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A RIEMANNIAN GRADIENT SAMPLING ALGORITHM FOR
NONSMOOTH OPTIMIZATION ON MANIFOLDS∗

SEYEDEHSOMAYEH HOSSEINI† AND ANDRÉ USCHMAJEW†

Abstract. In this paper, an optimization method for nonsmooth locally Lipschitz functions on
complete Riemannian manifolds is presented. The method is based on approximating the subdiffer-
ential of the cost function at every iteration by the convex hull of transported gradients from tangent
spaces at randomly generated nearby points to the tangent space of the current iterate and can hence
be seen as a generalization of the well known gradient sampling algorithm to a Riemannian setting.
A convergence result is obtained under the assumption that the cost function is bounded below and
continuously differentiable on an open set of full measure and that the employed vector transport and
retraction satisfy certain conditions, which hold, for instance, for the exponential map and parallel
transport. Then with probability one the algorithm produces iterates at which the cost function
is differentiable, and each cluster point of the iterates is a Clarke stationary point. Modifications
yielding only ε-stationary points are also possible.
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1. Introduction. We consider the optimization problem

min f(x), x ∈M,

where M is a complete Riemannian manifold of dimension n and f : M → R is lo-
cally Lipschitz on M . Many problems in machine learning, computer vision, pattern
recognition, and signal processing are formulated as optimization problems on Rie-
mannian manifolds; see [2, 3, 11, 12, 16, 17]. In particular, Stiefel and Grassmann
manifolds arise naturally for eigenvalue problems [32, 37] and low-rank matrix and
tensor optimization tasks [22, 28, 33, 34].

In nonlinear optimization on linear spaces, line search methods, which are based
on updating the iterate by finding a descent direction and then adding a multiple of
the obtained direction to the previous iterate, can be used. Burke, Lewis, and Over-
ton [7] proposed and analyzed the gradient sampling (GS) algorithm for minimizing
an objective function f that is locally Lipschitz. At each iteration, their proposed
algorithm computes the gradients of the objective function f : Rn → R at the current
iterate and at m ≥ n+ 1 randomly generated nearby points. Since a locally Lipschitz
function is almost everywhere differentiable, this step is successful with probability
one. The convex hull of computed gradients is used to find an approximate ε-steepest
descent direction by solving a quadratic program, where ε denotes the sampling ra-
dius. A backtracking Armijo line search along this direction then produces a candidate
for the next iterate. This candidate is possibly further perturbed, if necessary, to stay
in the set on which the objective function f is differentiable; this perturbation is
random and small enough to retain the Armijo sufficient descent property. The sam-
pling radius either is fixed for all iterations or is reduced dynamically; see [7] for all
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details. Regarding convergence, the essential statement is that if the GS algorithm
converges to a point, this limit point is a Clarke stationary point for the cost function
f with probability one, but to prove this an additional assumption is required that f
is in fact continuously differentiable on an open set of full measure. The convergence
analysis for the GS algorithm has been considerably strengthened and simplified by
Kiwiel [23], whose reasoning we attempted to follow here. In particular, it is shown
in [23] that every cluster point of the sequence of iterates is a Clarke stationary point
for the cost function with probability one without assuming that the whole sequence
is convergent.1

The subject of the present paper is the extension of the GS algorithm to opti-
mization problems on Riemannian manifolds. Due to the nonlinear structure of the
domain, we cannot use the usual techniques of optimization on linear spaces to study
such problems, which means we need new tools. For example, the extension of line
search methods to manifolds is achieved by the notion of retractions. The most impor-
tant issue in such a method is finding a descent direction in the tangent space at the
current iterate and then using the retractions to move along the descent direction to
get the next iterate. In this way, further classical methods, such as Newton-type and
trust-region methods, have been successfully generalized to problems on Riemannian
manifolds for optimizing smooth objective functions; see [1, 2, 20, 21] and references
therein. In a nondifferentiable problem, gradient information cannot be generally used
to determine a direction in which the function is decreasing. Therefore, techniques of
nonsmooth analysis have to be employed. Recently, some research has been started on
nonsmooth optimization algorithms in a manifold setting; see [4, 5, 10, 14, 15, 24] and
references therein. In [4], a cyclic proximal point algorithm on a Hadamard manifold
is employed to minimize a nonsmooth function in this setting. Riemannian versions
of the subgradient method have been studied in [5, 10]. In [14], a nonsmooth trust
region method is generalized on Riemannian manifolds. The work [24] is concerned
with the manifold alternating directions method of multipliers (MADMM), which can
be seen as an extension of the classical ADMM scheme for manifold constrained non-
smooth optimization problems. In [15] the ε-subdifferential is defined on Riemannian
manifolds by using the inverse of the derivative of the exponential map as a vec-
tor transport. Then, the ε-subdifferential is approximated by an iterative algorithm
which starts with one element of the ε-subdifferential as a first iteration, and in ev-
ery subsequent iteration, a new element of the ε-subdifferential is computed following
some rule and added to the working set to improve the approximation. Afterward,
this approximation is used in a nonsmooth minimization algorithm on Riemannian
manifolds.

In this paper, we define the ε-subdifferential using isometric vector transports
which satisfy a locking condition; see (2.3) below. Using the updated version of the
ε-subdifferential we propose a Riemannian gradient sampling algorithm and present
a convergence result for this algorithm under the assumptions that (i) the manifold
has positive injectivity radius with respect to the used retraction (see section 2) and
that (ii) the cost function is continuously differentiable on an open set of full measure.

1We note that in both papers [7] and [23] it is only assumed that f is continuously differentiable
on an open and dense set D. In private communication, the authors of [7] have indicated that it
was an oversight that the full measure assumption on D was not made, since open and dense does
not imply full measure in general. Hence it cannot be stated that the sampled points are in D with
probability one. However, as an alternative, if D has only positive measure in the neighborhood of
a point, the algorithm could replace any sampled points that are not in D by continuing to sample
points until they are in D, a process that must terminate with probability one.
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We have been informed recently that a very similar Riemannian GS algorithm had
been previously proposed in [19], but no convergence analysis of the method had been
conducted.

