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Abstract We introduce the covariance of a number of
given shapes if they are interpreted as boundary con-
tours of elastic objects. Based on the notion of non-
linear elastic deformations from one shape to another,
a suitable linearization of geometric shape variations
is introduced. Once such a linearization is available, a
principal component analysis can be investigated. This
requires the definition of a covariance metric—an inner
product on linearized shape variations. The resulting
covariance operator robustly captures strongly nonlin-
ear geometric variations in a physically meaningful way
and allows to extract the dominant modes of shape vari-
ation. The underlying elasticity concept represents an
alternative to Riemannian shape statistics. In this pa-
per we compare a standard L2-type covariance metric
with a metric based on the Hessian of the nonlinear
elastic energy. Furthermore, we explore the dependence
of the principal component analysis on the type of the
underlying nonlinear elasticity. For the built-in pairwise
elastic registration, a relaxed model formulation is em-
ployed which allows for a non-exact matching. Shape
contours are approximated by single well phase fields,
which enables an extension of the method to a covari-
ance analysis of image morphologies. The model is im-
plemented with multilinear finite elements embedded
in a multi-scale approach. The characteristics of the
approach are demonstrated on a number of illustrative
and real world examples in 2D and 3D.
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1 Introduction

During the past decade, the problem of finding the av-
erage and the analysis of principal modes of variation
on a given number of shapes has attracted much atten-
tion in anatomy research, where anatomical atlases are
constructed from data sets of different subjects [38,5,
25,43,30,4]. In this paper we will investigate a notion
of shape averages and principal modes of shape vari-
ation based on concepts from continuum mechanics,
namely nonlinear and linearized elasticity. As shapes
we consider object contours, encoded as edge sets in
images. Compared to a classical principal component
analysis in a vector space, where an average and a co-
variance tensor can be computed directly on the linear
space itself, in the case of shapes we are dealing with
highly nonlinear geometric variations. Thus, we aim for
a suitable interpretation of actually nonlinear geomet-
ric variations of shapes in terms of vector fields in a
linear tangent space to the manifold of shapes. Indeed
the space of stresses on an averaged shape or an induced
space of displacement fields turn out to be suitable and
mechanically sound spaces for such an analysis of dom-
inant modes of shape variation. As a first motivation
for the model to be developed in this paper, let us men-
tion a simple physical interpretation of the arithmetic
mean and the covariance tensor for n points x1, · · · , xn
in Rd. Indeed, the arithmetic mean x ∈ Rd minimizes∑
i=1,...,n αd(x, xi)2, where d(x, xi) is the distance be-

tween x and xi, and due to Hooke’s law the stored elas-
tic energy αd(x, xi)2 in the spring connecting xi and x

is proportional to the squared distance (where α repre-
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sents half the spring constant). Hence, the arithmetic
mean minimizes the total elastic energy of the system
of connected springs. Likewise, the covariance tensor
(〈xi − x, xj − x〉) can—up to the spring constant—be
identified with the covariance tensor (〈σi, σj〉) of the
forces σi pulling at the mean x. Here, we will gener-
alize this mechanical interpretation of point averaging
and dominant modes of point variation to the case of
shapes in 2D and 3D.
For the zero moment analysis, i. e. the definition of a
suitable shape average, we ask for minimizers of a total
elastic energy on a set of in general nonlinear elastic
deformations from the input shapes onto a single im-
age shape. At the energy minimum the corresponding
image shape is defined as the shape average. We note
that this zero moment analysis has been the subject of
a previous publication [40] and is therefore only briefly
summarized in Section 3.
Concerning the first moment analysis, we pick up the
above-mentioned linear vector space approach and pro-
pose a mechanically sound linearization of shape vari-
ations in terms of stresses and induced displacement
fields. As a next step we compare different notions of
a metric on the linear vector space which we apply to
define a covariance tensor. Indeed, each input shape is
associated with an elastically optimal deformation onto
the shape average. This deformation induces stresses on
the shape average, which can be regarded as the imprint
of the input shape. Modulating these stresses leads to
displacements on the shape average, where the mapping
from stresses to displacements is linear and locally well-
defined (for larger stress modulations there might how-
ever exist multiple equilibrium displacements). Each of
these displacements can be regarded as a linearization
of the usually nonlinear elastic deformation from one of
the image shapes onto the shape average. Despite being
a vector field and thus by itself a linear object, both the
stresses and the induced displacements encode nonlin-
ear geometric variations of the average shape. To obtain
a mechanically meaningful interpretation of these vari-
ations, it is important to take into account the fact that
the average shape as an image of different elastic defor-
mations of different input shapes is not in a stress-free
state. This significantly influences displacement reponse
to imposed stresses.
Given the set of resulting displacements, a covariance
tensor can be computed for a prescribed inner product,
i. e. a metric, on the space of displacements of the shape
average. This tensor linearly encodes all modes of vari-
ation of the shape average induced by the set of input
shapes. The metric, via which the covariance tensor is
defined, can be chosen in various ways. A standard L2-
metric pronounces shape variations with large displace-

ments even though they are energetically cheap (e. g. ro-
tation of some structure around a joint such as the right
arm in Fig. 1 rotating around the shoulder which only
produces little deformation energy near the shoulder, cf.
also Fig. 2), while the Hessian of the nonlinear elastic
energy serves as the appropriate inner product so as to
measure distances between displacements solely based
on the associated change of elastic energy. Indeed, the
Hessian represents an averaged linearized elasticity ten-
sor at the deformed configuration. Thus, displacements
in regions and directions which are significantly loaded
are weighted strongly, which is mechanically sound. Fi-
nally, given the metric and the covariance tensor, we
perform a principal component analysis (PCA), which
allows to identify the (mechanically) dominant modes
of variation of the input shapes.

