
Multilevel Rank-1 Lattice Rules
for Infinite-dimensional
Integration Problems

Multilevel-Rang-1-Gitterformeln für unendlichdimensionale
Integrationsprobleme
Diplomarbeit von Sebastian Mayer
August 2011

Fachbereich Mathematik
Arbeitsgruppe Stochastik

Multilevel Rank-1 Lattice Rules for Infinite-dimensional Integration Problems
Multilevel-Rang-1-Gitterformeln für unendlichdimensionale Integrationsprobleme

Vorgelegte Diplomarbeit von Sebastian Mayer

1. Gutachten: Prof. Dr. Klaus Ritter, TU Kaiserslautern
2. Gutachten: Prof. Dr. Michael Kohler, TU Darmstadt

Tag der Einreichung:

Erklärung zur Diplomarbeit

Hiermit versichere ich, die vorliegende Diplomarbeit ohne Hilfe Dritter

nur mit den angegebenen Quellen und Hilfsmitteln angefertigt zu haben.

Alle Stellen, die aus Quellen entnommen wurden, sind als solche kenntlich

gemacht. Diese Arbeit hat in gleicher oder ähnlicher Form noch keiner

Prüfungsbehörde vorgelegen.

Darmstadt, den

(Sebastian Mayer)

1

Notations and Conventions

• N0 := {0,1,2,3, ...}; N := N0 \ {0}

• For A⊆ N we denote by P0(A) the set of all finite subsets of A.

• For a, b ∈ N with a < b we write a : b for the set of numbers {a, ..., b}.

• By bold letters a,b,c, ... we usually denote elements in RI where I ⊆ N follows
from the context (most of the time I = N). Especially when a vetor x occurs in
context of algorithmic issues we use additionally the notation x[i] = x i to denote
the i-the element.

• Let x ∈ RI with I ⊆ N. For v ⊆ I we denote by x
v

the |v |-dimensional subvector
of x whose components have an index in v . Moreover we use the shorthand x−v

=

xI \v .

• Landau symbols: Let f , g : R→ R. Then we write

– f = O(g) if there exists c > 0 and x0 ∈ R such that | f (x)| ≤ c|g(x)| for all
x > x0.

– f = Ω(g) if there exists c > 0 and x0 ∈ R such that | f (x)| ≥ c|g(x)| for all
x > x0.

– f =Θ(g) if both f = O(g) and f = Ω(g).

• Alternatively, we use the following notations for asymptotic behaviour:

– f ´ g iff f = O(g).

– f ¼ g iff f = Ω(g).

– f ≍ g iff f = Θ(g).

• Let x ∈ Rn. We use the notation {x} to indicate that we take componentwise the
fractional part, that is

{x} j = x j − ⌊x j⌋

2 Erklärung zur Diplomarbeit

Contents

1 Introduction 5

2 Fundamentals 9
2.1 Pricing of Path Dependent Options in the Black-Scholes Model 9

2.1.1 Approximation of Stochastic Differential Equations 9
2.1.2 Euler Monte Carlo Method . 11
2.1.3 Multilevel Euler Monte Carlo Method 12
2.1.4 Option Pricing as Infinite-dimensional Integral 13

2.2 Information-based Complexity . 16
2.2.1 Quadrature Rules and General Multilevel Algorithm 18
2.2.2 Cost and Error Models . 19

2.3 Reproducing Kernel Hilbert Spaces (RKHS) . 22
2.3.1 Definition and Existence . 23
2.3.2 Scaled Sums of RKHS . 24
2.3.3 Tensor Products of RKHS . 26
2.3.4 Restrictions of Reproducing Kernels . 28

2.4 Rank-1 Lattice Rules . 28
2.4.1 Rank-1 Lattices . 29
2.4.2 Rank-1 Lattice Rules for Weighted Kernel Spaces 30

3 Multilevel Rank-1 Lattice Rules as Optimal QMC Algorithms 33
3.1 Construction of the Function Space . 33

3.1.1 Construction for Finitely Many Variables 34
3.1.2 Extension to Countably Many Variables 35

3.2 Results for the Minimum-Kernel . 39
3.2.1 Anchored Weighted Sobolev Spaces . 39
3.2.2 Complexity Results . 43

4 C++ Library for Numerical Experiments 47
4.1 General Features and Core Components . 47

4.1.1 Design of the Library . 47
4.1.2 Basic Variant of the Multilevel Algorithm 48
4.1.3 Multithreading . 50

4.2 Pathwise Computation of Asian Call Payoff . 51
4.2.1 Comparison of Distinct Approaches . 51
4.2.2 Implementation of the Lévy-Ciesielski Expansion 55

4.3 Methods of Integration Point Generation . 58
4.3.1 Mersenne Twister . 59
4.3.2 (Shifted) Rank-1 Lattices . 59

3

4.4 Multilevel Parameter Strategies . 64
4.5 Estimating Orders of Convergence . 66

5 Numerical Experiments for the Asian Call Option 71
5.1 Preliminaries . 71
5.2 Results for Multilevel Shifted Rank-1 Lattice Rules 73
5.3 Effect of Constant Factors in the Weights . 74
5.4 Results for Adaptive Multilevel Parameter Strategy 76
5.5 Shift Sensitivity of Rank-1 Lattice Rules . 76

6 Prospects 81

4 Contents

1 Introduction
In this thesis we study infinite-dimensional integration problems over RN where one seeks
to determine an integral of the form

I(f) =

∫

X

f (x)µ(dx)

for a product probability measure µ over X ⊆ RN and the integrand f originating from
some class F of functions on X. The practical application which motivates our examina-
tions arises in Mathematical Finance. In the Black-Scholes model we are able to describe
the possible price histories (paths) of an asset S on a time horizon [0, T] in terms of i.i.d.
standard normally distributed random variables X0, X1, X2, Thereby X0 determines
the asset price at time T , X0 and X1 determine the price at time T/2, X0, X1, and X2

at T/4, X0, X1, and X3 at 3/4T , and so on. Furthermore, payoffs of option contracts
with underlying S can then be described in terms of functions f (X0, X1, ...) and the option
price is modelled by the expectation E[f (X0, X1, ...)]. We obtain a formulation as infinite-
dimensional integration problem if we let X= RN, µ = ⊗ j∈NN (0,1), and F be the class of
payoffs that are of interest.

In general, the problem instances we address within this thesis share the property that
there are no closed-form solutions available to determine the integral, giving rise to the
need for numerical methods which at least approximate I(f) for given f ∈ F . For this
purpose we consider quadrature rules which approximate I(f) by a weighted sum

n∑

i=1

wi f (x(i)), (w1, ..., wn) ∈ Rn

over the integrand f evaluated at the points x(1), ...,x(n) ∈ X. However, a feasible quadra-
ture rule will generally be able to process only a finite number of components of each
integration point x(1), ...,x(n). For the considered problem instances we find a remedy
through the occurring integrands being anchored. This means that there is an element
a ∈ X such that any integrand f ∈ F can be evaluated in the components of a without
the need for computation. In consequence, we get a feasible quadrature rule if the points
x(1), ...,x(n) are chosen such that they differ only in the first d components from a. Of
course, we actually approximate the integral I(Ψ1:d,a f) then, with

(Ψ1:d,a f)(x) = f (x1:d ,a−1:d).

The particular quadrature rules which we focus on in this thesis are multilevel rank-1

lattice rules. These comprise two different concepts. The first is the multilevel idea. One
chooses dimensions d1 < ... < dL and writes I(Ψ1:dL ,a f) as the telescope sum

I(Ψ1:dL ,a f) = I(Ψ1:d1,a f) +

L∑

l=2

I(Ψ1:dl ,a
f −Ψ1:dl−1 ,a f).

5

Then for each integral appearing on the right hand side, we apply an extra quadrature
rule. Experience shows that it is often easier to approximate I(Ψ1:dL ,a f) to some precision
in this way than by using only one quadrature rule which we apply directly to Ψ1:dL ,a f .

The second concept which is involved in multilevel rank-1 lattice rules is that each
quadrature rule takes deterministic integration points that form a rank-1 lattice. Such
lattices are constructed on some multidimensional unit cube [0,1]d in the first instance,
always consisting of a prime number of points. Then they may be transformed to the
domain given by the problem specification. For instance, regarding option pricing we
would transform the lattices to the domain Rd .

Illustrating a rank-1 lattice is the easiest on the 2-dimensional unit square. For this
purpose, fix a prime n. Initially we reside in the origin, then cover a lattice specific
distance in a lattice specific direction to reach the next point, and repeat this until we
reach the origin again, which will be after n times. If we thereby hit the boundary of
the unit square, say in the point y, we enter the square again in a boundary point on the
opposite side. We obtain this point either by reflection over the horizontal line through the
point (1

2
, 1

2
) if y hits the bottom or top boundary, or by reflection over the corresponding

vertical line if y hits the right and left boundary, respectively. For a graphical illustration,
see the left picture in Figure 1.1.

Y

0

1

0

1

X

0 1

0 1

Y

0

1

0

1

X

0 1

0 1

Figure 1.1: Rank-1 lattice and shifted rank-1 lattice with n = 11 points.

When we are given a rank-1 lattice we may additionally apply a shift as illustrated in the
right picture in Figure 1.1. Beside the specific distance and direction, the shift turns out
to be a crucial quantity to affect the quality of a rank-1 lattice for numerical integration.

Exploring the potential of multilevel rank-1 lattice rules, we structure the thesis into two
parts. In a first theoretical part we seek to identify instances of the infinite-dimensional
integration problem for which we can prove multilevel rank-1 lattice rules to perform
well. More specifically, we assume a worst-case setting, measuring the error e(Q, F) and
cost(Q, F) of a quadrature rule Q with regard to F in terms of the greatest error and
largest cost over all f ∈ F , respectively.

In this setting we use a cost model reflecting the fact that we are primarily interested
in understanding how well a given quadrature rules utilizes the available information.

6 1 Introduction

This information is given in form of f evaluated at the integration points. Hence the
model measures computational cost only in terms of the sum over all cost these function
evaluations produce. In turn, we assume for all f ∈ F that computing f (x) has cost
increasing linearly in the maximal dimension in which x differs from the anchor a.

Then, based on the worst-case setting we present a result by Niu et al.[NHMR10].
Considering integration with respect to the uniform distribution over [0,1]N these authors
show, for F being the unit ball of a weighted Sobolev space, that the n-th minimal error

eN (F) = inf{e(Q, F) : Q deterministic quadrature rule with cost(Q, F)≤ N}

satisfies the asymptotic bound

eN (F) = Θ(N
−1)

for properly chosen weights. This matching bound is established by means of multilevel
rank-1 lattice rules, each involved rank-1 lattice rule using an appropriate deterministic
shift. Consequently, multilevel rank-1 lattice rules yield optimal algorithms for the specific
problem setting. However, we obtain the proper shifts only by an existential statement
and it is still an open problem whether it is possible to construct the shifts explicitly.

In the practical part we focus again on the application in Mathematical Finance we
mentioned in the beginning. Unfortunately, it is not possible to carry over the results
given in the theoretical part to payoffs studied for option pricing in the Black-Scholes
model. Further there are no theoretical results yet on the efficiency of multilevel rank-
1 lattice rules for path dependent option pricing. Hence, for the time being, we are
restricted to numerical experiments.

We content ourself with running experiments for the Asian call option which is defined
by the discounted payoff

ϕAC(w) = e−rT max

1

T

∫ T

0

w(t)dt − K , 0

!
,

where w denotes a specific price history of the underlying asset. As we have no indica-
tion how to choose shifts, it is not reasonable to focus on deterministic multilevel rank-1
quadrature rules here. Instead we randomize the shifts, leading to randomized algorithms
which we refer to as multilevel shifted rank-1 lattice rules.

Now, by experimentally measuring orders of convergence, we find for e, the rooted
mean square integration error of the multilevel shifted rank-1 lattice rule applied to the
Asian call option, the relation

e ∝ (log N)0.94 · N−0.71

where N denotes recorded cost in terms of the previously mentioned cost model. For com-
parison, we run the same experiments also for shifted rank-1 lattice rules, omitting the
multilevel technique, as well as Monte Carlo rules where the integration points are sam-
pled according to a multivariate normal distribution. In all cases we observe convergence

7

of the rooted mean square error being significantly slower than in case of the multilevel
shifted rank-1 lattice rules.

Additionally we perform a line of experiments which explore the impact of determinis-
tically chosen shifts on the integration error observed at given cost. Thereby we consider
only shifts that are equal in each dimension. Our results document that the shift heavily
affects the error. To give an impression, if one has somehow found the right shift, it is
possible to compute the option price correctly up to the fifth digit after the decimal point,
using only 17 integration points in 16 dimensions. This result suggests that it is sufficient
to search for good shifts on the diagonal. However, it is still unclear how to do this search.

The thesis is organized as follows. In Chapter 2 we introduce the necessary back-
ground. In particular, we show thoroughly how to formulate option pricing as an infinite-
dimensional integration problem over RN.

Then, in Chapter 3 we present the results by Niu et al.[NHMR10]. We particularly
emphasize the construction and characterization of the function space, adding a proof
that verifies the function space to exist in the form as stated by the authors.

