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Abstract

Triggered by development of new hardware for high resolution acquisition of complex geometric
objects such as laser range scanners, new graphics processors for realtime rendering and animation of
extremely detailed, textured geometric structures, and novel rapid prototyping equipment such as 3D
printers the processing of highly resolved complex geometries has established itself as an important area
both of fundamental research and impressive applications. Concepts from image processing have been
picked up and carried over to surfaces, physical based modeling plays a crucial role, and aspects of
computer aided geometry design have been integrated. This paper aims at highlighting some of the
developments with a particular focus on methods related to the mechanics of thin elastic surfaces from
the authors point of view. An overview of different geometric representations ranging from point clouds
over level sets to subdivision surfaces is given together with a sketch of the basic computational tools.
Furthermore, fundamental computational tasks such denoising, deformation or matching, and spectral
methods are discussed. Finally, beyond the processing of single shapes, it will be described how spaces
of shapes can be investigated using concepts from Riemannian geometry.

1 Introduction
Over the last decades the surface models used in computer graphics have been getting successively more
complex. In particular, new hardware for the acquisition of geometries such as laser range scanners and
new software for instance for multi view reconstruction provide high resolution geometric models with
triangulations consisting of millions of triangles or point clouds consisting of an even larger set of point
measurements. Depending on the origin of these models and the concrete purposes different geometric
representations are appropriate to process, model or animate the underlying surface geometries. On this
background the research field field of geometry processing has undergone a rapid development. In particular
physical based modeling plays a crucial role and concepts from mechanics have been picked up and adapted
to the needs in computer graphics.

The overarching goal of geometry processing is the combination of valid physical models with efficient,
near realtime simulation. Recently, an established trend is to not sacrifice physical accuracy for computa-
tional efficiency. One important instance of this trend is to work with reliable nonlinear models and to use
physical insight to accelerate algorithms instead of a brute force linearization. This provides a challenge for
many applications. The diverse approaches that we are going to present and compare here all face this chal-
lenge in one way or the another. When asking for discrete geometric approximations of smooth surfaces,
a central goal is to provide a structure preserving, consistent and converging notion of discrete curvatures
and discrete elastic energies. For subdivision surfaces, an open problem is to link the design of subdivision
algorithms with physical principles and to handle the high complexity of the underlying algorithms. If one
votes for an implicit representation of surfaces via level set methods the computational workload raises
from dimension two to three.

This paper highlights some of the ongoing developments with a particular focus on methods related to
the mechanics of thin surfaces. As a disclaimer, let us emphasize that the exposition in this paper should
not be read as an objective and balanced overview of geometry processing as a whole, but rather, as the title
suggests, as a personal perspective strongly biased by an eye on continuum mechanics, variational methods,
and partial differential equations. Indeed, we focus on surfaces which are primarily modeled as thin elastic
shells and discuss the implementation of corresponding variational models. Furthermore, we make use
of Rayleigh’s paradigm by which viscous dissipation models are derived from elastic energies replacing
elastic strains by strain rates. Even on this restricted research field we have to acknowledge that we are
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unable to do any sort of justice to the plethora of ideas and developments. On the other hand, we discuss in
parallel the different types of geometry representation and compare both the mathematical foundation and
the algorithmic realization.

The paper is organized as follows. In Section 2 we review different representations of surfaces ranging
from parametrized and triangulated surface over subdivision surfaces, level sets and point clouds to models
from discrete geometry. In particular we show how to model and discretize the most basic geometric
functionals and PDE operators such as the Dirichlet energy, the Laplacian and the Willmore functional.
Thereby, this section lays the foundation for the exposition of the models and methods described in the
subsequent sections. Then, in Section 3 we review some surface flows and surface fairing methods based
on feature aware geometric diffusion. How to model the stored elastic energy of a surface using a thin
shell approach is discussed in Section 6. We define membrane and bending energies on parametrized and
implicit surfaces and discuss the approximation using discrete exterior calculus. Applications to surface
matching and physical simulation are outlined. The spectral analysis of the Hessian of surface energies and
the computation of eigenfrequences and vibration models are fundamental tools in surface modeling and
will be briefly presented in Section 7. Furthermore, in Section 8 we anticipate a Riemannian perspective on
the space of surfaces and sketch the set up of a time discrete Riemannian calculus. Thereby, the underlying
metric represents the rate of physical dissipation accumulated along paths in shell space. Finally, we draw
conclusions in Section 9.

2 Different geometry representations and PDE approaches
The focus of this article is on geometry processing tools based on partial differential equations and geomet-
ric functionals. In the application different tools are implemented on different types of geometry represen-
tation. To emphasize the similarities and relations of these approaches we will discuss in this section some
of the most basic differential operators and energy functionals relevant in geometry processing, namely the
Dirichlet energy, the Laplacian, and the Willmore functional. Furthermore, we will briefly sketch how they
can be spatially discretized.

The flat case. We briefly recall the Euclidian case. On a two dimensional domain Ω the Dirichlet energy
of a function u : Ω→ R is defined as

WDirichlet[u] =
1

2

∫
Ω

|∇u|2 dx .

The weak form of the (negative) Laplacian −4 = −div∇ of a function u is given as the first variation of
Dirichlet energy. Indeed, using integration by parts one easily verifies that∫

Ω

−4uφ dx = ∂uWDirichlet[u](φ) =

∫
Ω

∇u · ∇φ dx (1)

for smooth u and for any smooth, compactly supported test function φ on Ω. A simple model for a thin plate
energy on the plate domain Ω and for a vertical displacement u is given byWplate[u] = 1

2

∫
Ω
|4u|2 dx. The

first variation of this energy leads to the bi-Laplacian42u with
∫

Ω
42uφ dx =

∫
Ω
4u · 4φ dx for smooth

u, or in weaker form∫
Ω

42uφ dx =

∫
Ω

∇w · ∇φ dx ,
∫

Ω

wφ dx =

∫
Ω

∇u · ∇φ dx , (2)

with42u = −4w and w = −4u in the weak sense of (1).

Finite Element discretization in the flat case. With respect to a finite element discretization of the above
energies and differential operators, one considers a regular, (for the ease of presentation) triangular mesh Th
covering the domain Ω, which we assume for simplicity to be polygonally bounded. Here h denotes the grid
size defined as the maximal diameter of the triangles T ∈ Th. At first we consider the space Vh of piecewise
affine, continuous functionsU on Ω. Each functionU is uniquely described by a vector Ū of nodal values on
the vertices of the triangulation. Now, the variation of the Dirichlet energyWDirichlet on discrete functions
U gives rise to a quadratic form LŪ · V̄ :=

∫
Ω
∇U ·∇V dx on nodal vectors, where L is the stiffness matrix.
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In addition taking into account the (lumped) mass matrix M with MŪ · V̄ :=
∫

Ω
Ih(U · V ) dx (Ih denotes

the piecewise affine Lagrangian interpolation on Th), one defines in analogy to the above relation for the
continuous Laplacian (1) the discrete negative Laplacian on nodal vectors −4hŪ = M−1LŪ . Finally,
based on (2) a discrete bi-Laplacian on nodal vectors is given by42

hŪ = 4h4hŪ , which corresponds to a
discrete thin plate energyWh

plate[U ] =
∫

Ω
(Ih(4h(Ū)))2 dx.

In what follows, we will now translate this calculus into the geometric context.

Smooth embedded surfaces. Let S ⊂ R3 be a smoothly embedded oriented surface. Let n denote the
unit normal. Then the first and second fundamental forms on S are quadratic forms acting on pairs (u, v)
of tangent vectors of S, defined as

I(u, v) := 〈u, v〉R3 and II(u, v) := I(dn(u), v) ,

respectively. Here 〈u, v〉R3 denotes the standard Euclidean inner product and dn(u) is the directional
derivative of n in the direction of u. Notice that dn(u) is automatically tangential since n has constant
(unit) length. The first fundamental form measures the metric of S, while the second fundamental form,
by accounting for the change of normals, measures curvature. Both first and second fundamental form
are symmetric. The shape operator is the linear mapping corresponding to the second fundamental form,
i.e., II(u, v) = I(S(u), v). The eigenvalues κ1 and κ2 are the principal curvatures. The Gauß and mean
curvature are defined as the determinant and trace of S, respectively.

The analogue of the the Laplacian on S is the Laplace–Beltrami operator 4S = −divS∇S . Its defi-
nition requires the notions of the gradient of functions f : S → R and the divergence of tangential vector
fields u on S . The former is defined via I(∇Sf, u) = df(u) and the latter is defined as the (negative formal)
adjoint of ∇S , i.e,

∫
S I(∇Sf, u)da = −

∫
S fdivS(u)da, where da denoted the area element of S. With

these definitions, one can define the Dirichlet energy of functionsWDirichlet[u] = 1
2

∫
S |∇Su|

2 da , in per-
fect analogy to the flat case. Furthermore, as in the flat case, the weak formulation of the Laplace–Beltrami
operator only requires the notion of gradient, i.e.,∫

S
−4Suφ da = ∂uWDirichlet[u](φ) =

∫
S
∇Su · ∇Sφ da (3)

for compactly supported, smooth functions φ : S → R. Instead of scalar functions, we can consider vector
values functions and apply differential operators to all components of the function. With a slight misuse of
notation, we write x also for the vector values mapping on S, which maps every point x onto itself. The
fundamental geometric insight is that 4Sx = −hn. The mean curvature vector hn is also the gradient of
the area functional A[x] =

∫
S

da with respect to the L2 scalar product. Hence, the associated gradient
flow of the area functional is the geometric heat equation ∂tx −4Sx = 0. A the nonlinear counterpart of
the thin plate energy on flat domains is the Willmore energy WWillmore[x] = 1

2

∫
S h

2 da. The associated
gradient flow is the Willmore flow ∂tx = (4Sh+h(|S|2− 1

2h
2))n, where |S| denotes the Frobenius norm

of the shape operator.
In practice, triangle meshes or what is known as polyhedral surfaces are a prevalent discrete represen-

tation of surfaces on a computer. In doing so, one can then, just like in the flat case, construct stiffness and
mass matrices as described above. We outline this description below. One challenge is to define the second
fundamental form in this case, which we also discuss below. Before doing so, we briefly recall how first and
second fundamental form and the Laplace–Beltrami operator are represented in a local parameterization of
S.

