
in Proceedings ICIP’01, 2001, vol. 3, pp. 1103–1106.

LEVEL SET SEGMENTATION IN GRAPHICS HARDWARE

M. Rumpf, R. Strzodka

University of Duisburg, Applied Mathematics, Lotharstr. 65, D-47048 Duisburg

ABSTRACT

Implicit active contours are a very flexible technique in the
segmentation of digital images. A novel type of hardware
implementation is presented here to approach real time ap-
plications. We propose to exploit the high performance of
modern graphics cards for numerical computations. Vec-
tors are regarded as images and linear algebraic operations
on vectors are realized by the graphics operations of im-
age blending. Thus, the performance benefits from the high
memory bandwidth and the economy of command transfers,
while the restricted precision does not infect the qualitative
behavior of the level set propagation. Here we pick up a
first order solver for the basic implicit level set model and
present an implementation performing at

�
ms for an explicit

timestep on a � ����� image.

1. INTRODUCTION

Robust and efficient segmentation algorithms on digital im-
ages are a key task in many computer vision applications.
Morphological techniques such as the watershed transform
and its successors [1, 2, 3] based on the simulated rainfall
on the topographically interpreted image, and propagation
techniques such as the active contour models [4, 5, 6, 7, 8]
based on a controlled curve or surface evolution, have been
presented recently. Especially the latter have proven very
flexible in incorporating diverse criteria for segmentation.
In early works the curves were explicitly parameterized,
which thus prohibited the approximation of segments topo-
logically different from the initial set in the front propa-
gation, because the curve could not split. Implicit models
[8, 6], in contrast, represent the curve as the zero level curve
of a function ���
	��� ��������� defined on the whole domain� . The evolution of the function is controlled by a PDE,
where an external term includes information about the ini-
tial image. Upwind methods [9, 5] allow a stable implemen-
tation of this front propagation problem. The level set then
is able to split and merge during the evolution.

Our concern is the efficient implementation of the ba-
sic implicit model in graphics hardware. As with other data
transfer dominated problems such as volume rendering [10]
and filtering [11], where implementations in graphics hard-
ware have proven very efficient, the level set models could

also benefit from the higher memory bandwidth and the
vector-like image operations of graphics cards. The actual
task is the reformulation of the numerical schemes so that
operations can be performed on entire images while respect-
ing the graphics restrictions of number formats and opera-
tions. Thereby the reduced number precision is of no further
concern, as long as the algorithm can visibly reproduce the
segmentation results, since this is the relevant criterion in
applications.

2. REVIEWING THE LEVEL SET MODEL

We briefly review the analytical model and then consider
a discretization of the basic level set model for image seg-
mentation as presented in [12]. Here we mainly focus on the
set of the required arithmetic operations for later conversion
into image operations supported by graphics hardware.

We consider the domain ������� ����� �"! , #$� � �&% and
ask for a solution of the following nonlinear initial value
problem: Find �'���)(+*,�-�.� such that/10 �32547698:�)6;� ��� in �)(<*=�>����"�1�?� �A@B� on �>�/�C � � ��� on �)(+* / �D�
where 4E�F�7!G� � is the normal velocity of the level
set, which incorporates the external forces derived from the
original image H,���-�.� . We confine to propagation speed
which depends solely on the underlying image. A common
choice for 4 in this context is a characteristic function IKJ ,
where L is a set containing the image intensities chosen
for segmentation. A dependence on the evolving level set
function itself for example via curvature type regularization
terms can in principle also be incorporated. However, we
skip this expansion beyond the basic model here. It will be
an issue for future considerations.

We discretize the problem with finite differences on a
uniform quadrilateral, respectively hexahedral grid. We enu-
merate the grid elements with a # -dimensional multi-indexM and denote the element centers by the # -dimensional vec-
tors NPO . The discrete functions over this grid will be put
in capital letters ( Q ) and the corresponding element vectors
consisting of all the constant values on grid-elements will
be marked by a bar: RQ-�S�TRQ O � O �S�UQD�"N O �V� O .