Regarding the cost function, our convergence result is somewhat stronger than the
one obtained in [15]; in particular following [23] we can dispense with the assumption of
[15] that the objective function has compact level sets. On the other hand, this comes
at the price that the Riemannian GS algorithm is considerably more expensive per
iteration on manifolds of large dimension, since it requires by construction dimM + 1
additional Riemannian gradient samples, whereas the algorithm in [15] often needs
very few in practice (say, two or three) and hence has a complexity comparable to the
Riemannian steepest descent method. As for the assumption on a positive injectivity
radius, it excludes some interesting geometries like manifolds of fixed rank matrices
or tensors, which have shown to be amenable to Riemannian optimization for some
smooth problems [9, 25, 29, 35, 36]. We hope to overcome this current limitation in
subsequent work.

Nevertheless, we believe that our generalization of the GS algorithm and its con-
vergence analysis to a Riemannian setting closes a conceptual gap between nonsmooth
optimization on linear spaces and manifolds and contributes to a deeper understand-
ing of the mechanisms behind it. While the general reasoning in the convergence
proof tries to mimic the arguments in linear space [7, 23], some nontrivial modifica-
tions are necessary. For instance, Kiwiel’s analogue to our Lemma 4.3, namely, [23,
Lemma 3.2], proves a concrete lower bound for the step sizes selected by the Armijo
backtracking, which we were not able to achieve here. Instead, we use a modified
nonconstructive argument.

The paper is organized as follows. In section 2 we collect some basic definitions
and properties regarding Riemannian manifolds and locally Lipschitz functions on
them. Moreover, two general lemmas taken from [23] are presented to be used in
proving the convergence result. In section 3, the Riemannian gradient sampling al-
gorithm is presented. The main part is section 4, which contains the convergence
analysis. Finally in section 5, a simple numerical experiment on the so-called sparse
vector problem is presented to illustrate the convergence result, as well as to compare
the Riemannian GS algorithm with some other methods.

2. Preliminaries. We denote by clN , intN , and convN the closure, the inte-
rior, and the convex hull of a set N .

Riemannian manifolds. In this paper we consider a smooth manifold M of
dimension

n := dimM ≥ 1

endowed with a Riemannian metric 〈·, ·〉 on the tangent space TxM and assume that
the manifold is complete with respect to the induced metric. This metric is the
Riemannian distance, denoted by dist(x, y) for two points x, y ∈M , and induces the
same topology as the smooth manifold structure. We identify (via the Riemannian
metric) TxM with the cotangent space at x, in particular, we will consider Riemannian
subgradients at x as elements of the tangent space TxM . The tangent bundle is TM .
If we write ξx ∈ TM , it means in particular that ξx ∈ TxM .

We denote by B(x, ε) := {y ∈M : dist(x, y) < ε) an open ball centered at x with
radius ε.

Retractions. A smooth mapping R : TM → M is called a retraction if it has
the following properties.
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(i) Rx(0x) = x for every x ∈ M , where Rx is the restriction of R to TxM and
0x ∈ TxM is the zero element of the tangent space of M at x.

(ii) dRx(0x) = IdTxM , where IdTxM denotes the identity mapping on TxM .
We further assume that there exists κ such that we have

(2.1) dist(Rx(ξx), x) ≤ κ ‖ξx‖

for all x ∈M and ξx ∈ TxM . This poses no restriction in most situations of interest.

Vector transports. Of crucial importance will be a notion of tangent vector
transport that is compatible with the retraction. A vector transport associated with
a retraction R is defined as a continuous function T : TM × TM → TM , (ηx, ξx) 7→
Tηx(ξx), which for all (ηx, ξx) satisfies the following conditions:

(i) Tηx : TxM → TR(ηx)M is a linear invertible map,
(ii) T0x(ξx) = ξx.

In short, if ηx ∈ TxM and R(ηx) = y, then Tηx transports vectors from the tangent
space of M at x to the tangent space at y.

Two additional properties will be needed for the convergence result. First, the
vector transport should preserve inner products, that is,

(2.2) 〈Tηx(ξx), Tηx(ζx)〉 = 〈ξx, ζx〉.

In particular, ξx 7→ Tηx(ξx) is then an isometry.
Second, we will assume that T satisfies the following condition, called locking

condition in [21], for transporting vectors along their own direction:

(2.3) Tξx(ξx) = βξxdRx(ξx)(ξx), βξx :=
‖ξx‖

‖dRx(ξx)(ξx)‖
,

where

dRx(ξx)(ξx) =
d

dt
Rx(tξx)|t=1.

Geometrically, this condition states that the transport of a vector ξx along itself must
be isometric and parallel to the velocity of the curve t 7→ Rx(tξx). The locking
condition will be crucial in the proof of Lemma 4.3 below, since it allows one to
formulate a mean value theorem for the function f ◦ Rx in terms of transported
tangent vectors.

The conditions (2.2) and (2.3) can be difficult to verify but are in particular
satisfied for the (at least in theory) most natural choices of R and T : the exponential
map and the parallel transport. In this case βξx = 1. For further discussion, especially
on construction of vector transport satisfying the locking condition, we refer to [21,
section 4].

Injectivity radius. Since we aim at transporting subgradients from tangent
spaces at nearby points of x ∈ M to the tangent space at x, it will be important to
know the range of Rx. Let

ι(x) := sup{ε > 0 : B(x, ε) ⊆ Rx(TxM) and Rx is injective on R−1
x (B(x, ε))}.

Then the injectivity radius of M with respect to the retraction R is defined as

ι(M) := inf
x∈M

ι(x).

When using the exponential map as a retraction, this definition coincides with the
usual one.

