at sampling points in x` + ε`BT (x`)

(0, 1) to T (x`), where T (x`) is

a linear space in the Bouligand tangent cone and BT (x`)
(0, 1) denotes the unit ball in T (x`).

The negative of the shortest vector in this convex hull is shown to be a descent direction in
the Bouligand tangent cone at x`. The proposed algorithm makes a step along this descent

direction with a certain step-size rule, followed by a retraction to lift back to points on the
algebraic variety M. The convergence of the resulting algorithm to a critical point is proved.
For numerical illustration, the considered method is applied to some nonsmooth problems on

varieties of low-rank matrices M≤r of real M × N matrices of rank at most r, specifically
robust low-rank matrix approximation and recovery in the presence of outliers.

1. Introduction

This paper is concerned with the numerical solution of nonsmooth optimization problems on real
algebraic varieties. The method proposed in this work generalizes the gradient sampling method
for Riemannian manifolds to problems on such sets. Our motivation comes from applications in
low-rank matrix and tensor optimization, where one is faced with the fact that smooth manifolds of
fixed rank, say, manifolds of rank-r matrices, are not closed, and hence convergence of Riemannian
algorithms is difficult to establish even for smooth functions [1, 15, 17, 20, 21].

As most iterative methods for finding an optimizer are based on the idea of a sequential
descent of the cost function based on local information, the development of nonlinear optimization
algorithms has always been intimately related to the understanding of the geometric properties
of the constraints and the objective function. In a nondifferentiable problem on a constraint set,
projection of the negative gradient of the cost function in a point on the tangent cone generally
cannot be used to determine a direction along which the function is decreasing. Therefore, one
has to work with some replacements for the gradient, called subdifferentials.

In this paper, we consider the general problem

min
x∈M

f(x), (1.1)
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where f : Rn → R is a locally Lipschitz function and M⊆ Rn is a closed real algebraic variety.
As such, M admits a so-called Whitney stratification [23], that is,

M =

r⋃
s=0

Ms, (1.2)

whereMs are mutually disjoint smooth submanifolds of Rn (not necessarily connected) of different
dimensions. The manifolds Ms will be called strata of M. We assume dim(Ms) < dim(Mr) for
s < r. While we will consider real algebraic varieties in the sequel, we note that many subsequent
considerations only use thatM is closed and a disjoint union of smooth (C∞) manifolds. However,
a potential exception is Lemma 3.2, which makes use of the additional Whitney a-regularity
condition regarding limits of tangent planes (see [22, Sec. 8] and [23, Sec. 19]) and enters crucially
into the main convergence result (Theorem 3.3) via Theorem 3.8. Specifically, a-regularity means
that whenever a sequence (x`) ⊂ Mr converges to x̄ ∈ Ms, where dim(Mr) > dim(Ms), and
the tangent spaces TMr

(x`) converge to some subspace T (in the usual sense, say, in the sense of
orthogonal projections), then it should hold TMs

(x̄) ⊆ T .
We aim to present an algorithm to solve problem (1.1) by generalizing the Riemannian gradient

sampling method from [12]. In general, given a closed convex cone T (x) at x, we can define

∂Nε f(x) := ∂εf(x) +N(x), (1.3)

where ∂εf(x) is the Goldstein-ε-subdifferential, and N(x) = (T (x))◦ is the polar cone of T (x).
Such a set ∂Nε f(x) in (1.3) is called an ε-conditional subdifferential, and every ξ ∈ ∂Nε f(x) is
called an ε-conditional subgradient. We shall prove that the shortest ε-conditional subgradient
proposes a descent direction in the cone T (x) (Theorem 2.3), which assigns an essential role
to the ε-conditional subdifferential for deriving optimization algorithms for (1.1). In practice,
however, ∂Nε f(x) might be unavailable in closed form and has to be approximated using some of
its elements. One possibility is based on random gradient sampling as in the GS algorithm [4].
In order to design such a method for the constraint setting at hand, we assume that T (x) is
actually a linear space. The gradient sampling algorithm as outlined in Sec. 3 approximates
the ε-conditional subdifferential corresponding to N(x) = (T (x))◦ by a convex hull of vectors,
which are obtained from projecting gradients at sample points in x+ εBT (x)(0, 1) to T (x), where
BT (x)(0, 1) denotes the unit ball in T (x). The negative of the shortest vector in this convex hull
is shown to be a descent direction.

Since we are dealing with constraint optimization, we are of course interested in descent
directions in the Bouligand tangent cone TBM(x). Therefore we have to choose the linear space
T (x) as a subset of the Bouligand cone:

T (x) ⊆ TBM(x). (1.4)

A new iterate is then obtained by making a step along this direction with a certain step-size rule,
followed by a retraction to get back on M.

Our restriction to a closed real algebraic variety M generally ensures

(i) the existence of an a-regular stratification (1.2), see the original proof [23, Sec. 19], or [13]
and references therein;

(ii) the existence of linear subspaces in the Bouligand cones (in particular, tangent spaces
TMs

(x) of strata), and
(iii) the existence of retractions in the sense of Sec. 3.1.2. In particular, the metric projection

onto M will have the desired properties.

Of course, instead of restricting to real algebraic varieties, one may include these three properties
into a list of assumptions for general closed sets M⊆ Rn.
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As a main result, we prove that if the subspaces T (x`) are chosen such that they contain
the tangent spaces TMs`

(x`) of the current strata, then a cluster point x ∈Ms will be critical

point of f on Ms in the sense 0 ∈ ∂f(x) + (TMs(x))⊥ (see Theorem 3.3). Formally, the result
of the theorem is in fact a little stronger, namely 0 ∈ ∂f(x) +N(x), where N(x) is in general
only a subspace of (TMs

(x))⊥, which is obtained as a limit of normal spaces N(x`). Hence, if
we converge to x from strata with dim(Mr) > dim(Ms), the dimension of N(x) will be smaller
than dimension of (TMs

(x))⊥. Our motivation for this general setup are varieties of low-rank
matrices. The Bouligand tangent cone to varieties of low-rank matrices contains many reasonable
subspaces T (x) ) TMs(x) obeying (1.4) in rank-deficient points.

We note that even when applied to submanifolds of Euclidean spaces, the new method is
conceptually and technically considerably simpler than the algorithm in [12], as it uses only
gradients from nearby points within the tangent plane at the current iterate, and projects them
to the tangent space of that point. Therefore, no vector transport is required. It is also worth
mentioning that in [12] we worked on manifolds whose injectivity radius is bounded below, while
we relax also this assumption in this paper.

As applications of our method, we consider minimizing nonsmooth functions on real algebraic
varieties of low-rank matrices

min
X∈M≤r

f(X), M≤r := {X ∈ RM×N : rank(X) ≤ r}, r ≤ min(M,N). (1.5)

Specifically, in Sec. 4 we conduct experiments in which we use the GS method for some problems
of robust recovery of low-rank matrices in the presence of outliers. The variety M≤r naturally
stratifies by rank into smooth components

Ms := {X ∈ RM×N : rank(X) = s}

of fixed rank s ≤ r. The Riemannian optimization algorithms in [9, 10, 12] are applicable to
that manifold in practice, but the theory are developed for complete Riemannian manifolds and
does not apply due to the nonclosedness of Ms. This affects the existence of retractions, the free
choice of step-sizes in the tangent space, and the convergence results (existence of cluster points).

When applied to problems onM≤r, the newly proposed method can be seen as an extension of
the gradient sampling method from [12] for the manifold Mr to its closure. It has the advantage
that it provides rigorous convergence results even in the case that a rank-deficient point is never
encountered; cf. the similar remarks in [17] for smooth functions. Also it provides a sound
framework for the derivation of rank-increasing methods, which make it necessary to consider
rank-deficient starting guesses, obtained, say, as a “solution” of (1.5) for rank r − 1, for (1.5).
Such rank-increasing strategies have shown superior performance for solving (1.5), e.g., for matrix
completion [20]. In Sec. 4, we use them for reconstruction of scratched grayscale images.