1



Setting WX�Y�Z8:� and [\�
W]���Y��476 W)6 we ask for a stable
numerical flux approximating [\�
W]� . Here we can pick up
the upwinding methodology used in finite volume compu-
tations. Thus, the approximation of [ with the numerical
flux function ^_�]� !a`b! �c� gives us the upwind level set
scheme Qed (XfO � QedO:gih d  ^]�"j=kO Qedl�mj (O Qed�� (1)j (O Q d �Y� n Q dO�(porq g Q dOss N O�(po qt g N Ot ssvu txw f�y�y�y ! (2)

j kO Q d �Y� n Q dO g Q dO k orqss N Ot g N O k ozqt ssvu t{w f�y�y�y ! � (3)

where h d is the current timestep width. The discrete solutionQ d �z|�� is expected to approximate �X�r} d~k f�mw @ h � �9|�� . To satisfy
the natural boundary condition we set j��O Q d ����� for allM enumerating border elements. For convex [ a simple
choice for ^ is the Enquist-Osher flux [9]

^]�U���&�����Y� [\�v����2-���@ [��v�U�~� ( #l�B2-�5�@ ['�v�U�T� k #l�� � (�� 6�� ( 6 � 2�6�� k 6 �2�� k � 6�� k 6 � 2�6�� ( 6 � (4)� ( �Y� ���������e�m�1��� � k �Y���:�{���U�e�&��� |
Moreover to ensure convergence we have to satisfy a CFL
condition ����� O�� � O��  h d3� �:�x� O�� t ss N O�(Xo qt g N�Ot ss | The equa-
tion (1) together with the definitions (2-4) define the explicit
formula for the next timestep solution. This formula must
now be expressed in terms of graphics operations.

3. THE UPWIND SCHEME IN IMAGE
OPERATIONS

The high performance of graphics cards depends on the pro-
cessing of large data blocks, e.g. an operation on an entire
image is incomparably much faster than the transformation
of each image’s pixel by this operation. Therefore, we must
formulate the upwind level set scheme in operations which
act on an entire element vector RQ represented by an image.
There are moreover two major restrictions we have to pay
attention to. Firstly, all numbers in graphics hardware are
limited to the range � �b�9� � . Greater or smaller numbers re-
sulting in calculations are automatically clipped to � or �
respectively. Therefore, though we can subtract images, we
will never obtain negative results. Secondly, the internal
fixed point numbers consists of at most 12 bits per color
component (usually 8), which makes it difficult to represent
small numbers and nonlinear operations.

We are faced with these restrictions when trying to im-
plement the differential operators from (2) and (3), because

the differential differences may always take a different sign
and the denominators

ss N O�(Xorqt g N�Ot ss are very small. On an
equidistant grid, however, all the denominators in these dif-
ferential differences equal the grid specific diameter � , so
that we can factorize it out of ^ (cf. (1) and (4)). Then,
with the definition of a shift operator �] eR���Y�$�1R� O k  �� O we
can express the new differential operators as operations on
element vectorsRj ( RQ d ��� ¡"� k o q RQ d g RQ da¢ txw f£y�y�y ! �Rj=k¤RQed ��� ¡�RQed g � o q RQed ¢ t{w f�y�y�y ! |
Although we may not evaluate Rj¥�3RQ d directly, because they
still may take positive and negative values, we can compute
the positive results ¡ Rj¥� RQ d ¢ ( and g ¡ Rj¦� RQ d ¢ k , which are
exactly those needed in the computation of the numerical
flux ^ (cf. (4)). Again we set ¡�Rj¥�3RQ d ¢ O �Y�Z� for all M
enumerating border elements to ensure the natural bound-
ary condition.

But the computation of ^ poses another difficulty related
to the restricted precision. For small fixed-point values in� ���9�9� the computation of the Euclidean norm (4) is very er-
roneous. Therefore, we approximate the Euclidean norm by
a convex combination of the � -norm and the § -norm:R^���R�¨��R�F�©�Y� R� ('ª R« ��R� ( �PR� k �p2¬R� k ª R« ��R� k ��R� ( �R« �XR �®R¯ �©�Y� ¡ « �pR O �KR¯ O � ¢ O« �XR O �KR¯ O �©�Y� °a� � R O � f 2 � R¯ O � f �2$�V� g °��l������� � R O � ± � � R¯ O � ± � �
where °F²-� �b�9�9� , and ‘ ª ’ denotes the component-wise mul-
tiplication of vectors.

The upwind level set scheme expressed in image opera-
tions now readsRQ d (Xf � RQ d g h d�  R^P��Rj k RQ d �®Rj ( RQ d �
and the CFL condition ³m´µ � f¶7·m¸�¹®º »1¹�º can be satisfied per-
manently by choosing ³ ´µ½¼ � , if we norm our normal ve-
locity functions such that � 4 � � � . Table 1 lists all the oper-
ations needed for the evaluation of the scheme together with
their counterparts in graphics hardware.

