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Abstract. A physically motivated approach is presented to compute a shape average of a given number of shapes. An
elastic deformation is assigned to each shape. The shape average is then described as the common image under all elastic
deformations of the given shapes, which minimizes the total elastic energy stored in these deformations. The underlying
nonlinear elastic energy measures the local change of length, area, and volume. It is invariant under rigid body motions,
and isometries are local minimizers. The model is relaxed involving a further energy which measures how well the elastic
deformation image of a particular shape matches the average shape, and a suitable shape prior can be considered for
the shape average. Shapes are represented via their edge sets, which also allows for an application to averaging image
morphologies described via ensembles of edge sets. To make the approach computationally tractable, sharp edges are
approximated via phase fields, and a corresponding variational phase field model is derived. Finite elements are applied
for the spatial discretization, and a multi-scale alternating minimization approach allows the efficient computation of shape
averages in 2D and 3D. Various applications, e. g. averaging the shape of feet or human organs, underline the qualitative
properties of the presented approach.
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1. Introduction. This paper is concerned with a physically motivated notion of shape averages.
As shapes we consider object contours or image morphologies, both encoded as edge sets in images. We
propose to employ concepts from nonlinear elasticity which reflect first principles and to define shape
averages which incorporate natural local measures of the underlying deformation and its dissimilarity
from an isometry. Furthermore, we will introduce a robust numerical approximation based on a diffusive
phase field description of shapes.
Averaging is a fundamental task for the quantitative analysis of ensembles of shapes and has already
been extensively studied in the literature. Very basic notions of averaging include the arithmetic mean of
landmark positions [22], and the image obtained by the arithmetic mean of the matching deformations
[57, 7]. For general images there are various qualitatively different notions of averaging. The intention
is a fusion or blending to simultaneously represent complementary information of different but related
images [39, 36]. It appears natural to study relations between shapes or more general image structures
via deformations which transform one shape or image onto another [22, 57, 17].
During the past decade, the problem of finding the average of a number of shapes or images has attracted
much attention in neuroanatomy research, where anatomical atlases of the brain are constructed from
data sets of different subjects [57, 7, 36, 60, 42, 6]. Such an atlas considered as a deformable template
can be mapped onto images from an individual patient to detect pathologic abnormalities or to obtain
information about the location and extent of certain brain regions [18, 45, 19, 55]. Similar techniques are
also employed in object recognition methods such as the active shape model in [22]. Another important
application of shape averaging concerns ready-made clothing, where it would be favorable to know the
shape of the average human body to design clothes which sufficiently fit as many people as possible. In
this paper we will discuss both medical and manufacturing applications in 3D.
Conceptually, in the last decade correlations of shapes have been been studied on the basis of a general
framework of a space of shapes and its intrinsic structure. The notion of a shape space was introduced
by Kendall [40] already in 1984. Charpiat et al. [14, 13] discuss shape averaging and shape statistics
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based on the notion of the Hausdorff distance of sets. They propose to use smooth approximations of the
Hausdorff distance based on a comparison of the signed distance functions of shapes and investigate the
correlation of different shapes via gradient descent type morphing from one shape onto the other. In their
work, a particular type of splitting the gradient of the shape distance functional and a separate weighting
of the different components mimic frame indifference. Based on the singular value decomposition of the
covariance matrix in a suitable scalar product, they have additionally analyzed the dominant modes in
the variation of the averaged shape.
Fletcher et al. [29] studied transformation groups on polygonal medial axis models for shapes in 3D.
Here, the average of a set of input shapes is defined as a shape reconstructed from an averaged medial
axis. The averaged medial axis minimizes a sum of tangent vectors in the Lie group of the transformation
group, which reproduce the set of input medial axes, if the exponential map is applied to them. Among
other applications they also considered the averaging of 3D kidneys, which are given in a medial axis
representation.
An abstract distance measure between objects in (different) metric spaces is the Gromov–Hausdorff
distance, which allows to compute an isometrically invariant distance measure between objects S and
S̃. One definition for the distance comes along with a pair of maps φ : S → S̃ and ψ : S̃ → S which
minimize the supremum 1

2 supyi=φ(xi),ψ(yi)=xi |d(x1, x2) − d(y1, y2)| over all maps matching point pairs
(x1, x2) in S with pairs (y1, y2) in S̃, respectively. Hence, the Gromov–Hausdorff distance allows to
measure—globally and based on an L∞ type functional—the lack of isometry between two different
shapes. Mémoli and Sapiro [43] introduced this concept into the shape analysis community [43] and
have proposed this distance measure for shapes described by point clouds, and they discussed efficient
numerical algorithms to compute shape distances based on a robust notion of intrinsic distances d(·, ·) on
the shapes. Bronstein et al. incorporate the Gromov–Hausdorff distance concept in various classification
and modeling approaches in geometry processing [9]. Mémoli [44] investigated Lp type variants of the
Gromov–Hausdorff distance. In contrast to these global measures of the defect from an isometry, the
nonlinear elastic energy functional involved in our approach measures this defect locally, and locally
isometric deformations indeed minimize the corresponding local functional.
Understanding shape space as an infinite-dimensional Riemannian manifold, Miller et al. [46, 47] defined
the average S of samples Si, i = 1, . . . , n, as the minimizer of

E [S] =
n∑
i=1

d(Si,S)2

for some metric d(·, ·), e. g. a geodesic distance in the space of shapes. This generalization of the geo-
metric mean for objects on a Riemannian manifold has originally been proposed by Fréchet already in
[31] and further analyzed by Karcher [38]. To ensure that the maps between different shapes, which are
generated via integration of the motion fields along geodesics, are diffeomorphisms, suitable regularized
metrics have been investigated, either based on regularizing elliptic operators on the surrounding space
[61] or on the geometry itself [70]. Fuchs et al. [32] proposed a viscoelastic notion of the distance between
shapes S given as boundaries of physical objects O. They define a metric on infinitesimal variations of a
shape S via the dissipation induced by the corresponding normal displacement on the object boundary.
The dissipation functional

∫
O(t)

λtr(Du + DuT )2 + µ
∣∣Du+DuT ∣∣2 dx measures the infinitesimal change

of area weighted by λ and length weighted by µ on objects O(t) on some path in shape space as in
linearized elasticity. The method is applied to compute geodesics between two-dimensional shapes using
finite elements on a given triangulation of one of the two objects bounded by the corresponding shape
contour. Physically, they suppose that due to the viscous dissipation, the object material relaxes in-
stantaneously and remains in a stress-free state. This is a major difference to our approach, where the
objects in the deformed configurations bear elastic stresses and the averaged shape S is characterized by
a true balance of these stresses on the shape contour. Furthermore, frame indifference only holds in the
limit for decreasing time step size, whereas in our model invariance with respect to rigid body motions
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is incorporated in the energy functionals.
The elasticity paradigm for shape analysis, on which our approach is founded, differs significantly from
the metric approach in shape space. Given two shapes S1 and S2 and an elastic deformation φ from S1

to S2, we have to distinguish the usually stress-free reference configuration S1 from the deformed con-
figuration S2 = φ(S1), which is under stress and not in equilibrium. Due to the axiom of elasticity, the
energy at the deformed configuration S2 is independent of the path which connects S1 with S2. Hence,
there is no notion of shortest paths if we consider a purely elastic shape model. As outlined above, if the
shapes are assumed to be made of viscous or visco-plastic materials, the underlying dissipation allows to
measure the length of connecting paths as long as the final configuration is again stress-free.
Fletcher et al. [30] propose to use a shape median instead of the geometric shape mean. The median
is defined as the minimizer of the functional E [S] =

∑n
i=1 d(Si,S). Furthermore, they apply a step size

controlled gradient descent for the numerical implementation of the median and demonstrate its robust-
ness in the case of averaging planar curves.
Shape averaging is closely linked to joint registration. In fact, the ensemble of given shapes is jointly reg-
istered to the a priori unknown average shape via the underlying deformations. In our averaging method
we apply a variational approach for registration of edge based image morphology. Image registration is
always based on a particular notion of image similarity. There are landmark-based similarity measures
[22, 17], basic measures comparing directly image intensities [39, 16, 34], or measures for the joint entropy
or mutual information and related concepts [7, 60, 67, 68, 56]. We refer to Faugeras and Hermosillo [28]
for an analytical discussion and comparison of different approaches in the context of mutual information
based registration. The morphological similarity based on a comparison of the ensemble of level sets of
images was proposed in [26, 27]. To prevent arbitrarily irregular registration deformations, the number of
degrees of freedom can be restricted by only allowing rigid [67, 69] or affine deformations [68], B-splines
[7, 59] or clamped-plate splines [42]. If an infinite-dimensional space of deformations is considered, reg-
ularity has to be ensured via the variational set-up. Hence, either a sufficiently regular metric has to
be used for the definition of path lengths in shape space [46, 47], or structural conditions have to be
imposed on the functional which measures the energy of a deformation. In fact, this is related to the
general regularity theory of linearized elasticity [39, 45, 19], (nonlinear) hyperelasticity [55, 26, 27], or to
viscous fluid regularization [17, 18, 16, 8]. For an overview on the latter field we refer to the chapters by
Thompson in the handbook [64, 63].
Furthermore, since shapes are often encoded in images or volume data, the averaging procedure is in-
herently associated with the detection or segmentation of structures. An enormous body of literature
on segmentation refers to the seminal paper by Mumford and Shah [51] on a variational approach which
states the segmentation problem as a free discontinuity problem for the edge set of an image. The the-
oretic examination of the Mumford–Shah minimization problem with existence results is quite elaborate
[49, 25, 24], and a number of numerically tractable model approximations have been formulated. A very
successful approach due to Chan and Vese describes the segments by level sets [11, 12]. Another widely
used approach due to Ambrosio and Tortorelli [1] encodes the segment boundaries as a diffused edge set
represented by a so-called phase field function. For the actual implementation of our approach we pick
up this phase field model. In many applications, the underlying shape description is blurry or corrupted
by noise. Here, a joint approach, which couples the segmentation of individual shapes with the over-
all averaging, allows to restore incomplete shape description via a pullback of the averaged shape onto
the image describing the particular given shape. Such joint approaches which combine different image
processing tasks in a single variational problem have proven very powerful. For instance, Yezzi, Zöllei
and Kapur [37] and Unal et al. [65] have combined segmentation and registration by applying geodesic
active contours described by level sets in the given images. Vemuri et al. [66] have also used a level set
technique for a reference segmentation in an atlas.