Besides its practical relevance, the setM≤r is an interesting example for our framework because
the Euclidean metric projection is explicitly available via singular value decomposition, which is
somewhat exceptional for such a nontrivial set. When s < r, the Bouligand cone TM≤r

(X) also
contains the matrices in the orthogonal complement of TMs

(X) which are of rank at most r − s;
see [6, 17]. In such points, it is reasonable to run the minimization algorithm onMs to get a local
minimizer on Ms and afterward to use a linear space of tangent vectors orthogonal to TMs

(X)
to increase the rank and move to a manifold with a higher dimension. In the rank-increasing step,
we may consider different linear subspaces of the Bouligand tangent cone. In our experiments, we
consider random subspace augmentation and the subspaces spanned by the dominant r − s left
and right singular vectors of the orthogonal projection of ∇f(X) on (TMs

(X))⊥; (cf. Sec. 4.1.4).
Unfortunately, this remains an heuristic as there is no guarantee that this spaces will contain a
descent direction in the case that the Bouligand cone contains a descent direction (which we do
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not know how to compute due to the nonconvexity of the Bouligand cone). Nevertheless, the
strategy turned out to be useful for the rank-increasing strategy.

Outline. The paper is organized as follows: Section 2 is concerned with some preliminaries and
definitions of nonsmooth analysis. Section 3 is devoted to the gradient sampling algorithm on real
algebraic varieties and convergence results of the algorithm. Finally, in Section 4 some numerical
experiments are illustrated.

2. Prerequisites

We consider the space Rn equipped with a fixed Euclidean norm ‖ · ‖, generated by an inner
product 〈·, ·〉. By B(x, ε) we denote the open set {y ∈ Rn : ‖y − x‖ < ε}. The super-script ⊥

indicates orthogonal complements with respect to this inner product. For a closed set M∈ Rn,
let PM(y) = argminx∈M ‖x − y‖ denote the metric projection on M. If M is convex, then
y 7→ PM(y) is single-valued and continuous. We denote by clN and convN the closure and the
convex hull of a set N .

2.1. Unconstrained optimization. Let f : Rn → R be a locally Lipschitz function and
L = L(x) be its Lipschitz constant around x. We first recall basic concepts of unconstrained
optimization

min
x∈Rn

f(x), (2.1)

for such a function. The Clarke generalized directional derivative of f at x in the direction ξ is
defined as

f◦(x; ξ) := lim sup
y→x
t↓0

f(y + tξ)− f(y)

t
.

Moreover, the Clarke subdifferential is defined as follows:

∂f(x) := {v ∈ Rn : f◦(x; ξ) ≥ 〈v, ξ〉 for all ξ ∈ Rn}.
This set is closed and convex. It is also bounded since we have

‖v‖ ≤ L for all v ∈ ∂f(x). (2.2)

Moreover,

f◦(x; ξ) = sup
v∈∂f(x)

〈v, ξ〉.

If f is differentiable at x, then ∇f(x) ∈ ∂f(x). Furthermore, if f is continuously differentiable at
x, then it holds that

∂f(x) = {∇f(x)}.
In general, letting Ωf denote the set of points on which f is differentiable (which is dense in Rn,
see [7]), we have the characterization

∂f(x) := conv{v ∈ Rn : there exists (xi) ⊂ Ωf s.t. xi → x and ∇f(xi)→ v}.
The unconstrained necessary optimality condition in the sense of Clarke is 0 ∈ ∂f(x), and holds
in local minima and maxima of f . We refer to [7] for proofs of all these properties.

A vector g = g(x) ∈ Rn is called a descent direction for f at x, if there exists α > 0 such that

f(x+ tg)− f(x) < 0 for all t ∈ (0, α).

The extension of the steepest descent method for smooth optimization to (2.1) uses in every step
the search direction g(x) := −argmin{‖v‖ : v ∈ ∂f(x)} in combination with a step-size rule. But
since ∂f(·) is not continuous, such extension can fail to be convergent to critical points for locally
Lipschitz functions. To obtain a powerful convergence property, it is necessary to enlarge the set
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∂f(x); see [2]. An adequate replacement is the ε-subdifferential ∂εf(x); see [8], which for ε > 0 is
defined by

∂εf(x) := conv{v ∈ Rn : v ∈ ∂f(y), y ∈ clB(x, ε)}.
If 0 ∈ ∂εf(x), then x is said to be an ε-critical point. Note that ∂εf(x) is closed. Correspondingly,
one defines

f◦ε (x; ξ) := sup
v∈∂εf(x)

〈v, ξ〉.

Obviously, it holds that f◦(x; ξ) ≤ f◦ε (x; ξ). Let g ∈ Rn and ‖g‖ ≤ 1, by Lebourg’s Mean Value
Theorem [7], there exist θ ∈ (0, 1) and v ∈ ∂f(x+ tθg) for all t ∈ (0, ε], such that

f(x+ tg)− f(x) = t〈v, g〉 ≤ tf◦ε (x; g).

According to this inequality, a descent direction g is found when f◦ε (x; g) is negative. For the
largest descent guarantee one has to solve

min
‖g‖≤1

f◦ε (x; g) = min
‖g‖≤1

max
v∈∂εf(x)

〈v, g〉. (2.3)

This problem has a solution, which can be computed by solving the problem,

− min
v∈∂εf(x)

‖v‖ . (2.4)

If v∗ is the solution of (2.4), then g = − v∗

‖v∗‖ is the solution of (2.3), and we have

f◦ε (x; g) = −‖v∗‖ ,

see, e.g., [2].

2.2. Constrained optimization. In this paper we are concerned with constrained optimization
problems. Here and in the following, let f : Rn → R be a locally Lipschitz function, and M be
closed. We consider the minimization problem

min
x∈M

f(x), (2.5)

and assume that it has at least one solution.
The Bouligand tangent cone, also called contingent cone, to M at x is defined as

TBM(x) = {ξ ∈ Rn : there exist (xi) ⊂M and (ti) ⊂ R such that

xi → x, ti ↓ 0 and
xi − x
ti

→ ξ}.

This cone is closed, but in general not convex, which makes it difficult to use for nonsmooth
optimization. In contrast, the Clarke tangent cone to M at x, defined by

TCM(x) := {ξ ∈ Rn : for all (xi) ⊂M with xi → x, and all ti ↓ 0 there exist

(ξi) ⊂ Rn such that xi + tiξi ∈M for all i and ξi → ξ},

is closed and convex [7]. It holds that TCM(x) ⊆ TBM(x); see [7]. WhenM is a smooth submanifold
in a neighborhood of x, then both cones coincide with the tangent space to M at x.

The Clarke normal cone is the polar of the Clarke tangent cone:

NC
M(x) :=

(
TCM(x)

)◦
= {y ∈ Rn : 〈y, ξ〉 ≤ 0 for all ξ ∈ TCM(x)}.

It is also closed and convex. A point x ∈M is critical point for (2.5) in the sense of Clarke, if

0 ∈ ∂f(x) +NC
M(x).

Every local minimum on M satisfies this.
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2.2.1. Existence of descent directions. We shall prove here a rather general result on the existence
of descent directions.

Assume that x ∈M and a closed convex cone T (x) are given. Let N(x) = (T (x))◦ denote its
polar cone. For example, the choice T (x) = TCM(x) is feasible, but T (x) = TBM(x) may be not
feasible (due to nonconvexity). Let us say that x is critical with respect to N(x), if

0 ∈ ∂f(x) +N(x). (2.6)

We denote

∂Nf(x) := ∂f(x) +N(x),

and call ∂Nf(x) the conditional subdifferential.
Proceeding now as in the unconstrained case, for each ε ≥ 0, the conditional ε-subdifferential

is defined as

∂εNf(x) := ∂εf(x) +N(x).

If x ∈M satisfies the weaker condition

0 ∈ ∂εNf(x),

then x is said to be an ε-critical point with respect to N(x). Note that for ε = 0 we recover (2.6).
We aim to show that if x is not critical with respect to N , that is,

0 /∈ ∂f(x) +N(x),

then there exists a descent direction in T (x).
The first statement is that if x is not critical, then there exists ε > 0 such that x is not

ε-critical.

Proposition 2.1. Let x ∈ M such that 0 /∈ ∂Nf(x). Then there exists ε > 0 such that
0 /∈ ∂εNf(x).

Proof. Suppose to the contrary that 0 ∈ ∂1/i
N f(x) for all i, that is, there exists wi ∈ ∂1/if(x) ∩

−N(x). Since wi is a bounded sequence by (2.2), it has a convergent subsequence to some
point w. Note that wi ∈ ∂1/jf(x) for i ≥ j. Since these sets are closed, it follows that

w ∈
⋂∞
j=1 ∂1/jf(x) = ∂f(x). As the normal coneN(x) is also closed, we obtain w ∈ ∂f(x)∩−N(x),

that is, 0 ∈ ∂Nf(x) in contradiction to the made assumption. �

The next lemma relates the minimum norm element in ∂εNf(x) to projections on −T (x).

