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Numerical homogenization is a tool to determine effective macroscopic material properties
for microstructured materials. This tool is tailored and applied to ensembles of young and
elder human and of porcine and bovine vertebral bone specimens. On the microscale of the
spongiosa a linearized Lamé–Navier type elasticity model is assumed and the computed
macroscopic material properties are represented by a general elasticity tensor. The
computation is based on a suitable set of microscopic simulations on the cubic specimens
for macroscopic strain scenarios. The subsequent evaluation of the effective stresses is used
to determine effective linear elasticity tensors. A Composite Finite Element discretization
is taken into account to resolve the complicated domain. The classical strain–stress and a
corresponding variational homogenization approach are compared. In case of an (artificial)
periodic microstructure, a fundamental cell is easily identified and a macroscopic unit
strain can be imposed using affine-periodic boundary conditions. In contrast, statistically
periodic structures require the identification of statistically representative prototype
cells. Unit macroscopic strains are then imposed only in an approximate sense using
displacement boundary conditions. The impact of the resulting boundary artifacts on the
solution are compensated for via restricting the evaluation of effective stress to a suitably
selected smaller subset of the cubic specimen. Furthermore, an optimization approach is
used to identify possible axes of orthotropy of the resulting linear elasticity tensor. Finally,
the different specimens of human, porcine and bovine spongiosa are analyzed statistically.
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1 INTRODUCTION

This article presents a numerical homogenization approach to non-periodic, microstructured
elastic materials and applies it to different specimens of trabecular bone. The numerical
method is based on a Composite Finite Elements discretization on the microscale of statistically
representative fundamental cells.
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Trabecular bone is the material microstructure of bones, which is of enormous biomechani-
cal interest [1] and mainly located inside vertebral bodies and the epiphyses of long bones. It
is often affected by osteoporosis [2, 3, 4] in elderly humans. Increasing costs (3.79 million os-
teoporotic fractures in Europe in 2000 lead to direct costs of 31.7 billion Euros [5], an estimate
[6] for 2050 is 76.7 billion Euros) triggered the development of treatment techniques such as
fixation devices [7], interbody fusion cages [8, 9], vertebroplasty and kyphoplasty [10, 11, 12],
and special implant types [13, 14].

Finite element simulations for bone microstructure [15, 16, 17] are used to study the me-
chanical properties and assess those treatment techniques. Single-scale simulations resolving
the trabecular microstructure, however, require huge amounts of computational resources [18].
Coarse scale continuum models rely on a proper identification of effective material properties
which are very difficult to determine experimentally as the in situ loading conditions can
hardly be reproduced [19]. In fact, instead of experimental measurements, finite element
models can be used to determine these effective coarse scale material properties [20].

For macroscopically homogeneous microstructured materials, the terms numerical ho-
mogenization [21] or upscaling [22] denote computational methods for determining effective
material properties. Those can then be used e.g. in a purely macroscopic or in a truly two-scale
FE simulations [23, 24, 25]. Furthermore, multigrid coarsening strategies for upscaling were
proposed in [26, 27, 28]. For merely statistically periodic cellular solids, fundamental cells are
referred to as representative volume elements [29], representative elementary volumes [30] or
statistical volume element [31], their size should be at least 5 inter-trabecular distances [32].
Their homogenization was already studied for instance in [33, 34].

Composite finite elements for geometrically complicated domains are a very effective
approach to avoid nontrivial 3D tetrahedral meshing [35, 36, 37] of complicated domains
as necessary for classical finite element methods. Instead of treating geometric complexity
in geometrically complicated meshes with simple basis functions, so-called composite basis
functions on regular structured meshes are used. Alternative approaches are the immersed
interface methods [38, 39, 40], immersed finite elements [41, 42], generalized finite element
methods [43, 44, 45], extended finite element methods [46], fictitious domain methods [47, 48,
49] and their combination with finite elements [50], weighted extended B-splines [51, 52], and
unfitted meshes [53].

The composite finite element approach was first introduced in [54, 55, 56, 57] and presented
for geometrically complicated domains on 3D regular hexahedral computational grids in [58].
Its application to homogenization for geometrically periodic microstructures was discussed
in [59], and the homogenization for statistically periodic structures was proposed in [60] in
the context of composite finite elements for discontinuous coefficients across geometrically
complicated interfaces.

2 MATERIAL AND METHODS

In this section we will specify the concrete type of trabecular bone specimen investigated here.
Then, tailored to this application scenario we develop the homogenization approach, empha-
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sizing the interplay of the classical strain–stress based and a variational approach. Finally, we
will derive the numerical algorithm based on a composite finite element discretization.