In Chapter 4 we describe the implementations we used to carry out the numerical ex-
periments. We provide rather detailed descriptions since an important contribution of
this thesis is the development of a fast and flexible framework which is easily extensible
for further experimental designs, integrands and methods of integration point genera-
tion. In particular, we demonstrate that the assumptions on the cost model made for the
theoretical part are well-founded by the real implementations.

Subsequently, we present the results of our numerical experiments in Chapter 5. Finally,
in Chapter 6 we briefly name some open problems and give a short overview on open work
regarding our implementational framework.

8 1 Introduction

2 Fundamentals

2.1 Pricing of Path Dependent Options in the Black-Scholes Model

Let T > 0 and assume W to be a Brownian motion on the time interval [0, T] taking
values inR. In the Black-Scholes model the price process of an asset is given by a geometric

Brownian motion S = Γ(W) with Γ defined by

Γ(f)(t) := s0 exp((r −σ2/2)t +σ f (t)) (2.1)

and r denoting the fixed income rate, σ the volatility of the asset and s0 the initial value
at time t = 0.

Path dependent option contracts are now modelled by PS-integrable discounted payoffs
ϕp : C([0, T])→ R. The prize of the option is set to be the expectation E[ϕp(S)].

A particular option is the Asian Call Option with payoff ϕp = ϕAC given by

ϕAC(f) = e−rT max

1

T

∫ T

0

f (t)dt − K , 0

!
. (2.2)

That is, the holder realizes profit if the average price of the underlying asset is greater
than a strike prize K agreed upon beforehand.

To obtain the prize of the option one has to determine the expectation E[ϕp(S)]. In
case of path dependent payoffs ϕp closed-form solutions for this purpose are typically not
available. Consequently we need numerical methods to compute the value at least ap-
proximately. The classical Monte Carlo (MC) method would be to estimate the expectation
E[ϕp(S)] by taking the arithmetic mean of ϕp applied to a fixed number of i.i.d. samples
distributed according to PS. But this is not practicable as we can not simulate paths of S

exactly.
Instead we have to find some approximating process Ŝ with paths we are able to sample

such that ϕp is PŜ-integrable and

E[ϕp(S)]≈ E[ϕp(Ŝ)].

We make this more precise below.
We assume T = 1 in the following. This is no restriction as for T ′ > 0 the process W̃

defined by W̃t =
p

T ′Wt/T ′ yields a Brownian motion on [0, T ′].

2.1.1 Approximation of Stochastic Differential Equations

The option pricing scenario is a special case of the following situation: Consider a scalar,
autonomous Stochastic Differential Equation (SDE)

dX t = a(X t)dt + b(X t)dWt ,

X0 = x0 ∈ R,
(2.3)

9

on the time interval [0,1]. The drift coefficient a : R → R and the diffusion coefficient
b : R→ R are assumed to satisfy the global Lipschitz condition

|a(x)− a(y)|+ |b(x)− b(y)| ≤ C1|x − y |,

where C1 is a positive constant and x , y ∈ R. In the case of autonomous SDEs the global
Lipschitz condition implies the linear growth condition

a(x)2+ b(x)2 ≤ C2(1+ x2),

where C2 > 0 is constant and x ∈ R. These conditions guarantee the existence of a strong
solution X of (2.3), see [KS98, Section 5.2]. Then determine the expectation E[ϕ(X)] of
a PX -integrable functional ϕ : C([0,1])→ R with respect to X

We can recover the option pricing situation in this general SDE setting in two different
ways:

R1: Either we consider the driving Brownian motion W as the solution of the trivial
variant of (2.3) where a = 0, b = 1 and x0 = 0. Then we consider functionals given
by

ϕ = ϕp ◦ Γ.

R2: Or we recover the geometric Brownian motion S as the solution of (2.3) where

a(x) = r x ,

b(x) = σx ,

x0 = s0.

Then we consider ϕ = ϕp.

Consider C([0,1]) ,→ L2([0,1]) and denote by ‖ · ‖ the norm on L2([0,1]). In the next
subsection we will introduce a construction scheme which yields a sequence of processes
(X̂ (l))l∈N such that

E[‖X − X̂ (l)‖2]
1
2 → 0 for l →∞

and for each l ∈ N the process X̂ (l) has paths we can simulate. To obtain approximations
for E[ϕ(X)] from (X̂ (l))l∈N we have to ensure that

(i) ϕ is PX̂ (l)-integrable and

(ii) liml→∞E[ϕ(X̂ (l))] = E[ϕ(X̂)].

Example 2.1. In setting R2 it suffices to have ϕp Lipschitz continuous in order to guarantee
(i),(ii). In setting R1, given Lipschitz continuity of ϕp, we additionally have to ensure that

(ϕ(X̂ (l)))l∈N is uniformly integrable.

10 2 Fundamentals

2.1.2 Euler Monte Carlo Method

The Euler-Maruyama scheme is a classical and simple method to construct approximations
X̂ (l) of a solution X of (2.3) in the strong sense

E[‖X − X̂ (l)‖2]
1
2 → 0

for l →∞. For a detailed introduction see e.g. [KP92, Chapter 9]. Here we consider only
the case of equidistant time discretizations.

Definition 2.2 (Euler-Maruyama scheme). Choose l ∈ N0 and construct the Euler approx-

imation X̂ (l) using the iterative scheme

X̂
(l)

0 = x0

X̂
(l)
ti+1
= X̂

(l)
ti
+ a(X̂

(l)
ti
)(t i+1− t i) + b(X̂

(l)
ti
) · (Wti+1

−Wti
)

where t i = i · 2−l , i = 0, ..., 2l . For t /∈ {t0, ..., t2l } use piecewise linear interpolation:

X̂
(l)
t = X̂

(l)
ti
+

t − t i

t i+1− t i

(X̂
(l)
ti+1
− X̂

(l)
ti
), t ∈ [t i, t i+1).

Paths of X̂ (l) are easy to sample as we only need realizations of the independent Brow-
nian increments

∆W (i) =Wti+1
−Wti

, i = 0, ..., 2l − 1 (2.4)

which are normally distributed with mean 0 and variance δl .

Remark 2.3. Alternatively, we may define the Euler-Maruyama scheme on the path space
for given l ∈ N via the map ζ(l) : C([0,1])→ C([0,1]) given by

ζ(l)(f)(0) = x0

ζ(l)(f)(t i+1) = ζ
(l)(f)(t i) + a(ζ(l)(f)(t i))(t i+1− t i) + b(ζ(l)(f)(t i)) · (f (t i+1)− f (t i))

for t i = i · 2−l , i = 0, ..., 2l and piecewise linear interpolation for t /∈ {t0, ..., t2l }.
Then we have

X̂ (l) = ζ(l)(W).

Imposing sufficient conditions on ϕ we now get a practicable numerical method to
estimate E[ϕ(X)] by using the classical Monte Carlo method with samples drawn under
the distribution PX̂ (l) .

Definition 2.4 (Euler Monte Carlo Method). Let l ∈ N and n ∈ N. The Euler MC method

AMC
l ,n
= AMC

l ,n
(ϕ, a, b) is defined by

AMC
l ,n
=

1

n

n∑

j=1

ϕ(X̂
(l)

j
) (2.5)

with X̂
(l)

1 , ..., X̂ (l)
n

denoting n independent copies of X̂ (l).

2.1 Pricing of Path Dependent Options in the Black-Scholes Model 11

Remark 2.5. Note that AMC
l ,n

uses realizations of n·2l−1 independent random variables with

mean 0 and variance 2−l .

Remark 2.6. For an estimator A of E[ϕ(X)] the mean squared error

e2(A) = E
�
(E[ϕ(X)]− A)2

�
(2.6)

splits into two sources of error,

e2(A) = b2(A) + Var(A).

Here b(A) denotes the bias

b(A) =
��E[ϕ(X)]− E[A]

�� . (2.7)

For the Euler MC method we usually have b(AMC
l ,n
) 6= 0 as we only approximate the paths

of X . That is, AMC
l ,n

is an biased estimator of E[ϕ(X)]. The second error source Var(AMC
l ,n
)

arises from the fact that we have only finitely many sample paths of X (l) at hand to
estimate the expectation E[ϕ(X̂ (l))]. We have

Var(AMC
l ,n
) =

1

n2
Var(ϕ(X̂ (l))).

2.1.3 Multilevel Euler Monte Carlo Method

The following concept was first developed in [H98], [HS99], and [H01]. In the context
of SDE it was brought up by [G08]. Let L ∈ N and X̂ (l) be Euler approximations of X for
l = 1, ..., L. Then it clearly holds true that

E[ϕ(X̂ (L))] = E[ϕ(X̂ (1))] +

L∑

l=2

E[ϕ(X̂ (l))−ϕ(X̂ (l−1))]. (2.8)

Given sufficient conditions on ϕ it is often the case that the difference ϕ(X̂ (l))−ϕ(X̂ (l−1))

converges in L2 with limit 0. Hence variances decline for increasing l and in particu-
lar, assumptions (i) and (ii) are fulfilled then. The multilevel idea now is to exploit the
declining variances by estimating each expectation on the right hand side of (2.8) inde-
pendently using modified Euler MC methods. Thereby we allow the less samples to be
used the greater l gets. We hope that we reach a better estimate but with less realizations
of Brownian increments needed as if we had approximated E[ϕ(X̂ (L))] directly with the
Euler Monte Carlo method.

The modification requires the Euler-Maruyama scheme to be altered such that for a
realization of ϕ(X̂ (l))−ϕ(X̂ (l−1)), l ≥ 2, both X̂ (l) and X̂ (l−1) use the same realization of
Brownian increments.

This is easily accomplished because of the fact that for ∆W1,∆W2 being normally dis-
tributed with mean 0 and variance 2−l , the sum

∆W1 +∆W2

12 2 Fundamentals

is normally distributed with mean 0 and variance 2−l+1. Consequently, if we are given a
realization (∆wi)i=0,...,2l−1−1 of Brownian increments for X̂ (l), we obtain a realization of

Brownian increments for X̂ (l−1) by

(∆wi +∆wi+1)i=0,...,2l−2−1.

We refer to this modified version in the following as the multilevel Euler-Maruyama scheme.

Definition 2.7 (Multilevel Euler Monte Carlo Method). Choose L ∈ N, L > 0 and numbers
n= (n1, ..., nL). The multilevel Euler MC method AM L

L,n = AM L
L,n(ϕ, a, b) is defined by

AM L
L,n =

1

n1

n1∑

j=1

ϕ(X̂
(1)

j) +

L∑

l=2

1

nl

nl∑

j=1

�
ϕ(X̂

(l)

j)−ϕ(X̂
(l−1)

j)
�

.

Here (X̂ (1)j) j=1,...,n1
denote n1 independent copies of X̂ (1). For l = 2, ..., L the tu-

ples (X̂ (l)
j

, X̂
(l−1)

j
) j=1,...,nl

are nl independent copies of the coupled Euler approximations

(X̂ (l), X̂ (l−1)) constructed according to the multilevel Euler-Maruyama scheme.

Remark 2.8. The multilevel Euler MC method AM L
L,n is a biased estimator for E[ϕ(X)]. We

have

Var(AM L
L,n) =

1

n1

Var(ϕ(X̂ (1))) +

L∑

l=2

1

nl

Var(ϕ(X̂ (l))−ϕ(X̂ (l−1)))

and typically b(AM L
L,n) 6= 0.

Moreover, the multilevel Euler MC method has the advantage over the classical Euler
MC method that it allows to estimate the bias, see Paragraph S3 in Section 4.4 below.

2.1.4 Option Pricing as Infinite-dimensional Integral

So far we have considered the option pricing scenario from an SDE perspective. Now
we establish a link between infinite-dimensional integration over RN and option pricing
in the SDE setting R1. This will basically result from describing Brownian motion in a
pertinent form.

Brownian motion can be written in form of a series representation

W =

∞∑

j=0

X je j

where (X j) j∈N0
denotes a sequence of independent standard normally distributed random

variables and (e j) j∈N0
a sequence of functions from C([0,1]). We name two well-known

series representations and make precise in which sense convergence of the partial sums∑n

j=0
X je j is given.

2.1 Pricing of Path Dependent Options in the Black-Scholes Model 13

With the Karhunen-Loève expansion we actually reconstruct a given Brownian motion
W , see e.g. [R00, Example 28, p. 54/55]. The space C([0,1]) is considered as an
embedding in L2([0,1]). For the functions e j one has

e j(t) =
p

2
sin(π(j+ 1/2)t)

π(j+ 1/2)
(2.9)

and the sequence of independent normally distributed random variables (X j) j∈N is recov-
ered from the given Brownian motion W by

X j =
¬

W, e j

¶
L2

.

Then W =
∑∞

j=0
X je j in the sense that

lim
n→∞

E[‖W −
n∑

j=0

X je j‖2
L2
]1/2 = 0.

The sequence (e j) j∈N forms an orthogonal basis of L2([0,1]). Consequently, orthogonality
and independence of (X je j) j∈N coincide. Because of |sin(π(j + 1/2)t)| ≤ 1 the terms
X je j(t) contribute less and less to the variance of Wt with increasing j. In particular,
among all linear methods which approximate W by means of a certain number k of i.i.d.
standard normally distributed variables, the Karhunen-Loève partial sum up to term k

explains most of the variance of W .