The paper is organized as follows. Section 2 will suggest a variational definition of the shape average,
which is based on a hyperelastic energy of the deformed input shapes. We will discuss the physical
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Fig. 2.1. Sketch of the elastic shape averaging. Input shapes Si (i = 1, . . . , 4) extracted from input images ui are
mapped onto a shape S via elastic deformations φi. The shape S which minimizes primarily the elastic deformation energy
plus some shape regularization to be discussed later is called the shape average of the given input shapes. (Displayed are
actual numerical results obtained by the algorithm to be developed in this paper. The resolution of the underlying grid is
257× 257, and the values for the involved parameters are γ = 107, µ = 1, (a1, a2, a3) = (106, 0, 106).)

intuition of the model and finally introduce a relaxed formulation for it. Then, we will combine the
averaging model with the process of image segmentation to obtain a joint segmentation and averaging
model in § 3. The model is stated in terms of phase fields in § 4, proposing adequate approximations to the
functionals defined in the previous sections. Sections 5 and 6 are devoted to the resulting Euler Lagrange
equations and existence results for minimizers of the resulting phase field functionals. Furthermore, in
§ 7 the numerical implementation is described based on a suitable finite element discretization and an
efficient multi-scale optimization. Finally, some numerical examples of 2D and 3D shape averaging as
well as image morphology averaging are presented in § 8, before we conclude in § 9.

2. A nonlinear elastic spring model. In this paper we consider shapes encoded in images. In
the simplest case, such an image u : Ω → R is a characteristic function u = χO representing an object
O as an open set on some domain Ω ⊂ Rd with d = 2, 3, and we define the object shape S := ∂O. More
generally we are interested in a shape S defined as the morphology of an image and represented via the
image edge set.
Let us assume that n images ui : Ω → R for i = 1, . . . , n are given with a sufficiently regular (d − 1)-
dimensional edge sets Si. We are interested in an average shape which reflects the geometric characteristics
of the n given shapes in a physically intuitive manner. Suppose S ⊂ Rd denotes a candidate for this
unknown set. Now, we take into account elastic deformations φi : Ω→ Rd with φi(Si) = S. Assigned to
each of these deformations is an elastic energy W[Oi, φi], and we ask for a shape S such that the total
energy given as the sum over all the energiesW[Oi, φi] for i = 1, . . . , n is minimal. As described below we
will have to consider in addition a further energy contribution which acts as a prior on the shape S in this
variational approach. This shape is then called the shape average of the given n shapes (cf. Figure 2.1).

Obviously, this is a constrained variational problem. We simultaneously have to minimize over n
deformations φi and the unknown shape S given n constraints φi(Si) = S.
The model is related to the physical interpretation of the arithmetic mean of n points x1, . . . , xn in Rd.
Indeed, the arithmetic mean x ∈ Rd minimizes

∑n
i=1 αd(x, xi)2, where d(x, xi) is the distance between

x and xi, and due to Hooke’s law the stored energy αd(x, xi)2 in the spring connecting xi and x is
proportional to the squared distance.
In what follows, we will derive the variational shape averaging model, motivate the structure of the in-
volved energy terms, and discuss different variants.
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Nonlinear elastic deformations. We aim for an elastic energy which is not restricted to small dis-
placements, and it should be consistent with first principles. At first, let us briefly recall some background
from elasticity. For details we refer to the comprehensive introductions in the books by Ciarlet [20] and
Marsden & Hughes [41]. We assume the deformation φi to be defined on an open object domain Oi,
which is supposed to be a subset of Ω̄. If there is no such object, the whole image domain Ω is considered
to be elastic, and we set Oi = Ω̄. In the actual implementation, we will for practical reasons consider a
very soft elastic material outside the object on Ω \ Oi, whose material coefficients are several orders of
magnitude smaller than those on the object Oi. This ensures a proper extension of the elastic deformation
φi on the whole of Ω with very small interference with the actual object deformation. Furthermore, we
suppose ∂Oi \ ∂Ω ⊂ Si and φi = 1 to represent the stress-free reference deformation of the object Oi. It
is well-known that the norm of the Jacobian of the deformation |Dφi|2 controls the isotropically averaged
change of length under the deformation, where |A|2 := (A : A)

1
2 for A ∈ Rd,d and A : B = tr (ATB) for

A, B ∈ Rd,d. Secondly, the local volume transformation under a deformation φi is represented by detDφi.
If detDφi changes sign, local self-penetration may be observed. Furthermore, for d = 3, |cofDφi|2 is a
proper measure for the averaged change of area. Here, cofA ∈ Rd,d denotes the cofactor matrix for a
matrix A ∈ Rd,d, for A ∈ GL(d) given by cofA = (detA)A−T . If the local elastic energy W is assumed to
depend only on Dφi, i. e. W : Rd,d+ → R, A 7→ W (A), such materials are called hyperelastic. Here, Rd,d+

is the space of all d× d matrices with positive determinant. If we assume an isotropic elastic material in
Oi and the frame indifference principle holds, then W is effectively a function W̄ of only the d invariants
of Dφi. For d = 3 these are (I1, I2, I3) := (|Dφi|22 , |cof(Dφi)|22 ,det (Dφi)). In what follows, we restrict
to the three-dimensional case to simplify the exposition. The first Piola–Kirchhoff stress tensor is then
recovered as σ[φi] = W,A(Dφi), where W,A(A) = ∂W (A)

∂A . Here, we consider a special class of so-called
polyconvex energy functionals [23]

W[Oi, φi] =
∫
Oi
Ŵ (Dφi, cofDφi,detDφi) dx =

∫
Oi
W̄ (|Dφi|22 , |cofDφi|22 ,detDφi) dx ,

where Ŵ is supposed to be convex. Typical energy densities in this class are of the form

W̄ (I1, I2, I3) = a1(I1 − 3)
p
2 + a2(I2 − 3)

q
2 + a3

(
I−s3 +

s

r
Ir3 −

r + s

r

)
(2.1)

with a1, a2, a3 > 0. In nonlinear elasticity such material laws have been proposed by Ogden [52], and
for p = q = 2 we obtain the Mooney–Rivlin model [20]. The built-in penalization of volume shrinkage,
i. e. W̄ (I1, I2, I3) I3→0−→ ∞, enables us to control local injectivity (cf. [5]). Furthermore, a deformation
which is locally isometric, i. e. DφTi (x)Dφi(x) = 1, is a local minimizer of the energy. We actually
consider p = q = 2 and r = s = 1.
Incorporation of a nonlinear elastic energy for the deformations φi onto a prospective shape average is
indispensable for our approach:

- It allows to incorporate large deformations with strong material and geometric nonlinearities,
which cannot be treated by a linear approach.

- The dependency of the energy density W̄ follows from first principles and measures the physical
effects of length, area, and volume distortion, which reflect the local distance from an isometry.

- Finally, it balances in an intrinsic way expansion and collapse of the elastic objects and hence
frees us to impose artificial conditions, e. g. boundary conditions, on the expected average shape
as the image of the objects under the set of deformations.

Hong et al. [35] incorporated the stored energy from linearized elasticity as a distance measure between
shapes and used this to compute shape averages and principal modes of shape variation. Their energy
functional is invariant with respect to rigid body motions only in an infinitesimal sense, and it measures
deformations not only within the objects, but rather on the whole ambient space. In Pennec et al. [54, 53],
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Fig. 2.2. Given five silhouettes of a person as input objects, a shape average (bottom right) is computed based on our
elastic averaging approach. The original images are depicted along with their deformations φi (continued to the region
outside the object and displayed acting on a checkerboard on the image domain Ω) and the distribution of local change of
length |Dφi|2 and local change of area det (Dφi) (from left to right). These local densities ranging over [0.97

√
2, 1.03

√
2]

and [0.97, 1.03], respectively, are color-coded using the color map . The underlying image resolution is 513 × 513,
and the energy parameters are γ = 107, µ = 10−2, (a1, a2, a3) = (1010, 0, 1010).

the regularizing prior in nonlinear registration of images is based on a symmetric distance measure between
images, which picks up a related concept from continuum mechanics. In fact, a nonlinear elastic energy
is defined as the integral over the ambient space of a St. Venant–Kirchhoff type energy density depending
on the logarithm of the Cauchy–Green strain tensor DφTDφ. This energy also measures distance from an
isometry or an average deformation and acts as a penalty to avoid material interpenetration. However,
it is in general not quasi-convex, which renders the existence theory of minimizers difficult. Furthermore,
even though the ansatz deals with large deformations, the resulting distance measure is designed for a
local comparison of deformations near an averaged deformation field (cf. the discussion on Riemannian
distance and elastic energies in § 1).

Variational definition of the shape average. As already outlined above, for a fixed shape S
we restrict the set of admissible deformations for each object Oi imposing the constraint φi(Si) = S to
deduce a suitable energy on shapes S being candidates for the shape average and sets of deformations
(φi)i=1,...,n matching given shapes Si with S:

Ê [S, (φi)i=1,...,n] =

{ 1
n

∑
i=1,...,n

W[Oi, φi] ; φi(Si) = S for i = 1, . . . , n

∞ ; else .

