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Abstract

The evolution of a viscous thin film on a curved geometry is numeri-
cally approximated based on the natural time discretization of the under-
lying gradient flow. This discretization leads to a variational problem to
be solved at each time step, which reflects the balance between the decay
of the free (gravitational and surface) energy and the viscous dissipation.
Both dissipation and energy are derived from a lubrication approximation
for a small ratio between the characteristic film height and the character-
istic length scale of the surface. The dissipation is formulated in terms
of a corresponding flux field, whereas the energy primarily depends on
the fluid volume per unit surface, which is a conserved quantity. These
two degrees of freedom are coupled by the underlying transport equation.
Hence, one is naturally led to a PDE-constrained optimization problem,
where the variational time stepping problem has to be solved under the
constraint described by the transport equation. For the space discretiza-
tion a discrete exterior calculus approach is investigated. Various appli-
cations demonstrate the qualitative and quantitative behavior of one and
two dimensional thin films on curved geometries.

Keywords: Viscous thin film; gradient flow; variational time dis-
cretization; PDE-constraint optimization; discrete exterior calculus.

1 Introduction

During recent years, the investigation of the dynamics of liquid thin films has
attracted increased attention in the field of physics, engineering and mathe-
matics. In many applications in materials science and biology, liquid thin films
do not reside on a flat Euclidean domain but on curved surfaces (Howell[25],
Roy, Roberts and Simpson[39], Schwartz and Weidner[41], Wang[46]). Exam-
ples are the spreading of liquid coatings on surfaces, the surfactant-driven thin
film flow on the interior of the lung alveoli (Xu et al.[47]) and the tear film on
the cornea of the eye (Braun et al.[9]). The evolution of the film thickness is
often of greater interest than the actual velocity or pressure field within the
fluid volume. In that case, a lubrication approximation dating back already to
Reynolds[37] allows us to replace the governing Navier-Stokes and moving free
boundary model with an evolution model expressed solely in terms of the film
height or a related quantity. For a thin film deposited on a planar substrate, and
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in the limit of vanishing thickness-to-length ratio, one can derive through the
well-known lubrication theory (Oron, Davis and Bankoff[34]) a limit model in
the form of a fourth order nonlinear parabolic problem for the evolution of the
film height h (Bernis and Friedman[5], Bertozzi and Pugh[6], Bernis[4], Beretta,
Bertsch and Dal Paso[3]). We refer to Oron, Davis, and Bankoff[34] for the
derivation of the model and to Myers[31] for an overview of the mathematical
treatment of surface-tension-driven thin fluid films. A recent review by Craster
and Matar[10] discusses the dynamics and stability of thin liquid films involving
external forcing, thermal effects and intermolecular forces.

Already in ’84, Wang[46] presented a lubrication model for the evolution of
a thin film flowing down a curved surface. Schwartz and Weidner[41] discussed
the additional forcing effect due to the surface curvature. A lubrication model
for the dynamics of the film, in the form of a PDE for the evolution of the film
thickness, has been derived by Roy, Roberts and Simpson[39]. Unlike the case
of a flat substrate, their lubrication model is an approximation of the Navier-
Stokes equations, rather than the limit model for vanishing film thickness. The
approximation is based on a second order expansion in ε, where ε is the scale
ratio between the characteristic height of the film and the characteristic length
of the surface. In Section 2 we recall the essential ingredients of this derivation.
Roberts and Li[38] extended this model to include inertial effects, by adding an
evolution law for the average lateral velocity. In Thiffeault and Kamhawi[44]
gravity-driven thin film flows on curved substrates are studied from a dynamical
systems point of view. A related gravity-driven shallow water model on curved
geometries, namely topographic maps, was investigated by Boutounet et al.[7]
Kalliadasis and Bielarz[27] directly applied a thin film model on topographic
maps to analyze the impact of topological features on the formation of capillary
ridges. Jensen et al.[26] studied the flow of a thin, homogeneous liquid layer
induced by a sudden change in the shape of the substrate. Thin film flow
on moving curved surfaces was investigated by Howell[25], who explored the
behavior for large, non-uniform curvature, whose gradient dominates the flow
and leads in the limit to a hyperbolic equation with shock formation at specific
regions of the substrate. The flow of a thin film on a flat, but non-linearly
stretching, sheet was discussed by Santra and Dandapat[40].

Convergent numerical discretizations of thin film flow were investigated for
instance by Zhornitskaya and Bertozzi[49] using an entropy-consistent finite
difference scheme, and independently by Grün and Rumpf[21] based on a related
finite element approach. A numerical discretization of surfactant spreading
on liquid thin films was proposed and analyzed by Barrett et al.[1]. For the
discretization of the thin film equation on curved substrates, Roy, Roberts and
Simpson[39] used a straightforward finite difference approximation of the fourth
order PDE with implicit treatment of the higher order terms and a small ratio of
time step to spatial grid size to cope with the stiffness of the problem. Schwartz
and Weidner also applied a semi-implicit finite difference scheme and Myers et
al.[32] used a semi-implicit finite volume type approach with a flux splitting.
A level set implementation of the model in Roy, Roberts and Simpson[39] was
proposed by Greer et al.[20] To ensure the stability of the proposed schemes in
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all these cases, the time step size has to be chosen very small. A variational
time discretization of the underlying gradient flow structure, such as the one
presented in this paper, offers an attractive alternative and in particular allows
for large time steps.

In this work, we explore the gradient flow structure of the evolution of a
liquid thin film on a fixed curved surface, we use this structure to derive a
natural time discretization and, together with techniques from discrete exterior
calculus, we develop it into a robust and efficient simulation tool. The gradient
flow structure has already been investigated in the context of the analysis of the
thin film equation on planar domains by, among others, Otto[35], Giacomelli and
Otto[18, 17], Mattes et al.[30] and Slepčev[42]. In abstract terms, a gradient
flow d

dtx = −gradge[x] describes the evolution of a state x in the direction of the
negative gradient of an energy e[·] with respect to a given metric g on the space of
states. The gradient of the energy e at a state x is defined as the representation
of the variation of the energy e′[x] in the metric, i. e. g(gradge[x], θ) = e′[x](θ)
for all state variations θ of x. It follows that we can rewrite the gradient flow
as g( d

dtx, θ) = −e′[x](θ) for all θ. Applied to thin films, the gradient flow
structure naturally represents the balance between the kinetic effect of viscous
dissipation due to friction in the fluid (on the left-hand side) and the rate of
change of the surface energy (on the right-hand side). As in Roy, Roberts and
Simpson[39], we neglect the inertia of the fluid and assume an over-damped limit
in which the quasi-stationary Stokes equations for an incompressible fluid are
appropriate. Furthermore, we only consider thin film layers of strictly positive
thickness together with the no-slip condition at the fluid-substrate interface.

Every gradient flow d
dtx = −gradge[x], for a given energy functional e and

underlying metric g, has a natural time discretization (Otto[35]). It involves
the distance function dist(·, ·) on the space of states, which is induced by the
metric g. If τ denotes the time step size, a time-discrete state xk+1 at time
tk+1 = tk + τ can be inferred from the state xk at time tk via the variational
problem

xk+1 = argmin
x

{
1

2τ
dist2(xk, x) + e[x]

}
.

In the case of thin films on curved surfaces, the state x is given by the mass dis-
tribution u of the liquid layer, whereas the distance term measures the viscous
dissipation caused by an optimal transport of mass within the time step. The
above variational problem can therefore be viewed as an optimization problem
with a PDE constraint given by the transport equation for the mass distri-
bution. In this paper we derive a robust discretization scheme based on this
variational formulation. To this end, we approximate the squared distance via a
quadrature rule involving the metric g and obtain a semi-implicit optimization
problem for the mass distribution u at time tk+1 and a flux quantity f , where u
and f are coupled via a time-discrete conservation law. For planar surfaces and
thin coatings consisting of a resin and a solvent component, such a scheme has
already been investigated by Dohmen et al.[12] Düring et al.[13] also derived
a numerical scheme for a fourth order PDE using an underlying gradient flow
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structure. Similar to our approach, they applied direct numerical integration
of the underlying Wasserstein-type transport problem for the nonlinear fourth
order Derrida-Lebowitz-Speer-Spohn equation. Glasner[19] used a Galerkin dis-
cretization of a variational model related to ours to study the movement of the
contact lines of thin films on planar substrates.

To define space-discrete counterparts of the dissipation and energy function-
als and the transport PDE on curved geometries, we make use of the concept
of discrete exterior calculus as proposed by Marsden and coworkers. For a com-
prehensive introduction we refer to the PhD thesis of Hirani[23]. An overview
is given in Desbrun et al.[11] The use of discrete differential forms (Desbrun,
Kanso and Tong[11]) leads to consistent discretization schemes on triangulated
approximations of the geometry. This approach has been successfully applied
to models such as the Darcy flow (Hirani, Nakshatrala and Chaudhry[24]) and
the Navier-Stokes equations (Elcott et al.[14, 15]).