2.1 Trabecular Bone Specimens

Trabecular bone specimens were harvested from a young male (human-y) and an osteoporotic
elderly female Caucasian human donor (human-o), and from a porcine and a bovine spine.
Individual vertebral bodies were extracted, top and bottom end plates were removed using
a band saw, leaving slices of 12 mm thickness. Cylindrical specimens were then extracted
using a trepan of 8 mm diameter and bone marrow was removed using a water jet (Braun
Oral-B Professional Care 6500, Kronberg, Germany). Six specimens for each individual were
selected by visual inspection and assessment of structural damage by the sample extraction
process and scanned in µCT at 35 µm (XCT FAN Beam µ-Scope, Stratec Medizintechnik
GmbH, Pforzheim, Germany) and 8 bit resolution. The 3D dataset was resampled to 40 µm
resolution by trilinear interpolation, voxel values now being treated as floating point numbers.
A segmentation threshold was determined based on the grey value histogram [61] and two
cubes of 1293 voxels (corresponding to 5.16 mm edge length) were extracted at the bottom
and top of the cylindrical dataset. Thereby, the z axis in the datasets is the craniocaudal
anatomical axis (up to orientation) whereas the dorsoventral and dextro-sinistral axes are
no longer known and differ between specimens. Finally, subtracting the threshold from
the voxel data yields an appropriate domain description where the zero level set describes
the trabecular boundaries and negative values correspond to the interior. Two examples
for each species are rendered in Fig. 1. For the trabecular structures, we assume a Young
modulus E = 13 GPa and a Poisson ratio ν = 0.32 which are realistic values for human
trabecular bone [62]. Trabecular separation (Tb.Sp) was determined using a CT analysis
software (CTAn, Skyscan, Kontich, Belgium) and local separation measurements of the porous
structure. Volume based local separation is here defined via the identification of the largest
sphere that includes the point of interest and that fits completely in the pore [63].

2.2 Numerical Homogenization

In this paragraph we first discuss a numerical homogenization technique for strictly peri-
odic structures. Hence, we argue that the effective elasticity tensor satisfies all symmetry
requirements expected from a physical point of view. The homogenization method is then
adapted to the case of statistically representative fundamental cells so that it can be applied
to trabecular bone specimens.

Let Ω denote the computational domain (for simplicity, we assume Ω = [0, 1]3) and
Ω# ⊂ Ω denote a fundamental lattice cell of the interior trabecular structure. The notation #
is supposed to suggest both periodicity and trabecularity. Moreover, let

∂#Ω# := ∂Ω# ∩ ∂Ω

Ω#
β := {x ∈ Ω# | dist(x, ∂Ω) > β}

(1)

so that ∂#Ω# is the ‘exterior boundary’ of the microstructure and Ω#
β is an interior part of the

microstructure with (sufficient) distance β from the boundary of the computational domain
to later avoid boundary artifacts.
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human-y human-o porcine bovine

Figure 1: For each species, two specimens of trabecular bone are shown. The resulting effective
elasticity tensors are visualized next to the specimens and from the same perspective (i. e. before
optimizing axis alignment). The scale of the tensor visualization is the same for all human specimens
(left two columns) and four times bigger than for all animal specimens (right two columns).

Moreover, C denote the microscopic linearized elasticity tensor for our trabecular structure
and is given in the usual tensor notation as

Cijkl = λδijδkl + µ(δilδjk + δikδjl) (2)

where λ = E·ν
(1+ν)(1−2ν) ≈ 8.754 GPa and µ = E

2(1+ν) ≈ 4.924 GPa.

Numerical Homogenization for Periodic Structures. Let us first discuss the strain–stress
type ‘cell problem’ approach (cf. [64, Chapter 1]) used in homogenization on strictly periodic
fundamental cells Ω# and given microscopic elasticity tensor C. In this approach, a set of
unit macroscopic strains ū is used to compute periodic correction profiles ũ (by a microscopic
simulation) and to evaluate the actual physical equilibrium displacements u = ū + ũ. From
this, a resulting average stress σ̄ can be derived, yielding the entries of a macroscopic elasticity
tensor C̄. This approach involves solving the problem

−div (Cε(u)) = 0 ⇒ −div (Cε(ũ)) = div (Cε(ū)) (3)

Given the material stiffness and a specimen weight of several 100 mg, volume forces (such as
gravity) are ignored here. The variational formulation of (3) is given by

ˆ
Ω#

Cε(ũ) : ε(v) = −
ˆ

Ω#
Cε(ū) : ε(v) ∀v ∈ H1,2

# (Ω#; R3) (4)

for the displacement ũ ∈ H1,2
# (Ω#; R3) with the additional condition

ffl
Ω# ũ = 0 to ensure

uniqueness of the decomposition. Here, the function space H1,2
# (Ω#; R3) denotes the usual

Sobolev space H1,2 of vector-valued functions which fulfill periodic boundary conditions.
The effective elasticity tensor C̄ = (C̄ijkl)ijkl couples macroscopic strain ε(ū) and stress σ̄

via σ̄ = C̄ε(ū), where the effective stress is evaluated as σ̄ =
ffl

Ω# Cε(ū + ũ). To determine C̄
one has to consider sufficiently many displacements ūij for i, j ∈ {0, 1, 2} (due to symmetry of
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stress and strain, 6 are actually sufficient) with linearly independent strain tensors. In explicit
we choose ε(ūij) = eij := 1

