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Abstract. In this chapter we are concerned with variational methods in image
analysis. Special attention is paid on free discontinuity approaches of Mumford
Shah type and their application in segmentation, matching and motion analysis.
We study combined approaches, where one simultaneously relaxes a functional
with respect to multiple unknowns. Examples are the simultaneously extraction
of edges in two different images for joint image segmentation and image reg-
istration or the joint estimation of motion, moving object, and object intensity
map. In these approaches the identification of one of the unknowns improves
the capability to extract the other as well. Hence, combined methods turn out
to be very powerful approaches. Indeed, fundamental tasks in image process-
ing are highly interdependent: Registration of image morphology significantly
benefits from previous denoising and structure segmentation. On the other hand,
combined information of different image modalities makes shape segmentation
significantly more robust. Furthermore, robustness in motion extraction of shapes
can be significantly enhanced via a coupling with the detection of edge surfaces
in space time and a corresponding feature sensitive space time smoothing.

Furthermore, one of the key tools throughout most of the methods to be pre-
sented is nonlinear elasticity based on hyperelastic and polyconvex energy func-
tional. Based on first principles from continuum mechanics this allows a flexible
description of shape correspondences and in many cased enables to establish ex-
istence results and one-to-one mapping properties.
Numerical experiments underline the robustness of the presented methods and
show applications on medical images and biological experimental data.
This chapter is based on a couple of recent articles [8,49,29,30,63] published
by the author together with Leah Bar, Benjamin Berkels, Marc Droske, Nathan
Litke, Guillermo Sapiro, and Benedikt Wirth.
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1 Some prerequisites

In this section, we will introduce basic notion used throughout the chapter and con-
sider the general methodology for finite element type discretization of variational free
discontinuity problems.

1.1 Image Morphology

We are going to review different notions of image morphology and develop here a new
one that is in particular appropriate for the use in variational approaches where images
or shapes are linked to each other by nonlinear deformations.
In mathematical terms, two images u, v : Ω → R with Ω ⊂ Rd for d = 2, 3 are called
morphologically equivalent, if they only differ by a change of contrast, i. e., if u(x) =
(β ◦v)(x) for all x ∈ Ω and for some function β : R→ R [1,64]. Here, one usually
restricts to contrast changes β : R→ R, which are strictly monotone and continuous
functions. Obviously, such a contrast modulation does not change the order and the
shape of level sets. Due to the enforced monotonicity, the same holds for the super level
sets l+c [u] = {x : u(x)≥ c} . Thus, a usual description of the morphology M[u] of an
image u is given by the upper topographic map, defined as the set of all these sets

M[u] :=
{

l+c [u] : c ∈ R
}

.

Unfortunately, this set based definition is not feasible for the variational approach we
intend to discuss. Furthermore, the restriction to monotone contrast changes conflicts
with medical applications and medical morphology. In what follows, we derive an al-
ternative notion based on a regular and a singular morphology. It can directly be used
in variational approaches and allows us to get rid of the monotonicity assumption if
appropriate. Let us suppose the image function u : Ω →R on an image domain Ω ⊂Rd

to be in SBV [4]. Hence, we consider functions u ∈ L1(Ω) of which the derivative Du
is a vector-valued Radon measure with vanishing Cantor part. In fact, at edges we al-
low for jumps and thus infinitely steep gradients concentrated on a sufficiently regular,
lower dimensional set, but not for jumps on sets of fractal dimensions. We consider
the usual splitting Du = Dacu +Dsu [4], where Dacu is the regular part, which is the
usual image gradient apart from edges and absolutely continuous with respect to the
Lebesgue measure L on Ω ⊂ Rd , and a singular part Dsu, which represents the jump
and is defined on the edge set S , which consists of the edges of an image. We denote
by ns the vector valued measure representing the normal field on S , such that the rep-
resentation Dsu = (u+− u−)ns holds for the singular part of the derivative. Here u+

and u− are the upper and the lower (approximate limsup and liminf [4]) values at the
edge S , respectively. This normal field is defined Hd−1 a.e. on S . Obviously, ns is a
morphological invariant as long as we consider continuous strictly monotone contrast
modulating functions β .

Now, we focus on the regular part of the derivative. First, we adopt the classical
gradient notion ∇acu for the L density ofDacu, i. e.,Dacu = ∇acuL [4]. As long as it is
defined, the normalized gradient ∇acu(x)

|∇acu(x)| is the outer normal on the upper topographic
set l+u(x)[u] and thus again a morphological quantity. It is undefined on the flat image



region F [u] := {x ∈Ω : ∇acu(x) = 0} . We introduce nac as the normalized regular part
of the gradient

nac = χ
Ω\F [u]

∇acu
|∇acu|

with support Ω \F and denote it the Gauss map of the image u. With the regular nor-
mal nac and the singular normal measure ns at hand, we are now able to redefine the
morphologyM[u] of an image u as a vector valued Radon measure on Ω with

M[u] = nacL+ns , (1)

which is up to the flat set F [u] of unit length. We call nacL the regular morphology
and ns the singular morphology. It turns out that this new notion is equivalent to the
above definition on sufficiently regular image functions. It completely describes the
topographical shape information of the image u. If we skip the orientation of the vectors
nac and ns in (1) and replace them by the corresponding line subspaces we are able to
treat general, not only monotone, contrast changes. This is actually reflected by our
algorithm.

1.2 The Mumford–Shah model in image analysis

At first, let us consider a fundamental image segmentation model, which will later pick
up and combine with other techniques and integrate in joint variational approaches.
In their pioneering paper, Mumford and Shah [56] proposed the minimization of the
following energy functional:

EMS[u,Su] =
∫
Ω

(u−u0)2 dL+ µ

∫
Ω\Su

|∇u|2 dL+ηHd−1(Su) , (2)

where u0 is the initial image defined on an image domain Ω ⊂Rd and µ,η are positive
weights. Here, one asks for a piecewise smooth representation u of u0 and a singularity
set Su consisting of the image edges, such that u approximates u0 in a least–squares
sense. The intensity function u ought to be smooth apart from the free discontinuity Su
and in addition Su should be small with respect to the d− 1-dimensional Hausdorff-
measure [4]. Here, we will make use of this approach to regularize images in a suitable
way prior to the matching and simultaneously to split image morphology into a regular
part related to contour sets of the piecewise smooth portions of an image and a sin-
gular part consisting of the edge set. Even though the Mumford-Shah approach itself
is not morphological (e.g. intensity scaling may lead to an identification of previously
overlooked edges) prominent edges are expected to be uniformly identified basically in-
dependent of the image contrast. Mathematically, this Mumford-Shah problem has been
treated in the space of functions of bounded variations BV , more precisely in the spe-
cific subset SBV [4]. A related, alternative decomposition has been proposed by Rudin,
Osher and Fatemi [61]. They suggested to minimize |u|BV +λ |u−u0|2L2 in BV .

The explicit treatment of the edge set S is neither theoretically nor with respect to a
numerical approximation very handsome. Hence let us review briefly the approximation



of the Mumford-Shah functional (2), proposed by Ambrosio and Tortorelli [3]. They
describe the edge set Su by a phase field function v, which is supposed to be small on
Su and close to 1 elsewhere. Phase field models are widespread in physics, where they
represent a material order parameter and thus describe interfaces in solids or fluids. In
fact, one asks for minimizers of the energy functional

E ε
AT [u,v] =

∫
Ω

(u−u0)2 + µ(v2 + kε)|∇u|2 +η ε |∇v|2 +
η

4ε
(1− v)2 dL , (3)

where ε is a scaling parameter and kε = o(ε) a small positive regularizing parameter.
For larger ε one obtains coarse, blurred representations of the edge sets and correspond-
ing smoother images u. For decreasing ε the representation of the edges is successively
refined and more and more image details are included. We will make use of this inherent
multi scale in cascadic minimization algorithms.

1.3 Finite Element approximation in imaging

To prepare the later discussion of discrete algorithms for a variety of different vari-
ational models, we will present in this section the discrete representation of images
in finite element spaces and two different types of finite element discretizations for the
classical Mumford and Shah segmentation model already reviewed above. Furthermore,
we will introduce some useful multi scale treatment of image data.
We consider images as piecewise multilinear (bilinear in the case of 2D applications)
finite element functions on a regular image domain. We denote the corresponding finite
element space Vh, where h represents the underlying grid size. For some applications
it is more convenient to further subdivide the cells into simplicies via a splitting of
rectangles into 2 triangles and hexahedrons into 6 tetrahedrons. This straightforward
subdivision set does not modify the underlying degrees of freedom. In fact, it only in-
fluences the numerical quadrature for the finite element assembly. Each pixel or voxel
value corresponds to a node of the regular mesh and a set of nodal values uniquely
identifies a finite element function in Vh. We apply these finite element space not only
for the representation of discrete images but also for the discretization of all other un-
known appearing in the models, such as phase fields v or the components of vector
valued quantities such as elastic deformations φ . Throughout this chapter continuous
quantities are always denoted by lower case letters, whereas upper case letters are used
for discrete functions. The corresponding nodal finite element vectors are marked with
a bar on top, e.g. U is considered to be the discrete counterpart of an image function u
and Ū denotes the corresponding nodal vector. Linear systems of equations, which arise
from quadratic functionals are usually solved based on a preconditioned conjugate gra-
dient method [41]. In the assembly of these linear systems we apply on each grid cell
higher order Gaussian quadrature rule if the local integrant is not polynomial.
For the ease of implementation we suppose dyadic resolutions of the images with 2L +1
pixels or voxels in each direction. Thus, we are able to build a hierarchy on grids with
2l +1 nodes in each direction for l = L, · · · ,0. We restrict every finite element function
via a straightforward nodal value evaluation to any of these coarse grid spaces. The
construction of the multigrid hierarchy allows to solve coarse scale problems in our



multi scale approach on coarse grids. Indeed, scale k is resolved on the corresponding
l(k)th grid level (e.g. with l(k) = k). First of all, we apply this throughout all varia-
tional models to be discussed here in cascadic type energy minimization approaches.
For this purpose, we start minimizing the underlying nonlinear functionals on a coarse
scale and then successively refine the grid, prolongate the solution onto the next finer
grid and take this as initial data for the further relaxation of the corresponding dis-
crete functional. Furthermore, the grid hierarchy is used in regularized gradient descent
schemes. The regularization is based on a smoothing metric in the definition of the gra-
dient. Effectively, we consider an H1-type metric where the smoothing is performed
via multigrid V cycles corresponding to a standard finite element implementation of the
differential operator 1− σ2

2 ∆ . For details we refer to [21,29].
At various places, we have to evaluate discrete functions U at pushed forward or pulled
back positions under a discrete deformation Φ . In both cases, we replace the exact
evaluation of these functions by a simple and effective interpolation. Indeed, we re-
place U ◦Φ by I(U ◦Φ), where I is the classical Lagrangian interpolation on the grid
nodes. Thus, each grid node is mapped under the deformation Φ onto the image do-
main, U is evaluated at these positions, and these values define our new finite element
function. Analogously, U ◦Φ−1 is replaced by I(U ◦ (I ◦Φ)−1). Here, we proceed as
follows. We map each grid cell under the deformation onto the image domain. Next we
identify all grid nodes, which are located on this deformed cell. These grid nodes are
then mapped back under the inverse local deformation. Now, interpolation is applied
to retrieve requested values of the finite element function U . Inversion of multilinear
deformation would lead to nonlinear equations. To avoid this shortcoming, we cut each
cell as mentioned above virtually into simplices. On these simplices, affine functions
approximate in a straightforward way the multilinear functions. Thus, we replace the
regular cells in the retrieval algorithm by the simplices and end up with piecewise affine
inverse mappings.
In the next two paragraphs we will describe two significantly different approaches to
discrete the Mumford Shah functional. The first is based on a direct implementation of
the approach and uses a level set description of the edge set, whereas the other imple-
ments the Ambrosio Tortorelli approximation in a straightforward way.

Composite finite elements for level set described edge contours In what follows,
we will investigate an energy descent method directly for the Mumford Shah func-
tional. The Mumford Shah functional can be regarded as a shape optimization prob-
lem. For given edge contour S , the image intensity u = u[S ] solves a quadratic varia-
tional problem. Thus, we rewrite the Mumford Shah functional as a shape functional
Ê [S ] := EMS[u[S ],S ] depending solely on the edge contour S . Hence, the shape gra-
dient of the functional with respect to variations in S incorporates quantities based on
u[S ]. Here, we make use of the nowadays already classical shape sensitivity calculus.
For details we refer to the books of SOKOŁOWSKI & ZOLÉSIO [66] or DELFOUR &
ZOLÉSIO [27]. Furthermore, the Appendix of [42] gives a nice overview. Smooth varia-
tions of the edge contour S can be expressed via normal variations x+ tϑ n[S ] of points
x on S in normal direction for small t ∈ R and a function θ on S . Here, n[S ] denotes
the normal on S , which coincides with the density of ns introduced in Section 1.1. Let



us denote by S(t) the resulting family of edge contours. The shape derivative of Ê [S ] is
then defined as

∂S Ê [S ](ϑ) =
d
dt
E [S(t)]|t=0 .

For a given smooth function g : Ω →R, the derivative of functional
∫
S gdHd−1 is given

by
∫
S(∂n[S ]g + gh)ϑ dHd−1, where h is the mean curvature in S . Given a function f :

Ω →R which might jump on S , the shape derivative of the functional
∫

Ω
f dL is given

by
∫
SJ f Kϑ dHd−1 , where J f K = limε→0( f (x+εn[S ])− f (x−εn[S ])) denotes the jump

of f on S . With these tools available, we obtain for the shape derivative of the Mumford
Shah shape functional

∂S Ê [S ](ϑ) =
∫
S

(
η h+ J

∣∣u[S ]−u0∣∣2 + µ|∇u[S ]|2K
)

ϑ dHd−1 . (4)

Furthermore, the minimizer u = u[S ] of the Mumford Shah functional for fixed S solves
the corresponding Euler Lagrange equations, which is given by the linear elliptic PDE
µ∆u+(u−u0) = 0 on Ω \S and the boundary conditions ∂n[S ]u+ = 0 and ∂n[S ]u− = 0
where u± indicate the possibly discontinuous function on both sides of S separately.
Now, let us briefly describe how to discretize this shape derivative in a proper way. We
suppose that the edge contour can be described as the zero set [ξ = 0] of a level set
function ξ . Hence, S is in particular assumed to be closed relative in Ω . Let us denote
by Ξ ∈ Vh a finite element approximation of this interface. Here, we restrict to sim-
plicial finite elements on the above already introduced subdivision of rectangular grids
into triangulations. The now discrete shape S = [Ξ = 0] separates the domain into two
polygonal regions Ω+[Ξ ] = [Ξ > 0] and Ω+[Ξ ] = [Ξ < 0]. For fixed Ξ we introduce
two new finite element space Vh

+[Ξ ] and Vh
−[Ξ ] adapted to the two domains Ω+[Ξ ]

and Ω−[Ξ ]. In fact, for every finite element basis function Θ i whose support intersects
Ω±[Ξ ], we define the composite finite element basis function Θ

±
i = χ

Ω±[Ξ ]Θi [40,39].