Finally, we define the shape average S as the corresponding minimizer over a suitable set of admissible
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Fig. 2.3. Sketch of the stress balance relation on the averaged shape. σiν is short for σdef[φi]ν[S].

shapes AS , i. e.

S = arg min
S̃∈AS , φi:Oi→Rd

E [S̃, (φi)i=1,...,n] = arg min
S̃∈AS

(
arg min
φi:Oi→Rd

Ê [S̃, (φi)i=1,...,n] + µL[S̃]

)
.

Here L denotes an energy functional on shapes which acts as a regularization to restrict the space of
admissible shapes.
In fact, we interpret the elastic energy W[Oi, φi] associated with each deformation φi which maps one of
the shapes Si onto the shape S as a nonlinear counterpart of the energy stored in a spring in the above
classical interpretation of an averaged position. It measures in a physically rigorous way locally the lack
of isometry as already mentioned above (cf. Figure 2.2).
Existence of an average shape strongly depends on the regularity of the input shapes and the prior L.
Indeed, if we suppose the initial shapes Si and a given shape S to consist of sufficiently smooth unions
of hypersurfaces on bounded domains Oi with sufficiently smooth boundary ∂Oi for i = 1, . . . , n, then
by the classical existence theory in nonlinear elasticity [20] there exists a set of minimizers (φi)i=1,...,n

which allow us to compute argminφi:Oi→Rd Ê [S, (φi)i=1,...,n]. These minimizers are weakly differentiable
and locally injective. The integrability exponent for the derivatives depends on the exponents p, q, s, r.
By Sobolev embedding we know that the minimizing deformations are Hölder continuous if p > d.
Let us remark that the regularity theory allows to prove Lipschitz continuity only under certain strong
conditions [15]. Hence, there is not sufficient control on the images φi(Si) as long as we do not restrict S
to some compact set of sufficiently smooth shapes. This compactness can be ensured by considering only
a finite dimensional space of shapes AS , e. g. some spline space. In this case, a classical Arzela–Ascoli
argument can be applied to prove that the minimum of the total energy without any prior L[·] is attained.
Alternatively, one can consider a regularizing prior L as proposed here. This prior is needed to control
the regularity of the shapes S on a minimizing sequence for the total energy. To ensure existence of a
minimizing average shape the prior should enforce the shapes S on a minimizing sequence to consist of
at least Lipschitz hypersurfaces. At the same time the prior should be weakly lower semi continuous on
the space AS of admissible shapes. These requirements render the existence problem an open problem
in case of general classes of admissible shapes.
We refer to § 6 for a rigorous proof of an existence result in case of the phase field approximation we
have actually implemented. In particular, with regard to an effective implementation of this approach
we confine to a prior L[S] which measures the Hd−1-measure of S, i. e.

L[S] =
∫
S

da .

A necessary condition for a set of minimizing deformations are the corresponding Euler Lagrange equa-
tions. As usual, inner variations of one of the deformations lead to the classical system of partial dif-
ferential equations divW,A(Dφi) = 0 for every deformation φi on Oi \ Si. Due to the set of constraints
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(φi(Si) = S)i=1,...,n, the conditions on φi are interlinked. For simplicity let us assume that Si = ∂Oi for
all i = 1, . . . , n. Then we can deduce a balance relation between deformation stresses on the averaged
shape S. Namely, for x ∈ S we obtain∑

i=1,...,n

σ[φi](φ−1
i (x))ν[Si](φ−1

i (x)) da[Si] = 0, (2.2)

where ν[Si] is the outer normal on Si, da[Si] the surface element on Si, and φ−1
i (x) the pre-image of x un-

der the deformation φi. From elasticity theory we know that the forces σ[φi](φ−1
i (x))ν[Si](φ−1

i (x)) da[Si]
in the reference configuration equal the corresponding forces σdef[φi](x)ν[S](x) da[S] in the deformed
configuration so that (2.2) directly implies a balance of all normal stresses on the average shape S,

0 =
∑

i=1,...,n

σdef[φi](x)ν[S](x) ,

where ν[S](x) is the outer normal on S and σdef[φi] =
(
σ[φi](detDφi)−1DφTi

) ◦ φ−1
i the usual Cauchy

stress tensor corresponding to the deformation φi in the deformed configuration (cf. Figure 2.3).
This gives a refined physical interpretation of the shape average as the stable shape on which all surface
forces implied by the elastic deformations are balanced (cf. Figure 2.4). Obviously, there is a straightfor-
ward generalization involving jumps of normal stresses on interior interfaces in case of components of Si
which are interior edges in Oi.
To verify (2.2) let us consider a set of consistent variations (1 + εu) ◦ φi, which lead to a variation
(1 + εu)(S) of the average shape. Due to the optimality, we obtain

d

dε

∑
i=1,...,n

W[Oi, (1 + εu) ◦ φi]
∣∣
ε=0

= 0 .

Thus, differentiation and an integration by parts leads to

0 =
∑

i=1,...,n

∫
Oi
W,A(Dφi) : D(u ◦ φi) dx

= 0 +
∑

i=1,...,n

∫
Si
W,A(Dφi) : (u ◦ φi)⊗ ν[Si] da[Si] ,

where ν[Si] is the outer normal in Si and “⊗” denotes the rank–1 product v ⊗ w = v wT for two vectors
v, w ∈ Rd. Here, we have made use of the above PDE systems of nonlinear elasticity on Oi \ Si. Now,
we consider displacements u with local support and let this support collapse at some point x on S.

On some similar alternative models.In our definition of an elastic shape average we have consid-
ered elastic deformations φi which map input shapes Si on the shape average candidate S. Alternatively,
one might want to consider deformations from the shape average onto the input shapes. Then we would
have to take into account the corresponding inverse maps ψi = φ−1

i and their elastic energy. We readily

verify that detDψi = 1
detDφi , Dψi = cofDφTi

detDφi , and cofDψi = DφTi
detDφi . Hence, the elastic energies associ-

ated with the inverse deformations ψi on the stress-free reference configuration S can be phrased as a
functional on the input domains Si, and we obtain

W inv[ψi] =W inv[Oi, φi] :=
∫
Oi
|detDφi| W̄

(
|cofDφi|22
(detDφi)2

,
|Dφi|22

(detDφi)2
,

1
detDφi

)
dx .

Alternatively, one might consider a symmetric version in terms of the sum of the pair of energies
W inv[Oi, φi] +W[Oi, φi]. In this paper, we restrict ourselves to the initial model derived above.
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Fig. 2.4. A straight and a folded bar as a test case. As above, the input images are depicted along with their
deformations φi and the distribution of |Dφi|2 and det (Dφi) with ranges of [0.97

√
2, 1.03

√
2] and [0.97, 1.03] color-coded as

. Apparently, isometries are preserved distant from the folding point, and the region of higher deformation energies
restricts to the area around the fold. The original bars describe an angle of 180◦ and 118◦, while the average approximately
has an angle of 150◦. The image resolution is 513× 513, and parameters are as in Figure 2.2.

Our approach can be considered as a PDE-constrained shape optimization method [58], where we opti-
mize the shape S with respect to the cost functional

∑n
i=1W[Oi, φ∗i ] under the constraint that φ∗i is a

minimizer of the functional φi 7→ W[Oi, φi] with φi(Si) = S. A phase field model in shape optimization
related to the one to be developed in this paper is discussed in [10]. For some applications it might be
useful to decouple the cost functional on S from the constraint on φ∗, e. g. the actual cost functional
could depend on stresses on S.

A relaxed formulation. The hard constraint φi(Si) = S is often inadequate in applications. Due
to local shape fluctuations, for example, or noise in the shape acquisition there are frequently local details
like spurious edges in the input shapes which should not be encountered in the shape average. Hence, we
relax the constraint and introduce a penalty functional which measures the symmetric difference of the
input shapes Si and the pullback φ−1

i (S) of the shape S and is given by

F [Si, φi,S] = Hd−1(Si4φ−1
i (S)) ,

where A4B = A \B ∪B \A. Finally, to sum up, our shape averaging model is based on the energy

Eγ [S, (φi)i=1,...,n] =
1
n

n∑
i=1

(W[Oi, φi] + γF [Si, φi,S]) + µL[S]. (2.3)

This approach is related to groupwise registration and segmentation results [68, 69]. Here, F acts as
a fidelity term measuring the quality of the registration of the shapes Si with a given shape S under
the deformations φi. In the next section we will extend the approach to joint edge segmentation and
averaging.

