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Abstract. Based on a local approximation of the Riemannian distance on a manifold by a computationally
cheap dissimilarity measure, a time discrete geodesic calculus is developed, and applications to shape space are
explored. The dissimilarity measure is derived from a deformation energy whose Hessian reproduces the underlying
Riemannian metric, and it is used to define length and energy of discrete paths in shape space. The notion of discrete
geodesics defined as energy minimizing paths gives rise to a discrete logarithmic map, a variational definition of a
discrete exponential map, and a time discrete parallel transport. This new concept is applied to a shape space in which
shapes are considered as boundary contours of physical objects consisting of viscous material. The flexibility and
computational efficiency of the approach is demonstrated for topology preserving shape morphing, the representation
of paths in shape space via local shape variations as path generators, shape extrapolation via discrete geodesic flow,
and the transfer of geometric features.
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1. Introduction. Geodesic paths in shape space allow to define smooth and in some
sense geometrically or physically natural connecting paths O(t), t ∈ [0, 1], between two
given shapesO(0),O(1), or they enable the extrapolation of a path from an initial shapeO(0)
and an initial shape variation δO which encodes the path direction. Applications include
shape modeling in computer vision [17, 16], computational anatomy, where the morphing
path establishes correspondences between a patient and a template [2, 26], shape clustering
based on Riemannian distances [32], as well as shape statistics [9, 13], where geodesic paths
in shape space transport information from the observed shapes into a common reference frame
in which statistics can be performed.

As locally length minimizing paths, geodesic paths require to endow the space of shapes
with a Riemannian metric which encodes the preferred shape variations. There is a rich
diversity of Riemannian shape spaces in the literature. Kilian et al. compute isometry invari-
ant geodesics between consistently triangulated surfaces [16], where the Riemannian metric
measures stretching of triangle edges, while the metric by Liu et al. also takes into account
directional changes of edges [22].

For planar curves, different Riemannian metrics have been devised, including the L2-
metric on direction and curvature functions [17], the L2-metric on stretching and bending
variations [31], as well as curvature-weighted L2- or Sobolev-type metrics [25, 34], some of
which allow closed-form geodesics [37, 33]. A variational approach to the computation of
geodesics in the space of planar Jordan curves has been proposed by Schmidt et al. in [30].
The extrapolation of geodesics in the space of curves incorporating translational, rotational,
and scale invariance has been investigated by Mennucci et al. [24]. A Riemannian space of
non-planar elastic curves has very recently been proposed by Srivastava et al. [32].

In the above approaches, the shape space is often identified with a so-called pre-shape
space of curve parameterizations over a 1D domain (or special representations thereof) mod-
ulo the action of the reparameterization group. It is essential that the metric on the pre-shape
space is invariant under reparameterization or equivalently that reparameterization represents
an isometry in the pre-shape space so that the Riemannian metric can be inherited by the
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FIG. 1.1. Top: Given the first shape on the left and an initial variation ζ1 described by the second shape,
a discrete geodesic path is extrapolated. Bottom: The texture of a video frame can be transported along with the
resulting geodesic flow.

shape space. Such reparameterization-invariant metrics can also be defined on the space of
parameterized 2D surfaces [1, 20]. For certain representations of the parameterization one is
lead to a very simple form of the metric, e.g. an L2-type metric [19].

The issue of reparameterization invariance does not occur when the mathematical de-
scription of the shape space is not based on parameterizations, which often simplifies the
analysis (and is also the approach taken here). When warping objects in Rd, a shape tube
in Rd+1 is formed. Zolésio investigates geodesic in terms of shortest shape tubes [39]. The
space of sufficiently smooth domainsO ⊂ Rd can be assigned a Riemannian metric by iden-
tifying the tangent space atO with velocity fields v : O → Rd and defining a metric on these.
Dupuis et al. employ a metric

G(v, v) =

∫
D

Lv · v dx

for a higher order elliptic operator L on some computational domain D ⊂ Rd [7], ensuring a
diffeomorphism property of geodesic paths. A corresponding geodesic shooting method has
been implemented in [3]. Fuchs et al. propose a viscous-fluid based Riemannian metric [12].
Fletcher and Whitaker employ a similar metric on pullbacks of velocity fields onto a reference
shape [10]. Miller and Younes consider the space of registered images as the product space of
the Lie group of diffeomorphisms and image maps. They define a Riemannian metric using
sufficiently regular elliptic operators on the diffeomorphism-generating velocity fields, which
may also depend on the current image [27]. A morphing approach based on the concept of
optimal mass transport has been proposed by Haker et al. [14, 38]. An image or a shape is
viewed as mass density, and for two such densities ρ0, ρ1 : D → R the Monge–Kantorovich
functional ∫

D

|ψ(x)− x|2ρ0(x) dx

is minimized over all mass preserving mappings ψ : D → D, i.e. mappings with ρ0 =
ρ1 ◦ ψ det∇ψ. A morphing path then is given by ρ(t) = ρ0 ◦ ψ(t)−1 det∇ψ(t)−1 for
ψ(t) = tψ + (1 − t)id, t ∈ [0, 1]. Like for our approach there is a continuum-mechanical
interpretation of minimizing the action of an incompressible fluid flow [4], however, the flow
typically does neither preserve local shape features or isometries nor the shape topology.

