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ABSTRACT

Adaptive numerical methods using the h-p-version of finite ele-
ments require special kinds of shape functions. Desirable properties
of them are symmetry, hierarchy and simple coupling. In a first step
it is demonstrated that for standard polynomial vector spaces not all
of these features can be obtained simultaneously. However, this is
possible if these spaces are extended. Thus a new class of polynomial
shape functions is derived, which is well-suited for the p- and h-p-
version of finite elements on unstructured simplices. The construction
is completed by minimizing the condition numbers of the arising fi-
nite element matrices. The new shape functions are compared with
standard functions widely used in the literature.
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INTRODUCTION

This paper deals with shape functions for the finite element method. If
the solution area of a partial differential equation is discretized into finite-
size elements, one has to represent functions on these elements. We choose
the simplex as element, which is a triangle in 2-D and a tetrahedron in 3-
D, and try to approximate a scalar solution (or each single component of a
non-scalar solution) by a polynomial. For numerical calculations one has to
choose a basis for the desired space of polynomials. This basis yields the
so-called shape functions.

Many operations in the finite element method deal with functions in the
finite element space and therefore with the shape function. In the context
of conforming linear shape functions one usually uses node-based functions.
There is no need for other linear shape functions and in this sense they are
optimal. Working with higher polynomial degrees the choice should depend
on the version of finite elements. Interpolatory and orthogonal polynomials
are commonly used in this case. In spite of different suggestions [MP72,
Nic72, Pea76, SB91, ZT89, BGP89, DORHS89], there is no canonical set of
polynomials concerning optimal condition number and simplicity of usage.
There is no systematic analysis about shape functions on any simplex either
(except for the interval).

On the interval, say [—1, 1], the classic orthogonal Legendre polynomials
are leading to a kind of optimal set of shape functions for the p- and h-
p-version of finite elements for the Laplace equation. A pure higher-order
h-version may also use interpolatory Lagrange polynomials. For the p- and
h-p-version on tensor product structures like rectangles and bricks one could
generalize these integrated Legendre polynomials [SB91], loosing some of
their good transformation properties and investing more degrees of freedom
than necessary in the approximation sense. But for the simplex one has to
give up some other nice charcteristics of the Legendre polynomials and a
more complicated approach [Pea76, SB91, ZT89] has to be used. For a pure
h-version one can keep Lagrange interpolation [MP72, Nic72].

In the following we analyze the operations for solving a problem by an
adaptive (multilevel) finite element code with respect to the operations on the
shape functions. This leads to useful properties of functions on the simplex.
Only some properties are compatible with each other. Fach version of finite



elements differs in exploiting these properties for an efficient implementation.
This is the first part of the present paper. In the second part we construct
vector spaces containing sets of polynomials well-suited for the p- and the h-p-
version of finte elements. Keeping in mind the bad condition numbers of some
polynomial bases, we construct optimal and quasi-optimal shape functions
within these spaces. The comparison to other popular shape functions with
respect to the mentioned properties covers the last part of the paper.

1 PROPERTIES OF SHAPE FUNCTIONS

1.1 THE PROBLEM

We consider a linear second order elliptic symmetrical boundary value prob-
lem of the type

d
Y9, <aik(.r)aku(.r)) +ao(2)u(z) = f(z), VzeQ (1.1)
i,k=1
on the Lipschitz domain © C R? with suitable boundary conditions on 912,
ag being non-negative. We want to calculate the solution u(z) € R on 2 with
the finite element method. Using the bilinear form

a(u,v):/Q<a0(;v)u(x)v(:ﬁ) + %d::

i7

aik(:s)ﬁiu(;v)akv(:ﬂ))d;v (1.2)

1

and the scalar product

(v.f) = [ v@)f(x)da (13)

in the variational formulation, one has to set up and solve the discrete linear
system of equations

Au=1> (1.4)

defined by A;. = (a(qbi,qbk)) and by = (¢, f). A suitable set of conforming
shape functions ¢; € H'(2) has to be chosen. These shape functions are
formed by local shape functions %; on each finite element. If the solution
is not accurate enough, one has to choose a better discretization ¢; and re-

do the calculation. One has to distinguish some versions of finite element
methods:



e The h-version is based on element subdivision, using identical shape
functions on all elements.

e The p-version keeps the elements, but creates enhanced shape functions

on each element [BSK81].

e The h-p-version uses both procedures — subdivision and shape function
enhancement [BS90].

e The s-version uses an overlay of a domain of smaller elements on the
original elements with the same type of shape functions. In most
cases the overlayed elements are generated by element subdivision (c.f.

[Ran93]).

e The more traditional r-version creates smaller elements which are not
correlated with the old ones.

Each version of finite elements methods can be applied adaptively (affecting
only some parts of the domain) or globally (also called uniform refinement).
The system of linear equations can be solved directly (e.g. by Cholesky de-
composition) or iteratively. Iterative solvers need a solution to start with
which can be supplied by the solution on the previous discretization level.
Types of iterative solution techniques are the family of multigrid and multi-
level solvers which exploit the history of coarser discretizations. Here infor-
mation about the solution process is transferred between different discretiza-
tion levels.

1.2 FiNniTE ELEMENT CODES

A general finite element method consists of the following modules and oper-
ations which can merge into one another:

o Constructing or managing a tesselation of the domain 2. In this paper
we consider conforming tesselations of d-dimensional simplices. This
means that two connected simplices have one and only one complete
face of their boundary (a lower dimensional simplex) in common. This
prevents us from dealing with slave nodes which are local but not global
degrees of freedom and have to be removed from the global system of
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equations by static condensation. Another point to mention is that
we are working with only one element type, thus not mixing bricks,
wedges, pyramids and tetrahedrons e.g.

Assembling the local element-wise matrices A'°° and right hand sides
b°c. The numerical calculation of the integrals in A!%¢ = (a(@b“;bk))

and bl°¢ = (¥, f) requires cubature formulas. The evaluation of the
shape functions ; is necessary only at the points of cubature and can
be done via tabulated function values. Using different sets of shape
functions like in the p-version, one may have different cubature for-
mulas. Hence for all formulas one needs such a table. The number is
limited by the maximal polynomial degree which is usually lower than
ten. In the case of constant or simple a;;’s and ag’s the integrals may be
calculated in advance using a transformation formula and, if necessary,
a linear combination of such integrals. Thus it is not necessary to evalu-
ate the shape functions in the assembling procedures if one can do some
work in advance and does not use more sophisticated methods of inte-
gration. We do not necessarily have to supply a numerical procedure
for evaluation of shape functions which can be difficult or sometimes
ill conditioned numerically in case of higher order polynomials.

Assembling the local terms into the global matriz A and right hand side
b (coupling of the shape functions). The simplest way of assembling is
summing up the local matrices and vectors, having in mind the position
of the local matrix elements in the global matrix. A more complicated
situation arises in the assembly of slave nodes which leads to condensing
them by solving local linear equations, a procedure which we excluded
previously. General shape functions may cause the same trouble if they
are not symmetrical in the sense of simple inter-element coupling. This
means that for two connected elements each shape function ; of one
simplex F that is not vanishing on the common boundary £ N E* there
is a corresponding shape function t; on the other simplex E* which
is identical on the border ¥;(z) = ¥;(x) Vz € E N E*. In adaptive
p-versions there is the additional problem of coupling different sets and
degrees of polynomials. In the simplest case, one set W = {,;} of
non-vanishing polynomials is a subset of the other one ¥* = {¢}} on
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the common boundary. There are two parts: coupling of the common
functions W N ¥* as usual and coupling the hierarchic surplus ¥* \ ¥
by restricting it to zero. In more generality one has to remove some
degrees of freedom by static condensation.

o Solving the linear system of equations. Using fast iterative multigrid or
multilevel solvers, one has to transfer functions and updates of solutions
between discretiztion levels. This requires a fast local transfer from one
set of shape functions to another one (p-version) and from one element
to the subdivided elements or vice versa (h-version). Hierarchic shape
functions (p- or h-hierarchical) allow a relatively convenient transfer
by setting some coefficients to zero or by ignoring them. All solvers
appreciate a well-conditioned and sparse global matrix A.

o [Lstimating the error of the solution or determining whether the solu-
tion is acceptable. Error estimation often leads to the comparison of
different approximations which are sometimes only local. Hence it re-
duces work if one can expand or restrict (project) a calculated solution
easily to another discretization. Following this line it is convenient to
use p- or h-hierarchical shape functions or to allow a simple transfer in
another way.

o Constructing a new tesselation of the domain by considering the esti-
mated local errors. Apart from the algorithmical problem of construct-
ing a new conforming tesselation which fulfills the necessary element
angle conditions one may want to save the calculated solution. This
can be achieved easily if the transfer operations between discretizations
levels are simple.

o Postprocessing the solution. After calculating the solution, we may
want to determine some properties of the solution or simply visualize
it. We may have to manipulate the solution using the shape functions.

1.3 NOTATION

DEFINITION 1. We introduce the barycentric co-ordinates (bg, b1, ..., by)
in a d dimensional space, sometimes called area or volume co-ordinates (=
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the linear Lagrange polynomials on the d-simplex) with

bl(x) = 1, Vo € Rd

d
=0
The d-simplex has the corners (1,0,...,0),(0,1,0,...,0),...,(0,...,0,1).