2 (ei ⊗ ej + ej ⊗ ei). and obtain C̄··ij = σ̄ij =
ffl

Ω# C
(
ε(ũij) + eij

)
,

where ũij solves (4) for given ūij. Microscopic symmetry of stress and strain ensure the
symmetries C̄ijkl = C̄jikl = C̄ijlk also for the homogenized elasticity tensor. For physical
reasons, the symmetry C̄ijkl = C̄klij also needs to be satisfied. Practically, one observes a lack
of the this symmetry in case of the resulting, numerically computed elasticity tensors. This
effect vanishes in numerical experiments for decreasing grid size and smooth microscopic
domain shape. Hence, it turns out to be mathematically more convenient to use another
variational formulation with the same Euler–Lagrange equation (in the continuous case)
instead: For given macroscopic displacement ū, find the minimizer ũ in

 
Ω#

C̄ε(ū) : ε(ū) = inf
ṽ∈H1,2

# (Ω;R3)

 
Ω#

Cε(ū + ṽ) : ε(ū + ṽ) . (5)

In fact, the entries C̄ijkl of the symmetric tensor C̄ can be obtained from the already computed
strains eij using the formula

Cijkl = Ceij : ekl =
(
Ceij+kl : eij+kl − Ceij−kl : eij−kl

)
, (6)

where eij±kl := 1
2 (eij ± ekl), and ūij with ε(ūij) = eij. Indeed, we obtain

C̄ijkl =
 

Ω#
C̄ε(ūij) : ε(ūkl) =

 
Ω#

C̄ε(ūij+kl) : ε(ūij+kl)− C̄ε(ūij−kl) : ε(ūij−kl)

=
 

Ω#
Cε(ūij+kl + ũij+kl) : ε(ūij+kl + ũij+kl)− Cε(ūij−kl + ũij−kl) : ε(ūij−kl + ũij−kl)

(7)

where ε(ūij±kl) = 1
2 (eij ± ekl) and ũij±kl is the corresponding solution of (4). By definition the

resulting elasticity tensors C̄ are now symmetric.

An argument in favor of the variational approach. In what follows, we will analyze the
above lack of symmetry in numerical strain–stress homogenization approach. Therefore,
we will first demonstrate that under sufficient smoothness assumptions on the microscopic
elasticity tensor C, the macroscopic tensor C̄ obtained either from (4) or from (5) coincide.

Using Einstein summation convention and the notation w,i = ∂iw for partial derivatives,
we first observe

−(Cijkl ũmn
l,k ),i = (Cijmn),i (8a)

σ̄kl = (C̄ijmnε(ekl)mn)ij = (C̄ijkl)ij (8b)

C̄ijkl = σ̄kl
ij =

 
Ω#

Cijkl(δikδjl + ũkl
j,i) (8c)

where (8a) follows from (3) and the symmetry of C, (8b) follows from σ = Cε(u), ε(ūkl) = ekl ,
and (8c) is the cell problem (4).
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Then the desired symmetry holds due to

C̄ijkl − C̄klij
(a)
=
 

Cijmn(δmkδnl + ũkl
n,m)−

 
Cklmn(δmiδnj + ũij

n,m)

=
 

Cijkl − Cklij + Cijmnũkl
n,m − Cklmnũij

n,m
(b)
=

 
Cijmnũkl

n,m − Cklmnũij
n,m

(c)
=
 
−Cijmn,mũkl

n + Cklmn,mũij
n

(d)
=

 
−Cmnij,mũkl

n + Cmnkl,mũij
n

(e)
=
 

(Cmnpqũij
q,p),mũkl

n − (Cmnpqũkl
q,p),mũij

n

(f)
=
 
−Cmnpqũij

q,pũkl
n,m + Cmnpqũkl

q,pũij
n,m = 0

(9)

Here, the domain of integration Ω# is left out everywhere to keep notation simple. Step (a) is
due to (8c), (b) uses the symmetry of the microscopic tensor, (c) results from an integration
by parts with periodic boundary conditions, (d) again uses the symmetry of C, (e) takes into
account Equation (8a), and (f) is again based on an integration by parts.

For ε(ūij±kl) = eij±kl , the periodic function ũij±kl solves
 

Ω#
Cε(ūij±kl) : ε(θ) = −

 
Ω#

Cε(ũij±kl) : ε(θ) (10)

for all test functions θ ∈ H1,2
# (Ω#; R3), and ũij±kl = 1

2 (ũij ± ũkl). Moreover,

σ̄ij±kl =
1
2
(σ̄ij ± σ̄kl) =

 
Ω#

Cε(ūij±kl + ũij±kl) , (11a)

0 =
 

Ω#
Cε(ūij±kl + ũij±kl) : ε(θ) (11b)

for all test functions θ ∈ H1,2
# (Ω#; R3). Hence

C̄ijkl =
 

C̄ijkleij : ekl
(a)
=
 

C̄ijklε(ūij+kl) : ε(ūij+kl)− C̄ijklε(ūij−kl) : ε(ūij−kl)

(b)
=

 
Cijklε(ūij+kl + ũij+kl) : ε(ūij+kl + ũij+kl)− Cijklε(ūij−kl + ũij−kl) : ε(ūij−kl + ũij−kl)