Very often, geodesics in shape space are approached via the underlying geodesic evolu-
tion equation, and geodesics between two shapes are computed by solving this ODE within a
shooting method framework [17, 3, 1]. An alternative approach exploits the energy-minimi-
zing property of geodesics: Schmidt et al. perform a Gauß-Seidel type fixed-point iteration
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which can be interpreted as a gradient descent on the path energy, and Srivastava et al. de-
rive the equations of a gradient flow for the path energy which they then discretize [32]. In
contrast, we employ an inherently variational formulation where geodesics are defined as
minimizers of a time discrete path energy. Discrete geodesics are then defined consistently as
minimizers of a corresponding discrete energy.

In this paper we start from this time discretization and consistently develop a time dis-
crete geodesic calculus in shape space. The resulting variational discretization of the basic
Riemannian calculus consists of an exponential map, a logarithmic map, parallel transport,
and finally an underlying discrete connection. To this end, we replace the exact, computation-
ally expensive Riemannian distance by a relatively cheap but consistent dissimilarity measure.
Our choice of the dissimilarity measure not only ensures consistency for vanishing time step
size but also a good representation of shape space geometry already for coarse time steps.
For example, rigid body motion invariance is naturally incorporated in this approach. We
illustrate this approach on a shape space consisting of homeomorphic viscous-fluid objects
and a corresponding deformation-based dissimilarity measure.

Different from most approaches, which first discretize in space via the choice of a param-
eterization, a set of control points, or a mesh, and then solve the resulting transport equations
by suitable solvers for ordinary differential equations (see the discussion above), our time
discretization is defined on the usually infinite dimensional shape space. It results from a
consistent transfer of time continuous to time discrete variational principles. Thereby, it leads
to a collection of variational problems on the shape space, which in our concrete implemen-
tation of the proposed calculus consists of non-parameterized, volumetric objects.

Let us also already mention a further remarkable conceptual difference. The way the time
discrete geodesic calculus is introduced differs substantially from the way the time continuous
counterpart is usually developed. In classical Riemannian differential geometry one first
defines a connection (v, w) 7→ ∇vw for two vector fields v and w on a manifoldM. With
the connection at hand a tangent vectorw can be transported parallel along a path with motion
field v solving ∇vw = 0. Studying those paths where the motion field itself is transported
parallel along the path (i.e. it solves the ODE ∇vv = 0) one is led to geodesics. Next, the
exponential map is introduced via the solution of the above ODE for varying initial velocity.
Finally, the logarithm is obtained as the (local) inverse of the exponential map.

In the time discrete calculus we start with a time discrete formulation of path length and
energy and then define discrete geodesics as minimizers of the discrete energy. Evaluating
the initial step of a discrete geodesic path as the discrete counterpart of the initial velocity we
are led to the discrete logarithm. Then, the discrete exponential map is defined as the inverse
of the discrete logarithm. Next, discrete logarithm and discrete exponential allow to define a
discrete parallel transport based on the construction of a sequence of approximate Riemannian
parallelograms (commonly known as Schild’s ladder [8]). Finally, with the discrete parallel
transport at hand, a time discrete connection can be defined.

Let us note that the approximation of parallel transport in shape space via Schild’s ladder
has also been used in the context of the earlier mentioned flow of diffeomorphism approach
[29, 23]. In our discrete framework, however, the notion of discrete parallel transport is
directly derived from the parallelogram construction, consistently with the overall discrete
approach to geodesics.

A related approach for time discrete geodesics has been presented in an earlier paper by
Wirth et al. [36]. In contrast to [36], we here do not restrict ourselves to the computation
of geodesic paths between two shapes but devise a full-fledged theory of discrete geodesic
calculus (cf . Figure 1). Furthermore, different from that approach we ensure topological con-
sistency and describe shapes solely via deformations of reference objects instead of treating
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deformations and level set representations of shapes simultaneously as degrees of freedom,
which in turn strongly simplifies the minimization procedure.

The paper is organized as follows. In Section 2 we introduce a special model for a shape
space, the space of viscous fluidic objects, to which we restrict our exposition of the geodesic
calculus. Here, in the light of the discrete shape calculus to be developed, we will review the
notion of discrete path length and discrete path energy. After these preliminaries the actual
time discrete calculus consisting of a discrete logarithm, a discrete exponential and a discrete
parallel transport together with a discrete connection is introduced and discussed in Section
3. Then, Section 4 is devoted to the numerical discretization via characteristic functions and
a parameterization via deformations over reference paths. Finally, we draw conclusions in
Section 5.

2. A space of volumetric objects and an elastic dissimilarity measure. To keep the
exposition focused we restrict ourselves to a specific shape model, where shapes are repre-
sented by volumetric objects which behave physically like viscous fluids. In fact, the scope
of the variational discrete geodesic calculus extends beyond this concrete shape model. We
refer to Section 5 for remarks on the application to more general shape spaces.

2.1. The space of viscous-fluid objects. Let us introduce the spaceM of shapes as the
set of all objects O which are closed subsets of Rd (d = 2, 3) and homeomorphic to a given
regular reference object Oref, i.e. O = φ(Oref) for an orientation preserving homeomorphism
φ. Furthermore, objects which coincide up to a rigid body motion are identified with each
other. A smooth path (O(t))t∈[0,1] in this shape space is associated with a smooth family
(φ(t))t∈[0,1] of deformations. To measure the distance between two objects, a Riemannian
metric is defined on variations δO of objects O ∈M which reflects the internal fluid friction
— called dissipation — that occurs during the shape variation. The local temporal rate of
dissipation in a fluid depends on the symmetric part ε[v] := 1