In ’first discretize, then optimize’ fashion, we follow the general theory of
PDE-constrained optimization to minimize the fully (space- and time-) discrete
functional at every time step. As we document below, the resulting scheme
turns out to be very stable in practice and allows for very large time steps.

2 Derivation of the Gradient Flow Model

The flow of a thin film on a curved substrate is determined by the interplay
between the viscous dissipation, caused by friction within the liquid film layer,
and the energy given by the integrated surface tension on the liquid-gas interface
and the potential energy due to gravity. Let us first outline the derivation
of the gradient flow model. Compared to the exposition in Roy, Roberts and
Simpson[39], we aim here at the derivation of appropriate dissipation and energy
functionals instead of a governing PDE, and we express them in terms of a flux
and a mass concentration variable instead of the film height. Thereby, we will
apply an expansion in terms of the scale ratio ε between the characteristic height
of the film and the characteristic length on the surface.

Γ
h v

Γ U ⊂ Γ

Xεh(U)

φεh(U)

Figure 1: Thin film on curved substrate. Sketch of thin film on [Left ] 1D and
[Right ] 2D substrates.

Fig. 1 sketches the geometric configuration in the case of a thin film on 1D
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and 2D substrates. In this section, we derive a thin film model for a smooth
two-dimensional surface Γ; the derivation of the corresponding one-dimensional
model follows along similar lines. We assume that the surface Γ is embedded
in R3 through the map φ0 : Γ 7→ R3. Moreover, the mapping φ0 is assumed
isometric, i.e. 〈v, w〉Γ = 〈dφ0(v), dφ0(w)〉 for any v, w ∈ TΓ, where dφ0 is
the differential of φ0, and 〈·, ·〉Γ and 〈·, ·〉 are the inner products in TΓ and
R3, respectively, with | · |Γ =

√
〈·, ·〉Γ denoting the associated norm on TΓ.

For a function f : Γ 7→ R on the substrate surface Γ, we define the (normal)
displacement map φf : Γ 7→ R3 as φf (x) := φ0(x) + f(x)n(x), where n(x) is the
unit normal vector on Γ. For a subset U ⊆ Γ, φf (U) is its image under φf and

the extrusion of U under φf is defined as Xf (U) :=
⋃1
ξ=0 φξf (U).

In fact, we assume that the thin film is an extrusion of the substrate of the
form Xεh(Γ), where 0 < ε � 1 and h(·, t) is a rescaled, time-dependent height
function on Γ. In this paper we assume that h is strictly positive. The motion of
the film is driven by the velocity field v of the (incompressible and Newtonian)
fluid, which is assumed to satisfy the Stokes equations (creeping flow) in Xεh(Γ),
with a no-slip boundary condition at the liquid-solid interface φ0(Γ) and a free
boundary representing the liquid-gas interface at φεh(Γ).

In the derivation of the model, the mapping

φ : Γ× R→ R3 ; (x, ξ) 7→ φ0(x) + εξn(x) (1)

plays a prominent role, since it can be used to cover the fluid domain Xεh(Γ) ⊂
R3 with a ξ−parametrized family of images of Γ. The differential of φ can
be written as dφ(δx, δξ) = dφ0(Λδx) + ε δξ n(x), for (δx, δξ) ∈ TΓ × R with
Λ := id−εξS. Here S denotes the shape operator of Γ, which is a symmetric
endomorphism on the tangent bundle of Γ defined via dφ0(Sδx) = −Dδxn,
where Dδxn denotes the directional derivative of n in the direction of δx. We
assume that the parameter ε > 0 and the values of the height function h are
small enough, so that det Λ > 0 for all 0 ≤ ξ ≤ h and the Jacobian of φ is
nowhere singular on Xεh(Γ). It follows that for any point p ∈ Xεh(Γ), there is
a unique (x, ξ) ∈ Γ × R so that p = φ(x, ξ). Furthermore, for a vector field v
on Xεh we can consider its decomposition into a tangential vΓ(x, ξ) ∈ TΓ and a
normal component vn(x, ξ) ∈ R, determined by

v(φ(x, ξ)) = dφ0(vΓ(x, ξ)) + vn(x, ξ)n(x) . (2)

Regarding the scaling of the various quantities in the rest of the section, we
assume that there is a length scale L on Γ and a length scale H = εL in the
normal direction, so that ξ ∼ H. The characteristic time scale is T = µL

σ ε
−2,

where µ is the viscosity and σ the surface tension constant, and the characteristic
(tangential) velocity is V = L

T = σ
µε

2. In what follows, we will assume that a

rescaling with L−1 is already incorporated in the description of the surface Γ.
Note that the choice of the time scale implies that the (dimensionless) capillary
number µV

σ , which measures the relative strength of viscous and capillary forces,
should scale like ε2 and therefore be small.
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2.1 Conservation law

The evolution of the thin film follows a conservation law that can be expressed
in terms of a mass distribution and a flux. Normalizing the density to 1, the
mass distribution u : Γ 7→ R represents the fluid volume per unit area and
satisfies

∫
Xεh(U)

dV = ε
∫
U
uda for all U ⊂ Γ. From this, we deduce that

u =
∫ h

0
λ dξ where λ := det Λ. If κ1 and κ2 are the principal curvatures of S,

we have that λ = det (id−εξS) = (1 − εξκ1)(1 − εξκ2) = 1 − εξH + ε2ξ2K,
where H,K denote the mean and Gaussian curvature, respectively. It follows

that u = h− ε
2Hh

2 + ε2

3 Kh
3 and conversely

h = u+
ε

2
Hu2 + O(ε2) . (3)

The flux F is a tangential vector field on Γ, uniquely described by
∫
Xεh(∂U)

〈v, n〉da =

ε
∫
∂U
〈F, ν〉Γ dl for any U ⊂ Γ with a smooth boundary ∂U . The vectors n and

ν denote the unit normal of Xεh(∂U) and the unit conormal of ∂U respectively.
The flux represents the total flow of mass induced by the flow field v, integrated
in the normal direction. Using once more the mapping φ, we can show that

F =
∫ h

0
cofΛ vΓ dξ, where vΓ is the tangential component of v, defined as in (2),

and cofΛ = λΛ−T = λΛ−1. Finally, given the mass distribution u and the flux
F , we obtain the transport PDE

∂u

∂t
+ divΓ F = 0 ,

which reflects mass conservation in the thin film. We also introduce the partial

flux F, defined as F(ξ) =
∫ ξ

0
cofΛ vΓ dξ so that F = F(h) and vΓ = cofΛ−1 ∂F

∂ξ .

2.2 Dissipation and mobility

The rate of viscous dissipation due to friction within the (incompressible and
Newtonian) liquid film is given by 2µ

∫
Xεh(Γ)

‖D[v]‖2F dV , and is a function of

the derivatives of the fluid velocity v in the fluid volume (Pozrikidis[36]). In this
expression, µ is the viscosity, D[v] = 1

2 (∇v +∇vT ) is the rate-of-strain tensor
and ‖A‖2F := tr (ATA) is the (squared) Frobenius norm. Following the approach
by Roy, Roberts and Simpson[39], and using the expressions for the components
of the rate-of-strain tensor in curvilinear coordinates found in the Appendix 2 of
Batchelor[2], one observes that the components which correspond to the shear
stress due to the laminar motion of the fluid dominate the other components of
D[v]. Indeed, identifying the leading order terms in the asymptotic expansion

of ‖D[v]‖2F wrt ε and scaling with the characteristic dissipation rate σ2L
µ ε3, we

obtain the dimensionless dissipation

g(v, v) =

∫
Γ

∫ h

0

∣∣∣∣∂vΓ

∂ξ
+ εSvΓ

∣∣∣∣2
Γ

λ dξ da+ O(ε2) . (4)
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A detailed exposition is given in A below (cf. also the derivation of the lubrica-
tion model in the flat case by Oron, Davis and Bankoff[34]). Next, we perform a
model reduction through partial optimization and assume that for given bound-
ary conditions at the liquid-solid and the liquid-gas interface the velocity profile
in normal direction will adjust to minimize the resulting dissipation. This allows
us to express the rate of dissipation in terms of the total flux F as explained in
what follows.