Formally, the Riemannian gradient sampling algorithm presented in section 3
requires ι(M) > 0. In particular, it needs an explicit positive lower bound on ι(M)
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as an input, which is hence assumed to be available. When M is compact, we at
least know that ι(M) > 0. As another example, we mention Hadamard manifolds for
which ι(M) =∞ when using the exponential map as a retraction.

Using the injectivity radius with respect to R, we can introduce a more intuitive
notation for vector transports:

Tx→y(ξx) := Tηx(ξx), and Tx←y(ξy) := (Tηx)−1(ξy) whenever y = Rx(ηx).

It is clear that Tx←y(ξy) is well defined for all y ∈ B(x, ι(x)) and, in particular, for
all y ∈ B(x, ι(M)). In the following, when using the notation Tx←y(ξy), it will always
be ensured that it is well defined.

Lebesgue measure. The concept of Lebesgue measurability extends from Rn
to smooth manifolds. If a maximal atlas of coordinate charts {(Uα, φα)}, where
φα : Uα → Vα, is given, a set E in M is called Lebesgue measurable if we can find
a covering of E using the given charts and φα(Uα ∩ E) is Lebesgue measurable for
each α. This concept is independent of the particular choice of covering. It is worth
mentioning that the transition function is of course not necessarily preserving the
measure of a set, but the nice point is that nullsets are mapped to nullsets; see [13].
In this article, we always consider the Lebesgue measure on M .

Locally Lipschitz functions. Let f : M → R be a function defined on a Rie-
mannian manifold M , then f is said to satisfy a Lipschitz condition of constant L on
a given subset S of M if

|f(x)− f(y)| ≤ Ldist(x, y)

for all x, y ∈ S. A function f is said to be Lipschitz near x ∈ M if it satisfies the
Lipschitz condition of some constant on an open neighborhood of x. A function f is
said to be locally Lipschitz on M if f is Lipschitz near x for every x ∈M . Throughout
this paper we consider locally Lipschitz functions on M .

Riemannian subdifferential. Let f : M → R be a locally Lipschitz function,
and

Ωf := {x ∈M : f is differentiable at x}.

Every locally Lipschitz function defined on a Riemannian manifold M is almost ev-
erywhere differentiable with respect to the Lebesgue measure on M , that is, M \Ωf is
of measure zero. This follows from the Rademacher theorem in linear spaces, see [13,
Theorem 2, p. 81], and the local equivalence of the Riemannian distance with the
Euclidean distance in a chart.

We define the Riemannian subdifferential (in the sense of Clarke) of f at x,
denoted by ∂f(x), as

(2.4) ∂f(x) := conv

{
lim
`→∞

grad f(x`) : x` → x, x` ∈ Ωf

}
⊂ TxM,

where grad denotes the Riemannian gradient. Recall that the Riemannian gradient of
f at x is the unique tangent vector grad f(x) at x such that df(x)(ξ) = 〈grad f(x), ξ〉
for all ξ ∈ TxM . It is also worthwhile to recall that lim`→∞ grad f(x`) in (2.4) has
the following meaning. Let (ξ`) ⊆ TM , ξ` ∈ Tx`M , be a sequence of vectors in TM .
We say ξ` converges to ξ, denoted as lim`→∞ ξ` = ξ, if x` → x and if for any smooth
vector field X on M it holds that 〈ξ`, X(x`)〉 → 〈ξ,X(x)〉. Every element of the
Riemannian subdifferential is called a (Riemannian) subgradient. One can prove that
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the set ∂f(x) is compact in TxM [18]. Further, we have

(2.5) ∂f(x) = ∂(f ◦Rx)(0x)

for any retraction R, which may be seen as an alternative definition of ∂f(x) relying
on the definition of subdifferential on linear spaces.

A point x ∈ M is called a stationary point of f if 0x ∈ ∂f(x). A necessary
condition that f achieves a local minimum at x is that x is a stationary point of f ;
see [15].

Riemannian ε-subdifferential. The notion of vector transport allows us to
define the ε-subdifferential of a locally Lipschitz function f at a point x ∈ M as
follows:

∂εf(x) := cl conv{Tx←y(∂f(y)) : y ∈ clB(x, ε)}.
In this definition it is assumed that ε < ι(x). The set ∂εf(x) is compact and convex
in TxM . For more details and properties of the ε-subdifferential see [15]. A point
x ∈M is called an ε-stationary point of f if 0x ∈ ∂εf(x).

Riemannian generalized directional derivative. For x ∈M , let f̂x = f ◦Rx
denote the restriction of the pullback f̂ = f ◦ R to TxM . The Clarke generalized
directional derivative of f at x in the direction w ∈ TxM , denoted by f◦(x;w),

is defined by f◦(x;w) = f̂◦x(0x;w), where f̂◦x(0x;w) denotes the Clarke generalized

directional derivative of f̂x : TxM → R at 0x in the direction w ∈ TxM ; see [8,
18]. The relation between the Clarke generalized directional derivative of f and its
subdifferential reads as follows:

f◦(x;w) = sup
ξ∈∂f(x)

〈ξ, w〉 = max
ξ∈∂f(x)

〈ξ, w〉.

This holds due to (2.5), since the corresponding result in linear spaces is well known [8].
Motivated by this formula, an ε-version (for ε < ι(x)) of the generalized directional
derivative is defined by

f◦ε (x;w) := sup
ξ∈∂εf(x)

〈ξ, w〉 = max
ξ∈∂εf(x)

〈ξ, w〉.

Descent direction. A direction g ∈ TxM is a descent direction at x ∈ M , if
there exists α > 0 such that for every t ∈ (0, α), we have

f(Rx(tg))− f(x) = f̂x(tg)− f̂x(0x) < 0.

It is known that if f◦(x; g) = f̂◦x(0x; g) < 0, then g is a descent direction [27, Theo-
rem 5.2.5]. Under some assumptions, the same can be shown for the ε-version.