2 (∇v +∇vT ) of the gradient of
the fluid velocity v : O → Rd (the antisymmetric remainder reflects infinitesimal rotations),
and for an isotropic Newtonian fluid, we obtain the local rate of dissipation

diss(∇v) = λ(trε[v])2 + 2µtr(ε[v]2) , (2.1)

where λ, µ are material-specific parameters. Given a family (φ(t))t∈[0,1] of deformations of
the reference objectOref, the change of shape along the path (O(t))t∈[0,1] can be described by
the (Lagrangian) temporal variation φ̇(t) or the associated (Eulerian) velocity field

v(t) = φ̇(t) ◦ φ−1(t)

on O. Hence, the tangent space TOM toM at a shape O can be identified with the space
of initial velocities v = φ̇(0) ◦ φ−1(0) for deformation paths with φ(0,Oref) = O. Here we
identify those velocities v which lead to the same effective shape variation, i.e. those with the
same normal component v · n on ∂O, where n is the outer normal on ∂O. Now, integrating
the local rate of dissipation for velocity fields v on O = φ(0,Oref), we define the Riemannian
metric GO on TOM as the symmetric quadratic form with

GO(v, v) = min
{ṽ | ṽ·n=v·n on ∂O}

∫
O
diss(∇ṽ(x)) dx . (2.2)

For the shape variation along a path O : [0, 1] →M described by the Eulerian motion field
(v(t))t∈[0,1], path length L and energy E are defined as

L[(O(t))t∈[0,1]] =
∫ 1

0

√
GO(t)(v(t), v(t)) dt , (2.3)

E[(O(t))t∈[0,1]] =
∫ 1

0
GO(t)(v(t), v(t)) dt . (2.4)
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FIG. 2.1. Discrete geodesic between the letters Q and A, extrapolated beyond A. Colors indicate the local rate
of dissipation (from blue, low, to red, high).

Paths which (locally) minimize the energy E or equivalently the length L are called geodesics
(cf . Figure 2.1). A geodesic thus mimics the energetically optimal way to continuously de-
form a fluid volume.

2.2. Approximating the distance. The evaluation of the geodesic distance based on a
direct space and time discretization of (2.2) and (2.3) turns out to be computationally very
demanding (cf . for instance the approaches in [3, 7]). Hence, we use here an efficient and
robust time discrete approximation based on an energy functionalW which locally behaves
like the squared Riemannian distance (i.e. the squared length of a connecting geodesic):

Given two shapes O and Õ, we consider an approximation

dist2(O, Õ) ≈ WO[ψ] , (2.5)

whereWO[ψ̃] :=
∫
OW (∇ψ̃) dx is the stored deformation energy of a deformation ψ̃ : O →

Rd and ψ is the minimizer of this energy over all such deformations with ψ(O) = Õ. Here,
W : Rd,d → [0,∞) is a so-called hyperelastic energy density.

In correspondence to our assumption that objects are identical if they coincide up to a
rigid body motion, we require W to be rigid body motion invariant. Furthermore, we assume
the objects to have no preferred material directions so that W is in addition isotropic, which
altogether leads to W (RAU) = W (A) for all R,U ∈ SO(d), A ∈ Rd,d (cf . [5]). In
the undeformed configuration for ψ = id, energy and stresses (the first derivatives of W )
are supposed to vanish so that we require W (1) = 0, DW (1) = 0 (where DW denotes
the derivative with respect to the matrix argument). Furthermore, we need W (A) → ∞
as detA → 0 to prohibit material self-penetration, which is linked to the preservation of
topology. The approximation property (2.5) relies on a consistent choice ofWO for the given
metric GO which can be expressed by the relation

1

2

d2

dt2
WO[ψ(t)]

∣∣∣∣
t=0

=
1

2

∫
O
D2W (1)(∇v,∇v) dx =

∫
O
diss(∇v) dx (2.6)

along any object path O(t) = ψ(t,O), t ∈ R, with ψ(0) = id and velocity field v = ψ̇(0).
Using the notion of the Hessian HessM of a function on a manifold as the endomorphism
representing its second variation in the metric, we can rephrase this approximation condition
more geometrically as

1

2
HessMWO[id] = id

with the usual identification of objects O and deformations φ. For the deformation energy
densityW , this condition implies that its HessianD2W (1) has to satisfy 1

2D
2W (1)(A,A) =
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diss(A) for all A ∈ Rd,d . A suitable example is

W (A) =
µ

2
tr(ATA) +

λ

4
detA2 −

(
µ+

λ

2

)
log detA− dµ

2
− λ

4
.

Assume that the energy density satisfies the above-mentioned properties. We observe that the
metric GO is the first non-vanishing term in the Taylor expansion of the squared length of a
curve, i.e. (

L[(O(t))t∈[0,T ]]
)2

= T 2GO(0)(v, v) +O(T 3)

with v = φ̇(0) ◦ φ−1(0) being the initial tangent vector along a smooth path (O(t))t∈[0,T ] =
(φ(t,Oref))t∈[0,1]. Thus, since the Hessian of the energyWO and the metric GO are related by
(2.6), we obtain that the second order Taylor expansions of dist2(O, ψ(O)) andWO[ψ] in ψ
coincide and indeed

dist2(O, Õ) = min
{ψ |ψ(O)=Õ}

WO[ψ] +O(dist3(O, Õ)) . (2.7)

Here, different from [36] we neither take into account mismatch penalties nor perimeter reg-
ularizing functionals for each object Ok, k = 0, . . . ,K.