Noting that εS = −∂Λ
∂ξ and that Λ is a symmetric matrix, we can rewrite

the dissipation integrated in the normal direction as∫ h

0

∣∣∣∣∂vΓ

∂ξ
− ∂Λ

∂ξ
vΓ

∣∣∣∣2
Γ

λ dξ =

∫ h

0

λ

∣∣∣∣eΛ ∂

∂ξ
(e−ΛvΓ)

∣∣∣∣2
Γ

dξ

=

∫ h

0

λ

∣∣∣∣eΛ ∂

∂ξ

(
e−Λ cofΛ−1 ∂F

∂ξ

)∣∣∣∣2
Γ

dξ =

∫ h

0

〈
∂

∂ξ

(
B(Λ)

∂F

∂ξ

)
,A(Λ)

∂

∂ξ

(
B(Λ)

∂F

∂ξ

)〉
Γ

dξ,

where A(Λ) := λe2Λ and B(Λ) := e−Λ cofΛ−1. Integrating by parts twice, we
obtain for two partial flux functions F and F̃∫ h

0

〈
∂

∂ξ

(
B(Λ)

∂F̃

∂ξ

)
, A(Λ)

∂

∂ξ

(
B(Λ)

∂F

∂ξ

)〉
Γ

dξ

=

[〈
B(Λ)

∂F̃

∂ξ
,A(Λ)

∂

∂ξ

(
B(Λ)

∂F

∂ξ

)〉
Γ

−
〈
F̃, B(Λ)

∂

∂ξ

(
A(Λ)

∂

∂ξ

(
B(Λ)

∂F

∂ξ

))〉
Γ

]h
0

+

∫ h

0

〈
F̃,

∂

∂ξ

(
B(Λ)

∂

∂ξ

(
A(Λ)

∂

∂ξ

(
B(Λ)

∂F

∂ξ

)))〉
Γ

dξ . (5)

Now we ask for the profile of the partial flux F which minimizes the integral of
the dissipation in the normal direction, under the boundary conditions F(0) = 0,

F(h) = F , F′(0) = 0 (no slip), and ∂
∂ξ

(
B(Λ)∂F∂ξ

)∣∣∣
ξ=h

= 0 (zero shear stress at

the liquid-gas interface). As a necessary condition for the optimality of F one
achieves

0 =

∫ h

0

〈
∂

∂ξ
B(Λ)

∂δF

∂ξ
, A(Λ)

∂

∂ξ
B(Λ)

∂F

∂ξ

〉
Γ

dξ , (6)

for a variation F + δF of the partial flux F, for which the boundary conditions
imply δF(0) = δF(h) = ∂δF

∂ξ (0) = 0. Choosing F̃ = δF, we observe that the

boundary terms in (5) vanish and hence

0 =

∫ h

0

〈
δF,

∂

∂ξ

(
B(Λ)

∂

∂ξ

(
A(Λ)

∂

∂ξ

(
B(Λ)

∂F

∂ξ

)))〉
Γ

dξ

holds for all admissible variations δF of the profile. Consequently

f := −
(
B(Λ)

∂

∂ξ

(
A(Λ)

∂

∂ξ

(
B(Λ)

∂F

∂ξ

)))
(7)
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is constant in ξ. Next, integrating in the normal direction and using the bound-
ary conditions gives

A(Λ)
∂

∂ξ

(
B(Λ)

∂F

∂ξ

)
=

(∫ h

ξ

B(Λa)−1 da

)
f ⇒

B(Λ)
∂F

∂ξ
=

(∫ ξ

0

A(Λb)
−1

∫ h

b

B(Λa)−1 da db

)
f ⇒

F =

(∫ ξ

0

B(Λc)
−1

∫ c

0

A(Λb)
−1

∫ h

b

B(Λa)−1 dadbdc

)
f ,

where Λr denotes Λ evaluated at ξ = r. Finally, having identified the optimal
profile F in the normal direction, we can now rewrite the associated dissipation.
Once more due to the boundary condition, (6) and (7), the only remaining term
on the righthand side of (5) for F̃ = F is

−
〈
F(h), B(Λ)

∂

∂ξ

(
A(Λ)

∂

∂ξ

(
B(Λ)

∂F

∂ξ

))〉
Γ

= −〈F(h),−f〉Γ = 〈M(h)f, f〉Γ ,

with F = F(h) = M(h)f and the mobility

M(h) :=

∫ h

0

B(Λc)
−1

(∫ c

0

A(Λb)
−1

(∫ h

b

B(Λa)−1 da

)
db

)
dc . (8)

Using the approximations

A(Λ)−1 = λ−1e−2Λ = e−2(id +εξ(H id +2S)) + O(ε2)

B(Λ)−1 = eΛ cofΛ = e (id−εξH id) + O(ε2) ,

we can carry out the integrations in the definition of M(h) and obtain M(h) =
h3

3 + ε
6h

4(S − 2H id) + O(ε2). Finally taking into account (3), we arrive at the
following (approximate) mobility in terms of the mass distribution u:

M(u) :=
u3

3
+
ε

6
u4(H id +S) (9)

with M(u) = M(h) + O(ε2). Thus, the dissipation acting on a flux f is given
by

gu(f, f) :=

∫
Γ

〈f,M(u)f〉Γ da (10)

and gu(f, f) = g(v, v) + O(ε2). Furthermore, we conclude that the transport
equation can be written as

∂u

∂t
+ divΓ(M(u)f) = 0 , (11)

where the flux f is related to the actual physical flux F via F = M(h)f .
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2.3 Energy

We can express the total (dimensionless) energy of the thin film, in the presence
of gravity and surface tension, as

E(u) = Egravity + Esurface = ε−1

∫
Xεh(Γ)

ζz dV + ε−1

∫
φεh(Γ)

da ,

where ζ := ρgL2

σ is the Bond number, which represents the relative effect of
gravity versus surface tension, ρ is the density and g the gravity constant. The
Cartesian coordinate z in R3 is chosen such that ĝ := −∇z represents the
(constant) unit vector in the direction of gravity. We note that the characteristic
energy is εσL2. Furthermore, we allow the values of z in Xεh(Γ) to scale like the
horizontal length scale L, unlike in the classic case of a slightly inclined plane
where z scales like the vertical length scale H (i.e. the film is almost horizontal).

The first integral can be written as

1

ε

∫
Xεh(Γ)

ζz dV =

∫
Γ

∫ h

0

ζz(φ(x, ξ))λ(x, ξ) dξ da(x)

=

∫
Γ

∫ h

0

ζ
(
z(φ0(x)) + εξ〈∇z(φ0(x)), n(x)〉+ O(ε2)

)
λ(x, ξ) dξ da(x)

=

∫
Γ

ζ

(
zu+ ε

u2

2
cos θ + O(ε2)

)
da , (12)

where cos θ(x) := 〈∇z(φ0(x)), n(x)〉 = −〈ĝ, n(x)〉 and z := z◦φ0 is the pullback
of z onto Γ in the final integral and in the rest of this paper.

Now consider the free surface area A[h] :=
∫
φεh(Γ)

da. It is a classic result

of the differential geometry of surfaces in R3, that the first variation of the area
functional under normal variations like φεh is given by A′[0](h) = −

∫
Γ
Hh da ,

and the second variation of the area functional under normal variations is shown
to be A′′[0](h) =

∫
Γ

2Kh2 + |gradΓ h|
2
Γ da . (cf. Nitsche[33] §101, §103). Given

the first and second variation of A[h], we obtain the following expansion

A[h] = A[0] + εA′[0](h) +
ε2

2
A′′[0](h) + O(ε3)

in the parameter ε. Based on this expansion, and substituting h for u using (3),
we arrive at the approximation

1

ε

∫
φεh(Γ)

da =
1

ε

∫
Γ

da+

∫
Γ

−Hu− ε

2
Tu2 +

ε

2
|gradΓ u|

2
Γ da+ O(ε2) , (13)

where T := H2 − 2K = κ2
1 + κ2

2. The leading order term is constant since Γ
is fixed, and therefore does not contribute to the dynamics of the thin film.
Summing the second term in (13) with the gravitational energy (12) we get the
total energy functional

E[u] =

∫
Γ

(ζz −H)u+
ε

2
(ζ cos θ − T )u2 +

ε

2
|gradΓ u|

2
Γ da (14)

used in our model, with E[u] = E[u] +O(ε2).
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2.4 Gradient flow model

Once, we have derived first order approximations of the dissipation and the
energy in terms of the characteristic ratio ε we have all the ingredients at hand
to discuss the lubrication approximation of the thin film gradient flow. Let us
begin with an abstract notion of this flow

∂tu = −gradg̃E[u] , (15)

where the metric g̃ acts on admissible variations δu of the mass distribution u
and g̃(δu, δu) represents the minimal physical dissipation required to generate
the infinitesimal variation δu. By definition the gradient gradg̃E[u] of the energy
E evaluated for a mass distribution u is given as the representation of the
derivative E′[u] of the energy E in the metric g̃. Thus, (15) can be rephrased
as

0 = g̃u(∂tu, δu) + E′[u](δu)

for infinitesimal variations δu of the mass distribution u. As derived in Section
2.2 the dissipation is best described in terms of the fluxes generating a given
variation of the mass distribution. Hence, picking up the dissipation defined in
(10) we define

g̃u(δu, δu) := min
δu=− div(M(u)δf)

gu(δf, δf) ,

where admissible variations δu of the mass distribution are those resulting from
fluxes δf via the conservation law, i. e. δu = −divΓ(M(u)δf). Hence, we obtain
for the gradient flow the representation

0 = gu(f, δf) + E′[u](δu) , (16)

where δf is any infinitesimal variation of the flux f and δu the associated in-
finitesimal variation of the mass distribution u. For given u Eq. (16) determines
the flux f and given f the underlying conservation law ∂tu+ divΓ(M(u)f) = 0
gives rise to the actual dynamics of the thin film. Let us remark that Eq. (16)
also can be seen as the Euler Lagrange equation for a minimizer f of the corre-
sponding to the Rayleigh functional R(δf) := 1

2gu(δf, δf) + E′[u](δu) subject
to the conservation law δu = −divΓ(M(u)δf) = 0 as a constraint.