2 Review of related work

Let us briefly review some of the main contributions on
zero and first moment shape analysis. At first, shape
analysis was mainly based on correspondences between
landmark positions on different shapes [24,36]. Princi-
pal component analysis (PCA) is a classical, by defini-
tion linear statistical tool. Chalmond and Girard [7]
have proposed a PCA which incorporates also truly
nonlinear geometric transformations. Dominant eigen-
modes of landmark displacement on human organs have
been investigated by Söhn et al. in [41]. A survey on the
potential of shape analysis in brain imaging is given by
Faugeras and coworkers in [19]. Another important ap-
plication concerns ready-made clothing, where it would
be favorable to know the shape of the average human
body and its principal modes of variation to design
clothes which sufficiently fit as many people as pos-
sible.
Conceptually, correlations of shapes have been stud-
ied on the basis of a general framework of a space
of shapes and its intrinsic structure. The notion of a
shape space was introduced by Kendall [27] already
in 1984. Charpiat et al. [11,10] discuss shape averaging
and shape statistics based on the notion of the Haus-
dorff distance of sets. They propose to use smooth ap-
proximations of the Hausdorff distance based on the
difference of signed distance functions. Applying a sin-
gular value decomposition of the covariance matrix in
a suitable scalar product they have additionally ana-
lyzed the dominant modes of shape variations. Statis-
tics on signed distance functions were also studied by
Leventon et al. [29], whereas Dambreville et al. [17] used
shape statistics based on characteristic functions to de-
fine a robust shape prior in image segmentation. Ker-
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nel density estimation in feature space was introduced
by Cremers et al. [15] to incorporate the probability
of 2D silhouettes of 3D objects in 2D image segmen-
tation. An overview on related kernel density meth-
ods is given by Rathi et al. [37]. An abstract distance
measure between objects in (different) metric spaces is
the Gromov–Hausdorff distance, which allows to com-
pute an isometrically invariant distance measure be-
tween shapes. It measures globally and based on an
L∞-type functional the lack of isometry between two
different shapes. Mémoli and Sapiro [31] have proposed
an efficient method to compute distances between point
clouds. Bronstein et al. incorporate the Gromov–Hausdorff
distance concept in various classification and modeling
approaches in geometry processing [6]. In contrast to
these global measures of the defect from an isometry,
the nonlinear elastic energy functional involved in our
approach measures this defect locally, and locally iso-
metric deformations indeed minimize the corresponding
local functional.
Understanding shape space as an infinite-dimensional
Riemannian manifold has been studied extensively by
Miller et al. [32,33]. On a Riemannian manifold M, all
infinitesimal variations of a point x ∈ M span the so-
called tangent space TxM toM at x. The set of all tan-
gent spaces TxM, x ∈ M, is denoted the tangent bun-
dle, and each tangent space TxM is equipped with an
inner product gx(·, ·), the so-called Riemannian metric.
This Riemannian metric then induces a geodesic dis-
tance d(·, ·) onM. The metric d(·, ·) on the shape space
by Miller et al. is defined as the geodesic distance based
on a Riemannian metric on the tangent bundle of trans-
port vector fields generating deformations of shapes.
Hence, the corresponding shape average is a general-
ization of the geometric mean for points on a Rieman-
nian manifold proposed by Karcher [26]. Fuchs et al. [22]
proposed a viscoelastic notion of the distance between
shapes S given as boundaries of physical objects O.
They define a metric on infinitesimal variations of a
shape S via the dissipation induced by the correspond-
ing normal displacement on the object boundary. The
method is applied to compute geodesics between two-
dimensional shapes using finite elements on a given tri-
angulation of one of the two objects bounded by the
corresponding shape contour. Physically, they suppose
that due to the viscous dissipation, the object mate-
rial relaxes instantaneously and remains in a stress-free
state. This is a major difference to our approach, where
the objects in the deformed configurations bear elastic
stresses and the averaged shape S is characterized by a
true balance of these stresses on the shape contour. The
elasticity paradigm for shape analysis on which our ap-
proach is founded differs significantly from these metric

approaches to shape space (cf. Sec. 6 for a detailed dis-
cussion of the conceptual difference).
Our method inherently establishes a correspondence be-
tween points on different shapes, which is implicitly
defined by energy-minimizing matching deformations
between the shapes. This represents a substantial dif-
ference to approaches in which shapes contain or are
composed of landmarks and in which there is thus an
explicit point correspondence, as e. g. in [27,14,24,28].
Such point correspondences have to be obtained in an
additional preprocessing step and might be desirable if
an exact matching between manually placed landmarks
is required. However, as this is typically not the case,
the consistent placement of landmarks often involves a
shape registration [36,41]. Then it would of course be
more natural to use the full shape correspondence from
the registration (as it is done in our approach) than to
select only a discrete number of landmark correspon-
dences and neglect the remaining information.
Furthermore, since shapes are often encoded in images
or volume data, the averaging procedure is inherently
associated with the detection or segmentation of struc-
tures. An enormous body of literature on segmentation
refers to the seminal paper by Mumford and Shah [35]
on a variational approach which states the segmenta-
tion problem as a free discontinuity problem for the
edge set of an image. The theoretic examination of
this variational problem is quite elaborate [34,18,16].
A very successful computational approach by Chan and
Vese describes the segments by level sets [8,9]. Another
widely used approach due to Ambrosio and Tortorelli
[1] encodes the segment boundaries as a diffused edge
set represented by a so-called phase field function.
In this paper, shapes are represented implicitly via a
diffused phase field description. This description is nat-
urally obtained from a Mumford–Shah segmentation of
input images via the Ambrosio–Tortorelli approxima-
tion, and it will allow a natural extension of the method
from shapes to general segmented images or image mor-
phologies (cf. Sec. 8). This enables a robust and flexible
application in two and three dimensions.

3 Elastic shape average revisited

In this section we briefly recall an elastic approach to
shape averaging already presented in [40]. We consider
shapes Si as the boundaries ∂Oi of sufficiently regu-
lar (e. g. Lipschitz) objects Oi. These objects will be
encoded as characteristic functions in binary images
Ii : Ω → R, defined on some domain Ω ⊂ Rd, so that
the shapes Si can be regarded as the edge sets of these
images.
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Given a set of shapes, S1, . . . ,Sn, we seek an aver-
age shape S that reflects the geometric characteristics
of the given shapes in a physically intuitive manner. For
that purpose it seems generic to interpret the different
shapes Si and corresponding objects Oi as deformed
configurations of each other. Then, the average shape
S clearly can also be described as a deformed configu-
ration of the input shapes, i. e. there are deformations
φi : Oi → Rd, i = 1, . . . , n, with S = φi(Si) (see Fig. 1).
As corresponding average object we obtain O = φi(Oi).
A natural choice for the definition of the shape average
S then is given by that particular shape which mini-
mizes the total accumulated deformation energy of all
deformations,

E [S, (φi)i=1,...,n] =

 1
n

n∑
i=1

W[Oi, φi] ; φi(Si) = S,

∞ ; else ,

where W[Oi, φi] represents the stored deformation en-
ergy of the deformation φi. In principle, W[Oi, φi] can
admit various forms such as e. g. linear or nonlinear
elastic deformation energy.
The form of energy E [S, (φi)i=1,...,n] might however not
be sufficient to ensure a certain regularity of the min-
imizing shape S. In particular, it is unclear whether
we can expect S to have a finite perimeter since stan-
dard regularity theory only allows to prove Lipschitz
continuity of deformations φi under certain strong con-
ditions [12]. Hence, we add a regularizing prior L[S]
to the energy. For the actual implementation, we con-
sider the Hd−1-measure of S as the prior L[S], i. e.
L[S] =

∫
S da . Finally the shape average S is defined

as a minimizer of the energy E [S, (φi)i=1,...,n] + µL[S]
for some small µ > 0. Note that the prior induces a bias
towards smaller perimeters, however, since it has been
introduced mainly for theoretical purposes, µ may be
chosen very small.
As deformation energyW[Oi, φi] we will employ a non-
linear, hyperelastic energy W[O, φ] =

∫
OW (Dφ) dx .