2.3. Discrete length and discrete energy. Now, we are in a position to discretize length
and energy of paths (O(t))t∈[0,1] in shape space. To this end, we first sample the path at times
tk = kτ for k = 0, . . . ,K (τ = 1

K ), denote Ok := O(tk), and obtain the estimates

L[(O(t))t∈[0,1]] ≥
∑K
k=1 dist(Ok−1,Ok)

E[(O(t))t∈[0,1]] ≥ 1
τ

∑K
k=1 dist2(Ok−1,Ok)

for the length and the energy, where equality holds for geodesic paths. Indeed, the first
estimate is straightforward, and the application of the Cauchy–Schwarz inequality leads to

K∑
k=1

dist2(Ok−1,Ok) ≤
K∑
k=1

(∫ kτ

(k−1)τ

√
GO(t)(v(t), v(t)) dt

)2

≤
K∑
k=1

τ

∫ kτ

(k−1)τ
GO(t)(v(t), v(t)) dt = τ E[(O(t))t∈[0,1]]

which implies the second estimate.
Together with (2.7) this motivates the following definition of a discrete path energy and

a discrete path length for a discrete path (O0, . . . ,OK) in shape space:

L[(O0, . . . ,OK)] =
∑K
k=1

√
WOk−1

[ψk] , (2.8)

E[(O0, . . . ,OK)] = 1
τ

∑K
k=1WOk−1

[ψk] , (2.9)

where ψk = argmin{ψ |ψ(Ok−1)=Ok}WOk−1
[ψ] (cf . also [36]). In fact, (2.8) and (2.9) can

for general smooth paths even be proven to be first order consistent with the continuous
length (2.3) and energy (2.4) as τ → 0. For illustration, ifM is a two-dimensional manifold
embedded in R3, we can interpret the termsWOk−1

as the stored elastic energies in springs
which connect a sequence of points Ok on the manifold through the ambient space. Then the
discrete path energy is the total stored elastic energy in this chain of springs.
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FIG. 2.2. Nonlinear video interpolation via a discrete geodesic (top) between two segmented photographs of
white and red blood cells (first and last picture of bottom row, courtesy Robert A. Freitas, Institute for Molecular
Manufacturing, California, USA). The bottom row shows pushforwards and pullbacks of the end images under the
deformations along the discrete geodesic.

A discrete geodesic (of order K) is now defined as a minimizer of E[(O0, . . . ,OK)] for
fixed end points O0,OK . The discrete geodesic is thus an energetically optimal sequence of
deformations from O0 into OK .

In the minimization algorithm to be discussed in Section 4.1 we do not explicitly mini-
mize E[(O0, . . . ,OK)] for the object contours as in [36] but instead for reference deforma-
tions defined on fixed reference objects. Figure 2.2 shows a discrete geodesic in the context
of multicomponent objects, which is visually identical to that obtained by the more com-
plex approach in [36]. Here, deformations are considered which map every component of a
shape onto the corresponding component of the next shape in the discrete path as the obvious
generalization of discrete geodesics between single component shapes.

FIG. 2.3. A continuous
geodesic and a discrete path which
almost minimizes the discrete path
length on a two-dimensional man-
ifold embedded inR3.

While in the continuous case geodesic curves equally min-
imize length (2.3) and energy (2.4), minimizers of the discrete
path length (2.9) are in general not related to discrete geodesics
(and thus also not to continuous geodesics as τ → 0). Indeed,
let us consider a two-dimensional manifold M embedded in
R3, paired with the deformation energy WOk−1

[id + ζk] :=
|ζk|2 for a displacement vector ζk in R3 connecting points
Ok−1 and Ok on M. Now take into account a continuous
geodesic and a discrete path on M where the end points are
close to each other in the embedding space but far apart on
the surface. Figure 2.3 depicts such a configuration with a dis-
crete path which almost minimizes the discrete path length. A minimizer of the discrete
path length will always jump through the protrusion and never approximate the continuous
geodesic, whereas minimizers of the discrete path energy satisfy WOk−1

[id + ζk] → 0 as
τ → 0 and thus rule out such a short cut through the ambient space.

3. Time discrete geodesic calculus. With the notion of discrete geodesics at hand we
will now derive a full-fledged discrete geodesic calculus based on a time discrete geometric
logarithm and a time discrete exponential map, which then also give rise to a discrete parallel
transport and a discrete Levi-Civita connection on shape space.

3.1. Discrete logarithm and shape variations. If (O(t))t∈[0,1] is the unique geodesic
onM connecting O = O(0) and Õ = O(1), the logarithm of Õ with respect to O is defined
as the initial velocity v ∈ TOM of the geodesic path. In terms of Section 2.1 we have

logO(Õ) = v(0)

for v(t) = φ̇(t) ◦ φ(t)−1, where φ(t,Oref) = O(t) defines the associated family of defor-
mations. On a geodesically complete Riemannian manifold the logarithm exists as long as
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dist(O, Õ) is sufficiently small. The associated logarithmic map logO : Õ 7→ v(0) ∈ TOM
represents (nonlinear) variations on the manifold as (linear) tangent vectors.

The initial velocity v(0) can be approximated by a difference quotient in time,

v(0, x) =
1

τ
ζ(x) +O(τ) ,

where ζ(x) = φ(τ, x) ◦ φ(0, x)−1 − x denotes a displacement on the initial object O. Thus,
we obtain

τ logO(Õ) = ζ(x) +O(τ2) .

This gives rise to a consistent definition of a time discrete logarithm. Let (O0, . . . ,OK) be a
discrete geodesic between O = O0 and Õ = OK with an associated sequence of matching
deformations ψ1, . . . , ψK , then we consider 1

τ ζ1 for the displacement ζ1(x) = ψ1(x)− x as
an approximation of v(0) = logO(Õ). Taking into account that τ = 1

K we thus define the
discrete 1

K -logarithm

( 1
KLOG)O(Õ) := ζ1 . (3.1)

In the special case K = 1 and a discrete geodesic (O, Õ) we simply obtain

( 1
1LOG)O(Õ) = argmin{ζ1 | (id+ζ1)(O)=Õ}WO[id + ζ1] .