4. IMPLEMENTATION

Graphics cards reassemble a computer. They comprise the
graphics processor unit (GPU) responsible for the execu-
tion of commands and the graphics memory where the im-
age operands are stored. Therefore the GPU processes data
from the graphics memory very much like the CPU does
from the main memory. Also where registers store inter-
mediate data during calculations for the CPU, framebuffers
serve the same purpose in numerical computations for the



Table 1. Basic operations in the upwind level set scheme.

operation formula graphics operation

addition R�Z2 R¾ image blending

multiplication R� ª R¾ image blending

scalar factor ¿ÀR� image blending

subtraction �lR� g R¾ � ( extended blending

maximum �����]�1R����R¾ � extended blending

index shift �� ÁR� change of coordinates

GPU. The most significant difference is the unified process-
ing of data blocks by the GPU. While the CPU needs to
run over all elements of a grid to perform an addition of
two element vectors, for example, the GPU takes only a
few commands to add all pixels of two images representing
these vectors. The unified processing of data blocks thus
supersedes the command transfer over the memory bus and
exploits the higher memory bandwidth of graphics cards by
linear memory access. This makes graphics cards inherently
faster in the processing of large amounts of data.

We shortly describe how the operations from Table 1 are
performed in graphics hardware. Typically graphics cards
support two framebuffers: the front buffer which is usually
displayed on the screen and the back buffer where one can
perform calculations invisibly. The calculations take place
in the back buffer through the process of image blending.
The first operand is displayed into the buffer. Then the set-
ting of source and destination factors and the blending equa-
tion determine in which manner the following image will be
combined with the source in the buffer. Copying the second
operand into the buffer thus performs the desired operation.
The result is either further processed by another operation or
returned to the graphics memory. The last operation in Ta-
ble 1, the index-shift, needed for the differential differences,
is simply achieved by the change of the drawing position
for the desired image. We may now outline the program in
pseudo code notation.

level set segmentation Â
load the original image ÃÄ and the initial function ÃÅ)Æ

;
precalculate the normal velocities ÃÇÀÈ

and ÃÇDÉ
from ÃÄ ;

initialize the graphics hardware with ÃÇ È
, ÃÇ É

and ÃÅ Æ
;

for each timestep ÊËÂ
calculate the differential differencesÃÌ È¦Í�Î ÃÏ É ÃÅ7ÐTÑ È

and ÃÒ É¥Í�Î ÃÏ È ÃÅ7Ð~Ñ É
;

calculate the Euclidean norm approximation ÃÓ Î ÃÌeÈ�Ô ÃÒËÉ�Ñ
;

calculate the first flux addend ÃÇ È3Õ ÃÓ Î ÃÌ È Ô ÃÒ É Ñ
;

calculate the differential differencesÃÌ ÉÖÍ×Î ÃÏ É ÃÅ7ÐTÑ É
and ÃÒ È¥Í�Î ÃÏ È ÃÅ7Ð~Ñ È

;
calculate the Euclidean norm approximation ÃÓ Î ÃÌ É Ô ÃÒ È Ñ

;
calculate the second flux addend ÃÇ É Õ ÃÓ Î ÃÌ É Ô ÃÒ È Ñ

;
update the level set func ÃÅ7Ð È�Ø�Í ÃÅ7ÐÁÙ5Ú ´Û\Ü ÃÝ Î ÃÌ�Ô ÃÒÞÑ

;ßß

5. RESULTS

Apart from the precalculation of the speed function and the
execution of the controlling program structure, all compu-
tations took place in the graphics system. For the normal
velocity function we have used a parameterized polynomial
function on the image intensities which takes positive and
negative values.

Figure 1 shows the segmentation on a slice through the
human brain computed on the ELSA Gladiac Ultra graphics
card powered by NVIDIA’s GeForce2 Ultra chip. The im-
ages closely reassemble software results. Moreover, the first
two images of the sequence demonstrate that the allowance
of negative values in the speed function enables the initially
too large contours to withdraw from regions with unfitting
intensities.

Fig. 1. Segmentation of a human brain computed in graph-
ics hardware on a � ����� image resolved by

�
bit. Besides

the original image, the timesteps 0, 10, 50, 150 and 350 are
depicted. The computation of one timestep took

�
ms.

In Fig. 2 several differently colored seed points evolve
independently to segment the pickets of a barbed wired fence.
In this example all active contours use the same normal ve-
locities, but in general the color components may evolve in-
dependently along different velocities while still being en-
coded in a single image. This example has been computed
with the InfiniteReality2 graphics system of the SGI Onyx2
with 12 bit per color component and needed %�� ms for one
timestep on a � �a��� image.