(c)
=
 

Cijklε(ūij+kl + ũij+kl) : ε(ūij+kl)− Cijklε(ūij−kl + ũij−kl) : ε(ūij−kl) (12)

(d)
=

1
4

[
(σ̄ij + σ̄kl) : (eij + ekl)− (σ̄ij − σ̄kl) : (eij − ekl)

]
(e)
=

1
4
(
Ĉijij + Ĉijkl + Ĉklij + Ĉklkl

)
− 1

4
(
Ĉijij − Ĉijkl − Ĉklij + Ĉklkl

)
=

1
2
(
Ĉijkl + Ĉklij

)
where Ĉ denotes the homogenized tensor obtained by the strain–stress cell problem formula-
tion above. Here, step (a) uses the symmetry of C̄ in the first two and in the last two indices
and (6), step (b) results from ũ solving the cell problem, step (c) uses that the ũ are admissible
as test functions, step (d) takes into account (11a), step (e) refers to the property (8c) for
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Ĉ. Finally the symmetry of Ĉ already proved above in (9) shows that the two tensors are
equivalent, so the symmetry of C̄ holds.

The above argumentation requires the microscopic elastic stress Cε(ũ) to be differentiable
on the domain Ω#. This surely true in the continuous case but fails to hold in the spatially
discrete case. Indeed, for a piecewise affine and continuous displacement, the resulting stress
will jump on grid cell boundaries. We consider this as the reason for the numerically observed
lack of symmetry. Hence, numerically it is advisable to consider the variational definition of
the homogenized elasticity tensors at basically no additional computational cost.

Numerical Homogenization for Statistically Periodic Trabecular Structures. Let us now
briefly sketch the numerical homogenization procedure for statistically periodic trabecular
microstructures. For more details (in the case of discontinuous coefficients) we refer to [60].
In this case, there is no useful notion of periodic boundary conditions for the correction
profile. Instead, a macroscopic strain ε(ū) is prescribed by (Dirichlet) displacement boundary
conditions on ∂#Ω#. To compensate for boundary artifacts (artificial stiffening due to the
Dirichlet boundary conditions), the evaluation of the average stress σ̄ is restricted to the
proper interior subset Ω#

β of the structure. Note that Ω#
β is the set that still needs to be

statistically representative for the microstructure. As the simulation needs to be run on
whole Ω#, one needs to find a trade-off between sufficiently large boundary layer (β > 0)
and sufficiently small computational overhead (β � 0.5). In our applications, the value
β = 0.125 is chosen because it corresponds to approximately one inter-trabecular distance
for the animal specimens and leads to sufficiently reliable results for the human species,
cf. Table 2. Ün et al. [65] obtain the same thickness of a boundary layer to be ignored in a
similar approach. They, however, use cylindrical specimens and model a standard mechanical
experiment with stress-free side boundary, leading to artificial softening of the structure
compared to its in situ properties.

For ūij, i, j = 0, 1, 2, defined as above, we solve the microscopic problems

−div
(
Cε(uij)

)
= 0 in Ω#

uij = ūij on ∂#Ω#
(13)

for uij. The average stress is then evaluated as

σ̄ij =
 

Ω#
β

Cε[uij] . (14)

Due to ε(uij) = ε(uji) and (6), it is in fact sufficient to perform six instead of nine simula-
tions, automatically yielding a symmetric effective tensor C̄.

Tensor Visualization. The macroscopic elasticity tensor C̄ can be visualized following the
proposal in [66, 67] where the quantities N = n⊗ n (Nij = ninj), S = C̄N (Sij = C̄ijkl Nkl) and
finally σ = N : S (σ = NijSij) are computed and then the shape {σ · n|‖n‖ = 1} is rendered
as a representation of the compressive stiffness in different directions. Furthermore, the bulk
modulus tr S = ∑i Sii is used to color the deformed sphere.
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Tensor Rotation. Once we have computed the effective elasticity tensor C̄, orthotropy cannot
be verified immediately because the orthotropy axes are not necessarily aligned with the
coordinate axes. So we follow [68, 69] and determine a rotation matrix Q = (Qab)ab such that
the elasticity tensor C̄ rotated by Q minimizes a non-orthotropy defect

FC̄(Q) =
‖Ra[QmiQnjQpkQqlC̄ijkl ]‖2

F

‖Rb[QmiQnjQpkQqlC̄ijkl ]‖2
F

(15)

where Ra is the restriction to the entries not present in an aligned orthotropic tensor and
Rb the one to those present (upper left block and diagonal of lower right block in Voigt’s
notation). The rotation Q is described by roll, pitch, and yaw angles, all in the range
[−45◦, 45◦) because we are only interested in the axes up to orientation. Indeed, one observe
that FC̄ (Q(roll, pitch, yaw)) is a rather smooth function of the angles. Hence, the minimization
is performed by evaluating FC̄ at discrete angle triples and nesting intervals until a ’discrete’
minimum is reached. The computational workload of this simple optimization strategy as
a postprocessing step is negligible compared to the computational cost of the simulations
required for the actual numerical homogenization.