By the fundamental axiom of elasticity, the integrand
only depends on the deformation gradient Dφ. From
the frame indifference principle and under an isotropy
assumption, W can be rewritten as a function of only
the three invariants

W (Dφ) = Ŵ (Dφ, cofDφ, det (Dφ)) = W̄ (I1, I2, I3)

with (I1, I2, I3) := (|Dφ|22 , |cofDφ|22 ,det (Dφ)), where
det (Dφ) describes the local volume change, |Dφ|2 :=√

tr(DφTDφ) the averaged local change of length, and
|cof(Dφ)|2 the averaged local change of area. Here, for
an invertible matrix A ∈ Rd,d, cofA := (detA)A−T

denotes its cofactor matrix. The first Piola–Kirchhoff
stress tensor, which describes force per unit area in the

reference configuration O, is then recovered as σref =
W,A(Dφ), where W,A(A) = ∂W (A)

∂A . The Cauchy stress,
describing force per unit area in the deformed configura-
tion φ(O), reads σ = σref(cofDφ)−1. Here, we consider
so-called polyconvex energy functionals [13], where Ŵ
is supposed to be convex, and isometries, i. e. defor-
mations with DφT(x)Dφ(x) = 1, are local minimizers
(cf. Fig. 2). Typical energy densities in this class are of
the form W̄ (I1, I2, I3) = α1I

p
2
1 + α2I

q
2
2 + Γ (I3) with

p > 0, q ≥ 0, α1, α2 > 0, and Γ convex with Γ I3→0−→ ∞.
The penalization of volume shrinkage, W̄ I3→0−→ ∞, en-
ables us to control local injectivity (cf. [3]). This type
of energy has two major advantages: it allows to in-
corporate large deformations with strong material and
geometric nonlinearities, and the form of the energy fol-
lows from first principles and allows to distinguish the
physical effects of length, area, and volume distortion,
which reflect the local distance from an isometry.

Let us emphasize that due to

W[Oi, φi] =W[ψ(Oi), φi ◦ ψ−1]

for any rigid body motion ψ, the average shape is in-
variant to rotation and translation of any of the input
shapes.

Note that instead of minimizing the accumulated
energy of the deformations φi from the objects Oi onto
O, one might want to consider the inverse deformations
ψi = φ−1

i and define the shape average as the minimizer
of 1

n

∑n
i=1W[O, ψi] under the constraints ψi(S) = Si.

Which view is more appropriate certainly depends on
the application. However, note that detDψi = 1

detDφi
,

Dψi = cofDφT
i

detDφi
, and cofDψi = DφT

i

detDφi
so thatW[O, ψi] =∫

O Ŵ (Dψi, cofDψi,detDψi) dx can be rephrased as a
particular elastic energy

W̃[Oi, φi] =
∫
Oi
|detDφi|Ŵ

(
cofDφT

i

detDφi
,
DφT

i

detDφi
, 1

detDφi

)
dx

of φi, which leads us back to the original approach. For
details we refer to [40].

To simplify numerical treatment and to allow for
slight topological differences between the shapes Si,
which might e. g. result from noise in the shape acqui-
sition, we relax the constraint φi(Si) = S, i = 1, . . . , n,
and introduce a penalty functional

F [Si, φi,S] = Hd−1(Si \ φ−1
i (S) ∪ φ−1

i (S) \ Si)

which measures the symmetric difference of the input
shapes Si and the pull back φ−1

i (S) of S. Note that
for properly chosen deformation energies, deformations
φi with finite energy are homeomorphisms [3] so that
φ−1
i is well-defined. The numerical computation of the

inverse deformation will however not be required since
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S

Fig. 1 Sketch of elastic shape averaging. The input shapes Si (i = 1, . . . , 4) are mapped onto a shape S via elastic deformations φi.

The shape S which minimizes the elastic deformation energy is denoted the shape average.

Fig. 2 For two input shapes from Fig. 1 the deformation (via a deformed checkerboard), the averaged local change of length 1√
2
|Dφi|2,

and the local change of area det (Dφi) are depicted (colors encode range [0.95, 1.05]).

φ−1
i (S) will be represented by the concatenation of a

phase field v (which describes S) with φi (cf. Sec. 7).
Our shape averaging model is thus based on the energy

Eγ [S, (φi)i=1,...,n]

=
1
n

n∑
i=1

(∫
Oi

W (Dφi) dx+ γF [Si, φi,S]
)

+µL[S] .

4 Linearization of shape variations

As outlined in the introduction, our first moment anal-
ysis on shapes is based on an analysis of stresses in-
duced on the shape average by each individual input
shape. Modulation of each of these stresses results in a
certain displacement, and the proposed principal com-
ponent analysis on shapes will be performed on these
displacements. To comprehensively derive this model
we proceed in several steps:

Boundary stresses as shape representations. Let us at
first review the underlying physical concept of stress.
By the Cauchy stress principle, each deformation φi :
Oi → O is characterized by pointwise boundary stresses
on S in the deformed configuration. The stress at some
point x on S is given by the application of the Cauchy
stress tensor σi to the outer normal ν on S. The re-
sulting stress σiν is a force density acting on a local
surface element of S. The shape S is in an equilibrium
configuration if the opposite force is applied as an ex-
ternal surface load. Otherwise, by the axiom of elastic-
ity, releasing the object O, the elastic body will snap
back to the original reference configuration of the in-
put object Oi. Let us assume that the above relation

between the energetically favorable deformation and its
induced stresses is one-to-one. Hence, the average shape
can be described in terms of the input shape Si and the
boundary stress σiν, and we write S = Si[σiν]. If we
now scale the stress with a weight t ∈ [0, 1], we obtain
a one-parameter family of shapes S(t) = Si[tσiν] con-
necting Si = S(0) with S = S(1). Thus, we can regard
σiν as a representative of shape Si in the linear space
of vector fields on S.

Zero mean of shape representations. Let us denote by
νi the outer normal on Si. From elasticity theory we
know that the force σi(x)ν(x) da[S](x) on the surface
element da[S] at some point x in the deformed con-
figuration equals the force σref

i (xref)νi(xref) da[Si](xref)
at xref = φ−1

i (x) in the reference configuration of the
input shape, Si. Here, we use the above transforma-
tion rule for the Piola–Kirchhoff and the Cauchy stress
and the purely geometric observation that ν da[S] =
cofDφiνi da[Si]. This will allow us to effectively treat
the stress induced by a deformation on the given input
shapes.