DEFINITION 2. We intoduce the multi index notation
a = (ag,aq,...,0q) € NS'H by

o o] =%, a; and

o b = [IL, by,

DEFINITION 3. We define the vector space P; of polynomials of degree p
in d variables by the linear span of

Pi=(J "), aeN™

|| <p

REMARK 1. The usual vector space of polynomials for a d-dimensional
cube is the tensor product vector space P;’® = ®L, Pp1 with dim de’® >
dimde ford > 1.

1.4 CoONDITION NUMBERS AND HIERARCHY

DEFINITION 4. We call k(A) condition number and r;(A) reduced condi-
tion number of a symmetrical positive semi-definite matriz A. If the eigen-
values of A are g < Ay < -+ <A, with 0 < Ao, then x(A) and k;(A) are
given by

M An

k(A) = — € [l,00] and kj(A) = " for the lowest 7 with X\; # 0
j

By definition condition numbers are greater or equal to one: k(A) > 1,
kj(A) > 1. The condition number of a symmetrical positive definite matrix
Ais k(A) = ||Al]2||A71|2. If the so-called Helmholtz term ag in equation (1.1)

does vanish, the local matrix A'°° has one eigenvalue zero and the reduced
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condition number Kl(Aloc) has to be used. If the term ag is strictly greater
than zero on the element, we use the condition number x(A°¢) = ko Al°).
In general we write &;(A!°).

REMARK 2. The Helmholtz term ag plays an important role in the solu-
tion of parabolic equations and in eigenvalue computations via inverse vector
iterations.

The local condition numbers strongly depend on the functions a;, ag and
on the geometry of the element.

EXAMPLE 1. We recall the definition of the orthogonal Legendre polyno-
mials on the interval [—1,1]

(o) = 52712 = 1),

These polynomials are orthogonal with respect to the scalar product (.,.)
of equation (1.3). They are hierarchical in their polynomial degree p and sym-
metrical to the origin. The symmetry behaviour is alternately odd and even.
To exploit the orthogonality in the case of a 1-D problem for the Laplace
operator (i.e. ag = 0 and ay; = 1) one has to use integrated polynomials as
shape functions: [*, f;(¢)dt [SB91]. Then the bilinear form a(u,v) = (u’,v")
operates on the same terms as the scalar product in the previous case. The
integrated polynomials are orthogonal with respect to the new bilinear form.

DEFINITION 5. Here we assoctate the term ‘orthogonal’ polynomials with
a sequence of nested sets of polynomials Py C P, C --- for a specific bilinear
form. The polynomials are linearly independent. A polynomial f € P; is
orthogonal with respect to this bilinear form on the vector space generated
by the basis Pi_y (no condition for P1). The vector spaces generated by P;
usually are the vector spaces of polynomials Pffl_l. The polynomials in P;\ P;_,
need not be orthogonal.

Orthogonal polynomials are hierarchical in p by definition. Orthogonal
polynomials do not necessarily lead to local matrices with condition numbers
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Fia. 1. The integrated Legendre polynomials

equal to one, ;(A°¢) = 1. However, a basis with this desirable property can
be constructed:

LEMMA 1. For every set of functions a;; and ag of equation (1.1) there
exists a set of shape functions yielding a local condition number equal to one.

Proof. Consider the symmetric bilinear form «af(.,.) of equation (1.2) for
a Gram-Schmidt orthogonalization of a vector space of polynomials. In the
case of an eigenvalue zero take the coresponding eigenvector as additional
shape function. In this case a(.,.) is a semi-definite form. O

These polynomials are orthogonal and therefore hierarchical in p.

RESULT 1. We conclude that there are shape functions generating local
matrices with condition number one. Some are hierarchical in p, too.

A remark concerning hierarchy in h. Besides the so-called hierarchical
basis algorithms [Ban88, DLY89, Yse86, CZZ84, ZGK83], shape functions
being hierarchal in h are not very convenient. Some of these shape functions
have a global support. They generate dense global matrices A which are
expensive to compute with. Another problem is the number of hierarchical



levels in an h-p-version. We usually can restrict the order of p by a constant,
say 10, but we cannot restrict the number of (adaptive) h refinements in that
way. We can construct a family of ten p-hierarchical sets of shape functions,
but we cannot precompute such an h-hierachic set of shape functions for a
number of unknown levels. If one uses h-hierachy extensively, then only by
an implicit transformation between a local and a hierarchical basis.

1.5 SYMMETRY

DEFINITION 6. We denote the group of permutations of d elements with
Sy and the subset of the alternating group with ST .

DEFINITION 7. We define the action of a group S C Sy on a set of poly-
nomials P in d variables by the set of polynomials resulting from permuting
the input variables (by the permutations of the group) in barycentric repre-
sentation. This covers the definition of the action on a single polynomial and
on a whole vector space of polynomials.

SP= | f(s7\(bo,bu,....ba))

fEPsES

DEFINITION 8. We call a polynomial f, a set of polynomials P and a
vector space V' of polynomials S-symmetrical, if it is invariant with respect
to the action of S

f=Sf, P=SP and V =5V.
It immediatly follows that

o a set of S-symmetrical polynomials is an S-symmetrical set of polyno-
mials and

e a vector space generated by an S-symmetrical set of polynomials is
S-symmetrical itself.

Additionaly we introduce point-symmetry which is not covered by the pre-
vious definitions.



DEFINITION 9. We define a set of polynomials P to be ST-symmetrical
in d variables by

Vs € Sqp1 and Vf € P holds sf € P or — (sf) € P.

S*_symmetrical polynomials are zero. The definition of S*-symmetrical

el e
L alin

Fic. 2. £855 reflections of a 1-D function

Fic. 3. A 2-D function f on the triangle

vector spaces does not make sense, because they are already Sgyi-
symmetrical.

REMARK 3. Defining symmetry by Vs Vf € P 3JX € R\ {0} with
A(sf) € P leads to A = +1, too.

10
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FiG. 4. S; reflections of a 2-D function f

2 1 1 [ 3 3 ﬂ \2
2 1
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FiGa. 5. S3 reflections of a 2-D function f

LEMMA 2. An SET-symmetrical set P of polynomials is St-symmetrical.
Proof. Consider functions ¢ : S* — {41, —1}, show that ¢=}(+1) C S*
holds. O

RESULT 2. We conclude that there are ST- and Sy-symmetrical shape
functions.

1.6 COUPLING

We call the assembly of local finite-element-matrices into a global one cou-
pling. We have to guarantee that we are dealing with globally continuous
shape functions {;}, which are formed by properly connected local shape
functions {¢;}. We introduce two new terms: simple and minimal coupling.

11
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Fic. 6. :I:Sg: reflections of a 2-D function f, correlated with S?%

DEFINITION 10. We call the coupling of the shape functions of two con-
nected elements minimal, if the number of shape functions involved is mini-
mal.

This number n(E, E*) equals twice the dimension of the polynomial vector
space on the intersection N E* of both elements £, £*. Coupling coefficients
zero corresponding to vanishing shape functions on the intersection do not

contribute to n.

We can express the coupling by an underdetermined system of linear equa-
tions. Taking a coupling matrix C' and the sets of shape functions {¢;} and
{¢r}, we can write the constraints as

C-(¢1, b2y .oy &5, 5, ..) =0 on ENE"

12



By eliminating columns containing only zeros, eliminating linearly dependent
rows and permuting we arrive at a reduced matrix C' € R"**" of rank n.

We introduce a stronger term of coupling by a special kind of minimal
coupling which we call simple. The underdetermined system of linear equa-
tions with (reduced) matrix C' should facilitate the conversion between the
coefficients of the functions {¢;} and {¢}. We reduce the matrix C' to a
smaller matrix C' by leaving out columns which are linearly dependent or
zZero.

DEFINITION 11. We define a coupling of shape functions {¢;} and {¢F}
simple, if there exists a reduced and permuted matriz C' of mazimal rank
which has block-diagonal form with 2 x 1 non-zero blocks.

The reduced matrix looks like this:
X X Cy
X X Cy

@Y
Il
Il

with CZ e R2x1,

Ch

EXAMPLE 2. We look at the simple coupling of two elements F and E*
with 2 x 2 local matrices A and B and shape functions {¢1, o2} and {$7, ¢35}
Function phiy equals function ¢ on EN E*. No other shape functions of

E and E* are correlated. This leads to a matriz C = ( 01 -1 0 ), a
reduced matriz C = C = (I —1) and to

0

aip a2 bir big o e
coupled with — | a2 ax 4011 o
aiz @22 biz b2 0 bis by

_ Simple coupling may also appear as blocks of C; = (I 1), in general as
C; =(1 X), A # 0 or as small blocks simply invertible.

EXAMPLE 3. We recall the definition of the Bernstein polynomials on the
stmplex in the notation of chapter (1.3) [Far90]:

£ = ('Z')ba, a e Nit!
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The Bernstein polynomials of degree |a| = p generate the vector space P]_,fl.

0.9

0.8F

0.7r

0.61

0.5F

0.4

0.3F

0.2F

0.1r

Fia. 7. The Bernstein polynomials of degree 5 in 1-D

This set of polynomials is Sgy1-symmetrical. They facilitate a minimal and
simple coupling of blocks C; = (I —1) by identifing the proper functions
being identical on the common boundary. The same holds for the standard
Lagrange polynomials. On the other hand, it is harder to apply Dirichlet-
boundary conditions. One has to interpolate the prescribed values using the
polynomials non-vanishing on the boundary.

In general, only Lagrange interpolation polynomials permit a simple im-
plementation of Dirichlet boundary conditions. The situation changes in the
case of other boundary conditions like Neumann conditions. However 9f) is
of lower complexity compared to ). Hence one may invest some more com-
putational effort in calculating interpolatory conditions on the boundary for
gaining some nicer properties in the inner domain 2.