Lemma 2.2. Let T ⊆ Rn be a closed convex cone and v∗ ∈ Rn. Then

argmin{‖w‖ : w ∈ v∗ + T ◦} = argmin{‖ξ − v∗‖ : ξ ∈ −T} = P−T (v∗).

Proof. For a closed convex cone, it is known (and easy to see) that P−T + P−T◦ = Id. Therefore,
it holds

argmin{‖w‖2 : w ∈ v∗ + T ◦} = v∗ + argmin{‖v∗ + η‖2 : η ∈ T ◦}
= v∗ − argmin{‖v∗ − η‖2 : η ∈ −T ◦}
= v∗ − P−T◦(v∗) = P−T (v∗),

which is the assertion. �

Consider now the situation 0 /∈ ∂εNf(x). Then the minimizer w∗ of the problem

min
w∈∂ε

Nf(x)
‖w‖ (2.7)
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is nonzero. It is also unique, since the norm ‖ · ‖ is assumed strictly convex. From Lemma 2.2
with T = T (x) it follows that actually w∗ ∈ −T (x), and specifically

w∗ = P−T (x)(v
∗), where v∗ = argmin{‖P−T (x)(v)‖ : v ∈ ∂εf(x)}. (2.8)

The main result of this section is that −w∗ provides a descent direction on T (x).
Indeed, similar to (2.3), a natural approach to seek a descent direction in T (x) is to consider

the problem
min

‖g‖≤1,g∈T (x)
f◦ε (x; g) = min

‖g‖≤1,g∈T (x)
max

v∈∂εf(x)
〈v, g〉

= max
v∈∂εf(x)

min
‖g‖≤1,g∈T (x)

〈v, g〉

= max
v∈∂εf(x)

(− max
‖g‖≤1,g∈T (x)

〈−v, g〉)

= − min
v∈∂εf(x)

‖P−T (x)(v)‖.

(2.9)

Here, the first equality is obtained by the minimax theorem and the last equality is obtained
by [17, Eq. (2.4)]. It is clear that the common value of (2.9) is negative. The theorem below
generalizes the equivalence of (2.3) and (2.4) to the constrained case.

Theorem 2.3. Consider x ∈ M such that 0 /∈ ∂εNf(x). Let w∗ be the solution of (2.7). Then
w∗ ∈ −T (x), w∗ 6= 0, and for

g = − w∗

‖w∗‖
∈ T (x)

it holds that
f◦ε (x; g) = −‖w∗‖ < 0,

that is, g is a descent direction.

Proof. From 0 /∈ ∂εNf(x) it follows w∗ 6= 0. We have the variational inequality

〈w∗, w∗〉 ≤ 〈w∗, w〉 for all w ∈ ∂εNf(x).

In particular, for every v ∈ ∂εf(x) it holds

〈w∗, w∗〉 ≤ 〈w∗, v〉,
which implies

max
v∈∂εf(x)

〈−w∗, v〉 ≤ 〈−w∗, w∗〉.

We conclude that
f◦ε (x; g) ≤ −‖w∗‖ < 0.

As stated in (2.8) it holds
w∗ = P−T (x)(v

∗),

where v∗ solves the last problem in (2.9). From this we get the reverse relation

f◦ε (x; g) = sup
v∈∂εf(x)

〈v, g〉 ≥

〈
v∗,−

P−T (x)(v
∗)∥∥P−T (x)(v∗)
∥∥
〉

= −
∥∥P−T (x)(v

∗)
∥∥ = −‖w∗‖ ,

where the second last equality holds because −T (x) is a cone. �

3. A gradient sampling algorithm

In this section, the proposed gradient sampling algorithm is presented together with a suitable
convergence result. We first list the properties that a general closed set M ⊆ Rn must have
in order to define the algorithm, and emphasize that they are satisfied for closed real algebraic
varieties.
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3.1. Assumptions for the minimization algorithm. Recall that we are considering the
minimization problem

min
x∈M

f(x).

The following assumptions on f andM are required to formulate the gradient sampling algorithm
in the next subsection. We highlight that the assumptions on M are satisfied if M is a closed
real algebraic variety.

3.1.1. Existence of linear spaces in Bouligand tangent cones. In what follows, we assume, for
every x ∈ M, a linear space T (x) contained in the Bouligand tangent cone exists, that is
(repeating (1.4)),

T (x) ⊆ TBM(x).

When M is a real algebraic variety and x ∈Ms, then due to (1.2) there is at least one possible
choice, namely T (x) = TMs(x).

3.1.2. Existence of retractions. Following [17], a map R :
⋃
x∈M{x} × T (x)→M will be called a

retraction if for any fixed x ∈M and ξ ∈ T (x), we have

lim
t↓0

Rx(tξ)− (x+ tξ)

t
= 0. (3.1)

When talking about retractions, we silently assume that there exists a constant κ > 0 such that

‖Rx(ξ)− x‖ ≤ κ‖ξ‖ (3.2)

for all x ∈M and ξ ∈ T (x).
For closed real algebraic varieties, any metric projection PM : Rn →M, PM(y) ∈ argminx∈M ‖x−

y‖ defines the retraction

Rx(ξ) = PM(x+ ξ).

This can be seen from the fact that every tangent vector to a real algebraic variety is tangent to
some analytic arc γx,ξ(t) = x + tpξ + O(tp+1) with p > 0 and γx,ξ(t) ∈ M for small t; see [16,
Proposition 2]. Hence

‖Rx(tξ)− (x+ tξ)‖
t

≤ ‖γx,ξ(t
1/p)− (x+ tξ)‖

t
→ 0

for t ↓ 0. (Recall that T (x) ⊆ TBM(x).) Further, (3.2) is satisfied with κ = 2.

Remark 3.1. Let R be a retraction on M. Using Theorem 2.3 with T (x) ⊆ TBM(x), we can
prove that there exists α > 0 such that

f(Rx(tg))− f(x) ≤ −t‖w
∗‖

2
for all t ∈ (0, α).

Indeed, we have

f(Rx(tg))− f(x) ≤ f(x+ tg)− f(x) + L‖Rx(tg)− (x+ tg)‖
≤ f◦(x; g) · t+ o(t) + L‖Rx(tg)− (x+ tg)‖
≤ f◦ε (x; g) · t+ o(t) + L‖Rx(tg)− (x+ tg)‖
= f◦ε (x; g) · t+ o(t).

We obtain
f(Rx(tg))− f(x)

t
≤ f◦ε (x; g) +

1

2
|f◦ε (x; g)| = −‖w

∗‖
2

for t small enough.
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3.1.3. Continuously differentiability on a set of full measure. Algorithm 1 below will feature a
subset D ⊆ Ωf with the following properties: D ⊆ Ωf is an open set in Rn of full measure on
which f is continuously differentiable. Furthermore, M∩D is an open set of full measure in M
(w.r.t. to the induced topology).

Let us comment on these assumptions already here.

– The assumption that D is an open set of full measure is made to ensure that the
termination in line 3 has zero probability.

– The assumption that M ∩ D is an open set of full measure in M ensures that the
adjustment step in line 18 is possible. The following procedure could be applied (in
theory; it is not expected to be ever necessary in practice): if Rx`

(t`g`) /∈ D, one
continues choosing x`+1 uniformly at random from M∩B(Rx`

(t`g`), κt`/k), k = 1, 2 . . .,
until x`+1 ∈ D and f(x`+1) − f(x`) < −βt` ‖w`‖ as desired. By continuity of f and
the inequality f(Rx`

(tg`))− f(xl) < −βt` ‖w`‖, this process will terminate after finitely
many steps with probability one. Of course, this requires that one is able to construct
random points on M.

– Finally, the assumption that f is continuously differentiable on D will be crucial for the
convergence proof.

In many cases of interest, one can reasonably expect that D = Ωf satisfies these assumptions.

3.2. A minimization algorithm. Theorem 2.3 and Remark 3.1 suggest a descent algorithm
using descent directions obtained from (2.7) combined with a line-search. In every step, it requires
to find the shortest element in ∂εNf(x). However, since in many applications an explicit description
of ∂εNf(x) will not be available, an approximation has to be used. Our algorithm adopts the
reasoning in [4] to the constrained optimization problem at hand by replacing ∂εNf(x`) with G`
at iteration `, where G` is convex hull of a finite set of projected gradients at sampling points in
x` + ε`BT (x`)(0, 1) to T (x`), where T (x`) denotes a linear space in the Bouligand tangent cone
and BT (x`)(0, 1) is the unit ball in T (x`) .