Remark 2.9. Reconstructing a Brownian motion by means of the Karhunen-Loève expan-
sion is also known as principal component construction.

The second series representation is the Lévy-Ciesielski expansion, see e.g. [K06, Section
21.5]. Here we consider C([0,1]) equipped with the usual supremum norm ‖·‖∞. Define

J(m) :=max(2m−1− 1,0)

for m ∈ N0 and let (Xm, j)m∈N0, j=0,...,J(m) be a sequence of independent standard normally
distributed random variables on a common probability space (Ω,A, P). Further choose
(em, j)m, j to be the Schauder functions which are given by e0,0(t) = t for m = j = 0 and
otherwise

em, j(t) =2
(m−1)

2





t − k−1

2m if t ∈ I(k− 1, m)
k+1

2m − t if t ∈ I(k, m)

0, else

(2.10)

with k = 2 j + 1 and I(m, k) := [k

2m , k+1

2m [. The Schauder functions have the form of hat
functions, see Figure 2.1 for a graphical illustration.

Now the partial sums

L(n) :=

n∑

m=0

J(m)∑

j=0

Xm, jem, j (2.11)

14 2 Fundamentals

e0,0

e
0
,0
(t
)

0

0,5

1

t

0

e1,0

e
1
,0
(t
)

0

0,2

0,4

0,6

0,8

1

t

0 0,2 0,4 0,6 0,8 1

e2,0

e
2
,0
(t
)

0

0,5

1

t

0 0,5 1

Figure 2.1: The first Schauder functions for m= 0,1,2.

P-a.s. converge uniformly in t to a process W which is a Brownian motion. Moreover, we
even have

lim
n→∞

E[‖W − L(n)‖2
∞]

1/2 = 0.

For the partial sum L(n) we can easily observe that it is a process with continuous,
piecewise linear paths. In particular, on each interval I(n, i), i ∈ {0, ..., 2n − 1} we have
L(n) given by

L
(n)
t = c1(n, i) · t + c2(n, i) (2.12)

where the coefficients c1(n, i) and c1(n, i) are linear combinations of the Xm, j which de-

pend on the interval. For a graphical illustration how L(n) is generated from the Schauder
functions see Figure 2.2. A detailed description of the coefficients c1(n, i), c2(n, i) and
their efficient calculation is given in Subsection 4.2.2 later in this work.

0

0,5

1

t

0 0,5 1

e0,0

e0,0 + e1,0

e0,0 + e1,0 + e2,0 + e2,1

Figure 2.2: Illustration of L(2) assuming Xm, j = 1.

2.1 Pricing of Path Dependent Options in the Black-Scholes Model 15

The partial sum L(n) exactly reproduces W at the points t i = i/2n, i = 0, ..., 2n. For
increasing m, j the terms Xm, jem, j(t i) contribute less and less to the variance of Wti

,
demonstrated the best by an example: For i = 1/4,1/2,3/4,1 we have

Var(W1) = 1= Var(X0,0),

Var(W1/4) =
1

4
= Var(

1

4
X0,0+

1

4
X1,0 +

1
p

8
X2,0),

Var(W1/2) =
1

2
= Var(

1

2
X0,0+

1

2
X1,0),

Var(W3/4) =
3

4
= Var(

3

4
X0,0+

1

4
X1,0 +

1
p

8
X2,1).

Remark 2.10. Constructing Brownian motion by means of the Lévy-Ciesielski expansion
is a special case of the Brownian bridge construction.

Remark 2.11. Partial sums of the Lévy-Ciesielski expansion are closely related to the Euler-
Maruyama scheme in the SDE setting R1. For fixed n ∈ N the distributions of L(n) and of
the Euler approximation X̂ (n) on the path space C([0,1]) coincide,

PL(n) = PX̂ (n) .

In particular, let x1:2n = (x i)i=1,...,2n denote a realization of 2n standard normally dis-
tributed random variables. Then we obtain on the one hand a sample path of X̂ (n) if we
take (

p
2−nx i)i=1,...,2n as Brownian increments, on the other hand we obtain a sample path

of L(n) if we take x1:2n as a realization of (Xm, j)m=0,...,n; j=0,...,J(m).

Now let W be a Brownian motion given by one of the previously introduced series
representations. For the sake of simplicity we use in either case the same indexing for the
moment, writing W =

∑∞
j=0

X je j . Put µ = ⊗ j∈NN (0,1). Then there is a subset X ⊆ RN
with µ(X) = 1 such that for a feasible payoff ϕp the map f defined by

f (x) := ϕp ◦Γ(
∞∑

j=0

x je j) (2.13)

is a real valued function on X. For this f we have E[ϕp ◦ Γ(W)] = I(f) where

I(f) =

∫

RN

f (x)µ(dx).

2.2 Information-based Complexity

In the previous section we saw two particular randomized algorithms for option pricing
in the Black-Scholes model. Now there is a number of questions which naturnally arise:

• What are quantities to measure the performance of these algorithms?

• How good are these algorithms, are there better ones?

16 2 Fundamentals

• How hard is the considered problem? That is, is there a lower bound on the perfor-
mance which algorithms can achieve?

This section is devoted to introducing quantities and a formal setting from information-
based complexity theory to treat questions of this kind. Thereby we stick to the perspective
of infinite-dimensional integration we developed in Subsection 2.1.4.

The abstract problem we study has the following form. Let D be a Borel subset of R and
let ρ be a probability measure on B(D). We consider the product measure µ := ⊗ j∈Nρ
and a measurable subset X ⊆ DN with µ(X) = 1. Then let F be a class of µ-integrable
functions f : X → R. The infinite-dimensional integration problem over RN is now to
calculate the integral

I(f) :=

∫

X

f (x)µ(dx) (2.14)

for f ∈ F .

Definition 2.12. We denote the infinite-dimensional integration problem as described
above by the tupel (D,ρ,X, F).

Remark 2.13. The class F embodies global information which is available about the inte-
grands, e.g. smoothness constraints.

Example 2.14. Let W be a Brownian motion given by the Lévy-Ciesielski expansion. Then
option pricing for Lipschitz continuous payoffs in the Black-Scholes model according to
the previous definition is the tupel (R,X, N (0,1), F) where

X= {x ∈ RN : lim
n→∞
‖

n∑

j=0

x je j‖∞ <∞}

and F denotes the set of all functions given by (2.13), the payoffs ϕp being Lipschitz
continuous now.

In the scope of this thesis we will consider only classes F of integrands which are sym-
metric, convex subsets of a vector space over R. We recall:

Definition 2.15. Let F be a subset of some vector space over R. Then we call F

(i) symmetric if for all f ∈ F it holds true that − f ∈ F .

(ii) convex if for f , g ∈ F and λ ∈ [0,1] the vector λ f + (1−λ)g is in F , too.

If we think of a method to calculate the integral I(f) running on a real existent machine
and which is given some subroutine that computes the evaluation of f at a given point x,
this subroutine can certainly take only a finite number of components of x into account.

We address this limitation in our abstract setting as follows: Fix some a ∈ X and define
for each finite subset υ ⊂ N the set

Xυ,a =
�
x ∈ X : x−υ = a−υ

	
.

2.2 Information-based Complexity 17

Then for a particular integrand f ∈ F the available information is given by

f (x), x ∈
⋃

υ∈P0(N)

Xυ,a.

Assume information is only gained using points in Xυ,a for some υ ∈ P0(N). Further

define Ψυ,a : R(R
N)→ R(RN) by

(Ψυ,a f)(x) := f (xυ,a−υ). (2.15)

Then any method using only this information to compute approximative solutions to the
infinite-dimensional integration problem actually only produces solutions to the finite-
dimensional subproblem given by

∫

Xυ,a

f (x)µ(dx), f ∈Ψυ,a(F).

2.2.1 Quadrature Rules and General Multilevel Algorithm

The algorithms we consider for numerical integration in this thesis are quadrature rules:

Definition 2.16. Let n ∈ N and let w = (w1, ..., wn) ∈ Rn. Further let X = (X1, ...,Xn)

denote a family of random vectors defined over a common probability space, the Xi taking
values in

⋃
υ⊂NXυ,a. Then Q(·;X ,w) given by

Q(f ;X ,w) =

n∑

i=1

wi f (Xi), f ∈ F

is called a randomized quadrature rule with deterministic weights.
If all wi = 1/n we write Q(·;X) = Q(·;X ,w). If X consists of i.i.d. random vectors

we call the quadrature rule a classical Monte-Carlo rule. If each Xi is constant we call it a
deterministic quadrature rule and prefer the notation X = Pn to emphasize that we have
a set of n points now.

Remark 2.17. Generally, if we want to emphasize that we generate integration points
randomly according to some target distribution then we use the terminology Monte Carlo

integration.

Example 2.18. We continue Example 2.14. In terms of SDE setting R1 we recover the
Euler Monte Carlo method as classical Monte Carlo rules applied to certain integrands.
Therefor let a = 0 = (0,0, ...). Furthermore recall the partial sums of the Lévy-Ciesielski
expansion L(l), l ∈ N, see (2.11). Now let l ∈ N and put υ = 1 : 2l . By Remark 2.11
the Euler approximation X̂ (l) has the same distribution on the path space C([0,1]) as the
partial sum L(l) of the Lévy-Ciesielski expansion. Consequently,

E[ϕ(X̂ (l))] = I(Ψυ,0 f)

for the integrand f defined by (2.13). Moreover, the quadrature rule Q(f ;X) corresponds
to the Euler Monte Carlo method if X consists of i.i.d. random vectors with distribution
µυ =⊗2l

j=1
N (0,1).

18 2 Fundamentals

Now we define the general multilevel algorithm for integration over RN which uses
quadrature rules as building blocks:

Definition 2.19 (Multilevel Algorithm). Let L ∈ N, L > 0 and further d= (d1, ..., dL) ∈ NL

as well as n = (n1, ..., nL) ∈ NL. Further, let Xn1,d1
, ...,XnL ,dL

be independent families
of random vectors defined over a common probability space such that Xni ,di

consists of
ni random vectors each of which takes values in X1:di ,a

. Moreover, for i = 1, ..., L let

w(i) ∈ Rni . Then the multilevel algorithm is defined by

Qml
n,d
(f) :=Q(Ψ1:d1,a f ;Xn1,d1

,w(1)) +

L∑

l=2

Q(Ψ1:dl ,a
f −Ψ1:dl−1 ,a f ;Xnl ,dl

,w(l)). (2.16)

We call the numbers l = 1, ..., L the levels of the algorithms.
In particular, if the building blocks Q(·;Xni ,di

,w(i)) are classical Monte Carlo rules, we

refer to Qml
n,d

as multilevel Monte Carlo rule.

Remark 2.20. Let d∗ = max{d1, ..., dL}. Then the multilevel algorithm Qml
n,d

is a weighted
quadrature rule using random vectors which take values in X1:d∗,a.

2.2.2 Cost and Error Models

To draw conclusions on the intrinsic difficulty of a problem and the performance of par-
ticular quadrature algorithms we have to specify what we consider to be cost and error of
an algorithm. We follow the models used in [HMNR10].

We are concerned both with randomized and deterministic algorithms, hence the fol-
lowing error definition w.r.t. a particular integrand is obvious:

Definition 2.21 (Integration Error). Let Q = Q(·;X ,w) be a quadrature rule. We define
the integration error e(Q, f) which the algorithm Q makes for a particular f ∈ F as the
root mean squared error

e(Q, f) =
p

E[((I(f)−Q(f))2]. (2.17)

Typically, a quadrature rule Q takes only integration points from Xυ,a for some finite
υ ⊂ N. This implies Q(f) = Q(Ψυ,a f). Then the integration error e(Q, f) comprises two
sources of error. Namely a truncation error

|I(f)− I(Ψυ,a f)|

which is because Q actually approximates solutions to a finite-dimensional subproblem,
and the integration error p

E[(I(Ψυ,a f)−Q(Ψυ,a f))2]

which the rule Q produces for the integrand Ψυ,a f . Using

e(Q, f) ≤ |I(f)− I(Ψυ,a f)|+
p

E[(I(Ψυ,a f)−Q(Ψυ,a f))2]

2.2 Information-based Complexity 19

we may seperate the analysis of truncation and finite-dimensional integration error. This
provides a way to obtain at least upper bounds on the integration error.

Regarding not only the error with respect to a single function f ∈ F but the whole class
we take a pessimistic perspective and jugde quadrature rules by means of the greatest
error they make over all integrands in the class F . If only deterministc algorithms are
allowed this setting is called worst-case setting in the literature. If randomized algorithms
are considered, as well, usually the term randomized setting is used.

Definition 2.22 (Worst-case Integration Error). Given a class of integrands F and a
quadrature algorithm Q we define the (randomized) worst-case error of Q to be

e(Q, F) := sup
f ∈F

e(Q, f). (2.18)

Remark 2.23. If Q denotes a deterministic algorithm the worst-case error reduces to

e(Q, F) = sup
f ∈F

|I(f)−Q(f)|.