Due to the set of constraints (φi(Si) = S)i=1,...,n,
the Euler Lagrange conditions on the different objects
Oi and shapes Si are interlinked: Consider a small vari-
ation of the average shape S by some displacement u
according to (1 + εu)(S) and correspondingly varied
deformations (1 + εu) ◦ φi. The optimality implies

d

dε
E [(1 + εu)(S), ((1 + εu) ◦ φi)i=1,...,n] = 0 . (1)

After a brief calculation (given in appendix A.1), this
results not only in the classical system of partial differ-
ential equations of elasticity, divW,A(Dφi) = 0, which
holds on every domain Oi, but additionally in a stress
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balance

0 =
∑

i=1,...,n

σi(x)ν(x) (2)

for every x ∈ S (cf. Fig. 3). Here, we have assumed that
S is the outer boundary of the object domain O and
that there are no interior interfaces. A generalization
to interior interfaces as shape components is straight-
forward, but requires the proper handling of jumps of
stresses. The above stress balance (2) can be regarded
as a pointwise physical interpretation of the shape av-
erage as the stable shape on which all Cauchy stresses
σiν, induced by the deformations φi for i = 1, . . . , n,
are balanced.

Displacements representing shape variations. Let us
now study how the average shape S varies if we in-
crease the impact of a particular input shape Sk for
some k ∈ {1, . . . , n}. In fact, we intend to associate to
every surface load σkν a displacement on the averaged
object domain O via the solution operator of a suitable
linearized elasticity problem. Here, the object O actu-
ally is a deformed configuration of different original ob-
jects Oi. Hence, we have to choose a proper elasticity
tensor which reflects the compound stress configuration
of the averaged domain O. A simple isotropic linearized
elasticity model would not take into account the nonlin-
ear geometric nature of our zero and first order analysis.
To achieve this, we apply the Cauchy stress σkν to
the average shape S, scaled with a small constant δ.
Based on our above discussion of stresses and due to the
sketched equilibrium condition, this additional bound-
ary stress δσkν acts as a first Piola–Kirchhoff stress
on the (reference) configuration S. The elastic response
is given by a correspondingly scaled displacement uk :
O → Rd. These displacements uk are considered as rep-
resentatives of the variation of the average shape S with
respect to the input shape Sk given as functions on the
fixed compound object O. The space of these displace-
ments is a linear vector space, which will give rise to the
actual covariance analysis on the set of displacements
u1, . . . , un in Section 5.

Computation of the uk. To properly model the loaded
configurations we concatenate this displacement with
every nonlinear deformation φi and take into account
the sum of the resulting elastic energies plus a term in-
volving the given Cauchy stress in the following energy,

Ek[δ, u]=
1
n

n∑
i=1

W[Oi, (1+δu)◦φi]−δ2
∫
S
σkν ·uda . (3)

Now, the displacement uk is obtained as a minimizer
of this modulated energy for a fixed set of deforma-
tions (φi)i=1,...,n under the constraints

∫
O uk dx = 0

and
∫
O x×uk dx = 0, which encode zero average trans-

lation and rotation. Indeed, as the corresponding Euler–
Lagrange condition for uk we obtain div σ[δ uk] = 0 on
O and σ[δ uk]ν = δσkν on S (see derivation in appendix
A.2), where we denote by

σ[δ uk] :=
1
n

n∑
i=1

W,A((1 + δDuk)Dφi ◦ φ−1
i )cofD(φ−1

i )

the first Piola–Kirchhoff stress tensor on the compound
object O, which effectively reflects an average of all
stresses in the n deformed configurations φi(Oi) for
i = 1, . . . , n. This becomes obvious, noting that

1
detD(1+δuk)

σ[δ uk]D(1+δuk)T

=

(
1
n

n∑
i=1

W,A(D((1+δuk)◦φi))D((1+δuk)◦φi)T

detD((1+δuk)◦φi)

)
◦φ−1

i

=

(
1
n

n∑
i=1

σi[δ uk]

)
◦ (1+δuk) ,

where the σi[δ uk] are indeed the Cauchy stresses of the
different objects Oi when deformed into (1+δuk)(O) =
((1 + δuk) ◦ φi)(Oi). Let us remark that the boundary
integral in (3) can be replaced by the volume integral∫
O σk : Dudx, which is more convenient with respect

to a numerical discretization. To verify this, we use in-
tegration by parts and the fact that divσk = 0 holds on
O.

Linearization for infinitesimal variations. As long as
A 7→W (A) is not quadratic in A, uk still solves a non-
linear elastic problem. The advantage of this nonlinear
variational formulation is that it is of the same type as
the one for the zero moment analysis, and it encodes
in a natural way the compound elasticity configuration
of the averaged shape domain O. As an obvious draw-
back we have to consider the sum of n nonlinear elastic
energies for the computation of every displacement uk,
k = 1, . . . , n. To avoid this shortcoming, we consider
the limit of the Euler–Lagrange equations for δ → 0,
and—with a slight misuse of notation—obtain uk as
the solution of the actually linear elasticity problem

div (C ε[u]) = 0 in O , C ε[u] ν = σkν on S (4)

for the symmetric displacement gradient ε[u] = (Du +
DuT )/2 under the constraints

∫
O udx = 0 and

∫
O x ×

udx = 0. Here, the in general inhomogeneous and an-
isotropic elasticity tensor C is derived in appendix A.3
as

C =
1
n

n∑
i=1

(
1

detDφi
DφiW,AA[Dφi]DφT

i

)
◦ φ−1

i ,

based on an appropriate transformation of the Hessian
of the energy density W . This elasticity tensor takes
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into account the loads of the compound configuration
based on the combination of all deformations φi on the
input objects Oi for i = 1, . . . , n. For implementation,
however, it is simpler to implement the bilinear opera-
tor

(u, v) 7→
∫
O

Cε[u] : ε[v] dx

=
1
n

n∑
i=1

∫
Oi

〈W,AA[Dφi],D(u ◦ φi),D(v ◦ φi)〉dx

directly without first applying the transformation rule
as detailed in Section 7. The resulting uk will be used
as linearizations of shape variations for the covariance
analysis in the next section. Since the boundary stresses
σk are independent of the original position of objectOk,
the covariance analysis is inherently invariant to rota-
tion and translation of any input shape. However, scale
invariance (as e. g. in the approach by Kendall [27]) can-
not be incorporated and does not make much sense in
an approach based on elastic deformations. However,
if required, one might scale the input objects to have
equal volume in a preprocessing step.

5 Covariance analysis on shapes

In order to perform a principal component analysis on a
set of shapes S1, . . . ,Sn we sought for representatives of
the shapes in a linear vector space and chose the above
displacements uk : O → Rd, k = 1, . . . , n, as these rep-
resentatives. As explained above, these displacements
reflect the variations of the average shape induced by
a modulation of the stresses σk from the deformations
φk of the input shapes Sk into the average shape S.
Let us emphasize that the stresses already have zero
mean due to (2). Hence, the same holds true for the
displacements, i. e.
n∑
k=1

uk = 0 .