The resulting minimization algorithm is given as Algorithm 1.
We remark that the line search in line 14 of the algorithm is well-define and t` can be found

using a finite process. To see this, observe that for w` = argmin{‖w‖ : w ∈ G`} we have

〈PT (x`)(∇f(x`)), g`〉 ≤ sup
w∈G`

〈w, g`〉 ≤ −‖w`‖ ,

where g` = −w`

‖w`‖ . By (3.1), t 7→ Rx`
(tg`) has the right derivative g` at zero. Then, since

x` ∈ D, the function ϕ(t) = f(Rx`
(tg`)) has the right derivative ϕ′+(0) = 〈∇f(x`), g`〉 =

〈PT (x`)(∇f(x`)), g`〉 < 0. Therefore, since β < 1, there exists α > 0 such that for all t ∈ (0, α) we
have

f(Rx`
(tg`))− f(x`) = ϕ(t)− ϕ(0) < tβ〈∇f(x`), g`〉 ≤ −tβ ‖w`‖ .

3.3. Convergence result. We begin with a lemma regarding possible limiting subspaces of
T (x`). For the second part it is essential that the stratification (1.2) of M is a-regular.

Lemma 3.2. LetM be a real algebraic variety with an a-regular stratification (1.2) by dimension.
Assume that the sequence x` has a cluster point x̄. Let

m̃ = lim sup
ρ→0

(max{dim(T (x`)) : ‖x` − x̄‖ ≤ ρ}) .

Then there exists a linear space S and an infinite subsequence (x`)`∈L such that the following
conditions hold:

(i) dimT (x`) = dimS = m̃ for all ` ∈ L,
(ii) PT (x`) → PS for ` ∈ L, `→∞.
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Algorithm 1: Gradient sampling algorithm

Input: x0 ∈M∩D; δ0, ε0, γ, εopt, δopt ∈ (0, 1); β ∈ (0, 1); θε, θδ ∈ (0, 1].
1 for ` = 0, 1, 2, . . . do
2 Choose m` = dim(T (x`)) + 1 points {xi`}

m`
i=1 independently and uniformly from

x` + ε`BT (x`)(0, 1). // gradient sampling

3 if {xi`}
m`
i=1 6⊂ D then

4 return

5 end

6 Let G` := conv{PT (x`)(∇f(x`)), PT (x`)(∇f(x1`)), . . . , PT (x`)(∇f(x
m`
` ))}, and find

w` = argmin{‖w‖ : w ∈ G`}

if ‖w`‖ ≤ δopt and ε` ≤ εopt then
7 return

8 end

9 if ‖w`‖ ≤ δ` then
10 ε`+1 := θεε`, δ`+1 := θδδ`
11 x`+1 := x`
12 else

13 ε`+1 = ε`, δ`+1 = δ`, g` := − w`
‖w`‖

// descent direction

14 t` := max{t : f(Rx`(tg`))− f(xl) < −βt ‖w`‖ , t ∈ {1, γ, γ2, . . .}} // line search

15 if Rx`(t`g`) ∈ D then
16 x`+1 := Rx`(t`g`)

17 else
18 Find x`+1 ∈M∩D such that f(x`+1)− f(x`) < −βt` ‖w`‖ // stay in D

19 and ‖Rx`(t`g`)− x`+1‖ ≤ κt`. // κ from (3.2)

20 end

21 end

22 end

Furthermore, assume x` ∈Ms` and x̄ ∈Ms. Then if T (x`) contains the tangent space TMs`
(x`)

for almost all ` ∈ L, then S contains TMs(x̄).

Proof. Without loss of generality, x` → x̄ and dimT (x`) = m̃ for all `. The sequence of orthogonal
projections PT (x`) lies on the spectral unit sphere ‖PT (x`)‖ = 1, i.e., is bounded. Therefore, after
eventually switching to a subsequence, we may assume that PT (x`) converges to some P . It is
easy to show that P is an orthogonal projection of same rank as well, so we set S to be the range
of P . To prove the second part, we assume without loss of generality that s` is constant (but not
necessarily equal to s), and that TMs`

(x`) converges to a subspace Q (in the sense of projections;

dimQ = dimTMs`
(x`)). By the Whitney condition (a) [22, Sec. 8], [23, Sec. 19], the range of Q

contains TMs(x̄). On the other hand,

PSPQ = lim
`→∞

PT (x`)PTMs`
(x`) = lim

`→∞
PTMs`

(x`) = PQ,

which proves TMs
(x̄) ⊆ Q ⊆ S. �

We now turn to the convergence result for Algorithm 1 given our main assumptions.

Theorem 3.3. Let (x`) be a generated sequence for parameters δopt = εopt = 0 and θε, θδ ∈ (0, 1).
With probability one the algorithm does not stop and we either have f(x`) ↓ −∞, or δ` ↓ 0, ε` ↓ 0.
In the later case, if x̄ is a cluster point and S a corresponding subspace as in Lemma 3.2, then
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x̄ ∈Ms is a critical point of f on Ms in the sense that

0 ∈ ∂f(x̄) + S⊥.

In particular, when x` ∈Ms` and TMs`
(x`) ⊆ T (x`) for all `, then

0 ∈ ∂f(x̄) + (TMs
(x̄))⊥,

that is, x̄ is critical on the submanifold Ms.

Remark 3.4. The meaning of “with probability one” here is similar to previous results on GS
algorithm [4, 14, 12]; see in particular [4, p. 757]. The random nature of the algorithm is in the
selection of sampling points in every iteration. These points are sampled in line 2 from the unit
ball in T (x`), which is isomoprhic to the unit ball in Rm`−1. Let Bm−1 denote the unit ball in
Rm−1. Then we can regard the tuple of sample points in iteration ` as an element of Bm`

m`−1.
Only finitely many values for m` = dimT (x`) + 1 ≤ n+ 1 are possible. We may imagine that an
infinite sequence xm ∈ (Bmm−1)∞ of sample point tuples has been generated for every possible
dimension m = 1, . . . , n + 1 before we run the algorithm, and that we then simply use these
sample points in the algorithm whenever this subdimension occurs, for instance, {xi`}

m`
i=1 = xm`

` .
In this interpretation, the randomness gets “outside” of the algorithm. Now “with probability one”
refers to the fact, that for every m and almost every realization xm ∈ (Bmm−1)∞ (with respect
to suitable measure on (Bmm−1)∞), any infinite subsequence of xm hits every positive measure
subset of Bmm−1 infinitely often. This will be a crucial argument in the proof of Theorem 3.3.

The logic of the proof follows the arguments for unconstrained gradient sampling by Burke,
Lewis and Overton [4] and [14] in general, and corresponding arguments for a recent generalization
to Riemannian manifolds [12] in particular. Thus, we will refer to proofs in [12] for some similar
steps. However, since the algorithm at hand requires no Riemannian gradients, no vector
transports, and works for general real algebraic varieties, some nontrivial modifications of the
arguments will be needed. We first state two observations originally used by Kiwiel [14]; see
also [12] for a proof of the second one.

Lemma 3.5. Assume that a nonempty compact convex set C in an Euclidean space does not
contain zero. Then for every β ∈ (0, 1) there exists ν > 0 such that if u, v ∈ C and ‖u‖ ≤
min{‖w‖ : w ∈ C}+ ν, we deduce that 〈v, u〉 > β ‖u‖2 .

Lemma 3.6. Let (x`)`∈N be a divergent sequence in a metric space, and let dist denote the metric.
Then for every infinite convergent subsequence (x`)`∈L, L ⊂ N, it holds

∑
`∈L dist(x`, x`+1) =∞.

Next, following [4], we define the sets

GSε (x) := cl conv{PS(∇f(y)) : y ∈ (x+ ε clBS(0, 1)) ∩D},
where S is a linear subspace of Rn. For every ε, ν > 0 and x̄ ∈M, let further m = dimS + 1 and

ρε(x̄) := min{‖w‖ : w ∈ GSε (x̄)},

Dε(x) := (x+ ε clBS(0, 1)) ∩D, Dm
ε (x) :=

m∏
1

Dε(x),

and
Vε(x̄, x, ν) := {y = (y1, . . . , ym) ∈ Dm

ε (x) : ρ̃ε(y) ≤ ρε(x̄) + ν},
where

ρ̃ε(y) := min{‖w‖ : w ∈ conv{PS(∇f(yi))}mi=1}.