Local parameterizations. Given a surface S ⊂ R3, one can in general not obtain a global parame-
terization, i.e., a diffeomeorphism from a region in a plane to S , that covers all of S , even for simple
surfaces such as the sphere. In general, one can only work with local parameterizations or what is known
as coordinate charts. Working with local parameterization frequently requires to account for coordinate
changes, which is a tedious task in practice. Therefore in geometry processing one prefers to work with
global representations of surfaces such as triangle meshes or level set representations that do not require any
particular parameterization. Moreover, the intrinsic, i.e., parameterization independent, formulation of dif-
ferential operators is often more natural and convenient. Nonetheless, certain applications, such as texture
mapping, do require local parameterizations and higher order discretizations methods such as subdivision
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finite elements use local parametrization over control meshes as well. There is an extensive literature
(see, e.g., [34] and references therein) on the computation of local parameterizations in particular dealing
with the issue to minimize distortion of lengths and angles. Since distortion is unavoidable in general,
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Figure 1: Bounded distortion mapping of
Lake Superior. Original mesh (left) is de-
formed by moving island and boundaries.
Bounded distortion maps (right) avoid tri-
angle flips and high distortion. (Image
courtesy of Y. Lipman.)

this poses the question if one can at least bound the amount
of introduced distortion. For the case of triangle meshes and
piecewise linear continuos bijections from a polyhedral sur-
face to a planar region, this long standing problem has re-
cently been solved by Lipman for the case of aspect ratio
distortion [58], see Figure 1. A detailed discussion of local
parameterizations is beyond the scope of this paper.

Returning to representations of differential operators and
fundamental forms in local coordinate charts of smooth sur-
faces, let x : Ω → R3, ξ 7→ x(ξ) be a local parameteriza-
tion of S defined on a parameter domain ω ⊂ R2. Then the
normal n(x) is given by n(x) = ∂ξ1x ∧ ∂ξ2x and the first
fundamental form on the parameter domain is expressed by
g(v, w) = Dxv · Dxw, where Dx(ξ) ∈ R3,2 is the Jaco-
bian of the parameterization x. The associated matrix is g =
(gij)i,j=1,2 = DxTDx and its inverse g−1 = (gij)i,j=1,2.
With the metric at hand, the integral of a function f on x(ω)
is given by

∫
x(ω)

f da =
∫
ω
f ◦ φ√g dξ. For the shape op-

erator S defined above we obtain from S(x)Dxv · Dxw =
D(n ◦x)v ·Dxw the representation on the parameter domain
Sω = g−1DxTD(n◦x) as a 2×2 matrix defined on the chart.
The above mentioned differential operators can as well be expressed on the chart. For the tangential gradient
we obtain ∇Sf(x) = Dxg−1∇(f ◦ x) and for the (tangential) divergence operator on S applied to a tan-
gential vector field v ◦ x = Dxv one deduces the parametric representation (divSv) ◦ x = 1√

gdivξ(v
√
g).

Hence, the Laplace Beltrami operator is given by4Su = divS∇Su = 1√
gdivξ

(
g−1∇ξ(u ◦ x)

√
g
)
.

Triangulated surfaces. Following the discretization procedure in the flat Euclidian case, we consider a
triangulated surface Sh, e.g., the vertices of the triangulation might lie on the true surface S (cf. Dziuk and
Elliott [30]). Then we denote by Vh the space of piecewise affine, continuous functions on Sh. Again the
variation of the discrete Dirichlet energyWh

Dirichlet = 1
2

∫
Sh |∇ShU |

2 da for functions U ∈ Vh leads to a
quadratic form LŪ ·V̄ :=

∫
Sh ∇ShU ·∇ShV da on nodal vectors Ū and V̄ (U , V denoting the associated dis-

crete functions in Vh) with the stiffness matrix L. Here, the (discrete) surface gradient∇ShU is constant on

α ij

j

i
ej

ei

each triangle T of Sh and lies in the plane of the triangle, which coincides
with the local tangent space. The entries of the local stiffness matrix can
be computed as follows. Let us denote by v0, v1, v2 the vertices of T and
by ej the oriented edge opposite of vj for j = 0, 1, 2, then we obtain the
local stiffness matrix (Llocal

h )ij = 1
4ei · ej |T |

−1 and the local (lumped) mass
matrix (Mlocal

h )ij = 1
3 |T |δij , which have to be assembled to there global

counterparts in the usual way. Notice that (Llocal
h )ij = − 1

2cot(αij)), where
αij = ∠(ei, ej) denotes the (unoriented) angle between ei and ej in T . The
latter representation is know as the cotangent formula [62, 72]. Analogously, we define the mass matrix
MŪ ·V̄ :=

∫
Sh U ·V da on the discrete surface Sh. From the discrete analog of (3) we deduce the definition

of the discrete Laplace Beltrami operator −4ShŪ = M−1LŪ on nodal vectors Ū [28]. Convergence of
this approach for polyhedral surfaces that approximate (but do not necessarily interpolate) a smooth limit
surface has been established in [45].

Discrete first and second fundamental forms One challenges for polyhedral surface is to provide a
consistent notion of the second fundamental form, i.e., a notion that converges (in an appropriate topology
or measure theoretic sense) to the second fundamental form of a smooth limit surface S for a sequence of
polyhedral surfaces that converge to S in the limit of triangle refinement. In a nutshell, the difficulty is that
curvatures in the smooth case involve second derivatives—a concept that does not immediately translate to
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triangular meshes.
One computationally popular model for discretizing the second fundamental form is Grinspun’s et al.

discrete shells (DS) [38], which offers a discrete version of mean curvature associated with edges. In this
view, mean curvature is measured as the dihedral angle of a an edge. It turns out that this view corresponds
to a beautiful mathematical approach—the mean curvature measure arising form the theory of normal
cycles [66]. In the smooth case, the theory of normal cycles is intimately connected to the method of
moving frames, where one considers adapted orthonormal frames in that sense that one of the three frame
vectors agrees with the unit surface normal. Using normal cycles, one not only arrives at a natural version
of mean curvature for polyhedral surfaces, but also a notion of discrete Gauß curvature, associated with
mesh vertices, defined as the usual angle deficit. This notion gives rise to a discrete version of the famous
Gauß–Bonnet formula. Indeed, the power of the theory of normal cycles is that it provides a unified theory
for the case of smooth surfaces, convex (but not necessarily smooth) bodies, and triangular meshes.

Cohen–Steiner and Morvan have used the theory of normal cycles to provide a notion of discrete shape
operators for polyhedral surfaces [22, 23]. Roughly speaking, the attendant notion of second fundamental
forms arises by observing that (i) there is no normal curvature along an edge and (ii) (a function of) normal
curvature perpendicular to an edge is equal to the edge’s dihedral angle. This notion turns out to converge
in the sense of measures. A similar notion that also converges in these sense of measures, leading to a
consistent notion of the Willmore functional on polyhedral surfaces, has been proposed by Hildebrandt and
Polthier [43, 44]. Convergence in the sense of measures can be established since the biasing local effect
of edge directions tends to decrease when averaged over large enough regions. Consequently, convergence
can be shown by letting the averaging region shrink at a much lower rate than the refinement of triangles
increases within the region. The averaging effect is much more pronounced for unstructured meshes (e.g.,
Dealaunay triangulation) than it is for structured meshes, see [37].

To summarize, the main idea is to not a priori fix a normal per edge but to initially allow for all normals
that are perpendicular to their respective edge, and letting (global) bending energy minimization decide for
which normal to pick. While this approach works favorably for both unstructured and structured meshes, it
is still an challenging open problem to prove that this formulation is convergent, i.e., to show that discrete
minimizers converge to smooth ones under appropriate boundary conditions.

A slight modification of these approaches leads to the following formulation of discrete second funda-
mental forms that mimics the construction of the smooth case, where the second fundamental form encodes
the change of normals. We elaborate on this construction since it leads (i) to a formulation of second

n3

n1

n2

m12
m31

m23

1

3

2

fundamental forms that is constant per triangle and thus (ii) to a discrete for-
mulation of elastic energies that structurally resembles the smooth setting. For
an edge e = T ∩ T̃ between two triangles, define ne as the normalized sum
of the unit normals belonging to the triangles T and T̃ . For boundary edges,
consider the respective triangle normal, and associate ne with the midpoint
of e. With normals associated to edge midpoints, the (discrete) 1-form dn
acts on line segments connecting edge midpoints. Fixing a triangle T with
edges e1, e2, e3 and corresponding edge normals n1, n2, n3 one finds that
dn(mij) =

∫
mij

dn = nj − ni, where mij is the line segment connect-
ing the midpoint of ei with that of ej . Using the vector identity ek = −2mij ,
where k is the complementary index to i and j in T , one accordingly defines
IIT,k := IIT (ek, ek) := 2(ni − nj) · ek as the action (associated with a triangle T ) of the second funda-
mental form on the edge vector ek. Assembling contributions over all three triangle edges and using the
fact that in dimension two a symmetric quadratic form is uniquely determined by its action on three linearly
independent vectors, leads to a discrete second fundamental form that is constant per triangle:

IIT =
1

8|T |2
3∑
i=1

(IIT,j + IIT,k − IIT,i) ti ⊗ ti , (4)

where the indices j = i + 1 (mod 3) and k = i + 2 (mod 3) refer to the cyclic ordering of edges of T , ⊗
denotes the outer product, ti is the result of clockwise rotating edge ei by π/2 in the plane of T , and |T |
denotes the area of T .

Repeating the above construction for the first fundamental form, one defines IT,k := IT (ek, ek) := |ek|2
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Figure 2: The first two subdivision steps starting from the control mesh and the resulting limit surface are
visualized (left). Furthermore, subdivision bases functions are rendered for a node with valence 4 (left) and
6 (right), respectively (Image courtesy of R. Perl).

and thus

IT =
1

8|T |2
3∑
i=1

(IT,j + IT,k − IT,i) ti ⊗ ti . (5)

In the computational mechanics community this formulation is known as the constant strain triangle.