Now, we will define a covariance operator, which re-
quires to select a suitable inner product (metric) g(u, ũ)
on displacements u, ũ : O → Rd.
Let us remark, that g induces a metric g̃(σν, σ̃ν) :=
g(u, ũ) on the associated boundary stress. Hence, the
covariance analysis presented here can be considered as
a corresponding analysis directly on boundary stresses
σ1ν, . . . , σnν. Indeed, we use that the solvability condi-
tion∫
O

div(C∇u) dx = 0 =
∫
S
C∇uνda[S]

is fulfilled. Thus, the solution uk for given boundary
stress σkν = C∇uν is uniquely determined up to a

linearized rigid body motion (i. e. an affine displacement
with skew-symmetric matrix representation), which is
fixed by the conditions of zero mean displacement and
angular momentum for u. Due to the linearity of the
operator σν 7→ u the metric g̃ is bilinear and symmetric
as well. Finally, the positive definiteness of g̃ follows
from the positive definiteness of g and the injectivity of
the map σν 7→ u.
In this paper, we consider two different inner products:

- The L2-product. Given two square integrable dis-
placements u, ũ we define

g(u, ũ) :=
∫
O
u · ũdx

This product weights local displacements equally on
the whole compound object O.

- The Hessian of the energy as inner product. Differ-
ent from the L2-metric, we now measure displace-
ment gradients in a non-homogeneous way. In fact,
we define

g(u, ũ) :=
∫
O

Cε[u] : ε[ũ] dx

for displacements u, ũ with square integrable gradi-
ents. Hence, the contribution to the inner product
is larger in areas of the compound object which are
in a significantly stressed configuration.

Once an inner product is given, we can define the co-
variance operator Cov by

Cov u :=
1
n

n∑
k=1

g(u, uk)uk .

Obviously, Cov is positive definite on span(u1, · · · , un).
Hence, we can diagonalize Cov on this finite-dimensional
space and obtain a set of g–orthogonal eigenfunctions
wk : O → Rd—actually again displacements—and eigen-
values λk > 0 with

Covwk = λkwk .

These eigenfunctions can be considered as the princi-
pal modes of variation of the average object O and
hence of the average shape S, given the n input shapes
S1, . . . ,Sn. The eigenvalues encode the actual strength
of these variations. The resulting modes of variation
can easily be visualized via a scalar modulation of the
δwk for varying values of δ, which is associated with
a corresponding modulation of the underlying stresses
δC∇wkν. If an amplified visualization of the modes is
required, it is preferable to depict displacements wkδ
which are defined as minimizers of the nonlinear varia-
tional energy

1
n

n∑
i=1

W[Oi, (1+ w)◦φi]−δ2
∫
S
C∇wkν ·w da
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Fig. 3 Sketch of the pointwise stress balance relation on the averaged shape.

Fig. 4 The two dominant modes (right) for four different shapes

(left) demonstrate that our principal component analysis prop-
erly captures strong geometric nonlinearities.

(cf. (3)). The diagonalization of Cov can be performed
by diagonalizing the symmetric matrix 1

n (g(ui, uj))ij =
OΛOT, where Λ = diag(λ1, λ2, . . .) and O is orthog-
onal. The eigenfunctions are then obtained as wk =

1√
λk

∑n
j=1Ojkuj .

Let us underline that this covariance analysis properly
takes into account the usually strong geometric non-
linearity in shape analysis via the transfer of geomet-
ric shape variation to elastic stresses on the average
shape, based on paradigms from nonlinear elasticity.
This is illustrated in Fig. 4 for the L2-metric as underly-
ing inner product. The interpretation of displacements
and stresses, respectively, is the proper linearization of
shapes. In abstract terms, either the space of displace-
ments or stresses can be considered as the tangent space
of shape space at the average shape. The identification
of displacements and stresses via (4) provides a suitable
physical interpretation of stresses as modes of shape
variation.

In Fig. 5 a larger set of 20 binary images “device7” from
the MPEG7 shape database serves as input shapes. Ap-
parently, the first principal component is given by a
thickening or thinning of the leaves, accompanied by a
change of indentation depth between them. The second
mode obviously corresponds to bending the leaves, and
the third mode represents local changes at the tips: A
sharpening and orientation of neighboring tips towards
each other, originating e. g. from the sixth or the second
last input shape.

The impact of the chosen metric. Naturally, the modes
of variation depend on the chosen inner product. We
have already mentioned that in order to be physically
meaningful, the inner product should be based on the
induced displacements of the compound object (which
is composed of all deformed input shapes). If instead
we would apply the boundary stresses σiν to an object
which just looks like the average shape, but does not
contain the information how strongly the input shapes

Fig. 5 Original shapes and their first three modes of variation

with ratios λi
λ1

of 1, 0.20, and 0.05.

had to be deformed to arrive at the average, we obtain
a different result as shown in Fig. 6. Regions which were
more heavily deformed than others need higher stresses
to be deformed even further. Therefore, these regions
exhibit much stronger variations if the inner product is
based on a non-compound shape (which is not already
prestressed). Figure 6 furthermore exemplifies the im-
pact of the underlying metric on the obtained displace-
ments. In contrast to the L2-metric, the metric defined
via the Hessian of the elastic energy captures differences
in the deformation in exactly those regions where the
deformation takes place. Furthermore, a clearer separa-
tion of mechanically separated regions is observed com-
pared to the L2-metric.

The impact of the nonlinear elasticity model. Likewise,
the particular choice of the nonlinear elastic energy den-
sity has a considerable effect on the average shape and
its modes of variation. Figure 7 has been obtained using
W̄ (I1, I2, I3) = µ

2 I1 + λ
4 I

2
3−(µ+ λ

2 ) log I3−µ− λ
4 , where

µ and λ are the factors of length and volume change pe-
nalization, respectively, for deformations near the iden-
tity. A low penalization of volume changes apparently
leads to local compression or inflation at the dumbbell
ends (left), while for deformations with a strong vol-
ume change penalization (right), material is squeezed
from one end to the other, which becomes especially
apparent in the second and third mode. Note that in
the first mode, the volume of one dumbbell end shrinks
while the other increases, whereas for the second mode
both ends change equally. This is a very illustrative ex-
ample of the orthogonality of the decomposition of the
tangent space into subspaces according to the different
modes of variation. Here, the underlying metric is the
based on the Hessian of the energy.
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L = 0.08700

L = 0.18527

L = 0.09894

√ W = 0.08737

√
W = 0.19016

√
W

=
0.09976

Fig. 8 Left: Viscosity-based geodesics between the shapes at the corners (the shapes are taken from [23], the geodesics are computed

with the method from [44]). The triangle inequality holds. The colors encode local viscous dissipation, from blue (low) to red (high).

Right: Elastic distances between the same shapes, where the arrows point from the reference to the deformed configuration. The
triangle inequality does not hold. The colors encode the local deformation energy density.