RESULT 3. We conclude that there are shape functions with minimal and
simple coupling. Some are Syy1-symmetrical, too.

14



1.7 CoONDITION NUMBERS AND COUPLING

It is well known that the condition number of the global stiffness matrix for
a fixed set of shape functions depends on the extension of the elements h.
For elements of uniform size h, we get a sharp estimate (c.f. references in
[Xu89])

k(A) < C(a,p,v)h ™%

The constant C' depends on the interior angles v of the elements, on the
differential operator a, on the set of shape functions and the associated poly-
nomial degree p. In the case of non-uniform h and simplices we get a lower
estimate [Xu89] with n denoting the number of simplices

n(1+log 2b) for d =2
KJ(A) < C(a7pa7) ' { ng/d mmh) for d >3

Let us consider the p-dependence of the constants €. In the one-
dimensional case there are shape functions with € independant from p,
namely the integrated Legendre polynomials (chapter 3.3). Next we can
conclude from sharp estimates in [BCMP91], that there are shape functions
in two dimensions with global condition number

k(A) < C(a,7)h™*(1 +log” p)

for uniform h. The required functions are split into point-, edge- and internal
shape functions in the usual way and the edge-functions have to be discrete
harmonic with respect to the operator a. For dimensions higher than two
(d > 2) an analogous construction delivers rapidly growing condition num-
bers in p [BCMPI1].

If we now split the local condition numbers ko(Ajoc) and k1(Ajc) into
maximal and minimal eigenvalue Apax(Ajoc) and Amin(Ajoc) and look for the
maximal Apax and the minimal Ay, on all elements of a tesselation, we get a
connection of local and global condition numbers. We conjecture an estimate
for uniform A of the kind

_gInax )\max(Aloc)

min )\min (Aloc)

The constant C' may also be written as a function of the minimal interior

k(A) < C(coupling)h

angle vmin and the family of shape functions. The conjecture is supported
by numerical experiments and the estimates in this chapter.

15



1.8 SYMMETRY AND COUPLING

Finite Element methods often use a simple set of shape functions defined on a
reference element. In the case of simplices each shape function is transfered to
a real element using a linear transformation . There are different possibilities
to realize this transformation. The transformation is unique only modulo
permutation of the corner points. Hence one has to be able to couple any
face of one element with any face of another one, where faces can be points,
edges, triangles and so on.

(

(

Fic. 8. Problems in orientating a tesselation

One can think of a completely oriented tesselation where the coupling is
restricted to only some distinguished combinations of faces. But in general
there is no such orientation (figure 1.8).

Hence there is no way out of having a deeper look into symmetry and
coupling properties.

THEOREM 1. A set of shape functions for a general conforming tessela-
tion of d-simplices will permit a simple coupling with blocks C; = (1 —1)
if and only if the shape functions permit minimal coupling and are Sjy;-
symmetrical on each j-dimensional face of a simplex.

Proof. We assign a permutation subgroup G' C S;41 to each j-dimensional
face of the reference simplex in a way that the non-vanishing shape functions
are (S;41/G)-symmetrical. Dealing with a distinct set of shape functions, we
are able to assign a subgroup Gio of Sgy1 to each simplex incorporating the

16



permutation groups of its faces. We now choose a tesselation in a way Gy
equals the identity leading to S;4i-symmetry on the faces. The other way
round is simple. O

We can relax this condition a little by requiring only ©; = 4+ on the
common boundary which leads to the subtraction of local matrices.

COROLLARY 1. A set of shape functions for a general conforming tesse-
lation of d-simplices will permit a simple coupling with blocks C; = (I £1)
if the shape functions permit minimal coupling and are Sﬁl-symmetrical on
each j-dimensional face of a simplex.

Proof. Analogously to the previous theorem. 0O

RESULT 4. Syi1-symmetry is correlated with simple coupling of (1 —1)
and S;t+1-symmetry is correlated with simple coupling of (1 =+ 1).

1.9 SYMMETRY AND HIERARCHY

We now want to derive the correlation of symmetry and p-hierachy. The Leg-
endre polynomials are p-hierachic and Si-symmetrical, which simply means
point or axial symmetry in 1-D. For d dimensions we get the following general
statement:

THEOREM 2. There is no p-hierarchical S;H-symmetrical polynomial ba-
sis on the d-simplex for d > 1.
Before we prove this, we recall the term irreducible:

DEFINITION 12. We call a G-symmetric vector space V' irreducible con-
cerning a group G, if () and V are its only G-symmetric subspaces.

Proof of theorem (2). We look at the p-hierarchical step from polynomial
degree j(d+1) to j(d+1)+1 with j € Ny. The set {bg—by,b; —ba, ... ,bg_1 —
by} (bo - by -+ -by)’ is a basis of a subspace V of the vector space de(d-|—1)+1 not
contained in the previous vector space de(d-q-l) NV = {0}. The vector space
V is S}, -symmetrical and is S, ;-irreducible with dimension |V| = d.

V' is generated by the action of Sj+1 onto each of its elements, f € V' '\
{0} = (S, f) = V. Any S -symmetrical set B of polynomials generating
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V with f € B contains the complete space Sj_i_lf. Hence it contains at least
d + 1 elements, |B| > d + 1 and it is no linearly independent basis of V. 0O

COROLLARY 2. There s no p-hierarchical S;t_l_l-symmet?“ical polynomial
basis on the d-simplex for d > 1.
Proof. A direct conclusion of theorem (2). O

THEOREM 3. There is no p-hierarchical Syy1-symmetrical polynomial ba-
sis on the d-simplex for d > 1.
Proof. Analogously to the previous theorem (2). 0O

COROLLARY 3. There are no Sj+1-symmetrical orthogonal polynomials
on the d-simplex for d > 1.
Proof. Orthogonal polynomials are p-hierarchical. Theorem (3). O

RESULT 5. Symmetry and simple coupling on the one hand and p-
hierarchy for de on the other hand exclude each other.

2 (CONSTRUCTION OF SHAPE FUNCTIONS

2.1 SYMMETRY

We want to construct a family of p-hierarchical shape functions for the d-
simplex. It has to facilitate a simple coupling which implies symmetry (chap-
ter 1.8). It should be suitable for a p- and h-p-version of finite elements which
means p-hierarchy in some sense. Both properties are not possible at the
same time (chapter 1.9). We want to get low global condition numbers, too.
This feature is correlated with local condition numbers (chapter 1.7) and
often associated with orthogonal polynomials and therefore with p-hierarchy
(chapter 1.4).

We have to cope with the limitations of theorem (2). We shall enlarge the
polynomial vector spaces P; slightly and construct new S;;;-symmetrical
vector spaces which avoid the irreducible subspaces of the proof of theorem
(2).

We recursively construct a basis for the new vector space P;’Sym by the

span of the vector space P;flym one degree lower and additional functions.

18



These functions are internal functions formed by the product of the “bubble”
function H;‘l:o b; with functions of degree (p —d — 1) and boundary functions
defined on the faces. The boundary functions are S;.i-permutations (sym-
metrizations) of such (lower-) i-dimensional functions (B:_;_; -[Ti— b;), i < d.
The only difference to the standard polynomial spaces de is the beginning of
the recursion. We start with {by} for BJ which actually has degree 1. If we
want to get the standard polynomial spaces de, we should have taken {1}.
We have enlarged the vector space. This enlargement spreads to the higher
dimensions and the higher degrees.

DEFINITION 13. We recursively construct a basis for the new vector space
in barycentric co-ordinates based on lower dimensions and lower degrees using
the group of permutations Sy:

o By = {bo}

oB]?:@, p>0

[ ] B;l = U?:O Sd_}_l(BZ . bo . bl bz), d Z 1

p—i—1

Sometimes shape functions are written in a form like {z,y,1 — 2 — y} on
a reference tetrahedron. This is equivalent to {b;, by, bo}.

REMARK 4. In the previous definition we can substitute the action of
Sqr1 by the combinations without repetition of 1 + 1 elements of the set

{bo,b1,...,b4}.

DEFINITION 14. We now define the new polynomial vector spaces as the
span of the basis functions in d dimensions: de’sym = (U, BY)

EXAMPLE 4. [In zero dimension we get the following sequence of polyno-
mials, which are only useful for the construction of higher dimensional ones:

Po™™ = ({bo})
PIO,sym — P(g),sym
PO,sym — PO,sym

2 0
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In one dimension we get the following S,-symmetrical sequence of polyno-

mials:
Py™™ = pim = ({bo, b1})
Pyo™ = PP = (PP g {bo(boby), by(bobi)})
Py = PP = (P U {bo(bobi)?, by(boby)?})
Py™™ = P = (B3 U {bo(bob)?, bi(bobi)*})

The polynomial spaces of odd degree contain one polynomial more than
- 2 ;
the former spaces P;. The polynomial spaces of even degree are equal. The
basis leads to the two dimensional Ss3-symmetrical polynomials defined on the
triangle by

pra ({bo, b1, b2})

piem _ paem

Pys¥™ = (PP U {bo(boby), bi(bobi), bi(biby),
bz(b1b2), ba(babo), bo(b2bo)})

PR (B bbb, bt}

PI™ = (PPY™ U {bo(boby)?, by(boby)?, by(biby)?,
ba(b1ba)?, ba(babo)?, bo(babo)?})

Pg’sym = <P42’5ym U {50(5051)(505152), bl(bobl)(boblb2)a
b1(b1b2)(bob1bs), ba(b1b2)(bobibs),

— N

(
ba(b2b0)(bob1bs), bo(b2bo)(bobibs)})

The basis of these polynomial spaces contains much more polynomials than
of the former spaces P;’.