Subdivision Finite Elements. As long as smooth surfaces are approximated by a triangular mesh one
is restricted to the discretization of PDEs and variational problems on the surface via piecewise affine
continuous finite elements as exposed above. Alternatively, a triangular mesh could be considered as a
control mesh of a much smoother surface approximation. Such approximation can be generation via an
iterative refinement of the control mesh using a subdivision scheme. Starting from the control mesh a
single subdivision step consists of a mesh refinement and then every vertex of the refined mesh is re-
placed by a weighted sum of itself and all adjacent vertices with a usually fixed set of weights. In their
pioneering paper Catmull and Clark [17] proposed such a scheme for quadrilateral meshes. A subdi-
vision method for triangular grids based on a successive refinement of every triangle into four congru-
ent triangles was presented by Loop [61] (cf. Fig. 2). If restricted to control patches with valence 6,
i.e., every vertex of a triangle is shared by 6 adjacent triangles forming the patch associated with the

Figure 3: The equation 42
Su + u = f is

solved on a surface using subdivision finite
elements based on Loop subdivision with
color coded f (left) and u (right) (Image
courtesy of R. Perl).

triangle, Loop’s subdivision scheme is equivalent to the con-
struction of bi-variate box-splines and thus the limit surface
is C2 and in particular it can be constructed explicitly from
the vertex positions of a local patch of the control mesh. For
general meshes with different valences the limit surface is still
C1∪H2 and thus for instance the mean curvature is still inL2.
Mandal, Qin, and Vemuri [63] used subdivision surfaces for
the dynamic surface modeling via spring forces attached to the
control points. Subdivision schemes are not only useful for the
smooth approximation of surfaces using a local parametriza-
tion over flattened control meshes. They can be applied to
assigned general scalar values or vectors to the control ver-
tices to describe smooth scalar or vector valued functions. In
particular the conforming finite element approximation of ge-
ometric functionals involving second derivatives is possible,
e.g., the discrete weak definition of the geometric Laplacian
42
S on the limit surface S∞h of a control mesh Sh is given by∫

S∞h
42
S∞h

U Φ da =

∫
S∞h
4S∞h U 4S∞h Φ da (6)

for a subdivision finite element function U and all subdivision finite element test functions Φ (cf. (2)).
Figure 3 shows the result for solving the equation 42

Su + u = f on a surface using subdivision finite
elements. Cirak, Ortiz, and Schröder [21] investigated a thin-shell analysis using subdivision finite elements
to describe the surface geometry and to compute smooth displacement field in a conforming finite element
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Galerkin approach. They applied this approach to the Kirchhoff-Love theory of thin shells and used Loop’s
subdivision scheme. In [39] Grinspun, Krysl, and Schröder have used a base function oriented adaptive
strategy in order to implement an adaptive subdivision finite element scheme. For the assembly of finite
element matrices on valence 6 control patches the explicit spline representation can be retrieved and the
computations are performed on the control mesh as a parameter domain of the actual subdivision limit
surface. On triangles of non valence 6 patches, one uses an appropriate quadrature formula with only
interior quadrature points and applies the subdivision scheme recursively until all quadrature points lye in a
valence 6 patch and thus the explicit representation again applies (cf. Fig. 2).

Implicit surfaces / level sets. Now we consider surfaces S described as level sets of a function w, i.e.,
Sc = [w = c] := {x ∈ R3 |w(x) = c}, where we assume w : R3 → R to be smooth with ∇w 6= 0 on
Sc. Then, the normal is given as n = |∇w|−1∇w and for the shape operator (trivially extended to a 3× 3
matrix) we obtain Sext = DnP = D(|∇w|−1∇w)P = |∇w|−1PD2wP , where P (x) = P [w](x) :=
1−n(x)n(x)T denotes the projection onto the tangent space. Thus for the mean curvature at the point x on
Sw(x) one gets h = tr(DnP ) = divn. The tangential gradient of a function f : R3 → R and the tangential
divergence of a vector field v : R3 → R3 are given by∇Scf = P∇f and divScv = (P∇) · v, respectively.
In the implicit surface case, there is generically no integration over a single surface, instead we can integrate
over a bundle of surfaces [c− < w < c+] =

⋃
c∈{c−,c+} Sc and the coarea formula implies

∫ c+

c−

∫
Sc
f da dc =

∫
[c−<w<c+]

f |∇w| dx

with |∇w| representing the density of level sets. Thus, the Dirichlet energy of a function u : R3 → R
integrated over a bundle of surfaces {Sc | c ∈ {c−, c+}} can be computed by

Wc−,c+

Dirichlet[u] =
1

2

∫
[c−<w<c+]

(P∇u) · ∇u |∇w| dx .

Likewise, one obtains the weak definition for the Laplace Beltrami operator∫
[c−<w<c+]

−4Swuφ |∇w| dx = ∂uWc−,c+

Dirichlet[u](φ) =

∫
[c−<w<c+]

(P∇u) · ∇φ |∇w| dx (7)

for compactly supported, smooth functions φ : R3 → R from which the explicit representation 4Swu =
1
|∇w|div(|∇w|P∇u) is deduced for smooth u. Taking into account the level set equation

∂tw + |∇w|v = 0 ,

which describes the evolution of the implicit surfaces Sw with a speed v in direction of the normal field n =
|∇w|−1∇w, we obtain for the surface evolution of mean curvature motion ∂tw+ |∇w|div(|∇w|−1∇w) =
0. Finally, the Willmore energy integrated over a bundle of surfaces {Sc | c ∈ {c−, c+}} is given by

Wc−,c+

Willmore[u] =
1

2

∫
[c−<w<c+]

div(|∇w|−1∇w)2|∇w| dx .

Let us emphasize that in the level set formulation the PDE problems on different surfaces Sc and Sc̃ are still
decoupled even though one integrates over bundles of surfaces.

Level set Finite Elements. Discretizing level set equations is based on a triangulation Th of the com-
putational domain D ⊂ R3, where h again denotes the grid size. Now, let Vh denote the space of
piecewise affine, continuous functions on this 3D triangulation. Then, given a discrete level set func-
tion W ∈ Vh the stiffness and matrix matrix are defined by LŪ · V̄ =

∫
D
P [W ]∇U · ∇V |∇W | dx and

MŪ · V̄ =
∫
D
Ih(UV )|∇W | dx, respectively. Here, Ih is the affine Lagrangian interpolation on Th and Ū ,

V̄ are again the nodal vectors corresponding to discrete functions U, V ∈ Vh. Hence, one obtains for the
discrete Laplacian on a bundle of surfaces in the level set context −4hŪ = M−1LŪ . The finite element
analysis of PDEs on level sets is discussed in [31]. For the general concepts of the level set method we
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Figure 4: The level set representation of a complex dragon model on a thin narrow band is shown using a
cutting plane intersecting the dragon surface with underlying resolution 1986× 1323× 1104). On the right
a zoom is displayed and on the plane the slices of all cells intersecting the narrow band are drawn.

Figure 5: Poisson Surface Reconstruction proposed in [54] for high quality surface reconstruction from
oriented points clouds. (Image courtesy of M. Kazhdan.)

refer to the textbooks by Sethian [79] or Osher and Fedkiw [70]. If one is primarily interested in a PDE
on a single surface or its geometric evolution, a narrow band approach is advisable, where one chooses as
a computational domain only a small neighbourhood of the surface of interest. The efficient encoding of
narrow bands on very high-resolution grids can be done with suitable hierarchical sparse grid structures as
proposed in [47]. Fig. 4 depicts the narrow band geometry for a large scale surface model.

Point clouds. In practice, e.g., when using a 3D scanner, surfaces are sometimes given as raw point
data—without any connectivity or mesh structure. There exist numerous algorithms for reconstructing
a surface from a point set, such as discrete computational geometry methods that provide triangulated
surfaces, e.g., by using Delaunay triangulations, Voronoi diagrams, or alpha complexes, [2, 12, 32]. Other
approaches base reconstruction on implicit surfaces, e.g., by using radial basis functions (RBFs) or moving
least squares [68,88]. If the points in the point set are additionally oriented, i.e., come with a unit normal per
point, then one can use a PDE-based approach for reconstruction by solving a simple Poisson problem [54]
(see Figure 5). Laplacians on point clouds have been constructed using short-time properties of the heat
kernel, see [7].

Smooth and Discrete Exterior Calculus. On smooth or polyhedral manifolds there usually does not exist
a global parameterization. Therefore, it is desirable to express differential operators in an invariant manner,
i.e., independent of any particular local parameterization. In the smooth setting, one prevalent choice is
the language of exterior calculus on abstract manifolds M. We will later apply this to two dimensional
surfaces S. Exterior calculus starts with the notion of smooth differentiable k-forms. Restricted to a point
x ∈ M, a k-form ωx is an alternating multilinear for, i.e., ωx ∈ Altk(TxM), where TxM is the tangent
space at x. Denoting the space of smooth k-forms by Ωk(M), one then considers the exterior derivative
d : Ωk(M) → Ωk+1(M) and the wedge product ∧ : Ωk(M) × Ωl(M) → Ωk+l(M). Since this is
not the place to elaborate on the various intruiging properties of these operators, we content ourselves
with pointing out that exterior differentiation is a generalisation of vector calculus in R3, i.e., of operators
such as grad and div; notice, however, that exterior differentiation does not require the notion of a metric.
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Likewise, the wedge product is a generalization of the cross product on R3. IfM is additionally equipped
with a Riemannian metric g, then this metric naturally gives rise to norms of k-forms and to measuring
volume on M. Indeed, equipped with a Riemannian metric, one can define the volume form dvolg and
the Hodge star operator ? : Ωk(M) → Ωn−k(M), where n = dim(M). These objects are related
through ω ∧ (?ω) = ‖ω‖2dvolg . On two-dimensional Riemannian manifolds—i.e., the case of interest
here—the Hodge star on 1-forms simply corresponds to a rotation by π/2, which, if we identify vectors
and 1-forms, reveals a simple geometric meaning of this operator. Likewise, the Hodge star of a 0-form
(i.e., a smooth function) f yields ?f = f dvolg , i.e., a f -weighted volume form. A Riemannian metric
additionally gives rise to an L2 inner product of k-forms, which, using the Hode star, can conveniently be
expressed as (ω, η)L2 =

∫
M ω ∧ (?η) (whenever this integral is defined). The L2 inner product then gives

rise to the codifferential δ : Ωk(M)→ Ωk−1(M) as the (formal) adjoint of d, i.e, (dω, η)L2 = (ω, δη)L2 .
In terms of the Hodge star, the codifferential can be expressed as δ = (−1)n(k+1)+1 ? d?. Finally, the
Hodge–Laplace operator on k-forms is defined as 4M = δd + dδ. Notice that, just as in the Euclidean
case,4M is (formally) self-adjoint with respect to (·, ·)L2 .