Fig. 6 The first three dominant modes of variation for the six

input shapes on the left obviously depend on the employed metric:
The top row depicts the modes belonging to the L2-metric on

displacements of a non-prestressed object (with ratios λi
λ1

of 1,

0.23, and 0.07), the middle row corresponds to the L2-metric on

displacements of the proper compound object (with ratios λi
λ1

of

1, 0.28, and 0.03), the bottom row represents the results for the

energy Hessian based metric on displacements of the compound

object (with ratios λi
λ1

of 1, 0.61, and 0.24).

6 Elastic Versus Riemannian Shape Analysis

If one aims at a physical model of shape space in which
the corresponding objects are made of a physical ma-
terial, there is basically the choice between solid, elas-
tic objects (as in our approach) or liquid, viscous ob-
jects. The latter case would result in a Riemannian
shape space (as e. g. in [45]), and it does of course
strongly depend on the application whether an elas-
tic or a viscous-flow perspective is more appropriate.
The elasticity paradigm, on which our zero and first or-
der shape analysis are based, differs significantly from

Fig. 7 The first three modes of variation for eight dumbbell

shapes, left for a 100 times stronger penalization of length changes
than of volume changes (with ratios λi

λ1
of 1, 0.22, and 0.05), right

for the reverse (with ratios λi
λ1

of 1, 0.41, and 0.07).

a Riemannian approach to shape space as proposed for
instance by Srivastava et al. [42]. Due to the axiom of
elasticity, the energy at the deformed configuration S
is independent of the path from a shape S̃ to the shape
S along which the deformation is generated in time.
Hence, there is no notion of shortest paths if we consider
a purely elastic shape model. The visco-plastic model
by Fuchs et al. [22] and the related model by Younes
[45] define energies based on an integration of dissipa-
tion along transformation paths, where dissipation is
understood as a Riemannian metric. This approach is
not elastic in the classical axiomatic sense we consider
here, and it partiularly requires that the intermediate
configurations are all stress-free at rest.
The above-mentioned conceptual differences are reflected
in a different behavior. In particular, the non-vanishing
stresses in the deformed state of an elastic object pre-
vent the elastic energy (or rather its square root) from
being a metric: Typically, neither symmetry (the en-
ergy to deform OA into OB is different from the energy
to deform OB into OA) nor the triangle inequality hold
(Fig. 8).
If we regard shapes from a flow-oriented perspective,
then a visco-elastic approach would be more appro-
priate. However, the elastic approach is favorable for
rather rigid, more stable shapes, since it prevents lo-
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Fig. 9 A set of input shapes (cf. Fig. 1) and their modes of vari-
ation with ratios λi

λ1
of 1, 0.22, 0.15, and 0.06.

cally strong isometry violation. The strong local rigidity
and isometry preservation of the elasticity concept be-
comes particularly evident in Fig. 4 and Fig. 9, where
non-isometric deformations are concentrated only at
joints. This holds true already in the case of an un-
derlying L2-metric as inner product as it is taken into
account here.
On a Riemannian manifold, the exponential map al-
lows to describe geodesics from an averaged shape S—
in the sense of Karcher [26]—to the input shapes Sk
via Sk = expS(vk) for some tangent vector vk to shape
space at S. Hence, a covariance analysis will be per-
formed on the tangent vectors v1, · · · , vn with respect
to the Riemannian metric g(·, ·). In the strictly elastic
setup, the shape space is in general not metrizable. In-
stead, the stresses σk play the role of the vk, imprinting
the impact of Sk on the average shape S in terms of an
induced displacement uk.

7 Phase Field Approximation and Finite
Element Discretization

Since explicit treatment of an edge set is difficult in
a variational setting, we consider a phase field model
picking up the approach by Ambrosio and Tortorelli
[2] for the discretization of the Mumford–Shah model
[35]. Hence, a shape S is encoded by a smooth phase
field function v : Ω → R, which is close to zero on
S and one in between and thus provides a diffuse in-
terface representation. In our approach we construct
such phase field functions vi for the input shapes Si
in advance. Usually, vi can be computed based on the
model in [2] applied to the input images ui. The spe-
cific form of the phase field function v for the averaged
shape S is then directly determined via a phase field
approximation of our variational model for the zero mo-
ment analysis. Given a phase field parameter ε, which
will determine the width of the diffuse edge representa-
tion, we first define an approximate mismatch penalty
Fε[vi, φi, v] = 1

ε

∫
Ω

(v ◦φi)2(1−vi)2 +v2
i (1−v ◦φi)2 dx .

Here, we suppose v to be extended by 1 outside the
computational domain Ω. Next, we consider the en-
ergy Lε[v] = 1

2

∫
Ω
ε|∇v|2 + 1

4ε (v − 1)2 dx , which acts
as an approximation of the prior L[S]. Furthermore,
we simplify the later numerical implementation by as-
suming that the whole computational domain behaves

elastically with an elasticity several orders of magni-
tude softer outside the object domains Oi on the com-
plement set Ω \ Oi. Thus, given a smooth approxima-
tion χε

Oi
of the characteristic function of the object

domain Oi, we define an approximate elastic energy
Wε[Oi, φi] =

∫
Ω

(
(1− η)χε

Oi
+ η
)
W (Dφi) dx , where

in our applications η = 10−4. Finally, the resulting ap-
proximation of the total energy functional for the vari-
ational description of the average shape reads

Eγ,ε[v, (φi)i=1,...,n] =

1
n

n∑
i=1

(Wε[Oi, φi] + γFε[vi, φi, v]) + µLε[v] . (5)

Analogously, a phase field approximation Eγ,εk of the en-
ergy Ek can be constructed. In the approximation, Fε
acts as a penalty with γ � 1 and Lε ensures a mild
regularization of the averaged shape with µ � 1. The
results typically are not very sensitive to variations of
γ and µ, and γ = 0.2, µ = 2 · 10−10 represent typical
parameter values. Integration is performed only in re-
gions where all integrands are defined.
The actual spatial discretization is based on finite ele-
ments. We consider the phase fields v, vi and deforma-
tions φi as being represented by continuous, piecewise
multilinear (trilinear in 3D and bilinear in 2D) finite
element functions on an image domain Ω = [0, 1]d. The
energy is computed using Gaussian quadrature of third
order on each element. The energy is minimized via a
gradient descent scheme, in which we alternate between
a number of gradient descent steps for the deformations
φi and the solution of the (linear) Euler–Lagrange equa-
tion for the average phase field v for fixed deformations
φi. As stepsize control we employ Armijo’s rule. Ro-
bustness is ensured by a cascadic multi-scale approach
which helps to avoid local minima: The energy is first
minimized on a coarse scale, using the input images
at a coarse resolution. Then, the results are repeatedly
prolongated to a higher resolution and refined on that
resolution, until the final resolution is achieved. For this
purpose we utilize a sequence of dyadic grids with 2l+1
nodes in each coordinate direction, where the resolution
level l is increased in steps of 1. For further details both
on the phase field approximation and the numerical dis-
cretization we refer to [40].
Concerning the covariance analysis, the finite element
approximation of the elastic covariance metric is given
by the matrix(