RESULT 6. The vector spaces de’sym are Sgy1-symmetrical. Their bases
B;l’sym are p-hierarchical, facilitate minimal and simple coupling with blocks
(I —1) and are enlarged P; C Pg’sym C P;_H.

Proof. By induction. 0O

These polynomial spaces are well-suited for the coupling (1 — 1), but
they have got a high dimension (= too many shape functions). If we relax
the coupling to (1 4 1), we can reduce this high dimension, but we have to
consider the group SF,; (chapter 1.8).
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DEFINITION 15. We recursively construct a basts for the new Sczltﬂ-sym-
metrical vector space, taking the same 0-dimensional space and the action of
the alternating group S§ otherwise, modifying the one dimensional basis:

o By ={b}, B* =0, p>0
° Bg’i = {bo, b1}, B?’i =0, B;’i ={(by —bo)"}, p>1
° Bg’i = Ugl:o S;+1(B;_i¢—1 by by--ob;), d>1.

REMARK 5. [In the previous definition we can substitute the action of

SI_H by the even combinations without repetition of 1 + 1 elements of the set

{bo,b1,...,b4}. Watch out for a systematical interpretation of “even”!

DEFINITION 16. We now define the new polynomial vector spaces as the
span of the basis functions in d dimensions: P3* = (Ui, B)

EXAMPLE 5. [In zero dimension we get the following sequence of polyno-
mials, which are only useful for the construction of higher dimensional ones:

ry* = ({bo})
PIO,:E — Pé),:l:
PQO,:E — P(g),:l:

Starting with the one dimensional S5 -symmetrical polynomials we get the
following sequence:

PE = ({bo, b1})
PlL:t — Pol,:t

Pyt = (PP U {(bi—bo)?})
Pt = (PyT U {(bi —bo)’})
Pt = (B0 - b))

The spaces Ppl’i are equal to the former spaces Ppl. Thus they are smaller
sym

than the spaces Ppl’ . The one dimensional basis is not enlarged any more.
Inserting this into the definition for two dimensions we get a sequence of

SE-symmetrical polynomials:
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Pt = ({bo, b1, ba})

Pzi _ P2,:I:

1 - 0

2, 2, 2 2 2

Py® = (PF U {(b1—bo)?, (ba—b1)?, (bo—b2)*})

PEE = (PR O (b= b (b= b1, (bo— ba)*} U
{bo(bob1b2), b1(bobibs), bz(bobib2)})

PR (PR U (b bt (b — 1), (b — b))

PR = (PR O (b= b (b= b1 (bo— b)) U

{(by — bo)*(bob1b2), (b2 — b1)*(bobibs),
(bo — b2)*(bobiby)})
Pe = (BF U {(br—bo)% (by—b1)®, (bo—b2)°} U
(b1 — bo)*(Bobaba). (b2 — b1)*(bobubs).
(bo — b2)? (bobrbs)} U
{bo(bobiba)?, br(bobib)2, b(bobibs)?})

On the triangle the polynomial sets for a degree p which ts not divisible
by 3 are identical to PpQ, all other vector spaces are generated by sz and 2
additional polynomials.

REMARK 6. The usual linear Lagrange polynomials are contained in both
Pld’sym and Pld’i. The associated hierarchical quadratic polynomials are con-
tained in PQd’i, too.

REMARK 7. The linear Lagrange polynomials can be interpreted as sym-
metrization of the canonical basis of Pi: {1} U {by, by, ..., bs}.

RESULT 7. The vector spaces P;’i are Sczlt_l_l-symmetrical. Their bases
B%% are p-hierarchical, facilitate minimal and simple coupling with blocks

p p , p pling
(1 +£1), are only slightly enlarged (de - de’i - P;’Sym C P]fl_i_l) and have
got an even lower dimension than de’sym.

Proof. By induction. 0O

2.2 CONDITION NUMBERS

We want to construct the final version of our shape functions by using the
polynomial vector spaces P;l’sym and P;’i of chapter (1.8). The set of func-
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tions should maintain the symmetry and coupling properties of the original
basis B;l’sym and Bg’i. P-hierarchy is guaranteed by the nesting of the vector
spaces. The only missing property is a low condition number.

There are several ways towards low local condition numbers. A straight-
forward one is Gram-Schmidt orthogonalization, which leads to orthogonal
polynomials. In the case of polynomial vector spaces P; we saw that these
orthogonal polynomials are not Sjlil—symmetrical (chapter 1.9) and hence do
not allow simple coupling of shape functions (chapter 1.8). We now have got
slightly modified vector spaces and we cannot apply these arguments. But

we have to be careful not to loose the symmetry of the original basis Bg’sym
and B;l’i.

DEFINITION 17. We recall the definition of the Gram-Schmidt orthogo-
nalization procedure for a basis {¢;} of a vector space V':

v = ¢y
ve = g — Lo ey, k=2

The {v;/\/{vi,v;)} form an othogonal basis of V.

We call the elements v; in the sum competition elements which means that

(2.1)

PRI

the elements ¢y are orthogonalized with respect to them.

We cannot expect symmetry after orthogonalization if the bilinear form
a(.,.) is not symmetric on the element £ which is invariant under the per-
mutations of the corners of £ with S;y1. In this case the coefficients a;;, and
ap have to be constant on E or invariant under permutations. The latter
condition is rather unlikely for non-constant materials. In general there are
two alternatives:

e For an adaptive refinement procedure the coefficients a;; and ag are
constant on each element of the coarsest tesselation. All new elements
are just subdivisions of these elements.

e We optimize the shape functions for an Syy1-symmetrical a(.,.) which
only approximates the true a(.,.) on the domain €.

If we now orthogonalize an S-symmetrical polynomial f to a vector space
V' with S-symmetrical a(.,.), we have to be sure that V is at least S-
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symmetrical. Hence we do not orthogonalize the polynomials step by step
by the original Gram-Schmidt procedure but we will orthogonalize for some
symmetrical subsets of the original basis. We will at most get orthogonal-
ity in the sense of space-wise orthogonality (like orthogonal polynomials are
orthogonal only on spaces of some previous polynomials).

Next we have to maintain the coupling properties of the original basis
functions. We want to use the same coupling matrix C' on each face of an
element. This means that the number of non-vanishing polynomials on each
face must remain the same. Standard orthogonalization of internal func-
tions f (functions vanishing on the element boundary) generates additional
coupling on the boundary, because the scalar products (f,#) # 0 with the
boundary functions ¢ (functions that do not vanish on the element bound-
ary) used previously in the orthogonalization procedure (definition 2.1) do
not vanish in general.

A way out of this trouble is the restriction of the competition functions (of
the Gram-Schmidt procedure) for internal functions to internal functions and
for boundary functions to internal functions together with boundary functions
non-vanishing on a higher-dimensional face.

RESULT 8. When we optimize the basis functions we have have to restrict
the set of competition functions and we have to keep the sets of functions
optimized simultanously sufficiently large.

We make a more general approach to optimization. The optimal poly-
nomials are in a linear vector space V. = (i1, tq,...). Every optimized
polynomial vy has a representation of

k
UV 1= Zakﬂ/)i, k‘Zl,...
1=1
We have to determine the coefficients ay; that vy has got the desired prop-

erties. There are several ways to implement this approach:

o We can use a restricted Gram-Schmidt procedure, hoping for low con-
dition numbers. That means that we just omit a number of scalar
products.

o Instead of trying to force off-diagonal elements of a matrix to vanish, we
can minimize the square sum of the non-diagonal elements in a least-
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squares sense. We have to keep the corresponding diagonal element
large enough, say 1, thus arriving at a non-linear process. We can
iterate some steps of normalization (diagonal elements set to 1) and
least squares minimization. In the experiments we iterate just one
step.

e The attempt to solve the optimization problem directly may lead to
a (Quasi-)Newton procedure minimizing the condition number of the
matrix. We tried this approach, too.

All procedures have in common the necessity of a correct management of
the polynomials, their symmetry and their coupling properties. This includes
the construction of the appropriate basis functions for each optimized shape
function set. The optimized shape functions are a linear combination of the
basis functions. The combination itself depends on the optimization. The
basis functions are in some cases (optimized) shape functions of previous
optimization steps and in some cases symmetrizations of them.

3 COMPARISON

3.1 PROPERTIES

Here we show some properties of different families of shape functions:

polynomials reference stmple symin. symm.  hierarch.
coupling on the in the in p
faces element

monomials 4 - - - X
orthogonal [AF26, GM78] | - - - X
mod. Legendre  [SB9I] X 2-Donly — X
mod. monomials [Pea76] X 2-Donly — X
p-hierarch. mod. [ZT89] X 2-D only® —* X*
original® [ZT89] X X X -
Lagrange [MP72, Nic72] | x X X -
Bernstein [Far90] X X X -
symm. hierarch. chapter (2) X X X X

The reader should not be surprised that we can separate two classes
of shape functions: The p-hierarchical and the symmetrical ones. The only
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exception are the new symmetric hierarchical polynomials. The asterisk *
denotes our modification of the polynomials originally proposed by [ZT89].
The original shape functions on the triangle are not p-hierarchical for the
step from degree 3 to 4. We modified the basis to be hierarchical, loosing
symmetry.