As in the continuous case the discrete logarithm can be considered as a representation of
the nonlinear variation Õ of O in the (linear) tangent space of displacements on O. On a
sequence of successively refined discrete geodesics we expect

K( 1
KLOG)O(Õ)→ logO(Õ) (3.2)

for K →∞ (cf . Figure 3.1 for an experimental validation of this convergence behaviour).

3.2. Discrete exponential and shape extrapolation. In the continuous setting, the ex-
ponential map expO maps tangent vectors v ∈ TOM onto the end point O(1) of a geodesic
(O(t))t∈[0,1] with O(0) = O and the given tangent vector v at time 0. Using the notation
from the previous section we have expO(v(0)) = Õ and, via a simple scaling argument,
expO

(
k
K v(0)

)
= O( kK ) for k = 0, . . . ,K. We now aim at defining a discrete power k

exponential map EXPkO such that EXPkO(ζ1) = Ok on a discrete geodesic (O,O1, . . . ,OK)
of order K ≥ k with ζ1 = ( 1

KLOG)O(Õ) (the notation is motivated by the observation that
exp(ks) = expk(s) on R or more general matrix groups). Our definition will reflect the
following recursive properties of the continuous exponential map,

expO(1v) =
(
1
1 logO

)−1
(v) ,

expO(2v) =
(
1
2 logO

)−1
(v) ,

expO(kv) = expexpO((k−2)v)(2vk−1)

for vk−1 := logexpO((k−2)v) expO((k − 1)v) .
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FIG. 3.1. In the bottom left we experimentally verify the convergence stated in (3.9) by computing discrete
geodesics starting from ‘P’ and ending at EXPKP (ζ/K) for K = 1, 2, 3, 4, 8 and ζ = 8( 1

8
LOG)

P
(A). In the

top right, based on a computation of discrete geodesics between ‘P’ and ‘A’ of order K = 8, 4, 3, 2, 1, the resulting
logarithms ( 1

K
LOG)

P
(A) are depicted, where ( 1

K
LOG)

P
(A) is the displacement from ‘P’ to the second shape

of the respective geodesic. To the left of the initial shape ‘P’, those shapes are displayed which result from applying
the displacement K( 1

K
LOG)

P
(A) to ‘P’ to experimentally verify convergence as stated in (3.2). The arbitrary

rotations are due to the rigid body motion invariance of our approach.

Replacing exp(k·) by EXPk, 1
1 log by ( 1

1LOG), and 1
2 log by ( 1

2LOG) we obtain the recur-
sive definition

EXP1
O(ζ) :=( 1

1LOG)
−1
O (ζ) , (3.3)

EXP2
O(ζ) :=( 1

2LOG)
−1
O (ζ) , (3.4)

EXPkO(ζ) :=EXP2
EXPk−2

O (ζ)
(ζk−1) (3.5)

with ζk−1 := ( 1
1LOG)

EXPk−2
O (ζ)

EXPk−1O (ζ) .

It is straightforward to verify that EXPKO = ( 1
KLOG)

−1
O as long as the discrete logarithm

on the right is invertible. Equation (3.3) implies EXP1
O(ζ) = (id + ζ)(O), and (3.4) in fact

represents a variational constraint for a discrete geodesic flow of order 2 :

Given the object O we consider discrete geodesic paths (O, Õ1, Õ2) of order 2, where
for any chosen Õ2 the middle object Õ1 is defined via minimization of (2.9) so that we may
write Õ1[Õ2]. We now identify EXP2

O(ζ) as the object Õ2 for which (id + ζ)(O) = Õ1[Õ2],
i.e. ζ is the energetically optimal displacement from O to Õ1[Õ2] and thus satisfies

id + ζ = argmin{ψ1 |ψ1(O)=Õ1[Õ2]}WO[ψ1] (3.6)

up to a rigid body motion.

Alternatively, the condition (3.6) can be phrased as

id + ζ = argmin{ψ1}min{ψ2 | (ψ2◦ψ1)(O)=Õ2}
(
WO[ψ1] +Wψ1(O)[ψ2]

)
. (3.7)
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FIG. 3.3. Left: Discrete geodesic between two end shapes, where color indicates the local rate of dissipation
(from blue, low, to red, high). Right: Given the first shape and its variation (in terms of the optimal matching
deformation to the second shape), a discrete geodesic is extrapolated.

M
(id+ζ)(O)O

EXP2
O(ζ)

Õ2

Õ1[Õ2]

FIG. 3.2. Conceptual sketch of the procedure to
compute EXP2

O(ζ) with objects represented as points.

Figure 3.2 conceptually sketches the
procedure to compute EXP2

O(ζ). For given
initial object O and initial displacement ζ
the discrete exponential EXP2

O(ζ) is se-
lected from a fan of discrete geodesics with
varying Õ2 as the terminal point of a dis-
crete geodesic of order 2 in such a way that
(3.7) holds. To compute EXP2

O(ζ) in the
geodesic flow algorithm (3.4) and (3.5) we
have to find the root of

FO,ζ(Õ2) = (1
2LOG)O(Õ2)− ζ , (3.8)

implicitly assuming that ζ is small enough so that discrete geodesics are unique (cf . Sec-
tion 4.2 for the algorithmic realization based on a representation of the unknown domain Õ2

via a deformation).
Equation (3.5) describes the recursion to compute EXPkO based on the above EXP2 sin-

gle step scheme: For givenOk−2 = EXPk−2O (ζ) andOk−1 = EXPk−1O (ζ) one first retrieves
ζk−1 = ψk−1 − id from the previous step, where

ψk−1 = argmin{ψ |ψ(Ok−2)=Ok−1}WOk−2
[ψ] .