1
n

n∑
k=1

∫
Ok

〈W,AA[Dφk],D(θi ◦ φk),D(θj ◦ φk)〉dx

)
ij

,

where θi, θj represent the vector-valued finite element
basis functions. This stiffness matrix is assembled by
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first computing φk(x) at each quadrature point x. Then,
all those basis functions θi are identified whose sup-
port contains φk(x). Points which are displaced out-
side the computational domain are projected back on
its boundary. The corresponding evaluation of θi ◦ φk
at x contributes to the assembly of the stiffness ma-
trix. After assembly, a standard conjugate gradient it-
eration is applied to solve (4) for the displacement uk,
given the stress σk from the zero moment analysis. The
eigenvalues and eigenvectors of the correlation matrix
1
n (g(ui, uj))ij are then obtained by first tridiagonalizing
the matrix via Householder’s method and then applying
a QR iteration with implicit shifts.

Concerning computation time, the solution of the
linear equation (4) as well as the diagonalization of the
correlation matrix are negligible (of the order of sec-
onds) compared to the minimization of (5) for the av-
erage phase field and the matching deformations, which
on resolution level l = 9 in 2D needs almost ten min-
utes per input shape on a Pentium IV PC at 1.8 GHz
running under Linux (using a non-optimized code). Via
parallelization on m processors, computation time can
be reduced by almost a factor m: For this purpose, the
value and the derivative of m summands in (5) are eval-
uated simultaneously on different processors.

8 Applications

We have applied our shape analysis approach to vari-
ous collections of 2D and 3D shapes. These shapes were
obtained via segmentation from images, where the in-
put images were aligned a priori (so that the numerical
algorithm did not get stuck in local minima). In prin-
ciple, this alignment could of couse also be done as a
preprocessing step, finding translations and rotations
such that the center of mass and the principal axes of
the objects Ok are aligned.

2D shapes. Some results of shape averages and corre-
sponding dominant modes of shape variation for shapes
of 2D objects are already depicted in Figs. 1 to ?? as
first illustrative examples. Figure 1 shows the average
of five human silhouettes. The corresponding deforma-
tions φi and local deformation invariants are displayed
in Fig. 2 for two of the input shapes. Particularly the de-
formed checkerboard patterns show that—due to the in-
variance properties of the energy—isometries are locally
preserved. Also, the indicators of length and area varia-
tion only peak locally at the person’s joints. The corre-
sponding principal components are given in Fig. 9. The
average shape is represented by the dark line, whereas
the light red lines signify deformations of the shape

Fig. 10 Six input shapes and their first two modes of variation

with ratios λi
λ1

of 1 and 0.34.

along the principal components. Here, we see the bend-
ing of the arm and the leg basically decoupled as the
first two dominant modes of variation. The silhouette
variations of raising the arm or the leg can only be ob-
tained as linear combinations of the first and fourth
or of the second and third mode of variation, respec-
tively. This coupling is not too surprising, noting that
the average has a slightly bent leg and arm so that the
influence of all input shapes on the average also incor-
porates a straightening or bending of these limbs.

In the following examples the covariance analysis is per-
formed based on the metric induced by the Hessian of
the elastic energy. The decoupling of shape variations
becomes even more obvious in Fig. 10, where we have
more input shapes but fewer variation among them.
The first mode describes the shortening of the horizon-
tal and stretching of the vertical axis (or vice versa),
whereas the second mode corresponds to bending the
right branch of the cross-shape. In order to depict the
principal component deformations of the average shape
we deducted global rotations which for the second mode
produces the tilt of the deformed shapes. The complete
decoupling of bending and stretching is here achieved
by including the cross with bent branch as well as its
symmetric counterpart as input shapes. The average
shape then only has straight branches so that the bend-
ing is invisible to the stretching modes. The results from
Fig. 11 are shown for comparison with [11]. Interest-
ingly, the obtained modes of variation differ slightly: In
both cases, the first mode of variation is some kind of
height variation of the mean fish (though locally, the
variation looks different). While our second mode of
variation is more or less an overall variation in fish
length, especially pronounced at the tailfin, they ob-
tain a combination of different local variations like tail-
fin thickness, pectoral fin length, and chest shape. Such
a type of eigenmode in our computation only occurs as
the third mode of variation. A statistical analysis of the
hand shapes in Fig. 12 has also been performed in [14]
and [21], where the shapes are represented as vectors
of landmark positions. The average and the modes of
variation are quite similar, representing different kinds
of spreading the fingers.
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Fig. 11 First three modes of variation with ratios λi
λ1

of 1, 0.49,

and 0.26 for 8 fish silhouettes from the shape database at the
Centre for Vision, Speech, and Signal Processing, University of

Surrey.

Fig. 12 First three modes of variation with ratios λi
λ1

of 1, 0.88,

and 0.42 for 18 hand silhouettes from [14].

Fig. 13 8 thorax CT scans from different patients and their first
three modes of variation with ratios λi

λ1
of 1, 0.12, and 0.07. Note

that the thin lines which can be seen left of the heart correspond
to contours of the liver, which are only visible in the first and last

input image.

Images. Figure 13, using thorax CT scans as input im-
ages, shows that the approach also works for image
morphologies instead of shapes. For images, the edge
set is considered as the corresponding shape. Hence,
these shapes are usually significantly more complex and
characterized by nested shape contours. In our exam-
ple, the first mode of variation represents a variation of
the chest size, the next mode corresponds to a change of
heart and scapula shape, while the third mode mostly
concerns the rib position. For this example, the input
images were not segmented in advance, but simultane-
ously to the averaging procedure to exploit the stronger
robustness of joint segmentation and registration. In
this way, artifacts have been avoided that would appear
otherwise due to the visibility of liver contours in only
some of the input images. Note that the local shape
variation at the sides of the chest in the second and
third mode of variation originates from the visibility of
the scapula in some input images.

Fig. 14 48 input kidneys and their first four modes of variation

with ratios λi
λ1

of 1, 0.72, 0.37, and 0.31.

Fig. 15 24 given foot shapes, textured with the distance to
the surface of the average foot (bottom right). The range

[−6 mm, 6 mm] is color-coded as .