2.3 Composite Finite Elements for Numerical Homogenization

For the discretization of the elasticity problems (13) above, we use composite finite elements.
We will give a brief explanation of the method here and refer the reader to [58] for more
details on the method and its implementation.

The basic idea of composite finite elements for geometrically complicated domains is that a
regular hexahedral computational grid (divided in tetrahedra) is used together with piecewise
affine-linear basis functions multiplied by the characteristic function of a discretization Ω#�

of the microstructure Ω#.
Let φ be the level set function describing Ω# = {φ < 0}, obtained from voxel image data

corresponding to a regular hexahedral grid G�. Moreover, let φ� be its piecewise affine-linear
approximation on the regular tetrahedral grid G� obtained from the regular hexahedral
grid. Note that a piecewise multilinear approximation would be the natural choice for
voxel data, but φ� differs from this only by a negligible amount compared to noise of the
image acquisition process. Ω#� = {φ� < 0} is then an approximation of the trabecular
microstructure with piecewise planar boundary.

For ψ�
i being standard piecewise affine (scalar) finite element basis functions on G� indexed

over all nodes, composite finite element basis functions ψcfe

i are defined as

ψcfe

i := ψ�
i χΩ#� . (16)

This means that basis functions whose support lies completely within Ω#� are not modified
at all, those ψ�

i whose support is intersected by the interior boundary of Ω#� are cut off
and restricted to the trabecular microstructure, and those basis functions with support lying
completely outside Ω#� are set to zero and are ignored further on. Let us remark that all
regular hexahedral grid nodes inside Ω#� and one layer of nodes outside are assigned degrees
of freedom. In the vector-valued elasticity problem we consider here, the spatial components
of the displacement are discretized separately, resulting in 3 degrees of freedom per grid
node.
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For the assembly of the finite element matrices in an element-by-element way, a virtual
subdivision of the polyhedra T ∩Ω#� for tetrahedra T of G� is performed so that a ‘virtual’
tetrahedral grid G4 is obtained (but never stored explicitly). The basis functions ψcfe

i can
now be interpreted as composed of standard piecewise affine-linear ‘virtual’ basis functions
on G4 by linear combination—hence the term ‘composite’.

The uniform hexahedral structure of G� enables the use of geometric multigrid solvers
for the resulting systems of linear equations. Such a multigrid solver, which includes an
appropriate treatment of the Dirichlet boundary, is explained in [58].

Let us remark that there is no bound on the aspect ratio of the virtual tetrahedra (other
than the restriction that ψ must not be zero at regular grid points). This would lead to
poor condition numbers of the finite element matrices [70] in a single grid solver. The
gradients of the basis functions ψcfe

i , however, does not degenerate because they are merely
the gradients of standard basis functions φ� on the regular tetrahedral grid. The multigrid
method encounters difficulties if (geometrically) coarsened basis functions have disconnected
support with components in physically weakly coupled parts of the trabecular structure.
In this case, inappropriate coarse grid corrections in the multigrid solver can lead to poor
convergence rates. This effect can be remedied by choosing a sufficiently fine level in the
hierarchy of coarsened grids as coarsest level in the multigrid method (where an explicit
solver is applied).

3 RESULTS

The average trabecular spacings for the different species are listed in Table 1, showing that the
animal specimens are substantially larger (with smaller trabecular spacing) than the human
specimens. The width β of the boundary layer ignored for evaluating stresses is addressed
in Table 2 where macroscopic elasticity tensors were determined for different widths of
the boundary layer and the corresponding compressive stiffnesses were computed. Due to
the smaller trabecular spacing, the animal specimens permit smaller values for β than the
human specimens. Nevertheless, for better comparison we chose the value β = 0.125 for all
specimens.

Table 3 lists entry-wise averaged macroscopic elasticity tensors for each species in Voigt’s
notation in detail. The left plot in Fig. 2 compares the compressive stiffnesses in the two
non-craniocaudal directions x and y. Information about the dorsoventral and dextro-sinistral
axis is not available. Thus, we proceed with the computation of an averaged transverse
compressive stiffness. These values are listed in Table 1.

The craniocaudal compressive stiffness (direction z) is plotted against average compressive
stiffness in a scatter plot in the right plot in Fig. 2 and an average anisotropy for the different
species is listed in Table 1 (concerning these numbers, note that averaging and division do not
commute). Comparing the anisotropies, we observe that in pigs, craniocaudal stiffness is only
about 1.9 times the transverse one whereas the ratio in cows is about 2.6. These ratios are
approximately 2.4 for our non-osteoporotic human specimens and 2.9 for the osteoporotic ones.
For the human osteoporotic specimens, we observe 53 % smaller craniocaudal compressive
stiffness compared to the non-osteoporotic specimens whereas transverse stiffness decreases
by 61 %. Table 1 also lists shearing stiffnesses Gxy in the transverse x, y plane and the mean

9



Table 1: For the different species considered, the table lists the average trabecular spacing Tb.Sp in
mm and their standard deviations as well as the edge length of the evaluation domain Ω#