Now we turn to the cost models. We assume that for each possible integrand f ∈ F

there is a subroutine which calculates the value f (x) for a given point x ∈ X. Then we
consider two distinct cost models for evaluating f at a point x:

Definition 2.24 (Fixed Subspace Sampling (fix)). Choose a finite ; 6= υ ⊂ N and a ∈
X. Then evaluations are only allowed at points x ∈ Xυ,a. The cost for evaluation at x

coincides with the dimension of Xυ,a, that is it is modelled by a function

cυ,a(x) =

(
dim(Xυ,a) , if x ∈ Xυ,a

∞ , otherwise.

Definition 2.25 (Variable Subspace Sampling (var)). Choose a ∈ X and an increasing
sequence v= (υi)i∈N of finite nonempty subsets such that

Xυ1,a ⊂ Xυ2,a ⊂

Now points for evaluation are allowed which are contained in one of the finite-
dimensional subspaces Xυi ,a

. The cost is thereby set to be

cv,a(x) = inf{dim(Xυi ,a
) : x ∈ Xυi ,a

}

where we put inf; =∞.

For the computational cost of a quadrature algorithm we accommondate only function
evaluation and omit any cost which arises from arithmetical operations. Thus, for a given
cost function c we set costc(Q, f) to be the sum of the evaluation costs over all integration
points used by Q. Note that it is possible that Q chooses the integration points adaptively
depending on the integrand f and hence the cost depend on f , too. For randomized
algorithms costc(Q, f) is a random variable.

According to the worst-case and randomized setting respectively, we define the (ran-
domized) wort-case cost as follows:

20 2 Fundamentals

Definition 2.26 (Worst-case cost). Let Í∈ {fix,var} and define

Cfix := {cυ,a : υ ⊂ N finite, a ∈ X},
Cvar := {cv,a : v= (υi)i∈N as above, a ∈ X}.

Then the worst-case cost costÍ(Q, F) of a quadrature algorithm Q is defined to be

costÍ(Q, F) := inf
c∈CÍ

sup
f ∈F

E[costc(Q, f)].

Remark 2.27. The infimum construction "infc∈CÍ
..." assures that we deal fairly with the

algorithm on the basis of a cost function which fits to the points at which the algorithm
evaluates the integrand.

Example 2.28. For the multilevel algorithm given by (2.19) we have

costvar(Q
ml
n,d

, F)≤ n1d1+

L∑

l=2

2nldl .

The concepts we have seen so far allow to draw conclusion on the performance of a
particular algorithm. To examine the hardness of a problem we need quantities which
give information about the performance of a whole class of algorithms for the integration
problem.

Denote by Qran(F) the class of randomized quadrature rules for functions in F and by
Qdet(F) the class of deterministic quadrature rules.

Definition 2.29 (n-th Minimal Errors and Information Complexity). For ◊ ∈ {det, ran}
and Í∈ {fix,var} the n-th minimal worst-case error is given by

e◊N ,Í(F) := inf{e(Q, F) : Q ∈ Q◊(F)∧ costÍ(Q, F)≤ N}. (2.19)

The information complexity is given by

comp◊ǫ,Í(F) := inf{costÍ(Q, F) : Q ∈ Q◊(F)∧ e(Q, F)≤ ǫ}. (2.20)

Remark 2.30. As each deterministic algorithm is in particular a randomized algorithm we
have Qdet(F)⊂Qran(F). Consequently,

eran
N ,Í
(F)≤ edet

N ,Í
(F)

In the literature the n-th minimal errors and the information complexity are usually
defined with respect to a broader class of algorithms. But in the case of deterministic
quadrature rules it suffices to introduce the quantities with respect toQdet(F) as we only
consider classes F of integrands which are symmetric, convex subsets of some vector
space, see e.g. [MNR11, Prop. 7.24, p. 253f].

However, in the case of randomized quadrature rules the n-th minimal error and the in-
formation complexity as defined here yield merely upper and lower bounds, respectively,
for these quantities defined in the usual way.

2.2 Information-based Complexity 21

Definition 2.31 (Optimal Quadrature Rule). We call an quadrature rule Q optimal if we
have e(Q, F) = e◊N ,Í(F) for costÍ(Q, F)≤ N .

Definition 2.32. The infinite-dimensional integration problem is said to be tractable if
there exists p > 0 such that

e◊N ,Í(F) = O(N−p). (2.21)

The supremum p∗ over all p > 0 such that (2.21) is satisfied is called the exponent of the
problem.

Remark 2.33. Equivalently a problem is tractable if there exists q > 0 such that

comp◊
ǫ,Í
(F) = O(ǫ−q). (2.22)

For the infimum q∗ over all q > 0 such that (2.22) is satified, we have q∗ = 1/p∗ where
p∗ is the exponent of the problem.

Remark 2.34. We introduced key notions from information based complexity theory in a
way which is suitable for our SDE perspective R1. We conclude this section noting that
all notions and problem definitions can be introduced analogously in a way suited for
perspective R2. Then one usually studies X = (C([0,1]),‖ · ‖∞) or X = Lp([0,1]) with
1≤ p <∞, and µ is the distribution of the geometric Brownian motion on the path space
C([0,1]).

In particular, we are then given a theoretical result on pricing of the Asian Call option in
the Black Scholes model. Let F denote the class of all Lipschitz continuous functionals on
C([0,1]) with Lipschitz bound at most 1. Then we have ϕAC ∈ F . Now, for fixed subspace
sampling it is known that

eran
N ,fix(F)´ (N

−1/4). (2.23)

The bound is derived by means of the Euler Monte Carlo method. For the variable sub-
space sampling regime it is known that

N−1/2 ´ eran
N ,var(F)´ N−1/2 log N . (2.24)

Here the bound is derived by means of the Multilevel Euler Monte Carlo method. For both
results see [CDMR08, Theorem 11].

2.3 Reproducing Kernel Hilbert Spaces (RKHS)

The function spaces we will present in Chapter 3 are Hilbert spaces whose elements are
functions from some domain E into the reals and on which point evaluations are contin-
uous linear functionals. In this section we introduce the general theory of such Hilbert
spaces as far as necessary for Chapter 3. A comprehensive treatise of this topic is found
in [A50].

Note that we consider only real valued kernels in the following. However, all result are
also true for kernels with complex values.

22 2 Fundamentals

2.3.1 Definition and Existence

Let E be some set and H a Hilbert space with inner product denoted by 〈·, ·〉 whose
elements are functions f : E→ R and which has continuous point evaluations. By Riesz’s
representation theorem the evaluation at point t ∈ E has a representative δt . We define a
map K : E × E→ R by

K(s, t) :=

δs,δt

�
= δt(s) = δs(t).

By definition, K has the properties that

(H1) K(·, t) is an element of H for each t ∈ E,

(H2) 〈h, K(·, t)〉= h(t) holds for every h ∈ H (reproducing property).

Because each point evaluation has a unique representative, K is the only map having both
properties with regard to H.

Definition 2.35. Let H be a Hilbert space of functions f : E→ R and the point evaluations
being continuous functionals on H. Then the uniquely determined map K which fulfills
(H1) and (H2) is called the reproducing kernel. The space H is called a reproducing kernel

Hilbert space (RKHS).

We recall the following definition:

Definition 2.36. A symmetric map K : E × E → R is called positive semi-definite if for all
n ∈ N, t1, ..., tn ∈ E and c1, ..., cn ∈ R it holds true that

n∑

i=1

n∑

j=1

cic jK(t i, t j) ≥ 0.

Clearly a reproducing kernel is symmetric. That it is positive semi-definite is easy to
see, as well: For c1, ..., cn ∈ R and t1, ..., tn ∈ E we have

n∑

i, j=1

cic jK(t i, t j) =

n∑

i, j=1

cic j

¬
K(·, t i), K(·, t j)

¶
=

*
n∑

i=1

ciK(·, t i),

n∑

j=1

c jK(·, t j)

+
≥ 0.

This leads to the question if each positive semi-definite map is the reproducing kernel
of some Hilbert space with continuous point evaluations. And indeed we can answer
this question positively and consequently have a one-to-one relation between positive
semi-definite mappings and reproducing kernel Hilbert spaces.

Proposition 2.37. Let K : E × E → R be positive semi-definite. Then there exists a unique

Hilbert space (H(K), 〈·, ·〉K) with H(K) ⊆ RE such that (H1) and (H2) hold true for H =

H(K).

2.3 Reproducing Kernel Hilbert Spaces (RKHS) 23

Proof sketch. See e.g. [R00, Prop. III.1, p. 34] for a complete proof. Here we only outline
the key points to proof existence. One begins by considering the space

H0(K) := span{K(·, t) : t ∈ E}

of finite linear combinations and defining a bilinear form

*
n∑

i=1

λiK(·, t i),

n∑

j=1

µ jK(·, s j)

+

0

:=

n∑

i, j=1

λiµ jK(t i, s j)

on H0(K).
For the vector space (H0(K), 〈·, ·〉0) one easily verifies (H1) and (H2), but H0(K) will

in general not be complete. In order to reach H(K) ⊆ RD it is not sufficient to argue
that every normed vector space can be completed. Instead one constructs H(K) explicitly
as the set of pointwise limits of Cauchy sequences from H0(K). Then one can verify the
space H(K) to be complete w.r.t to the bilinear form given by

h, g
�

K := lim
n→∞

hn, gn

�
0

where (gn)n∈N and (hn)n∈N denote Cauchy sequences from H0(K) and g,h their pointwise
limits. That (H1) and (H2) hold true for H(K) now is easy to see.

Example 2.38. An easy example to familiarize oneself with the concept of reproducing
kernel Hilbert spaces provides the Euclidean space Rn, which can be recovered as a RKHS
of functions f : E→ R with domain E = {1, ..., n} for the kernel

K : E × E→ R, (i, j) 7→
(

0 if i 6= j

1 if i = j
.

2.3.2 Scaled Sums of RKHS

In the following we consider sums and rescalings of reproducing kernels and examine
how the Hilbert spaces we obtain this way are related to the original ones.

We begin by considering for a reproducing kernel K : E2 → R the rescaled variant γK
with γ > 0. Obviously the sets H0(K) and H0(γK) are equal. A simple calculation reveals
the scalar products, which we obtain in accordance to the proof of Proposition 2.37, to be
related as follows:

〈·, ·〉γK =
1

γ
〈·, ·〉K .

We derive

Lemma 2.39. H(γK) = H(K) as sets and (H(γK),γ−1 〈·, ·〉K)≃ (H(K), 〈·, ·〉K) via the isom-

etry f 7→ γ−1/2 f .

24 2 Fundamentals

Proof. The set H0(K) has the same completion w.r.t 〈·, ·〉γK and 〈·, ·〉K , i.e. H(γK) = H(K)

as sets. That f 7→ γ−1/2 f is an isometry is easy to see.

Assume now we are given reproducing kernels K1, ..., Kn defined on the common do-
main E2. Obviously, the following holds true:

Lemma 2.40. The map K(x , y) :=
∑n

i=1
Ki(x , y) is positive semi-definite, as well.

The Hilbert space we obtain from K as in Lemma 2.40 is closely related to the direct
sum of the RKHS that correspond to the kernels Ki . We put this more precisely with the
next proposition. For this purpose we define the mapping

Φ :

n⊕

i=1

H(Ki)→
n∑

i=1

H(Ki) ⊆ RE , (h1, ...,hn) 7→
n∑

i=1

hi. (2.25)

Note that the notation
∑n

i=1
H(Ki) stands for the vector space of functions from E into the

reals which we obtain if we take pointwise sums of functions from the spaces H(Ki).

Proposition 2.41 (Sums of RKHS). Let K1, ..., Kn be reproducing kernels on a common

domain E2 and K =
∑n

i=1
Ki . Then we have

H(K) =

n∑

i=1

H(Ki)

as sets. The norm of f ∈ H(K) is given by

‖ f ‖2
K
=

n∑

i=1

‖ f ′
i
‖Ki
=min{

n∑

i=1

‖ fi‖2
Ki

: f =

n∑

i=1

fi and fi ∈ H(Ki)}

where (f ′
i
)i=1,...,n ∈ (kerΦ)⊥ with f =

∑n

i=1
f ′
i
.

Proof. For the case n= 2 see e.g. [R00, Lem. III.2, p. 35]. For arbitrary n ∈ N the assertion
follows by induction.

Remark 2.42. If kerΦ = {0} every f ∈ H(K) has a unique representation as a sum f =∑n

i=1
fi with fi ∈ H(Ki). Consequently, we have

‖ f ‖2
K
=

n∑

i=1

‖ fi‖2
Ki

and each H(Ki) is a closed subspace of H(K). Hence we may identify H(K) with⊕n

i=1
H(Ki).

Remark 2.43. In the situation of Proposition 2.41, assume kerΦ = {0} and consider the
kernel given by eK(x , y) :=

∑n

i=1
γiKi(x , y) with γi > 0. Then

H(K) =

n⊕

i=1

H(Ki) ≃
n⊕

i=1

H(γiKi) = H(eK)

2.3 Reproducing Kernel Hilbert Spaces (RKHS) 25

where isomorphy is induced by the isometry

ι : H(K)→ H(eK),
n∑

i=1

hi 7→
n∑

i=1

p
γihi.