Mimicking the above on simplicial manifolds, Desbrun, Hirani, Leok, and Marsden introduced discrete
exterior calculus (DEC) [26]. In this case, k-forms are naturally associated with simplicial k-cochains Ck,
i.e., duals to the space of simplicial k-chains Ck (which in turn are defined as formal R–linear combinations
of k-simplices). The role of exterior differentiation is the canonically taken by the simplicial coboundary
operator δ : Ck → Ck+1. For constructing a discrete Hode star operator, Hirani et al. consider the
circumcentric dual complex K∗ of a simplicial complex K. This dual construction leads them to a discrete
Hodge star operator taking primal cochains inK to dual cochains inK∗ and vice-versa. properly weighted)
dual of ∗ : Ck → Cn−k. In analogy to the smooth setting, one then defines the dual of the coboundary
operator by δ∗ := (−1)n(k+1)+1 ? d?, mapping Ck to Ck−1, and the discrete Laplacian as 4h := δ∗δ +
δδ∗. For the Laplacian acting on 0-cochains (i.e., discrete functions defined at vertices), one recovers the
cotangent operator from the FE setting described above—with the slight modification that the attendant
mass matrix in the DEC construction is diagonal, corresponding to a lumped mass matrix in the FE world.
An alternate approach for defining δ∗ (and therefore 4h) is, as the the smooth case, to consider L2-inner
products (·, ·)L2 on k-cochains and defining δ∗ as the dual of δ with respect to this inner product. Indeed,
an appropriate choice of inner products leads to the same δ∗ (and hence to the same Laplacian) as the one
arising from the discrete Hodge star. Using inner products additionally leads to a construction of Laplacians
on surfaces with general polygonal (not necessarily triangular) faces [1].

In a similar spirit, Arnold, Falk, and Winther have developed Finite Element Exterior Calculus (FEEC) [3].
One of the main approaches there is to avoid an explicit construction of the formal dual of d and instead
use a weak formulation on suitable finite element spaces, i.e., instead of solving δσ = ω, one considers the
weak formulation (ω, τ) = (σ, dτ), leading to a mixed formulation for the Hodge Laplacian. For piecewise
linear functions, DEC and FEEC share various similarities—the main difference being that DEC works
with a diagonal (lumped) mass matrix, whereas FEEC does not.

The approaches of DEC and FEEC have in common a certain trend to consider structure preserving
discretizations. For the case of partial differential equations, the benefit of structure preservation appears
to be the resulting stable discretizations. A similar observation applies to geometry: For example, the
structure of special surfaces, such as minimal surfaces, surfaces of constant mean curvature or surfaces
of constant negative Gauß curvature, is governed by nonlinear PDEs. The field of Discrete Differential
Geometry (DDG) searches for discretizations that preserve the underlying structure of the smooth case. For
readers interested in theory and applications of DDG to geometry processing, we refer to [9–11].

Finally, with regards to structure preservation, there are certain limits to what one is able to achieve in
the discrete case when trying to mimic all properties of the smooth setting. E.g., for the Laplace–Beltrami
operator it has been shown [91] that there exists no discrete Laplacian that possesses all properties of the
smooth one. Indeed, the main culprit in the discrete setup is to construct Laplacians that are convergent and
satisfy the maximum principle.

3 Surface Fairing and Surface Flows
In physics, diffusion is known as a process that equilibrates spatial variations in concentration. For a
(noisy) concentration u0 on a domain Ω ⊂ R2 the heat equation ∂tu − 4u = 0 with natural boundary
conditions describes a scale of representations {u(t)}t∈R+ of the initial values u, which gets successively
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Figure 7: Willmore flow on triangulated meshes when working in curvature space, see [24]. (Image cour-
tesy of K. Crane.)

coarser for t → ∞. It is well-known that for Ω = R2 the solution u coincides with a Gaussian filter-
ing of the initial data, i.e., u(σ2/2) = Gσ ∗ u0 with Gσ(x) = (2πσ2)−1e−x

2/(2σ2). Here σ denotes the
filter width or standard deviation. It is near at hand to ask for analogous strategies for the fairing of per-
turbed and noisy surface geometries S0 and is naturally lead to mean curvature motion ∂tx − 4Sx = 0
using the fact that hn = −4Sx. Discretizing this evolution problem explicitly in space one obtains a
first simple fairing scheme xn+1 = xn − τ4Snxn with xn denoting the identity on the surface Sn.

Figure 6: The smoothing of an initial sur-
face (left) by time discrete mean curvature
motion (right) using the implicit fairing ap-
proach by Desbrun et al. [27] (Image cour-
tesy of M. Desbrun).

To speed up this scheme and improve its robustness Des-
brun et al. [27] considered the implicit time discretization
xn+1 = xn − τ4Snxn+1 similar to the one proposed by Dz-
iuk [29], where the Laplace-Beltrami operator is still evalu-
ated at the old time step [27] (cf. Fig. 6). Mean curvature
motion model is known as the L2 gradient flow of the surface
areaA(S) and d

dtA(S(t)) = −
∫
S(t)

h2 da (cf. [49]), which is
one indication for the strong regularizing effect of mean cur-
vature motion. Unfortunately mean curvature motion not only
decreases the geometric noise due to imprecise aquisition but
it also smoothes out geometric features such as edges and cor-
ners. Hence, a models is required which improve a simple
high pass filtering. Here image processing methodology can
be used. Perona and Malik [71] proposed a nonlinear diffusion
method based on the PDE ∂tu − div(a(|∇u|)∇u) = 0 with

a diffusion coefficient a(s) =
(

1 + s2

λ2

)−1

which suppresses
diffusion in areas of high gradients with an edge classifier constant λ > 0, which leads to sharpening by
backward diffusion whenever |∇u| ≥ λ, whereas the image is smoothed elsewhere by forward diffusion
(cf. [53]). To overcome the ill-posedness of the original Perona and Malik model Catté et al. [18] proposed
a regularization method, where the diffusion coefficient a(·) is evaluated on a prefiltered image intensity
uσ = Gσ ∗ u. Weickert [92] improved this method using an anisotropic diffusion tensor, where the Perona
Malik type diffusion is concentrated in the gradient direction of the prefiltered image uσ . This implies an
additional tangential smoothing along edges. This approach can be transferred to geometry processing.
Thereby edges and corners are classified using the shape operator SSσ of a prefiltered surface Sσ . Close to
an edge the principal direction of curvature corresponding to the dominant principal curvature points in the
direction orthogonal to the edge.

Triangulated surfaces. In case of an explicit surface representation one obtains the evolution problem

∂tx− divS(Aσ∇Sx) = 0 ,

whereAσ = a(Sσ) is a diffusion tensor, which is diagonal with respect to the orthonormal basis of principal
curvature directions viσ on Sσ , i.e., Aσviσ · vjσ = δija(κiσ) with κi,σ denoting the
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Figure 9: Mean curvature motion fairing is compared with anisotropic geometric diffusion for a noisy
triangular surface (left), to a level set of a 3D echocardiographical image of a ventricle of the human heart
(middle) and to a a noisy level set model of a dragon using a narrow band approach for high resolution
surfaces (right).

Figure 8: Result of the discrete
geometry approach to anisotropic
diffusion (right) for a noisy octa-
hedron (left) (Image courtesy of
K. Hildebrandt).

corresponding principal curvatures. Following the general discretiza-
tion procedure outlined in Section 2 the method can be discretized
on triangular meshes using affine finite elements. An alternative ap-
proach has been investigated by Hildebrandt and Polthier [42]. They
used a discrete shape operator on triangular meshes to model a dis-
crete anisotropic diffusion process directly on the triangular mesh as
demonstrated in Fig. 8. A subdivision finite element implementa-
tion of anisotropic diffusion was proposed by Bajaj and Xu [4]. Fig.
9 shows results of the anisotropic diffusion method. By working in
curvature space instead of in position space, Crane et al. [24] have
recently proposed a formulation of Willmore flow for triangulated sur-
faces that allows for very large time steps while preserving the quality
of the input mesh, see Figure 7. Their approach can also be used for highly efficient surface fairing while
preserving mesh quality.

Implicit surfaces / level sets. This approach can be adapted to the processing of level set surfaces. Let
us denote by w0 : D → R the implicit representation of a surface S0 (S0 = [w0 = 0]). Then one asks for a
family {w(t)}t>0 of denoised level set functions which solves the anisotropic diffusion problem

∂tφ− |∇φ|div

(
Aσ
∇φ
|∇φ|

)
= 0

with natural (no flux) boundary conditions on ∂D and initial data w(0) = w0. In this case Aσ = a(Sext
σ )−

nσ ⊗ nσ with Sext
σ being the extended shape operator of a smoothed representation of the level set function

w and nσ the associated smoothed normal. In particular at x ∈ D, one might consider the L2 projection of
w on a ball Bσ(x) onto the space of quadratic polynomials on R3. Finally, for the spatial discretization can
be achieved via finite element discretization of the computational domain (cf. Section 2). Figure 9 shows
the application of the anisotropic diffusion method in the context of 3D medical imaging [73]. Furthermore
the method is applied to a very detailed surface, where the implementation is based on hierarchical sparse
narrow band structures [69].

4 Elastic Energy of Thin Shells
When surfaces are deformed, different types of deformations are observed. To analyze those from a me-
chanical perspective we view surfaces as thin elastic shells Sδ , defined as δ thick layer of material around
the center surface S, i.e.,

Sδ = {x+ sn(x) |x ∈ S, −δ < s < δ} . (8)

For small thickness δ one mainly distinguishes (cf. Fig. 10):

(i) tangential distortion caused by in-layer (tangential) shear, compression, or expansion,

(ii) (transversal) shear caused by normal bending.
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With respect to applications in geometry processing one is not interested in the volumetric deformation of
the thin layer but in the effective behavior of the thin shell in the asymptotical limit for vanishing thickness.
In this limit the two types of deformation energies scale differently with respect to the thickness δ and the
associated deformation energies solely refer to the geometry of the undeformed and deformed surface S.