β=0.125
(defined in Equation (1)) in units of Tb.Sp. Volume fraction is the amount of trabecular volume
relative to the bounding box. Average compressive stiffnesses in craniocaudal (Ezz) and transverse
direction ((Exx + Eyy)/2) and the shear stiffnesses in the transverse plane (Gxy) and the mean of the
shear stiffnesses in the sagittal and coronal plane ((Gyz + Gzx)/2) are listed along with the respective
standard deviations. Moreover, the anisotropy ratio 2Ezz/(Exx + Eyy) between craniocaudal and
average transverse compressive stiffness is computed.

species human-y human-o porcine bovine

Tb.Sp in mm 0.918± 0.128 1.060± 0.113 0.426± 0.011 0.490± 0.071
edge length of Ω#

β=0.125 in Tb.Sp 4.22 3.65 9.08 7.90
volume fraction 0.141± 0.017 0.081± 0.022 0.370± 0.016 0.330± 0.033

Ezz in GPa 0.812± 0.246 0.383± 0.130 3.456± 0.295 3.203± 0.433
(Exx + Eyy)/2 in GPa 0.334± 0.130 0.130± 0.099 1.831± 0.173 1.263± 0.331
2Ezz/(Exx + Eyy) 2.550± 0.838 4.054± 1.825 1.891± 0.109 2.635± 0.474

Gxy in GPa 0.110± 0.043 0.042± 0.032 0.705± 0.075 0.475± 0.117
(Gyz + Gzx)/2 in GPa 0.182± 0.042 0.068± 0.049 0.939± 0.084 0.739± 0.135

shearing stiffnesses averaged for the sagittal and coronal plane, being larger than Gxy for all
species.

Finally, Fig. 3 shows two more porcine specimens that were obtained from the same bovine
vertebra. They are part of the same cylindrical dataset and thus have a distance of about
2 mm in craniocaudal direction. Moreover, the orientations in x and y direction are the same
for both specimens. The resulting tensors and rotation angles, however, differ significantly,
compressive stiffness in z direction by 33 % and the yaw angle by 44 %. This indicates that the
trabecular interior of a whole vertebral body cannot be viewed as an effectively homogeneous
material with spatially constant properties.

For the simulations for the leftmost (human-y) specimen in Fig. 1 at resolution 1293, the
Composite FE discretization resulted in a 3× 3 block matrix using 1158.6 MiB of memory,
where the solver took 6755.6 seconds of cpu time on an Opteron 3 GHz processor on average
for each of the six different settings of boundary conditions and a reduction of the residuum
by eight orders of magnitude. For the (more dense) rightmost (bovine) specimen, matrix
memory consumption was 1808.8 MiB and solver cpu time was 14 426.5 seconds.

4 CONCLUSION

This paper is an application study of numerical homogenization methodology in the area
of biomechanics of trabecular bone. In particular it underlines that a reliable extraction of
homogenized mechanical properties is feasible and can be used in future truly two scale
simulation tools. Let us briefly discuss some aspects of the presented approach and draw
conclusions.

The listings of averaged tensors in Table 3 exhibit a small orthotropy defect after finding
the axes of orthotropy. The slightly bigger orthotropy defect for the osteoporotic human
specimens compared to the non-osteoporotic and animal ones may indicate actual material
properties or may be due to specimens being to small.

10



Table 2: For one specimen of each species (those in the top row of Fig. 1), macroscopic elasticity tensors
are determined using evaluation domains excluding different boundary layers of width β. The table
lists the resulting compressive stiffnesses in direction of the optimal orthotropy axes in units of GPa.

human-y human-o porcine bovine
β Exx Eyy Ezz Exx Eyy Ezz Exx Eyy Ezz Exx Eyy Ezz

0/16 0.389 0.368 1.024 0.107 0.151 0.300 1.812 2.101 3.628 1.392 1.858 3.519
1/16 0.255 0.298 0.975 0.064 0.105 0.283 1.656 1.959 3.568 1.218 1.735 3.438
2/16 0.293 0.231 0.914 0.053 0.092 0.254 1.613 2.012 3.635 1.232 1.735 3.426
3/16 0.258 0.197 0.886 0.052 0.083 0.232 1.585 2.012 3.620 1.238 1.741 3.364
4/16 0.309 0.194 0.953 0.043 0.086 0.231 1.663 2.005 3.747 1.238 1.741 3.364
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Figure 2: The left plot shows a scatter plot of the compressive stiffnesses in the transverse directions
for the different species. On the right, the compressive stiffness in craniocaudal direction is plotted
against the average transverse compressive stiffness. The ellipses in both cases show one standard
deviation resulting from a principle component analysis for each species.

Exx = 1.199 GPa, Eyy = 1.492 GPa, Ezz = 3.584 GPa Exx = 0.903 GPa, Eyy = 0.786 GPa, Ezz = 2.690 GPa
roll = −7.52◦, pitch = 9.44◦, yaw = −18.22◦ roll = −12.27◦, pitch = 10.75◦, yaw = −26.27◦

Figure 3: Two specimens from the same bovine vertebral body, spaced apart approximately 2 mm in
craniocaudal direction and with the same x and y orientation, are visualized with their homogenized
tensors in the same way as in Fig. 1.
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Table 3: For each species, the elasticity tensor in Voigt’s notation are averaged in each entry along
with standard deviations. Entries for which the absolute value of the average plus the standard
deviation is smaller than 0.02 times the maximal entry are listed in grey.