Proposition 2.1. At x ∈ M , assume that the retraction R satisfies (2.1) for
some κ > 0, the associated vector transport T satisfies the locking condition (2.3),
and ε < ι(x). If f◦ε (x; g) < 0, then g is a descent direction at x.

Proof. By Lebourg’s mean value theorem for nonsmooth functions on Riemannian
manifolds [18], there exists for every t > 0 a t0 ∈ [0, t] and ξ ∈ ∂f(Rx(t0g)), such that

f(Rx(tg))− f(x) = 〈ξ, dRx(t0g)(g)〉 =
1

βt0g
〈Tx←Rx(t0g)(ξ), g〉,

where βt0g is the constant from the locking condition (2.3). Assuming that t is small
enough, we can conclude that Rx(t0g) ∈ B(x, ε) and Tx←Rx(t0g)(ξ) ∈ ∂εf(x). Indeed,
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it is enough to assume that t < ε
‖g‖κ with κ from (2.1). Therefore,

(2.6) f(Rx(tg))− f(x) ≤ 1

βt0g
f◦ε (x; g) < 0.

Hence g is a descent direction.

The estimate (2.6) suggests that the best possible descent direction may be ob-
tained by solving

min
‖g‖≤1,g∈TxM

f◦ε (x; g) = min
‖g‖≤1,g∈TxM

max
ξ∈∂εf(x)

〈ξ, g〉

= max
ξ∈∂εf(x)

min
‖g‖≤1,g∈TxM

〈ξ, g〉 = − min
ξ∈∂εf(x)

‖ξ‖,

where the second equality is due to the minimax theorem. Indeed, in analogy to
optimization in linear spaces, the following holds.

Proposition 2.2. For ε < ι(x), let

(2.7) w = argminξ∈∂εf(x) ‖ξ‖, g := − w

‖w‖
.

Then f◦ε (x; g) = −‖w‖2. In particular, under the assumptions of Proposition 2.1, if
w 6= 0, then g is a descent direction.

Proof. On the one hand, f◦ε (x, g) = maxξ∈∂εf(x)〈ξ, g〉 ≥ 〈w, g〉 = −‖w‖. On the
other hand, we have the variational inequality 〈w,w〉 ≤ 〈ξ, w〉 for every ξ ∈ ∂εf(x),
which implies f◦ε (x, g) ≤ −‖w‖. In conclusion, f◦ε (x, g) = −‖w‖.

Although −w obtained from (2.7) provides a descent direction, computing it
poses a formidable task. Therefore, we need to find an approximation for the ε-
subdifferential at x which can be computed algorithmically. The Riemannian gradient
sampling algorithm finds a descent direction in the convex hull of randomly sampled
Riemannian gradients at nearby points transported to the tangent space at x which
serves as such an approximation.

Two lemmas. We conclude the preliminaries with two lemmas that will be
crucial for the convergence proof but are of a more general nature. The first statement,
which is a continuous perturbation of the variational characterization of the minimum
norm element in a convex set, is taken from [23].

Lemma 2.3. Assume that a nonempty compact convex set C in a Euclidean space
does not contain zero. Then for every β ∈ (0, 1) there exists ν > 0 such that if u, v ∈ C
and ‖u‖ ≤ min{‖w‖ : w ∈ C}+ ν, we deduce that 〈v, u〉 > β ‖u‖2 .

The second lemma, which is an interesting fact about divergent sequences, is
implicitly proved in Rn in the demonstration of [23, Theorem 3.3]. For convenience,
we make it an explicit statement here and formulate it for metric spaces.

Lemma 2.4. Let (x`)`∈N be a divergent sequence in a metric space, and let dist
denote the metric. Then for every infinite convergent subsequence (x`)`∈L, L ⊂ N, it
holds that

∑
`∈L dist(x`, x`+1) =∞.

Proof. Let (x`)`∈L converge to x̄. Then for any η > 0 the set Lη = {` ∈ L :
dist(x`, x̄) ≤ η} has infinitely many elements. But since x̄ is not the limit of the
whole sequence (x`), there exists η0 such that N\Lη0 also has infinitely many elements.
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Assume now
∑
`∈L dist(x`, x`+1) <∞, then in particular

(2.8)
∑
`∈Lη0

dist(x`+1, x`) <∞.

For every k ∈ Lη0/2 there exists a smallest k′ ≥ ` such that k′ ∈ N \ Lη0 . In other
words, ` ∈ Lη0 for all k ≤ ` < k′. Using the triangle inequality, we get

η0/2 ≤ dist(xk, xk′) ≤
k′−1∑
`=k

dist(x`, x`+1) for all k ∈ Lη0/2.

This is a contradiction, since by (2.8) the right-hand side tends to zero for k →∞.

3. Gradient sampling algorithm on Riemannian manifolds. The pro-
posed Riemannian gradient sampling algorithm is given as Algorithm 1. Recall

Algorithm 1: Gradient sampling algorithm on manifolds.

1 Require: Retraction R; injectivity radius ι(M); κ satisfying (2.1); vector transport
T ; measurable subset D ⊆ Ωf such that M \D is of measure zero.

Input: x0 ∈M ∩D; δopt ≥ 0; δ0 > 0; εopt ≥ 0; 0 < ε0 < ι(M); β ∈ (0, 1); θε ∈ (0, 1);
θδ ∈ (0, 1); sampling size m ≥ n+ 1.

2 for ` = 0, 1, 2, . . . do
3 Choose m points {xi`}mi=1 independently and uniformly from B(x`, ε`).

// gradient sampling

4 if {xi`}mi=1 6⊂ D then
5 return // abort

6 end
7 Let

G` := conv{grad f(x`), Tx`←x1` (grad f(x1`)), . . . , Tx`←xm` (grad f(xm` ))},

and find
w` = argmin{‖w‖ : w ∈ G`}.