Then (3.4) is applied to compute Ok from Ok−2 and ζk−1 as the root of FOk−2,ζk−1
.

For sufficiently small ζ we expect EXPk to be well-defined. Since by definition, every
triplet (Ok−1,Ok,Ok+1) of the sequenceOk = EXPkO(ζ) is a geodesic of order 2 and mini-
mizes E[(Ok−1,Ok,Ok+1)], the resulting family (Ok)k=0,...,K indeed is a discrete geodesic
of order K. In fact, discrete geodesics that are variationally described as discrete energy min-
imizing paths between two given objects can be reproduced via the discrete geodesic flow
associated with the discrete exponential map (cf . Figure 3.3).

As for the discrete logarithm we experimentally observe convergence of the discrete
exponential map in the sense

EXPkO
(
1
k ζ
)
→ expO(ζ) for k →∞ (3.9)

as shown in Figure 3.1. An example of geodesic shape extrapolation for multicomponent
objects is depicted in Figure 3.4.

3.3. Discrete parallel transport and detail transfer. Parallel transport allows to trans-
late a vector ζ ∈ TOM (which is considered as the variation of an object O = O(0)) along
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ζ1−→

FIG. 3.4. Top: Given the first shape and its initial variation ζ1 represented by the second shape, a discrete
geodesic is extrapolated. Bottom: The texture of a video frame can be transported along with the varying shapes.

M O(t)
O((k−1)τ)

O(kτ)

Opk−1

Opk
O×k•

ζk−1

ζk
•

•

•

•

FIG. 3.5. A sketch of the discrete parallel transport of ζk−1 ∈ TO((k−1)τ)M via Schild’s ladder along the
edge fromO((k − 1)τ) toO(kτ) on a curve in shape space.

a curve (O(t))t∈[0,1] in shape space. The resulting (ζ(t))t∈[0,1] changes as little as possible
while keeping the angle between ζ(t) and the path velocity v(t) fixed. Using the Levi-Civita
connection this can be phrased as ∇v(t)ζ(t) = 0. There is a well-known first-order approxi-
mation of parallel transport called Schild’s ladder [8, 15], which is based on the construction
of a sequence of geodesic parallelograms, sketched in Figure 3.5, where the two diagonal
geodesics always meet at their midpoints. Given a curve (O(t))t∈[0,1] and a tangent vector
ζk−1 ∈ TO((k−1)τ)M, the approximation ζk ∈ TO(kτ)M of the parallel transported vector
via a geodesic parallelogram can be expressed as

Opk−1 = expO((k−1)τ) ζk−1 ,

O×k = expOpk−1

1

2
logOpk−1

O(kτ) ,

Opk = expO((k−1)τ) 2 logO((k−1)τ)O×k ,
ζk = logO(kτ)O

p
k .

Here, O×k is the midpoint of the two diagonals of the geodesic parallogramm with vertices
O((k−1)τ),Opk−1,Opk, andO(kτ). This scheme can be easily transferred to discrete curves
(O0, . . . ,OK) in shape space based on the discrete logarithm and the discrete exponential
introduced above. In the kth step of the discrete transport we start with a displacement ζk−1
on Ok−1 and compute
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e
e

e e ee
e e

FIG. 3.6. Discrete parallel transport is applied along two discrete geodesic paths connecting letters ’P’ and
’A’ (left) and two different poses of a dog (right), respectively. On the top the original discrete geodesics are shown,
while the bottom left shows the discrete parallel transport of serifs along the geodesic between the two letters, and
the bottom right shows the transport of changes on the first dog’s shape, which allows to copy the changes to the
other poses.

Opk−1 = EXP1
Ok−1

ζk−1 ,

O×k = EXP1
Opk−1

(
( 1
2LOG)Opk−1

(Ok)
)
,

Opk = EXP2
Ok−1

(
( 1
1LOG)Ok−1

(O×k )
)
,

ζk = ( 1
1LOG)Ok

(Opk) ,

where ζk is the transported displacement onOk. Here,O×k is the midpoint of the two discrete
geodesics of order 2 with end points Opk−1, Ok and Ok−1, Opk, respectively. Since the last of
the above steps is the inverse of the first step in the subsequent iteration, these steps need to
be performed only for k = K. We will denote the resulting transport operator by POK ,...,O0

.
Figure 3.6 shows examples of discrete parallel transport for feature transfer along curves in
shape space.

Remark: As in the continuous case, the discrete parallel transport can be used to define
a discrete Levi-Civita connection. For ξ ∈ TOM and for a vector field η in the tangent bundle
TM one computes Oτ = EXP1

O(τξ) and then defines

∇τξη :=
1

τ
(PO,Oτ η(Oτ )− η(O))

as the time discrete connection with time step size τ .

4. Numerical discretization. The proposed discrete geodesic calculus requires an ef-
fective and efficient spatial discretization of

- volumetric objects O in the underlying shape space,
- of nonlinear deformations ψ to encode matching correspondences,
- and of linear displacements ζ as approximate tangent vectors.