C̄hu-y =


0.357± 0.125 0.176± 0.049 0.176± 0.037 −0.002± 0.009 −0.003± 0.016 0.005± 0.010
0.176± 0.049 0.502± 0.196 0.202± 0.040 0.001± 0.011 −0.004± 0.008 0.001± 0.008
0.176± 0.037 0.202± 0.040 0.940± 0.258 −0.002± 0.008 0.003± 0.007 −0.001± 0.011
−0.002± 0.009 0.001± 0.011 −0.002± 0.008 0.208± 0.059 −0.003± 0.007 −0.006± 0.006
−0.003± 0.016 −0.004± 0.008 0.003± 0.007 −0.003± 0.007 0.159± 0.034 −0.001± 0.008

0.005± 0.010 0.001± 0.008 −0.001± 0.011 −0.006± 0.006 −0.001± 0.008 0.112± 0.044



C̄hu-o =


0.150± 0.105 0.057± 0.039 0.065± 0.043 −0.003± 0.008 0.004± 0.008 0.002± 0.008
0.057± 0.039 0.173± 0.141 0.080± 0.059 −0.001± 0.009 0.002± 0.005 −0.001± 0.004
0.065± 0.043 0.080± 0.059 0.439± 0.155 0.000± 0.003 −0.001± 0.004 −0.001± 0.003
−0.003± 0.008 −0.001± 0.009 0.000± 0.003 0.080± 0.057 −0.001± 0.003 0.001± 0.003

0.004± 0.008 0.002± 0.005 −0.001± 0.004 −0.001± 0.003 0.059± 0.041 −0.001± 0.002
0.002± 0.008 −0.001± 0.004 −0.001± 0.003 0.001± 0.003 −0.001± 0.002 0.043± 0.033



C̄po =


1.581± 0.429 0.626± 0.136 0.740± 0.142 0.001± 0.013 0.005± 0.018 −0.015± 0.018
0.626± 0.136 1.585± 0.583 0.729± 0.171 −0.004± 0.016 0.005± 0.013 0.013± 0.018
0.740± 0.142 0.729± 0.171 3.700± 0.496 0.001± 0.008 −0.002± 0.009 0.006± 0.022
0.001± 0.013 −0.004± 0.016 0.001± 0.008 0.735± 0.187 0.002± 0.018 0.001± 0.008
0.005± 0.018 0.005± 0.013 −0.002± 0.009 0.002± 0.018 0.745± 0.138 0.002± 0.011
−0.015± 0.018 0.013± 0.018 0.006± 0.022 0.001± 0.008 0.002± 0.011 0.477± 0.116



C̄bo =


2.119± 0.294 0.895± 0.079 0.942± 0.096 −0.006± 0.013 −0.001± 0.013 0.009± 0.013
0.895± 0.079 2.453± 0.303 1.022± 0.104 −0.007± 0.027 0.000± 0.014 −0.001± 0.021
0.942± 0.096 1.022± 0.104 4.064± 0.350 0.005± 0.016 0.003± 0.009 0.003± 0.009
−0.006± 0.013 −0.007± 0.027 0.005± 0.016 0.982± 0.104 −0.005± 0.008 −0.007± 0.009
−0.001± 0.013 0.000± 0.014 0.003± 0.009 −0.005± 0.008 0.897± 0.093 −0.002± 0.008

0.009± 0.013 −0.001± 0.021 0.003± 0.009 −0.007± 0.009 −0.002± 0.008 0.706± 0.075


The results in Fig. 3 indicate that a numerical model for a full vertebral body should

be a full two-scale model. The trabecular structure resolved at the microscale should be
homogenized numerically (as presented in this paper) to obtain effective material properties
at a mesoscale. This mesoscale, not resolving individual trabeculae, should account for
spatial variations in the trabecular interior of the vertebral body, and should also include
geometry and local properties of the cortical shell. For the second homogenization step to
the macroscale (whole vertebral body) with spatially varying and possibly discontinuous
material properties, Composite Finite Elements for discontinuous coefficients [60], among
many other methods, can be used.

Given the CT scan datasets (thus ignoring the specimen acquisition and scanning process),
only little user interaction is required to perform the numerical homogenization using
Composite FE simulations. In particular, no meshing step (as in classical FE approaches) is
necessary.

An experimental validation of the composite finite element method including the segmen-
tation is still work in progress. A better theoretical understanding of the non-periodic homog-
enization method could also help with the appropriate choice of the boundary parameter β.
Furthermore, an assumption of similar microscopic material properties for human, bovine and
porcine specimens was quite questionable. It could be assumed that the constituents of bone
tissue, collagen type I and hydroxyapatite, are the same across mammals [71]. However, the
submicroscopic setup could be different resulting in different microscopic material properties.
This fact remains unclear and needs further investigation.
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[18] B. van Rietbergen, R. Müller, D. Ulrich, P. Rüegsegger, and R. Huiskes. Tissue stresses and strain
in trabeculae of canine proximal femur can be quantified from computer reconstructions. Journal
of Biomechanics, 32:165–173, 1999.