A major difference from the flat case is that instead of the height h and the
transport velocity v, we have the mass distribution u and a flux quantity f .
Furthermore, the mobility M(u) is a tensor valued function of u, whereas in the

flat case it is a scalar quantity. Finally the |gradΓ u|
2
Γ term, which drives the

dynamics in the case of a flat surface, is relegated to a first order correction in
the presence of curvature.

Even though we intend to directly discretize the gradient flow via a natural
time discretization, let us discuss briefly the associated PDE. Taking into ac-
count the underlying transport equation we deduce from (16) via integration by
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parts

0 =

∫
Γ

〈M(u)f, δf〉Γ − E′[u] (divΓ(M(u)δf)) da

=

∫
Γ

〈M(u)f, δf〉Γ + 〈gradΓ

δE

δu
,M(u)δf〉Γ da

for every flux variation δf , where δE
δu represents the L2 density of the energy

variation E′[u]. Thus, we obtain f = − gradΓ
δE
δu . Inserting this into the trans-

port equation we achieve

∂u

∂t
= divΓ

(
M(u) gradΓ

δE

δu

)
. (17)

Indeed, this PDE coincides with the PDE model derived in Roy, Roberts and
Simpson[39] up to a higher order term of the order of O(ε2). Using the notation
of this paper the PDE model of Roy, Roberts and Simpson can be rephrased as

∂u

∂t
= −1

3
divΓ

(
h2u gradΓ H̃[u]− ε

2
h4(H id−S) gradΓH

)
− ζ

3
divΓ

(
h3ĝΓ − εh4(H id +

1

2
S)ĝΓ + εĝnh

3 gradΓ h

)
, (18)

where H̃[u] = H+εTu+ε∆Γu+O(ε2) is the mean curvature of the free boundary
and ĝΓ, ĝn are the tangential and vertical components of the unit vector ĝ in
the direction of gravity. We refer to B for the corresponding verification.

3 Discretization of the Gradient Flow

Instead of discretization the fourth order PDE (18) we aim for a variational time
discretization of the gradient flow, which will be derived in the next section and
then discretized also in space using a discrete exterior calculus approach on a
triangulated approximation of the surface Γ.

3.1 Natural time discretization of the gradient flow

Let us recall the natural time discretization of the thin film gradient flow in its
abstract form introduced already in Section 1, i. e. given a mass distribution uk

on Γ at time tk, we define the mass distributions uk+1 at time tk+1 = tk + τ as

uk+1 := argmin
u

{
1

2τ
dist2(uk, u) + E[u]

}
where the squared distance dist2(u0, u1) between two mass distributions u0 and
u1 is defined as the minimal dissipation required to transport u0 into u1. In case

of (thick) fluid layers on Γ we obtain dist2(u0, u1) = minṽ
∫ 1

0
g(ṽ(s), ṽ(s)) ds ,

11



where ṽ is a motion velocity in the fluid volume and g the associated dissipation
by viscous friction given in (4). Here, the minimum is taken over all motion
fields ṽ, which transport the mass distribution u0 at time 0 through the path
(ũ(s))s∈[0,1] into the profile u1 at time 1. In Section 2.2 we have derived the first
order expansion gũ(s) of the dissipation g in the characteristic length ratio ε for
the lubrication approximation of a thin film flow. This directly leads us to the ex-

pansion dist2(u0, u1) = min(ũ,f̃)∈T 1
0 [u0,u1]

∫ 1

0
gũ(s)(f̃(s), f̃(s)) ds + O(ε2) , where

T t1t0 [u0, u1] is the set of solutions of the conservation law ∂tũ+divΓ(M(ũ)f̃) = 0
with ũ(t0) = u0 and ũ(t1) = u1. For M(u) = const this is directly related
to the optimal transport of the concentration u0 to the concentration u1 (cf.
Villani[45]). We will use this formal expansion as a starting point for a dis-
cretization in time. To this end, we rescale t = tk + τs replacing in particular
ũ(t) by ũ(s) and f̃(t) by 1

τ f̃(s) and obtain

dist2(u0, u1) = τ min
(ũ,f̃)∈T tk+1

tk
[u0,u1]

∫ tk+1

tk
gũ(t)(f̃(t), f̃(t)) dt+O(ε2) .

Finally, we choose u0 = uk at time tk and u1 = u at time tk+1 and obtain the
natural discretization of the thin film gradient flow in the lubrication approxi-
mation, i. e. we ask for a mass distribution uk+1 which solves

min
u

{
1

2
min

(ũ,f̃)∈T tk+1

tk
[uk,u]

∫ tk+1

tk
gũ(t)(f̃(t), f̃(t)) dt+ E[u]

}
. (19)

Thus, we end up with a PDE-constraint optimization problem, where the con-
servation law acts as the PDE-constraint coupling mass distribution ũ and flux
f̃ with prescribed data uk and u at time tk and tk+1, respectively. To render the
problem computationally feasible we replace in a first step the time integral over
the dissipation by a simple quadrature rule and discretize the conservation law
in time in a consistent way. Here, we confine to the explicit quadrature scheme

τguk(f, f) ≈
∫ tk+1

tk
gũ(t)(f̃(t), f̃(t)) dt of the dissipation functional with a con-

stant in time approximation f of the flux f̃ |[tk,tk+1]. Furthermore, we consider

the semi-implicit discretization u−uk
τ + divΓ(M(uk)f) = 0 of the conservation

law and finally end up with the time discrete and PDE-constraint variational
problem

min
u,f

{τ
2
guk(f, f) + E[u]

}
, (20a)

where u− uk + τdivΓ(M(uk)f) = 0 . (20b)

Let us remark that we obtain the same scheme via a straightforward discretiza-
tion of the associated Lagrangian. Indeed, the Lagrangian of the above opti-
mization problem is defined as

L[u, f, p] :=
1

2

∫ tk+1

tk
gu(f, f) dt+ E[u(tk+1)] +

∫ tk+1

tk
〈p, ∂tu+ divΓ(M(u)f)〉dt

12



for space time continuous mass distribution u and flux f with a correspond-
ing Lagrange multiplier p applied to the transport operator as the constraint
and integrated in time. If one now discretizes u via piecewise linear and con-
tinuous mass distributions in time, f , p via piecewise constant fluxes in time,
and uses the above quadrature rule one ends up with the same semi-implicit
PDE-constraint variational problem. Let us mention, that Yoshimura and
Marsden[48] proposed related quadrature based time discrete approximations
in the context of conservative Hamiltonian systems.

3.2 Discretization of the geometry via DEC

In this section we derive a consistent space discretization of the proposed varia-
tional time stepping scheme based on the paradigms of discrete exterior calculus.
We refer to the book by Frankel[16] for a comprehensive introduction into the
underlying continuous exterior calculus and to Desbrun, Kato and Tong[11] and
the PhD thesis of Hirani[23] for an overview of the corresponding discretization
concepts. In our context the approach can equivalently be formulated as a fi-
nite volume method but in view of surfaces which themselves are only given as
triangulations not resulting from the interpolation of a fixed smooth surface we
consider the discrete exterior calculus approach as perspectively advantageous.

Ej

?Ej?Cj+

?Cj−Cj+
Cj−

Figure 2: Cell Complex. The cell complex consists of cells Ci and oriented
edges Ej , as well as the dual nodes ?Ci and the dual edges ?Ej . An edge Ej
is the boundary between two cells, denoted by Cj± . Its dual ?Ej connects the
corresponding dual nodes.