8 if ‖w`‖ ≤ δopt and ε` ≤ εopt then
9 return // success

10 end
11 if ‖w`‖ ≤ δ` then
12 ε`+1 := θεε`, δ`+1 := θδδ`
13 x`+1 := x`
14 else

15 ε`+1 = ε`, δ`+1 = δ`, g` := − w`
‖w`‖

// descent direction

16 t` := max{t : f(Rx`(tg`))− f(x`) < −βt ‖w`‖ , t ∈ {1, γ, γ2, . . .}} // line

search

17 if Rx`(t`g`) ∈ D then
18 x`+1 := Rx`(t`g`)
19 else
20 Find x`+1 ∈ D such that f(x`+1)− f(x`) < −βt` ‖w`‖ // stay in D

21 and dist(Rx`(t`g`), x`+1) ≤ κt`.
22 end

23 end

24 end



A RIEMANNIAN GRADIENT SAMPLING ALGORITHM 181

n = dimM ≥ 1. It is assumed that ι(M) > 0. Note that the algorithm is for-
mulated for an arbitrary subset D ⊆ Ωf of full measure. The convergence analysis
below assumes that D is additionally open and that grad f is continuous on D; see
Assumption 4.1.

Let us make some comments. First, we should mention that the line search in
line 16 of the algorithm is well defined and t` can be found using a finite process. To
see this, observe that for w` = argmin{‖w‖ : w ∈ G`} and g` = −w`

‖w`‖ it holds that

〈grad f(x`), g`〉 ≤ sup
w∈G`

〈w, g`〉 = 〈w`, g`〉 = −‖w`‖ ,

the first equality being due to convexity of G` as defined in line 7 of Algorithm 1.
Since x` ∈ D, we deduce that (f ◦ Rx`)′(0x` , g`), which is the directional derivative
of f ◦Rx` at 0x` in the direction g`, exists and is equal to 〈grad f(x`), g`〉. Therefore,
there exists α > 0 such that

f ◦Rx`(tg`)− f ◦Rx`(0x`) < tβ〈grad f(x`), g`〉 ≤ −tβ ‖w`‖

for all t ∈ (0, α).
Next, we note that, in line with standard gradient sampling in linear spaces [7], the

algorithm keeps the iterates in D by construction. However, the case that Rx`(t`g`) /∈
D that would require adjustment is very unlikely to ever happen in practice, although
we are not able to prove rigorously that it is a zero probability event. In any case
the adjustment in lines 20 and 21 can be implemented easily as follows. Assuming
Rx`(t`g`) /∈ D, we simply continue drawing x`+1 uniformly from B(Rx`(t`g`), κt`/k),
k = 1, 2 . . . , until x`+1 ∈ D and f(x`+1) − f(x`) < −βt` ‖w`‖. By continuity of
f and the inequality f(Rx`(tg`)) − f(xl) < −βt` ‖w`‖, this process terminates with
probability one.

Finally, we note for later reference that the iterates satisfy

(3.1) dist(x`, x`+1) ≤ 2κt`,

since either x`+1 = x`, x`+1 = Rx`(t`g`), or x`+1 is given from the lines 20 and 21
of Algorithm 1. The inequality is clear for the first case, while for the second case it
follows from (2.1). For the last case, we note that (2.1) and line 21 of Algorithm 1
yield

dist(x`, x`+1) ≤ dist(Rx`(tg`), x`+1) + dist(Rx`(tg`), x`) ≤ 2κt`.

4. Convergence result. The convergence result for Algorithm 1 as stated in
Theorem 4.4 below requires the following main assumptions.

Assumption 4.1.
(i) The function f is locally Lipschitz and continuously differentiable on an open

subset D ⊆ Ωf ⊆M , which is of full measure (see footnote 1).
(ii) The employed vector transport associated with the given retraction preserves

inner products in the sense of (2.2) and satisfies the locking condition (2.3).

With these assumptions, we introduce some further notation, always restricting
to ε < ι(M).

First, we define the following sets

Gε(x) := cl conv{Tx←y(grad f(y)) : y ∈ clB(x, ε) ∩D}.
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It is easy to see that Gε(x) ⊆ ∂εf(x) for every x ∈ M . Moreover, ∂ε0f(x) ⊆ Gε(x)
for ε0 < ε. We further denote

ρε(x) := min{‖w‖ : w ∈ Gε(x)}.

Next, let

Dε(x) := clB(x, ε) ∩D, Dm
ε (x) :=

m∏
1

Dε(x),

where
∏m

1 denotes an m-fold Cartesian product, then for x, x̄ ∈ M and ν > 0 we
define sets

Vε(x̄, x, ν) := {y = (y1, . . . , ym) ∈ Dm
ε (x) : ρ̃ε(y) ≤ ρε(x̄) + ν},

where
ρ̃ε(y) := min{‖w‖ : w ∈ conv{Tx̄←yi(grad f(yi))}mi=1}.

The following lemma states that if x is chosen in a small neighborhood of x̄, then
Vε(x̄, x, ν) contains a nonempty open set.

Lemma 4.2. Let 0 < ε < ι(M), x̄ ∈ M , and let f : M → R satisfy Assump-
tion 4.1(i). For any ν > 0, there exist τ > 0 and a nonempty open set V̂ = V̂ (x̄, ε, τ)
such that cl V̂ ⊆ Vε(x̄, x, ν) for all x ∈ B(x̄, τ).