3. A joint segmentation and averaging method. In the derivation of our shape averaging
model we have assumed that the shapes Si to be averaged can be robustly extracted from a set of images
ui with i = 1, . . . , n and are a priori given. However, if we consider shapes defined as the morphology of
images represented by edges, some of these edges will be characterized by significant noise or low contrast
and hence will be difficult to extract. Here, it might help to take into account the corresponding edges
in the other images, which all refer to the same edge of the average shape, in particular, we will pursue a
joint approach of shape segmentation and registration with an averaged shape: We do no longer assume
the shapes Si to be given a priori, but we seek for them simultaneously to the averaging process, using
one single functional for both tasks. This has several advantages: On the one hand, the quality of shape
averaging highly depends on the robustness of the edge detection in the input images. On the other hand,
a reliable average shape can be used to improve edge detection in case of poor image quality. For instance,
Young and Levy [71] used segmentation results from one image to guide edge detection in consecutive
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Fig. 3.1. Blurred edges can be restored based on a joint approach for image segmentation and averaging. The three
input images u0

i are depicted along with their segmented edge sets (described as phase field vi) as computed by the joint
segmentation and averaging. The computed average shape is also shown (right). Apparently, the strongly blurred edges
in the first input image are reconstructed based on the corresponding edges in the other images. (Resolution 513 × 513,
γ = 107, µ = 10−2, (a1, a2, a3) = (108, 0, 108), α = 1010, β = 105, ν = 106.)

images, and Yezzi, Zöllei and Kapur [37] simultaneously segmented contours in multiple images using an
active contour type model. In [27] a joint segmentation and morphology registration method has been
proposed.
Joint shape segmentation and averaging can be phrased in terms of a variational approach, where shape
segmentation, shape matching with a shape average, and optimization of this shape average are performed
simultaneously via the minimization of a joint energy functional. For shape segmentation we pick up the
approach presented by Mumford and Shah [51] and consider the functional

EMS[u,S, u0] = α

∫
Ω

(u− u0)2 dx+ β

∫
Ω\S
|∇u|2 dx+ νHd−1(S) , (3.1)

where u0 : Ω → R represents the original image and u a piecewise smooth approximation with edge
set S. This functional balances the approximation of a possibly noisy or corrupted input image u0, the
smoothness of the piecewise smooth approximation u, and the length (d = 2) or area (d = 3) of the edge
interfaces S. Incorporating this approach in the above shape averaging functional (2.3) we end up with
the joint functional

Eγjoint[S,(ui,Si,φi)i=1,...,n]=
1
n

n∑
i=1

(EMS[ui,Si,u0
i ]+W[Ω,φi]+γF [Si,φi,S]

)
+µL[S], (3.2)

which has to be relaxed simultaneously in the unknowns ui, Si, φi for i = 1, . . . , n and S for a fixed given
set of input images (u0

i )i=1,...,n. Figure 3.1 demonstrates that in a joint approach blurry edges in the
input images can be segmented, if sufficiently strong evidence for this edge from other input images is
integrated into the averaged shape.

4. Phase field approximation. Since explicit treatment of an edge set is difficult in a variational
setting [50], many approximations to the original Mumford–Shah model (3.1) have been proposed. The
approach by Ambrosio and Tortorelli [1, 2] consists in encoding an edge set S by a smooth phase field
function v : Ω→ R, which is close to zero on edges and one in between. The specific shape of this phase
field function, which represents the edge set, is determined by suitable terms in the following functional,

EεAT[u, v, u0] = α

∫
Ω

(u− u0)2 dx+ β

∫
Ω

(v2 + kε)|∇u|2 dx+ ν

∫
Ω

ε|∇v|2 +
1
4ε

(v − 1)2 dx, (4.1)

where ε can be interpreted as the width of the diffused edge representation in v. kε > 0 is a small
parameter, needed for analytical purposes, that converges to zero as ε→ 0 (in our computations, however,
we always set kε = 0). As ε→ 0, the last integral in the above functional indeed Γ-converges to Hd−1(S).
We pick up this approximation and describe the average shape S via a phase field function v. For the
input shapes Si we assume the corresponding phase field description vi to be given a priori. (Usually,
vi can be computed beforehand, minimizing (4.1) on the input images ui, or explicitly constructed for a
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given edge set using the comparison function from the slicing argument in [2].)
This approximation is favorable due to its quadratic form, which will allow direct computation of the
smoothed image and the phase field in an alternating minimization approach. It is numerically easier
to handle than for instance the strongly nonlinear level set approach by Vese and Chan in [11] or an
approximation of Modica–Mortola type [48]. Also, as opposed to level sets, the Ambrosio–Tortorelli
phase field can describe edges in images which are not boundary contours and therefore allows a simple
handling of very complex shape topologies. However, this is at the expense of not possessing an inherent
distinction between the inside and the outside of a shape, which level sets do possess. Also, level sets
have the advantage of a sharp instead of a diffuse interface description, which on the other hand prevents
them to be used with different scales. Finally, there is a well-established existence and Γ-convergence
theory for the phase field approach.
Given a phase field parameter ε and corresponding phase field representations v of S and vi of Si, we
define an approximate mismatch penalty

Fε[vi, φi, v] =
1
ε

∫
Ω

(v ◦ φi)2(1− vi)2 + v2
i (1− v ◦ φi)2 dx .

Here, we suppose v to be extended by 1 outside the computational domain Ω. The first term in the
integrand is close to 1 on Si \ φ−1

i (S), because (1− vi) ≈ 1 on Si and v ◦ φi ≈ 1 apart from the vicinity
of φ−1

i (S). It tends to 0 with increasing distance from this set. Analogously, the second term acts as
an approximate indicator function for φ−1

i (S) \ Si. Let us emphasize that Fε[vi, φi, v] is expected to be
truely proportional to F [Si, φi,S] only, if φi is neither distending nor compressive orthogonally to the
shape, i. e. Dφi ν[φ−1

i (S)] · ν[φ−1
i (S)] = 1 on φ−1

i (S). Nevertheless, because we are primarily interested
in the limit for γ →∞, Fε[vi, φi, v] acts as a proper penalty functional.
Next, we have to describe the phase field v, which is not given a priori, in an implicit variational form.
We pick up the idea by Ambrosio and Tortorelli and consider the energy

Lε[v] =
∫

Ω

ε|∇v|2 +
1
4ε

(v − 1)2 dx ,

which additionally acts as a regularization energy measuring an approximation of the Hd−1 measure of
the shape S represented by the phase field v.
So far the elastic energy is evaluated on the object domains Oi only. For practical reasons of the
later numerical discretization, we now let the whole computational domain behave elastically with an
elasticity several orders of magnitude softer outside the object domains Oi on the complement set Ω\Oi.
We suppose that, based on a priori segmentation of the images ui, a smooth approximation χε

Oi of the
characteristic function χOi is given and define a corresponding approximate elastic energy

Wε[Oi, φi] =
∫

Ω

(
(1− δ)χε

Oi + δ
)
W (Dφi) dx ,

where in our application δ = 10−4. Also, in the above we implicitly assumed that deformations φi
map the domain Ω onto itself; for numerical implementation we will relax this assumption and perform
integrations only in regions where all integrands are defined. Finally, the resulting approximation of the
total energy functional to be minimized reads

Eγ,ε[v, (φi)i=1,...,n] =
1
n

n∑
i=1

(Wε[Oi, φi] + γFε[vi, φi, v]) + µLε[v] . (4.2)

Let us remark that we are particularly interested in the case where Fε acts as a penalty with γ � 1 and
Lε ensures a mild regularization of the averaged shape with µ� 1.
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Fig. 4.1. Input images together with |Dφi|2 and det (Dφi) (ranges of [0.6
√

2, 1.4
√

2] and [0.6, 1.4] color-coded as
) and the average phase field (rightmost). In the top row only the interior of the two shapes is considerably stiff,

whereas in the bottom row the whole computational domain is considered to be homogeneously elastic. Obviously, in the
upper case far stronger strains are visible in the region of the gap, and in the lower case it is much more expensive to pull
the lobes apart in the first shape than to push them together in the second shape. Hence, the resulting average in the second
row is characterized by stronger bending of the two lobes than in the first row. (Results are obtained for a grid resolution
1025× 1025 and parameter values γ = 107, µ = 0.1, ε = 6h, (a1, a2, a3) = (106, 0, 106).)

The structure of the penalty functional Fε tries to match the shapes of the given phase field functions
vi and the pullback v ◦ φi of the phase field v to be determined. This implies a particular stiffness of
the deformations φi on the diffused interface around the shapes Si. Indeed, the set of deformations
φ1 . . . , φn tries to minimize stretch or compression normal to the shape contour measured in terms of
Dφi ν[Si] ·ν[Si]−1 (cf. Figure 8.5). This does not hamper the elastic deformation in the limit for γ →∞,
because the other (tangential) components of the deformation tensor can relax freely.

Figure 4.1 shows the impact of the choice of the elastic domain on the average shape. Here, we once
consider the whole computational domain as homogeneously elastic, and alternatively and in many cases
physically more sound only the object domain is assumed to be elastic and considerably stiff. The region
between both lobes is more severely dilated if the elastic energy is weighted with a small factor outside
the shape, which becomes obvious especially in the plots of the deformation invariants.
Finally, let us give the phase field approximation for the joint model (3.2), where we simultaneously
segment and average shapes. Here, for fixed input images (u0

i )i=1,...,n, we end up with the functional

Eγ,εjoint[v,(ui,vi,φi)i=1,...,n]=
1
n

n∑
i=1

(EεAT[ui,vi,u
0
i ]+Wε[Ω,φi]+γFε[vi,φi,v]

)
+µLε[v]. (4.3)

5. Euler Lagrange equations. In what follows, we will consider the Euler Lagrange equations of
the above phase field energies. We thus need to compute the variations of the energy contributions with
respect to the phase field v and the involved deformations φ1, . . . , φn. The variation of an energy G in
direction ζ with respect to a function z will be denoted by 〈δzG, ζ〉. Using straightforward differentiation,
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for sufficiently smooth v and φi we obtain

〈δvFε[vi, φi, v], ϑ〉 =
2
ε

∫
φi(Ω)

(
v(1− vi ◦ φ−1

i )2 − (vi ◦ φ−1
i )2(1− v)

)
ϑ|det (Dφ−1

i )|dx ,

〈δφiFε[vi, φi, v], ψ〉 =
2
ε

∫
Ω

(
(1− vi)2(v ◦ φi)− v2

i (1− v ◦ φi)
)

(∇v ◦ φi) · ψ dx ,

〈δvLε[v], ϑ〉 = 2
∫
Ω

ε∇v · ∇ϑ+
1
4ε

(v − 1)ϑ dx ,

〈δφiWε[Oi, φi], ψ〉 =
∫

Ω

(
(1− δ)χε

Oi + δ
)
W,A(Dφi) : Dψ dx

for scalar test functions ϑ and vector valued displacement type test functions ψ. Concerning the particular
polyconvex energy integrand given in (2.1), we obtain

W,A(A) : B = 2 ∂I1W̄ (|A|22 , |cofA|22 ,detA) A : B +

2 ∂I2W̄ (|A|22 , |cofA|22 ,detA) cofA : ∂Acof(A)(B) +

∂I3W̄ (|A|22 , |cofA|22 ,detA) ∂Adet (A)(B) ,

where

∂Adet (A)(B) = det (A)tr (A−1B) ,
∂Acof(A)(B) = det (A)tr (A−1B)A−T − det (A)A−TBTA−T ,

∂I1W̄ (I1, I2, I3) =
p

2
a1 (I1 − 3)

p−2
2 ,

∂I2W̄ (I1, I2, I3) =
q

2
a2 (I2 − 3)

q−2
2 ,

∂I3W̄ (I1, I2, I3) = s a3

(
Ir−1
3 − I−s−1

3

)
.