Again we present the approach for two dimensional surfaces in R3. The
simpler case of curves in R2 is treated by analogy. We assume that the surface
Γ is approximated by a polygonal surface ΓC which consists of NC planar cells,
{C1, . . . , CNC}, in the sense that the vertices of the cells lie on Γ and furthermore
there exists a (bijective) projection ΠΓ : ΓC → Γ so that the images of the
cells ΠΓ(Ci) form a partition of Γ. See Lenz, Nemadjieu and Rumpf[28] for a
detailed discussion of such an approximation. The (oriented) boundaries ∂Ci
are algebraic sums of NE oriented edges {E1, . . . , ENE}, so that every edge Ej
is exactly the interface between two adjacent cells Cj+ , Cj− oriented so that
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±Ej is part of ∂Cj± (fig.2). We denote by ∂C the sparse NE × NC matrix
with non-zero elements (∂C)j j± = ±1. The metric-dependent information of
the discretization is captured by the matrices |C| := diag(|C1| , . . . , |CNC |) and
|E| := diag(|E1| , . . . , |ENE |).

Furthermore, we assume that for every cell Ci there is an appropriately
defined dual node ?Ci ∈ Ci. Based on this, we define for every edge Ej a dual
edge connecting ?Cj− to ?Cj+ with dual edge length |?Ej | := dist(?Cj+ , ?Cj−)
gathered in the corresponding diagonal matrix |?E| := diag(|?E1| , . . . , |?ENE |).
Here dist(·, ·) is the distance on ΓC . An important case is when the cells Ci are
the Voronoi cells of their dual nodes ?Ci.

Now, we approximate scalar quantities u over Γ with the vector uC =
(uCi)i=1,...,nC ∈ RNC of their mean value over the (projected) cells, so that

uCi ≈ |ΠΓ(Ci)|−1
∫

ΠΓ(Ci)

uda.

Likewise we approximate vector quantities v in the tangent bundle TΓ with the
vector vE = (vEj )j=1,...,nE ∈ RNE of their mean flux through the (projected)
edges, so that

vEj ≈ |ΠΓ(Ej)|−1
∫

ΠΓ(Ej)

〈v, νj〉Γ dl,

where νj is the unit covector of ΠΓ(Ej) pointing into ΠΓ(Cj+).
Next, we introduce the following discrete differential operators ∂grad and ∂div

as matrices in RNE ,NC and RNC ,NE with the aim of approximating gradΓ and
divΓ, respectively. They are defined by

∂grad := |?E|−1
∂C , (21)

∂div := − |C|−1
∂TC |E| . (22)

where ∂C is the matrix in RNE ,NC with the non zero entries (∂C)j(j±) = ±1,
such that ∂CuC := (uCj+ − uCj− )j=1,...,NE . We also define the inner products

〈uC , ũC〉C := uTC |C| ũC , (23)

〈vE , ṽE〉E := vTE |?E| |E| ṽE (24)

with associated norms |uC |C and |uE |E , respectively, so that 〈uC , ũC〉C ≈∫
Γ
uũda and 〈vE , ṽE〉E ≈

∫
Γ
〈v, ṽ〉Γ da. Based on the fact that ∂Tdiv |C| =

− |E| |?E| ∂grad we deduce a discrete integration by parts property

〈uC , ∂divvE〉C + 〈∂graduC , vE〉E = 0 . (25)

3.3 Discrete energy

Now, we are in the position to discretize our variational model in a straightfor-
ward way. Indeed, we define the discrete energy functional

E(uC) := 〈uC , ζzC −HC〉C +
ε

2
〈uC , [ζ cos θC − TC ] uC〉C +

ε

2
|∂graduC |2E
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on a vector uC representing the discrete mass distribution in terms of fluid
volume per unit surface. Here, cos θC is the vector of vertical component of
the unit normal n on the cells, zC the vector of vertical components of the
dual vertices ?Ci, TC is the vector of discrete total curvature associated with
the cells and defined by TCi = T (ΠΓ(?Ci)). We have also used the notation
[v] := diag(v1, . . . , vn), to denote the diagonal matrix with the elements of the
vector v in the diagonal. Using (25), it can be put in the general quadratic form

E(uC) = 〈αC , uC〉C +
ε

2
〈B uC , uC〉C (26)

where

αC = ζzC −HC , (27a)

B = [ζ cos θC − TC ]− ∂div∂grad . (27b)

3.4 Discrete dissipation and mobility

The discrete metric takes the form

guC (fE , fE) := 〈fE , [ME(uC)] fE〉E , (28)

where the discrete mobility ME(uC) ∈ RNE is a vector, which attaches a mobil-
ity value ME(uC)j to every edge Ej . To derive a suitable discrete mobility we
first define a scalar mobility MEj (u) := 1

3u
3 + ε

6u
4(HEj + κEj ) at every edge,

which is associated with fluxes in normal direction across the edge. Here, HEj

denotes the mean curvature of Γ evaluated at the projection ΠΓxEj of the center
of mass xEj on the edge Ej and κEj := 〈νj , SEjνj〉Γ is the normal curvature in
the direction of the conormal νj on the projected edge ΠΓ(Ej) with SEj being
the shape operator at ΠΓxEj . Following Grün and Rumpf[21] we now choose
ME(uC) as the integral harmonic mean

ME(uC) :=

(
1

uCj+ − uCj−

∫ uCj+

uCj−

MEj (t) dt

)−1

(29)

with the convention ME(uC) = MEj (uCj+) if uCj+ = uCj− . To motivate this
choice, let us consider the planar surface case, where one defines an entropy func-
tion G as the second root of the inverse of the scalar mobility M , i. e. G(u) :=∫ u

0

∫ s
0

1
M(t) dtds . Then, G′′(u) = M(u)−1 implies that M(u) gradG′(u) =

gradu and based on this observation an a priori estimate for the integral of the
entropy function can be deduced (cf. Beretta, Bertsch and Dal Paso[3]). Thus,
in the flat case or on a sphere our choice for the discrete mobility allows to mimic
this equality. In fact, the entries of ME(uC) no longer depend on varying curva-
ture quantities attached to edges and we immediately obtain that ME(uC) :=

[∂CG′E(uC)]
−1
∂CuC for the associated GE(u) :=

∫ u
0

∫ s
0

1
ME(t) dtds and thus

[ME(uC)] ∂gradG′E(uC) = ∂graduC . In the case of a flat surface and for the
mobility been implicitly evaluated at the new time step, one can derive from
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this equality an a priori bound for the vector G(uCj )j=1,...,n of entropy values
on the cells (cf. Grün, Lenz and Rümpf[22]). This allows one to prove that
the strict positivity of uC is maintained during the evolution. Unfortunately,
this proof can not be extended in a straightforward manner to the curved case,
because of the added effects of the geometry of the substrate on the evolution of
the thin film. In practice, we experimentally observe that the numerical solution
remains indeed positive even with very thin precursor layers (cf. §5). We intend
to deal with the issue of positivity in future work, by considering more general
models which involve the Navier slip condition and certain van der Waals-like
forces. These extensions tend to promote the preservation of positivity for the
thickness of the thin film during its evolution (cf. §V in Craster and Matar[10]).

3.5 Discrete conservation law

In analogy to the continuous case the discrete metric g is defined in terms of the
discrete flux fE whereas the discrete energy E is evaluated on the discrete mass
distribution uC . In the continuous case, the flux f and the mass distribution
quantity u are coupled via the transport equation u̇+divΓ(M(u)f) = 0. Now, we
discretize this transport process to couple fE and uC using the DEC approach.
Given, the vector ukC as an approximation of u at time tk we consider the linear
system of equations

uC − ukC + τ ∂div

[
ME(ukC)

]
fE = 0 (30)

where τ is the time step size. Here, uC and fE are considered as approximations
of u(tk+1) at time tk+1 = tk + τ and f |[tk,tk+1] , respectively.

3.6 Fully discrete natural time discretization

Finally, using (26), (28), and (30) we derive the also spatially discrete coun-
terpart of the time discretization (20) and obtain the following fully discrete
variational time discretization for thin film flow on a polygonal surface ΓC :
Given ukC ∈ RNC at time tk find (uk+1

C , fk+1
E ) ∈ RNC×RNE at time tk+1 = tk+τ

as the solution of the following constraint optimization on RNC × RNE :

min
uC ,fE

{τ
2

gukC (fE , fE) + E[uC ]
}
, (31a)

where uC − ukC + τ ∂div

[
ME(ukC)

]
fE = 0 . (31b)

Furthermore, for the functional to be minimized we get

τ

2
gukC (fE , fE) + E[uC ] =

τ

2
〈fE ,M fE〉E + 〈uC , αC〉C +

ε

2
〈uC , B uC〉C . (32)

with M :=
[
M(ukC)

]
. Thus we are lead to a equality-constrained quadratic pro-

gramming problem. The NE×NE diagonal matrix M is positive definite under
the assumption that ukC > 0. The second term of the NC×NC matrix B, namely
the matrix −∂div∂grad, is symmetric and positive semidefinite with respect to
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the scalar product 〈., .〉C , i.e. 〈xC ,−∂div∂gradyC〉C = 〈∂gradxC , ∂gradyC〉E =
〈−∂div∂gradxC , yC〉C and 〈xC ,−∂div∂gradxC〉C = 〈∂gradxC , ∂gradxC〉E ≥ 0. The
matrix B itself is also symmetric wrt 〈·, ·〉C but in general not positive semidefi-
nite due to the diagonal term ζ cos θC −TC , which might be negative on curved
geometries or in the presence of gravity, more specifically when the film is lo-
cated underneath the substrate (cf. Lister et al.[29]).