[19] Liliana Rincón-Kohli and Philippe K. Zysset. Multi-axial mechanical properties of human
trabecular bone. Journal of Biomechanics and Modelling in Mechanobiology, 8(3):195–208, 2009.

[20] Yan Chevalier, Dieter Pahr, Helga Allmer, Mathieu Charlebois, and Philippe Zysset. Validation of a
voxel-based FE method for prediction of the uniaxial apparent modulus of human trabecular bone
using macroscopic mechanical tests and nanoindentation. Journal of Biomechanics, 40:3333–3340,
2007.

[21] Luc Tartar. Optimal Shape Design, volume 1740 of Lecture Notes in Mathematics, chapter An
Introduction to the Homogenization Method in Optimal Design, pages 47–156. Springer, 2001.

[22] Todd Arbogast. Current Trends in Scientific Computing, chapter An overview of subgrid upscaling
for elliptic problems in mixed form, pages 21–32. Contemporary Mathematics. AMS, 2003.

[23] Thomas Y. Hou and Xiao-Hui Wu. A multiscale finite element method for elliptic problems in
composite materials and porous media. Journal of Computational Physics, 134:169–189, 1997.

[24] Todd Arbogast. Numerical Treatment of Multiphase Flows in Porous Media, volume 552 of Lecture
Notes in Physics, chapter Numerical Subgrid Upscaling of Two-Phase Flow in Porous Media, pages
35–49. Springer, 2000.

[25] Ana-Maria Matache and Christoph Schwab. Two-scale FEM for homogenization problems.
Mathematical Modelling and Numerical Analysis, 36(4):537–572, 2002.

[26] J. David Moulton, Joel E. Dendy Jr., and James M. Hyman. The black box multigrid numeri-
cal homogenization algorithm. Journal of Computational Physics, 142:80–108, 1998. Article No.
CP985911.

[27] Todd Arbogast, Susan E. Minkoff, and Philip T. Keenan. Computational Methods in Contamination
and Remediation of Water Resources, volume 1 of Computational Methods in Water Resources, chapter
An operator-based approach to upscaling the pressure equation, pages 405–412. Computational
Mechanics Publications, 1998.

[28] Achi E. Brandt. Methods of systematic upscaling. Technical Report MCS06-05, Weizmann Institute
of Science, 2006.

[29] S. J. Hollister and N. Kikuchi. A comparison of homogenization and standard mechanics analyses
for periodic porous composites. Computational Mechanics, 10:73–95, 1992.
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[52] Klaus Höllig, Christian Apprich, and Anja Streit. Introduction to the Web-method and its
applications. Advances in Computational Mathematics, 23:215–237, 2005.

[53] John W. Barrett and Charles M. Elliott. A practical finite element approximation of a semi-definite
Neumann problem on a curved domain. Numerische Mathematik, 51:23–36, 1987.

[54] W. Hackbusch and S. A. Sauter. Composite finite elements for the approximation of PDEs on
domains with complicated micro-structures. Numerische Mathematik, 75(4):447–472, 1997.

[55] W. Hackbusch and S. A. Sauter. Composite finite elements for problems containing small
geometric details. Part II: Implementation and numerical results. Computing and Visualization in
Science, 1(1):15–25, 1997.

[56] W. Hackbusch and S. Sauter. A new finite element approach for problems containing small
geometric details. Archivum Mathematicum, 34:105–117, 1998. Equadiff 9 issue.

[57] M. Rech, S. Sauter, and A. Smolianski. Two-scale composite finite element method for Dirichlet
problems on complicated domains. Numerische Mathematik, 102:681–708, 2006.

[58] Florian Liehr, Tobias Preusser, Martin Rumpf, Stefan Sauter, and Lars Ole Schwen. Composite
finite elements for 3D image based computing. Computing and Visualization in Science, 12(4):171–
188, April 2009.

[59] Lars Ole Schwen, Uwe Wolfram, Hans-Joachim Wilke, and Martin Rumpf. Determining effective
elasticity parameters of microstructured materials. In Proceedings of the 15th Workshop on the Finite
Element Method in Biomedical Engineering, Biomechanics and Related Fields, pages 41–62. University
of Ulm, July 2008.

[60] Tobias Preusser, Martin Rumpf, Stefan Sauter, and Lars Ole Schwen. 3D composite finite elements
for elliptic boundary value problems with discontinuous coefficients. 2010. submitted to SIAM
Journal on Scientific Computing.

[61] T. W. Ridler and S. Calvard. Picture thresholding using an iterative selection method. IEEE
Transactions on Systems, Man, and Cybernetics, SMC-8(8):630–632, August 1978.

[62] Uwe Wolfram, Hans-Joachim Wilke, and Philippe K. Zysset. Rehydration of vertebral trabecular
bone: Influences on its anisotropy, its stiffness and the indentation work with a view to age,
gender and vertebral level. Bone, 46:348–354, 2010.
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