Proof. Let w ∈ Gε(x̄) such that ρε(x̄) = ‖w‖. The set conv{Tx̄←y(grad f(y)) : y ∈
clB(x̄, ε)∩D} is dense in Gε(x̄) by definition. Hence, using Carathéodory’s theorem
and the continuity of y 7→ Tx̄←y(grad f(y)) on D, we can find ỹ = (ỹ1, . . . , ỹm) ∈∏m

1 B(x̄, ε) ∩D and nonnegative λ1, . . . , λm with λ1 + · · ·+ λm = 1 such that

u =

m∑
i=1

λiTx̄←ỹi(grad f(ỹi))

satisfies ‖u‖ ≤ ρε(x̄) + ν/3.
Now there is an 0 < ε̄ < ε, such that

(4.1) Ṽ :=

m∏
i=1

B(ỹi, ε̄) ⊆ Dm
ε−ε̄(x̄),

and moreover

(4.2)

∥∥∥∥∥
m∑
i=1

λiTx̄←yi(grad f(yi))

∥∥∥∥∥ ≤ ρε(x̄) + ν

for all y = (y1, . . . , ym) ∈ Ṽ . Now pick any 0 < τ ≤ ε̄ and x ∈ B(x̄, τ). Then,
by (4.1), Ṽ ⊆ Dε(x), and therefore Ṽ ⊆ Vε(x̄, x, ν) by (4.2). Since Ṽ is open, there
exists an open subset V̂ such that cl V̂ ⊂ Ṽ , which implies that cl V̂ ⊆ Vε(x̄, x, ν).

The next observation is key to the convergence result.

Lemma 4.3. Assume that (x`)`∈L is a subsequence of iterates constructed by Al-
gorithm 1 that converges to some x̄ ∈M . Suppose that

(i) ε` = ε is constant for all ` ∈ L,
(ii) 0 /∈ Gε(x̄),
(iii) lim inf`∈L t` = 0.
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Let ν > 0 be taken from Lemma 2.3 for C = Gε(x̄) and τ and V̂ be obtained from
Lemma 4.2 for this ν. Then (x1

` , . . . , x
m
` ) ∈ V̂ (x̄, ε, τ) can be true only for finitely

many ` ∈ L.

Proof. For notational convenience we denote x0
` := x`, so that

w` :=

m∑
i=0

λi`Tx`←xi`(grad f(xi`))

is obtained at the `th iteration of the algorithm. We argue by contradiction. Without
loss of generality we can hence assume that (x1

` , . . . , x
m
` ) ∈ V̂ (x̄, ε, τ) for all ` ∈ L. We

may also assume t` < 1 for all ` ∈ L and t` → 0 for ` → ∞, ` ∈ L. In the following
we only consider ` ∈ L without explicitly noting it anymore.

By construction, since t` < 1 is assumed, γ−1t` fails the Armijo condition, that
is,

(4.3) − βγ−1t` ‖w`‖ ≤ f(Rx`(γ
−1t`g`))− f(x`).

By Lebourg’s mean value Theorem, there exists t ∈ [0, γ−1t`] and v` ∈ ∂f(Rx`(tg`)),
such that

f(Rx`(γ
−1t`g`))− f(x`) = 〈v`, dRx`(tg`)(g`)〉.

Hence, using the locking condition (2.3),

f(Rx`(γ
−1t`g`))− f(x`) =

t

βtg`
〈Tx`←Rx` (tg`)(v`), g`〉.

In combination with (4.3), we conclude that

(4.4) 〈Tx`←Rx` (tg`)(v`), w`〉 ≤ ββtg` ‖w`‖
2
.

Since (x1
` , . . . x

m
` ) ∈ V̂ ⊆ Vε(x̄, x̄, ν), there exists a subsequence of (x1

` , . . . x
m
` )

converging to some (z1, . . . , zm) ∈ cl V̂ ⊆ Vε(x̄, x̄, ν) (as M is complete). Denoting
ξi = Tx̄←zi(grad f(zi)) we have

min{‖w‖ : w ∈ conv{ξi}mi=1} ≤ ρε(x̄) + ν,

since grad f is continuous on cl V̂ . We extract a further subsequence for which
grad f(x`) converges to some ξ0 ∈ ∂f(x̄) ⊆ Gε(x̄). Then,

(4.5) min{‖w‖ : w ∈ conv{ξi}mi=0} ≤ ρε(x̄) + ν.

We assume that the minimum is attained at some

w̃ =

m∑
i=0

λ̃iξi.

Since zi ∈ clB(x̄, ε), i = 1, . . . ,m, it holds that w̃ ∈ Gε(x̄) and ‖w̃‖ ≤ ρε(x̄) + ν.
Hence by Lemma 2.3,

(4.6) 〈v, w̃〉 > β ‖w̃‖2
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for every v ∈ Gε(x̄). Now, we claim that (w`) has a subsequence convergent to w̃.
Then, since t` → 0, x` → x̄, and v` ∈ ∂f(Rx`(tg`)) has a convergent subsequence to
some v ∈ ∂f(x̄) ⊂ Gε(x̄), limiting (4.4) in subsequences gives us

〈v, w̃〉 ≤ β ‖w̃‖2 ,

which contradicts (4.6) and hence proves the lemma.
To prove the existence of such a subsequence of (w`), we take a common subse-

quence of the subsequences considered above for which the λi` converge to some λi?,
i = 0, 1, . . . ,m. Then w` converges to

w? =

m∑
i=0

λi?ξ
i,

which is an element of the set for which w̃ is the minimum norm element (see (4.5)).
Since this minimum norm element is unique, it is enough to show that ‖w?‖ ≤ ‖w̃‖.
Assume the opposite, that ‖w̃‖ ≤ ‖w?‖ − η for some η > 0. Then consider ` large
enough such that ∥∥∥∥∥

m∑
i=0

λ̃i
(
ξi − Tx̄←x`Tx`←xi`(grad f(xi`))

)∥∥∥∥∥ ≤ η/3
and

‖w`‖ ≥ ‖w?‖ − η/3.
Using the isometry property of Tx̄←x` and the triangle inequality, it follows that∥∥∥∥∥

m∑
i=0

λ̃iTx`←xi`(grad f(xi`))

∥∥∥∥∥ ≤ ‖w̃‖+ η/3 ≤ ‖w?‖ − 2η/3 ≤ ‖w`‖ − η/3,

which contradicts the choice of w`.

We are now in the position to prove subsequential convergence of Algorithm 1 to
Clarke stationary points under Assumption 4.1.