4 Solving the Optimization Problem

Instead of solving the constrained optimization problem (31) directly, we can
reduce it to a more convenient form by using the constraint to eliminate uC .
First, we substitute uC with ukC + δuC , where δuC := uC − ukC , to get

min
fE

{τ
2
〈fE ,M fE〉E +

ε

2
〈δuC , B δuC〉C + 〈δuC , αC + εB ukC〉C +R[ukC ]

}
(33)

with δuC = δuC(fE) = −τ∂divMfE and R[ukC ] := ε
2 〈u

k
C , B u

k
C〉C + 〈ukC , αC〉C

being independent of fE and δuC . Finally, eliminating δuC we achieve the
unconstrained optimization problem:

min
fE

{
1

2
〈fE , A fE〉E + 〈fE , bE〉E

}
where A = τM − ετ2M∂gradB∂divM and bE = τM∂grad(αC + εBukC) . For a
solution to exist and be unique, the matrix A needs to be positive definite with
respect to the inner product 〈·, ·〉E .

Positive definiteness of A. In this section, we use ideas from convex
optimization theory to derive a sufficient condition for the time step τ for A
to be positive definite. We recall that A = τM − ετ2M∂gradB∂divM, where
B = [RC ]− ∂div∂grad with RC := ζ cos θC − TC , and we let R be the minimum
entry of RC and σ(M) the spectral radius of M. We define τmax := 4

εR2σ(M)

if R < 0, and τmax := ∞ otherwise. In what follows we will show that τmax is
indeed an upper bound for the time step, which guarantees positive definiteness
of the matrix A, i. e.

0 < τ < τmax ⇒ A pos. definite wrt 〈·, ·〉E . (34)

Let us emphasize that τmax only depends on the physical configuration and not
on the spatial grid size. By definition of A and (32) we have

〈fE , A fE〉E = τ〈fE ,M fE〉E + ε〈δuC , B δuC〉C
= τ〈fE ,MfE〉E + ε〈δuC , [RC ] δuC〉C + ε |∂gradδuC |2E (35)

for any fE ∈ RNE and δuC = −τ∂divMfE . If R ≥ 0 then B = [RC ]−∂div∂grad is
positive semidefinite and together with the positive definiteness of M we indeed
obtain that A is positive definite for any τ > 0. If R < 0, then given that
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−ε〈δuC , [RC ] δuC〉C ≤ ε |R| |δuC |2C , it is sufficient to ensure that the matrix A
defined by

〈fE , AfE〉E := τ〈fE ,MfE〉E − ε |R| |δuC |2C + ε |∂gradδuC |2E (36)

is positive definite provided the condition 0 < τ < τmax = 4
εR2σ(M)

holds. To

this end we first verify the inequality

α |δuC |2C ≤
τ

2
〈fE ,MfE〉E +

τα2M

2
|∂gradδuC |2E (37)

for any α > 0. Let FδuC denote the set of fE which satisfy this transport equa-
tion for a specific δuC . The dissipation associated with δuC is then given by
the constrained minimization problem minfE∈FδuC

τ
2 〈fE ,MfE〉E . We denote

the objective function τ
2 〈fE ,MfE〉E with D(f). This is a constrained opti-

mization problem, so we may consider its dual problem (see Chapter 5 in Boyd
and Vandenberghe[8]). We write down the Lagrange function, with Lagrange
multiplier pC ∈ RNC :

L(fE , pC) = D(f)− 〈pC , δuC + τ∂divMfE〉C

=
τ

2
〈fE ,MfE〉E + τ〈∂gradpC ,MfE〉E − 〈pC , δuC〉C

For a fixed pC , L(·, pC) is strictly convex, and the unique minimum is achieved
at fE = −∂gradpC . The dual Lagrange function then is then

L∗(pC) := inf
fE
L(fE , pC) = L(−∂gradpC , pC)

= −τ
2
〈∂gradpC ,M ∂gradpC〉E − 〈pC , δuC〉C .

For any pC and any fE we obtain by the duality inequality L∗(pC) ≤ D(fE)
the estimate − τ2 〈∂gradpC ,M ∂gradpC〉E − 〈pC , δuC〉C ≤ τ

2 〈fE ,MfE〉E . Finally,
choosing pC = −α δuC , for an arbitrary α > 0, we obtain

α |δuC |2C ≤
τ

2
〈fE ,MfE〉E +

τα2

2
〈∂gradδuC ,M ∂gradδuC〉E

≤ τ

2
〈fE ,MfE〉E +

τα2σ(M)

2
|∂gradδuC |2E ,

which is the required estimate (37).

Next, we assuming that τ < 4
εR2σ(M)

and setting α = ε|R|
2 in inequality (37)

and obtain

ε |R| |δuC |2C ≤ τ〈fE ,MfE〉E +
τε2R2σ(M)

4
|∂gradδuC |2E

≤ τ〈fE ,MfE〉E + ε |∂gradδuC |2E . (38)

Hence, A is positive semidefinite. Now, assume that

0 = 〈fE , AfE〉E = τ〈fE ,MfE〉E − ε|R||δuC |C + ε |∂gradδuC |2E (39)
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Revisiting inequality (38), we observe that for ∂gradδuC 6= 0 the sharper in-

equality ε |R| |δuC |2C < τ〈fE ,MfE〉E + ε |∂gradδuC |2E is obtained. This implies
〈fE , AfE〉E > 0 and leads to a contradiction. Thus, we already know that
∂gradδuC = 0. Furthermore, we deduce from the fact that (37) holds for all
α > 0 that δuC = 0 and then from (39) that 0 = 〈fE ,MfE〉E . By the positive
definiteness of M we finally achieve fE = 0. Hence, we have verified that A and
consequently A are positive definite.

5 Experimental Convergence Analysis

Before we apply the presented approach to physically interesting scenarios of
thin film flow on curves or surfaces let us investigate the robustness and ac-
curacy of the underlying variational time step discretization and the spatial
discretization based on discrete exterior calculus experimentally. Let us once
more emphasize that we assume strictly positive film height and hence do not
treat the propagation of triple lines formed by the solid, liquid, gas interfaces.
Nevertheless, we will consider transport and spreading of films with very small
film height.

At first we consider the evolution of thin films on 1D substrates. In Figures 3
- 6, we present certain experimental numerical convergence tests of the proposed
scheme. Here, the underlying thickness parameter is ε = 0.01 for a domain of
diameter in the horizontal direction ≈ 1. In Fig. 3, a Gaussian droplet with
(rescaled) height 1 put on top of a uniform layer with thickness 0.1 is flowing
down a curved substrate (ζ = 5). To test convergence in space, we evolved
the initial condition for a small time on spatial grids of various resolutions
(32 through 65536 nodes) and compared the discrete solution with the discrete
solution at the finest grid in the discrete L2 norm ‖·‖C . Here, the time step
size is considered to be very small, i.e. we chose τ = 1.526 × 10−5. To test
convergence in time, we evolve the same initial film profile on a grid with 1024
nodes for a fixed time interval, but for various values of τ . We calculate solutions
for τ = T through τ = T/2048 (with T = 4) and compare with the solution
obtained for the finest time step size. Both in time and space we observe linear
numerical convergence rates as plotted in Figure 3. In Fig.4, we run the same
evaluations for a parabolic droplet on top of a uniform layer with thickness 0.01
under stronger gravity (ζ = 50). Although our model can not handle partially
wetted surfaces, this configuration with a discontinuous derivative at the edge
of the initial droplet together with a very thin precursor layer exhibits a similar
behavior. For sufficiently small time step τ we experimentally observe a linear
convergence rate with respect to τ . Furthermore, tracking the position Xtriple(t)
of the advancing front of the droplet (the approximate ”triple point”) illuminates
why the time step needs to be controlled; although the method is stable even for
large τ , the front can only advance one cell per time step and hence a CFL-type
condition τV ≤ h, with V being the speed of the front, must be met. Once this
is fulfilled, our results show that the trajectory Xtriple converges linearly with
respect to τ .
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Figure 3: A Gaussian droplet with a preset precursor layer evolves on an inclined
curved substrate, where the initial [Left Top] and the final [Left Bottom] state
are displayed. Furthermore, a Log-plot of the L2-norm of the error for varying
grid size h [Middle] as well as for varying time step τ [Right ] is plotted.
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Figure 4: A parabolic droplet on an inclined curved substrate spreads on
top of a thin precursor layer. Initial [Left Top] and final [Left Bottom]
state are shown. Furthermore, we display [Middle] a Log-plot of the L2-
norm of the error for different values of the time step size τ (for fixed spa-
tial resolution h = 1.22 × 10−4) and [Right ] the evolution of the location
Xtriple(t) of the advancing droplet front is plotted for time step sizes τ =
{0.0625h, 0.125h, 0.25h, 0.5h, h, 2h, 4h, 8h, 16h}.