3D shapes. Next, let us investigate the dominant modes
of variation of shapes in R3, where the computation is
based on the L2-metric for the first example and on
the elasticity tensor-based inner product for the second
example. In our first 3D example we compute the first
four modes of variation for a given set of 48 kidney
shapes as depicted in Fig. 14. For all modes we show
the average in the middle and its configurations after
deformation according to the principal components. Lo-
cal structures seem to be quite well represented and
preserved during the averaging process and the subse-
quent covariance analysis compared to e. g. the PCA
on kidney shapes in [20] where a medial representation
is used. The second example takes 24 foot-shapes as
input (which were originally provided as triangulated
surfaces and then converted to characteristic functions
on the unit cube). The average shape is shown along
with the original shapes in Fig. 15, where the input
feet are color-coded according to their local distance to
the surface of the average foot. For that purpose the
input shapes were optimally aligned with the average.
It is doubtlessly difficult to analyze the shape varia-
tion on this basis: We see modest variation at the toes
and the heel as well as on the instep, but any correla-
tion between these variations is difficult to determine.
The corresponding modes of variation in Fig. 16, how-
ever, are quite intuitive. The first mode apparently rep-
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resents changing foot volume, the second mode shows
width and length changes, the third and fourth mode
belong to different variants of toe positions, and the
fifth and sixth mode correspond to variations in rela-
tive heel position and instep shape. Note that in con-
trast to [39], where dominant modes from a PCA are
shown for the same example, this time the results were
obtained using the elasticity tensor of the compound
object as the covariance metric. As a further example,

λ1/λ1 = 1 λ2/λ1 = 0.404

λ3/λ1 = 0.172 λ4/λ1 = 0.146

λ5/λ1 = 0.104 λ6/λ1 = 0.083

Fig. 16 The first six dominant modes of variation for the feet

from Fig. 15.

let us now use these modes to evaluate how well a new,
additional foot shape Ŝ = ∂Ô fits into the given distri-
bution of foot shapes. To this end, we first compute a
linear representative of Ŝ: We find an optimal matching
deformation φ̂ that deforms Ô into the average object
O, calculate the corresponding boundary stresses σ̂ν,
and finally compute the corresponding displacement û
via (4). Then we can reconstruct û using the different
dominant modes of variation. Figure 17 shows that a re-
construction with only the first dominant mode yields
roughly the correct volume variation, but the actual
shape is not well reconstructed. The first three modes
already serve to reconstruct the correct width to length
ratio, and using all 23 modes of variation, û can almost
be reconstructed. Only the bunion or hallux valgus type
position of the big toe cannot be modeled. The Maha-
lanobis distance of the new foot to the average (neglect-
ing those components of shape variation which are not
present in the original set of foot shapes) is computed

as dM (Ŝ,S) =
√

1
n

∑23
i=1

g(û,wi)2

λi
= 1.23, where a value

of 1 would correspond to the standard deviation.

9 Conclusion

We have developed an elasticity-based notion of shape
variation. Since the shape space of elastically deformable
objects inherently does not possess a Riemannian struc-
ture, we utilized an alternative shape space structure, in

δ� -

reconstruction
using modes 1 1,2 1,2,3 1,. . .,6 1,. . .,23 original

Fig. 17 For a new, additional foot (top left), a linear representa-
tive û is computed via the method from Sec. 4, and it is visualized

as variation of the average foot S via (1+δû)(S) (top right). This

variation (the bottom right shape is a copy of the leftmost shape
in the visualization of û from the first line) is reconstructed based

on the PCA, using only one, two, three, six, and all 23 dominant

modes of variation (bottom).

which distance is replaced by elastic deformation energy
and boundary stresses play the role of linear represen-
tations of shapes. Such an approach imposes a physi-
cally and mathematically sound structure on spaces of
elastic objects. Its computational feasibility has been
proven by application to sets of 2D and 3D shapes. The
interpretation of shapes as boundaries of objects with
volume (where the covariance analysis takes the whole
volume in account) has the effect of robustness with re-
spect to noise in the shape contour: The (large-scale)
object variation takes place mostly inside the volume
and thus is rather insensitive to perturbations at the
boundary. Also, due to the underlying elastic model,
the object positioning has no influence on the result,
which approximately also holds in the numeric compu-
tations due to a multi-scale approach.
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A Appendix

A.1 Stress balance on the average shape. Applying the
transformation rule and integration by parts we deduce from (1)
that

0 =
nX
i=1

Z
Oi

W,A(Dφi) : D(u ◦ φi) dx

=
nX
i=1

Z
O

 
W,A(Dφi)DφT

i

detDφi

!
◦ φ−1

i : Dudx

=

Z
S

nX
i=1

σi : u⊗ ν[S] da[S]−
Z
O

nX
i=1

div(σi) · udx ,

where ν[S] is the outer normal in S and “⊗” denotes the rank–1

product v⊗w = v wT for two vectors v, w ∈ Rd. Hence, since (1)
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holds for any u, we obtain divW,A(Dφi) = 0 on every domain Oi
and the stress balance 0 =

P
i=1,...,n

σi(x)ν(x) on S.

A.2 Euler–Lagrange condition for offset displacements.
Abbreviating ψk := 1 + δuk, the optimality condition for (3)

reads

0 = 〈∂ψk
Ek, ψ〉

=
1

n

nX
i=1

Z
Oi

W,A(D(ψk ◦ φi)) : Dψ ◦ φiDφi dx−δ
Z
S
(σkν)·ψda[S]

=

Z
O
σ[δ uk] : Dψ dx− δ

Z
S

(σkν) · ψda[S]

=

Z
S

((σ[δ uk]− δσk)ν) · ψda[S]−
Z
O

divσ[δ uk] · ψ dx

for all test functions ψ, where we denote by

σ[δ uk] :=
1

n

nX
i=1

W,A((1 + δDuk)Dφi ◦ φ−1
i )cofD(φ−1

i )

the first Piola–Kirchhoff stress tensor on the compound object O.

Hence, as Euler–Lagrange condition for uk we obtain div σ[δ uk] =

0 on O and σ[δ uk]ν = δσkν on S.

A.3 Derivation of the averaged elasticity tensor. Lin-

earization of (3) for small δ yields

Ek[δ,u] =̇
1

n

nX
i=1

W[Oi, φi] + δ

Z
Oi

W,A[Dφi] : D(u ◦ φi) dx

+
δ2

2

Z
Oi

〈W,AA[Dφi],D(u◦φi),D(u◦φi)〉 dx−δ2
Z
O
σk:Dudx

= C + δ

Z
O

 
1

n

nX
i=1

σi

!
: Dudx− δ2

Z
O
σk : Du dx

+
δ2

2

1

n

nX
i=1

Z
Oi

〈W,AA[Dφi],D(u ◦ φi),D(u ◦ φi)〉dx

= C + δ

Z
S

 
1

n

nX
i=1

σiν

!
· uda[S]

−δ
Z
O

 
1

n

nX
i=1

divσi

!
· udx− δ2

Z
O
σk : Du dx

+
δ2

2

1

n

nX
i=1

Z
Oi

〈W,AA[Dφi],D(u ◦ φi),D(u ◦ φi)〉dx

= C + δ2
Z
O

1

2
〈C,Du,Du〉 − σk : Dudx.

for the tensor

C =
1

n

nX
i=1

„
1

detDφi
DφiW,AA[Dφi]DφT

i

«
◦ φ−1

i .
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