Lemma 3.7. Let ε > 0, x̄ ∈ M. For any ν > 0, there exist τ > 0 and a nonempty open set
V̂ = V̂ (x̄, ε, τ) such that cl V̂ ⊆ Vε(x̄, x, ν) for all x ∈ B(x̄, τ).
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Proof. Since GSε (x̄) is compact, there exists w ∈ GSε (x̄), such that ρε(x̄) = ‖w‖. The argumen-
tation now follows along similar lines as [12, Lemma 4.2]: using Carathéodory’s Theorem and
the continuity of y 7→ PS(∇f(y)) on D, we can find ỹ = (ỹ1, . . . , ỹm) ∈

∏m
1 (x̄+ εBS(0, 1)) ∩D

and non-negative λ1, . . . , λm with
∑
λi = 1 such that u :=

∑m
i=1 λiPS(∇f(ỹi)) satisfies ‖u‖ ≤

‖w‖+ ν/3 = ρε(x̄) + ν/3. Now choose ε̄ such that

Ṽ :=

m∏
i=1

(ỹi + ε̄BS(0, 1)) ⊆ Dm
ε−ε̄(x̄), and

∥∥∥∥∥
m∑
i=1

λiPS(∇f(yi))

∥∥∥∥∥ ≤ ρε(x̄) + ν (3.3)

holds for all y = (y1, . . . , ym) ∈ Ṽ . Set τ := ε̄. Then, by (3.3), for all x ∈ B(x̄, τ) we have

Ṽ ⊆ Dε(x), and Ṽ ⊆ Vε(x̄, x, ν). Then we can choose any nonempty open subset V̂ of Ṽ such

that cl V̂ ⊂ Ṽ . �

Theorem 3.8. Suppose (in a slight abuse of notation) that (x`) is a subsequence of iterates
constructed by Alg. 1 with fixed ε` = ε0 := ε such that x` converges to x̄ ∈M and, furthermore,
satisfies properties (i) and (ii) of Lemma 3.2 for some subspace S. Let ν > 0 be taken from

Lemma 3.5 for C = GSε (x̄) (and β from the algorithm), and τ and V̂ be obtained from Lemma

3.7 for this ν. Assume further that (x1
` , . . . , x

m
` ) ∈ V̂ (x̄, ε, τ) for all `. Then, if 0 /∈ GSε (x̄), it

must hold lim inf`→∞ t` > 0.

Proof. Let’s denote x0
` := x`. By assumption (i) from Lemma 3.2, m` = m is fixed and

w` :=

m∑
i=0

λi`PT (x`)(∇f(xi`))

has the minimum norm at `th iteration of the algorithm. By switching to another subsequence,
we may assume to the contrary that t` → 0. By construction, γ−1t` does not satisfy the Armijo
condition, that is,

−βγ−1t` ‖w`‖ ≤ f(Rx`
(γ−1t`g`))− f(x`). (3.4)

By Lebourg’s mean value Theorem, there exists y` ∈ [x`, Rx`
(γ−1t`g`)] and v` ∈ ∂f(y`), such

that

f(Rx`
(γ−1t`g`))− f(x`) = 〈v`, γ−1t`g`〉+ o(γ−1t`).

Multiplying by −‖w`‖γ/t` and using that g` ∈ T (x`), we get from (3.4) that

〈PT (x`)(v`), w`〉 −
o(γ−1t`) ‖w`‖

γ−1t`
≤ β ‖w`‖2 . (3.5)

Since the tuples (x1
` , . . . x

m
` ) ∈ V̂ ⊆ Vε(x̄, x̄, ν) are bounded, we may assume they converge to

some (z1, . . . , zm) ∈ cl V̂ . By Lemma 3.7, (z1, . . . , zm) ∈ Vε(x̄, x̄, ν). Hence, denoting ξi = ∇f(zi),
we have

min{‖w‖ : w ∈ PS(conv{ξi}mi=1)} ≤ ρε(x̄) + ν. (3.6)

Restricting the subsequence even further, we can assume ∇f(x`) to be convergent to some
ξ0 ∈ ∂f(x̄). Then,

min{‖w‖ : w ∈ PS(conv{ξi}mi=0)} ≤ ρε(x̄) + ν, (3.7)

because the minimum is taken over a larger set compared to (3.6).
Assume that the minimum in (3.7) is attained at

w̃ = PS

(
m∑
i=0

λ̃iξi

)
.
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Note that w̃ is unique. Obviously, PS(ξi) ∈ GSε (x̄), i = 1, . . . ,m. Also, it is easy to see,
that PS(∂f(x̄)) ⊆ GSε (x̄), and therefore PS(ξ0) ∈ GSε (x̄). We conclude that w̃ ∈ GSε (x̄) and
‖w̃‖ ≤ ρε(x̄) + ν. By Lemma 3.5,

〈PS(v), w̃〉 > β ‖w̃‖2

for every PS(v) ∈ GSε (x̄). The aim is now to show that w` has a subsequence converging to w̃.
Then, since v` ∈ ∂f(y`) has a convergent subsequence to some v ∈ ∂f(x̄), a limitation of (3.5) in

subsequences using t` → 0, yields the contradiction 〈PS(v), w̃〉 ≤ β ‖w̃‖2 .
Restricting to further subsequences, we can assume that for i = 0, 1, . . . ,m the sequence λi`

converges to some λi∗. Then, by assumption (ii) from Lemma 3.2, w` converges to

w∗ = PS

(
m∑
i=0

λi∗ξ
i

)
∈ PS(conv{ξi}mi=0).

We need to show that w∗ = w̃. Since w̃ is the unique minimizer of (3.7), it is enough to prove
that ‖w∗‖ ≤ ‖w̃‖ in order to make this conclusion. Let η > 0. For large enough ` it holds

‖w∗‖ ≤ ‖w`‖+ η ≤

∥∥∥∥∥PT (x`)

(
m∑
i=0

λ̃i∇f(xi`)

)∥∥∥∥∥+ η.

The second inequality holds by the choice of w`. The expression in the norm converges to w̃, so
we may also assume ∥∥∥∥∥w̃ − PT (x`)

(
m∑
i=0

λ̃i∇f(xi`)

)∥∥∥∥∥ ≤ η.
In conclusion, ‖w∗‖ ≤ ‖w̃‖+ 2η for any η > 0. �

Proof of Theorem 3.3. We assume the case lim inf`→∞ f(x`) > −∞. By construction, f(x`+1)−
f(x`) < −βt` ‖w`‖ and ‖x`+1 − x`‖ ≤ 2κt`. Using telescopic sums, this implies

∞∑
`=1

t` ‖w`‖ <∞ and

∞∑
`=1

‖x`+1 − x`‖ ‖w`‖ <∞. (3.8)

Let (x`)`∈L be a convergent subsequence with limit x̄. To show that x̄ is a critical point, we aim to
prove that (w`)`∈L has a subsequence that converges to zero. Then, since w` ∈ ∂ε`f(x`) +N(x`),
it follows that 0 ∈ ∂f(x̄) + S⊥. In particular, when x` ∈ Ms` and TMs`

(x`) ⊆ T (x`), since

w` ∈ ∂ε`f(x`) + (TMs`
(x`))

⊥, we conclude by Lemma 3.2 that 0 ∈ ∂f(x̄) + (TMs(x̄))⊥.
To prove the existence of such a subsequence, we use two different arguments, depending

on whether (x`) itself converges or not. If (x`) diverges, we argue as Kiwiel [14], namely that
combining Lemma 3.6 and (3.8) yields lim inf`∈L ‖w`‖ = 0. If x` → x̄, then the existence of a
subsequence of w` converging to zero is equivalent to the statement δ` ↓ 0, ε` ↓ 0, which is shown
below.

By construction of the algorithm, the contrary would mean that there exists `∗ such that
δ` = δ and ε` = ε remain fixed for all ` ≥ `∗. This only happens if ‖w`‖ > δ for ` ≥ `∗ (see
line 9). By (3.8), this implies t` → 0 and

∑∞
`=1 ‖x`+1 − x`‖ < ∞. In particular, x` is then a

Cauchy sequence and has a limit x̄ ∈M. We then consider a subsequence of (x`) that satisfies
the properties (i) and (ii) of Lemma 3.2, but for notational convenience, we assume that this is
the whole sequence (x`) itself. To derive a contradiction, we distinguish between two possible
cases.