For ease of implementation we will only consider the case p, q = 4 and r, s = 2 below. A local minimum
v, φ1, . . . , φn of (4.2) is characterized by the Euler Lagrange conditions

〈δvEγ,ε[v, (φi)i=1,...,n], ϑ〉 = 0 , 〈δφiEγ,ε[v, (φj)j=1,...,n], ψ〉 = 0 , (5.1)

where δvEγ,ε = γ
n

∑n
i=1 δvFε + µδvLε and δφiE

γ,ε = 1
n

∑n
i=1(δφiWε + γδφiFε).

Upon integration by parts and use of the fundamental lemma of the calculus of variations, these conditions
readily imply a coupled system of nonlinear second order partial differential equations for v, φ1, . . . , φn and
corresponding boundary conditions. The resulting natural boundary condition for v is ∇v · ν[∂Ω] = 0 on
∂Ω for the outward normal ν[∂Ω]. Effectively, in the limit for ε→ 0 this implies that if the average shape
S meets the the boundary ∂Ω of the computational domain Ω, then it is perpendicular to this boundary,
since ∇v

|∇v| approximates the normal ν[S] on S. The natural boundary condition for the deformation φi is
σ[φi]ν[∂Ω] = 0 on ∂Ω, which reflects the boundary condition at the outer boundary of the soft material
phase. The actually physically relevant boundary condition is diffused in the transition layer around ∂Oi,
where we obtain the PDE

σ[φi]∇χε
Oi = − (1− δ)χε

Oi + δ

1− δ divσ[φi] +
1
ε
ηδ[vi, φi, v]ν

with ηδ[vi, φi, v] = 2γ
1−δ

(
(1− vi)2(v ◦ φi)− v2

i (1− v ◦ φi)
) |∇v ◦ φi| and ν = ∇v◦φi

|∇v◦φi| , where for smooth
shapes Si we expect the first summand on the right hand side to be uniformly bounded in ε and δ,
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whereas for ε, δ → 0 the scaled gradient of the smoothed characteristic function ε∇χε
Oi converges to the

normal ν[Si] in the sense of measures, and ν converges to ν[S]. Thus, in the limit we recover an effective
boundary condition σ[φi]ν[Si] = ηδ→0[vi, φi, v]ν[S] on ∂Oi for every i = 1, . . . , n, which is interlinked
with the corresponding boundary conditions for the other deformations via the phase field constraint
(cf. (2.2)).
Let us finally also state the Euler Lagrange conditions for the fully joint model (4.3). Besides conditions
(5.1), which hold analogously, the necessary conditions for ui, vi are

〈δviEγ,εjoint, ϑ〉 = 0 , 〈δuiEγ,εjoint, ϑ〉 = 0

with δviEγ,εjoint = 1
n

∑n
i=1(δviEεAT + γδviFε) and δuiEγ,εjoint = 1

n

∑n
i=1 δuiEεAT, where

〈δviEεAT[ui, vi], ϑ〉 =
∫
Ω

2β viϑ |∇ui|2 + 2ν
(
ε∇vi · ∇ϑ+

1
4ε

(vi − 1)ϑ
)

dx ,

〈δviFε[vi, φi, v], ϑ〉 =
2
ε

∫
Ω

(
(v ◦ φi)2(vi − 1) + vi(1− v ◦ φi)2

)
ϑ dx ,

〈δuiEεAT[ui, vi], ζ〉 =
∫
Ω

2α(ui − u0
i )ζ + 2βv2

i∇ui · ∇ζ dx

for scalar test functions ϑ and ζ.

6. Existence results for the phase field models. In this section we will consider the phase field
model (4.2) and prove for fixed ε > 0 an existence result for the phase field v describing an average S and
a set of deformations (φi)i=1,...,n which match given shapes Si represented by given phase fields vi with
the average shape S. As already mentioned in the introduction, we restrict here to the three dimensional
case and choose the fixed image domain Ω = [0, 1]3 for ease of presentation. By Wn,p we denote the usual
Sobolev space of functions with weak derivatives up the order n in Lp. We obtain the following theorem:

Theorem 6.1 (Existence of a phase field shape average). Suppose d = 3, ε, δ, γ, µ > 0, and consider
a set of admissible deformations

A := {φ : Ω→ Ω
∣∣ φ ∈W 1,p(Ω), cofDφ ∈ Lq(Ω),

detDφ ∈ Lr(Ω),detDφ > 0 a.e. in Ω, φ = 1 on ∂Ω}
on a uniform image domain Ω = [0, 1]3, where p, q > 3 and r > 1. Furthermore, we consider the
elasticity model described in § 2, where the integrand Ŵ appearing in the elastic energy Wε[Oi, φi] is
supposed to be convex and there exist constants κ, s ∈ R, κ > 0, and s > 2q

q−3 such that W̄ (I1, I2, I3) ≥
κ(I

p
2
1 + I

q
2
2 + Ir3 + I−s3 ) for all I1, I2 ∈ R and I3 ∈ R+. If the input phase fields (vi)i=1,...,n lie in W 1,2(Ω)

with 0 ≤ vi ≤ 1, then the energy

Eγ,ε[v, (φi)i=1,...,n] =
1
n

n∑
i=1

(Wε[Oi, φi] + γFε[vi, φi, v]) + µLε[v]

attains its minimum over phase fields v in W 1,2(Ω) and n-tupels (φi)i=1,...,n of deformations in An. The
minimizing v and φi for i = 1, . . . , n are embedded in classical function spaces, namely v ∈ C1,α(Ω̄),
φi ∈ C0,β(Ω̄), v ◦ φi ∈ C0,β for all 0 < α < 1 − 3

s+1 , 0 < β < 1 − 3
p . Furthermore, the minimizing

deformations are homeomorphisms.
Proof. Apparently, the total energy is bounded below by zero. Also, v ≡ 0 and φi ≡ 1, i = 1, . . . , n,

show that there are phase fields and deformations for which the energy is finite.
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Let
(
(φki )i=1,...,n, v

k
)
k=1,...

be a minimizing sequence. In what follows we will replace minimizing se-
quences by subsequences without any explicit subsequence indexing.
Ball [5] has shown that—due to the growth condition on W̄—φki is a homeomorphism with detDφki > 0
a. e. and that the transformation rule∫

Ω

f ◦ φki detDφki dx =
∫

Ω

f dx

holds if any of both integrals exists. Also, for elastic deformations with finite elastic energy and any
bounded subset B ⊂ W 1,t(Ω) the closure of Bφki := {f ◦ φki |f ∈ B} is compact in Lt̃(Ω) for all t̃ <
s
s+1

(
1
t − 1

3

)−1, since f ◦ φki is integrable for φki being a homeomorphism and by the transformation rule
and Hölder’s inequality,

‖f ◦ φki ‖t̃Lt̃ =
∫
Ω

|f ◦ φki |t̃ dx =
∫
Ω

|f |t̃ 1
detDφki ◦ (φki )−1

dx

≤
∫

Ω

|f |t̃ s+1
s dx

s
s+1
∫

Ω

1
(detDφki ◦ (φki )−1)s+1

dx

1
s+1

=‖f‖t̃
Lt̃

s+1
s

∫
Ω

(detDφki )−s dx

1
s+1

,

where W 1,t(Ω) is compactly embedded in Lt̃
s+1
s , and the last integral is bounded by the elastic energy

energy Wε[Oi, φki ].
Now we construct a different minimizing sequence, still denoted

(
(φki )i=1,...,n,v

k
)
k=1,...

, by letting vk =
v[(φki )i=1,...,n] be the minimizer of Eγ,ε[·, (φki )i=1,...,n]. However, we first have to verify the existence of
such a minimizer vk. One way to see this - which we find particularly instructive - is to investigate
more closely compactness of the concatenations of phase fields and deformations with bounded elastic
energy. Hence, for given (φki )i=1,...,n let vj,k be a minimizing sequence of Eγ,ε[·, (φki )i=1,...,n]. Due to the
boundedness of Lε[vj,k], vj,k is bounded in W 1,2(Ω) so that for a subsequence vj,k ⇀ vk in W 1,2(Ω) for
some vk ∈W 1,2(Ω) . Since the lower semi-continuity of Lε is obvious, for vk to be the minimizer it only
remains to prove lower semi-continuity of Fε as vj,k ⇀ vk. We have

Fε[vi, φki , vj,k] = Fε[vi, φki , (vj,k − vk) + vk] = Fε[vi, φki , vk]

+
∫
Ω

(v2
i + (1− vi)2)((vk − vj,k) ◦ φki )2 dx+ 2

∫
Ω

(v2
i (vk − 1) ◦ φki + (1− vi)2vk ◦ φki )(vj,k − vk) ◦ φki dx.

The second term is larger than or equal to zero, while for a subsequence the final term converges to zero,
as it follows from the following estimate∣∣∣∣∣∣
∫
Ω

(v2
i (vk − 1) ◦ φki + (1− vi)2vk ◦ φki )(vj,k − vk) ◦ φki dx

∣∣∣∣∣∣
≤ (‖vi‖2L6‖vk ◦ φki − 1‖L3 + ‖1− vi‖2L6‖vk ◦ φki ‖L3

) ‖(vj,k − vk) ◦ φki ‖L3 .