Next, in Figures 5 and 6 we study the merging of two droplets on a concave
substrate and the splitting of a uniform layer on a convex substrate, respectively.
For the merging droplets, we consider two Gaussian droplets with height 1 on
a precursor layer with thickness 0.1 on a concave (parabolic) substrate. The
configuration is symmetric and both gravity (ζ = 1) and curvature pull the
droplets into the sink and downwards on both sides, respectively. Plotting the
value of u at the contact point as a function of time reveals a non-monotone
behavior in Figure 5; as the droplets come in contact the thickness of the thin
film between them initially decreases, similar to the effect of a capillary ridge.
In Fig.6 we take into account as initial configuration a uniform layer of thickness
0.5 on a convex (parabolic) substrate with grid resolution h = 2× 10−3 with no
gravity (ζ = 0). Surface tension drives the fluid away from the region of largest
negative curvature at the tip of the substrate. Plotting the graph of minimum u
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versus time reveals a rapid initial decrease of u until it is approximately 10% of
the initial value and then the evolution slows down significantly as the mobility
M(u) becomes small.
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Figure 5: For two merging droplets the initial [Left Top] and the final [Left Bot-
tom] configuration are shown. Again, we plot on a logarithmic scale the L2-norm
of the error for varying time step τ and fixed spatial resolution h = 5×10−4 [Mid-
dle]. Furthermore, the evolution of u at the lowest point of the substrate (where
the droplets collide) is shown, for time step sizes τ = {8h, 16h, 32h, 64h, 128h}
[Right ].
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Figure 6: A uniform initial layer [Left Top] evolves towards a configuration
[Left Bottom] with a partially (almost) dewetted area in the regions of largest
negative curvature. The Log-plot of the L2-norm of the error for varying time
step τ fixed spatial resolution h = 2 × 10−3 is shown [Middle]. Finally, the
evolution of u at the highest point of the substrate is plotted in time for time
step sizes τ = {4h, 8h, 16h, 32h, 64h, 128h, 256h} [Right ].

In Fig. 7, we present numerical tests for the proposed method on a 2D
substrate. The values of the parameters are ε = 0.01 and ζ = 10. The substrate
is a parametric surface of the form (φ, r cos(θ(φ)), r sin(θ(φ)) ∈ R3 with θ(φ) =
π
32 (cos(φ)− 1), for (φ, r) ∈ [0, 2π]× [0, 8]. The initial condition is a Gaussian of
unit height on a uniform layer of thickness 0.1. We follow the same procedure
for the numerical convergence tests as in the 1D case. The tests for space
convergence are performed on a sequence of regular 2m×2m grids form = 4 . . . 10
for a fixed time step τ = 10−4. The convergence tests with respect to the time
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step size are performed on a 512 × 512 grid for values of τ from τ = T down
to τ = T/256. In both cases we observe numerical convergence in the discrete
L2-norm once a CFL-type condition is met, like in the 1D case.
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Figure 7: A Gaussian droplet [Left Top] evolves on an inclined curved substrate
with precursor layer (intermediate film profile [Bottom Left ]). The mass density
u is color-coded as . Again a Log-plot of the L2-norm of the error
versus the grid size h for fixed time step size τ = 10−4 [Middle] and versus the
time step size τ for fixed grid size h = 1.23× 10−2 [Right ].

6 Numerical Simulation

6.1 1D droplet on a slide

In Figures 8 and 9, we study the evolution of a droplet sliding down a 1D
inclined cascade of sinks, where the substrate shape is a cosine curve rotated
clockwise by π

5 . The initial condition is a Gaussian of height 15 on top of a
precursor layer of thickness 0.01 and the underlying parameters are ε = 0.1 and
ζ = 1. The curved is discretized with 1000 nodes (h = 0.031) and the time step
is τ = h/10.

The evolution of the film is driven by the gradient of the energy, with the
physical meaning of a pressure P = (ζz − H) + ε(ζ cos θ − T )u − ε∆Γu. The
leading order term P0 = ζz − H, which is independent of u, tends to pull the
film towards its local minima (cf. the validation examples in Section 5). The
concentration of fluid in a sink around a local minimum of (ζz − H) of the
substrate graph increases the term −ε∆u which tends to make the minimum
more ”shallow”. Once enough fluid is available in a single sink during the
evolution, the pressure becomes almost flat around the minimum, i.e. the fluid
is locally near a state of equilibrium. If even more fluid becomes available, it will
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”spill over” potentially to a different, previously non accessible, local minimum
of P0. Thus, in the evolution the fluid fills a succession of ”reservoirs” as it flows
down the substrate. The approximate contact point moves down the cascade
and is characterized by a negative spike in the pressure.

t = 0 t = 2.2 t = 4.4 t = 6.6 t = 8.8 t = 11 t = 13.2 t = 15.4

Figure 8: Evolution of a thin film on the inclined cascade of sinks.
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Figure 9: Plot of the mass concentration u [Top Row ] and the corresponding
pressure (overlayed on the leading order pressure term) [Bottom Row ] for the
evolving thin film on the inclined substrate at different times.

6.2 Film evolution in rotationally symmetric cavity

In Figures 11 and 12, we study the evolution of a uniform initial layer on a con-
cave surface of revolution, similar to a pulmonary alveolus. The initial thickness
is u(0) = 0.01 and the parameters of the simulation are ε = 0.01 and ζ = 0,
i.e. there is no gravity (on a geometric microscale the effect of gravity can be
neglected). Due to the rotational symmetry of the problem, we can reduce it to
a 1D problem on the profile curve whose rotation generates the surface. Energy
and dissipation are adapted taking into account the local radius parameter r.
As explained in the previous section, the fluid tends to flow away from the min-
ima of the mean curvature H, where the pressure P = −H + O(ε) is high, and
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Figure 10: The graph of the energy E(u(t)) [Left ] and the logarithm of the
negative rate of change of the energy E′(t) (solid line) overlayed with dots
representing the dissipation rate gu(f, f) plotted over time.

pool around its minima. The mean curvature of the surface of revolution is the
sum of the two principal curvatures κ1 and κ2. Let us denote by κ1 = sin θ

r the
curvature corresponding to the rotational circles, where θ is the angle of n with
the rotation axis, whereas the curvature κ2 is the curvature of the profile curve.
If the problem was genuinely 1D, in which case H ≡ κ2, the fluid would evacuate
the neck of the cavity and pool over its apex. In the rotational symmetric 2D
case, reflected by the impact of κ1, there are local minima of −H in the neck
region as well and part of the fluid will concentrate in a ring inside the neck of
the cavity (fig. 11).

The long term behavior of the thin film can be understood by studying the
pressure graph in fig. 12. Comparing the initial pressure with the pressure at
a sufficiently advanced time, we observe that the fluid concentrates in droplets
around the minima of −H and the pressure becomes locally almost constant,
i.e. the fluid is locally close to equilibrium.

t = 0 t = 9.1 t = 45.5

Figure 11: Different time steps of the evolution [Right ] of the thin film inside a
rotational symmetric cavity [Left ] with a graph of the mass concentration and
not the actual shape of the film in red.

24



10 20 30 40

-0.56

-0.55

-0.54

-0.53

-0.52

-0.51

-0.50

E

t 0 10 20 30 40

0.002

0.004

0.006

0.008

0.010

0.012

gu(f, f)

1 2 3 4 5 6

-5

-4

-3

-2

-1

1

s

t
P (t = T )
P (t = 0)

Figure 12: Graphs of the energy E[u] [Left ], the dissipation gu(f, f) [Middle]
and a plot of the initial and final pressure [Right ] over the arc-length of the
curve.