The span of all these basis function form the composite finite element spaces Vh
+[Ξ ]

and Vh
−[Ξ ], respectively. Now, we consider discrete finite element counterparts U+ and

U− of u[S ] on Ω+[Ξ ] and on Ω−[Ξ ], separately. Indeed, define U± ∈ Vh
+[Ξ ] as the

solution of

0 =
∫

Ω±[Ξ ]
µ∇U± ·∇Θ +(U±+I±h u0)Θ dL

for all functions Θ ∈ Vh
±[Ξ ], where I±h denotes a piecewise constant interpolation based

on simplicial mid point evaluation. In matrix vector notation, we obtain a system of
linear equations for each nodal vectors Ū± of the finite element functions U± =U±[Ξ ]:(

µL±[Ξ ]+M±[Ξ ]
)

Ū± = M±[Ξ ]I±h u0

The coefficients in the matrix and of the right hand side depend on the shape S [Ξ ] de-
scribed by the current level set function Ξ , i. e. L±[Ξ ] =

(∫
Ω±[Ξ ] ∇Θ j ·∇Θi dL

)
i j

and

M[Ξ ] =
(∫

Ω±[Ξ ]Θ jΘi dL
)

i j
are the composite finite element stiffness and mass matrix,



respectively. Here, the indices i and j are running over all active indices in Vh
±.

The shape variation ∂S Ê [S ] has a singular density concentrated on the edge set. Thus,
we consider a shape gradient gradSE [S ] based on a regularizing metric. Let us re-
call that a gradient always depends on an underlying metric and is defined as the rep-
resentation of the variation in this metric. In our case we use the H1 scalar product
(v,w)σ =

∫
Ω

σ2

2 ∇u ·∇v+uvdL for some constant σ > 0 and define

(gradS Ê [S ],θ)σ = ∂S Ê [S ](θ)

for all smooth test functions θ on Ω . The discrete counter part gradS [Ξ ]E [S [Ξ ]] is the
finite element function in Vh such that

(gradSE [S [Ξ ]],Θ)σ = ∂SE [S [Ξ ]](Θ) (5)

=
∫
S [Ξ ]

(
η H + J|U [S [Ξ ]]−u0|2 + µ|∇U [S [Ξ ]]|2K

)
Θ dHd−1

for all test functions Θ ∈ Vh and a suitable discrete mean curvature H on S [Ξ ]. Each
evaluation of gradSE [S [Ξ ]] requires the solution of linear system of equations. The re-
sulting regularized discrete gradient can now be used in a standard level set approach.
Indeed, the level set equation ∂tξ + |∇ξ |v = 0 identifies normal variations v of level sets
[ξ = c] with variations s = ∂tξ of the level set function. Hence,−|∇ξ |−1gradS [ξ ]E [S [ξ ]]
is the corresponding descent direction of the functional ξ → E [S [ξ ]] in the spatially still
continuous case. The discretization based on standard finite elements is straightforward
and thus omitted here.
Finally, we have all ingredients at hand to derive an algorithm for the minimization
of the discrete Mumford Shah functional. In each step of the algorithm we first com-
pute for a given discrete level set function Ξ the discrete image intensities U+[Ξ ] and
U−[Ξ ]. Then, we can evaluate the right hand side in (5) and thus compute the discrete
shape gradient gradSE [S [Ξ ]]∈V h. From this, we deduce the discrete descent direction
of the level set shape functional. Finally, a step sized controlled 1D descent strategy is
applied. For details on this approach and a comparison to alternative approaches in the
context of image segmentation and registration we refer to [28,31].

Finite elements for the phase field model Now, let us present an algorithmic alterna-
tive to the previously described discrete sharp interface model. We pick up the phase
field approach (3) by Ambrosio and Tortorelli [3] and rephrase it for discrete image
intensities and phase fields in the standard finite element space Vh. Hence, we ask for
discrete minimizers of the energy

Eε [U,V ] =
∫

Ω

{
(U−Ihu0)2 + µ(V 2 + kε)|∇U |2

}
+η

(
ε|∇V |2 +

(1−V )2

4ε

)
dL

over all U, V ∈ Vh. Here, Ih denotes the piecewise linear Lagrangian interpolation. The
corresponding Euler Lagrange equations are

0 =
∫

Ω

(U−Ihu0)Θ + µ(V 2 + kε)∇U ·∇Θ dL , (6)

0 =
∫

Ω

µV Ξ |∇U |2 +η

∫
Ω

(
ε∇V ·∇Ξ +

(V −1)
4ε

Ξ

)
dL (7)



for all Θ , Ξ ∈ Vh. The underlying mesh is supposed to consist of simplices. Hence,
the different terms in the integrant are at most quadratic and can be integrated exactly
using appropriate quadrature rules. The equation (6) is linear in U and the equation
(7) is linear in V . In matrix vector notation, we obtain two systems of linear equations
for the nodal vectors Ū and V̄ which represent the finite element functions U and V ,
respectively: (

µL[V 2 + kε ]+M[1]
)

Ū = M[1]Ihu0(
ηεL[1]+M[µ|∇U |2 +

η

4ε
]
)

V̄ =
η

4ε
M[1]1

The coefficients in the matrix and of the right hand side depend on the corresponding
other discrete variable. Here L[ω] = (

∫
Ω

ω∇Θ j ·∇Θi dL)i j and M[ω] = (
∫

Ω
ωΘ jΘi dL)i j

are the weighted stiffness and mass matrix, respectively. The weight is denoted by ω

and Θi are the hat basis functions indexed by the nodal index i, Ihu0 is the nodal vec-
tor corresponding to Ihu0, and 1̄ is the vector with components all equal to 1. In [10]
Bourdin has shown the Γ -convergence of the discretized functionals to the correspond-
ing continuous one. The actual algorithm now consists of an alternating minimization,
which is given in pseudo code notion by the following code fragment:

DiscreteAT {
k = 0; initialize Ū0 = Ihu0 and V 0 ≡ 1;
do {

Solve
(
µL[(V k)2 + kε ]+M[1]

)
Ūk+1 = M[1]Ihu0 for Ūk+1;

Solve
(
ηεL[1]+ µM[|∇Uk+1|2 + η

ε
]
)

V̄ k+1 = η

4ε
M[1]1 for Ūk+1;

k=k+1;
} while(|Ūk−Ūk−1|+ |V̄ k−V̄ k−1| ≥ Threshold)
}

Later, we will pick up this alternating minimization strategy in combination with a
gradient descent scheme for additional quantities, primarily deformations, in joint seg-
mentation and matching approaches.

1.4 Nonlinear elastic deformations

The correlation or matching of images or shapes requires a mathematical description
in terms of a deformation which registers image or shape structures. These matching
problems are known usually to be ill posed problems. Hence, in a variational setting a
suitable regularization energy has to be considered. Here, we propose to use hyperelas-
tic energy functionals Eelast [φ ] on deformations φ . In what follows we will motivate this
type of regularization energy both from a physical and from a mathematical perspective.

A physical argument in favor of the hyperelastic model The regularization energy on
deformations is based on classical concepts from continuum mechanics and in particular
from the theory of elasticity. We give an exposition of the concept in three dimensions,
the two dimensional case follows by analogy. For details we refer to the comprehensive



introductions in the books by Ciarlet or Marsden and Hughes [19,50]. Let Ω be an
isotropic elastic body. We suppose ψ = 1 to represent the stress free deformation. Let
us consider the deformation of length, area and volume under a deformation φ . Here
we denote by Hk the k–dimensional Hausdorff measure, i.e. Hd = L. We observe that
the length of a curve γ : [0,1]→Ω undergoing the deformation φ is transformed via

H1(φ(γ)) =
1∫

0

∣∣∣∣Dφ ◦ γ

dt

∣∣∣∣ dH1 =
1∫

0

√
Dφ TDφ γ̇ · γ̇ dH1 .

Hence, Dφ TDφ controls the change of length under the deformation, and in case of
isotropic elasticity we confine with the norm |Dφ |2 as the term controlling the change
of length, where |A|2 := tr(AT A) = ∑i, j Ai, jAi, j for A∈Rd,d . Secondly, the local volume
transformation under a deformation φ is obviously controlled by detDφ , i.e.

Hd(φ(V )) =
∫
V

|detDφ(x)| dL

for a volume V ⊂ Ω . If detDφ < 0, self penetration may be observed. Finally, let us
consider the transformation of area elements. Let S be a hypersurface patch with normal
n and TxS the tangent space of S at a point x on S . Suppose nφ is the deformed normal
on Txφ [S ] at position φ(x). Hence, from nφ ·Dφ v = 0 for all v ∈ Txφ [S ] we derive

nφ =
cofDφ n
|cofDφ n|

where cofA = detAA−T for A ∈ Rd,d . Thus the deformed area element is given by
detDφ

nφ ·Dφ n and we obtain

Hd−1(φ [S ]) =
∫

ϕ[S ]

dHd−1 =
∫
S

|detDφ |
|nφ ·Dφ n|

dHd−1

=
∫
S

|detDφ |
∣∣Dφ−T n

∣∣
|Dφ−T n ·Dφ n|

dHd−1 =
∫
S

∣∣detDφDφ
−T n

∣∣ dHd−1

=
∫
S

|cofDφ n| dHd−1.

In analogy to the case of length control, |cofDφ |2 = tr(cofDφ T cofDφ) is the proper
measure for the change of area in an isotropic elastic body.

Based on these considerations we can define a simple physically reasonable isotropic
elastic energy for d = 3, which separately cares about length, area and volume defor-
mation and especially penalizes volume shrinkage:

Eelast [φ ] :=
∫
Ω

W (|Dφ |2, |cofDφ |2,detDφ)dL (8)



where W : R×R×R→ R is supposed to be convex. In particular, we will consider

W (I1, I2, I3) =:= α1|Dφ |
p
2 +α2|cofDφ |

q
2 +α3Γ (detDφ)dL (9)

with Γ (D) = Dr + s
r D−s, r,s > 0 and α1,α2,α3 > 0. In nonlinear elasticity such ma-

terials laws have been proposed by Ogden [57], and for p = q = 2 we obtain the
Mooney-Rivlin model [19]. More general, we can consider a so called polyconvex en-
ergy functional [25]. Hence, W and thereby Eelast [φ ] penalize volume shrinkage, i.e.

W (I1, I2, I3)
I3→0−→ ∞ as reflected by the property of Γ above. The arguments of W are in

fact the principle invariants of the matrix Jacobian of the deformation φ . It is worth to
underline, that under these assumptions the function Ŵ : Rd,d → R with

Ŵ (A) := W (|A|2, |cofA|2,detA)

is not convex [19]. Physically,

σ [φ ] = (σi j[φ ])i, j=1,··· ,d :=
(
DAi jŴ (Dφ)

)
i, j=1,··· ,d

plays the role of the elastic Piola–Kirchhoff stress tensor. The built-in penalization of

volume shrinkage, i. e. W̄ (I1, I2, I3)
I3→0−→ ∞, enables us to control local injectivity (cf. [5]

and the next paragraph). Furthermore, a deformation which is locally isometric, i. e.
∇φ T

i (x)∇φi(x) = 1, is a local minimizer of the energy.
The physical advantages of the nonlinear elastic model are the following:

- It allows to incorporate large deformations with strong material and geometric non-
linearities, which cannot be treated by a linear approach.

- The dependency of the energy density Ŵ follows from first principle and measures
the physical effects of length, area, and volume distortion, which reflect the local
distance from an isometry.

- Finally, it balances in an intrinsic way expansion and collapse of the elastic objects
and hence frees us to impose artificial conditions on the expected image shape.

A mathematical argument in favor of the hyperelastic model The matching of 2D
and 3D images - also known as image registration - is one of the fundamental tasks
in image processing. Here, as we will see below, even for one of simplest possible
matching energies standard regularization techniques fail, and the problem turns out
not to be wellposed. With the help of a hyperelastic and polyconvex regularization we
will be able to establish existence results.
One aims to correlate two images - a reference image uR and a template image uT -
via an energy relaxation over a set of in general non rigid spatial deformations. Let us
denote the reference image by uR : Ω →R and the template image by uT : Ω →R. Both
images are supposed to be defined on a bounded domain Ω ∈Rd for d = 1,2, or 3 with
Lipschitz boundary. We ask for a deformation φ : Ω →Ω such that uT ◦φ is optimally
correlated to uR. In case of matching the intensities we search for φ such that uT ◦φ ≈ uR

reflected by the basic matching energy

Em[φ ] :=
∫
Ω

|uT ◦φ −uR|2 dL.



As boundary condition we require φ = 1 on ∂Ω . Here, 1 indicates the identity mapping
on Ω and simultaneously the identity matrix. This corresponding minimization problem
is known to be ill posed [12,67]. Thus, we ask for a suitable regularization. Different
regularization approaches have been considered in the literature [18,16,26]. Usually,
the results presented so far rely on the assumption that the images are smooth. To our
knowledge, there are no analytic results for images with sharp edges as they frequently
appear in the applications. We are going to address this problem here. As a simple
regularization energy the Dirichlet energy

Ereg[φ ] :=
1
2

∫
Ω

|Dφ |2 dL

of the deformation φ for α > 0 is near at hand. We are aiming to apply the direct
method from the calculus of variations [25] to prove existence of a minimizing de-
formation for the energy E := Em + Ereg. Caratheodory’s condition is known to be the
essential assumption to ensure existence of minimizers for such functionals. This es-
pecially requires the continuity of the energy integrand with respect to the argument φ

and therefore in our case uT ∈C0(Ω). Real images frequently contain edges where the
image intensity jumps, and hence such images are not continuous and the Caratheodory
condition is not fulfilled. Indeed, a more appropriate function space for images would
be a space which allows images to have edge discontinuities (cf. the Mumford and
Shaw approach to image processing [56,53]). Here, we consider the space of bounded
functions I being continuous up to a singular set SI . We suppose that for the Lebesque
measure L(·)

L(Bε(SI))
ε→0−→ 0

holds. Let us introduce a corresponding function space

I0(Ω) :=
{

u : Ω → R
∣∣∣ u ∈ L∞,∃Su ⊂Ω s. t. u ∈C0(Ω \Su), L(Bε(Su))

ε→0−→ 0
}

.

To exemplify the difficulties of the above stated basic matching problem we will study
the following illustrative 1D problem in detail:

Example 11 Let us consider images

uδ
T = signδ (x) :=


−1 ; x <−δ

x
δ

; x ∈ [−δ ,δ ]
1 ; x > δ

for some fixed δ ≥ 0 and uR ≡ 0 on Ω = (−1,1) for d = 1. Obviously, the energy
infimum zero can only be attained if φ = 0 a. e., and therefore Em has no minimizer
φ which is C0 and fulfills the boundary conditions. Indeed, a minimizing sequence
{φk}k=0,1,··· ⊂ C0 can be selected such that Em[φk]→ 0. But the convergence φk → 0
is not uniform. If we now consider regularized images uδ

T with δ > 0, we observe that
the Euler Lagrange equation for a solutions φα,δ of the minimizing problem

Em[φ ]+αEreg[φ ]→min



leads to φα,δ
′′= 0 for

∣∣φα,δ

∣∣> δ and φα,δ
′′= 2

αδ 2 φα,δ for
∣∣φα,δ

∣∣< δ . Hence, φα,δ (x) =

γα,δ sinh(
√

2x√
αδ

) on [−yα,δ ,yα,δ ] for some constant γα,δ and φα,δ (x) = sign(x)(δ +
1−δ

1−yα,δ
(|x| − yα,δ )) elsewhere. Here, yα,δ is the pre-image of δ , i. e. φα,δ (yα,δ ) = δ ,

and finally we have in addition φα,δ
′(yα,δ + 0) = φα,δ

′(yα,δ − 0). One easily verifies
that these conditions uniquely define yα,δ as the root of

q(y,α,δ ) =
1−δ

1− y
−
√

2√
α

cotanh

( √
2y√
αδ

)
on (0,1). Indeed, because limy→0+0 q(y,α,δ ) =−∞ and limy→1−0 q(y,α,δ ) = ∞, there
is a root for any α > 0 and any δ ∈ (0,1), and from the uniqueness of the solution of
the Euler Lagrange equation we deduce that this root is unique. To explore the solution
behavior for different values of α and δ let us derive upper and lower bounds for yα,δ .
We estimate

Ē := E [1]≥ E [φα,δ ]≥ αEreg[φα,δ ]

=
α

2

1∫
−1

∣∣φα,δ
′∣∣2 =−α

2

1∫
−1

φα,δ
′′
φα,δ +

α

2
[φα,δ

′
φα,δ ]1−1 ≥ α

1−δ

1− yα,δ
−2

and claim yα,δ ≤ 1−α
1−δ

Ē+2
. Furthermore, the total energy of the function

ψ =

{
0 ; |x| ≤ 1−

√
α

2

sign(x)(1−
√

2
α
(1−|x|)) ; else

turns out to be bounded from above by 2
√

2α , and the matching energy Em[φα,δ ] is
bounded from below by 2(1−yα,δ ). Thus yα,δ ≥ 1−

√
2α . As a consequence we observe

that on [−1+
√

2α,1−
√

2α], the family of minimizers φα,δ → 0 uniformly for δ → 0.
This clearly outlines a disadvantage of the regularization via a Dirichlet integral: If we
approximate u0

T by the continuous images uδ
T , the Lebesque measure of the pre-image of

a neighborhood of the template singularity set Su0
T

can not be uniformly controlled for
the corresponding minimizing deformation.