3.2 CONDITION NUMBERS

We now compare the resulting local condition numbers like in [BGP89]. We
choose the Laplace operator Au (i.e. ag = 0 and a;, = ) and vary the
geometry of the elements. Equivalently we could have changed the differential
operator keeping the element fixed. The absolute scaling of the elements is
not relevant, hence we only change angles and aspect ratios. The condition
numbers are evaluated numerically.

3.3 1-D

We compare the condition numbers of the local matrices for the Laplace
operator on the interval [0, 1]. We may draw conclusions from this 1-D case
for edge based shape functions in higher dimensions.

The polynomials compared are:

e the monomials z? for p € Ny

e p-hierarchical polynomials proposed by [ZT89], which are of Hermitean

fol(z) = {
b

e normalized polynomials ¢;. ¢; is substituted by Ty if the (semi-)
norm of the polynomial is not zero (1/(¢;, ;) # 0).

e Lagrange polynomials which are interpolation polynomials for the

type till degree two

(z? — 1) peven

(zP —2) podd

|,_.’§|>—‘

!

3

equidistributed interpolation points z; = i/p, ¢ € {0,1,...,p} on the
interval [0, 1].
1 for 1=1p

Tiplw:) = {0 for ¢ #p
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Fiac. 9. Local condition numbers for the Laplace operator on the interval for different

polynomials of degree 1 to 4 (detail)

e Bernstein polynomials of degree p [Far90]

ﬁﬁ@=;@%5ﬁﬂ—xﬁﬁ%

e the integrated Legendre polynomials on [—1,1] [SB91]

for p<?2

fol@) = fyale)) for p=2

14
2
s (fe(2) =
with Legendre polynomials f, defined in example (1).

We observe the following: For degree one all condition numbers start with
a low number. For degree two, the quadratic case, the condition numbers
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Fia. 10. Local condition numbers for the Laplace operator on the interval for different

polynomials of degree 1 to 15

diverge, but not with the same pattern as in the asymptotic case. The Bern-
stein polynomials keep optimal for degree two. The p-hierarchical polynomi-
als are slightly better than the normalized ones in the quadratic case, but
are outperformed for higher degrees. The integrated Legendre polynomials
keep the optimal constant condition number due to their construction.

The numbers of the monomials and the p-hierarchic polynomials increase
drastically. At first the monomials are worse, but are caught at degree 6,
getting unacceptable for higher degrees. The normalized p-hierarchic poly-
nomials perform better. One can obtain a “staircase effect” for odd and
even degrees. The non-hierarchical Bernstein and the Lagrange polynomials
asymptotically show the same behavior.
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Fic. 11. Local condition numbers for the Laplace operator on the equilateral triangle for

different polynomials of degree 1 to 10

We compare the condition numbers of the local matrices for the Laplace op-

erator on the triangle. The results only depend on the angles of the triangle.

The polynomials compared are:

e the monomials :ciyj with:i+757=peNg

e the orthogonal (ortho.

d-simplex:

d—1+|a|+15])!
-y (_pylatial
/ %%( ) (d—1+2]a)!

ol
(O‘_ﬂ)!((a — B3B!

1) polynomials proposed by [GMT78] for the

2
) ¥ pen

e the orthogonal (ortho. 2) polynomials proposed by [AF26] for the d-

simplex
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J
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Fic. 12. Local condition numbers for the mass-matrix on the equilateral triangle for

different polynomials of degree 1 to 10

equilateral

with derivatives 9 with respect to b;.

right angled 1:16

streched equilateral

e —

The different triangle shapes

contracted equilateral

e normalized polynomials ¢;. ¢; ist substituted by \/ﬁ, if the (semi-)

norm of the polynomial is not zero (1/(¢;, ;) # 0).

e a modified version of the p-hierarchical polynomials proposed by
[Z'T89], which are a generalization of the one-dimensional polynomi-
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Ficg. 14. Local condition numbers for the Laplace operator on the right-angled triangle

with short edges of length 1:1 and 1 : 16 for different polynomials of degree 1 to 10

als. We have the linear functions {bg, by, b} and the edge-functions

generated by rotations (cyclic permutations) of:

p even

10

((b2 = b1)? — (b2 + b1)7)
((b2 = b1)? — (by — by )(by + by )P ™)

Io(@) p odd

{

Additionally, the internal function bybibs is proposed for degree 3 and
the functions {bg(bob1bs), b1(bobibs), ba(bobiby)} for degree 4 as a sub-

stitution for it. Hence the functions are not p-hierarchical any longer.

1
p!
1
p!

We modify this step using the the usual monomials multiplied by the
“bubble”-function bibé(boblbg) with ¢ + 7 + 3 = p. Hence we enforce p-
hierarchy and violate symmetry on the triangle. Thus the polynomials
are defined for all degrees p, not only till degree 4.

e the modfied

o=
fia by, by

monomials for the triangle proposed by [Pea76]:

point functions
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Fia. 15. Local condition numbers for the Laplace operator on the distorted equilateral
triangle stretched and contracted by a factor of 16 for different polynomials of degree 1 to
10

flas = b5 by, B by, b5 by edge functions, p > 1

fs = ff_?’boblbg internal functions, >0

After construction of the polynomials we substitute the usual linear
polynomial by for f7.

e Lagrange polynomials which are interpolation polynomials for the
equidistributed interpolation points z; = i¢/p and y; = j/p, 1,5 €
{0,1,...,p} on the reference triangle (z +y) < 1, (1 + j) < p (for
details see [MP72, Nic72]).

1 fori=Fkand j=1
fij(xr,y) = { 0 J

else

e Bernstein polynomials of degree p [Far90]

p!
p—i=7)

fijp($7y) = xi yj (1 —r— y)p—i—j
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e a construction using Legendre polynomials on the triangle [SB91]: point
functions {bg, by, by} as usual,

bo bl bo—b1
F:82'—1—/ _1(@)ds
p ( 4 )1_(60_61)2 1 fp 1(@) L
the edge function for the edge (0, 1) together with its cyclic permuta-
tions, and internal functions

Fp,q = boblbg fp(bl — bo) fq(QbQ — 1)
with Legendre polynomials f, defined in example (1).

o the symmetric hierarchical least squares polynomials of the polynomial
vector space P;’i, optimized consecutively by a least squares method.

o the symmetric hierarchical step-wise/ consecutively (by a GaufB-Seidel

. . . . 27:l:

method) optimized polynomials of the polynomial vector space P;*.

Each polynomial generating a symmetrical subset is optimized with
respect to the previous optimized polynomials.

e the symmetric hierarchical polynomials of the polynomial vector space
P;’i, optimized by a GaufB-Seidel method for each space P;’i, p =
1,2,...

We observe the following: For degree one all condition numbers start with
a low number. For degree two, the quadratic case, the condition numbers
diverge, but not in the same pattern as in the asymptotic case. For non-
symmetric triangles we could get up to six different condition numbers de-
pending on the orientation of the triangle, but actually we do get only three
different numbers. We see that a suitable orientation pays off in this case.
The symmetric polynomials have got only one unique condition number in-
dependent of orientation.

We can separate the polynomials into three different groups (figure 11).
The highest condition numbers are produced by the monomials, the modifed
monomials, the orthogonal polynomials and the p-hierarchical polynomials.
The condition numbers are not acceptable for higher p and grow dramatically.
The second group contains the normalized orthogonal polynomials number
2, the modified Legendre polynomials and, asymptotically, the normalized
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modified Legendre polynomials. The slowest growth of condition numbers
show the Bernstein and Lagrange polynomials and the symmetric hierarchical
polynomials. The different versions of optimization procedures do not differ
much from each other. We have chosen the best optimzation as a reference
for the following tests. Looking at the details for low degrees we see a cluster
until p = 3 or 4. An optimal choice in these sections may differ from a choice
for higher p. In this range the condition numbers are generally not very
high, hence other properties than condition numbers may become a criterion
of higher priority.

The comparison of the condition numbers for the Laplace-operator and
the pure mass-matrix (i.e. ag = 1 and a;; = 0) on the equilateral trian-
gle shows that the numbers are approximately of the same size but are not
equally clustered (figure 12). Some polynomials perform significantly better
for the mass-matrix and some perform in a similar way. The orthogonal
polynomials number 2 do benefit from this operator, whereas the normalized
ones (normalized for the Laplace-operator) are slightly better in the begining
until p = 5, but are asymptotically worse. The Lagrange polynomials have
got smaller condition numbers, too. In this case they generally differ from
the numbers of the Bernstein-polynomials. The symmetric hierarchical poly-
nomials perform similarly to the modified Legendre-polynomials. Besides
the similarity of condition numbers for the different differential-operators for
the equilateral triangle one has to mention the fact that the eigenvalues for
the mass-matrix scale in a different way in h than they do for the Laplace-
operator.

Let us look at some other triangles. A “canonical” one is the right-angled
triangle with short edges of length 1 and the hypotenuse of length v/2 (figure
14). The triangle is no longer symmetric which means that non-symmetric
polynomials are sensitive for orientation. We can see this effect for the mod-
ified monomials which split into two different paths of condition numbers.
We can see that the Bernstein-polynomials perform slightly worse for small
p, but in general there is not much difference to the equilateral triangle.