That is, depending on how we rescaled each summand, we obtain a distorted version of
H(K). Moreover, as H(Ki) and H(γiKi) coincide as sets, we can immediately conclude
that H(K) and H(eK) are equal as sets, as well. We even get that H0(eK) is also dense in
H(K).

Corollary 2.44. Let K , L be reproducing kernels on E2. If cL−K is positive semi-definite for

some c > 0 we have

H(K) ⊆ H(L)

and on H(K) the norms fulfill

‖ · ‖L ≤ c‖ · ‖K .

Proof. Follows immediately from Proposition 2.41 since cL = K + M where M = cL −
K .

2.3.3 Tensor Products of RKHS

We begin this subsection with a general result:

Lemma 2.45 (Schur’s lemma). Let K1, ..., Kn be reproducing kernels on a common domain

E2. Then the map K given by K(x , y) =
∏n

i=1
Ki(x , y) is positive semi-definite, as well.

Proof. A proof of 2.45 is given in [A50, Section VIII].

Within this thesis we only deal with products of reproducing kernels where each kernel
actually depends on a different set of variables. For the sake of simplicity we treat only
products of two kernels below, but by induction these results carry over to products of
arbitrary finite numbers n ∈ N of kernels.

Definition 2.46. Let E = E1× E2 where E1, E2 are arbitrary non-empty sets. Furthermore
assume we are given reproducing kernels K1 : E2

1
→ R and K2 : E2

2
→ R. Then we write

K = K1⊗ K2

for the kernel K : E2→ R given by

K((x1, x2), (y1, y2)) = K1(x1, y1) · K2(x2, y2).

Lemma 2.47. Let K1, K2 as above. Further let (ei)i∈N, (f j) j∈N denote orthonormal bases

(ONB) of H(K1) and H(K2) respectively. Then (ei ⊗ f j)(i, j)∈N2 yields an ONB of H(K1⊗ K2).

26 2 Fundamentals

Proof. For i, j ∈ N let αi, j ∈ R such that
∑

i, j |αi, j|2 <∞. Since

ei ⊗ f j(x1, x2) =

ei, K1(·, x)

�
K1

¬
f j , K2(·, y)

¶
K2

the Hölder inequality yields for every (x1, x2) ∈ E that


∑

i, j

|αi, j · ei ⊗ f j(x1, x2)|



2

≤
∑

i, j

α2
i, j

∑

i, j

ei, K1(·, x1)

�2

K1

¬
f j , K2(·, x2)

¶2

K2

=
∑

i, j

α2
i, j

K1(x1, x1)K2(x2, x2).

Consequently
∑

i, j αi, j · ei ⊗ f j is a real valued function.
From ∑

i, j

αi, j · ei ⊗ f j(x1, x2) =
∑

i

ei(x1) ·
∑

j

αi, j · f j(x2)

and

∑

i



∑

j

αi, j · f j(x2)




2

≤
∑

i

∑

j

α2
i, j

K2(x2, x2)

we derive that
∑

i, j αi, j · ei ⊗ f j = 0 implies αi, j = for all i, j ∈ N.
Hence the set

H :=




∑

i, j

αi, jei ⊗ f j : αi, j ∈ R and
∑

i, j

|αi, j|2 <∞





equipped with the scalar product given by*∑

i, j

αi, j · ei ⊗ f j ,
∑

i, j

βi, j · ei ⊗ f j

+
=
∑

i, j

αi, j · βi, j

yields a Hilbert space of real valued functions with ONB (ei ⊗ f j)(i, j)∈N2 . It remains to
verify that H is the reproducing kernel Hilbert space of K1 ⊗ K2. But this is easy to see:
For (x , y) ∈ E the choice αi, j = ei(x) f j(y) shows K1 ⊗ K2(·, (x , y)) ∈ H. Furthermore for
h=

∑
i, j βi, jei ⊗ f j we have

h, K1⊗ K2(·, (x , y))

�
=
∑

i, j

βi, jei(x) f j(y) = h((x , y)).

Hence the reproducing property follows for K1⊗ K2.

In our particular situation the following holds true:

Proposition 2.48. Let K1, K2 be reproducing kernels on E2
1

and E2
2

respectively. Then for

K = K1⊗ K2 we have

H(K) = H(K1)⊗H(K2).

For elementary tensors f = f1⊗ f2 the norm is given by ‖ f ‖K = ‖ f1‖K1
‖ f2‖K2

.

Proof. See [A50, Section VIII]. There the interested reader does also find results for gen-
eral products of reproducing kernels.

2.3 Reproducing Kernel Hilbert Spaces (RKHS) 27

2.3.4 Restrictions of Reproducing Kernels

Proofs for the following are found in [HMNR10, Appendix A]. Let E = E1 × E2 as in the
previous subsection. Further fix a ∈ E2 and let Ψ : RE → RE denote the linear mapping
given by

(Ψ f)(x1, x2) = f (x1, a)

for x1 ∈ E1, x2 ∈ E2.
Now assume we are given a reproducing kernel K : E2 → R and consider the kernels

J : E2→ R and L : E2
1
→ R given by

J((x1, x2), (y1, y2)) = K((x1, a), (y1, a))

and

L(x1, y1) = K((x1, a), (y1, a))

respectively. Then the following holds true:

Lemma 2.49. We have

{Ψ f : f ∈ H(K)∧ ‖ f ‖K ≤ 1}= {g ∈ H(J) : ‖g‖J ≤ 1}.

Lemma 2.50. We have

H(J) = { f : E→ R : ∃g ∈ H(L) ∀x2 ∈ E2 : f (·, x2) = g}.

In particular, for f ∈ H(J) and g(·) := f (·, x2) we have g ∈ H(L) and ‖g‖L = ‖ f ‖J .

2.4 Rank-1 Lattice Rules

Rank-1 lattice rules are deterministic quadrature rules which have been widely studied for
finite-dimensional integration problems of the form

∫

[0,1]d

f (x)dx, f ∈ F

for different classes F of functions on the d-dimensional unit cube [0,1]d and integration
w.r.t. the uniform distribution. Their naming is due to their point set forming a rank-1

lattice.
Let us fix D = [0,1] for this section.

28 2 Fundamentals

2.4.1 Rank-1 Lattices

We give a brief introduction to rank-1 lattices in the following and refer the interested
reader to [SJ94] for a more detailed treatise of construction and properties of rank-1
lattices. Also classical analysis of error bounds can be found there.

Definition 2.51 (Rank-1 lattice). Let n ∈ N be a prime number. A rank-1 lattice is a point
set Pn = {x(1), ...,x(n)} in the d-dimensional unit cube [0,1]d with

x
(i)

j
=

i · z j mod n

n

for a vector z with z j ∈ {1, ..., n− 1}. The vector z is called the generator of the lattice.

We use the notation {·} below to indicate that we take (component-wise) the fractional
part of the argument. This mapping composed with ordinary addition turns a rank-1
lattice Pn into a finite Abelian group: For x(k), x(l) ∈ Pn we have

{x(k)+ x(l)}= x(k+l mod n) ∈ Pn.

Remark 2.52. The term rank-1 refers to the fact that Pn can be decomposed into only one

cyclic subgroup, namely Pn itself.

Definition 2.53 (Shifted rank-1 lattice). Let Pn denote a rank-1 lattice and let∆ ∈ [0,1]d .
Then we obtain a shifted rank-1 lattice ePn = {x̃(1), ..., x̃(n)} by

x̃
(i)

j = {x
(i)

j +∆}.

The lattice points of Pn and ePn differ only in their absolute position. The relative posi-
tions the points have to each other are equal modulo 1.

The classical motivation to study rank-1 lattices as point sets for quadrature rules is that
they have a so called low discrepancy for certain generators. The discrepancy of a point
set is a quantity that measures the deviation from the uniform distribution. The lower the
discrepancy is the more the point set looks like being uniformly distributed.

There are a number of different discrepancies defined in the literature. One important
variant is given by the so called L2 variant of the star discrepancy. It is defined as follows:
Let for a point set Pn and A⊆ [0,1]d the local discrepancy be given by

discr(A, Pn) :=
|Pn ∩ A|

n
− vol(A).

Then the L2 variant of the star discrepancy is defined by

D⋆
2
(Pn) :=

 ∫

[0,1]s

|discr([0,x], Pn)|2dx

!1/2

,

where [0,x] = [0, x1]× ...× [0, xd].

2.4 Rank-1 Lattice Rules 29

If Pn = {X1, ...,Xn} with (Xi)i=1,..,n a family of i.i.d. random variables and X1 uniformly
distributed on [0,1]d , then its discrepancy is at most of the order 1/2 in n on the average,
that is E[D⋆

2
(Pn)] = O(n−1/2). However, if Pn = {x1, ...,xn} is a low-discrepancy point

set we have D⋆
2
(Pn) = O(n−1(log n)d), which is now even a deterministic bound. If the

class F of integrands is now chosen properly these bounds become upper bounds for the
randomized worst-case error.

Since low-discrepancy point sets are deterministic but behave like uniformly distributed
point sets to some extent, quadrature rules using such point sets are also referred to as
quasi-Monte Carlo rules.

Remark 2.54. Generally, if we want to emphasize that we generate integration points by
means of a low-discrepancy point set we use the terminology quasi-Monte Carlo integra-

tion.

2.4.2 Rank-1 Lattice Rules for Weighted Korobov Spaces

A more recent line of research studies rank-1 lattice rules for finite-dimensional inte-
gration problems as above where the class F of integrands is the unit ball of weighted
Korobov spaces. The facts given in this subsection are mainly found in [NW10] which
provides a comprehensive survey of this topic.

Recall that the Fourier coefficients of an integrable function f : [0,1]d → C are given by

f̂ (h) =

∫

[0,1]d

exp(−2πihT x) f (x)dx, h ∈ Zd .

Furthermore, for γ = (γd,u)d∈N,u⊆1:d with γd,u > 0 and α > 1/2 we put

̺d,α,γ(h) =
1

γd,uh

∏

j∈uh

|2πh j|2α

for h ∈ Zd and uh = { j ∈ 1 : d | h j 6= 0}.
Now consider the set

Hd,α,γ :=



 f : [0,1]d → C : f is periodic and

∑

h∈Zd

̺d,α,γ(h)| f̂ (h)|2 <∞



 .

Then we have

Proposition 2.55. The set Hd,α,γ as given above is a Hilbert space with norm given by

‖ f ‖2
Hd,α,γ

=
∑

h∈Zd

̺d,α,γ(h)| f̂ (h)|2.

Moreover, the space Hd,α,γ is a reproducing kernel Hilbert space with kernel Kd,α,γ on D2d

given by

Kd,α,γ(x,y) =
∑

u⊆1:d

γd,u

∏

j∈u

2

(2π)2α

∞∑

h=1

cos(2πh(x j − y j))

h2α

!
. (2.26)

30 2 Fundamentals

Definition 2.56 (Weighted Korobov Space). The space Hd,α,γ as given in the previous
proposition is called the weighted Korobov space with weights γ and parameter α. Further-
more, we call Kd,α,γ the Korobov kernel associated with Hd,α,γ.

Remark 2.57. For x ∈ [0,1] it holds true that

B2(x) := x2− x +
1

6
=

1

π2

∞∑

h=1

cos(2πx)

h2
. (2.27)

Hence in the case α= 1 we may write Kd,1,γ also in the form

Kd,1,γ(x,y) =
∑

u⊆1:d

γd,u

2|u|

∏

j∈u

B2({x j − y j}).

If we take the unit ball B(Kd,α,γ) as the class F for the integration problem on the unit
cube [0,1]d the following proposition reveals that there are deterministic quadrature
rules whose worst-case error declines with order arbitrarily close to α in the number of
integration points n.

Proposition 2.58. Let F = B(Hd,α,γ) and denote by Pn(z) a rank-1 lattice with generator z.

Then for all d ∈ N and for all τ ∈ [1/2,α) there exists a constant C(d,τ) > 0 such that for

all n ∈ N there is a generator z∗ such that the corresponding quadrature rule satisfies

e(Q(·; Pn(z
∗)), F)≤ C(d,τ)(n− 1)−τ.

With z∗ as in the previous proposition we refer to rank-1 lattices Pn(z
∗) as good rank-1

lattices.

Remark 2.59. With the weights (γu)d∈N,u⊆1:d properly chosen the constant C(d,τ) in
Proposition 2.58 can be shown to be bounded from above for all d and τ by some positive
constant.

The kernel Kd,α,γ obviously has the property to be shift-invariant which we introduce in
the next definition.

Definition 2.60. A reproducing kernel K : [0,1]d×[0,1]d → R is said to be shift-invariant

if

K({x+∆}, {y+∆}) = K(x,y)

for all ∆ ∈ [0,1]d .

Remark 2.61. As the particular choice ∆= {−y} reveals a shift-invariant kernel K can be
written in terms of one variable:

K(x,y) = K({x− y},0) =: K({x− y}).