The Example 11 underlines that in case of a Dirichlet regularization energy it seems
to be impossible to control the measure of the pre-image of arbitrarily small edge neigh-
borhoods of the image uT . Hence, it can not be ruled out that small regions containing
the singularities of the image uT are referred by large regions with respect to their pre-
image under the mapping φ . Beyond this, one can not rule out selfintersection on the
image domain. We ask for a new regularization energy which in particular allows to
control volume shrinkage and simultaneously ensures continuity and injectivity for the
minimizing deformation. The nonlinear polyconvex elastic energies of the above type
fulfill these requirements. The existence proof for minimizers of nonlinear elastic en-
ergies via the calculus of variations and direct methods dates back to the work of J.
Ball [6]. Especially the incorporated control of the volume transformation in this the-
ory turns out to be the key to prove existence of minimizing, continuous, and injective



deformations for the image matching problem discussed here. Let us denote by Lp for
p∈ [1,∞] the usual Lebesque spaces of functions on Ω into R, Rd and ud,d

R respectively,
by |·|p the corresponding norm, and by H1,p the Hilbert space of functions in Lp with
weak first derivatives also in Lp. For the ease of presentation, we do not exploit the full
generality of the corresponding existence theory. Here the reader is for instance referred
to [6,7,68,36,20]. We confine to a basic model and state the following theorem:

Theorem 12 (Existence of minimizing deformations) Suppose d = 3,

uT ,uR ∈ I0(Ω) ,

and consider a matching energy Em[φ ] =
∫

Ω
|uT ◦φ −uR|2, a regularization energy

Eelast [φ ] =
∫
Ω

W (|Dφ |2, |cofDφ |2,detDφ)dL,

and the total energy E [φ ] = Em[φ ]+Eelast [φ ] for deformations φ in the set of admissible
deformations

A := {φ : Ω →Ω
∣∣ φ ∈ H1,p(Ω),cofDφ ∈ Lq(Ω),

detDφ ∈ Lr(Ω),detDφ > 0 a.e. in Ω ,φ = 1 on ∂Ω}

where p, q > 3 and r > 1. Furthermore, suppose W : R×R×R→ R is convex, and
there exist constants β ,s ∈ R, β > 0, and s > 2q

q−3 such that

W (I1, I2, I3)≥ β (I
p
2

1 + I
q
2

2 + Ir
3 + I−s

3 ) ∀I1, I2 ∈ R, I3 ∈ R+. (10)

Then E [φ ] attains its minimum over all deformation φ ∈A, the minimizing deformation
φ is a homeomorphism and in particular detDφ > 0 a.e. in Ω .

Proof The proof of this result is based on the observation that the volume of the pre-
image φ−1(Bε(ST )) of an ε–neighborhood of the singularity set ST of the image uT can
be controlled. At first, let us recall some well known, fundamental weak convergence
results:
Let (φ k)k be a sequence of deformations in H1,p with cofDφ k ∈ Lq and detDφ k ∈ Lr,
such that the sequence convergence weakly in the sense φ k ⇀ φ in H1,p, cofDφ k ⇀ C
in Lq and detDφ k ⇀ D in Lq, then C = cofDφ and D = detDφ (weak continuity).
For the proof of these fundamental results we refer to Ball [6] or the book of Ciarlet
[19] (Section 7.5, 7.6). The proof of the theorem proceeds in 4 steps:

Step 1. We observe 1 ∈ A, thus E := infφ∈A E [φ ] < ∞. Next we observe that E [·]
is well defined for every φ ∈A. Let us consider a minimizing sequence (φ k)k=0,1,··· in
A with E [φ k]→ infφ∈A E [φ ]. We denote by E an upper bound of the energy E on this
sequence. Due to the growth condition on W we get that{

(Dφ
k,cofDφ

k,detDφ
k)
}

k=0,1,···

is uniformly bounded in Lp×Lq×Lr. By Poincaré’s inequality applied to (φ k−1) we
obtain that

{
φ k
}

k=0,1,··· is uniformly bounded in H1,p(Ω). Because of the reflexivity



of Lp×Lq×Lr for p, q, r > 1 we can extract a weakly convergent subsequence, again
denoted by an index k, such that

(Dφ
k,cofDφ

k,detDφ
k) ⇀ (Dφ ,C,D)

in Lp×Lq×Lr with C : Ω → R3×3, D : Ω → R. Applying the above results on weak
convergence we achieve C = cofDφ and D = detDφ . In addition, by Rellich‘s embed-
ding theorem we know that φ k → φ strongly in Lp(Ω) and by Sobolev’s embedding
theorem we claim φ ∈C0(Ω̄).

Step 2. Next, we control the set where the volume shrinks by a factor of more than
ε−1 for the limit deformation. Let us define

Sε = {x ∈Ω : detDφ ≤ ε}

for ε ≤ δ0. Without loss of generality we assume that the sequence of energy values
E [φ k] is monotone decreasing and for given ε > 0 we denote by k(ε) the smallest index
such that

E [φ k]≤ E [φ k(ε)]≤ E + ε ∀k ≥ k(ε) .

From Step 1 we know that Ψ k := (Dφ k,cofDφ k,detDφ k) converges weakly to Ψ :=
(Dφ ,cofDφ ,detDφ) in L2× L2× Lr. Hence, applying Mazur‘s Lemma we obtain a
sequence of convex combination of Ψ k which converges strongly to Ψ . I.e. there exists
a family of weights ((λ k

i )k(ε)≤i≤k)k≥k(ε) with λ k
i ≥ 0, ∑

k
k(ε) λ k

i = 1, such that

λ
k
i Ψ

i→Ψ and λ
k
i φ

i→ φ .

Here and in what follows we make use of the summation convention. Now, using espe-
cially the properties of Γ , the convexity of W and Fatou’s lemma we estimate

βε
−sL(Sε)≤ β

∫
Sε

(detDφ)−s dL ≤
∫
Sε

W (Ψ)dL

=
∫
Sε

liminf
k→∞

W (λ k
i Ψ

i)dL ≤
∫
Sε

liminf
k→∞

λ
k
i W (Ψ i)dL

≤ liminf
k→∞

λ
k
i

∫
Sε

W (Ψ i)dL ≤ liminf
k→∞

λ
k
i

∫
Ω

W (Ψ i)+(uT ◦φ
i−uR)2 dL

≤ E

and claim L(Sε)≤ Ēεs

β
. As a consequence S0 is a null set and we know that detDφ > 0

a. e. on Ω . Thus, together with the results form Step 1 we deduce that the limit defor-
mation φ is in the set of admissible deformationsA. Following Ball [7] we furthermore
obtain that φ is injective. Hence, φ is a homeomorphism.

Step 3. Now, we deal with the singularity sets of the images uT ,uR. By our assump-
tion on the image space I0(Ω) we know that for given δ > 0 there exist εT , εR > 0 such



that L(BεT (ST )), L(BεR(SR)) ≤ δ . From this and the injectivity (cf. Theorem 1 (ii) in
[7]) we deduce the estimate

L
(
φ
−1(BεT (ST ))\Sε

)
≤ 1

ε

∫
φ−1(BεT (ST ))

detDφ dL =
1
ε

∫
BεT (ST )

dL ≤ δ

ε
.

Hence, we can control the pre-image of Bε(ST ) with respect to φ restricted to Ω \ Sε ,
i.e.

L(φ−1(BεT (ST )\Sε)≤
δ

ε

Step 4. Due to Egorov’s theorem and the strong convergence of φ k in Lp(Ω) there
is a set Kε with L(Kε) < ε such that φ k converges uniformly on Ω \Kε . Let us now
define the set

Rδ ,ε := φ
−1(BεT (ST ))∪BεR(SR)∪Sε ∪Kε ,

whose measure can be estimated in terms of ε and δ , i.e.

L(Rδ ,ε)≤
δ

ε
+δ +

Ēεs

β
+ ε.

On Ω \Rδ ,ε the sequence (uT ◦φ k−uR)k=0,1,··· converges uniformly to uT ◦φ−uR. From
the above control of the pre-image of BεT (ST ) we deduce the measurability of uT ◦φ−uR

(cf. equation 1.4). Obviously, the integral
∫

Ω
|uT ◦φ −uR|2 is bounded by C∞L(Ω) with

C∞ := 2(|uT |2∞ + |uR|2∞) .

We choose k(ε) large enough to ensure that

|uT ◦φ
k(x)−uR(x)|2−|uT ◦φ(x)−uR(x)|2 ≤ ε

for x ∈ Ω \Rδ ,ε and ∀k ≥ k(ε). Now we are able to estimate E [φ ] using especially the
convexity of W and Fatou’s lemma:

E [φ ]=
∫
Ω

W (Ψ)+ |uT ◦φ −uR|2 dL

≤
∫
Ω

W ( lim
k→∞

λ
k
i Ψ

i)dL+
∫

Ω\Rδ ,ε

|uT ◦φ −uR|2 dL+C∞L(Rδ ,ε)

≤
∫
Ω

liminf
k→∞

λ
k
i W (Ψ i)dL+ liminf

k→∞
λ

k
i

∫
Ω\Rδ ,ε

|uT ◦φ
i−uR|2 dL+

εL(Ω)+C∞L(Rδ ,ε)

≤ liminf
k→∞

λ
k
i

∫
Ω

W (Ψ i)+ |uT ◦φ
i−uR|2 dL+ εL(Ω)+2C∞L(Rδ ,ε)

= liminf
k→∞

λ
k
i E [φ i]+ εL(Ω)+2C∞L(Rδ ,ε)

≤ E + ε + εL(Ω)+2C∞L(Rδ ,ε).



Finally, for given ε̄ we choose ε and then δ and the dependent εT , εR small enough to
ensure that

ε + εL(Ω)+2C∞

(
ε +
Ēεs

β

)
≤ ε̄

2
, 2C∞

(
δ

ε
+δ

)
≤ ε̄

2
.

and get E [φ ] ≤ E + ε̄ . This holds true for an arbitrary choice of ε̄ . Thus we conclude
with the desired result

E [φ ]≤ E = inf
ϕ∈A
E [ϕ] .

ut
Let us remark that for the case of two dimensional image matching problems an

analogous results holds true. Hence, we skip the dependency of the regularization en-
ergy on cofDφ and occasionally weaken the growth conditions. Theorem 12 can be
regarded as a generalization of Theorem 3 in [7] with respect to forces with discon-
tinuities. Indeed, some further simple generalization of the external force term - here
encoding the derivative of the matching energy - is straightforward.

Space discretization of nonlinear elasticity In what follows we will briefly comment
on the variation and the spatial discretization of the energy Eelast [·]. For the variation we
obtain

〈δφEelast [φ ],ψ〉=
∫

Ω

W,A(Dφ) :Dψ dL

for a vector valued displacement type test functions ψ . Concerning the polyconvex
energy integrand given in (8) and (9), we obtain

W,A(A) : B = 2∂I1W̄ (|A|2 , |cofA|2 ,detA) A : B+

2∂I2W̄ (|A|2 , |cofA|2 ,detA) cofA : ∂Acof(A)(B)+

∂I3W̄ (|A|2 , |cofA|2 ,detA) ∂Adet(A)(B) ,

where

∂Adet(A)(B) = det(A)tr(A−1B) ,
∂Acof(A)(B) = det(A)tr(A−1B)A−T −detAA−T BT A−T ,

∂I1W̄ (I1, I2, I3) =
p
2

α1 (I1−d)
p−2

2 ,

∂I2W̄ (I1, I2, I3) =
q
2

α2 (I2−d)
q−2

2 ,

∂I3W̄ (I1, I2, I3) = sα3
(
Ir−1
3 − I−s−1

3
)
.

If we now consider a discrete deformation φ in the finite element space Vd , we can
evaluate the nodal vector of the L2 gradient of the energy

Eelast [Φ ] =
∫

Ω

Ŵ (DΦ)dL



by

(grad L2Eelast [Φ̄ ])i j = (M[1](
∫

Ω

Ŵ,A(DΦ) : eiΘ j dL) j)i

where M[1] is the usual mass matrix, ei the ith canonical unit vector, and Θ j one of the
basis functions of V .

2 Matching geometries and image morphologies

Now we will start the discussion of morphological image matching, where instead of a
direct comparison of image intensities we compare local image morphologies. At first
we focus on a matching of the regular morphology, followed by a discussion of a pur
[MR:
ich habe das Wort pur im Wörterbuch nicht gefunden ] of the edge sets. Finally, full
joint models will be investigated.

2.1 Matching ensembles of level sets

In this section we will construct a suitable matching energy, which measures the defect
of the morphology of the reference image uR and the deformed template image uT . Thus,
with respect to the above identification of morphologies and normal fields we ask for a
deformation φ such that

nT ◦φ | | nφ

R , (11)

where nφ

R is the transformed normal nR of the reference image uR on Tφ(x)φ([uR(x)])
and nT the normal of the template image uT ; both are evaluated at position x. We have
already seen, that the deformed normal is given by

nφ

R =
cofDφ nR

|cofDφ nR|

In a variational setting, optimality can be expressed in terms of energy minimization.
Hence, we consider a matching energy

EGM[φ ] :=
∫
Ω

g(nT ◦φ ,nR,cofDφ)dL

for some function g : Sd−1×Sd−1×Rd,d→R+; (u,v,A) 7→ g(u,v,A). Here Sd−1 denotes
the unit sphere in Rd . As boundary condition we require φ = 1 on ∂Ω . To be not too
restrictive with respect to the space of images we have to take into account the problem
of degenerate Gauss maps. Hence, let us recall the set F [u] := {x ∈Ω : ∇u = 0} for u =
uT or u = uR, where no image normal can be defined. At first, we resolve this problem
of undefined normals at least formally by introducing a 0-homogeneous extension g0 :
Rd×Rd×Rd,d → R+ of g in the first and second argument:

g0(v,w,A) =
{

0 ; v = 0 or w = 0
g( v
|v| ,

w
|w| ,A) ; else . (12)



Based on g0 we can redefine the matching energy EGM and obtain

EGM[φ ] :=
∫
Ω

g0(∇uT ◦φ ,∇uR,cofDφ)dL. (13)

In the later analysis we have to take special care of the singularity of g0 for vanishing
first or second argument. Indeed, we will assume that the measure of F [uT ] and F [uR]
is in a suitable sense sufficiently small. Furthermore, in the existence theory we will
explicitly control the impact of these sets on the energy. As a first choice for the energy
density g let us consider

g(v,w,A) :=
(

v− Aw
|Aw|

)2

(14)

for v,w ∈ Sd−1, which corresponds to the energy∫
Ω

|nT ◦φ −nφ

R |2 .