Things change for a distorted right-angled triangle with short edges of
length 1 and 16 (figure 14). The condition numbers are approximatly a factor
of 162 higher than for the undistorted case. We obtain a splitting of condition
number histories not only for the modified monomials (up to 3 branches) but
also for the p-hierarchic polynomials and the modified Legendre-polynomials.
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The difference between different orientations diverges for the Legendre-poly-
nomials starting with p = 5, which means that a proper orientation of the
polynomials depending on the geometry does pay off. Both for the nor-
malized and the original modified Legendre-polynomials the best condition
numbers (lowest branch) do not suffer as much from the distortion as the
other polynomials do.

Going further into details we look at two other triangles distorted by a
factor of 16 which gives a stretched and a contracted equilateral triangle
(figure 15). The condition numbers for the stretched triangle do not differ
much from the long right-angled triangle. In the contracted case the splitting
of the condition numbers for the modified Legendre-polynomials converges
for high p, which was not the case for the previous triangles. The normalized
Legendre-polynomials perform better than before in a medium range of p.

We can summarize this by saying that the lowest condition numbers are
gained with the Lagrange and Bernstein polynomials. They are not far away
from the numbers for the new symmetric hierachical polynomials and the
modified Legendre polynomials, which depend on orientation. The exact
ranking depends on the triangle and the differential operator itself.

3.5 3-D

We compare the condition numbers of the local matrices for the Laplace
operator on the tetrahedron. The results only depend on the angles of the
tetrahedron.

The polynomials compared are:

o the monomials z'y’2" with 1 + j + k=p e Ny

e the orthogonal (ortho. 1) polynomials proposed by [GMT78] for the
d-simplex defined in chapter (3.4).

e the orthogonal (ortho. 2) polynomials proposed by [AF26] for the d-
simplex defined in chapter (3.4).

e a modified version of the p-hierarchical polynomials proposed by
[ZT89], which are a generalization of the one- and two-dimensional
polynomials. We take the usual linear functions {by, by, by, b3} and
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Fia. 16. Local condition numbers for the Laplace operator on the equilateral tetrahedron

for different polynomials of degree 1 to 7

the edge-functions generated by permutations of:

£, = ;% ((b2 = b1)P — (bg + b1)P) p even
" L((bQ—bl)p_(b2—b1)(b2—|—b1)p_1) podd

p!

Analogously to the two dimensional case we enforce p-hierarchy and
violate symmetry by constructing internal functions and functions on
the trianglar faces with standard monomials and “bubble” functions

bo - by --- by

o the modified monomials originally proposed by [Pea76] for the triangle,
generalized for the d-simplex:

F§ o= {13

Ff = {by,by, ..., by}

—

de = U permutations of F]f_k_l-bO'br"bk
k
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Fia. 17. Local condition numbers for the Laplace operator on the right-angled tetrahedron
with short edges of length 1:1:1 and 1:1 :16 for different polynomials of degree 1 to 7

After the construction of the polynomials we substitute the usual linear
polynomial {by} for F¢.

e Lagrange polynomials which are interpolation polynomials for the reg-
ular equidistant interpolation points x, on the reference simplex:

for a=
fﬁ(xa):{(l) for a#g

e Bernstein polynomials of degree p for the d-simplex [Far90]
o]
a = b”
-t

e a construction using Legendre polynomials on the tetrahedron [SB91]:
point functions {bg, by, by, b3} defined as usual,

bo b bo—by
Fp = /8(2p - 1)ﬁ /_1 fo-1(z)dx
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Fia. 18. Local condition numbers for the Laplace operator on the right-angled tetrahedron
with short edges of length 1: 16 : 16 and 1 : 16 : 162 for different polynomials of degree 1
to 7

as edge function for the edge (0, 1) together with permutations for the
other edges,

Fp,q == boblbg fp(bl — bo) fq(QbQ — 1)

as triangle function for the triangular face (0, 1,2) together with per-
mutations for the other faces,

F, :bo'bl"'bd fal(bl_bo) faz(QbQ_l) 'fa3(263_1)"'

as general internal functions for a d-simplex with |a| = d and with
Legendre polynomials f, defined in example (1).

o the symmetric hierarchical least squares polynomials of the polynomial
vector space P;”i, optimized by a step-wise least squares method.

o the symmetric hierarchical step-wise/ consecutively (by a Gauf-Seidel
method) optimized polynomials of the polynomial vector space PS’i.
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Fia. 19. Local condition numbers for the Laplace operator on the distorted equilateral
tetrahedron stretched and contracted by a factor of 16 for different polynomials of degree
1to7

Each polynomial which generates a symmetrical subset is optimized
with respect to the previous optimized polynomials.

e the symmetric hierarchical polynomials of the polynomial vector space
P]f’i, optimized by a GauB-Seidel method for each space PpS’i, p =
1,2,....

We observe the following: For degree one all condition numbers start with
a low number. For degree two, the quadratic case, the condition numbers
diverge, but not with the same pattern as in the asymptotic case. For non-
symmetric tetrahedrons we could get up to 24 different condition numbers
depending on the orientation of the tetrahedron, but actually we get up to
six different condition numbers. We see that a suitable orientation pays off
in this case. The symmetric polynomials have got only one unique condition
number independent from orientation.

In more detail we can see in figure (16) an analogous pattern of condi-
tion numbers for the equilateral tetrahedron. We can split the polynomials

39



into groups of lower or higher growth of condition numbers. The monomi-
als, the orthogonal polynomials, the p-hierarchical polynomials, the modified
monomials and the modified Legendre-polynomials belong to the group with
rapidly growing condition numbers. On the triangle the modified Legendre-
polynomials were in the group with better condition numbers, but this is
not the case for the tetrahedron. Now the Bernstein-polynomials perform
best and the Lagrange-polynomials are slightly worse. In general the lowest
condition numbers are of the same magnitude like on the triangle, but other
ones may be much higher. We have to keep in mind that the number of
polynomials involved for each p grows an order of p faster in 3D than in 2D.

Looking at right-angled tetrahedrons we have to consider different situa-
tions concerning a factor 16 of distorsion (figures 17 and 18). The distor-
sions are applied analogously to the 2-D case (figure 13). We take the edges
I:1:1, 1:1:16, 1:16:16 and 1 :16 : 16 preserving the right-angle.
The 1 :1: 1 situation produces only slightly higher condition numbers than
the equilateral tetrahedron. The other distorted tetrahedrons have a factor
of 16% and the twice distorted ones (1 : 16 : 16%) an even higher factor. The
condition numbers for the 1 : 16 : 16 case are slightly better than for the
1:1:16 one. In each case the symmetric hierachical polynomials have the
lowest condition number of all hierachic polynomials. Only Bernstein- and
Lagrange-polynomials have lower ones, but are not far away. The different
distorsions lead to a splitting of the condition number histories, which di-
verge for modified monomials and modified Legendre-polynomials. For high
p a proper orientation pays off for these polynomials.

Proceeding to distorsions of an equilateral tetrahedron (figure 19), we can
observe a similar pattern but with different scaling. We have contracted and
stretched a tetrahedron by a factor 16. The contracted one leads to a smaller
divergence of non-symmetric polynomials and at some points to a slightly
lower condition number. The general behavior and the division into groups
remains the same. At degree p = 3 we can see small deviations for some
polynomials.

We can summarize the results saying that the lowest condition numbers
arise in the case of Bernstein and Lagrange polynomials. They are not far
away from the numbers for the new symmetric hierachical polynomials. The
modified Legendre polynomials have got higher condition numbers, which
additionally depend on orientation. The exact ranking depends on the tetra-
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hedron shape and the differential operator itself.
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A  APPENDIX

A.1 TRIANGLE

We have listed the symmetric hierarchical polynomials of the polynomial

vector space P;’i, optimized by a Gauf-Seidel method for each space P;’i,

p=1,2,..

., 8. The optimization was done rather roughly, but the condition

numbers in chapter (3.4) were calculated based on the polynomials given

here.

We only print every third polynomial, the rest can be obtained rotating
the triangle twice (bg — by — by — by).
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1:

The linear polynomials (point-functions) p

fo = bo

2:

The quadratic polynomials (edge-functions) p

fs = (—36837by by )/10000
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(edge-functions) p
fo = (bo by (— 16635193 bg by + 72779000y + 16635193 by by —

7277900 by ) ) /1000000

Polynomials for

= 4:

(edge-functions) p

+

)

2
4

Polynomials for

(bo by

45850375 b2
36167375 by by —

iz

+ 45850375 b7

36167375 by by

91700750 by by

(

— 45850375)) /12500000

2
2

159096 b

_|_

5t

internal functions) p
(bo by by (11754500 b9 by — 16270566y — 1627056 by

250071 b,)) /50000

t

+

’

2
5

Polynomials for
fis
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2,4
3

Fia. 21. Symmetric hierarchical polynomials fg and fg in

2,4

Fia. 22. Symmetric hierarchical polynomial fi5 in P,

5:

(edge-functions) p =

2,+

Polynomials for P;

(bo by
(28414762 — 852441 b2 by + 852441 by b2 + 89792 by b2 + 67950 bo by —

fis

284147 by — 28414765 — 89792y b2 — 67950 by by + 284147y )) /100000

6:

(internal functions) p =

2,4+

Two triples of polynomials for F;
= (bo by by

fa1
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Fia. 23. Symmetric hierarchical polynomials fi5 and fis in Pg’i
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16173954 by by — 6890163 by — 16173954 by b, + 6890163 bl))/100000
2,

76672000 by b2 +

6:

(edge-functions) p =

6

P

Polynomials for

(bo by
(2029142563 — 81165700 b3 by + 121748550 b2 b2 — 304084000 b2 by b2 +

Jar

_|_

2 1,2
lb2

1

> — 81165700 by b7 — 304084000 by b

0

16279800 b2 b2 — 24349710 b

213762000 by by b5 + 16688400 by by by + 48699420 by by — 16279300 by b —

— 58480 bg by + 20291425 b] + 16279800 b? b3 — 24349710 b7

2
2

16279800 b, b3
4058285)) /2000000

3943304 by b

+ 968080063 +

58480 by b

3943304 b, b2 —

2,+

Polynomials for P;”

7

(internal functions) p

(bo by b,
(204343000 b2 b, — 408686000 b

30

— 81061000 b2 by by + 20704700 b3 by +

2 12
Obl

204343000 by b7 — 81061000 by b} by — 28501800 bg by b3 + 38345000 by by
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20704700 bg b3 4+ 20004200b9 by — 123527516y + 2070470003 by —

20704700 by b2 +

20004200 by by — 12352751 b; + 4315040 bg))/l()OOOOO

Polynomials for P>* (edge-functions) p = 7

(20055000(0 by — 1002750000 b3 by + 2005500000 b b7 + 801302870 b3 b5 —
286500000 b3 — 2030145900 b2 b, b3

398956000 b2 by by +

859500000 b2 b; — 1602605740 b2 b3 + 183375700 b3 b2 + 1002750000 by b} +
2030145900 by b7 b3 859500000 by b3

801302870 by b5 —

_|_

2005500000 b2 b3
_I_

398956000 by b7 by

183375700 by b5 + 29744313060 b3 + 25007201 b9 by + 8595000055 —

200550000 b5 —

801302870 6% b2 + 286500000 b7 + 1602605740 b2 b2 — 183375700 b? b2 —

801302870 by by + 1833757000, b5 — 297443130 by b3 — 25007201 by by —

85950000 by )) /10000000
Two triples of polynomials for P;’i (internal functions) p = 8

(31373400( B2 by + 3540224 b3 by + 936696000 b2 b2 by — 62746300 b b2 —

168326200 b2 by by — 7080448 b2 b2 — 11059300 b2 by + 31373400 by b —

168326200 by b2 by — 20606560 by by b2 + 13286600 by by + 3540224 by b3 +
+ 3540224 b3 b,

11059300 b, b3

7080448 b2 b2 —
11059300 b2 b,

2316856 by

+ 483951 by by

+ 35402245, b5 + 110593000, b3 + 483951 by by
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n
14265 6 b,

2316856 by +
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i = (boby

(370874705 — 2225248263 by + 55631205638 b2 4 5708855063 b2 —
6181245 bl —

74174940 b3 b2 + 16168880 b3 by by + 24724980 b7 by — 171265650 b3 b3 —

8817189 b3 b2 + 55631205 b3 b + 346212400 b2 b2 b2 — 32337760 b2 b2 by —

37087470 b3 b2 — 140255200 b2 by b3 — 63062060 b3 by b2 + 171265650 b3 b3 +

17634378 b2 b3 + 224190 b2 b2 + 2649105 b2 — 22252482 by b3 +

16168880 by b3 b, 4+ 247249806 b7  — 140255200, b3 63 —
68062060 by b? b2 +

40048800 by by b3 + 3865040 by by by — 52982105 by — 57088550 by b —

8817189 by by — 224190 bg b3 — 1360531 by b3 — 340880 by by + 3708747 b5 +

57088550 b2 b2 — 6181245 b — 171265650 b7 b3 — 881718963 b2 +

171265650 b2 b3 + 1763437802 b3 + 224190 b2 b2 + 2649105 b? —

570885506y b — 8817189b b5 — 2241906, b — 13605310, b5 —
340880 by by +

299433202 — 176607))/200000

A.2 TETRAHEDRON

Now we consider the symmetric hierarchical polynomials in Pp&i, p =
1,2,3,4. The polynomials have been used in chapter (3.5).

We only print the first polynomial of each symmetrical set, the rest can be
obtained by even permutations of the variables by, by, by, bs.

The 4 linear polynomials (point-functions) p = I:

fo = bo

The 6 quadratic polynomials (edge-functions) p = 2:
fi = (= 460461897 by b,) /62500000

The 12 polynomials for P> (triangle-functions) p = 3:
fio = (2520584851 by by b2) /50000000

The 6 polynomials for P2* (edge-functions) p = 3:
fa2 = (biby
(—35669479477by by  + 35669479477 by by — 35669479477 by by +
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17822747392 by +
35669479477 by by — 17822747392 62)) /1000000000

The 4 polynomials for PJ* (internal functions) p = 4:
fas = (4117143117 by by b2 bs) /10000000

The 6 polynomials for PJ* (edge-functions) p = 4:
fs2 = (biby
(— 58436191856 b2 bs + 3108796370007 + 48601598362 by by bs
13736554971 by by

+48601598362by bybs — 13736554971bg by — 58436191856 by b2
6507381544 b2 —

13014763088 b, by~ — 137365549716, bs  + 6507381544 b2
13736554971 by b +

31087963700 b3 — 6507381544)) /1000000000

The 12 polynomials for P2 (triangle-functions) p = 5:
f(38) :=

(505152

(— 8769504191 by bs —  8328968708by + 166728839300 b, by
36572623855 by by —

220587611615, 4+  36572623855b, b5  — 22058761161 by

3702426378 b3)) /500000000

The 6 polynomials for P2* (edge-functions) p = 5:

f(50) :=
(b1 b
(18758276598 b2 by — 18758276598 b3 by — 32865620574 by by bs
25529946079 by by
+ 32865620574 bg b2 by —  25529946079by by  + 5682941970 b7

17048825910 b% by +
170488259100, b3 4+ 18758276598, b2+ 25529946079 b, by
5682941970 by —

5682941970 b5 — 18758276598 by b3 — 25529946079 by b3 + 5682941970 bg))/

1000000000
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A.3 4-SIMPLEX

Now we consider the symmetric hierarchical polynomials in P;’i, p =
1,2.3,4.

We only print the first polynomial of each symmetrical set, the rest can be
obtained by even permutations of the variables by, by, by, b3, by.

The 5 linear polynomials (point-functions) p = I:

fo = bo

The 10 quadratic polynomials (edge-functions) p = 2:
f5 = 5527802379 by b3/2500000000

The 30 polynomials for Pi= (triangle-functions) p = 3:
fis = 568294197 by by b2 /50000000

The 10 polynomials for Py~ (edge-functions) p = 3:

fas =
(3o b
(3713723093 bo by + 3713723093 by by + 3713723093 b by — 1016500455 by —
3713723093by by —  3713723093b, b5 —  3713723093bs by +

1016500455 bs )) /250000000

The 20 polynomials for Pf’i (tetrahedron-functions) p = 4:
fs5 = 129844041 by by by b2 /1250000

The 10 polynomials for Pj** (edge-functions) p = 4:
frs =
(b0 bs
(2757821019962 + 627173420137bg by by + 627173420137 b by by  —
7613815925 bg by

+ 627173420137 by by by — 761381592569 b, — 55156420398 by b3 —
7613815925 by by —
448021375170b3 by —  448021375170b63 b, + 1803006196607 —

448021375170 by b2
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+ 627173420137 by by bs + 627173420137 by bs by — 7613815925 by bs —

448021375170 by b3 — 448021375170 b3 by + 180300619660 b2 +

627173420137 by b3by — 76138159256y b3 — 448021375170 by b3 -+
27578210199 b3 —

7613815925 by by + 180300619660 b3 —-27578210199))/5000000000

A4 CoODE

We repeat the listing of the polynomials in a more machine-readable fashion.
The terms are written in a different bracketed form. We use a multivariate

Horner-scheme for a better numeric performance.
The polynomials on the triangle of chapter (A.1) are:

£(0)
b0;
£(3) =

(-36837.%b1%b0)/10000. ;

f£(6) =

(133659 . *b2xb1**2xb0) /5000. ;

£(9) =
(((-16635193.*b2+7277900. ) *b1*b0+ (16635193 . *b2-7277900. ) *b1**2)*b0)/
1000000. ;

£(12) =
(((45850375.*%b1*b0+(-91700750.%b1-36167375.%b2)*b1)*b0+( (45850375 . *
b1-36167375.%b2) *b1-159096 . ¥b2+*2-45850375. ) *b1)*b0) /12500000. ;
£(15) =
(((11754500.%b2*b1-1627056.%b2) *b1*b0+(-1627056 . ¥b2*b1+250071 . *
b2**2)*b1)*b0) /50000. ;

£(18) =

((((284147 .¥b1%¥b0-852441 . ¥b1**2) *b0+ (852441 . ¥xb1**2+ (89792 . b2+
67950.) *b2-284147 . ) *b1) *b0+(-284147 . xb1**2+(-89792.%¥b2-67950. ) b2+
284147 .)*b1%%2)*b0)/100000. ;

£(21) =

((((10371440000. #b2%*2%b1-81393100. *b2) *b1+(-474864000 . *b2+
26585293.)*b2) *b1%b0+((-81393100.*b2+37947000. ) *b2%¥b1+26585293 . *
b2**2)*b1)*b0) /10000000. ;

£(24) =

((((-107151020.*b2+76672000. ) #*b2*b1%*2xb0+( (107151020 . ¥b2-
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76672000.)*b2*b1**2+ (16173954 . ¥b2-6890163. ) *b2) *b1) *b0+(-16173954 . *
b2+6890163. ) #b24b1%*2) *b0)/100000. ;