In fact, still not using the strict bounds for vi, we already observe by Sobolev embedding that vi is
uniformly bounded in L6(Ω). Due to s > 2, we can apply our above compactness argument for t = 2 and
t̃ = 3 to vk and vj,k − vk so that the right hand side converges to zero for a subsequence.
For the truncated phase field ṽk=max(0,min(1, vk)), we observe Eγ,ε[vk, (φki )i=1,...,n]≥ Eγ,ε[ṽk, (φki )i=1,...,n].
Since vk is already a minimizer, this implies that the sequence (vk)k=1,... is uniformly bounded, i. e. 0 ≤
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vk ≤ 1. Furthermore, for each k = 1, . . . the phase field vk satisfies the Euler Lagrange equation

− εµ∆vk = − µ
4ε

(vk − 1)− γ

ε

n∑
i=1

(
vk(1− vi ◦ (φki )−1)2 − (vi ◦ (φki )−1)2(1− vk)

) |detD(φki )−1| (6.1)

in a weak sense. The right hand side of (6.1) is uniformly bounded in Ls+1(Ω) (due the above trans-
formation rule with f ≡ |detD(φki )−1|s+1 = |detDφki ◦ (φki )−1)−1|s+1), and applying classical elliptic
regularity theory [33] we observe that (vk)k=1,... is uniformly bounded in W 2,s+1(Ω).
Next, we consider the functional

(φi)i=1,...,n 7→ Eγ,ε[v[(φi)i=1,...,n], (φi)i=1,...,n]

on An. Due to the growth condition on W̄ we get that
(
(Dφki , cofDφki ,detDφki )

)
k=1,...

is uniformly
bounded in Lp × Lq × Lr. By Poincaré’s inequality applied to (φki − 1) we obtain that

{
φki
}
k∈N is

uniformly bounded in W 1,p(Ω). Thus, we can extract a weakly convergent subsequence. Applying the
nowadays classical compensated compactness result by Ball [4] we observe that

(Dφki , cofDφki ,detDφki ) ⇀ (Dφi, cofDφi,detDφi)

in Lp × Lq × Lr for some φi ∈ A. This holds for any i = 1, . . . , n. In addition, Wε[Oi, ·] is sequentially
weakly lower semicontinuous.
Furthermore, from the uniform boundedness of vk = v[(φki )i=1,...,n] in W 2,s+1(Ω) as k →∞ it follows by
Sobolev embedding that vk → v in C1,α(Ω̄) for some v ∈ C1,α(Ω̄), which holds for any 0 ≤ α < 1− 3

s+1 .
Hence, Lε[vk] converges to Lε[v]. Next, we justify the continuity of Fε on a subsequence, i.e.

Fε[vi, φki , v[(φki )i=1,...,n]]→ Fε[vi, φi, v]

for k →∞. Due to Sobolev’s embedding theorem, a subsequence of the φki converges strongly in C0,β(Ω)
for β < 1− 3

p . For x and x+ z in Ω we estimate∣∣(vk ◦ φki ) (x+ z)− (vk ◦ φki ) (x)
∣∣ ≤ C ∥∥vk∥∥

C0,1

∥∥φki ∥∥C0,β |z|β .

Thus, we obtain that the concatenation of vk and φki is uniformly Hölder continuous for a positive Hölder
exponent β. Now, we can apply the Arzela Ascoli theorem to establish the pointwise convergence of vk◦φki
against v ◦ φi for another subsequence and thence the requested continuity of the penalty functional Fε.
Finally, from the continuity of φi 7→ Fε[vi, φi, v[(φi)i=1,...,n]] and the lower semicontinuity of 1

n

∑n
i=1Wε[Oi, φi]+

µLε[v[(φi)i=1,...,n]] we deduce the sequentially weak lower semicontinuity of the functional

(φi)i=1,...,n 7→ Eγ,ε[v[(φi)i=1,...,n], (φi)i=1,...,n] .

From this, the existence of a minimizing phase field v and a minimizing set of elastic deformations
(φi)i=1,...,n follows immediately. Furthermore, the stated regularity is a consequence of the above argu-
ments, and as already mentioned the homeomorphism property is a direct consequence of the boundedness
of the elastic energy [5]. For further details on that we refer to [62].

Furthermore, there is a similar existence result for the joint model (4.3):
Theorem 6.2 (Existence of minimizers for the joint model). Let α, β, ν > 0 and assume that the

assumptions of Theorem 6.1 hold. Furthermore, let u0
i ∈ L2(Ω) for i = 1, . . . , n. Then the energy

Eγ,εjoint[v, (ui, vi, φi)i=1,...,n] =
1
n

n∑
i=1

(EεAT[ui, vi, u0
i ] +Wε[Ω, φi] + γFε[vi, φi, v]

)
+ µLε[v]
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attains its minimum over n-tupels of images ui ∈W 1,2(Ω), phase fields vi ∈W 1,2(Ω), and deformations
φi ∈ A with i = 1, . . . n, and over phase fields v ∈W 1,2(Ω). The minimizing v, vi and φi for i = 1, . . . , n
are embedded in classical function spaces, namely vi ∈ C1,α′(Ω̄), v ∈ C1,α′′(Ω̄), φi ∈ C0,β′(Ω̄), v ◦ φi ∈
C0,β′ for all 0 < α′ < 1, 0 < α′′ < 1− 3

s+1 , 0 < β′ < 1− 3
p . Furthermore, the minimizing deformations

are homeomorphisms.
Proof. The required arguments are closely related to those in the proof of Theorem 6.1. Hence,

we give here only a brief sketch. Let
(
(uki , v

k
i , φ

k
i )i=1,...,n, v

k
)
k=1,...

be a minimizing sequence, where we
assume that for fixed (uki , φ

k
i )i=1,...,n, v

k the n-tupel of phase fields (vki )i=1,...,n is a minimizer over all
n-tupels of phase fields in W 1,2(Ω). The existence of these phase fields is straightforward, and once
more by truncation we observe that 0 ≤ vki ≤ 1 (and that just as above vki converges strongly in C1,α′

for 0 < α′ < 1). Hence, vki is now an admissible phase field for the description of the input shapes in
Theorem 6.1. Thus, we can again modify the minimizing sequence, and suppose that for fixed (vki )i=1,...,n

the other components (uki , φ
k
i )i=1,...,n, v

k minimize the global energy. To prove this we follow exactly the
above proof and remark that the lower semicontinuity of EεAT[·, vki ] is obvious. Now, we let k →∞ for the
modified sequence, and repeating arguments we observe the requested lower semicontinuity of the total
energy. Indeed, to establish the continuity of Fε on a subsequence we make use of the a priori ensured
L∞ bound for the vki , which is required to prove the strong C1,α′′ regularity of the vk.

7. Finite element implementation. We now describe the actual spatial discretization by finite
elements and the implementation of a discrete multi-scale method. To simplify the exposition, we will
confine ourselves to the central model derived in this paper and consider the energy (4.2). We consider
the images ui, phase fields v, vi, and deformations φi as being represented by continuous, piecewise mul-
tilinear (trilinear in 3D and bilinear in 2D) finite element functions on the image domain Ω = [0, 1]d.
Each pixel or voxel value corresponds to a node of the regular mesh.
For ease of implementation we suppose dyadic resolutions of the images with 2L + 1 pixels or voxels
in each direction corresponding to a grid size h = 2−L. Concerning notation, in contrast to the non-
discretized functions, which were represented by lower case letters in the above exposition, we use upper
case letters to denote their counterparts in the finite-dimensional finite element function spaces. For their
corresponding nodal vector representation with respect to the canonical basis of hat functions we use bold
letters. Specifically, the finite element approximation of a phase field v is represented by V = (Vj)j∈Ih
with V =

∑
j∈Ih Vjϕj , where {ϕj}j∈Ih is the nodal basis and Ih the grid node index set corresponding

to the grid with grid size h. For a discretized deformation Φ and the corresponding nodal vector Φ we
get Φ =

∑
j∈Ih

∑
j=1,...,d Φjkϕjek, where e1, . . . , ed is the canonical basis in Rd.

Fully discrete nonlinear system of equations. From the spatially continuous Euler Lagrange condi-
tions (5.1) for v and φ1, . . . , φn we derive a fully discrete nonlinear system of equations. A finite element
discretization of the first equation in (5.1) leads to the system of equations

0 =

(
γ

nε

n∑
i=1

M
[(

(1− Vi ◦ Φ−1
i )2 + (Vi ◦ Φ−1

i )2
) |det (DΦ−1

i )|]+ µεL[1] +
µ

4ε
M [1]

)
V

−
(
γ

nε

n∑
i=1

M
[
(Vi ◦ Φ−1

i )2|det (DΦ−1
i )|]+

µ

4ε
M [1]

)
1 =: AVi,ΦiV − bVi,Φi , (7.1)

where for some weighting function ω : Ω → R the generalized mass matrix M [ω] and the generalized
stiffness matrix L[ω] are defined as

M [ω] =
(∫

Ω

ωϕiϕj dx
)
ij

, L[ω] =
(∫

Ω

ω∇ϕi · ∇ϕj dx
)
ij

,
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and where 1 is the nodal vector with entries all equal to 1. This equation is obviously linear in V and
nonlinear in Φi. The second equation in (5.1) yields the finite element discretization

0 =
2γ
nε

∫
Ω

(
(1− Vi)2(V ◦ Φi)− V 2

i (1− V ◦ Φi)
)

Ψ · (∇V ◦ Φi) dx

+
1
n

∫
Ω

(
(1− δ)χε

Oi + δ
)
W,A(DΦi) : DΨ dx , (7.2)

where Ψ is running over all vector valued basis functions ϕjek. The unknowns are V ∈ RN and the set
of discrete deformations Φ1, . . . ,Φn ∈ RdN , where N = (2L + 1)d is the number of grid nodes.