We observe that the energy EGM vanishes if uT ◦φ = γ ◦ uR for a monotone grey value
transformation γ : R→ R. If we want EGM to vanish also for non-monotone transfor-
mations γ we are lead to the symmetry assumption:

g(v,w,A) = g(−v,w,A) = g(v,−w,A) . (15)

Example 21 A useful class of matching functionals EGM is obtained by choosing func-
tions g which depend on the scalar product v ·u or alternatively on (1− v⊗ v)u (where
1− v⊗ v = (δi j − vi v j)i j denotes the projection of u onto the plane normal to v) for
u = Aw

|Aw| and v,w ∈ Sd−1, i. e.,

g(v,w,A) = ĝ
(

(1− v⊗ v)
Aw
|Aw|

)
. (16)

Let us remark that ĝ((1−v⊗v)u) is convex in u, if ĝ is convex. With respect to arbitrary
grey value transformations mapping morphologically identical images onto each other,
we might consider ĝ(s) = |s|γ for some γ ≥ 1.

Let us now discuss under which conditions there exists a minimizing deformation
of the total energy E [·] if we add a hyperelastic regularization energy Eelast [φ ]. Let us
emphasize that the problem stated here significantly differs from most other regularized
image registration problems, e. g., all intensity based approaches, where the matching
energy is defined solely in terms of the deformation φ , and the regularization energy is
of higher order and considers the Jacobian Dφ of the deformation. In our case already
the matching energy incorporates the cofactor of the Jacobian. Thus, with respect to
the direct method in the calculus of variations, we can not use standard compactness
arguments due to Rellich’s Embedding Theorem to deal with the matching energy on a
minimizing sequence [25]. Instead, we will need suitable convexity assumptions on the
function g.



Remark 22 (Lack of lower semicontinuity for certain functionals EGM) Recalling Ex-
ample 21 we might wish to choose a matching energy with an integrand g0(v,w,A) :=
ĝ((1− v

|v| ⊗
v
|v| )

Aw
|Aw| ) for ĝ ∈C0(Rd ,R+

0 ). It is well known that the essential condition
to ensure weak sequential lower semicontinuity of functionals depending on the Jaco-
bian of a deformation is quasiconvexity [54,55]. With our special choice of the class of
energies (13) this requires the convexity of g in the argument A (cf. [25] Section 5.1).
Indeed, we easily verify that a function

f : Rd,d → R; A 7→ f (A)

which is 0-homogeneous on Rd,d and convex has to be constant and thus an existence
result for our image matching problem via the direct calculus of variations can only be
expected for trivial matching energies, i. e., for ĝ ≡ const. To see this, suppose A,B ∈
Rd,d with f (A)− f (B) = δ > 0. Using the definition Aα,r := r A+α (A−B) for r > 0,
α > 0 and setting s = α

r , we obtain

f (Aα,r) = f (r A+ sr (A−B))
≥ f (r A)+ s( f (r A)− f (r B))

= f (A)+
α

r
( f (A)− f (B)) = f (A)+

α δ

r
→ ∞

for r→ 0. Finally, we deduce f (A−B) = ∞ which contradicts our assumptions on f .
Thus, the definition of the matching energy via the above integrand ĝ((1− v⊗ v) Aw

|Aw| )
and especially our first choice of a matching energy in (14) is not appropriate with re-
spect to a positive answer to the question of existence of minimizers via direct methods.

Next, we take into account the singularities of the normal fields. We require, that

L(Bε(∂F [u])) ε→0−→ 0 ,

for u either uR or uT . The corresponding set of image intensity functions is then given
by

I(Ω) :=
{

u : Ω → R : u ∈C1(Ω̄), L(Bε(∂F [u]) ε→0−→ 0
}

The existence proof for minimizers of nonlinear elastic energies via the calculus
of variations and direct methods dates back to the work of J. Ball [6]. Especially the
incorporated control of the volume transformation in this theory turns out to be the key
to prove existence of minimizing, continuous and injective deformations for the image
matching problem discussed here. We consider the following energy (cf. equations (13)
and (8)):

E [φ ] := EGM[φ ]+Eelast [φ ] . (17)

Theorem 23 (Existence of minimizing deformations) Suppose d = 3, uT ,uR ∈ I(Ω)
and consider the total energy defined in (17) for deformations φ in the set of admissible
deformations

A := {φ : Ω →Ω
∣∣ φ ∈ H1,p(Ω),cofDφ ∈ Lq(Ω),

detDφ ∈ Lr(Ω),detDφ > 0 a.e. in Ω ,φ = 1 on ∂Ω}



where p, q > 3 and r > 1. Suppose W : R×R×R+ → R is convex, and there exist

constants β ,s ∈ R, β > 0, and s > 2q
q−3 such that W (I1, I2, I3)≥ β (I

2
p

1 + I
2
q

1 + Ir
3 + I−s

3 ) .
Furthermore, assume that g0(v,w,A) = g( v

|v| ,
w
|w| ,A), for some function g : S2×S2×

R3,3→ R+
0 , which is continuous in v

|v| ,
w
|w| , convex in A and for a constant m < q and a

constant Cg > 0 the estimate

g(v,w,A)−g(u,w,A)≤Cg |v−u| (1+ |A|m)

holds for a constant m < q, for all u,v,w ∈ S2 and A ∈ R3,3. Then E [·] attains its mini-
mum over all deformations φ ∈ A, and the minimizing deformation φ is a homeomor-
phism and in particular detDφ > 0 a.e. in Ω .

Proof The proof of this result proceeds first along the lines of the proof of Theorem
12. Here, the critical is not the set of discontinuities of the images but the boundaries
of the sets of degenerate normals ∂F [uT ]∩ ∂F [uR]. We observe that the total energy is
polyconvex. Furthermore, as in Theorem 12 the volume of the neighborhood sets of
the singularity sets can be controlled. Hence, we can basically confine to a set, where
the integrand fulfills Carathéodory’s conditions. The proof of the theorem proceeds in
3 steps:

Step 1. Due to the assumption on the image, the set I(Ω) EGM[φ ] is well defined
for φ ∈ A. In particular g0(∇uT ◦ φ ,∇uR,cofDφ) is measurable. Obviously, 1 ∈ A
and E [1] < ∞, thus E := infφ∈A E [φ ] < ∞, and due to the growth conditions and the
assumption of g we furthermore get E ≥ 0. Let us consider a minimizing sequence
(φ k)k=0,1,··· ⊂ A with E [φ k]→ infφ∈A E [φ ]. We denote by E an upper bound of the
energy E on this sequence. At first, let us recall as in the proof of theorem 12 that
for a minimizing sequence, (φ k)k we have φ k ⇀ φ in H1,p, cofDφ k ⇀ cofDφ in Lq

and detDφ k ⇀ detDφ in Lr. In addition, φ k→ φ strongly in Lp(Ω) and by Sobolev’s
embedding theorem we obtain φ ∈C0(Ω̄).

Step 2. Again, we control the set Sε = {x ∈Ω : detDφ ≤ ε}, where the volume
shrinks by a factor of more than ε for the limit deformation. Let us assume without loss
of generality that the sequence of energy values E [φ k] is monotone decreasing and that
for given ε > 0 we let k(ε) be the smallest index such that E [φ k] ≤ E [φ k(ε)] ≤ E + ε

for all k ≥ k(ε) . Then as in the proof of Theorem 12 we deduce L(Sε) ≤ Ēεs

β
. As

one consequence, S0 is a null set and we know that detDφ > 0 a. e. on Ω and hence
the limit deformations φ is in the set of admissible deformation A. In addition, φ is
injective and a homeomorphism. Furtheron, as in the proof of Theorem 12 we obtain
that L

(
φ−1(BεT (∂F [uT ]∩∂F [uT ])\Sε

)
≤ δ

ε
. Due to the continuous differentiability of

both images uT and uR we can assume that

|∇uT (x)| ≥ γ(ε) on Ω \Bε(∂F [uT ]∩∂F [uT ]) (18)

where γ : R+
0 → R is a strictly monotone function with γ(0) = 0.

Step 3. Due to Egorov’s theorem and the strong convergence of φ k in Lp(Ω) there
is a set Kε with L(Kε) < ε such that a subsequence, again denoted by φ k, converges
uniformly on Ω \Kε . Let us now define the set

Rδ ,ε := φ
−1(BεT (∂F [uT ]∩∂F [uT ]))∪Sε ∪Kε ,



whose measure can be estimated in terms of ε and δ , i.e.

L(Rδ ,ε)≤
δ

ε
+
Ēεs

β
+ ε .

On Ω \Rδ ,ε the sequence (∇uT ◦φ k)k=0,1,··· converges uniformly to ∇uT ◦φ . Next, from
the assumption on g and the 0-homogeneous extension property of g0 we deduce that

|g0(u,w,A)−g0(v,w,A)| ≤Cγ |u− v|(1+ |A|m) (19)

for u,v,w ∈ R3, A ∈ R3,3 and |u| , |v| , |w| ≥ γ . Here, Cγ is a constant depending on Cg
and on γ . To use this estimate for u = φ k and v = φ below, we assume that k(ε) is large
enough, such that φ k(x) ∈Ω \B εT

2
(ST ) for x ∈Ω \Rδ ,ε and

C
γ( εT

2 )

∣∣∣∇uT ◦φ
k−∇uT ◦φ

∣∣∣
∞,Ω\Kε

≤ ε

for all k ≥ k(ε). Now we are able to estimate E [φ ] using especially the convexity of W
and g(v,w, ·), the estimate (19) and Fatou’s lemma:

E [φ ]=
∫
Ω

W (Ψ)+g0(∇uT ◦φ ,∇uR,cofDφ)dL

≤
∫
Ω

liminf
k→∞

λ
k
i W (Ψ i)dL+2Cg

∫
Rδ ,ε

1+ |cofDφ |m dL

+
∫

Ω\Rδ ,ε

liminf
k→∞

λ
k
i g0(∇uT ◦φ ,∇uR,cofDφ

i)dL

≤ liminf
k→∞

λ
k
i

∫
Ω

W (Ψ i)dL+b(L(Rδ ,ε))

+ liminf
k→∞

λ
k
i

∫
Ω\Rδ ,ε

g0(∇uT ◦φ ,∇uR,cofDφ
i)−g0(∇uT ◦φ

i,∇uR,cofDφ
i)

+ g0(∇uT ◦φ
i,∇uR,cofDφ

i)dL

where b(s) := 2Cg(s+( Ē
β
)

m
q s1−m

q ). Here we have in particular used the a priori estimate

|cofDφ |q,Ω ≤ ( Ē
β
)

1
q . We estimate further and obtain

E [φ ] ≤ liminf
k→∞

λ
k
i

∫
Ω

W (Ψ i)+g0(∇uT ◦φ
i,∇uR,cofDφ

i)dL+2b(L(Rδ ,ε))

+C
γ( εT

2 ) sup
k→∞

∫
Ω\Rδ ,ε

∣∣∣∇uT ◦φ −∇uT ◦φ
k
∣∣∣(1+

∣∣∣cofDφ
k
∣∣∣m) dL

≤ liminf
k→∞

λ
k
i E [φ i]+2b(L(Rδ ,ε))+ ε b(L(Ω))

≤ E + ε +2b(L(Rδ ,ε))+ ε b(L(Ω)) .



Finally, for given ε̄ we choose ε , δ , the dependent εT small enough and k(ε̄) large
enough to ensure that

ε +2b(L(Rδ ,ε))+ ε b(L(Ω))≤ ε̄

and get E [φ ]≤ E + ε̄ . This holds true for an arbitrary choice of ε̄ . Thus we conclude

E [φ ]≤ E = inf
φ∈A
E [φ ] ,

which is the desired result. ut
From the proof we have seen that the assumptions on the reference image could be

weakened considerably compared to the template image. With respect to the applica-
tions we do not detail this difference here. A suitable matching energy density is given
by

g(v,w,A) = |(1− v⊗ v)Aw|γ , (20)

for 1≤ γ < q. Hence, we obtain an admissible matching energy

EGM[φ ] =
∫

Ω

|(1− (nT ◦φ)⊗ (nT ◦φ))cofDφ nR|γ .

Applying Theorem 23, the existence of a minimizing deformation can be established.
Recalling Remark 22, we recognize that scaling the original energy density by an ad-
ditional factor |cofDφnR|γ turns the minimization task into a feasible problem. This
corresponds to a modification of the area element on the level sets [uR = c]. Indeed,
|cofDφnR| is the change of the area element at a position x on [uR = c] under the defor-
mation.

Fig. 1. Sectional morphological registration on a pair of MR and CT images of a human
spine. Dotted lines mark certain features visible in the reference image. There are re-
peatedly drawn at the same position in the other images. The reference CT image (left),
the template MR (middle) and the registered template (right) are rendered. In the mid-
dle image the misfit of structures of the CT image marked with corresponding dotted
lines is clearly visible. For further details on this example we refer to [29].

As an example for the performance of the resulting algorithm the registration of real
MR and CT images of a human spine has been considered (cf. Figures 1).



2.2 Matching edge sets

Now, we will consider the matching of the singular morphologies of two different im-
ages and couple this matching with edge segmentation and image denoising. In the
last decade, different approaches to couple segmentation with registration have been
proposed. Young and Levy [71] used segmentation results for one image to guide the
search for edges in consecutive images to resolve boundaries even though they are
not well defined in all images. Yezzi, Zöllei and Kapur [44] have simultaneously seg-
mented contours in different images based on an affine matching deformation. Feron
and Mohammad-Djafari [34] proposed a Bayesian approach for the joint segmentation
and fusion of images via a coupling of suitable hidden Markov Models for multi modal
images.
If we would minimize the Mumford-Shah functional (2) for u0

T and u0
R separately, we

would obtain smooth representations uT and uR together with singularity sets ST and SR.
Now, we sum up these two functionals and replace either the reference edge set SR by
the pull back φ−1(ST ) of the template edge set or the template edge set ST by the push
forward φ(SR) of the reference edge set. Thus, a deformation φ with SR ⊂ φ−1(ST ) or
ST ⊂ φ(SR), respectively, is a suitable candidate for the minimization of the resulting
combined energy. In the first case, where we use φ(SR) instead of ST , theHd−1 measure
[4] of φ−1(ST ) can be controlled by the Hd−1 measure of ST and the deformation φ ,
i. e.,Hd−1(φ(ST )) =

∫
ST

detDφ−1
∣∣DφDφ T ns

T ·ns
T

∣∣ dHd−1 [25]. A similar result holds in
the second case. Indeed, the control of the deformation on such lower dimensional sets
is analytically and numerically difficult. Hence, we omit the corresponding energy term
in our joint segmentation and registration model. Finally, in the first case of the pull
back model the energy for the coupled Mumford-Shah segmentation in the reference
and the template image is given by

EMS[uR,uT ,ST ,φ ] =
∫
Ω

(uR−u0
R)

2 dL+
∫
Ω

(uT −u0
T )2 dL (21)

+µ

∫
Ω\φ−1(ST )

|∇uR|2 dL+ µ

∫
Ω\ST

|∇uT |2 dL+ηHd−1(ST )

with µ, η > 0; whereas in the second case for the push forward model we consider the
energy

EMS[uR,uT ,ST ,φ ] =
∫
Ω

(uR−u0
R)

2 dL+
∫
Ω

(uT −u0
T )2 dL (22)

+µ

∫
Ω\SR

|∇uR|2 dL+ µ

∫
Ω\φ(SR)

|∇uT |2 dL+ηHd−1(SR).