First, assume 0 /∈ GSε (x̄). Let ν, τ and V̂ = V̂ (x̄, ε, τ) be chosen as in Theorem 3.8. Since

(x1
` , . . . , x

m
` ) are sampled independently and uniformly from Dm

ε (x`), and V̂ is a nonempty open
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subset of Dm
ε (x`), it will hold (x1

` , . . . , x
m
` ) ∈ V̂ infinitely often. By Theorem 3.8, this contradicts

t` → 0.
In the second case, assume 0 ∈ GSε (x̄). Then ρε(x̄) = 0. Let ν = δ/2 and choose τ and

V̂ = V̂ (x̄, τ, ν) according to Lemma 3.7. Similar as before, we will have (x1
` , . . . , x

m
` ) ∈ V̂

infinitely often. Also, x` ∈ B(x̄, τ) for ` large enough. Then

min{‖w‖ : w ∈ PS(conv{∇f(xi`)}mi=1)}
≤ ρε(x̄) + ν = δ/2 ≤ ‖w`‖ − δ/2
≤ min{‖w‖ : w ∈ PT (x`)(conv{∇f(xi`)}mi=1)} − δ/2.

This is a contradiction, because both sequences of minimal have the same limit inferior. This
can be shown using similar arguments as in the proof of Theorem 3.8 by taking a convergent
subsequence (x1

` , . . . , x
m
` )→ (z1, . . . , zm). In summary, we have shown that δ` ↓ 0, ε` ↓ 0. �

4. Some numerical experiments for robust low-rank matrix recovery

As an application, we have implemented our algorithm for solving problems of the form

min
rank(X)≤r

f(X)

on the space RM×N of M ×N matrices (equipped with the Frobenius inner product). Specifically,
we conducted numerical experiments for low-rank recovery of noisy matrices via minimization of
entry-wise `1 distance. This is sometimes referred to as robust low-rank recovery and is explained
in Sec. 4.2 below. But first, we shall give some background on the low-rank matrix varieties that
are the main geometric object in this optimization task.

4.1. Low-rank matrix varieties. The real algebraic varieties

M≤r = {X ∈ RM×N : rank(X) ≤ r}

fit perfectly in the abstract setting considered above for several reasons.

4.1.1. Stratification into fixed-rank manifolds. First, as in (1.2), they admit a stratification by
dimension

M≤r =

r⋃
s=0

Ms (4.1)

into smooth manifolds

Ms = {X ∈ RM×N : rank(X) = s}
of fixed-rank matrices. The geometry of these manifolds is well-understood. In particular, we
have

dim(Ms) = (M +N − s)s, (4.2)

and

TMs(X) = U ⊗ RN + RM ⊗ V = (U ⊗ V)⊕ (U⊥ ⊗ V)⊕ (U ⊗ V⊥), (4.3)

where U ⊆ RM is the column space of the matrix X (its image), and V ⊆ RN is its row space
(the image of XT ). Here we have identified RM×N as a tensor product RM ⊗RN . The symbol ⊕
indicates that the splitting into subspaces is orthogonal (with respect to Frobenius inner product).

If we are given a decomposition X = USV T ∈ Ms with U ∈ RM×s and V ∈ RN×s having
orthonormal columns, then tangent space is efficiently parametrized as follows:

TMs
(X) = {UEV T + FV T + UGT : E ∈ Rs×s, UTF = 0, V TG = 0}. (4.4)
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The orthogonal projection (with respect to the Frobenius inner product) of a matrix Z on the
subspace TMs(X) is given as

PTMs (X)(Z) = U UTZV︸ ︷︷ ︸
E

V T + (Z − UUTZ)V︸ ︷︷ ︸
F

V T + U UT (Z − ZV V T )︸ ︷︷ ︸
GT

,

yielding the parameters E, F and G as indicated. When s is small compared to M and N , it
is important that these parameters can be computed by performing sequential matrix products
with the “tall” matrices U and V (or their transposes) only. The full projectors UUT and V V T

should never be computed.

4.1.2. Regularity of the stratification. It follows from Whitney’s abstract construction [23, Sec. 19]
that the stratification (4.1) is a-regular. However, thanks to the simple structure of the tangent
spaces TMs

(X) it is very easy to verify this directly. Let (X`) be a sequence of rank-r matrices
converging to X̄ having rank s < r. Assume that TMr

(X`) converges to T in the sense of
subspaces. In light of (4.3), after passing to subsequences, we can assume that the column and
row spaces of X` converge to subspaces U and V, respectively, so that T = U ⊗ RN + RM ⊗ V.
Then, in order to show TMs

(X̄) ⊆ T (which means a-regularity), it is enough to argue that U
contains the column space of X̄, while V contains the row space of X̄. Both is obviously true,
since X`v → X̄v for all v ∈ RN and XT

` u→ X̄Tu for all u ∈ RM .

4.1.3. Linear subspaces in the Bouligand tangent cone. A simple description of the Bouligand
tangent cone to M≤r in singular points is available [6, 17]. Let X ∈M≤r have rank s ≤ r, then
the tangent cone is given as

TBM≤r
(X) = TMs(X)⊕ {Y ∈ (TMs(X))⊥ : rank(Y ) ≤ r − s}.

Hence, when s < r, TBM≤r
(X) contains many linear subspaces T (X) satisfying

TMs
(X) ⊆ T (X) ⊆ TBM≤r

(X).

Possible choices include subspaces of the form

T (X) = TMs(X)⊕ (U⊥ ⊗ V⊥), (4.5)

where U⊥ ⊆ RM and V⊥ ⊆ RN are subspaces of dimension r − s that are orthogonal to the
column and row spaces of X respectively. Using the parametrization (4.4) of TMs

(X), and letting
U⊥ ∈ RM×(r−s), V⊥ ∈ RN×(r−s) be basis representations of U⊥, V⊥, respectively, elements in
such a space T (X) are then represented as

Z = UEV T + FV T + UGT + U⊥HV
T
⊥ (4.6)

subject to UTF = 0 and V TG = 0. Here H ∈ R(r−s)×(r−s).
In the optimization algorithm, the choice of subspaces T (X) determines which row and column

spaces can be reached from the current singular point X. In our experiments we used spaces
of the form (4.5), taking as U⊥ and V⊥ either random subspaces orthogonal to U and V, or,
alternatively, the subspaces spanned by the dominant r − s left and right singular vectors of the
orthogonal projection of ∇f(X) on (TMs(X))⊥. Compared to random subspaces, this second
choice based on the gradient appears very reasonable and has been observed to be beneficial
in smooth low-rank matrix completion [19]. However, in our experiments on robust low-rank
approximation we could not confirm this.
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4.1.4. On our implementation of the GS algorithm on M≤r. The manifold Mr of matrices with
full possible rank r is dense and open in M≤r. Hence in a practical computation on M≤r with
initial guess onMr, an iterate of rank less than r is never encountered. Also a nonsmooth point of
f will never occur in practice. This makes it possible to deal with the algorithm as a Riemannian
optimization algorithm on fixed rank matrix manifolds, in the same way as in [5, 20]. In this
viewpoint, the GS algorithms is just a specific way to select a search direction in the tangent
space. For our implementation, we used the manopt toolbox [3] for MATLAB, which provides a
convenient framework for defining Riemannian solvers on manifolds of fixed-rank matrices.

A different situation occurs when one wishes to sequentially increase the rank during the
optimization of the cost function. A rank-increasing strategy is useful when the target rank of a
satisfying solution is not known in advance. Also it has been observed to be computationally
beneficial [18, 19]: starting with small ranks is not only computationally cheaper, but also provides
starting guesses for a higher rank which are potentially better than starting at random. Every
time one embeds the result X of a fixed-rank optimization, say of rank s < r, as a starting guess
for a variety of higher rank, say,M≤s+rincr , one is faced with the scenario considered in this paper
of selecting a linear subspace T (X) in the Bouligand tangent cone TM≤s+rincr

(X). We choose

subspaces of the form (4.5). The subspaces U⊥, V⊥ are represented by orthonormal matrices U⊥
and V⊥ with rincr columns. In the experiments these matrices are either randomly chosen (but
respectively orthogonal to row and column space of X), or obtained from the dominant singular
vectors of ∇f(X)− PMs(∇f(X)) (the orthogonal projection of ∇f(X) on (TMs(X))⊥).