£(27) =

(€ (((20291425.%b1*¥b0-81165700 . ¥b1*%2)*b0+( (121748550 .%b1-304084000 . *
b2**2)*b1+16279800 . *b2**x2-24349710. ) *b1) *b0+(((-81165700.*b1-
304084000 . ¥b2**2) b1+ (213762000 . ¥b24*2+16688400.) *b2+48699420. ) b1+
((-16279800.%b2-3943304 . ) *b2-58480. ) *b2) *b1) *b0+( ( (20291425 . ¥b1**2+
16279800 . #b2%*2-24349710. )*b1+((-16279800.*b2-3943304. ) *b2-58480. ) *
b2)*b1+9680800 . #¥b24*2+4058285 . ) *b1) *b0) /2000000 ;

£(30) =
((((204343000.*b2*b1**2xb0+( (-408686000 . *b2%¥b1-81061000. ¥b2**2) b1+
20704700 . *%b2**2) *b1) *b0+ (((204343000. *b2*b1-81061000. *b2**2) *b1+
(-28501800 . #¥b2**2+38345000. ) *b2) *b1+( (-20704700 . ¥b2+20004200 . ) *b2-
12352751.)%b2) *b1) *b0+ ( (20704700 . ¥b2**2*%b1+ ( (-20704700 . ¥b2+
20004200.)*b2-12352751.)*b2) *b1+4315040 . ¥b24*2) *b1) *b0) /1000000 ;
£(33) =
((((((200550000.%b1%¥b0-1002750000.*b1**2)*b0+ (2005500000 . *b1**2+
801302870 . *b2**2-286500000. ) *b1) *b0+( (-2005500000 . ¥b1**2+
(-2030145900 . ¥b2+398956000. ) *b2+859500000. ) *b1+(-1602605740 . ¥b2+
183375700. ) *b2**2) *b1) *b0+( (1002750000 . ¥b1**2+ (2030145900 . ¥b2-
398956000 . ) *b2-859500000. ) *b1**2+( ( (801302870 . *b2-183375700. ) b2+
297443130.)*b2+25007201 . ) #*b2+85950000. ) *b1) *b0+( ((-200550000 . *
b1**2-801302870 . *b2**2+286500000. ) *b1+ (1602605740 . *b2-183375700. ) *
b2#%2) *b1+(((-801302870.*b2+183375700. ) *b2-297443130. ) ¥b2-

25007201 .)*b2-85950000. ) *b1**2)*b0)/10000000. ;

£(36) =
(((((31373400.*b2*b1+3540224 . *xb2**2) xb1%b0+( ( (936696000 . b2~
62746800.)*b2*b1-168326200. ¥b2**2) *b1+(-7080448 . ¥b2-11059300. ) *
b2%*2) *b1) *b0+(((31373400.%b2*xb1-168326200 . *b2**2) *b1+(-20606560. *
b2*%2+13286600.)*b2) #*b1+(((3540224 .*b2+11059300. ) *b2+483951 . ) *b2-
2316856.)*b2)*b1) *b0+(( (3540224 . *b2%*2xb1+ (-7080448 . ¥xb2-11059300. ) *
b2**2) *b1+(( (3540224 . %b2+11059300.)*b2+483951. ) ¥b2-2316856. ) #b2) *
b1+1885820.%b2**2) *b1) *b0) /200000. ;

£(39) =
(((((14571400.%b2*b1**2xb0+(-43714200 . #b2*b1**2+14265 . ¥b2**2) *b1) *
b0+((43714200.*b2*b1**2+( (26008348 . *b2-11352642.) *b2+46920. ) ¥b2) *
b1+(-28530.%b2+1050552. ) *b2**2) *b1) *b0+ ((-14571400 . #b2*b1**2+
((-26008348.%b2+11352642., )*b2-46920. ) *b2) *b1**2+( ((14265.*b2-
1050552.) #b2+553029.) *b2-387563.) *b2) *b1) *b0+ ((-14265 . *b2#*2xb1+
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(28530.%b2-1050552. ) #*b2**2) b1+ (((-14265.%#b2+1050552. ) *b2-553029. ) *
b2+387563.)*b2) *¥b1%%2)*b0) /20000. ;

£(42) =

(C(C(((3708747 .¥b1*¥b0-22252482 . #*b1**2) *b0O+ (55631205 . *b1%*2+
57088550 . %b2%%2-6181245. ) *b1) *b0+( (-74174940 . ¥b1**2+16168880 . b2+
24724980.)*b1+(-171265650.%b2-8817189. ) #¥b2**2) *b1) b0+ (( (55631205, *
b1x*2+ (346212400 .%b2-32337760.)*b2-37087470.) *b1+(-140255200 . ¥b2-
68062060.)*b2**2) *b1+( (171265650 .*¥b2+17634378.) *b2+224190. ) ¥b2**2+
2649105.)*b1) *b0+ ((((-22252482 . *b1**2+16168880 . %b2+24724980. ) #b1+
(-140255200 . *b2-68062060 . ) *b2**2) *b1+ (40048800 . *b24*2+3865040 . ) ¥b2-
5298210.)*b1+((((-57088550.%b2-8817189.) *b2-224190. ) *b2-1360531.) *
b2-340880.) *b2) *b1) *b0+ (((( (3708747 . *b1**2+57088550 ., #b2* %2~

6181245 .)*b1+(-171265650.%b2-8817189.) *b2**2) *b1+( (171265650 . b2+
17634378.) *b2+224190. ) ¥b2**x2+2649105. ) *b1+( ( ((-57088550 . *b2-
8817189.)*b2-224190.)*b2-1360531.)*b2-340880. ) *b2) ¥b1+2994332 . *
b2*%2-176607.)*b1)*b0) /200000. ;

The polynomials on the tetrahedron of chapter (A.2) are:

£(0)
b0;
£(4) =

(-460461897 . ¥b2*b1) /62500000. ;

£(10) =

(2520584851 . *b2%*2*%b1%b0) /50000000. ;

£(22) =

((-35669479477 . xb2*b1+35669479477 . ¥b2+*2) *b1xb0+( (-35669479477 . ¥b3+
17822747392.) *b2*b1+ (35669479477 . b3-17822747392. ) *b2**2) *b1) /
1000000000. ;

£(28) =

(4117143117 . #b3*b2**2%b1*b0) /10000000 ;

£(32) =
(((-58436191856.*b3+31087963700. ) *b2*xb1*b0+( (48601598362 . *b3-
13736554971 .)*b2*b1+( (48601598362 . %b3-13736554971.) *b2-
58436191856 . *b3**2) *b2) *b1) *b0+( (6507381544 . xb2*b1+(-13014763088 . *
b2-13736554971.%b3) *b2) *xb1+( (6507381544 . ¥b2-13736554971.*%b3) *b2+
31087963700 . *b3**2-6507381544 . ) *b2) #b1) /1000000000 ;

£(38) =
(((-8769504191.%b3-8328968708. ) #b2*b1*b0+( (166728839300 . *b2+
36572623855, %b3-22058761161.)*b2*b1+((36572623855. ¥b3-
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22058761161 .) *b2+3702426378 . ¥xb3**2) #¥b2) *b1) *b0) /500000000 . ;

£(50) =

(((18758276598 . ¥b2*b1-18758276598 . #b2**2) ¥b1*b0+( (-32865620574 . ¥b3+
25529946079.) *b2*b1+ (32865620574 . ¥b3-25529946079. ) *b2**2) *¥b1) ¥b0+
(((5682941970.*b2xb1-17048825910.*xb2**2) b1+ (17048825910 . ¥b2**2+
(18758276598 . #b3+25529946079 . ) *b3-5682941970. ) *b2) ¥b1+(-5682941970 . %
b2**2+(-18758276598 . ¥b3-25529946079 . ) *b3+5682941970 . ) ¥b2%*2) *¥b1) /
1000000000. ;

The polynomials on the 4-simplex of chapter (A.3) are:

£(0)
b0;
£(5) =

(5527802379 .%b3%b0) /2500000000. ;

£(15) =

(568294197 . ¥*b3**2xb2xb0) /50000000. ;

£(45) =
(((11141169279.%b3*b1+11141169279. %b3*b2+ (11141169279 . *b4-
3049501365.)*b3) *b0-11141169279 . *b3+*2+b1-11141169279 . ¥xb3**2xb2+
(11141169279 . *b4+3049501365. ) *b3**2) #¥b0) /250000000 ;

f£(55) =

(129844041 . ¥b3**2xb2%b1%b0) /1250000. ;

£(75) =

(((27578210199 . *b3*b0+ (627173420137 . ¥b3*b2+ (627173420137 . *b4-
7613815925.)*b3) *b1+(627173420137 . ¥b4-7613815925. ) *b3*b2+
(-55156420398. #b3-7613815925. #b4) *b3) ¥*b0+( (-448021375170 . *b3*b2+
(-448021375170.*b4+180300619660. ) *b3) *b1+(-448021375170. *b3*b2+
627173420137 . xb3%*2) xb2+( (627173420137 . ¥b4-7613815925. ) *b3-
448021375170 . ¥b4**2) *b3) *b1+((-448021375170. %b4+180300619660. ) *
b3*b2+( (627173420137 . %b4-7613815925. ) *b3-448021375170 . ¥b4**2) *b3) *
b2+((27578210199.%b3-7613815925 . b4 ) ¥b3+180300619660 . ¥b4**2-
27578210199. ) *b3) *b0) /5000000000. ;

)