The InfiniteReality2 system is significantly slower than
the Gladiac Ultra because its operation of texture loading
from the framebuffer, frequently needed in the algorithm,
does not exploit the full bandwidth of the graphics memory.
The higher precision of � � bits would only account for a à�
factor. To our experience

�
bits suffice in this application for

the reproduction of the qualitative behavior, but higher pre-
cision may be desirable in the handling of curvature terms.



Fig. 2. Independent parallel segmentation of fence pickets
in graphics hardware.

On the Gladiac Ultra texture loading from the frame-
buffer is much faster, but only when the texture and frame-
buffer formats match, so that we had to use color textures
even when dealing with a single level set. Future graphics
drivers will overcome this drawback gaining an additional
factor of % to á in performance. The next generation of
PC graphics cards will also include 3D texture support and
more customizable operations on images, which will sim-
plify the extension of our method to interactive 3D level set
computations including internal forces.

6. CONCLUSIONS

We have demonstrated how the extended blending facilities
of modern graphics cards can be used to rapidly evaluate
the upwind level set scheme in graphics hardware. Since
the blending equations together with the lookup table al-
ready offer most of the common arithmetic operations, this
approach can be generalized to a wide range of numeri-
cal schemes, even implicit ones including linear equation
solvers (cf. [13]).

We have explained how the use of graphics hardware in
data transfer dominated problems can generally offer a su-
perior performance than CPU based solutions, and for our
schemes the computational results prove that the reduced
number precision does not effect the qualitative outcome
of the computations; and this should apply to many oth-
ers. Furthermore, we have pointed out that the forthcoming
generation of graphics cards and drivers promises further
acceleration and an easy extension to 3D problems. Future
research will therefore focus on this transition to 3D and
more general models for the propagation speed.

The authors thank Matthias Hopf from Stuttgart and Mi-
chael Spielberg from Bonn for a lot of valuable information
on graphics hardware programming.

7. REFERENCES

[1] F. Meyer and S. Beucher, “Morphological segmenta-
tion,” J. Vis. Commun. Image Represent., vol. 1, pp.
21–46, 1990.

[2] K. Haris, S. N. Efstratiadis, N. Maglaveras, and A. K.
Katsaggelos, “Hybrid image segmentation using wa-
tersheds and fast region merging,” IEEE Transactions
on Image Processing, vol. 7, no. 12, 1998.

[3] J. M. Gauch, “Image segmentation and analysis
via multiscale gradient watershed hierarchies,” IEEE
Transactions on Image Processing, vol. 8, no. 1, 1999.

[4] M. Bertalmio, G. Sapiro, and G. Randall, “Morphing
active contours: A geometric approach to topology-
independent image segmentation and tracking,” in
Proc. IEEE-International Conference on Image Pro-
cessing, Chicago, October 1998.

[5] S. J. Osher and J. A. Sethian, “Fronts propagating
with curvature dependent speed: Algorithms based on
Hamilton–Jacobi formulations,” J. of Comp. Physics,
vol. 79, pp. 12–49, 1988.

[6] R. Malladi, J. A. Sethian, and B. C. Vemuri, “Shape
modelling with front propagation,” IEEE Trans. Pat-
tern Anal. Machine Intell., vol. 17, 1995.

[7] C. Xu and J. L. Prince, “Snakes, shapes, and gradient
vector flow,” IEEE Transactions on Image Processing,
vol. 7, no. 3, 1998.

[8] V. Caselles, F. Catté, T. Coll, and F. Dibos, “A geo-
metric model for active contours in image processing,”
Numer. Math., vol. 66, 1993.

[9] B. Engquist and S. Osher, “Stable and entropy-
satisfying approximations for transonic flow calcula-
tions,” Math. Comp., vol. 34, no. 149, pp. 45–75,
1980.

[10] B. Cabral, N. Cam, and J. Foran, “Accelerated vol-
ume rendering and tomographic reconstruction using
texture mapping hardware,” in ACM Symposium on
Volume Visualization ’94, 1994, pp. 91–98.

[11] M. Hopf and T. Ertl, “Accelerating Morphological
Analysis with Graphics Hardware,” in Workshop on
Vision, Modelling, and Visualization VMV ’00, 2000,
pp. 337–345.

[12] J. A. Sethian, Level Set Methods and Fast Marching
Methods, Cambridge University Press, 1999.

[13] M. Rumpf and R. Strzodka, “Using graphics cards
for quantized FEM computations,” in Proceedings
VIIP’01, 2001, pp. 193–202.