Tangential distortion energy. Let S be locally parametrized over a parameter domain ω with a parametriza-
tion x (cf. Section 2) and let gS denote the associated metric on ω. If φ : S → R3 denotes a smooth
deformation of S, ψ = φ ◦ x : ω → R3 is a local parametrization of the deformed surface φ(S). The
metric of S and φ(S) are given by gS = DxTDx and gφ(S) = DψTDψ, respectively. For a deforma-
tion φ : R3 → R3 the mechanically relevant deformation tensor is the frame indifferent Cauchy Green
strain tensor G[φ] = DφTDφ, which represents the pull back of the Euclidian product from the deformed
configuration in the undeformed (reference) configuration. For a deformation φ from a surface S to a
deformed surface φ(S) the parametric (tangential) Cauchy Green strain tensor describing the tangential
distortion is given by the pull back Gω[φ] of the metric gφ(S) of the deformed configuration in the met-
ric gS of the undeformed configuration, i.e., gS(Gω[φ]v, w) = gφ(S)(v, w) for all v, w ∈ R2 and hence
Gω[φ] = (gS)−1gφ(S). For the special case, were two surfaces SA and SB are parametrized over two
parameter domains ωA and ωB via parameterizations xA and xB , respectively, a deformation φ : SA → SB
might be described by a deformation φω : ωA → ωB with φ = xB ◦ φω ◦ x−1

A . In this case, by definition
gA(Gω[φ]v, w) = (gB ◦ φω)(Dφωv,Dφωw) and thus Gω[φ] = (gA)−1(Dφω)T (gB ◦ φω)Dφω .

One can also express the (tangential) Cauchy Green strain tensor directly on the embedded tangent space
and obtains G[φ] = Gω[φω] = (DSφ)TDSφ, where DSφ is the linear mapping from the tangent space to
R3 with DSφ(v) = d

dtφ(c(t))
∣∣
t=0

for any smooth curve c on S with c(0) = x and ċ(0) = v. Here, DS
coincides with total variation operator d from the Discrete External Calculus. In what follows we will use
both notations, where DS is the widespread notation in mechanics and d is the usual notation in geometry.
Alternatively, DSφ = DφextP holds for an extension φext of the deformation φ on the neighborhood of
the surface S and the tangential projection P . In the coordinate system {∂ξ1x, ∂ξ2x, n} the two different
Cauchy Green strain tensors are related by

G[φ] = P (Dφext)TDφextP =

(
Gω[φ] 0

0 0

)
.

The impact of tangential distortion on the elastic energy is reflected by a tangential distortion (membrane)
energy, the energy density of which depends solely on the Cauchy Green strain tensor and it scales scales
linear in the thickness δ, i.e.,

Wmem[φ] = δ

∫
S
Wmem(G[φ] + nA ⊗ nA) da . (9)

Bending energy. Bending of thin shells is described in terms of the change is the variation of the normal
on the surface. Hence, to quantify the bending one aims at comparing the shape operator on the deformed
surface Sφ(S)(x) with the shape operator on the undeformed surface SS(x). One obtains for a parametric
surface

Srel(x)Dxv ·Dxw = D(nφ ◦ φ ◦ x)v ·D(φ ◦ x)w −D(n ◦ x)v ·Dxw
and thus DxTSrel(x)Dx = D(φ ◦ x)TD(nφ ◦ φ ◦ x) − DxTD(n ◦ x). On the parameter domain one
obtains the representation Sωrel(x) = g−1(D(φ ◦ x)TD(nφ ◦ φ ◦ x)−DxTD(n ◦ x)) for the relative shape
operator. For implicit surfaces the (extended) relativ shape operator is given by

Sext
rel (x) = (DSφ(x))TSext

φ(S)(φ(x))DSφ(x)− Sext
S (x) .

Is φ is locally isometric, i.e., G[φ] = 1, then DSφ is orthogonal and Srel measure pure bending, otherwise,
the above defined relative shape operator reflects also tangential distortion. A suitable bending energy is
then given by

Wbend[φ] = δ3

∫
S
Wbend(Srel(x)) da , (10)

Here the scaling factor δ3 reflects the fact that bending is a second order term in the expansion of the
volumetric elastic energy and the integration volume is δ thick. A simple model for the energy density
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Figure 10: Two predominant types of deformation for a surface model (left) in the deformed configura-
tion using a discrete geometry approach on triangular meshes: tangential stretching of shearing (middle,
0 0.001) and normal bending (right, 0 0.1).

is Wbend(Srel(x)) = |Sext
rel (x)|2, where |A| denotes the Frobenius norm of the matrix A. Notice that

Wbend(Srel(x)) takes into account the full change of shape operator, not only the change of their traces
(i.e., mean curvatures)—to the effect that changes of bending directions can be accounted for appropriately
appropriately (cf. Fig. 10).

5 Deformation and Physical Simulation of Thin Shells
A designer may want to edit a shape by manually deforming only parts of a given larger rest shape, e.g.,
the hands, legs, or arms of a humanoid figure, through the use of handles. In this setup, the remaining
parts of the shape are required to follow the deformation of the parts prescribed by the user in a plausible
way. One approach for tackling this problem is through minimizing the elastic deformation energy of
the deformed with respect to the undeformed shape while respecting the boundary conditions provided by
the user. However, in practice, due to the nonlinearity of elastic energy, this approach is often too costly
for an interactive editing session when working with detailed and complex geometries. Therefore, many
deformation approaches take the route of compromise: interactive response is established at the price of
sacrificing physical accuracy. Notice, though, that in graphics, the quality of a deformation method might be
a evaluated by its plausibility rather than its physical accuracy. We come back to this point when discussing
physical simulations, where an eyeball metric is often no longer admissible.

Isometric deformations of thin plates and quadratic bending energies For various thin elastic ma-
terials the gradient of membrane energy is usually large relative to the gradient of bending energy, since
many materials tend to resist stretching more than bending [5, 87]. Therefore, one may often assume that
deformations nearly preserve the metric, i.e., are nearly isometric. Observe that if φ induces an isometry
and the undeformed state is planar in its rest state (i.e., it is a thin plate), then the first fundamental form
remains unchanged and hence Wmem[φ] = 0. Restricting to the case of the Frobenius norm for bending
energy density, i.e., Wbend(A) = |A|2, one additionally obtains that isometric deformations of thin plates
yield

Wbend[φ] =

∫
S
|Hess[φ]|2da ,

where Hess = ∇d denotes the Hessian of the undeformed surface with respect to its Riemannian metric,
i.e., ∇ denotes covariant differentiation (for the ∞ dimensional analogue on shape space see Section 8).
This is due to the fact that (i) the shape operator of the undeformed surface vanishes identically, thus (ii)
the relative shape operator is equal to the (pullback of) the shape operator of the deformed surface, and (iii)
for isometric deformations the second fundamental form of the deformed surface is related to the Hessian
via IIφ(v, w)nφ = Hess(φ)(v, w), where nφ is the normal of the deformed surface. Notice that this implies
that bending energy is quadratic in the displacement φ without any further assumptions or simplifications.
This observation, when applied to the trace of the Hessian (i.e., the Laplace–Beltrami operator4), has been
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used in [90] to accelerate physical simulations. Notice that |4φ|2 = (hφ)2; thus bending energy equals
Willmore energy of the deformed surface in this case (cf. Section 2).

Linearized elasticity for thin shells While isometric deformations of thin plates lead to quadratic bend-
ing energies, this is no longer the case the general case of thin shells, which are not flat in the rest configura-
tion. To gain efficiency by simplifying the elastic energy described above, some authors consider the effect
of infinitesimal displacements, i.e., the setting of linearized elasticity. In this setting, let v : S → R3 be a
vector field on S with the deformed shape φ(S) given by

φ(x) = x+ εv(x)

for some ε ∈ R that is assumed to be small. To further simplify the exposition, we additionally restrict
ourselves to energy densities given by the Frobenius norm. i.e., Wmem(A) = |A − 1|2 and Wbend(A) =
|A|2. Then the corresponding membrane energy is given by

Wmem[φ] = δε2
∫
S
|(DSv)sym|2 da+ . . . ,

where dots denote higher order terms with respect to ε and (DSv)sym is the symmetrized derivative, i.e.,
(DSv)sym = 1T3×2DSv+DSv

T13×2, where 13×2 is a 3×2 matrix that contains the 2×2 identity matrix in
its upper part and zeros in the last row. Likewise, the linearized bending energy for infinitesimally isometric
(inextensional) deformations is given by

Wbend[φ] = δ3ε2
∫
S
|Hess[v] · n|2 da+ . . . ,

where Hess(v) denotes the component-wise Hessian, and on each component the Hessian is

Figure 11: Similar to mesh deformation, the linear
editing metaphor can be used for coating transfer
(e.g., from mannequin to bunny) [82]. (Image cour-
tesy of O. Sorkine–Hornung.)

taken with respect to the Riemannian metric on S
(see above). Notice that the inner product with the
surface normal n turns Hess(v)·n into a symmetric
2×2 tensor field. The assumption of infinitesimally
isometric reformations is motivated by considering
pure bending, i.e., by disallowing any contribution
of membrane terms in the bending energy.

Linear elasticity has the benefit of leading to
quadratic energy functionals and thus linear Euler–
Lagrange equations iff the constraints prescribed
by the user (in form of prescribed deformations of
parts of the surface) are also linear in positions (cf.
Fig. 11). Indeed, in order to be able to work with
standard solvers, the above energies are by some
authors further modified to

W̃mem[v] =

∫
S
‖DSv‖2 da and W̃bend[v] =

∫
S
‖4Sv‖2 da ,

where ‖ · ‖ denotes the usual Euclidean norm. Notice that different from |(DSv)sym|, which does not
account for infinitesimal rotations, ‖DSv‖ is the full norm and therefore also incorporates rotations and thus
accounts for bending contributions in the membrane energy. Indeed, ‖DSv‖ only vanishes if v induces a
translation. Likewise, taking the trace, i.e., using4Sv = tr Hess(v), does not account for principal bending
directions (see the discussion for parametric surfaces and level sets below). From an implementation point
of view, this formulation is simple as it leads to Euler–Lagrange equations that involve standard operators—
given by the harmonic and biharmonic equations

4Sv = 0 and 42
Sv = 0 ,

respectively, for the membrane and bending term. Due to the presence of Laplacian and bi-Laplacian
only, this formulation can be used for the variety of surface representations outlined above. We refer the
reader to the detailed survey by Botsch and Sorkine–Hornung [14] for a an elaborate discussion of benefits
and drawbacks of the linearized approach in computer graphics applications. A major limitation of linear
elasticity is that it comes at the price of loosing rotation invariance.
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Figure 12: Deformation of the dragon (left) by fixing its hind feet and moving its head upwards in a single
step. The result of PriMo [13] (right) compared to linear deformation methods (second through fifth picture)
that tend to yield counter-intuitive results. (Image courtesy of M. Botsch.)