We restrict ourselves here to the case of objects O ⊂ R2. To this end we consider the space
Vh of piecewise affine finite element functions on a regular simplicial mesh over a rectangular
computational domain D. Here h indicates the grid size, where in our applications h ranges
from a coarse grid size 2−6 to a fine grid size 2−8. Then, deformations and displacements are
considered as functions in (Vh)2. ObjectsO, the original degrees of freedom in our geometric
calculus, will be represented via deformations φ over reference objects Ô (e.g. Oref), i.e.
O = φ(Ô). These reference objects are encoded by approximate characteristic functions
χhÔ ∈ Vh and the deformations φ are considered as injective deformations φ : D → R2 and
discretized as elements in (Vh)2.

4.1. Parameterization of discrete geodesics. To compute a discrete geodesic — dif-
ferent from [36] — we now replace the objects O0, . . . ,OK as arguments of the energy (2.9)
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Ô0 Ô1 Ô2 Ô3 Ô4

- - - -
ψ̂1 ψ̂2 ψ̂3 ψ̂4

6 6 6 6 6φ0 φ1 φ2 φ3 φ4
O0 O1 O2 O3 O4

- - - -ψ1 ψ2 ψ3 ψ4

FIG. 4.1. A diagram illustrating the parameterization of the domains Ok along the discrete geodesic via
deformations φk — indicated in red as the actual degrees of freedom — over reference domains Ôk .

by associated deformations φ0, . . . , φK over a set of reference domains Ô0, . . . , ÔK as de-
scribed above. By this technique, instead of K deformations and K − 1 domain descriptions
(e.g. via level sets) as in [36] we will be able to consider solely K + 1 parameterizing de-
formations, which turns out to be a significant computational advantage. Next, we assume
that reference matching deformations ψ̂1, . . . , ψ̂K are given with Ôk = ψ̂k(Ôk−1) (cf . Fig-
ure 4.1). Now, we express the matching deformations (ψk)k=1,...,K over which we minimize
in (2.9) in terms of the parameterizing deformations (φk)k=0,...,K and the reference matching
deformations (ψ̂k)k=1,...,K and set

ψk = φk ◦ ψ̂k ◦ φ−1k−1

for k = 1, . . . ,K. Now, using a change of variables one can rewrite the deformation energies
WOk−1

[ψk] in (2.9) as∫
D

χÔk−1
W (∇(φk ◦ ψ̂k)(∇φk−1)−1) det∇φk−1dx̂ .

Furthermore, instead of void we consider a δ1 times softer material outside the object domain
replacing χÔ by χδ1

Ô
= (1−δ1)χÔ+δ1 so that altogether the deformation energyWOk−1

[ψk]
is replaced by the following energy over the parameterizing deformations φk−1 and φk:

Wδ1,ψ̂k
Ôk−1

[φk−1, φk] =

∫
D

χδ1
Ôk−1

W (∇(φk ◦ ψ̂k)(∇φk−1)−1) det∇φk−1dx̂

The condition that O0 and OK are prescribed is taken care of with penalty functionals

Fε,δ2
Ôi,Oi

[φi] =
1

ε

∫
D

(Gδ2 ∗ χÔi −Gδ2 ∗ χOi ◦ φi)
2 dx̂

for i = 0,K, where Gδ2 is a Gaussian of filter width δ2. Finally, to ensure that not only the
concatenations φk ◦ ψ̂k ◦ φ−1k−1 of deformations are regular but also every single deformation
φk, we add a term δ3WD[φk] for all k = 0, . . . ,K. Summarizing, to compute a discrete
geodesic between two shapes O0,OK or a discrete logarithm, we minimize the total energy

K∑
k=1

Wδ1,ψ̂k
Ôk−1

[φk−1, φk] + δ3

K∑
k=0

WD[φk] + Fε,δ2
Ô0,O0

[φ0] + Fε,δ2
ÔK ,OK

[φK ]

over all the parameterizing deformations φ0, . . . , φK . This minimization then determines the
shapes Ok = φk(Ôk) forming the discrete geodesic as well as the discrete logarithm

( 1
KLOG)O0

(OK) = φ1 ◦ ψ̂1 ◦ φ−10 − id .
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K=8

K=4

K=2

FIG. 4.2. Discrete geodesics with three, five, and nine shapes (top to bottom). Despite large shape variations
and strong local rotations, the choice of the nonlinear energyW yields good results already for coarse time steps.

Due to the assumptions on the energy integrand W , self-penetration of deformed objects is
ruled out in our fully discrete model, which as a byproduct leads to topology preservation
along discrete geodesics. The resulting matching deformations ψ1, . . . , ψK are determined
up to translations and rotations due to the built-in frame indifference (cf . Section 2.2). In
our applications the parameters of the algorithm are chosen as follows: δ1 = 0.01, δ2 = h,
δ3 = 0.01, ε = 0.1.

Furthermore, the previously described finite element discretization is applied, and the
energies are computed via Simpson quadrature on each element. As opposed to Gaussian
quadrature, this quadrature rule has the advantage that quadrature points lie in the corners
of each finite element, which is where the extremal values of the finite element functions
and their gradients occur. This is relatively important when dealing with deformations as
finite element functions, since a Gaussian quadrature rule might for example miss that a
deformation exhibits self-penetration in the corner of one element. Such deformations will
thus not be rejected during energy minimization, which in turn results in technical difficulties
when computing pullbacks or pushforwards with respect to these deformations and when
prolongating them onto grids with finer resolution.