In the algorithm, one has to draw random elements from the unit ball in the space T (X).
Since the decomposition (4.6) is orthogonal, this is achieved by randomly drawing E, F , G and
H (the latter only at the rank increasing steps) – each of Frobenius norm one and subject to
the constraints on F and G – and then forming a linear combination a1E + a2F + a3G+ a4H
where (a1, a2, a3, a4) is a random vector in the unit sphere of R4. In our implementation, we
do it a bit differently. Given X = USV T of rank s, the random sampling in the unit ball of
TMs

(X) is realized by constructing E, F and G using randn in MATLAB, replacing F and G
with normalized versions of F − UUTF and G− V V TG, respectively, and returning

Z1 = (a1UEV
T + a2FV

T + a3UG
T )/
√

3,

where (a1, a2, a3) is uniformly random in [0, 1]3. In iterations when the rank is increased by rincr,
we construct Z1 ∈ TMs

(X) as just described. Then we construct normalized H ∈ Rrincr×rincr
with the aid of randn and return

Z = (Z1 + a4U⊥HV⊥)/
√

2,

with a4 uniformly random in [0, 1]. The choice of the matrices U⊥, V⊥ has been explained further
above.

Finally, the quadratic program in line 6 of the algorithm needs to be solved. Assembling and
solving this problem becomes the computationally most expensive part of the GS algorithm when
the number m of sample points is large. The problem can reformulated as finding ζ ∈ Rm+1 that
minimizes ζT Ḡζ subject to the constraints ζ ≥ 0 and

∑n
i=1 ζi = 0, where Ḡ is the Gram matrix

of the m+ 1 tangent vectors obtained from projecting the gradients. To solve this problem we
used the function quadprog (with default values) which is part of the MATLAB optimization
Toolbox. For assembling the matrix Ḡ, it is useful to note that the inner product of tangent
vectors represented in a form as in (4.4) can be rather efficiently computed when the rank is
small. Such a functionality is provided by manopt. Still we observe that setting up the matrix
Ḡ dominates the computational cost when many sample points in a relatively high-dimensional
tangent space are given.
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In all the subsequent numerical experiments, the sampling radius is initialized with ε0 = 10−4.
The other parameters are fixed as follows: δ0 = 10−3, γ = 2−1, εopt = 10−16, δopt = 10−16,
β = 10−4, θε = 10−1, and θδ = 10−1. The optimization for a fixed rank r is terminated either
after some prescribed number of iterations, or if |f(X`+1)− f(X`)| < 10−10. We note that with
these parameters we observed in all our experiments that the sampling radius remains fixed
during the iterations, that is, line 9 is never activated. This can have several problem dependent
reasons, and correspondingly we cannot state that we really find stationary points (typically ‖w`‖
stagnates in the order of 10−1). However, shrinkage of sampling radius can be encountered when
the sampling size is significantly larger than dim(M) + 1, for instance, 3(dim(M) + 1). This
confirms an observation also made in [11].

4.2. Numerical results for robust low-rank approximation. By robust low-rank approxi-
mation one means the approximation and recovery of low-rank matrices based on some or all
given entries, of which some are corrupted by large error, so-called outliers. For such a task, mini-
mization of different combinations of Frobenius, `1, nuclear norm and other error measures have
been proposed; cf. [5, Sec. 1.1] for references. Here, we consider the very basic and prototypical
problem

min
rank(X)≤r

‖A−X‖`1 = min
rank(X)≤r

∑
ij

|aij − xij | (4.7)

for a given matrix A ∈ RM×N . The cost function f(X) = ‖A −X‖`1 is locally Lipschitz, and
is continuously differentiable in the set D of all matrices X for which A−X contains no zero
entries. The gradient is then given as ∇f(X) = sign(A−X). It is likely the case, but we did not
attempt to prove it, that for any r the set M≤r ∩D is of relative full measure in M≤r, which
was crucial for the convergence proof.

In practice, the matrix A may not be exactly available, but is measured subject to Gaussian
noise with some extreme outliers. In comparison to low-rank approximation in the Frobenius
norm (which in the case that all entries are given can be solved using SVD), it is expected that
minimization in `1-norm is more robust to sparse noise and extreme outliers. In the first two
experiments below, A will be generated as

A = Aex + λEnoise + µEout, ‖Aex‖F = ‖Enoise‖F = ‖Eout‖F = 1, (4.8)

where Aex is the assumed ground truth, Enoise is a dense matrix with random entries (modelling
general noise in measurements), and Eout is a sparse matrix with 1% random nonzero entries
(modelling outliers). All three matrices have Frobenius norm one (denote by ‖ · ‖F ). Thus the
scalars λ, µ ≥ 0 in (4.8) determine the noise level. The goal in solving the robust low-rank
approximation problem (4.7) is then to recover a good rank-r approximation to Aex, which is,
say, optimal in Frobenius norm up to the noise level λ.

With our experiments below we are able to confirm this robustness of the problem (4.7) to
outliers and demonstrate that it can be in principle solved using the GS algorithm on M≤r.
However, it is not our aim to make a specific claim regarding the potential applications, where it
can be important to further take variations of the above problem including smooth or nonsmooth
penalty terms into account. In first place, we consider the problem (4.7) as an interesting,
nontrivial instance of the abstract scenario considered in this paper, for which the GS algorithm
might be useful.

All experiments have been conducted on a Linux workstation with 3.2 GHz CPU cores and 6
GB of memory, using MATLAB R2015b with Optimization Toolbox and a modified version of
manopt.
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Figure 1. Results of GS algorithm for problem (4.7) with A = Aex + Eout ∈ R30×30

and r = 3, tested for different sampling sizes. Here dim = 171. Left: cost function
values ‖A−X`‖`1 . The initial value (dotted line) is obtained from a best rank-three
approximation (in Frobenius norm) of A via SVD. Middle: Frobenius errors ‖Aex−X`‖F .
The best possible is the best rank-three approximation error of Aex, plotted as dashed
line. Right: computational time (in seconds) vs. GS iterations.

4.2.1. Influence of sample size. For obtaining the convergence results in the first part of the
paper, it was crucial that at least dim(T (x)) + 1 nearby gradients are sampled in addition to
the one at the current iterate. At non-singular points T (x) is just the tangent space to M. If
the dimension of M is large, the solution of the quadratic program in line 6 of the algorithm
for finding the search direction becomes computationally very expensive. For optimization on
low-rank matrix manifolds we observed that this issue happens already for medium sized matrix
of moderate rank due to (4.2). For instance, already when dealing with 100× 100 matrices of
rank one with m = dim(M1) + 1 = 200 sample points, the algorithm is quite slow.

It is not clear whether in practice so many sample points are really necessary. The opposite
extreme is taking m = 0 sample points, in which case the method reduces to the (Riemannian)
steepest descent method. In this subsection we aim to investigate the influence of the sample size.

In the first experiment, we run our implementation of the GS algorithm for the problem (4.7)
with M = N = 30 and target rank r = 3 (robust rank-three approximation) for different sample
sizes

m ∈
{

0, 1, 2,
dim(Mr + 1)

2
,dim(Mr) + 1

}
.

Specifically, dim(M3) = 171 here. The matrix A is given as in (4.8), with λ = 0 (no background
noise) and µ = 0.1. The ground truth Aex is a matrix with exponentially decaying singular
values. It is generated by replacing the singular values of a random matrix with ones that are
logarithmically distributed between 1 and 10−16, and normalizing to Frobenius norm one. The
matrix Eout has nine nonzero entries representing outliers in the measurement of Aex. As a
starting guess, we choose the best rank three approximation (in Frobenius norm) of A, obtained
from an SVD. A typical outcome is given in Fig. 1, where we plot the cost function values
‖A−X`‖`1 , the Frobenius errors ‖Aex −X`‖F as well as the execution times. The latter is given
to make a relative comparison between sampling sizes. We did not aim for the most efficient
implementation.

It can be seen that the `1-minimization is more robust to the influence of the outliers: for
all sampling sizes a rank-three approximation is obtained, whose Frobenius error to the initial
matrix Aex is comparable to the best possible one, which is quite remarkable. In particular, the



A GRADIENT SAMPLING METHOD ON ALGEBRAIC VARIETIES 19

0 200 400 600 800 1000

iteration

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

c
o
s
t

0

1

2

(dim + 1)/2

dim + 1

L1 Error SVD

0 200 400 600 800 1000

iteration

10 -6

10 -5

10 -4

10 -3

10 -2

10 -1

F
ro

b
e
n
iu

s
 e

rr
o
r 

to
 n

o
is

e
le

s
s
 m

a
tr

ix

0

1

2

(dim + 1)/2

dim + 1

SVD of A

0 200 400 600 800 1000

iteration

0

50

100

150

200

250

300

ti
m

e

0

1

2

(dim + 1)/2

dim + 1

Figure 2. Results of GS algorithm for problem (4.7) with A = Aex +Eout +Enoise ∈
R30×30 and r = 3, tested for different sampling sizes. Here dim = 171. The matrix
Aex is of rank r. Left: cost function values ‖A−X`‖`1 . The initial value (dotted line)
is obtained from a best rank-three approximation (in Frobenius norm) of A via SVD.