Restoring rotation invariance for deforming thin shells Several approaches in the literature have at-
tempted to overcome the undesired limitation of linearized elasticity to violate invariance under rotations.

One set of approaches is based on moving frames or what is known as differential coordinates. For
smooth surfaces, the formulation of representing a surface by moving frames that are adapted to the geom-
etry (i.e., orthonormal frames that have two tangential and one normal unit vector) rather than in a fixed
frame (i.e., external Euclidean coordinate system) dates back to E. Cartan and H. Weyl. When using moving
frames for deformations, the main idea is to employ a two-step process. The methodology of reconstruct-
ing a surface in two steps somewhat mimics the proof of the fundamental theorem of surface theory in
the smooth setting (when formulated via moving frames), where one also first reconstructs frames (using
one set of integrability conditions) and then reconstructs a corresponding surface (using another set of in-
tegrability conditions), see [59]. In practice, the first step reconstructs the frame field under the constraints
provided by the user. The new frame field is solved for by interpolating (or approximately interpolating)
between the frames specified by the user’s editing.A second step solves for surface positions using the frame
field from the first step and using positional constraints provided by the user. This two-step procedure is
not always unproblematic as the constraints of the first and second step may be incompatible. We refer
to Botsch and Sorkine–Hornung [14] for a detailed discussion of pros and cons for various methods that
employ this methodology.

Another set of approaches builds on giving up linearity to restore rotation invariance. One example of a
popular, efficient, and robust method for non-linear surface deformation and shape matching is PriMo [13].
This approach is based on replacing the triangles of a polyhedral surfaces by thick prisms (so as to model a
thick surface). During deformation, these prisms are required to stay rigid, while non-linear elastic forces
are acting between neighboring prisms to account for bending, twisting, and stretching of the surface. This
requires for solving for optimal rigid motions under the constraints prescribed by the user. Unfortunately,
there is no immediate continuous analogue of this construction—and it would be interesting to gain more
insight, from a continuum mechanics perspective, into a corresponding smooth model. In a similar spirit,
Sorkine and Alexa have suggested as-rigid-as-possible (ARAP) deformations, which also lacks an evident
continuum mechanics analogue [81]. In this approach, one assigns to each vertex an optimal (in a least
squares sense) rotation matrix that maps the edges of the undeformed to the edges of the deformed shape.
To construct the deformed shape, ARAP alternates between minimizing a suitable energy for optimal vertex
positions and optimal rotations.

Volume deformation Another approach that is prevalent in the literature is to view surfaces as boundaries
of 3D volumes. In this setting, deformation is handled by changing the entire volume instead of the surface
only. From the perspective of continuum mechanics, a suitable energy for isotropic volumetric materials is
to minimize the distance of the differential dφ of a deformation φ : M ⊂ R3 → M ′ ⊂ R3 to the rotation
group SO(3), i.e., to minimize the energy

Welastic[φ] =
1

2

∫
M

min
R(x)∈SO(3)

|Dφ(x)−R(x)|2dx

under user-specified constraints. This approach is based on the observation that, apart from globally rigid
motions, locally varying rotations will unavoidably induce deviation from isometry. Intuitively, this reflects

15



Figure 13: Snapshots from the simulation of a billowing flag. Despite its economy of cost, the proposed
isometric bending model in [90] achieves qualitatively the same dynamics as popular nonlinear models.

the fact that if an infinitesimal piece of material is rotated with respect to a “neighboring” infinitesimal
piece, this will induce local stretching, compression, or shearing of the material. Notice the conceptual (but
unfortunately not precise) similarity of this observation to the approaches employed by PriMo and ARAP
discussed above. To be precise, suppose that a volume deformation fixes the center of mass and induces
no global rotation, i.e., without loosing generality, by factoring out globally rigid motions, let

∫
M
φ dx =∫

M
curl(φ) dx = 0. Then geometric rigidity [35] implies that there exists a constant C depending on M

(but not on φ) such that∫
M

|Dφ(x)− 1|2 dx ≤ C
∫
M

min
R(x)∈SO(3)

|Dφ(x)−R(x)|2 dx .

In comparison to the Green–Lagrange strain tensor DφTDφ − 1, the above formulation is attractive since
it is of lower order in the state variables. Chao et al. [19] make use of this observation for constructing an
efficient algorithm for volume deformations. We have singled out the above formulation from the bulk of
approaches for volume deformations in the literature as it is rotation invariant by design. As for the case of
thin shells, rotation invariance would be lost by working with a linearized model.

Physical simulations of thin shells Closely related to surface deformations are physical simulations of
shells. There is one important difference, though. While an eyeball metric might be a reasonable choice
for deformations of flexible surfaces for graphics applications, this is often no longer an acceptable metric
for physical simulations, where, e.g., violation of rotation invariance leads to loss of angular momentum
preservation and hence to clearly visible artefacts. The early graphics literature has focused on efficiency
and progress—and, to achieve this, has sometimes been willingly be sacrificing physical accuracy. This
trend has somewhat been reversed over the past years—with computer science researchers attempting to
turn insights from the computational mechanics community into fast algorithms that do not break the laws
of physics.

In a physical simulation of thin shells, the state variables φ and v, describing the position (as a map
from a reference surface S to R3 ) and velocity of a moving surface in space are subject to elastic, damping,
contact, and other external forces. The elastic response of a deformed material is governed by a conservative
force, i.e., one which acts against the energy gradient:

Felastic[φ] = −W ′[φ] = −W ′mem[φ]−W ′bend[φ] . (11)

This requires discrete notions of first and second fundamental forms, which we discuss for the prevalent
case of polyhedral surfaces.

Damping and collisions Most real materials dissipate energy during motion. Rayleigh damping is among
the simplest models of dissipation used by the computational mechanics community [48, 93]. In the
Rayleigh view, the damping force, Fdamp, is proportional to velocity, v(t) = φ̇(t):

Fdamp[v] = −Kdv , where Kd = α1M + α2Hess . (12)
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The constant of proportionality is written as a linear combination1 of two tensors: the mass matrix and the
Hessian of the elastic energy; the two tensors correspond to damping of low and high temporal frequencies,
respectively.

A far more challenging and involved problem for physical simulations is collisions. Indeed, while the
problem of how to detect collisions of a surface (either with other objects or with parts of itself) has been
treated by efficient algorithms in the literature (e.g., by using specifically adapted spatial data structures),
the problem of how to resolve collisions in a physically accurate manner is still an active area of research.
Consider scenarios such as multiple contact regions that frequently change over time or sliding contact,
e.g., when pulling a rope tight. Challenging aspects include that colliding regions must not interpenetrate,
that collisions are to be resolved in physically correct way, and that computations for resolving collisions
should finish in finite time. For a fairly recent treatment of these aspects we refer to the work of Harmon et
al. [40].

Temporal evolution In a classical mechanical system, the temporal evolution of position, φ ≡ φ(t), and
velocity, v ≡ φ̇, is governed by the equations of motion:(

φ̇(t)
v̇(t)

)
=

(
Id 0
0 (ρM)−1

)(
v(t)

Felastic[φ(t)] + Fdamp[v(t)] + F [φ(t), v(t))]

)
, (13)

with initial conditions φ(0) and v(0). Here F [φ, v] denotes other forces, such as contact forces or gravity,
and the physical mass matrix, ρM , is given by the product of mass surface density and the geometric
mass matrix. In order to accelerate force computation, it is often desirable to have explicit representations
of energy gradients and energy Hessains instead of numerically deriving these quantities on the fly by
automatic differentiation.

Time discretization of (13) is a well-studied problem (see [41] and references therein); approaches may
be classified as explicit, implicit, or mixed implicit-explicit.2 Geometric (or variational) integrators [57]
have been advocated due to their structure preservation, i.e., guaranteed preservation of momenta and near
preservation of energy even for large times.

6 Matching of Thin Shells
The feature aware matching of two given surfaces is one of the fundamental tasks is geometry processing.
The matching problem consists of finding a “good” correspondence between two given input shapes, such
as two faces, two poses of an animated character, or two scans of body organs. The meaning of “good” is
dependent on the specific application and is often measured with the help of some energy functional. One
challenge in shape matching is that in principle all possible correspondences between the two given shapes
would have to be considered—a space that is often intractably large for computations. Another challenge
for shape matching based on energy minimization is the nonconvexity of the attendant energy landscape—a
problem that can be alleviated using multiscale or multigrid optimizers. Finally, a big challenge is partial
shape matching in scenarios where shapes are only partially available (e.g., matching a humanoid figure to
a hand). There exists a vast amount of literature on matching triangulated surfaces. For example, starting
from the notion of Gromov–Hausdorff distances Bronstein et al. [16] have developed an efficient algorithm
denoted as multidimensional scaling for the matching of triangular surfaces also for the case of partial
correspondence. A topologically robust variant of this approach based on diffusion distances is proposed
in [15]. The observation that robustness to noise and changes of topology can be significantly increased by
a multiscale approach has been utilized by Sun, Ovsjanikov and Guibas in [84], where shape matching is
based on the heat kernel.

Here we investigate the shape matching problem from the viewpoint of thin shell deformations and
under two different perspectives: the matching of parametric surfaces using deformations between the
parameter domains and the matching of implicit surfaces.