2.4 Rank-1 Lattice Rules 31

The shift-invariance of Kd,α,γ make the results of Proposition 2.58 especially interesting
as we do not only have existence of the generator z∗ but we are actually able to calculate
it efficiently. This is due to an approach first brought up by Sloan and Reztsov [SR02]
which chooses the components of z∗ one by one. A notably efficient advancement of this
approach is the fast component-by-component (CBC) algorithm developed by Nuyens and
Cools (see [Ny07], but also [NC06a] and [NC06b]). If we take n to be the number of
lattice points (where n is prime) and d the dimension of the integration points then the
fast CBC algorithm allows to compute z∗ at cost O(dn log(n)) using O(n) memory. We
elaborate the algorithm in Subsection 4.3.2 when we discuss our C++ library.

The previous reasoning shows that shift-invariance is crucial from a practical point of
view. However, as we see in the following it is possible to utilize the results gained in the
case of shift-invariance to some extent in a non-shift-invariant setting, as well.

Lemma 2.62. Let K : [0,1]2d → R be a reproducing kernel. Then the map K shinv defined by

K shinv (x,y) :=

∫

[0,1)d

K({x+∆}, {y+∆})d∆. (2.28)

yields a reproducing kernel, as well. Furthermore K shinv is shift-invariant.

Definition 2.63. Let K be a reproducing kernel. Then we call the kernel K shinv which we
obtain by the previous lemma the associated shift-invariant kernel of K .

Now, given a kernel K and its associated shift-invariant kernel K shinv , we obtain the
following relation for quadrature rules using rank-1 lattices and randomly shifted rank-1
lattices, respectively, on the spaces H(K) and H(K shinv).

Proposition 2.64. Let Pn be a rank-1 lattice. Furthermore, let P∆
n

denote the shifted version

of Pn with shift ∆ ∈ [0,1]d . If ∆ is a uniformly distributed random variable then

E[e2
�

Q(·, P∆
n
), B(K)

�
] = e2

�
Q(·, Pn), B(K shinv)

�
.

Proof. See [Ny07, Theorem 2.22].

If we have a good lattice rule for B(K shinv) the previous result gives us at least the
existence of a good lattice rule for B(K) reaching the same order of worst-case error decay
through an averaging argument. From a practical perspective such a pure existential
statements is useless. However, we may also interpret Proposition 2.64 in the way that
we can construct a randomized quadrature rule using a rank-1 lattice with random shift
for B(K) which is on the average at least as good as the deterministic rule using the same
unshifted rank-1 lattice on B(Kshinv). This motivates the following definition:

Definition 2.65 (Shifted Rank-1 Lattice Rule). Let Pn denote a shifted rank-1 lattice where
the shift is a random variable uniformly distributed on [0,1]d . Then we call the random-
ized quadrature rule Q(·; Pn) a shifted rank-1 lattice rule.

Definition 2.66 (Multilevel Shifted Rank-1 Lattice Rule). If we provide the multilevel
algorithm (2.16) with shifted rank-1 lattice rules as building blocks then we call it a
multilevel shifted rank-1 lattice rule.

Remark 2.67. We will explicitly exploit the results above in Section 3.2 in the situation
of anchored weighted Sobolev spaces. These are reproducing kernel Hilbert spaces with
kernels such that their associated shift-invariant kernels are precisely Korobov kernels.

32 2 Fundamentals

3 Multilevel Rank-1 Lattice Rules as
Optimal QMC Algorithms

Niu et al.([NHMR10]) specify a class of reproducing kernel Hilbert spaces H(K) with
product weights whose unit balls yield suitable function spaces such that the integration
problem 2.12 becomes tractable in the worst-case setting. As cost models both the fixed
subspace sampling regime 2.24 and the variable subspace sampling regime 2.25 are ana-
lyzed. In the latter case quasi-Monte Carlo rules combined with the multilevel technique
outperform classical QMC rules.

In this chapter we firstly present the construction idea of these Hilbert spaces in detail.
Thereby we follow Hickernell et al.([HMNR10]) and add a proof that the considered
Hilbert spaces feature the properties stated by Hickernell et al. in the case of functions in
infinitely many variables. Next we put emphasis on a particular application where H(K)

is recovered as an anchored weighted Sobolev space. Finally, we briefly summarize the
tractability and optimality results given by [NHMR10] for the specific situation of H(K)

being the anchored weighted Sobolev space.

3.1 Construction of the Function Space

Except for subsection 3.1.2 the following is basically a reformulation of [HMNR10, Section
2].

Let us briefly recall the setting of our integration problem. We have a Borel measure
ρ over some Borel set D ⊂ R and consider the product measure µ = ⊗ j∈Nρ. Then
integration is with respect to this product measure.

Now assume we are given a reproducing kernel k : D× D→ R which the following is
fulfilled for:

(A1) k 6= 0 is measurable w.r.t. B(D2)

(A2) the only constant function in H(k) is the zero function: H(k) ∩H(1) = {0}

(A3) we have
∫

D
k(x , x)ρ(dx)<∞

As k is positive semi-definite, (A3) ensures k to be ρ⊗ρ-integrable.
Besides the kernel we assume that we are given a sequence of weights (γ j) j∈N with

(A4) γ1 ≥ γ2 ≥ ... > 0,
∑∞

j=1
γ j <∞.

For finite sets u ⊂ N we set γu :=
∏

j∈u γ j. This means in particular γ; = 0. The role of
the weights becomes clear in Subsection 3.2.2 where we treat tractability issues.

33

In order to construct the function space our first step is the choice of an appropriate
domain. We will see in 3.1.2 why we choose

X=



x ∈ DN :

∞∑

j=1

γ jk(x j, x j) <∞



 . (3.1)

instead of the whole set DN.

Lemma 3.1. It holds true that µ(X) = 1.

3.1.1 Construction for Finitely Many Variables

For u ∈ P0(N) we define

ku : X×X→ R, (x,y) 7→
∏

j∈u

k(x j, y j). (3.2)

That is, ku = (
⊗

j∈u k)⊗mc where mc is the constant kernel on (DN\u)2. With Proposition
2.48 and Lemma 2.50 we conclude

H(ku) = { f : X→ R | ∃g ∈
⊗

j∈u

H(k) ∀x ∈ X : f (·,x−u) = g}.

We introduce the shorthand notation Hu := H(ku), which means in particular H; = H(1).
Obviously, functions in Hu depend only on the variables xu.

Remark 3.2. Generally, if κ is a kernel on X
2 actually depending only on variables with

index u ∈ P0(N), this property carries over to the functions in H(κ). It is a immediate
consequence of the reproducing property. For x,y ∈ X with xu = yu and f ∈ H(κ) we find

f (x) =

f ,κ(·, (xu,x−u))
�
κ =

f ,κ(·, (xu,y−u)

�
κ = f (xu,y−u) = f (y).

For finite υ ⊂ N Lemma 2.40 yields that the map Kυ given by

Kυ(x,y) :=
∑

u⊆υ
γuku(x,y) (3.3)

defines a reproducing kernel. The so obtained Hilbert space H(Kυ) consists of functions
in the variables xυ. We even have that each function in H(Kυ) has a unique orthogonal
decomposition into functions from the spaces Hu.

Lemma 3.3. Given distinct finite subsets u1, ...,un ⊂ N, let f1 ∈ Hu1
, ..., fn ∈ Hun

such that∑n

i=1
fi = 0. Then we have fi = 0 for each i = 1, ..., n.

Proof. See [HMNR10, Section 2, Lem. 3]. We note that assumption (A2) is crucial here.
The key argument is that for fixed l ∈

⋃n

i=1
ui\
⋂n

i=1
ui the assumption

∑n

i=1
fi = 0 implies

∑

i∈I1

fi =
∑

i∈I2

fi = 0 (3.4)

with I1 = {i : l ∈ ui} and I2 = {i : l /∈ ui}. This allows to conclude by induction.

34 3 Multilevel Rank-1 Lattice Rules as Optimal QMC Algorithms

Proposition 3.4. For the kernel Kυ it holds true that

H(Kυ) =
⊕

u⊆v

Hu (3.5)

where the norm is given by

‖ f ‖2
Kυ
=
∑

u⊆υ
γ−1

u
‖ fu‖2

u
. (3.6)

Note that following the shorthands introduced above we wrote ‖ · ‖u for ‖ · ‖ku
.

Proof. Lemma 3.3 assures that the map Φ given by (2.25) with Ki = kui
is injective. Now

Proposition 2.41 yields the desired result.

The space H(Kυ) has also a tensor product structure in the sense that

H(Kυ) = { f : X→ R | ∃g ∈
⊗

j∈υ
H(1+ γ jk) ∀x ∈ X : f (·,x−υ) = g}, (3.7)

the norm for fundamental tensors f (·,x−υ) =⊗ j∈υg j being given by

‖ f ‖Kυ
=
∏

j∈υ
(1+ γ−1

j
‖g j‖k).

With Proposition 2.48 and Lemma 2.50, the above is a direct consequence of

∑

u⊆υ
γuku(x,y) =

∏

j∈υ
(1+ γ jk(x j, y j))

for arbitrary x,y ∈ X, which can be shown by an easy calculation.

3.1.2 Extension to Countably Many Variables

We want to extend the construction principle from the previous subsection to countably
many variables. This turns out to be none-straightforward.

At first we have to show that the map K given by

K(x,y) :=
∑

u∈P0(N)

γuku(x,y) = lim
d→∞

∑

u⊆1:d

γuku(x,y) (3.8)

converges pointwise for x,y ∈ X. This follows from the lemma below.

Lemma 3.5. For x,y ∈ X holds true that
∑

u∈P0(N)
γu|ku(x,y)|<∞.

Proof. See [HMNR10, Section 2, Lemma 5].

3.1 Construction of the Function Space 35

Positive semi-definiteness of K is now easy to verify. Consequently we actually obtain a
reproducing kernel.

In a next step we would like to identify H(K) and the direct Hilbert sum⊕
u∈P0(N)

H(γuku) via the mapping

ς :
⊕

u∈P0(N)

H(γuku)→
∑

u∈P0(N)

H(γuku), (fu)u 7→
∑

u

fu. (3.9)

Comparing our approach in the finite case we encounter two obstacles now. First, it is not
immediately clear if Proposition 2.41 carries over to countable sums of kernels. Second,
the more severe shortcoming is that Lemma 3.3 can not be carried over to countably many
distinct sets u ∈ P0(N). This would be necessary to obtain injectivity of ς in the way as
we did in the finite case. That Lemma 3.3 can not be applied here is due to the crucial
argument in its proof being inductive.

Remark 3.6. In the proof of Lemma 3.3 one might be tempted to establish a specific well-
ordering on the set U of all (ui)i∈I of the form such that I ⊆ N and the ui ’s are distinct
finite subsets of N. This would allow to carry out the argument (3.4) also for countable
I1 and I2 respectively.

But the set U is easily seen to be equivalent to the the set of real numbers R. It is
a well-known result from set theory (at least within the Zermo-Fraenkel axioms and the
axiom of choice, otherwise it is only a conjecture) that on R it is impossible to construct a
well-ordering explicitly.

The specific tensor product structure of K gives rise to another approach that gets by
without coming back to Lemma 3.3. The idea is to utilize the results we already estab-
lished for finitely many variables by recovering the spaces H(K1:d) as closed subspaces of
H(K). Note that because of

K = K1:d +
∑

w⊆1:d,
;6=v∈P0(N\1:d)

γw∪v
kw∪v

and Corollary 2.44 we already have H(K1:d) ⊂ H(K).

Lemma 3.7. For d ∈ N the Hilbert space H(K1:d) is a closed subspace of H(K). In particular,

there is a constant c > 0 such that

‖ · ‖K1:d
= c‖ · ‖K

on H(K1:d). This constant is independent of the chosen d.

Proof. Let E1 = D1:d and E2 = {x−1:d ∈ D−1:d : x ∈ X }. Further fix a−1:d ∈ E2. We consider
the kernel L =

⊗
j∈1:d(1+ γ jk) on E1× E1 and the kernel

M =
⊗

j /∈1:d

(1+ γ jk) =
∑

u∈P0(N\1:d)

γuku

on E2 × E2. Note that K = L ⊗ M and K1:d(x,y) = L(x1:d ,y1:d). The choice u = ; shows
1 ∈ H(M).

36 3 Multilevel Rank-1 Lattice Rules as Optimal QMC Algorithms

Let f ∈ H(K1:d) and put g(x1:d) := f (x1:d ,a−1:d). By Lemma 2.50 (with K = J = K1:d)
we have g ∈ H(L) and ‖g‖L = ‖ f ‖K1:d

.
Now let (ei)i∈N and (f j) j∈N denote an ONB of H(L) and H(M) respectively, according

to Lemma 2.47. W.l.o.g. assume f1 = cd with cd being some positive constant. We define
a function h by letting h(x) = cd g(x1:d). Then, if we choose αi,1 =

g, ei

�
L and αi, j = 0

for j > 1 we get

h=
∑

i, j∈N
αi, jei ⊗ f j .