Theorem 4.4. At any iteration of Algorithm 1, the event that it terminates due
to activation of the if-clause in line 4 has zero probability. Let (x`) be an infinite
sequence generated by the algorithm with δopt = εopt = 0.Then either f(x`) ↓ −∞ or
δ` ↓ 0, ε` ↓ 0 and every cluster point of the sequence of iterations is a stationary point
for f .

Proof. It is clear that a termination due to line 4 has zero probability, since D is
assumed to have full measure. We consider the case that an infinite sequence (x`) is
generated and lim inf` f(x`) > −∞.

By construction, we have that f(x`+1) − f(x`) < −βt` ‖w`‖. Therefore, using
telescopic sums,

(4.7)

∞∑
`=1

t` ‖w`‖ <∞.

Due to estimate (3.1), this also implies

(4.8)

∞∑
`=1

dist(x`+1, x`) ‖w`‖ <∞.
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We first prove that δ` ↓ 0. Assume to the contrary that there exists `∗ such that
δ` = δ remain fixed for all ` ≥ `∗. This only happens if line 11 in Algorithm 1 is not ac-
tivated anymore. In particular, this means that ε` = ε also remains fixed and ‖w`‖ > δ
for ` ≥ `∗. By (4.7) and (4.8), the latter implies t` → 0 and

∑∞
`=1 dist(x`+1, x`) <∞.

So x` is a Cauchy sequence and has a limit x̄ ∈ M . We consider two cases. In the
first case, 0 /∈ Gε(x̄). Let ν, τ , and V̂ = V̂ (x̄, ε, τ) be chosen as in Lemma 4.3. Since
t` → 0, this lemma states that we can have (x1

` , . . . , x
m
` ) ∈ V̂ only a finite number

of times. This is a contradiction, because (x1
` , . . . , x

m
` ) are sampled independently

and uniformly from Dm
ε (x`), and V̂ is a nonempty open subset of Dm

ε (x`). In the
second case, 0 ∈ Gε(x̄). Then ρε(x̄) = 0. We consider ν := δ/2 and choose τ and
V̂ = V̂ (x̄, τ, ν) according to Lemma 4.2. By the same argument as before, we must
have (x1

` , . . . , x
m
` ) ∈ V̂ infinitely often. Also, we have x` ∈ B(x̄, τ) for ` large enough.

Then

min{‖w‖ : w ∈ conv{Tx̄←xi`(grad f(xi`))}mi=1}

≤ ρε(x̄) + ν = δ/2 ≤ ‖w`‖ − δ/2
≤ min{‖w‖ : w ∈ conv{Tx̄←xi`(grad f(xi`))}mi=1} − δ/2.

However, along similar lines as in the proof of Lemma 4.3 (by considering a conver-
gent subsequence (x1

` , . . . , x
m
` ) → (z1, . . . , zm)), we can show that both sequences of

minima have the same limit inferior, and hence obtain a contradiction. In summary,
we conclude that line 11 in Algorithm 1 is activated infinitely, that is, δ` ↓ 0 and ‖w`‖
has a subsequence converging to 0. Since θε ∈ (0, 1), this also implies ε` ↓ 0.

Suppose now that (x`) has a cluster point x̄. If x` → x̄, then a subsequence of
w` converges to 0 ∈ Tx̄M . Since w` ∈ ∂ε`f(x`) and ∂ε`f(x`) has a closed graph, we
deduce that 0 ∈ ∂f(x̄). If x` does not converge to x̄, let (x`)`∈L be a subsequence that
does. Repeating a reasoning by Kiwiel [23], it follows from (4.8) that lim inf`∈L ‖w`‖ =
0, since otherwise

∑
`∈L dist(x`, x`+1) <∞ in contradiction to Lemma 2.4. Hence we

get the same conclusion.

We note that the previous convergence theorem yields a Clarke stationary point
in the exact sense. If only ε-optimality is required, the algorithm can be modified as
follows to keep the sampling radius fixed.

Theorem 4.5. Let (x`) be a sequence generated by the algorithm with δ0 = δopt =
0, 0 < ε0 = εopt = ε < ι(M). Then with probability one either the algorithm stops at
some iteration ` with ‖w`‖ = 0, or f(x`) ↓ −∞, or there exists a subsequence (x`)`∈L
such that w` → 0 for ` ∈ L and every cluster point of (x`)`∈L is an ε-stationary point.

The proof is almost verbatim to the one of Theorem 4.4. The only difference is
that due to δ0 = δopt = 0 line 11 will never be activated in Algorithm 1, which is
obvious by induction (δ` = δ0 = 0 for all `). So in fact, lines 11–13 could be entirely
removed in this modification. However, the arguments showing that the assumption
‖w`‖ > δ for all ` ≥ `∗ and some δ > 0 yields a contradiction are not affected. Hence
there exists a subsequence (w`)`∈L converging to zero. In turn, noting ε` = ε is fixed,
w` ∈ ∂εf(x`) implies 0 ∈ ∂εf(x̄) for any cluster point x̄ of the sequence (x`)`∈L.

5. Numerical experiment. As an application we consider a problem that was
recently discussed in [31]. The goal is to find the sparsest vector in an n-dimensional
linear subspace W of Rm. Letting Q ∈ Rm×n denote a matrix whose columns form
an orthonormal basis for W , the sparse vector problem reads

min ‖Qx‖0, x ∈ S,
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where S is the Euclidean unit sphere in Rn and ‖Qx‖0 is the number of nonzero
elements of Qx. Since this function is not locally Lipschitz, we replace it with the
1-norm as a surrogate. This leads to the problem

(5.1) min ‖Qx‖1, x ∈ S,

which fits into our framework with M = S and f(x) = ‖Qx‖1.
The natural Riemannian metric on S is induced from the ambient space Rn, and

the function f is easily shown to be locally Lipschitz with respect to the corresponding
Riemannian distance dist(x, y) = arccos〈x, y〉. Hence it is almost everywhere differ-
entiable on S. Riemannian gradients are then obtained by orthogonal projections of
Euclidean gradients on the tangent spaces. In our example,

grad f(x) = (In − xxT )QT sign(Qx),

where sign is the elementwise sign function, In is the n× n identity matrix, and x is
considered a column vector. Note that f is differentiable at x if and only if the entries
of Qx do not change their sign in a whole neighborhood of x ∈ S (which includes the
case of being constantly zero). So, if f is differentiable at x, it is actually continuously
differentiable in a whole neighborhood of x ∈ S. In other words, the dense set Ωf of
differentiable points is open and since f is also continuously differentiable on Ωf , we
may take D = Ωf .