6.3 Fingering flows

In Fig. 13 we present the evolution of a band of fluid flowing down an undu-

t = 0 t = 6.2 t = 11.1 t = 17.2 t = 75.3

Figure 13: A band of fluid is separating and flowing downwards on inclined
undulating surface. The evolution is shown at different times, with the mass
concentration color-coded as .

lating surface. The values of the parameters are ε = 0.05 and ζ = 20. The
substrate is a parametric surface of the form (φ, r cos(θ(φ)), r sin(θ(φ)) ∈ R3

with θ(φ) = π
64 (cos(4φ) − 1), for (φ, r) ∈ [0, 2π] × [0, 8]. The initial condition

is a Gaussian of unit height on a uniform layer of thickness 0.1. The spreading
of the band exhibits the phenomenon of fingering, where droplets break away
from the spreading front and larger droplets in the middle advance with higher
velocity than smaller droplets on both sides. The separation, in this case, is
driven by the shape of the substrate. For a related experimental study of fin-
gering phenomena of thin films on a cylinder and sphere we refer to Takagi and
Huppert[43], where the influence of the Bond number on the fingering instability
is analyzed.

In Fig. 14 we show the evolution of a thin film on a sphere. The initial condi-
tion is a perturbed droplet on the north pole of the sphere, on top of a precursor
layer with thickness umin = 0.01. The discretized sphere has 25002 nodes and
the model parameters are ε = 0.01 and ζ = 10. The droplet spreads towards
the equator but triggered by an initial perturbations fingering instabilities can
be observed, this time caused by unstable nature of the flow itself (cf. Greer,
Bertozzi and Shapiro[20]). For large enough times, the fluid pools under the
south pole. For the numerical simulation of thin film flow on prolate spheroid,
approximating the shape of the human cornea we refer to Braun et al.[9], where
both Newtonian and non-Newtonian (shear thinning) fluids are investigated.
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Figure 14: The fingering evolution of a droplet on a sphere is displayed at
different times (north pole view [Top], equatorial view [Middle], south pole
view [Bottom]). The mass concentration is color-coded as .

A The Rate-of-strain Tensor.

Following the approach by Roy, Roberts and Simpson[39] and the discussion in
Batchelor[2] (Appendix 2), we consider a parametrization x(ξ1, ξ2) of Γ, such
that the corresponding coordinate system (ξ1, ξ2) is orthogonal and the coor-
dinate lines are aligned with the principal directions of Γ. This coordinate
system can be extended into an orthogonal coordinate system (ξ1, ξ2, ξ3 ≡ ξ) on
Xεh(Γ) ⊂ R3 using the mapping φ:

x(ξ1, ξ2, ξ3) := φ(x(ξ1, ξ2), ξ3) = φ0(x(ξ1, ξ2)) + ε ξ3 n(x(ξ1, ξ2)) .

We introduce scale factors hi =
∣∣∣ ∂x∂ξi ∣∣∣ for i = 1, 2, 3. Using the expression for dφ

from Section 2, we have ∂x
∂ξα

= dφ(Λ ∂x
∂ξα

) and so hα = λαh̃α = (1 − εξ3κα)h̃α

for α = 1, 2, where κα are the principal curvatures of Γ and h̃α =
∣∣∣ ∂x∂ξi ∣∣∣Γ are the

corresponding scale factors on Γ. For the normal direction, we have ∂x
∂ξ3

= εn and

so h3 = ε. Now, consider the velocity field v in Xεh(Γ). Using the orthonormal
basis (e1, e2, e3 ≡ n) associated with the coordinate system (ξ1, ξ2, ξ3), we can
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write v = v1e1 + v2e2 + v3e3. After substituting h3 = ε one observes

div v =
1

h1h2

(
∂(h2v1)

∂ξ1
+
∂(h1v2)

∂ξ2
+

1

ε

∂(h1h2v3)

∂ξ3

)
. (40)

Next, computing the components of the rate-of-strain tensor D[v] = 1
2 (∇v +

∇vT ) we get

D[v]11 =
1

h1

∂v1

∂ξ1
+

v2

h1h2

∂h1

∂ξ2
+

v3

h1h3

∂h1

∂ξ3
, D[v]23 =

h2

2h3

∂

∂ξ3

(
v2

h2

)
+
h3

2h2

∂

∂ξ2

(
v3

h3

)
,

with the remaining components obtained by cyclic interchange of indices. Now,
we take into account that the ratios vα

v3
scale like ε due to the incompressibility

constraint div v = 0 and (40), which reveals that

D[v]α3 = D[v]3α =
λα
2ε

∂

∂ξ3

(
vα
λα

)
+ O(ε)

with α = 1, 2 dominate the rest of the components. Thus, we finally obtain

‖D[v]‖2F =
∑
ij

(D[v]ij)
2 = 2

1

4ε2

∣∣∣∣Λ ∂

∂ξ
(Λ−1vΓ)

∣∣∣∣2
Γ

+ O(1)

=
1

2ε2

∣∣∣∣(id−εξS)
∂

∂ξ

(
(id +εξS + O(ε2))vΓ

)∣∣∣∣2
Γ

+ O(1)

=
1

2ε2

∣∣∣∣∂vΓ

∂ξ
+ εSvΓ

∣∣∣∣2
Γ

+ O(1) ,

which leads to the expression in (4).

B The 4th-order PDE Derived from the Gradi-
ent Flow.

Here, we verify the claim stated in Section 2.4 that the fourth order parabolic
PDE (17) deduced from the gradient flow formulation coincides up to higher
order terms in ε with the PDE (18) derived by Roy, Roberts, and Simpson[39].

We recall that ĝ = −∇z. Since φ0 is an isometry, it is straightforward to
show that ∇z(x) = dφ0(gradΓ z(x)) + 〈∇z(x), n(x)〉n(x), where x = φ0(x) and
z = z ◦ φ is the pullback of z onto Γ. Comparing with (2), we deduce that
ĝΓ = −gradΓz and ĝn(x) = −〈∇z(x), n(x)〉 and so ĝn = − cos θ. Furthermore,

from u = h− ε
2Hh

2+ ε2

3 Kh
3 we obtain, by inverting, h = u+ ε

2Hu
2+O(ε2). This

allows us to replace, as in Section 2, the height h with the mass concentration

27



u in (18). For the first term on the right-hand side of (18), we get

− 1

3
h2u gradΓ H̃ +

ε

6
h4(H id−S) gradΓH

=

(
1

3
h2u id− ε

6
h4(H id−S)

)
gradΓ(−H) +

1

3
h2u gradΓ(−εTu− ε∆Γu)

= (M(u) + O(ε2)) gradΓ(−H) + (M(u) + O(ε)) gradΓ(−εTu− ε∆Γu)

= M(u) gradΓ(−H − εTu− ε∆Γu) + O(ε2) ,

and for the second term, we obtain

− ζ

3
h3ĝΓ +

ζε

3
h4(H id +

1

2
S)ĝΓ −

ζε

3
ĝnh

3 gradΓ h

= −ζ
(

1

3
h3 id− ε

3
h4(H id +

1

2
S)

)
ĝΓ − ζεĝn

(
1

3
h3

)
gradΓ h

= −ζ
(

1

3
u3 id +

ε

6
(H id−S)u4 + O(ε2)

)
ĝΓ − ζεĝn

(
1

3
u3 gradΓ u+ O(ε)

)
= −ζ

(
M(u)− ε

3
Su4

)
ĝΓ − ζεĝnM(u) gradΓ u+ O(ε2)

= −ζM(u)ĝΓ + ζεM(u)(uSĝΓ)− ζεĝnM(u) gradΓ u+ O(ε2)

= ζM(u) (−ĝΓ + εuSĝΓ − εĝn gradΓ u) + O(ε2)

= ζM(u) (gradΓ z − εu gradΓ ĝn − εĝn gradΓ u) + O(ε2)

= M(u) gradΓ(ζz + ζε cos θ u) + O(ε2) .

Here, we have used that gradΓ ĝn = −SĝΓ. Indeed, consider a variation δx ∈
TxΓ and take its product with the right-hand side. Using the definition of the
(self-adjoint) S, as well as the fact that ĝ is constant and that dφ0(gΓ) ⊥ n, we
have

〈−SĝΓ, δx〉Γ = 〈dφ0(ĝΓ), Dδxn〉 = 〈ĝ, Dδxn〉 = Dδx〈ĝ, n〉 = Dδxĝn ,

which is exactly the defining property of gradΓ ĝn, i.e. 〈gradΓ ĝn, δx〉Γ = Dδxĝn
for any δx ∈ TxΓ.

Now, summing the resulting two terms above we receive M(u) gradΓ( δEδu ) +

O(ε2) with M(u) = 1
3u

3 id + ε
6u

4(H id +S) and δE
δu = (ζz−H)+ε(ζ cos θ−T )u−

ε∆Γu. Hence, the model of Roy, Roberts and Simpson[39] (18) indeed agrees
with the gradient flow PDE (17) up to O(ε2).
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