Numerical quadrature. Integral evaluation will be performed by Gaussian quadrature of third order
on each grid cell. At various places in (7.1) and (7.2) we have to evaluate pushforwards (V ◦ Φi) or
pullbacks (Vi ◦Φ−1

i ) of the discretized phase fields V and Vi under a discretized deformation Φi. In both
cases we replace the exact evaluation of the integrals by simple and effective quadrature schemes. Let us
emphasize that it is not sufficient just to compute nodal interpolants Ih(V ◦Φi), Ih(Vi◦Φ−1

i ) of V ◦Φi and
Vi ◦Φ−1

i , respectively, where Ih denotes the classical Lagrangian interpolation. In fact, artificial displace-
ments near the shape edges are then observed, accompanied with strong tensions and generated while
alternating between optimizing the average phase field V and the deformations Φi. In our algorithm, we
compute V ◦ Φi exactly at the quadrature points and approximate Vi ◦ Φ−1

i by Vi ◦ I4h (Φ−1
i ). Here, I4h

is a slightly modified interpolation operator motivated by an effective implementation of a discretized
inverse deformation, which proceeds as follows. We map each grid cell under the deformation Φi onto
the image domain. Next we identify all grid nodes which are located within this deformed cell. Now,
we would like to apply interpolation within this deformed cell to retrieve the requested nodal values of
the discretized inverse deformation Φi. However, inversion of multilinear deformation leads to nonlinear
equations. To avoid this shortcoming, we cut the cell into virtual simplices. We then replace the regular
cell in the retrieval algorithm by the set of simplices and obtain piecewise affine inverse mappings via
linear interpolation. This scheme is designed to be consistent on locally affine transformations, which is
what is required not to destroy the expected accuracy of a method based on multi–linear finite elements.

Alternating minimization approach. The complexity of the minimization problem suggests to per-
form a fixed point iteration, alternatingly computing the different unknowns. In each iteration, we first
solve for the phase field V and afterwards for the deformations Φi. The updated values are then used in
the next iteration until the algorithm converges. Equation (7.1) for fixed deformations Φi is linear in the
vector V and is therefore solved by conjugate gradient iteration. Concerning the deformations Φi and
equation (7.2) for fixed phase field V , a direct solution is ruled out due to the involved nonlinear elasticity
and the nonlinearity in the concatenation of deformations with phase fields. We resort to a regularized
gradient descent for the discrete counterpart Eγ,εh of the energy Eγ,ε, updating the discrete deformation
vector Φi according to

Φi = Φold
i − τ gradΦiEγ,εh , (7.3)

where τ is the current step size and gradΦi represents the finite element approximation to the regularized
gradient with respect to the weighted H1 inner product

(Ψ1,Ψ2)σ := (Ψ1,Ψ2)L2 +
σ2

2
(DΨ1,DΨ2)L2 . (7.4)

More precisely, gradΦiEγ,εh is the vector valued finite element function implicitly defined as the solution
of (gradΦiEγ,εh ,Ψ)σ = 〈δΦiEγ,εh ,Ψ〉 for all discrete displacement fields Ψ. The right hand side of this
system of equations coincides with the right hand side of (7.2). Here, the effect of the smoothing metric
(7.4) is related to the convolution with a Gauss kernel or equivalently the application of one time step
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for the heat equation semigroup. Consequently, information flow across the image is enhanced, and the
deformations equilibrate faster. Also, the descent algorithm becomes more resistant to being trapped in
local minima. Different from Miller et al. [47], injectivity is already ensured by the variational approach
itself. The H1-gradient is used to avoid numerical oscillations in conjunction with the concatenation
of discrete deformations and discrete phase fields. In the algorithm it turned out to be sufficient to
approximate the gradient performing a single multigrid V-cycle for the system(

M [1] +
σ2

2
L[1]

)(
gradΦiEγ,εh

)
j

= (〈δΦiEγ,εh ,Ψ〉)
j
,

where (·)j for j = 1, . . . , d indicates one particular component sub vector of the nodal vector and with
a slight misuse of notation gradΦiEγ,εh and 〈δΦiEγ,εh ,Ψ〉 are interpreted as nodal vectors. For details we
refer to [21, 26]. The step size τ in (7.3) is obtained according to Armijo’s rule, which ensures sufficient
agreement between the objective functional and its linearization. If the actually observed energy decay
in one time step is smaller than 1

4 of the decay estimated from the gradient (the Armijo condition is then
violated), then the time step τ is halved for the next trial, else it is doubled as often as possible without
violating the Armijo condition.

Multi-scale optimization. The variational problem considered here is highly nonlinear, and the pro-
posed scheme is expected to have very slow convergence; also it might end up in some nearby local
minimum. Here, a multi-level approach (initial optimization on a coarse scale and successive refinement)
turns out to be indispensable in order to accelerate convergence and not to be trapped in local minima
far from the global minimum. Due to our assumption of a dyadic resolution 2L + 1 in each grid direction
we are able to build a hierarchy of grids with 2l + 1 nodes in each direction for l = L, . . . , 0. Via a trivial
restriction operation we restrict every finite element function to any of these coarse grid spaces. Starting
the optimization on a coarse grid, the results from coarse scales are successively prolongated onto the
next grid level for a refinement of the solution. Hence, the construction of a multigrid hierarchy allows to
solve coarse scale problems in our multi-scale approach on coarse grids. Since the width ε of the diffusive
phase field edges should naturally scale with the grid width h, we choose ε = Ch on each level for some
constant factor C. In our implementation C = 1.

Algorithm. The entire algorithm in pseudo code notation reads as follows:
EnergyRelaxation

(
(U0

i )i=1,...,n

) {
initialize Φi = 1 on grid level l0 for all i = 1, . . . , n;
for grid level l = l0 to L {

do {
segment the images (U0

i )i=1,...,n to obtain phase fields (Vi)i=1,...,n;
Vold = V;
solve the linear system

AVi,ΦiV = bVi,Φi
for the phase field vector V;
for image i = 1 to n

for count k = 1 to K {
Φold
i = Φi;

perform a gradient descent step
Φi = Φold

i − τ gradΦold
i
Eγ,εh [V, (Φj)j=1,...,n]

with Armijo step size control for τ ;
}

} while(
∑n
i=1 |Φold

i −Φi|+ |Vold −V| ≥ Threshold);
if (l < L) prolongate V, Φi for all i = 1, . . . , n onto the next grid level;

}
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Fig. 7.1. For the example presented in Figure 2.4 we show the progression of the various energy contributions during
the solution iteration. The top row shows the hyperelastic energy contributions due to length and volume variation (left
and middle, respectively; the solid line corresponds to i = 1, the dashed one to i = 2) as well as the total hyperelastic
energy (right), i. e. the sum of length and volume contributions weighted with a1 = a3 = 1010. The bottom row shows the
length regularization (left) and the mismatch penalty for both images (second graph), which are weighted with µ = 10−2

and γ = 107 respectively in the overall energy (right). In all graphs, the spikes correspond to the prolongation to the next
grid level. The third graph in the bottom row shows the L1-difference between v1 ◦ φ−1

1 and v2 ◦ φ−1
2 .

}
It has turned out to be appropriate to choose l0 ≈ 4 as the coarsest grid level in our multi-scale approach.
On each scale we apply the alternating minimization approach. In each inner iteration we solve once
for the discrete phase field V and perform K = 5 gradient descent steps. As a threshold value for the
convergence test we choose Threshold= 2 · 10−4.
For the example considered in Figure 2.4, one iteration of our scheme on grid level L = 9 takes 10 seconds
on a Pentium IV PC at 1.8 GHz running under Linux. The complete method typically converges after
roughly 100 such iterations on each grid level. In Figure 7.1 we depict the progression of the various
components of the energy Eγ,ε for the averaging problem shown in Figure 2.4. The strong decay of the
global energy at the beginning of the algorithm is clearly visible. Apparently, the mismatch penalty
strongly dominates the total energy. Also, we show the L1-difference between v1 ◦ φ−1

1 and v2 ◦ φ−1
2 ,

which strongly decreases, indicating a good match between both deformed shapes.

8. Applications. We have applied our shape averaging approach to various collections of 2D and
3D shapes and to image morphologies.

Shape averaging in 2D. As first illustrative examples, we computed the average of different 2D
objects as shown in Figures 8.1 to 8.2. Furthermore, Figures 2.2 and 2.4 have already shown that due
to the invariance of the hyperelastic energy with respect to local rotations the computed averages try
to locally preserve isometries. Effectively, the different characteristics of the input shapes, both on the
global and a local scale, are averaged in a physically intuitive way, and the scheme proves to be fairly
robust due to the diffusive approximation based on the phase field model and the multi-scale relaxation.
Nevertheless, a lack of topological equivalence of the given input shapes might lead to corresponding local
artifacts in the shape average result, compare for instance the twentieth input shape in Figure 8.2 and
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Fig. 8.1. 20 shapes “device7” from the MPEG7 shape database and their average phase field. The bottom line shows
|Dφi|2 and det (Dφi) for shape 2, 8, and 19, with ranges of [0.8

√
2, 1.2

√
2] and [0.8, 1.2] color-coded as . (Resolution

513× 513, γ = 107, µ = 10−2, (a1, a2, a3) = (106, 0, 106).)

its locally spurious impact on the average phase field between the two legs.
Figure 8.3 shows two more examples, using input shapes from [22] and the shape database at the Centre
for Vision, Speech, and Signal Processing, University of Surrey. Averaging the hand shapes yields very
similar results to the averages obtained in [22] and [30] as the Euclidean and the Fréchet mean of vectors
of landmark positions, respectively. The average fish shape has also been computed in [14]. Note that
our result preserves more fine structures as opposed to the quite rounded mean shape in [14].