In our implementation of Algorithm 1 we use the exponential map as a retraction,

Rx(ξ) := expx(ξ) = cos(‖ξ‖)x+ sin(‖ξ‖) ξ

‖ξ‖
,

and parallel transport as vector transport,

Tx→γ(t)(ξ) := (In + (cos(‖γ̇(0)t‖)− 1)uuT − sin(‖γ̇(0)t‖)xuT )ξ,

where γ is a geodesic on S with γ(0) = x, and u = γ̇(0)
‖γ̇(0)‖ . Note that Tx←y(ξy) =

Ty→σ(1)(ξy), where σ(t) = expy(tv) denotes the geodesic connecting y to x. It is
obtained using

v =
dist(x, y)

‖(I − xxT )(y − x)‖
(I − xxT )(y − x).

So explicitly, we have

Tx←y(ξy) = (In + (cos(‖v‖)− 1)uuT − sin(‖v‖)yuT )ξy, u =
v

‖v‖
.

This is well defined for all y 6= −x. (It holds that ι(M) = π.) We have implemented
all these operations on the sphere using the Manopt toolbox [6]. So, Assumption 4.1
is satisfied in this setup, and our convergence result applies.

The algorithm is implemented in MATLAB using IEEE double precision arith-
metic. In order to solve the convex quadratic program in line 7 of Algorithm 1, we use
the QP solver quadprog from the MATLAB optimization toolbox. The sample size
is considered to be dimM + 1. We use ε0 = 1, θε = 0.1, δ = 10−6, θδ = 0.1. We set
the backtracking reduction factor equal to 0.5 and the Armijo parameter β = 10−4.
The maximum number of iterations is set to be 5000. As Algorithm 1 is implemented
in finite precision, two changes must be made. Specifically, we do not check in line 4
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Fig. 1. Results for a ten-dimensional subspace in R100. Left: minimum function value is
f∗ = 1. Right: minimum function value is f∗ =

√
7 ≈ 2.646.

whether the sample points lie in the set D on which f is differentiable and do not
implement lines 17–21 either.

We compare Algorithm 1 (denoted as “GS”) with two other basic methods. The
ε-subdifferential algorithm from [15] (denoted as “Sub” in the plots) uses a systematic
way to add subgradients to the approximation of the ε-subdifferential. The method
proposed in [31] for solving (5.1) (denoted as “ADM”) is an alternating optimization
method, in which one iteration consists in applying a soft thresholding operator to
Qx with a fixed shift λ to obtain y = max(Qx − λ1, 0) with fewer nonzero entries
(here 1 is the vector containing all ones) and then projecting back to the sphere by
setting x = QT y/‖QT y‖. A modification suggested in [30] is to choose the shift λ
adaptively according to the number nnz of nonzero entries that remained after the
previous application of soft thresholding. (We used λ = 0.1/

√
nnz.) Furthermore,

soft thresholding is replaced by hard thresholding once the number nnz remained
unchanged sufficiently often (for 60 iterations in our experiments). This method is
denoted as “ADMmod.” Finally, we also plot the result for the simple Riemannian
steepest method (denoted as “SD”), which is possible since with probability one f is
differentiable at all iterates.

In Figure 1 we see the outcome of two experiments in terms of produced function
values. In both cases m = 100 and n = 10. In the first example, the subspace
W is the linear hull of the unit vector e1 = (1, 0, . . . , 0) and nine random vectors.
Hence the minimum function value of f is one, and with probability one it is only
attained at ±e1. All methods recover ±e1; the error curves are omitted since they
look similar. In the second example, W is generated in the same way but using
e = (1, 1, 1, 1, 1, 1, 1, 0 . . . , 0) instead of e1. The minimum value for f on the sphere is
likely to equal

√
7. All methods used the same randomly generated initial guess.

The GS, Sub, and ADMmod methods are successful in both scenarios. As can
be seen in the right plot, the unmodified ADM method is typically unable to recover
vectors with more than one nonzero entry (see [30] for an explanation), whereas
ADMmod succeeds by switching to hard thresholding after a phase of stagnation.
The SD method stagnated here as well. This behavior of SD was not observed very
often, but we included this plot to emphasize that it can happen, whereas GS and
Sub always succeeded.

We note that while all five methods have been put in a single plot for convenience,
the comparison by iteration number is not necessarily meaningful since the methods
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are quite different. Timings of the algorithms are not given since no emphasis was
put on efficient implementation. However, we can comment that the ADM methods
were by far the fastest, which is clear since they involve no gradients and no line
searches. Among the Riemannian methods, GS was, as expected, the slowest, since
it computes the minimum in a convex hull of 1+(n+1) Riemannian gradients, whereas
SD uses only one gradient, and Sub typically one to three, without being offset too
much by the additional cost of the more systematic sampling procedure. On the other
hand, there is no convergence result for SD available (in fact, simple counter-examples
to convergence exist already for linear spaces [26]), and the one for Sub is weaker,
as explained in the introduction. In conclusion, the Riemannian GS algorithm is a
conceptually simple generalization of the GS algorithm to Riemannian manifolds with
a strong theoretical backup, but at the price of higher computational cost.

Acknowledgments. We thank Michael Overton and an anonymous referee for
their helpful comments.
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