The curves for dim(Mr+1)
2

, dim(Mr) + 1 terminated because the stopping condition

|f(X`+1)− f(X`)| < 10−10 was satisfied. Middle: Frobenius errors ‖Aex −X`‖F . The
best possible would be zero, but given the background noise ‖Enoise‖F = 10−5 a recovery
in this order of magnitude can be considered optimal. Right: computational time (in
seconds) vs. GS iterations.

initial error obtained from the rank-three truncation of the SVD of the perturbed matrix A is
significantly improved.

However, as one can also see, a larger sampling size has basically no effect on the achievable
result, while considerably increasing the computational cost. We believe that one possible reason
for this behavior is that the error A−X at local minima of (4.7) cannot be expected to contain
zero entries in the considered setup. This means that (most likely) the cost function is smooth at
critical points. Nonsmooth optimization methods like the GS algorithm aim at situations where
a minimum is achieved at non-differentiable points. To mimic such a situation we set up a second
test case.

In this second case, Aex is a matrix of rank r, whose upper r × N block is generated with
randn, while the lower (M − r)×N block contains only zeros. Then A is generated via (4.8) with
outliers as before (µ = 0.1), but also this time we add Gaussian noise of level λ = 10−5 in (4.8).
A typical convergence history for the GS algorithm in this case is shown in Fig. 2. In this scenario

larger sample sizes yield better results. In fact, only for m = dim(Mr+1)
2 and m = dim(Mr) + 1

the exact matrix Aex was reliably recovered up to the background noise level 10−5, which is the
best to hope for. The ordering of the curves for zero, one or two sample points was not very
predictable.

From both experiments, we draw a mixed conclusion: while it does not pay off using the
dim(M) + 1 sample points as required by theory (and is simply not possible when dim(M) is
large), it does not influence the computational cost to use at least a few gradient samplings. In
some situations it appears important that the sample size is at least proportional to the dimension
of the variety. In the following experiments, we set the sample size on the manifold Mr to be 2r.
In this way we are able to deal with larger low-rank matrices.

4.2.2. Rank-increasing algorithm. In this experiment, we put the rank-increasing strategy de-
scribed in Sec. 4.1.4 to the test. We create a matrix A of the form (4.8). As in the first experiment
of Sec. 4.2.1, the matrix Aex is generated as a dense full rank matrix of size M ×N , with singular
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Figure 3. Rank-increasing strategy for problem (4.7) with A ∈ R100×100 of the
form (4.8) and r = 21 with λ = 10−5, tested for different magnitudes µ ∈ {0, 0.1, 1} of
outliers. One can nicely see the staircase behavior where on every step the rank was
increased by rincr = 2 using two different subspace augmentation strategies. In the left
plot, the dashed and dotted line are (almost) on top of each other, since A and Aex

only vary by λ = 10−5. In the right plot, the dotted line is beneath the line with the
square markers.

values logarithmically distributed between 1 and 10−16, and then scaled to Frobenius norm one.
For the Gaussian noise we choose again λ = 10−5. Three different magnitudes µ ∈ {0, 0.1, 1} for
the outliers will be tested.

Given A, we aim to compute a low-rank approximation of Aex. We use the rank-increasing
strategy, starting with a random matrix of rank s = 1, iterating on the manifold Ms, increasing
the rank by rincr, iterating on Ms+rincr

and so forth, until a certain target rank s = r is reached.
The sampling size on the rank-s manifold is set to 2s, the number of iterations per rank is limited.
In the rank-increasing step we distinguish between a random subspace augmentation and an
augmentation by subspaces obtained from rank-rincr truncation of the projection of ∇f(X) to
(TMr(X))⊥ (cf. Sec. 4.1.4). For comparison, we also run the GS algorithm on the fixed rank
manifold Mr, both with random starting guess and with starting guess obtained from an SVD of
A.

In Fig. 3, we see results for M = N = 100, target rank r = 21, rank-increase by rincr = 2,
and at most nine iterations per rank. In this case, the best possible rank-21 approximation
error to Aex in Frobenius norm is around 4 · 10−4. For all three magnitudes µ of outliers, the
rank-increasing algorithm with random subspace augmentation is able to essentially recover a best
rank-21 approximation of Aex. Note that for this to be possible it is necessary that the norm λ of
the background noise is lower than the best rank-r approximation error in Frobenius norm to Aex,
say at least by an order of magnitude, as it is the case here (10−5 vs. 10−4). For the algorithm
using low-rank approximation of the projected gradient for rank increase we sometimes (but not
often) observed stagnation at an earlier point as can be seen in the middle plot, and therefore
decided to report such a case. It is interesting that, even in the case µ = 0 (no outliers), the
minimization of the function (4.7) finds an almost optimal low-rank approximation in Frobenius
norm, but we do not have an explanation for this.

In comparison, the fixed-rank methods stagnate at suboptimal values, except in the case µ = 0.
It is worthwhile to remark that for large magnitude of outliers (µ = 1) a starting guess from the
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Figure 4. The original test image ’house.png’ is at the left. The scratched version in
the middle is used as the input A for the GS algorithm (after normalization to Frobenius
norm one). Right: error history for the four variants of GS algorithm, showing the
Frobenius distance to (a normalized version) of the original image.

SVD of A is not recommended, presumably because it takes too much false information from the
outliers into account.

4.2.3. Inpainting. In the third experiment, we try to use our algorithm for reconstruction of
scratched grayscale images. The ground truth Aex is now the 512× 512 matrix obtained from
scaling the grayscale test image ’house.png’ (Fig. 4 left). As matrix A, we take a scratched
version of this image (Fig. 4 middle). With matrix A as an input, we conduct exactly the same
experiment as in Sec. 4.2.2. For the rank-increasing algorithm we start with rank s = 1 and then
increase seven times by rincr = 3, leading to a final rank r = 22. The number of iterations per
rank is now set to ten. The sampling size is again 2s for rank-s optimization, and 2r for the
fixed-rank methods. In Fig. 4 right one can see a corresponding error history. It is interesting
that in this case, the rank-increasing algorithm does not exhibit the staircase behavior as for the
previous experiment.

Further, all four methods produce results in the order of the best rank-r approximation of the
corrupted matrix A. The outcome in terms of image reconstruction is nevertheless very different
as can be seen in Fig. 5. The first row in this picture shows, from left to right, the truncation of
the original image Aex to rank r = 22 (which would be the ideal goal), the SVD truncation of the
corrupted matrix A, and the results of the two fixed-rank GS methods (with random starting
guess and SVD starting guess). The two other rows in Fig. 5 show the intermediate results for
the rank-increasing algorithm with the random subspace augmentation (red curve in Fig 4). It
produces arguably a better reconstruction. It is interesting that while all ‘diagonal’ scratches
have been successfully removed, some axis aligned scratches remained, perhaps because they do
not violate the low-rank constraint.

5. Conclusion

In this paper we have developed a gradient sampling algorithm for minimization of locally
Lipschitz functions on subvarieties of Euclidean spaces that admit stratifications into manifolds.
The new method is considerably simpler than previous attempts since it only requires sampling
in linear subspaces and no vector transport. We are able to deal with singular points of the
stratification using linear subspaces in the Bouligand tangent cone, and provide convergence
results that are as strong as the analogous results for GS algorithm in linear space. The varieties of
low-rank matrices provide an important example for the considered setting, where the non-trivial
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Figure 5. Low-rank approximations of ’house.png’. Top line (from left to right):
truncation of the original image to rank r = 22, the SVD truncation of the scratched
version, and the results of the two fixed-rank GS methods (random starting guess and
SVD starting guess). The other eight pictures show the intermediate results of the
rank-increasing algorithm (with random subspace augmentation) for the ranks

1, 4, 7, 10, 13, 16, 19, 22.

linear subspaces in the tangent cone at rank-deficient matrices correspond to subspace enrichment
of the corresponding column and row space. In this way, rank-increasing algorithms can be easily
incorporated into the considered framework. Our numerical experiments on robust low-rank
recovery indicate that the GS method can be successfully used on such problems.
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