Let us remark that these energies do not care about the orientation of the normals on
the singularity sets SR and φ(SR). Thus, it is invariant not only under monotone contrast
changes.



A level set method In this section we will review a level set model for the coupled
free discontinuity problem (22). Thereby, we restrict ourselves to edge sets which are
the union of finitely many Jordan-curves. In this case, the feature set can be viewed as
the boundary of detected segments, which are mapped to similar segment boundaries
in the second image. For a large class of images, this is a very suitable and convenient
approach, since images can often be decomposed into a finite set of independent objects.
However this is not always the case. Crack tips might occur not only due to weak edge
information but due to the fact that the image contains interrupted discontinuity sets (cf.
the phase field approximation below).

In a shape optimization framework, we start with an initial shape describing the
edge set and evolve it based on a suitable energy descent. The edge set may be elegantly
described and propagated by the level set approach of OSHER and SETHIAN [58,59].
In [42] a level set based, Newton-Type regularized optimization algorithm has been
derived for the minimization of the original Mumford-Shah functional. That work is the
algorithmical basis for our method. For related approaches we refer to [13]. In explicit,
we consider SR to be given as the zero level set of the level set function Ξ : Ω → R,
i. e., SR = {x : Ξ(x) = 0}.

The functional (22) depends on the variables uR, uT , φ and SR. In the process of
minimization we develop dif ferent strategies for the different variables. Fortunately,
the functional is quadratic with respect to the variables uR and uT . Hence, we may
minimize (22) for fixed SR and φ over image spaces of uR and uT . Let us now denote
by uR[SR] and uT [SR,φ ] the corresponding minimizers. They are obtained solving the
Euler Lagrange equations with respect to uR and uT :

−µ∆uR +uR = u0
R in Ω \SR

∂n[SR]uR = 0 on SR ,

−µ∆uT +uT = u0
T in Ω \φ [SR] ,

∂n[φ(SR)]uT = 0 on φ(SR) .

(23)

It is obvious that the minimizer with respect to uR depends only on SR, whereas the
minimizer with respect to uT depends also on φ via the domain of integration Ω \φ [SR].
Now we can define the reduced functional

Ê [SR,φ ] = E [uR[SR],uT [SR,φ ],SR,φ ]+Eelast [φ ] . (24)

Via an integral transform, we first decouple SR and φ and obtain

Ê [SR,φ ] =
∫

Ω

(uR[SR]−u0
R)

2 dL+ µ

∫
Ω\SR

|∇uR[SR]|2 dL

+
∫

Ω

(
(uT [SR,φ ]−u0

T )2 ◦φ

)
|detDφ |dL

+ µ

∫
Ω\SR

(
|∇uT [SR,φ ]|2 ◦φ

)
|detDφ |dL+ηHd−1[SR]+Eelast [φ ].



Now we can apply (4), where we have to integrate along the boundaries from both sides
of the contour, which leads to corresponding jump terms. We obtain

∂SR Ê [SR,φ ](ϑ) =
∫
SR

(
J(uR[SR]−u0

R)
2K+ µJ|∇uR[SR]|2K

)
ϑ dHd−1

+
∫
SR

(q
(uT [SR,φ ]−u0

T )2y+ µ
q
|∇uT [SR,φ ]|2

y)
◦φ |detDφ |ϑ dHd−1

+η

∫
SR

hϑ dHd−1 .

Recall that uR[SR] and uT [SR,φ ] are defined as the solutions of the corresponding ellip-
tic boundary value problems (23). For the Fréchet derivative of Ê with respect to the
deformation φ in a direction ψ we obtain

∂φ Ê [φ ](ψ) =
∫

φ [SR]

(
J|uT [SR,φ ]−u0

T |2K +µJ|∇uT [SR,φ ]|2K
)

(ψ ◦φ
−1 ·nφ [SR])dHd−1

+∂φEreg[φ ](ψ) ,

where the transformed normal is again given by nφ [SR] = |cofDφn[SR]|−1 cofDφn[SR].

Fig. 2. For the joint segmentation approach, the evolution of level sets in a reference
(top) and a template (bottom) image during the numerical energy relaxation are shown.

Hence, we have all the ingredients at hand to construct a gradient descent algo-
rithm for this shape optimization problem. As outlined in Section 1.3 for the classical
Mumford Shah model, the level set function ξ is assumed to be approximated by a fi-
nite element function Ξ in the space Vh on the domain Ω . This discrete function splits
the domain into two discrete domains Ω+[SR] and Ω−[SR]. On these two domains the
discrete counterparts of the equations (23) are solved via a composite finite element
approach. Given the discrete solutions UR and UT we are then able to compute both a
regularized shape gradient and a regularized gradient with respect to a discrete defor-
mation Φ ∈ (Vh)2 based on the above formulas for the variation of the total energy
with respect to SR and φ . We demonstrate the performance of the resulting methods for
2D brain images. Fig. 2 shows the relaxation of level sets segmenting brain structures
jointly in two images.



A phase field model Now, we suggest for the joint edge segmentation and registration
problem a coupled phase field formulation. This model picks up the pull back model
(21) and represents the template edge set by diffused interface described by a phase field
variable v. This phase field, describing the edge set ST of the image uT and simultane-
ously v◦φ , represents a super set of the edge set SR in the image uR. The corresponding
variational formulation in the spirit of the Ambrosio Tortorelli model is then given by
the functional

E ε
AT [uR,uT ,v,φ ] :=

∫
Ω

{
(uR−u0

R)
2 +(uT −u0

T )2
}

dL

+µ

∫
Ω

{
(v2 ◦φ + kε)|∇uR|2 +(v2 + kε)|∇uT |2

}
dL

+η

∫
Ω

{
ε|∇v|2 +

1
4ε

(v−1)2
}

dL (25)

with kε = o(ε). Here, the phase field function v corresponds to the contour Γ φ and the
contour Γ is described by v ◦φ . The first integral measures the deviation of uR and uT

to the data in the L2-sense. The second integral now forces the signature v2 to be small
where uT has steep gradients and, correspondingly, v2 ◦ φ to be small where uR has
steep gradients. On the other hand, this determines φ to align the signature function in
the reference domain to line up with the edges of uR, and finally, for fixed signature and
deformation, the smoothness of the images uR and uT is controlled, i. e., steep gradients
of uT are penalized where v 6≈ 0 and analogously for uR.

Again, the deformation φ will mainly be determined along the discontinuity sets.
Indeed, as outlined above, away from the contours the phase field, v will approximately
be identical to 1, and hence variations of φ will not change the energy in these regions.
Hence, we again consider a nonlinear hyperelastic regularization given by the additional
energy function Eelast [φ ] (8) and finally define

E ε [uR,uT ,v,φ ] =:= E ε
AT [uR,uT ,v,φ ]+αEelast [φ ]

and ask for minimizers. In what follows, let us calculate the variations of this functional
with respect to the variables uR, uT and v in directions ζ and ϑ , respectively:

∂uRE ε
AT [uR,uT ,v,φ ](ζ ) = 2

∫
Ω

(uR−u0
R) ·ζ dL+2µ

∫
Ω

(v2 ◦φ + kε)∇uR ·∇ζ dL

∂uT E ε
AT [uR,uT ,v,φ ](ζ ) = 2

∫
Ω

(uT −u0
T ) ·ζ dL+2µ

∫
Ω

(v2 + kε)∇uT ·∇ζ dL

∂vE ε
AT [uR,uT ,v,φ ](ϑ) = 2µ

∫
Ω

|∇uT |2v ·ϑ dL+2µ

∫
Ω

|∇uR|2(v◦φ) · (ϑ ◦φ)

+2η

∫
Ω

ε∇v ·∇ϑ +
1

4ε
(v−1)ϑ dL .

We rewrite this via the transformation formula:

∂vE ε
AT [uR,uT ,v,φ ](ϑ) = 2µ

∫
Ω

|∇uT |2v ·ϑ dL+2µ

∫
Ω

|∇uR|2 ◦φ
−1v ·ϑ detDφ

−1 dL

+2η

∫
Ω

ε∇v ·∇ϑ +
1

4ε
(v−1)ϑ dL .



Hence, for fixed v and φ , the reconstructed images uR and uT can be computed by
solving the elliptic problems

uR−µdiv
(
(v2 ◦φ + kε)∇uR

)
= u0

R

uT −µdiv
(
(v2 + kε)∇uT

)
= u0

T

in Ω with boundary conditions ∂nuR = ∂nuT = 0 on ∂Ω . Since v≥ 0, the corresponding
bilinear-forms are coercive. Furthermore, we are able to find for each uT , uR and φ the
optimal phase field v as the solution of the Euler-Lagrange equation with respect to the
variation in the variable v, i. e.,

µ|∇uT |2v+ µ|∇uR|2 ◦φ
−1vdetDφ

−1 +
η

4ε
(v−1)−ηε∆v = 0

in Ω and ∂nv = 0 on ∂Ω . Finally, the variation of the energy with respect to the defor-
mation in a direction ψ is given by

∂φE ε
AT [uR,uT ,v,φ ](ψ) = 2µ

∫
Ω

|∇uR|2v◦φ (∇v◦φ ·ψ)dL

= 2µ

∫
Ω

|∇uR|2 ◦φ
−1v(∇v ·ψ ◦φ

−1)detDφ
−1 dL .

Analogously to the approach chosen in the above sharp interface model, the energy
functional can be reduced to depending only on φ , where uR[φ ], uT [φ ] and v[φ ] are
determined as the unique solutions of the quadratic minimization problem for fixed
deformation φ :

Ê ε [φ ] = E ε [uR[φ ],uT [φ ],v[φ ],φ ]. (26)

Based on these energy variations of energy we can now construct an alternating min-
imization algorithm for this diffusive shape optimization problem. Hence, the image
intensity functions uR, uT , the phase field function v and the deformation φ are approxi-
mated by corresponding finite element functions UR, UT , V , and Φ in the finite element
space Vh and (Vh)d on the domain Ω . Given the discrete solutions UR and UT we are
then able to compute both a regularized shape gradient and a regularized gradient with
respect to the deformation φ based on the above formulas for the variation of the total
energy with respect to S and φ . Fig. 3 depicts an application where brain structures
of MR scans of two different patients with varying image contrast are to be matched.
The underlying 3D images consist of 2573 voxels and thus 3 · 2573 unknowns in the
nodal vector of deformation. Our results demonstrate that without any pre–registration
the algorithm is able to generate a fairly good match. Nevertheless, due to the structural
differences in the two brains the capabilities of the algorithm are locally limited basi-
cally by the built in regularity control of the elastic deformation. The algorithm applied
to raw data without any preprocessing is still capable to generate a reasonable overall
matching for instance of the cortex outline or of the skull. But it significantly suffers
from the local deviation of medical morphology which requires prior knowledge on
non local anatomy from the underlying mathematical morphology with its purely local
definition.



Fig. 3. On the left, the 3D phase field corresponding to an MR image is shown. Fur-
thermore, the matching of two MR brain images of different patients is depicted. We
use a volume renderer based on ray casting (VTK) for a 3D checkerboard with alternat-
ing boxes of the reference and the pull back of the template image to show the initial
mismatch of MR brain images of two different patients (middle) and the results of our
matching algorithm (right).

2.3 Matching singular and regular morphology

Now, we also have all the ingredients at hand to formulate the variational problem for a
matching of the singular and regular image morphology combined with a simultaneous
edge segmentation and denoising in the template and the reference image. We collect
the matching energy (22) for the singular morphology, the matching energy (13) for the
regular morphology, the elastic regularization energy (8) and define the global energy

E [uR,uT ,ST ,φ ] := EMS[uR,uT ,ST ,φ ]+EGM[uR,uT ,φ ]+Ereg[φ ] . (27)

Even for very simple image pairs u0
R and u0

T we expect the resulting energy landscape
to be very complicated. To address this issue, we will not restrict to a single fine scale
problem but as above consider an embedding into a scale of problems to be solved
from coarse to fine. This scale will be induced by the phase field approximation of the
energy EMS. The width of the edge regions indicated by small values of v is expected to
be proportional to ε . For decreasing ε we will obtain successively sharper regularized
images uT and uR. This implicitly introduces a scale in the energy EGM as well. In explicit
the gradients ∇uT and ∇uR corresponding to uT and uR are expected to be smoother for
larger ε . Thus, we no longer have to distinguish regular and singular gradients. To focus
only on the regular morphology in this energy contribution - in particular not measuring
edges - we mask out a gradient comparison in the vicinity of edges. Therefore, the
integrand is multiplied by v2◦φ and we obtain

E ε
GM[uT ,uR,v,φ ] =

∫
Ω

v2◦φ g0(∇uT ◦φ ,∇uR,cofDφ)dL . (28)

Finally, gathering this energy and the energy contributions from (25) and (8) we define
a scale of global approximate energies

E ε [uR,uT ,v,φ ] := E ε
AT [uR,uT ,v,φ ]+E ε

GM[uR,uT ,v,φ ]+Ereg[φ ]



Fig. 4. A contrast invariant matching is shows. In the first row we have inverted, moved
and distorted the peppers image (left) to obtain a template image (middle). On the right
the initial misfit is shown. The registration result for this input data are depicted in the
second row. The final phase field function v is depicted on the left. The image in the
middle shows a plot of the deformation due to a relaxation of the combined energy, i. e.,
the registration of discontinuity sets and level sets. On the right alternating slices of the
reference and the pulled back template image allow a visual validation of the matching
result.

depending on the scale parameter ε . We refer to Fig. 4 for results achieved via a relax-
ation of this energy. Apart from EGM the energy depends quadratically on uT , uR and v.
Thus, the corresponding necessary conditions to be fulfilled by a minimizer, i. e., the Eu-
ler Lagrange equations with respect to these variables, turn into linear problems. In the
relaxation scheme for the deformation, which actually describes the image matching,
we treat uT , uR and v in a quasi stationary way. In fact, the iterative relaxation proceeds
as follows: For given images and deformation, we optimize w.r.t. the phase field v. In
a next step, we then optimize for the regularized images uT and uR for given φ and al-
ready optimized v. Finally, we consider one gradient descent step for the global energy
w.r.t. the deformation. Here, we pick up a regularized gradient descent as described
above. This procedure is repeated until convergence. In the current implementation we
neglect the impact of the ongoing segmentation process on the variation of the energy
concerned with the regular morphology and consider the following simplification in the



method:

(uT ,uR) = argmin
uT ,uR

E ε
AT [uT ,uR,v,φ ].

Even though we no longer actually minimize the global energy, the proposed restricted
energy relaxation already leads to satisfying edge segmentation and matching results.

We have applied our method also to 3D medical image registration problems and
present here some results, where we concentrate on a matching only of the singular
morphology. In particular in 3D a cascadic multiscale approach turned out to be indis-
pensable to ensure an efficient numerical implementation.

Finally, we demonstrate the applicability of the method by registering two different
facial texture maps. Figure 5 depicts the input data, whereas Figure 6 pinpoints the
differences of the different matching approaches. As in the previous example, Figure
7 illustrates the energetic improvement due to the interplay of the deformation and the
phase field function, reducing the length of the overall interface by alignment of edges.

Fig. 5. A facial texture matching problem. Initial reference texture map uR (left), initial
template uT (middle) and the initial misfit plot on the (right).