Matching parametric surfaces. If parametrizations of the surfaces are given,

1In this ad-hoc model, the constants α1 and α2 are endowed with the requisite units so that the final product has units of force.
2In mixed implicit-explicit (IMEX) time-integration, some forces are treated using the explicit method, and other forces are treated

using the implicit method.
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SA SB ← SA SB

Figure 14: In surface matching, a partial correspon-
dence is often desired. The correspondence is de-
fined where their parameter domains intersect under
the matching deformation (bottom). In this domain,
quantities such as the mean curvature texture maps
can be mapped between the surfaces (center). The
unmatched regions are in black.

the problem can be phrased in terms of a func-
tional on matching deformations φω from the pa-
rameter domain ωA of the surface SA to R2 where
only partial matching (φ(ωA) 6= ωB) is allowed
with respect to the parameter domain ωB of the sur-
face SB . Physically, one might consider this as the
pressing of a given surface SA into the mould of the
surface SB . Besides a tangential distortion energy
Wmem, which can be regarded as a regularization
energy ensuring smoothness of the matching defor-
mation, and a bending energy Wbend, which tries
to match regions of equal curviness such as corre-
sponding creases, one finally might want to align
preselected feature regions like the eyes on facial
surfaces via a third energy termWfeature. In detail,
the tangential distortion energy can be chosen as

Wmem[φω] =

∫
ωA

Wmem(Gω[φω])
√

det gA dξ .

where Wmem(A) = Ŵ (a, d) = αla + αa
(
d +

(1 + αl
αa

) d−1
)
. Here, a = a(A) = trGω[φ]

accounts for length distortion and d = d(A) =
detGω[φ] for area expansion with and area com-
pression with d−1. The weights αl, αa > 0 are chosen according to the relative importance of length and
area distortion. This simple class of polyconvex energy functionals [25] was rigorously derived in [60] from
a set of natural axioms for measuring the distortion of a single parameterization. Bending of the surface
SA under the deformation φ = xB ◦ φω ◦ x−1

A is penalized by the bending energy (10). We obtain for the
relative shape operator

Sωrel = g−1
A (D(φ ◦ xA)TD(nφ ◦ φ ◦ xA)−DxTAD(n ◦ xA)) = g−1

A (Dφω)T(SωB ◦ φω)Dφω − SωA ,

and the resulting functional on the deformation φω in a general form

Wbend[φω] =

∫
ωA

χB ◦ φωF (Sωrel)
√

det gA dξ

for some function F : R2,2 → R and the characteristic function χB of xB(ωB). If one is only interested
in the comparison of the mean curvatures of the surfaces defined as the traces of the shape operators, a
simplified version of the functional is given by Wmem]φω] =

∫
ωA
χB ◦ φω|hA − hB ◦ φω|2

√
det gA dξ

with hA = tr(SA), hB = tr(SB). Finally, if we denote by FA ⊂ ωA and FB ⊂ ωB features sets in the
parameter domains of the two surfaces, then

Wfeature[φω] =

∫
ωA

((χFB ◦ φω)(1− χFA) + (1− χFB ◦ φω)χFA)
√

det gA dξ

measures the symmetric difference on the surface A of the feature set on surface A and the pull back of the
feature set on the surfaceB. The resulting combined energy is then given byW[φω] = αmemδWmem[φω]+
αbendδ

3Wbend[φω] + αfeatureWfeature[φω] with suitable weights. Fig. 14 shows a blending application of
surface matching.

Matching implicit surfaces. Frequently, surfaces are described and modeled as level set of a function w
on a computational domain D ⊂ R3. For fixed surfaces SA and SB it is advantages to represent them by
signed distance functions dA and dB , respectively. In particular in this case one obtains SX = DnXPX =
D2dX for P = 1 − ∇dX ⊗ ∇dX and X ∈ {A,B}. For the conversion of a general implicit surface
representation into a signed distance function a robust and efficient algorithm is the fast marching method
[80]. If one is just interested in the matching of the two surfaces SA and SB a narrow band approach enables
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to “blend out” distant implicit surfaces [dA = c] and [dB = c] for |c| ≥ ε. In fact, one defines a smooth
blending function ησ : R → R+

0 with ησ(c) = 0 for |c| ≥ σ and ησ(c) = 1 for |c| ≤ σ
2 . Then, taking into

account the coarea formula (∇dA = 1) one obtains for a deformation φ : D → D the tangential distortion
energy on the narrow band [σ ≤ dA ≤ σ]

Wmem[φ] =

∫
D

(ησ ◦ dA)Wmem(G[φ] +∇dA ⊗∇dA) dx ,

where GTxS [φ] and Wmem are the above defined tangential Cauchy Green strain tensor and the associ-
ated energy density, respectively. Here incorporated projection operator P is the one corresponding to the
distance function dA, i.e., P = PA. As a first approach for the bending energy one gets [51]

Wbend[φ] =

∫
D

ησ(dA)‖PADφT ((D2distB) ◦ φ)DφPA −D2dA‖2 dx .

Unfortunatly, the resulting energy is not quasi convex and hence not lower semicontinuous. To obtain a
lower semicontinuous energy, we modify the definition of the tangential Jacobian setting DABφ = (PB ◦
φ)DφPA which coincides with the standard definition on the surface SA if φ(SA) ⊂ SB . Then, one obtains
the correspondingly modified Cauchy Green strain tensor GTxS

AB [φ] = DABφ
TDABφ. Now, let us assume

that β is a strict lower bound for the negative principal curvatures on all involved surfaces and 0 if the
principal curvatures are all positive. Then we define

Wmem[φ] =

∫
D

(ησ ◦ dA)Wbend

(
((SB − β1)

1
2 ◦ φ)DABφ (SA − β1)−

1
2

)
dx ,

which now is indeed a lower semicontinuous functional [50]. Here, the integrant Wbend is chosen similar
to the integrant of the membrane energy. Besides the membrane and bending energies on the narrow band,
one needs a penalty functional

Wpenalty[φ] =
1

ε

∫
D

ησ(DA)(distA − distB ◦ φ)2 dx

to ensure that the neighboring level sets around SA in the narrow band are sufficiently well matched to the
neighboring level sets of surface SB . Finally, to render the method computationally feasible one has in
addition to ensure that the deformation φ is regular and injective also outside the narrow band. To this end,
we incorporate a regularization energy

Wreg[φ] =

∫
D

(1− ησ(DA))Wreg(C[φ]) dx

where C[φ] = Dφ(x)T Dφ(x) is the three-dimensional Cauchy-Green strain tensor and Wreg(C) =
µ
4 tr(C)2 + (λ − 2µ) det(C)

1
2 − λ−µ

2 log det(C) for Lamé-Navier coefficients λ and µ [20]. Thus, com-
bining the different energy terms we finally obtain the total energy

W[φ] = αmemδWmem[φ] + αbendδ
3Wbend[φ] + αpenaltyWpenalty[φ] + αregWreg[φ] .

Like in the the parametric case, a feature matching energy could additionally be taken into account.

7 Spectral and Modal Methods
Building on a general paradigm of global analysis one studies the spectrum of differential operators on sur-
faces and considers the spectrum and the eigenfunctions as descriptors of the surface. A prominent operator
is again the Laplace–Beltrami operator that allows for applying classical approaches to spectral analysis
from signal processing to irregular triangle meshes. The eigenfuctions of the Laplacian constitute a basis
that provides the analogue of the Fourier basis in the planar case. Spectral geometry processing applications
include mesh compression [8, 52], parameterization [67], mesh fingerprints [76], mesh segmentation and
registration [75], and so forth, to name a few.

Another operator that is relevant from the perspective of shell deformations is the Hessian of the elastic
energy discussed in Section 6. If the Hessian of elastic energy is considered at the (undeformed) rest state
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Figure 15: Matching of implicit surfaces based on the simplified thin shell model [51] for two octahedrons
(left) (the second image shows a matching without bending energy) and two different faces (right). Thereby
the texture is deformed together with the template surface and shows the proper matching of geometric
features.

Figure 16: The first 10 eigenfunctions are color coded on the limit surface of Loop’s subdivision applied to
an initial control mesh (left) (Image courtesy of R. Perl).

of a (possibly naturally curved) shell, then the eigenvalues λi are eigenfrequencies and the corresponding
eigenfunctions ui : S → R3 are the associated vibration modes. Thereby a vibration mode ui is a displace-
ment function on the surface and describes an (infinitesimal) oscillation of the elastic shell with frequency
λi. Thus, a low eigenvalue corresponds to a low degree of stiffness in that direction and thus a physically
preferred mode of shell variability.

In general the Hessian of a function requires the notion of a Riemannian metric, i.e., for a function
f : M→ R on a Riemannian manifold(M, g) the Hessian Hess(f), evaluated at a point p ∈ M requires
the notion of a Riemannian metric g and changes if g is changed. However, if the differential of f vanishes
at p, then the Hessian turns out to be independent of the choice of metric. This observation implies that it
is meaningful to consider the Hessian of elastic energy when evaluated at the rest state. Indeed, let S ⊂ R3

be the undeformed surface describing a thin shell, and consider an energy W of surface deformations
φ : S → R3. Suppose that the identical deformation 1 of S is a critical point of the energy and therefore
W ′[1](v) = 0 for all displacement fields v : S → R3, which holds true for the shell energies derived in
Section 6. Regarding a surface S as a point in shape space, observe that a displacement field v : S → R3

can be considered as tangent vector at S in the space of shapes. Due to the criticality ofW at the point S
it follows that the Hessian ofW satisfies HessW[1](v, w) =W ′′[1](v, w), independently of any choice of
Riemannian structure on the space of shapes. Thus, independent of the choice of a Riemannian metric on
the space, HessW[1](v, w) is a symmetric endomorphism on the space of displacement fields representing
the second variation of the energy.

The spectrum and eigenvalues of this Hessian provide the so-called modal basis, which is in general
different from a spectral basis, and that is adapted to elastic propertied of a given surface. Hildebrandt et
al. [46,89] showed how to use this basis for the intuitive modeling of surfaces and for accelerating physical
simulations.

As a significantly simplified, linear model one considers solely normal variations un of the surface S
and the quadratic energy W[u] =

∫
S |4Su|

2 da for scalar functions u : S → R. Then, one is lead to
the eigenvalue problem 42

Su = λu for the geometric bi-Laplacian 42
S . A set of eigenfunctions for the

geometric bi-Laplacian is shown in Figure 16. Here, a projected inverse vector iteration has been applied
to the discrete weak form (6) in the Loop subdivision finite element approach.

20



Figure 17: Results of an interactive animation of an elephant model using modal analysis to build a reduced
basis of forces [89] (Image courtesy of K. Hildebrandt).