Consequently, we have h ∈ H(K) and furthermore ‖h‖K = ‖g‖L . With

K1:d(·, (x1:d ,a−1:d)) = K1:d(·,x)

we find that

h(x) =

g ⊗ f1, L⊗ M(·,x)
�

K = cd g(x1:d) = cd f (x1:d ,a−1:d) = cd

f , K1:d(·,x)

�
K1:d
= cd f (x)

and thus ‖h‖K = cd‖ f ‖K .
For every d ∈ N we already have the direct Hilbert sum character of H(K1:d), see Propo-

sition 3.4. For the particular choice f = 1 we can therefore immediately conclude that
‖ f ‖K1:d

= 1. Hence cd = 1/‖ f ‖K is independent of d.

Equipped with the previous lemma we are now able to establish the desired structure
for H(K).

Theorem 3.8. For the kernel K =
∑

u∈P0(N)
γuku we have

H(K) =
⊕

u∈P0(N)

H(γuku),

where the norm is given by

‖ f ‖2
K
=
∑

u∈P0(N)

γ−1
u
‖ fu‖2

u

with f ∈ H(K) =
∑

u∈P0(N)
fu and fu ∈ H(ku).

Proof. Let H =
⊕

u∈P0(N)
H(γuku) and let ‖ · ‖ denote the canonical norm on H. We prove

the map ς defined in (3.9) to be injective (and hence bijective). Then the image ς(H) is
shown to be a Hilbert space of real valued functions which moreover has the reproducing
kernel K .

Let f = (fu)u ∈ H. Then for x ∈ X the inequality

∑

u

| fu(x)| ≤
∑

u

‖ fu‖uku(x,x)1/2 ≤
∑

u

γ−1
u
‖ fu‖2

u
·
∑

u

γuku(x,x) <∞

yields that ς(f) is a real valued function on X.

3.1 Construction of the Function Space 37

For d ∈ N we define f (d) ∈ H by letting f (d)
u
= fu if u ⊆ 1 : d and f (d)

u
= 0 otherwise.

Then limd→∞ f (d) = f . According to Lemma 3.7 we have

‖ f (d)‖= ‖ς(f (d))‖K1:d
= c‖ς(f (d))‖K .

Consequently, (ς(f (d)))d∈N is a Cauchy sequence in H(K). Since limd→∞ ς(f
(d))(x) =

ς(f)(x) for all x ∈ X we conclude that ς(f) ∈ H(K) and ‖ f ‖ = c‖ς(f)‖K . In other words,
ς(H) is a closed subspace of H(K) and ς is injective.

It remains to show that K is the reproducing kernel of ς(H). For the choice fu =

γuku(·,x) we get K(·,x) = ς(f) ∈ ς(H). Moreover, for g ∈ H we obtain

ς(g), K(·,x)

�
ς(H) =

g, f
�
=
∑

u∈P0(N)

γ−1
u

gu, fu

�
u =

∑

u∈P0(N)

gu(x) = ς(g)(x).

Integration as Continuous Linear Functional

Having assumption (A3), the continuity of point evaluations makes integration

I(f) =

∫

X

f (x)µ(dx).

a non-trivial, continuous linear functional on H(K), as well. We derive this from the
following lemma:

Lemma 3.9. We have ∫

X

‖K(·,x)‖Kµ(dx) ≤
∫

X

K(x,x)µ(dx)<∞

Proof. Put m :=
∫

D
k(x , x)ρ(d x). Due to (A3) we have m < ∞. Use Cauchy-Schwarz’s

and Hölder’s inequality to get
∫

X

p
K(x,x)µ(dx) ≤

∫

X

K(x,x)µ(dx)

=
∑

u∈P0(N)

γum|u| =
∏

j∈N
(1+ γ jm)

≤
∏

j∈N
exp(γ jm) = exp(m

∑

j∈N
γ j)<∞.

Corollary 3.10. Integration I(·) is a non-trivial, continuous linear functional on H(K).

Proof. Using Lemma 3.9 and

I(f)≤ ‖ f ‖K

∫

X

‖K(·,x)‖Kµ(dx)

we conclude that integration is continuous. Hence there is a unique representative h ∈
H(K) with I(f) =

f ,h
�

K . It is given by

h(x) = 〈h, K(·,x)〉K =
∫

X

K(x,y)µ(dy).

As 1 ∈ H(K) and 〈1,h〉K = µ(X) = 1 we conclude that h is non-trivial.

38 3 Multilevel Rank-1 Lattice Rules as Optimal QMC Algorithms

3.2 Results for the Minimum-Kernel

Let X as in (3.1) and let ρ denote the uniform distribution on D = [0,1]. We study the
particular choice of k being the minimum kernel

k(x , y) =min(x , y), x , y ∈ D.

Before we address tractability issues we verify the assumptions (A1) - (A3) for k and
characterize the Hilbert spaces we obtain for the kernels ku, K1:d and K as given by (3.2),
(3.3) and (3.8), respectively.

3.2.1 Anchored Weighted Sobolev Spaces

Clearly, k fulfills (A1) and (A3). To show (A2) we have to characterize the space H(k). It
is well known that the Sobolev space

W 1
2
(D) = { f ∈ C(D) : f absolutely continuous, f ′ ∈ L2(D)}

equipped with the inner product

f1, f2

�
= f1(0) f2(0) +

∫ 1

0

f ′
1
(t) f ′

2
(t)dt

has the reproducing kernel R = 1+ k, see e.g. [R00, Example 5, p. 38/39]. Note that f ′

means the weak derivative.
Consider now the closed subspace

H = { f ∈W 1
2
(D) : f (0) = 0}.

We immediately see that k(·, x) ∈ H. For f ∈ H we observe

f , k(·, x)

�
=

∫ 1

0

f ′(t)min(t , x)′dt =

∫ x

0

f ′(t)dt = f (x).

Hence we have H(k) = H. But then (A2) obviously holds true for k.
Now that we verified the minimum kernel k to fulfill (A1) - (A3), let us have a closer

look at the spaces Hu, H(K1:d) and H(K).

Lemma 3.11. The space Hu = H(ku) consists of all continuous functions f such that

(i) f (x) depends only on xu,

(ii) if x j = 0 for some j ∈ u then f (x) = 0,

(iii) the weak derivative f (u) =
∂ |u| f
∂ xu

exists and is square-integrable.

3.2 Results for the Minimum-Kernel 39

The norm on Hu is given by

‖ f ‖2
u
=

∫

X

f (u)(x)2dx.

Proof. The properties (i) and (ii) are obvious. To prove (iii), let (ei)i∈N be an ONB of
Hu. By Lemma 2.47 we may assume each ei to be a fundamental tensor ei = ⊗ j∈u g i

j
with

g i
j
∈ H(k) and ‖g i

j
‖ = 1. But then for each ei property (iii) clearly holds true, in particular

∫

X

e
(u)

i (x)
2dx= 1.

Now let f =
∑∞

i=1
αiei and ϕ ∈ C∞

c
(X) be a test function. Then

∫

X

f (x)ϕ(u)(x)dx
(1)
=
∑

i∈N
αi

∫

X

ei(x)ϕ
(u)(x)dx

=−
∑

i∈N
αi

∫

X

e
(u)

i (x)ϕ(x)dx
(2)
= −

∫

X

∑

i∈N
αie

(u)

i (x)ϕ(x)dx

(3.10)

and hence f (u) =
∑∞

i=1
αie

(u)

i . Thereby (1), (2) hold true since

|
n∑

i=1

αiei(x)| ≤ ‖ f ‖u

p
ku(x,x) (3.11)

|
n∑

i=1

αie
(u)

i (x)| ≤
n∑

i=1

|αi||e(u)i (x)| ≤
∞∑

i=1

|αi||e(u)i (x)| (3.12)

together with the Hölder inequality yield dominating functions which allow to inter-
change infinite series and integral.

Finally, we conclude for the norm:

∫

X

f (u)(x)2dx=

∫

X

∑

i, j

αiα je
(u)

i
(x)e

(u)

j
(x)dx

(3)
=
∑

i, j

αiα j

∫

X

e
(u)

i
(x)e

(u)

j
(x)dx=

∞∑

i=1

α2
i
= ‖ f ‖u.

For (3) we use the inequality

|
n∑

i=1

αiα je
(u)

i
(x)e

(u)

j
(x)| ≤

∞∑

i=1

|αi| · |α j| · |e(u)i
(x)| · |e(u)

j
(x)|

and apply dominated convergence again.

For v ⊆ u and f ∈ Hu the weak derivative f (v) necessarily exists, as well. Moreover, it
is even square-integrable and, in particular, we have the following useful inequality:

40 3 Multilevel Rank-1 Lattice Rules as Optimal QMC Algorithms

Lemma 3.12. For f ∈ Hu and v ⊆ u we have

∫

X

f (v)(x)2dx≤ ‖ f ‖2
u

∫

X

ku\v (x,x)dx.

Proof. Let (ei⊗ f j)i, j∈N be an ONB of Hu = H(k
v
⊗ku\v) according to Lemma 2.47. Further

let (αi, j)i, j∈N such that f =
∑

i, j∈Nαi, jei ⊗ fi. According to the proof of Lemma 2.47 we

have f =
∑∞

i=1
eihi with hi =

∑∞
j=1
αi, j f j ∈ H(ku\v). Then

∫

X

f (v)(x)2dx=

∫

X

∑

i, j

e
(v)

i
(x

v
)e
(v)

j
(x

v
)hi(xu\v)h j(xu\v)dx

=
∑

i, j

∫

X

e
(v)

i (xv
)e
(v)

j (xv
)dx

︸ ︷︷ ︸
=1 if i=j, 0 otherwise

∫

X

hi(xu\v)h j(xu\v)dx

=
∑

i

∫

X

hi(xu\v)
2dx≤

∑

i

‖hi‖2
ku\v

∫

X

ku\v (x,x)dx.

With ‖hi‖2
u\v =

∑∞
j=1
α2

i, j
and ‖ f ‖2

u
=
∑

i, j α
2
i, j

the assertion follows. Note that we used
dominated convergence similarly as in (3.10), (3.11) and (3.12).

Recall from Section 2.2 the operator Ψ
v ,a : f 7→ f (·,a−v

) that we used to restrict the set
of variables a function depends on to the set v . With Lemma 3.11(ii) we see that for the
specific choice a= 0= (0,0, ...) ∈ X it holds true that

Ψ
v ,0(f) =

∑

u⊆1:d

fu(·,0−v
) =
∑

u⊆v

fu,

that is, Ψ
v ,0 acts as the orthogonal projection onto H(K

v
). This insight allows to derive

a meaningful characterization of the norms of H(K1:d) and H(K) in the following and
furthermore plays a significant role in the upcoming tractability analysis in Subsection
3.2.2.

Let us now characterize the space H(K1:d).

Proposition 3.13. For d ∈ N the space H(K1:d) is the space of all continuous functions

f : X → R such that f (x) depends only on x1:d and the weak derivative f (u) exists and is

square-integrable for each u⊆ 1 : d. On H(K1:d) the norm is given by

‖ f ‖2
K1:d
=
∑

u⊆1:d

γ−1
u

∫

D|u|
f (u)(xu,a−u)dxu.

Proof. To begin with, we prove the asserted for the norm. Let f =
∑

u⊆1:d fu ∈ H(K1:d).

Each fu has a weak derivative, thus f has a weak derivative and f (v) =
∑

u:v⊆u⊆1:d f (v)
u

.

Further, with Ψ
v ,0 being the orthogonal projection onto H(K

v
), we have Ψ

v ,a(f
(v)) = f (v)

v

and

‖ f ‖2
K1:d
=
∑

u⊆1:d

γ−1
u
‖ fu‖2

u
=
∑

u⊆1:d

γ−1
u

∫

X

f (u)
u
(x)2dx=

∑

u⊆1:d

γ−1
u

∫

X

f (u)(xu,a−u)
2dxu.

3.2 Results for the Minimum-Kernel 41

Now denote by G1:d the space of continuous functions f : X→ R such that f (x) depends
only on x1:d and the weak derivative f (u) exists and is square-integrable for each u⊆ 1 : d.
With Lemma 3.12 we get

∫

X

f (v)(x)2dx≤ d
∑

u:v⊆u⊆1:d

∫

X

f (v)
u
(x)2dx≤ d

∑

u:v⊆u⊆1:d

γ−1
u
‖ fu‖2

u

∫

X

ku\v (x,x)dx<∞

(3.13)

for f ∈ H(K1:d), hence H(K1:d) ⊆ G1:d . It remains to establish the opposite set inclusion.
Therefor, let f ∈ G1:d and consider the functions f

v
defined recursively for v ⊆ 1 : d by

f; := Ψ;,a(f)

f
v

:= Ψ
v ,a(f)−

∑

u(v

fu.

Then f =
∑

v⊆1:d f
v

and for v ⊆ 1 : d we clearly have that f
v

depends only on x
v

and

that f (v)
v

is square-integrable. Consequently, if we verified f
v
(x) = 0 in case that x j = 0

for some j ∈ v then we would have f
v
∈ H

v
and consequently f ∈ H(K1:d).

So let x ∈ X such that x j = 0 for some j ∈ v . Furthermore put w = v \ { j}. Then we
have

f
v
(x)

def.
= f (x

v
,a−v

)−
∑

u(v

fu(x) = f (xw,a−w)−
∑

u⊆w

fu(x)

induction
=

∑

u⊆w

fu(x)−
∑

u⊆w

fu(x) = 0.