2.4 A parametric approach to surface matching

Establishing a correspondence between two surfaces is a basic ingredient in many ge-
ometry processing applications. Motivated by the ability to scan geometry with high
fidelity, a number of approaches have been developed in the graphics literature to bring
such scans into correspondence. Early work used parameterizations of the meshes over
a common parameter domain to establish a direct correspondence between them [48].
Typically these methods are driven by user-supplied feature correspondences which are
then used to drive a mutual parametrization. The main difficulty is the proper alignment
of selected features during the parameterizations process [47,60,65] and the algorith-
mic issues associated with the management of irregular meshes and their effective over-
lay. Here, we address this problem on the background of deformations of elastic shells.
Recently, Gu and Vemuri [38] considered matches of topological spheres through con-
formal maps with applications to brain matching. Their energy measures the defect of



Fig. 6. Results for the facial texture matching problem given in 5. The top row shows the
deformed template that has been overlaid by a uniform checkerboard pattern. On the left
the regular morphology has not been taken into account, hence, mainly the face outline
and strong edges are matched properly. Considering the entire energy functional signif-
icantly improves the result (right). The deformation is characterized by a much higher
variability. The bottom row displays with alternating stripes the corresponding refer-
ence and pulled back template images to enable a validation of the matching results.

the conformal factor and — similar to our approach — the defect of the mean curvature.
However they do not measure the correspondence of feature sets or tangential distortion,
and thus do not involve a regularization energy for the ill-posed energy minimization.
Furthermore, they seek a one-to-one correspondence, whereas we must address the dif-
ficult problem of partial correspondences between surfaces with boundaries.

Instead of matching two surfaces directly in 3D, we apply well-established match-
ing methods from image processing in the parameter domains of the surfaces. A match-
ing energy is introduced that can depend on curvature, feature demarcations or surface
textures, and a regularization energy controls length and area changes in the induced
non-rigid deformation between the two surfaces. The metric on both surfaces is prop-
erly incorporated into the formulation of the energy. This approach reduces all compu-
tations to the 2D setting while accounting for the original geometries. Consequently a
fast multiresolution numerical algorithm for regular image grids can be used to solve
the global optimization problem. The final algorithm is robust, generically much sim-
pler than direct matching methods, and very fast for highly resolved triangle meshes.

Our goal is to correlate two surface patches, SA and SB, through a non-rigid spatial
deformation

φS : SA→ R3



Fig. 7. The phase field v corresponding to the matching results in Figure 5. LEFT: Initial
phase field. RIGHT: Phase field after alignment.

such that corresponding regions of SA are mapped onto regions of SB. In doing so, we
want to avoid the general difficulty of formulating these maps directly in R3 and the
particularly tedious algorithmic issues in the application, where the two surface patches
are given as distinct, arbitrary triangulations. Instead, we match parameter domains
covered with geometric and user-defined feature characteristics. The main benefit of
this approach is that it simplifies the problem of finding correspondences for surfaces
embedded in R3 to a matching problem for images in two dimensions. To ensure that
the actual geometry of the surface patches is treated properly here, the energy on the
deformations from one parameter space to the other will measure:

- Elastic distortion energy: smoothness of the deformation in terms of tangential
distortion,

- Bending energy: bending of normals through the proper correspondence of curva-
ture, and

- Feature energy: the proper correspondence of important surface and texture fea-
tures.

Furthermore, it will consistently take into account the proper metrics on the parameter
domains, which ensures that we are actually treating a deformation from one surface
onto the other even though all computations are performed in 2D.

Physical motivation Consider the first surface to be a thin shell which we press into
a mould of the second surface (cf. Figure 8). One can distinguish between stresses in-
duced by stretching and compression and stressed induced by bending that occurs in
the surface as it is being pressed. Thus φS can be regarded as the deformation of such
a thin shell. We assume this deformation to be elastic. The regularization energy in
Eq. (29) will measure the induced in-plane stresses, and the concrete energy density in
Eq. (30) allows control over length and area-distortion in this surface-to-surface defor-
mation. Since we are aiming for a proper correspondence of shape, we will incorporate
the bending of normals in our energy with Eq. (31). Finally, the matching of feature sets
in Eq. (32) will provide user-specified landmarks to guide the surface deformation. In
what follows, we will develop the variational approach step-by-step.
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Fig. 8. A physical interpretation of φM as pressing a thin shell SA into a mould of the
surface SB being matched. The bending (1) and stretching (2) of the thin shell is mea-
sured in our matching energy and minimized by the optimal match φS .

To begin with, let us set up proper parameterizations. A parametrization is a map-
ping from the plane onto a given surface, or in the case of its inverse, from the surface
onto the plane. Consider a smooth surface S ⊂ R3, and suppose x : ω → S is a pa-
rameterizations of S on a parameter domain ω . For a parameterizations to be properly
defined, its inverse x−1 cannot allow the surface to fold onto itself in the plane. In this
case x is a bijection and a metric g is properly defined on ω ,

g =DxTDx

where Dx ∈R3,2 is the Jacobian of the parameterization x. The metric g acts on tangent
vectors v,w on the parameter domain ω with (gv) ·w = Dxv ·Dxw, which is simply
the inner product of tangent vectors Dxv,Dxw on the surface. Thus, it follows that the
metric describes how length, area and angles are distorted under the parametrization
function.

Let us now focus on the distortion from the surface S onto the parameter domain ω

under the inverse parametrization x−1. This distortion is measured by the inverse metric
g−1 ∈ R2,2. Just as

√
tr(AT A) measures the average change of length under a linear

mapping A,
√

trg−1 measures the average change of length of tangent vectors under the
mapping from the surface onto the parameter plane. Additionally,

√
detg−1 measures

the corresponding change of area. We will use these quantities in the following sections
to account for the distortion of length and area on the surface as we formulate our
matching energy in the parameter domain.

Measuring Distortion via a Deformation The above discussion now applies to the
parameter maps xA and xB of the surfaces SA and SB. We suppose that these param-
eterizations are defined in an initial step and we assume that xA and xB as well as the
corresponding parameter domains ωA and ωB are fixed from now on. Their metrics are
denoted by gA and gB, respectively. We will now study the distortion which arises from
a deformation of the first parameter domain onto the second parameter domain. First, let
us consider deformations φ : ωA→ωB which are one-to-one. This deformation between
parameter domains induces a deformation between the surface patches φS : SA → SB
defined by

φS := xB ◦φ ◦ x−1
A .

Let us emphasize that we do not actually expect a one-to-one correspondence between
surface patches. Later we will relax this assumption and in particular allow for defor-
mations φ with φ(ωA) 6⊂ ωB. The complete mapping is illustrated in Figure 9.
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Fig. 9. The matching function φS := xB ◦ φ ◦ x−1
A is a mapping between the corre-

sponding shaded regions of the two surfaces. The partial correspondence is defined
on ωA[φ ] := ωA∩φ−1(ωB).

Now let us focus on the distortion from the surface SA onto the surface SB. In elas-
ticity, the distortion under an elastic deformation φ is measured by the Cauchy-Green
strain tensor Dφ T Dφ . We wish to adapt this definition to measure distortion between
tangent vectors on the two surfaces, as we did with the metric g in the previous section.
Therefore, we properly incorporate the metrics gA and gB at the deformed position and
obtain the distortion tensor G[φ ] ∈ R2,2 given by

G[φ ] = g−1
A Dφ

T (gB ◦φ)Dφ ,

which acts on tangent vectors on the parameter domain ωA, where where products are
given in matrix notation. Mathematically, this tensor is defined implicitly via the iden-
tity (gAG[φ ]v) ·w = (gB ◦ φ)Dφ v ·Dφ w for tangent vectors v, w on the surface SA
and their images as tangent vectors Dφ v,Dφ w on SB, where here we have identified
tangent vectors on the surfaces with vectors in the parameter domains.

As in the parametrization case, one observes that trG[φ ] measures the average
change of length of tangent vectors from SA when being mapped to tangent vectors
on SB, and

√
detG[φ ] measures the change of area under the deformation φS . Thus

trG[φ ] and
√

detG[φ ] are natural variables for an energy density in a variational ap-
proach measuring the regularity of a surface deformation,

Eelast [φ ] =
∫

ωA

W (trG[φ ],
√

detG[φ ])
√

detgA dξ . (29)

This simple class of energy functionals was rigorously derived in [22] from a set of
natural axioms for measuring the distortion of a single parametrization. In particular,
the following energy density

W (I1, I2) = αlI1 +αa
(
I2
2 +(1+ αl

αa
) I−2

2
)

(30)



accounts for length distortion with I1 = trG[φ ], area expansion with I2 =
√

detG[φ ]
and area compression with I−1

2 . The weights αl ,αa > 0 are typically chosen by the user
according to the relative importance of length and area distortion.

Measuring Bending in a Deformation When we press a given surface SA into the
thin mould of the surface SB, a major source of stress results from the bending of
normals. We assume these stresses to be elastic as well and to depend on changes in
normal variations under the deformation. Variations of normals are represented in the
metric by the shape operator. For the derivation of the shape operators SA and SB of the
surface patches SA and SB we refer to [49] , where we end up with tr(SB ◦φ)− tr(SA)
as a measure for the bending of normals. Since the trace of the shape operator is the
mean curvature, we can instead aim to compare the mean curvature hB = tr(SB) of
the surface SB at the deformed position φS(x) and the mean curvature hA = tr(SA) of
the surface SA. A similar observation was used by [32] to define a bending energy for
discrete thin shells. This proposed simplification neglects any rotation of directions due
to the deformation, e.g.if the deformation aligns a curve with positive curvature on the
first surface to a curve with negative curvature on the second surface and vice versa, an
energy depending solely on hB ◦φ−hA does not recognize this mismatch. Nevertheless,
in practice the bending energy

Ebend [φ ] =
∫

ωA

(hB ◦φ −hA)2
√

detgA dξ (31)

turns out to be effective and sufficient. By minimizing this energy, we ensure that the
deformation properly matches mean curvature on the surfaces.

Matching Features Frequently, surfaces are characterized by similar geometric or tex-
ture features, which should be matched properly as well. Therefore we will incorporate
a correspondence between one-dimensional feature sets in our variational approach to
match characteristic lines drawn on the surface. In particular, we prefer feature lines to
points for the flexibility afforded to the user, as well as to avoid the theoretical prob-
lems introduced by point constraints [19]. We will denote the feature sets by FSA ⊂ SA
and FSB ⊂ SB on the respective surfaces. Furthermore, let FA ⊂ ωA and FB ⊂ ωB be
the corresponding sets on the parameter domains. We are aiming for a proper match of
these sets via the deformation, i.e.

φS(FSA) = FSB

or in terms of differences, FSA \ φ
−1
S (FSB) = /0 and FSB \ φS(FSA) = /0. A rigorous

way to reflect this in our variational approach is with a third energy contribution,

EF [φ ] = H1(FSA \φ
−1
S (FSB))+

H1(FSB \φS(FSA)) (32)

whereH1(A) is the one-dimensional Hausdorff measure of a set A on the correspond-
ing surface. Roughly speaking, this gives a symmetric measurement of the size of the



mismatch of the features. This type of energy does not lend itself to a robust numerical
minimization. Therefore, we will instead consider a suitable approximation of Eq. (32)
that involves the distance on the surface to the feature sets and define

Ẽ ε

F [φ ]=
∫

ωA

(
η

ε ◦dA(ξ )
)(

ϑ
ε ◦dB(φ(ξ ))

)√
detgA dξ +∫

ωB

(
η

ε ◦dB(ξ )
)(

ϑ
ε ◦dA(φ−1(ξ ))

)√
detgB dξ (33)

where dA(·) = distA(·,A) and dB(·) = distB(·,A) are distance functions on the parame-
ter domains ωA and ωB with respect to some set A on the corresponding surface. Note
that we measure distance either in the metric gA on ωA or in the metric gB on ωB.
Additionally, we define the localization functions

η
ε(s) = 1

ε
max

(
1− s

ε
,0
)
, ϑ

ε(s) = min
( s2

ε
,1
)

which act as cut-off functions. For Lipschitz continuous feature sets and bi-Lipschitz
continuous deformations, we observe that Ẽ ε

F [φ ]→ EF [φ ] as ε → 0, which motivates
our approximation. In view of the later discretization, we can reformulate the second
term in Eq. (33) as∫

ωA

(
η

ε ◦dB(φ(ξ ))
)(

ϑ
ε ◦dA(ξ )

)√
detgB(φ(ξ ))detDφ dξ .

Usually, we cannot expect that φS(SA) = SB, particularly near the boundary where
certain subregions of SA will have no corresponding counterpart on SB and vice versa.
Therefore, we must allow for points on SB with no pre-image in SA under a match-
ing deformation φS and points on SA which are not correlated to points on SB via φS
(cf. Figure 9). Thus we must adapt the variational formulation accordingly. If φ(ωA) 6=
ωB, then φS is now defined on xA(ωA[φ ]) only, where

ωA[φ ] := φ
−1 (φ(ωA)∩ωB)

is the corresponding subset of the parameter domain ωA. Furthermore, we define new
energies (with modifications marked in red):

Ebend [φ ] =
∫

ωA[φ ]
(hB ◦φ −hA)2

√
detgA dξ ,

EF [φ ] = H1(ωA[φ ]∩FSA \φ
−1
S (FSB))+

H1(FSB \φS(ωA[φ ]∩FSA)).

For an energy that controls tangential distortion, it is still helpful to control the regularity
of the deformation outside the actual matching domain ωA[φ ], where we would like to
allow significantly larger deformations by using a “softer” elastic material. Hence we
will suppose that gB, which is initially only defined on ωB, is extended to R2 and takes
values that are relatively small to allow for greater stretching.

In the minimization algorithm, we need descent directions which will involve deriva-
tives of these energies with respect to the deformation φ . In taking these derivatives,



integrals over the variable boundary ∂ωA[φ ] will appear. Since these are tedious to treat
numerically, we will rely on another approximation for the sake of simplicity. Our strat-
egy here is to change the domain of integration ωA[φ ] to a superset ω which extends
beyond the boundary ∂ωA[φ ]. Doing so means that special treatment of boundary inte-
grals is no longer necessary, although we are now required to evaluate the integrands
of the energies outside of ωA, and similarly for deformed positions outside of ωB. To
achieve this, we will extend our surface quantities onto ω \ωA and ω \ωB, respectively,
by applying a harmonic extension with natural boundary conditions on ∂ω to gA, gB
and hA, hB (e.g., we define hA as the solution of Laplace’s equation on ω \ωA with
vanishing flux on ∂ω). Additionally, we introduce a regularized characteristic function

χ
ε

A(ξ ) = max(1− ε
−1dist(ξ ,A),0)

to cause the energy contributions to be ignored at some distance ε away from ωA[φ ].
Thus, instead of dealing with a deformation dependent domain ω[φ ] in the definition of
our different energy contributions, we always integrate over the whole image domain ω

and insert the product of the two regularized characteristic functions

χ
ε(ξ ) = χ

ε
ωA

(ξ )χ
ε
ωB

(φ(ξ ))

as an additional factor in the energy integrand. We apply this modification to the energy
Ebend (31) and the already regularized energy Ẽ ε

F (33) and denote the resulting energies
by E ε

bend and E ε

F , respectively. Furthermore, for the elastic energy Eelast [φ ] we assume
a very soft elastic material outside ωA[φ ] and the actual material parameters inside this
partial matching domain. Hence, as an approximate model we consider

E ε,δ
elast [φ ] =

∫
ωA

(δ +(1−δ )χ
ε(ξ ))W (trG[φ ],

√
detG[φ ])

√
detgA dξ

for some fixed, small δ .