Figure 18: Two intermediate surface (green) from a geodesic between two poses (blue) of an elephant
model and a extrapolation via the exponential map (magenta) using the approach by Kilian et al. [55]
(Image courtesy of M. Kilian)

8 From shapes to the space of shapes
So far, we have discussed computational tools to process single geometries. From a more global perspective
one might want to study surfaces as objects in a space of shapes. In particular over the last decade, concepts
from Riemannian manifolds have been applied to design and investigate nonlinear and frequently infinite-
dimensional shape spaces, with applications in shape morphing and modeling [55, 56], in computational
anatomy [6, 65], as well as shape statistics [33, 36].

For planar curves, different Riemannian metrics have been devised, including curvature-weightedL2- or
Sobolev-type metrics [64,86]. Some of these metrics can be phrased as measures of stretching and bending
[83, 85]. In a geometrically motivated approach, Kilian et al. consider geodesics between consistently
triangulated surfaces [55], where the underlying Riemannian metric measures the stretching of triangle
edges (cf. Fig. 18). The resulting metric is intrinsically invariant with respect to isometric deformations;
however, due to the lack of a bending energy and in order to select a smooth path in the set of different
isometric paths, a supplementary regularization is required. Figure 18 shows surfaces from a corresponding
geodesic path.

Building on the work of Kilian et al. [55], we investigate the space of thin shell surfaces as a Riemannian
shape manifold M. The central observation is that the Hessian of elastic energy described in Section 7,
when evaluated at the undeformed surface is positive semidefinite and its kernel consists of infinitesimal
rigid transformations only. Thus, modulo rigid transformations of surfaces, this Hessian provides a notion
of a Riemannian metric on the space of shapes. At a pint S in shape space, we denote this metric by gS(·, ·).

The geometric structure of shape space is described in terms of a Riemannian metric gS(·, ·), which as-
signs a cost to any inifinitesimal shape variations and thus encodes directions of preferred shape variability.
Riemannian shape calculus provides a set of basic tools useful in applications: the computation of short-
est geodesic paths (S(t))t∈[0,1] between surfaces SA = S(0) and SB = S(1) as minimizers of the path
energy

∫ 1

0
gS(t)(Ṡ(t), Ṡ(t)) dt establishes a rigorous notion of distance between surfaces; the logarithmic

map allows to represent large, nonlinear shape variability in terms of an infinitesimal shape variation in
the tangent space of the shape manifold; the exponential map allows geometrically and physically sound
shape modeling and animation starting from a infinitesimal variation of a given shape; and finally geometric
details can be appropriately transferred from one surface onto another surface using parallel transport.

When using a Riemannian metric based on the Hessian of elastic energy, it turns out that the attendant
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Figure 19: Discrete 8-geodesic between two hand poses, based on the model of discrete viscous shells. The
colors indicate dissipation due to surface stretching (top) and bending (bottom).

geodesics have a physical interpretation. Indeed, wiewing surfaces as thin viscous materials of some finite
(albeit small) thickness, a geodesic is the deformation path between two points in the space of shells that
has the least energy dissipation, i.e., that requires the least total effort to undergo the deformation. Let us
view shells as a thin three-dimensional objects of thickness δ with S describing the midsurface, whereas Sδ
denotes the corresponding material object around S. Now, A family (φt)0≤t≤1 of diffeomorphisms with
φ0 = Id generates a deformation path φt(Sδ). If we assume that the shell were made of viscous material,
then applying such a family of deformation leads to viscous friction within the shell’s volume. The density
of this friction—known as dissipation—is given by a quadratic function Diss(ε[v]) of the symmetrized
gradient ε[v] := 1

2

(
(Dv)T + Dv

)
of the associated Eulerian velocity field v(t) = φ̇(t) ◦ φ(t)−1. We

treat viscous dissipation according to Rayleigh’s analogy that derives a viscous formulation from an elastic
one by replacing elastic strain by strain rates [74]. To this end, we retrieve the elastic energy density W
acting on symmetric strain tensors A ∈ R3,3. We assume that A = 1 is a minimizer of W , which implies
that W (1) = 0 and W,A(1) = 0. According to Rayleigh’s analogy, the dissipation density is now given
by the second derivative of elastic energy density at the identity, i.e., Diss(C) = 1

2W,AA(1)(C,C) for
any field of symmetric tensors C ∈ R3,3. Here, we view C = ε[v] as the description of a rigid body
motion invariant infinitesimal variation of the shell object Sδ . Thus, we choose as a Riemannian metric the
spatially integrated dissipation density gSδ(C,C) = Diss(C). The the resulting path energy—total energy
dissipation associated with the accumulated viscous friction along the deformation path—is then given by

E [(φ(t))0≤t≤1] =

∫ 1

0

∫
φ(t,Sδ)

gSδ(ε[v](t, x), ε[v](t, x)) dx dt . (14)

Figure 19 shows a discrete geodesic together with the different component of the underlying local dissipa-
tion rate.

Notwithstanding the conceptual power of a Riemannian calculus in shape spaces, operators such as
the logarithm or the exponential map involve the solution of time-dependent nonlinear ordinary or partial
differential equations. In more complex spaces—as they appear in vision applications—solutions to these
equations are typically difficult to compute. Here, a discrete theory provides a corresponding set of time
discrete tools comparatively simple to state and to implement. It is centered around the definition of a dis-
crete geodesic as the minimizer of a time-discrete path energy and naturally extends from there to discrete
analogs of logarithm, exponential map, and parallel transport. Here, we give a very brief outline and moti-
vate the concept. For details we refer to [77,78]. In order to transform the above notion of time-continuous
geodesics into a corresponding time-discrete one, consider the time-discrete family (Sδk)k=0,...,K of shells
given by Sδk = φkτ (Sδ), where τ = 1

K denotes the discrete time step. According to the above discussion of
Rayleigh’s analogy, we consider the total elastic energy W[Sδ, φ(Sδ)] =

∫
Sδ W (DφTDφ) dx associated

with a diffeomorphic deformation φ from Sδ , where DφTDφ is the Cauchy Green strain tensor. Now, a
straightforward Taylor expansion shows that one can approximate, up to second order in τ , the path energy
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(14) by

E [S0, . . . ,SK ] = K

K∑
k=1

W[Sδk−1, φk(Sδk−1)] , (15)

where φk := φkτ ◦ φ−1
(k−1)τ and φk(Sδk−1) = Sδk . Notice that on the left-hand side of (15) we have

tacitly represented the corresponding material volume Sδk by the corresponding midsurfaces Sk. A discrete
geodesic path is now defined as a minimizes of the discrete path energy E [S0, . . . ,SK ] with S0 = SA and
SK = SB are given. Finally, combining membrane and bending contributions of the midsurace, we replace
the deformation energy by

W[S, φ(S)] =
(
δWmem + δ3Wbend

)
[S, φ(S)] (16)

and rewrite the path energy correspondingly taking into account the two dimensional shell surfaces. Con-
cerning the spatial discretization for triangulated meshes, one might use the notions of discrete first and
second fundamental forms discussed in Section 2.

In what follows, let us denote the vector of vertex positions uniquely describing a discrete surface
Sh by X̄ = X̄[Sh]. Thus, we describe discrete surfaces solely in terms of these vectors and adapt the
notion of the spatially discrete deformation energy and the fully discrete path energy accordingly, i.e.,
using the notion Wh[X̄, Ȳ ] and Eh[X̄0, . . . , X̄K ], respectively. If (X̄0, . . . , X̄K) is a discrete geodesic,
then the initial displacement X̄1 − X̄0 scaled with 1

τ can be considered as a discrete counterpart of the
continuous geometric logarithm logX̄A X̄B , which gives rise to the notation 1

KLogX̄AX̄B = X̄1− X̄0. The
continuous geometric exponential map expX̄ v is defined as the endpoint of a geodesic with initial velocity v

Figure 20: Two positions of a fin-
ger as initial shapes (grey) and Su-
perimposed several steps of dis-
crete exponential map.

in the tangent space at the position X̄ on the shape manifold. Thus,
for a given displacement V̄ one defines a discrete exponential map
ExpKX̄ Ȳ (withK time steps) as that position Ȳ , such that the initial dis-
placement of the resulting discrete geodesic [X̄ = X̄0, . . . , X̄K = Ȳ ]
between X̄ and Ȳ equals V̄ , i.e., V̄ = X̄1 − X̄0. Figure 20 shows
results of the discrete exponential map. Finally, let us perspectively
outline how to proceed with respect to a discrete parallel transport. To
define a discrete parallel transport PX̄0,...,X̄K V̄ of a displacement V̄
along a discrete curve (X̄0, . . . , X̄K) one might use a discrete coun-
terpart of a Riemannian parallelogram construction. In fact, one pro-
ceeds iteratively along the discrete path, starting with the displacement
V̄0 = V̄ at the position X̄0. Then, for a displacement V̄k−1 at position
X̄k−1 the transported displacement V̄k at position X̄k can be computed
as follows. At first, a discrete geodesic (X̄k−1 + V̄k−1, X̄

c
k, X̄k) with

a midpoint position X̄c
k is computed. Then, one computes X̄+

k = Exp2
X̄k−1

X̄c
k − X̄k−1 to obtain a discrete

geodesic with midpoint X̄c
k starting at the position X̄k−1. Finally, one evaluates V̄k = X̄+

k − X̄k. Indeed,
the resulting two discrete geodesics will represent discrete diagonals of a Riemannian parallelogram with
vertex positions X̄k−1, X̄k, X̄k + V̄k and X̄k−1 + V̄k−1.

9 Conclusions
In this paper we have highlighted some of the developments in geometry processing with a strong focus
on methods related to the mechanics of thin elastic surfaces and from a naturally strongly biased personal
perspective. We tried to cover various geometric representations including parametric and triangulated sur-
faces, point clouds, level sets, and subdivision surfaces. Furthermore, we have sketched the increasing
interaction of mathematics, computer graphics, and mechanics. This interplay is characterized by funda-
mental and mainly unresolved challenges. Indeed, the convergence of discrete minimizers of geometric
and elastic functionals to their continuous counterparts is widely open. Likewise it is unknown for the
elastic functionals describing surface deformations if their exist discrete (local) minimizers in the vicinity
of a continuous (local) minimizer. Furthermore, concerning the dynamics of shapes the aim is to advance
consistent physical animation towards fully fletched virtual reality. Finally, while shapes are quite well
understood enrolling the structure of the space of shapes posed many so far non tackled questions.
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