Pullbacks of a finite element function f ∈ Vh with respect to a finite element deformation
φ ∈ (Vh)2 at quadrature points x are computed by first evaluating the deformation at that
point. If φ(x) lies outside the computational domainD, it is projected back onto the boundary
∂D (this approach is more robust than e.g. neglecting such points, since it avoids structural
changes when deformed quadrature points toggle between inside and outside). Finally, f is
evaluated at the projected position.

The minimization is performed by a Newton trust region algorithm [6] on the (K + 1)-
tuple of deformations (φ0, . . . , φK) and requires the evaluation of first and second derivatives
of the energy. Note that the second derivative involves mixed derivatives with respect to
φk−1 and φk for all k = 1, . . . ,K. During the Newton iteration, these mixed terms provide
a coupling between all deformations which results in a fast relaxation and balance between
them.

To improve the efficiency of the resulting method, a cascadic finite element approach
is used which proceeds from a coarse to a fine resolution of objects and deformations on a
dyadic hierarchy of meshes. Simultaneously the resolution of the discrete geodesics can be
increased in time (cf . Figure 4.2). In case very large nonlinear deformations occur during
the optimization, from time to time the reference objects (Ô0, . . . , ÔK) are replaced by the
current object approximations (O0, . . . ,OK) and the deformations φk are reset to the identity
deformation id for k = 0, . . . ,K.

4.2. Solving the constrained optimization problem associated with EXP2. To find
the zero of (3.8) we employ the optimality condition associated with the variational definition
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of ( 1
2LOG). Indeed, for given ζ we introduce two deformations ψ1, ψ2 and corresponding

objects Õ2 := (ψ2 ◦ (id + ζ)) (O), Õ1 := ψ1(O). Now, we associate to the discrete path
(O, Õ1, Õ2) with underlying deformations ψ1, ψ2 the energy

E [ψ1, ψ2] :=

∫
O
W (∇ψ1) dx+

∫
ψ1(O)

W
(
∇(ψ2 ◦ (id + ζ) ◦ ψ−11 )

)
dx .

We obtain ∂ψ1
E [ψ1, ψ2] = 0 as the necessary condition to ensure that E [ψ1, ψ2] actually rep-

resents the path energy in (2.9) connecting the two objects O and O2 via a discrete geodesic
of order 2 with the intermediate object ψ1(O). In the notion of Section 3.2 the property of
(O, Õ1, Õ2) to be a discrete geodesic can be phrased as ψ1(O) = Õ1[Õ2]. Thus, a necessary
condition for (3.7) to hold is given by the condition

∂ψ1E [ψ1, ψ2] |ψ1=id+ζ = 0 (4.1)

for the remaining unknown ψ2. With respect to the algorithmic realization we reformulate
and regularized the energy as described in Section 4.1 above to yield

Eδ1 [ψ1, ψ2] =

∫
D

χδ1O
(
W (∇ψ1) +W (∇(ψ2 ◦ (id + ζ))(∇ψ1)−1) det∇ψ1

)
dx .

Now, the discrete counterpart of (4.1) is the condition

0 = ∂ψ1
Eδ1 [ψ1, ψ2]

∣∣
ψ1=id+ζ

(θ)

=

∫
D

χδ1O

(
DW (∇(id + ζ)) : ∇θ

− DW (∇ψ2 ◦ (id + ζ)) : (∇ψ2 ◦ (id + ζ))∇θ (1+∇ζ)−1 det(1+∇ζ)

+ W (∇ψ2 ◦ (id + ζ)) det(1+∇ζ) tr((1+∇ζ)−1∇θ)
)

dx , (4.2)

where A : B = tr(ATB) for matrices A,B ∈ R2,2. This equation has to hold for all test
deformations θ. In our finite element context, the corresponding test functions are taken to be
all finite element basis functions so that (4.2) becomes a system of nonlinear equations which
is solved for ψ2 via Newton’s method. Here too, we first find ψ2 on a coarse grid and then
use the result as initialization of Newton’s method on finer grids.

5. Conclusions and outlook. Based on a variational time discretization of geodesic
paths in shape space we have proposed a novel time discrete geodesic calculus, which consists
of discrete logarithmic and exponential maps, discrete parallel transport and a discrete con-
nection. We demonstrate how to use this discrete calculus as a robust and efficient toolbox for
shape morphing, shape extrapolation, and transport of shape features along paths of shapes.
Although in this expository article we restricted ourselves to two-dimensional objects, the
approach can be carried over to 3D viscous-fluid shapes. The concept can also be adapted to
deformations of hypersurfaces and corresponding deformation energies, which measure tan-
gential as well as normal bending stresses [11, 21]. For example, a generalization to the space
of planar elastic curves and thin shell surfaces is feaible. Furthermore, instead of a metric
structure induced by the viscous flow paradigm, the Wasserstein distance of optimal transport
can be considered [35]. It this case the time discretization of the Monge–Kantorovich prob-
lem proposed by Benamou and Brenier [4] is a possible starting point. Beyond these future
directions of generalization, a theoretical foundation has to be established with existence and
regularity results for the above-mentioned infinite dimensional shape spaces. Furthermore,
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the limit behaviour of the discrete geodesic calculus for vanishing time step size and the con-
vergence of the discrete path energy to the corresponding continuous path energy in the sense
of Γ-convergence has to be investigated (cf . the work by Müller and Ortiz on Γ-convergence
of a time discrete action functional in the case of Hamiltonian systems [28]). Finally, given
the notion of a time discrete transport, the relation of the curvature tensor to the parallel trans-
port along the edges of a quadrilateral (cf . Proposition 1.5.8. in [18]) can be used to define
a time discrete curvature tensor, which then allows an exploration of the local geometry of
shape space.
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