Definition of the matching energy We are now ready to collect the different cost
functionals and define the global matching energy. Depending on the user’s preference,
we introduce weights βbend , βelast , βF for the energies E ε

bend , Eelast and E ε

F , respectively,
and define the global energy

E ε [φ ] = βbend E ε
bend [φ ]+βelast E ε,δ

elast [φ ]+βF E ε

F [φ ]

which measures the quality of a matching deformation φ on the domain ω . In the
limit for ε, δ → 0 we aim at an approximation of the energy E [φ ] = βbend Ebend [φ ] +
βelast Eelast [φ ] + βF EF [φ ]. Figure 10 demonstrates the capability of the presented ap-
proach to describe a partial matching problem in variational form. Based on the match-
ing we can generate warps between different surface based on a linear blend between
matched points on the different geometries (cf. Figures 11 and 12). The figure 13 shows
the distortion of a checkerboard pattern on the parameter domain and the corresponding
distortion on the surface.



A B←A B

Fig. 10. For surfaces with boundaries, a partial correspondence is often desired. The
correspondence is defined where their parameter domains intersect under the matching
deformation (bottom). In this domain, quantities such as texture maps can be mapped
between the surfaces (center). The unmatched regions are in black.

Fig. 11. A morphing between two different faces is shown.

3 Joint motion estimation, restoration, and deblurring

In this section we introduce a variational method which jointly handles motion estima-
tion, moving object detection and motion blur deconvolution (cf. Fig. 17). The proposed
framework is again a Mumford-Shah type variational formulation, which includes an
explicit modeling of the motion-blur process as well as shape and image regularization
terms. The input to the variational formulation are two consecutive frames, while the



A B C A′ B′ C′

Fig. 12. Morphing through keyframe poses A,B,C is accomplished through pair-wise
matches A→B and B→C. Starting with A we blend its shape into B using A→B, and
then morph to C by applying A→B followed by B→C. The skin texture from A is
used throughout. Because of the close similarity in the poses, one can expect the inter-
mediate blends A′,B′,C′ to correspond very well with the original keyframes A,B,C,
respectively.

output are the corresponding reconstructed frames, the segmented moving object, and
the actual motion velocity. As in the problems discussed so far the joint estimation of
motion, moving object region and reconstructed images outperforms techniques where
each individual unknown is individually handled.

3.1 The motion blur model

Images from an image sequence captured with a video camera are integrated measure-
ments of light intensity emitted from moving objects over the aperture time interval of
the camera. Let u : [−T,T ]×Ω ; (t,x) 7→ R denote a continuous sequence of scene in-
tensities over a time interval [−T,T ] and on a spatial image domain Ω observed via the
camera lens. The video sequence recorded with the camera consists of a set of images
gi : Ω → R associated with times ti, for i = 1, · · · ,m, given as the convolution

gi(x) =
1
τ

∫ ti+ 1
2 τ

ti− 1
2 τ

u(t + s,x)ds (34)

over the aperture time τ . For the time integral, we propose a box filter, which realisti-
cally approximates the mechanical shutters of film cameras and the electronic read out
of modern CCD video recorders. In the simplest case, where the sequence f renders an
object moving at constant velocity w∈R2, i.e. u(x−sw) = u(t +s,x), we can transform
integration in time to an integration in space and obtain for the recorded images

gi(x) =
1
τ

∫ 1
2 τ

− 1
2 τ

u(x− sw)ds = (u∗hw)(x), (35)

for a one dimensional filter kernel hw = δ0(w⊥
|w| · y)h( w

|w| · y) with filter width τ|w| in

the direction of the motion trajectory {y = x+ sw : s ∈ R}. Here w⊥ denotes w rotated
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Fig. 13. Large deformations are often needed to match surfaces that have very different
shapes. A checkerboard is texture mapped onto the first surface as it morphs to the sec-
ond surface (top). The matching deformation shown in the parameter domain (bottom)
is smooth and regular, even where the distortion is high (e.g., around the outlines of the
mouth and eyes).

by 90 degrees, δ0 is the usual 1D Dirac distribution and h the 1D block filter with
h(s) = 1

τ|w| for s ∈ [− τ|w|
2 , τ|w|

2 ] and h(s) = 0, else. In case of an object moving in front
of a (still) background the situation is somewhat more complicated. At a point x close to
the boundary of the object, the convolution (34) decomposes into a spatial convolution
of object intensities along the motion path for the sub-interval of the aperture interval
where the object covers the background at position x, and a retrieval of the background
intensity for the remaining opening time of the lens. Figure 14 shows a comparison
between the actually observed motion blur and results obtained by a (wrongly) direct
application of the spatial convolution formula (35) on a moving circular object in front
of a textured background (more specifics on this below). This observation is particularly
important for the reliable recovery of boundaries of moving objects from recorded video
frames gi and subsequently for the proper restoration of image frames (cf. Fig. 15 for a
corresponding comparison).

In what follows we consider an object moving with speed w ∈ R2 in front of a still
background ubg : Ω → R. The object at time 0 is represented by an intensity function
uobj :O→R defined on an object domain O. From uobj and ubg one assembles the actual
scene intensity function

u(t,x) = uobj(x− tw)χobj(x−wt)ubg(x)(1−χobj(x−wt)) (36)

at time t, where χobj : R2→ R denotes the characteristic function of O. Now, inserting
(36) in (34) and then using (35) on O, we deduce the correct formula for the theoreti-



Fig. 14. We consider a moving circle with back and white stripes in front of a similarly
textured background. For this test case a comparison is shown between the wrong (left)
motion blur model which ignores the motion discontinuity at the boundary and our
realistic, consistent model (right) given in (36) .

Fig. 15. Given two frames for the realistic motion blur showing the moving circle on
the texture background from Fig. 14 (left), computational results for the deblurring are
depicted based on the wrong motion blur model built into Gi (middle), and on our
consistent model (right). This clearly outlines the importance of a proper handling of
the motion discontinuity in the considered motion blur model.



cally observed motion blur at time ti,

Gi[O,w,uobj,ubg](x) = ((uobjχobj)∗hw)(x− tiw)+ubg(x)(1− (χobj ∗hw)(x− tiw)),

for given object domain O, motion velocity w, and object and image (background)
intensity functions uobj and ubg respectively. If we do not carefully model the observed
intensities while the moving object occludes and uncovers the background, we would
observe (uobj(t, ·) ∗ hw) on the object domain and ubg elsewhere (cf. the combination
of Eq. (14) and Eq. (3) in [33]). Given the more precise motion blur model proposed
here, we now proceed to derive a variational formulation to simultaneously estimate all
parameters in this equation based on two consecutive frames.

3.2 Joint variational approach

Given two frames g1 and g2 of a video sequence with motion blur recorded at times
t1 and t2, respectively, we construct a variational model to extract from these frames
the domain O, the image intensity uobj of a moving object and the motion velocity w.
Here, we propose that the background intensity ubg can a priori be extracted from the
video sequence, for example, by averaging pixels with stable values over a sequence of
frames. We aim at formulating a joint energy for these degrees of freedom. Modeling
this energy we take into account the following observations:

Given w and intensity maps uobj, ubg : Ω → R (extended on the whole domain in a suit-
able way), we phrase the identification problem of the object boundary S = ∂O in
terms of a piecewise constant Mumford–Shah model. This appears to be well-suited, in
particular because the unknown contour is significantly smeared out due to the motion
blur. Hence, a comparison of the expected motion blur Gi with the observed time frames
gi in a least square sense

∫
Ω

(Gi[O,w,uobj,ubg]−gi)
2 dL is considered as the fidelity en-

ergy, where the length of the boundary contourH1(S) acts as the corresponding prior.

For known w and O, we obtain an almost classical deblurring problem for uobj with the
modification of the blurring kernel given in (36), which is already reflected in the above
fidelity term. We expect uobj to be characterized by edges (cf. Fig. 17). As a suitable
prior for these intensity maps we select the total variation functional

∫
Ω
|∇uobj|dL [61],

which at the same time guarantees a suitable extension onto the whole space.

Finally, given O and the two intensities uobj, ubg, the extraction of the motion velocity
w is primarily an optical flow problem. The transport of the object intensity uobj from
time t1 to t2 described in G1 and G2 provides us with information on w. In the case of
limited intensity modulations on the moving object, it is the comparison of the expected
transition profile χobj ∗hw, encoded in Gi, with the observed profile in gi that will act as
a guidance for the identification of the motion velocity.

Based on these modeling aspects we finally obtain the energy

E [uobj,w,S ] = ∑
i=1,2

∫
Ω

(Gi[O,w,uobj,ubg]−gi)
2 dL+ µ

∫
Ω

|∇uobj|dL+ηH1(S) ,



and ask for a minimizing set of the degrees of freedomO, w, and uobj. Once a minimizer
is known, we can retrieve the deblurred images u(t1, ·) and u(t2, ·) applying (36). In
the application, the joint approach for all three unknowns—the motion velocity w, the
object intensity uobj and the shape of the object S—turns out to be crucial for a proper
reconstruction of blurred video frames. This interdependence is demonstrated by the
results in Fig. 16 where we compare our joint approach with a two step method which
first tries to identify O and w based on a motion competition algorithm [24], followed
by the actual deblurring in a second step. Note that the proposed method can be regarded
as a motion competition method if we skip the convolution with the convolution kernel
hw in the variational formulation. Figure 16 also shows the importance of the consistent

Fig. 16. A comparison of our joint method with a non–joint method and with a method
not taking into account the consistent motion blur model is shown. A restored frame
with two zoom up areas is depicted for a straightforward scale variant motion deblur-
ring, where the contour is extracted a priori based on pure motion competition (left), for
the non–consistent motion blur model on the same a priori computed contour (middle)
and for the fully joint method with the consistent model (right).

motion blur model for a proper reconstruction in the vicinity of motion singularities.
Finally, we have applied our model to a true motion sequence recorded with a hand held
video camera. The sequence shows a toy car moving in front of a puzzle (background)
(cf. Fig.17). We choose a textured object moving in front of a textured background to
demonstrate the interplay between the deblurring steered by the fidelity functional and
the reconstruction of sharp edges due to the total variation built into the prior. Finally, a
real world application is shown in Fig. 17.

4 Elastic shape averaging

This section is concerned with a physically motivated notion of shape averages. As
shapes we consider object contours or image morphologies, both encoded as edge sets



$v$

Fig. 17. From two real blurred frames (left), we automatically and simultaneously es-
timate the motion region, the motion vector and the image intensity of the foreground
(middle). Based on this and the background intensity we reconstruct the two frames
(right)

in images. We again propose to employ concepts from nonlinear elasticity which reflect
first principles and to define shape averages which incorporate natural local measures
of the underlying deformation and its dissimilarity from an isometry. Furthermore, we
will introduce a robust approximation based on a diffusive phase field description of
shapes. Averaging is a fundamental task for the quantitative analysis of ensembles of
shapes and has already been extensively studied in the literature.
Very basic notions of averaging include the arithmetic mean of landmark positions [23]
and the image obtained by the arithmetic mean of the matching deformations [62,9].
For general images there are various qualitatively different notions of averaging. The
intension is a fusion or blending to simultaneously represent complementary informa-
tion of different but related images [45,43]. It appears natural to study relations between
shapes or more general image structures via deformations which transform one shape
or image onto the another one [23,62,16]. Conceptually, in the last decade correlations
of shapes have been studied on the basis of a general framework of a space of shapes
and its intrinsic structure. The notion of a shape space was introduced by Kendall [46]
already in 1984. Charpiat et al. [15,14] discuss shape averaging and shape statistics
based on the notion of the Hausdorff distance of sets. Understanding shape space as an
infinite-dimensional Riemannian manifold, Miller et al. [51,52] defined the average S
of samples Si, i = 1, . . . ,n, as the minimizer of

E [S ] =
n

∑
i=1

d(Si,S)2

for some metric d(·, ·), e. g. a geodesic distance in the space of shapes. Fuchs et al. [37]
proposed a viscoelastic notion of the distance between shapes S given as boundaries of
physical objectsO. The elasticity paradigm for shape analysis on which our approach is
founded differs significantly from the metric approach in shape space. Given two shapes
S1 and S2 and an elastic deformation φ from S1 to S2, we have to distinguish a usually
stress free reference configuration S1 from the deformed configuration S2 = φ(S1),
which is under stress and not in equilibrium. Due to the axiom of elasticity the energy
at the deformed configuration S2 is independent of the path which connects S1 with
S2. Hence, there is no notion of shortest paths if we consider a purely elastic shape
model. As outlined above assumed viscous or visco plastic materials forming a shape,
the underlying dissipation allows to measure length of connecting paths as long as the



final configuration is again stress free. Fletcher et al. [35] propose to use a shape median
instead of the geometric shape mean. The median is defined as the minimizer of the
functional E [S ] = ∑

n
i=1 d(Si,S).

4.1 A nonlinear elastic spring model

Here, we consider shapes encoded in images. In the simplest case, such an image
u : Ω → R is a characteristic function u = χO representing an object O as an open
set on some domain Ω ⊂ Rd with d = 2,3, and we define the object shape S := ∂O.
More generally we are interested in a shape S defined as the morphology of an image
and represented via the image edge set.
Let us assume that n images ui : Ω → R for i = 1, . . . ,n are given with a sufficiently
regular (d−1)-dimensional edge sets Si. We are interested in an average shape which
reflects the geometric characteristics of the n given shapes in a physically intuitive man-
ner. Suppose S ⊂ Rd denotes a candidate for this unknown set. Now, we take into ac-
count elastic deformations φi : Ω → Rd with φi(Si) = S . Assigned to each of these
deformations is an elastic energy W [Oi,φi], and we ask for a shape S such that the
total energy given as the sum over all the energiesW [Oi,φi] for i = 1, . . . ,n is minimal.
Here, we will again consider a polyconvex elastic energy W [Oi,φi] =

∫
Oi

Ŵ (Dφ)dL
given in (8) with the energy density Ŵ from (9) As described below we will have to
consider in addition a further energy contribution which acts as a prior on the shape S
in this variational approach. Obviously, this is a constrained variational problem. We
simultaneously have to minimize over n deformations φi and the unknown shape S
given n constraints φi(Si) = S . The model is related to the physical interpretation of the
arithmetic mean of n points x1, · · · ,xn in Rd . Indeed, the arithmetic mean x ∈ Rd mini-
mizes ∑i=1,...,n α d(x,xi)2, where d(x,xi) is the distance between x and xi and α > 0 is
the elasticity constant. Due to Hooke’s law the stored energy αd(x,xi)2 in the spring
connecting xi and x is proportional to the squared distance. Let us restrict the set of
admissible deformations for each object Oi imposing the constraint φi(Si) = S to de-
duce a suitable energy on shapes S being candidates for the shape average and sets of
deformations (φi)i=1,...,n matching given shapes Si with S (cf. 18):

E [S ,(φi)i=1,...,n] =

{ 1
n ∑

i=1,...,n
W [Oi,φi] ; φi(Si) = S for i = 1, . . . ,n

∞ ; else .

Finally, we define the shape average S as the minimizer over a suitable set of admissible
shapes AS , i. e.

S = argmin
S̃∈AS

((
argmin

φi:Oi→Rd
E [S̃ ,(φi)i=1,...,n]

)
+ηHd−1[S̃ ]

)
.