Shape averaging in 3D. In what follows we will consider the averaging of 3D shapes originally
given as triangulated surfaces and first converted to an implicit representation as binary images. A set of
48 kidneys and a set of 24 feet will serve as input data. The first five original kidneys and their computed
average are shown in Figure 8.4. Local structures seem to be quite well represented and preserved during
the averaging process compared to e. g. the average of kidney shapes in medial representation in [29].

Via the deformation of a given object onto the average during the averaging algorithm, the method
also yields local and global information about the distance of the object to the average. For the first two
of the original kidneys, the corresponding local elastic energy density or rather the three deformation
invariants are depicted in Figure 8.5. The inside of the first kidney apparently gets slightly dilated,
whereas the second one is compressed. Also, it can be observed that the dilation or compression is
reduced at the shape boundaries, which is caused by the finite width phase field description of the edges:
For the deformed phase fields to match, they all have to have the same thickness and hence may only be
deformed significantly in tangential, but not in normal direction.
Naturally, any averaging will involve some smoothing, eliminating fine details which differ from shape

to shape. It is hence of interest whether features, common to all shapes but differing slightly, pertain if
the number of samples is increased: Figure 8.6 shows the result of averaging different numbers of kidneys.
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Fig. 8.2. 20 shapes “stef” from the MPEG7 shape database and their average phase field (bottom right) for elastic
parameters (a1, a2, a3) = (107, 0, 106) (black, on top) and (a1, a2, a3) = (105, 0, 106) (red, underneath). The bottom line
shows |Dφi|2 and det (Dφi) for shape 15 in the case of a1 = 107 and 105, respectively, with ranges of [0.8

√
2, 1.2

√
2] and

[0.8, 1.2] color-coded as . Obviously, the larger the ratio between the weights of volume and length variation penalty,
the more elongated the shapes become. (Resolution 129× 129, γ = 107, µ = 10−2.)

Fig. 8.3. Average of 18 hand and 8 fish silhouettes, taken from [22] and the shape database at the Centre for Vision,
Speech, and Signal Processing, University of Surrey, respectively.

Also, we would like to know how the method performs for relatively large numbers of input shapes, since
the lack of a triangle inequality for a hyperelastic “distance” measure prevents a law of large numbers.
It is indeed observed that the middle dent of the average kidney is a little less pronounced than in each
single kidney, even in the case of averaging just two kidneys. Also, the influence of each additional original
shape seems significantly strong, however, a kidney-like shape is doubtlessly preserved up to the average
of all 48 kidneys.
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Fig. 8.4. Five segmented kidneys and their average (right). The lower row shows the volume renderings of the
corresponding phase fields. (Result obtained for resolution 257 × 257 × 257 and parameter values γ = 107, µ = 1,
(a1, a2, a3) = (108, 0, 107).)

Fig. 8.5. Sagittal cross-section through the distribution of |Dφi|2, |cof(Dφi)|2, and det (Dφi) for the first two kidneys

from Figure 8.4 (the ranges of [0.85
√

3, 1.15
√

3], [0.85
√

3, 1.15
√

3], and [0.85, 1.15] are color-coded as ). While the
first kidney is dilated towards the average, the second is compressed. In the thin diffusive interface region, the dilation or
compression is reduced.

The next example consists of a set of feet, where the average may help to design an optimal shoe. The
24 original feet are displayed in Figure 8.7. Their surface is colored according to the local distance to
the surface of the computed average shape, which helps to identify regions of strong variation. For that
purpose the foot shapes have been optimally aligned with the average for the final visualization. Let us
emphasize that the algorithm itself robustly deals with even quite large rigid body motions. Apparently,
the instep differs comparatively little between the given feet, whereas the toes show a rather strong
variation. Note that—since we only display normal distance to the surface of the average foot—any
potential tangential displacement is not visible, but could of course also be visualized when examining
shape variation.
For real applications, one has to be careful when dealing with shapes of different volume. Depending on

the chosen hyperelastic parameters, there may be a bias towards larger or smaller shapes, and appropriate
parameters will have to be chosen carefully. Also, for too soft hyperelastic material models, buckling
instabilities will occur during compression of large volume shapes. Some influence of different hyperelastic
parameters is illustrated in Figure 8.2.

Weighted averaging. Returning back to the kidneys, it is also possible to compute a weighted
average, where the deformation energy of the different input shapes is weighted differently. The averaging
functional then is modified to

Eγ,ε[v, (φi)i=1,...,n] =
n∑
i=1

(
λiWε[Oi, φi] +

γ

n
Fε[vi, φi, v]

)
+ µLε[v] ,
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Fig. 8.6. On the left, 48 kidney shapes are shown. On the right, from top left to bottom right the averaged shape of
the first two, four, five, six, eight and of all 48 kidneys are depicted. The parameter values are as for Figure 8.4.

Fig. 8.7. 24 given foot shapes, textured with the distance to the surface of the average foot (bottom right). Values
range from 6 mm inside the average foot to 6 mm outside, color-coded as . The front of the instep can be identified
as a region of comparatively low variation. (Result obtained for resolution 257× 257× 257 and parameter values γ = 107,
µ = 1, (a1, a2, a3) = (108, 0, 108).)

where the weights λi are nonnegative and add up to 1. Such a “nonlinear convex-combination” of three
kidneys is presented in Figure 8.8.

Averaging image morphologies. To illustrate that the approach can also be applied to average
image morphologies, the input of our final example consists of two-dimensional, transversal CT scans
of the human thorax from four different patients (Figure 8.9, left). Unlike the previous examples, these
images do not encode volumetric shapes homeomorphic to the unit ball, but contain far more complicated
structures. Also, the quality of contrast differs between the images, and—even more problematic—the
images do not show a one-to-one correspondence, i. e. several structures (the scapula, ribs, parts of the
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Fig. 8.8. Given the three kidney geometries placed in the corners of the triangle, seven differently weighted averages
are placed at corresponding positions in the triangle.

liver) are only visible in some images, but not in others, implying that the underlying shapes are not
even homeomorphic. Nevertheless, the algorithm manages to segment and align the main features (the
heart, the spine, the aorta, the sternum, the ribs, the back muscles, the skin), yielding sensible average
contours (Figure 8.9, right). In order to achieve this, we this time jointly segmented and averaged the
original CT scans, i. e. we augmented our objective function (4.2) by the Ambrosio–Tortorelli energy (4.1)
for each image and then alternatingly optimized for the vi, ui, v, and φi. The second to fourth column
of Figure 8.9 depict the corresponding deformations φi and the deformation invariants. Obviously, the
deformation behaves quite regularly: Not only is it homeomorphic, but also too large and distorting
deformations are prevented by the hyperelastic regularization. This enables the method to be applied
to images containing also distinct structures, whereas for viscous flow regularization as in [8, 18] such
individual structures are at risk of being matched with anything nearby. The deformation energy is quite
evenly distributed over the images and only peaks at pronounced features, where a local exact fit can be
achieved (e. g. at the back muscles). Outside the thorax, the energy rapidly decreases to zero, justifying
that in this example we did not weight the elastic energy differently inside and outside the body.

9. Conclusions. We have proposed a model for shape averaging, based on elastic deformation of
the given shapes to the same configuration. That configuration which yields minimum accumulated
hyperelastic deformation energy is defined as average. The method combines a geometric perspective on
the shapes S1, . . . ,Sn to be averaged with a physical perspective on the objects whose boundary and
possibly interior edges constitute the shapes. Thus, not only the intrinsic geometry of the shapes or the
Euclidian distances between different components of the shapes matter but also the elastic stress induced
by the required deformation onto the averaged shape. It is crucial for the approach that the underlying
elastic model is geometrically nonlinear, coping with large deformations, and the material law is nonlinear
as well, distinguishing the major deformation effects such as the change of length, area, and volume.
The nonlinear hyperelastic functional is invariant with respect to rigid body motions, and isometries
are minimizers of the functional. This implies that the proposed method effectively measures the local
distance from an isometry in a physically motivated way. It can be combined with the segmentation of
image morphology in a joint approach, which is capable of enhancing the low contrast image edges in
parallel with the built-in groupwise registration.
The proposed numerical scheme behaves very robustly due to the implicit description of the shapes in
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Fig. 8.9. Averaging CT scan slices of the thorax from four different patients. From left to right: Original images,
deformations φi (applied to a checkerboard on which the original image was printed), |Dφi|2 and det (Dφi) (color-coded as

with ranges [0.8
√

2, 1.2
√

2] and [0.8, 1.2]), and average phase field. (Result obtained for resolution 257 × 257 and
parameter values γ = 107, µ = 0.1, (a1, a2, a3) = (106, 0, 106).)

terms of phase fields and the use of a multi-scale relaxation scheme. As opposed to level set descriptions
the phase field approach allows for non-closed shape geometries. Different applications for 2D and 3D
shapes and for image morphology demonstrate the performance of the proposed shape averaging.
Finally, the considered phase field model is mathematically well-posed and corresponding existence results
are discussed.
As possible future research perspectives we see the following. Currently, we confine with a single well
phase field model and assume that inside and outside of the objects are a priori given. This approach is
in particular computationally beneficial, because the variational problem is quadratic in the phase field
v. A Modica–Mortola type phase field functional would allow a more flexible modeling of objects and at
the same time a straightforward evaluation of boundary stresses. The latter is particularly interesting if
we would like to study cost functionals involving boundary stresses in the definition of the shape average.
Furthermore, we plan to investigate a principle component analysis based on the induced set of elastic
stress responses on the averaged shape. Finally, the relation of the diffused and the sharp interface models
is to the best of our knowledge unclear. Due to the coupling of phase field v and deformations φi an
analytical treatment in the spirit of Γ-convergence seems to be currently out of reach.
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