Here ηHd−1[S̃ ] with η > 0 acts as a prior on admissible shapes. In fact, we interpret
the elastic energyW [Oi,φi] associated with each deformation φi which maps one of the
shapes Si onto the shape S as a nonlinear counterpart of the energy stored in a spring
in the above classical interpretation of an averaged position. It measures in a physically
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Fig. 18. A sketch of the elastic shape averaging is shown. Input shapes Si (i = 1, . . . ,4)
extracted from input images ui are mapped onto a shape S via elastic deformations
φi. The shape S which minimizes primarily the elastic deformation energy plus some
shape prior to be discussed later is called the shape average of the given input shapes.
(Displayed are actual numerical results obtained by the algorithm). The resolution of
the underlying grid is 257×257 and the values for the involved parameters are γ = 107,
µ = 1, (a1,a2,a3) = (106,0,106).)
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Fig. 19. Sketch of the stress balance relation on the averaged shape. σin is short for
σ def[φi]n[S ].

rigorous way locally the lack of isometry as already mentioned above (cf. Figure 20). A
necessary condition for a set of minimizing deformations are the corresponding Euler
Lagrange equations. As usual, inner variations of one of the deformations lead to the
classical system of partial differential equations divŴ,A(Dφi) = 0 for every deformation
φi on Oi \Si. Due to the set of constraints (φi(Si) = S)i=1,...,n the conditions on Si are
interlinked. For simplicity let us assume that Si = ∂Oi for all i = 1, . . . ,n. Then we
can deduce a balance relation between deformation stresses on the averaged shape S .
Namely, for x ∈ S we obtain

∑
i=1,...,n

σ [φi](φ−1
i (x))n[Si](φ−1

i (x))Hd−1(Si) = 0, (37)

where n[Si] is the outer normal on Si, Hd−1(Si) the surface element on Si, and φ
−1
i (x)

the pre-image of x under the deformation φi. From elasticity theory we know that the
forces σ [φi](φ−1

i (x))n[Si](φ−1
i (x))Hd−1(Si) in the reference configuration equal the

corresponding forces σ def[φi](x)n[S ](x)Hd−1[S ] in the deformed configuration so that
(37) directly implies a balance of all normal stresses on the average shape S ,

0 = ∑
i=1,...,n

σ
def[φi](x)n[S ](x) ,



where n[S ](x) is the outer normal in S and σ def[φi] ◦ φi = σ [φi]det(Dφi)−1Dφ T
i the

usual Cauchy stress tensor corresponding to the deformation φi in the deformed config-
uration (cf. Figure 19). This gives a refined physical interpretation of the shape average
as the stable shape on which all surface forces implied by the elastic deformations
are balanced. Obviously, there is a straightforward generalization involving jumps of
normal stresses on interior interfaces in case of components of Si which are interior
edges in Oi. The hard constraint φi(Si) = S is often inadequate in applications. Due
to local shape fluctuations, for example, or noise in the shape acquisition there are
frequently local details like spurious edges in the input shapes which should not be en-
countered in the shape average. Hence, we relax the constraint and introduce a penalty
functional, which measures the symmetric difference of the input shapes Si and the pull
back φ

−1
i [S ] of the shape S and is given by

F [Si,φi,S ] =Hd−1(Si4φ
−1
i [S ]) ,

where A4B = A\B∪B\A. Finally, to sum up, our shape averaging model is based on
the energy

E γ [S ,(φi)i=1,...,n] =
1
n

n

∑
i=1

(∫
Oi

Ŵ (Dφi)dL+ γF [Si,φi,S ]
)

+ηHd−1[S ]. (38)

This approach is related to groupwise registration and segmentation results [69,70].
Here, F acts as a fidelity term measuring the quality of the registration of the shapes Si
with a given shape S under the deformations φi. Figure 20 shows results for the averag-
ing of some human figure sketches and underlines that the proposed method measures
locally the isometry defect.

4.2 A phase field approximation

As in the registration applications considered so far, we pick up the phase field ap-
proximation by Ambrosio and Tortorelli [2,3] and encode the edge set S by a smooth
phase field function v : Ω → R. For the input shapes Si we assume the corresponding
phase field description vi to be given a priori. Usually, vi can be computed beforehand,
minimizing the original Ambrosio Tortorelli type energy for given input images ui, or
explicitly constructed for a given edge set using the comparison function from the slic-
ing argument in [3]. Given a phase field parameter ε and corresponding phase field
representations v of S and vi of Si, respectively, we define an approximate mismatch
penalty

F ε [vi,φi,v] =
1
ε

∫
Ω

(v◦φi)2(1− vi)2 + v2
i (1− v◦φi)2 dL .

Here, we suppose v th be extended by 1 outside the computational domain Ω . The
first term in the integrand is close to 1 on Si \φ

−1
i [S ], because (1− vi) ≈ 1 on Si and

v◦φi ≈ 1 away from the vicinity of φ
−1
i [S ]. It tends to 0 with increasing distance from

this set. Analogously, the second term acts as an approximate indicator function for
φ
−1
i [S ]\Si. Let us emphasize that F ε [vi,φi,v] is expected to be a true approximation of



Fig. 20. Given five silhouettes of a person as input shapes a shape average (bottom
right) is computed based on our elastic averaging approach. The original images are
depicted along with their deformations φi (continued to the region outside the object and
displayed acting on a checkerboard on the image domain Ω ) and the distribution of local
change of length |Dφi|2 and local change of area det(Dφi) (from left to right). These
local densities ranging over [0.97,1.03] and [0.97

√
2,1.03

√
2], respectively, are color-

coded using the color map . The underlying image resolution is 513× 513,
and the energy parameters are γ = 107, µ = 10−2. The phase field parameter in the
implementation is chosen equal to the grid size.

F [Si,φi,S ] only, if φi is neither distending nor compressive orthogonally to the shape,
i. e. Dφi n[φ−1

i [S ]] · n[φ−1
i [S ]] = 1 on φ

−1
i [S ]. Nevertheless, because we are primarily

interested in the limit for γ → ∞, F ε [vi,φi,v] acts as a proper penalty functional.
Next, we have to describe the phase field v, which is not given a priori, in an implicit
variational form and consider the usual energy

Hd−1
ε [v] =

∫
Ω

ε|∇v|2 +
1

4ε
(v−1)2 dL ,

which additionally acts as a regularization energy measuring an approximation of the
Hd−1 measure of the shape S represented by the phase field v.
So far the elastic energy is evaluated on the object domains Oi only. For practical rea-
sons of the later numerical discretization, we now let the whole computational domain
behave elastically with an elasticity several orders of magnitude softer outside the object
domains Oi on the complement set Ω \Oi. We suppose that, based on a prior segmen-
tation of the images ui, a smooth approximation χ ε

Oi
of the characteristic function χOi



Fig. 21. Input images together with ‖Dφi‖ and det(Dφi) (ranges of [0.6,1.4] and
[0.6
√

2,1.4
√

2] color-coded as ) and the average phase field (rightmost). In
the top row only the interior of the two shapes behave elastic, whereas in the bottom
row the whole computational domain is considered to be homogeneously elastic. Ob-
viously, in the upper case far stronger strains are visible in the region of the gap and in
the lower case it is much more expensive to pull the lobes apart in the first shape than
to push them together in the second shape. Hence, the resulting average in the second
row is characterized by stronger bending of the two lobes similar than in the first row.
(Results are obtained for a grid resolution 1025×1025 and parameter values γ = 107,
µ = 0.1, ε = 6h.)

is given and define a corresponding approximate elastic energy

Wε [Oi,φi] =
∫

Ω

(
(1−δ )χ ε

Oi
+δ

)
Ŵ (Dφi)dL ,

where in our application δ = 10−4. Also, in the above we implicitly assumed that de-
formations φi map the domain Ω onto itself; for numerical implementation we will
relax this assumption and perform integrations only in regions where all integrands are
defined. Finally, the resulting approximation of the total energy functional to be mini-
mized reads

E γ,ε [v,(φi)i=1,...,n] =
1
n

n

∑
i=1

(Wε [Oi,φi]+ γF ε [vi,φi,v])+ηHd−1
ε [v] . (39)

Let us remark that we are particularly interested in the case, where F ε acts as a penalty
with γ � 1 andHd−1

ε ensures a mild regularization of the averaged shape with η � 1.
The structure of the penalty functional F ε tries to match the shapes of the given phase
field functions vi, and the pull back v◦φi of the phase field v has to be determined. This
implies a particular stiffness of the deformations φi on the diffused interface around
the shapes Si. Indeed, there the set of deformations φ1 . . . ,φn tries to minimize stretch
of compression normal to the shape contour measured in terms of Dφ n[Si] ·n[Si]−1.
In the limit for γ → ∞ this does not hamper the elastic deformation, because the other
(tangential) components of the deformation tensor can relax freely. Figure 21 shows
the impact of the choice of the elastic domain on the average shape. Here, we once
consider the whole computational as homogeneously elastic, and alternatively – and in
many cases physically more sound – only the object domain is assumed to be elastic



and considerably stiff. The region between both lobes is more severely dilated if the
elastic energy is weighted with a small factor outside the shape, which becomes obvi-
ous especially in the plots of the elastic invariants. Furthermore, the particular role of
the diffused interface with respect to the compression rates is indicated by the color
coding. As first illustrative examples, we computed the average of different 2D objects

Fig. 22. 20 shapes “device7” from the MPEG7 database and their average phase field.
The bottom line shows |Dφi|2 and det(Dφi) for shape 2, 8, and 18, with ranges of
[0.8,1.2] and [0.8

√
2,1.2

√
2] color-coded as . (Resolution 513×513, γ = 107,

µ = 10−2.)

as shown in Figures 22. Furthermore, Figures 20 has already shown that due to the
invariance of the hyperelastic energy with respect to local rotations, the computed av-
erages try to locally preserve isometries. Effectively, the different characteristics of the
input shapes, both on the global and a local scale, are averaged in a physically intuitive
way, and the scheme proves to perform fairly robust due to the diffusive approximation
based on the phase field model and the multi scale relaxation. In what follows we will
consider the averaging of 3D shapes originally given as triangulated surfaces and first
converted to an implicit representation as binary images. A set of 48 kidneys and a set
of 24 feet will serve as input data. We will employ a hyperelastic energy (8) with a
density (9) with p = q = 4 and s = r = 2. The first five original kidneys and their com-
puted average are shown in Figure 23 . In fact, since the average 3D phase field itself
cannot be properly displayed, we instead depict one of the original kidneys, deformed
to the average configuration. This is allowed, for all deformed kidneys look alike and
constitute each just one representative of the average equivalence class in the quotient
space of images relative to the edge equivalence relation. (It goes without saying that



the deformed kidney boundaries only coincide up to the width of the phase field.)

Fig. 23. Five segmented kidneys and their average (right). (Result obtained for resolu-
tion 257×257×257 and parameter values γ = 107, µ = 1, (a1,a2,a3) = (108,0,107).)

Fig. 24. On the left, 48 kidney shapes are shown. On the right, from top left to bottom
down the averaged shape of the first two, four, five, six, eight and of all 48 kidneys are
depicted. The parameter values are as for Figure 23.

The next example consists of a set of feet, where the average may help to design an
optimal shoe. The 24 original feet are displayed in Figure 25. Their surface is colored
according to the local distance to the surface of the computed average shape, which
helps to identify regions of strong variation. Furthermore, to allow a better comparison,
the foot shapes, have been aligned with the average for the final visualization. Let us
emphasize that the algorithm itself robustly deals with even quite large rigid body mo-
tions. Apparently, the instep differs comparatively little between the given feet, whereas
the toes show a rather strong variation. Note that—since we only display normal dis-
tance to the surface of the average foot—any potential tangential displacement is not
visible, but could of course also be visualized when examining shape variation.
To illustrate that the approach can also be applied to average image morphologies, let us



Fig. 25. 24 given foot shapes, textured with the distance to the surface of the average
foot (bottom right). Values range from 6 mm inside the average foot to 6 mm out-
side, color-coded as . For that purpose, the shapes have been aligned to the
average. The front of the instep can be identified as a region of comparatively low vari-
ation. (Result obtained for resolution 257×257 and parameter values γ = 107, µ = 1,
(a1,a2,a3) = (108,0,108).)

consider four two-dimensional, transversal CT scans of the thorax as input (Figure 26,
left). Unlike the previous examples, these images do not encode volumetric shapes
homeomorphic to the unit ball, but contain far more complicated structures. Also, the
quality of contrast differs between the images, and—even more problematic—the im-
ages do not show a one-to-one correspondence, i. e. several structures (the scapula, ribs,
parts of the liver) are only visible in some images, but not in others. Nevertheless, the al-
gorithm manages to segment and align the main features (the heart, the spine, the aorta,
the sternum, the ribs, the back muscles, the skin), yielding sensible average contours
(Figure 26, right). In order to achieve this, we this time jointly segmented and averaged
the original CT scans, i. e. we augmented our objective function (39) by the original
Ambrosio–Tortorelli energy for each image and then alternatingly optimized for the vi,
v, and φi. The second to fourth column of Figure 26 depict the corresponding defor-
mations φi and the deformation invariants. Obviously, the deformation behaves quite
regularly: Not only is it homeomorphic, but also too large and distorting deformations
are prevented by the hyperelastic regularization. This enables the method to be applied
to images containing also distinct structures, whereas for viscous flow regularization as
in [11,17] such individual structures are at risk of being matched with anything nearby
(a frequently used example for viscous fluid regularization even matches a disc to a
C-shape). The deformation energy is quite evenly distributed over the images and only
peaks at pronounced features, where a local exact fit can be achieved (e. g. at the back
muscles). Outside the thorax, the energy rapidly decreases to zero, justifying that in this
example we did not weight the elastic energy differently inside and outside the body.



Fig. 26. Averaging of four CT scans of the thorax. From left to right: Original images,
deformations φi, |Dφi|2 and det(Dφi) (color-coded as with ranges [0.8,1.2]
and [0.8

√
2,1.2

√
2]), and average phase field. (Result obtained for resolution 257×257

and parameter values γ = 107, µ = 0.1.)

4.3 Joint image segmentation and shape averaging

In the derivation of our shape averaging model we have assumed that the shapes Si
to be averaged can be robustly extracted from a set of images ui with i = 1, . . . ,n and
are a priori given. However, if we consider shapes being defined as the morphology of
images represented by edges, some of these edges will be characterized by significant
noise or low contrast and hence will be difficult to extract. Here, it might help to take
into account the corresponding edges in the other images, which all refer to the same
edge of the average shape. Indeed, in this case a joint approach of shape segmentation
and registration with an averaged shape is particularly promising: On the one hand the
quality of shape averaging highly depends on the robustness of the edge detection in the
input images. On the other hand, a reliable average shape can be used to improve edge
detection in case of a poor image quality. Incorporating the classical Mumford Shah
segmentation approach in the above shape averaging functional (38) we end up with
the joint functional

E γ
joint[S ,(ui,Si,φi)i=1,...,n] =

1
n

n

∑
i=1

(EMS[ui,Si]+W [Ω ,φi]+ γF [Si,φi,S ])

+µHd−1[S ] ,



Fig. 27. Blurred edges can be restored based on a joint approach for image segmentation
and averaging. The three input images u0

i are depicted along with their phase field vi
as computed by the joint segmentation and averaging. The computed average shape
is also shown (right). Apparently, the strongly blurred edges in the first input image
were reconstructed based on the corresponding edges in the other images. (Resolution
513× 513, γ = 107, µ = 10−2, (a1,a2,a3) = (108,0,108), α = 2 · 1010, β = 2 · 105,
η = 2 ·106.)

which has to be relaxed simultaneously in ui, Si, φi for i = 1, · · · ,n and S for a given set
of input images (u0

i )i=1,··· ,n. Let us remark that we use the parameter µ for the weighting
of the area of the shape S , because an η already weight the area of the input shape Si.
Finally, let us consider the phase field approximation for this joint model given by the
functional

E γ,ε
joint [v,(ui,vi,φi)i=1,...,n] =

1
n

n

∑
i=1

(E ε
AT[ui,vi]+Wε [Oi,φi]+ γF ε [vi,φi,vi])

+µHd−1
ε (v) .

where E ε
AT[ui,vi] denotes the classical Ambrosio Tortorelli functional for given image

intensities u0
i and for i = 1, . . . ,n. Figure 27 demonstrates that in a joint approach blurry

edges in the input images can be segmented, if sufficiently strong evidence for this edge
from other input images is integrated into the averaged shape.
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