In the specific situation of k being the minimum kernel, the space H(K1:d) is well known
in the literature as anchored weighted Sobolev space with anchor a= (0,0, ...) and product
weights (γ j) j∈1:d . To stress the importance we give a definition:

Definition 3.14. The space H(K1:d) is called the anchored weighted Sobolev space with
anchor a= (0,0, ...) and product weights (γ j) j∈1:d .

Remark 3.15. Anchored weighted Sobolev spaces are also studied for general weights
(γu)u⊆1:d and anchors a with a j ∈ [0,1]. Then the kernels k{ j} are not always the mini-
mum kernel, but

k{ j}(x,y) =

(
min(|x j − a j |, |y j − a j |) if (x j − a j)(y j − a j)> 0,

0 otherwise.

See e.g. [NW10] for further details.

The next proposition establishes a link between anchored weighted Sobolev spaces
and the weighted Korobov spaces we encountered in Section 2.4. This link is a crucial
foundation for the tractability results we present in the consecutive subsection.

42 3 Multilevel Rank-1 Lattice Rules as Optimal QMC Algorithms

Proposition 3.16. For j ∈ N let β j = 1+
γ j

3
. Further, let γ̃ = (γ̃d,u)d∈N,u⊆1:d with

γ̃d,u = 2|u|γu

∏

j∈1:d\u
β j .

Then the Korobov kernel Kd,1,γ̃ given by (2.26) with the choice α = 1 and weights γ̃ is the

associated shift-invariant kernel of K1:d .

Furthermore, for the particular choice of α and the weights γ̃ the Korobov kernel Kd,1,γ̃ has

the form

Kd,1,γ̃(x,y) =
∏

j∈1:d

(β j + γ jB2({x j − y j}))

where B2 is given by (2.27).

Proof. See [NW10, Lemma 16.20] for the relation between Sobolev and Korobov space.
Then note that we already have

Kd,1,γ(x,y) =
∑

u⊆1:d

˜γd,u

2|u|

∏

j∈u

B2({x j − y j}).

Hence the latter assertion follows by the following calculation:

∑

u⊆1:d

˜γd,u

2|u|

∏

j∈u

B2({x j − y j}) =
∑

u⊆1:d

γu



∏

j∈1:d\u
β j



∏

j∈u

B2({x j − y j})

=
∏

j∈1:d

β j

∑

u⊆1:d

∏

j∈u

γ j

β j

B2({x j − y j}) =
∏

j∈1:d

β j

∏

j∈1:d

(1+
γ j

β j

B2({x j − y j})).

As stated by Hickernell et al.[HMNR10] the characterization we verified for H(K1:d) is
also true for the space H(K). Hence we obtain

Proposition 3.17. The space H(K) is the space of all continuous functions f : X→ R having

square-integrable weak derivatives f (u) for each u ∈ P0(N). The norm is given by

‖ f ‖2
K
=
∑

u∈P0(N)

γ−1
u

∫

D|u|
f (u)(xu,a−u)dxu.

3.2.2 Complexity Results

Recall from Section 2.2 the deterministic N -th minimal error

edet
N ,Í(F) = inf{e(Q, F) : Q ∈ Qdet(F)∧ costÍ(Q, F)≤ N}

with Í∈ {fix,var} and in the given situation F = B(K). We present the upper and lower
bounds on the N -th minimal error the authors Niu et al. derive in [NHMR10], particularly

3.2 Results for the Minimum-Kernel 43

showing the superiority of the multilevel approach in the given setting. Thereby we also
summarize the reasoning leading to the results.

Let us at first have a brief glance at the form of the worst-case error for a quadrature rule
Q(·; Pn,w) using points x1, ...,xn ∈ X1:d,0. Due to integration and point evaluation being
continuous linear functionals on H(K) we have representatives h and g =

∑n

i=1
wiK(·,xi)

for integration and Q(·; Pn,w), respectively. Thereby g is an element of H(K1:d).
We mentioned the truncation error in Section 2.2 which expresses the error arising from

approximating I(Ψ1:d,a f) instead of I(f). We fix the notation

b1:d(F) = sup
f ∈F

|I(f)− I(Ψ1:d,a f)|.

Now, using that Ψ1:d,0 is the orthogonal projection onto H(K1:d), we obtain

‖h− g‖2
K
= ‖h−Ψ1:d,0h‖2

K
+ ‖Ψ1:d,0h− g‖2

K
.

Consequently, the squared worst-case error e2(Q(·; Pn), B(K)) splits exactly into the trun-
cation error b2

1:d
(B(K)) and the worst-case error of Q w.r.t. B(K1:d):

e2(Q(·; Pn), B(K)) = b2
1:d
(B(K))+ e2(Q(·; Pn), B(K1:d)).

Considering particularly the multilevel algorithm Qml
n,d

given by Definition 2.19, we have
the following: Let n = (n1, ..., nL), d = (d1, ..., dL) and further let Q1, ...,Q L denote the
quadrature rules used by the multilevel algorithm as building blocks. Then the worst-case
error fulfills

e2(Qml
n,d

, B(K)) = b2
1:dL
(B(K)) + e2(Q1, B(K1:d1

))

+

L∑

l=2

e2(Q l, B(K1:dl
))− e2(Q l, B(K1:dl−1

)),
(3.14)

see [NHMR10, Theorem 1].
In the following the sequence of weights (γ j) j∈N is assumed to satisfy

γ j ≍ j−1−2q

for some q > 0.

Upper Bounds

In order to yield upper bounds the multilevel algorithm Qml
n,d

with rank-1 lattice rules as
building blocks is used. As it is difficult to work directly with (3.14) Niu et al. introduce
auxiliary weights (γ′

j
) j∈N with corresponding kernels K ′

1:d
such that γ′

j
= j2(q−q′)γ j with

q ≥ q′ > 0. This allows to modify (3.14) in the way that

e2(Qml
n,d

, B(K))≤ b2
1:dL
(B(K))+

L∑

l=1

κle
2(Q l, B(K ′

1:dl
)) (3.15)

44 3 Multilevel Rank-1 Lattice Rules as Optimal QMC Algorithms

where κl :=maxdl−1≤l≤dl

γ j

γ′
j

. For the truncation error it can be shown that

b2
1:d
(B(K))≍

∞∑

j=d+1

γ j � d−2q.

Further, following an analysis in [HSW04] it can be assumed

sup
d∈N

inf{e(Q(·; Pn), B(K ′
1:d
)) : Pn is shifted rank-1 lattice } � n−p′ (3.16)

with 0 < p′ <min(1,q′+1/2). Basically, the argumentation here is that given the Sobolev
kernel K ′

1:d
the weights of the associated Korobov kernel (cf. Proposition 3.16) are such

that we find good rank-1 lattice rules whose worst-case error declines with order at most
p′ in n independent of the dimension d (cf. Proposition 2.58). Then there are shifts such
that (3.16) holds true (cf. Proposition 2.64).

Given this Niu et al. conclude by means of the multilevel algorithm that

edet
N ,var(B(K))� N−p′min(1,q/p′+q′), (3.17)

see [NHMR10, Theorem 3]. The crucial insight in terms of to the multilevel algorithm is
that the upper bound is reached if the components of n and d are chosen to decline and
increase geometrically in the level l, respectively.

Lower Bounds

We saw that for each quadrature rule Q ∈ Qdet(B(K)) the worst-case error splits into the
truncation error b1:d(B(K)) and the worst-case error e(Q, B(K1:d)) of the corresponding
d-dimensional subproblem.

The worst-case error of the d-dimensional subproblem can be shown to be bounded
from below by e(Q, B(k{1})), that is the error of the the extremal case that we considered

the one-dimensional subproblem. It is well-known that edet
N ,Í(B(k{1})) ≍ N−1.

This leads to the conclusion that

edet
N ,fix(B(K))� inf

nd≤N



(

∞∑

j=d+1

γ j)
1/2+ edet

N ,fix(B(k))



≍ inf

nd≤N



(

∞∑

j=d+1

j−1−2q)1/2+ N−1





(3.18)

edet
N ,var(B(K))� (

∞∑

j=N+1

γ j)
1/2+ edet

N ,var(B(k))≍ (
∞∑

j=N+1

j−1−2q)1/2+ N−1, (3.19)

see [NHMR10, Theorem 4].

Conclusion

In order to simplify the presentation we introduce for Í∈ {fix,var} the exponent

λÍ(B(K)) := sup{χ > 0 : sup
N∈N

edet
N ,Í(B(K)) · Nχ <∞}.

3.2 Results for the Minimum-Kernel 45

Niu et al. derive now from (3.17), (3.18) and (3.19) the following, see [NHMR10, Corol-
laries 1,2]:

min

�
q

q+ 1
,

q

2q/(2q+ 1) + 1

�
≤ λfix(B(K)) ≤

q

q+ 1

min

�
q,

q+ 1/2

2
,1

�
≤ λvar(B(K)) ≤min(q, 1).

Hence, under the fixed subspace sampling regime, rank-1 lattice rules yield optimal algo-
rithms for most values of q. But under the variable subspace sampling regime, multilevel
rank-1 lattice rules always outperform standard rank-1 lattice rules and moreover, the
multilevel variant always yields an optimal algorithm except for 1/2≤ q ≤ 3/2.

46 3 Multilevel Rank-1 Lattice Rules as Optimal QMC Algorithms

4 C++ Library for Numerical Experiments
This chapter is devoted to describing our implementations we used to carry out the nu-
merical experiments presented in Chapter 5. We tried to design the implementations in
a way which is easy extensible for further experiments, integrands and approaches to
generate integration points. Though the focus is currently on numerical experiments we
aimed at fast and efficient implementations which might be the basis for real applications.

Except for Section 4.1, where we describe some design elements, we keep our expla-
nations in a mathematical style. Technical aspects and details concerning programming
techniques are avoided as far as possible.

Remark 4.1. When we analyze computational cost in this chapter we refer to the real num-

ber model which comprises arithmetical and access operations as opposed to the coarser
cost model introduced in Subsection 2.2.2.

4.1 General Features and Core Components

We recall Definition 2.19 which introduced the multilevel algorithm in the form

Qml
n,d(f) :=Q(Ψ1:d1,a f ;Xn1,d1

,w(1)) +

L∑

l=2

Q(Ψ1:dl ,a
f −Ψ1:dl−1 ,a f ;Xnl ,dl

,w(l)).

Currently our implementation handles only the case of equal weighted quadrature rules
as building blocks, that is w

(l)

i
= 1/nl .

4.1.1 Design of the Library

For a flexible implementation it is useful to divide the multilevel algorithm into compo-
nents which can be implemented independently of each other or vary with each multilevel
algorithm run. For this purpose let us change the signature of the algorithm as follows:

Qml
n,d
(f) =Qml(f , P,ϑ,ǫ).

The arguments now refer to

(1) f : a subroutine representing the integrand.

(2) P: a component representing the method used to generate integration points. Note
that this method can be both deterministic and randomized.

(3) ϑ: a component representing the strategy which determines the choice of the mul-
tilevel parameters n and d,

47

(4) ǫ: a user-specified bound on the integration error.

Since the choice of the multilevel parameters is assigned to ϑ it is the component which
determines whether an algorithm run is to be finished. Consequently, it is reasonable to
put the handling of the error bound ǫ into its responsibility.

It depends on P and ϑ whether ǫ actually acts as an error bound. For instance, if
the integration points are generated randomly, we might implement a strategy based on
variance and bias estimates which turns ǫ into error bound the algorithm hits on average.
On the other hand it is likewise possible that ǫ is in fact just a heuristic with no guaranteed
quality.

Monitoring Mechanism

One focus of the library is to provide tools for numerical experiments. Such experiments
require a mechanism to monitor the multilevel algorithm’s activities. Since we do not
know the design of all experiments one might carry out with the multilevel algorithm, it
is a bad idea to code the specific monitoring directly into the implementation of Qml.

Instead we need a flexible mechanism which prescribes what information has to be
provided for monitoring but makes no assumptions on the usage of the monitored data.

We address these requirements by designing our monitoring mechanism according to
the observer-observable pattern. The core implementation of Qml is an observable which
has a list of observers, that is a list of components which want to be informed whenever
some change happened. In view of our multilevel computation this means that each
of the listed observers gets notified by Qml as soon as a crucial computational step has
been carried out. The smallest crucial computational step is the evaluation of f at some
integration point.

See the next subsection to have a more detailed illustration when notifications take
place.

4.1.2 Basic Variant of the Multilevel Algorithm

Let f , P and ϑ be components as defined above. Moreover, let dϑ, nϑ denote the di-
mensions and numbers of integration points the strategy ϑ generates. To follow previous
notations we use Pn,d to indicate that the component P is configured such that it represents
a point set of n different points in dimension d.

We implement the building blocks of the multilevel algorithm (2.19) as a subroutine

Q(l, f , P,ϑ).

Here l denotes the level which we currently wish to compute. If we identify f and the
function represented by it, the subroutine’s outcome is such that

Q(l, f , P,ϑ) =Q(Ψ1:dϑ
1

,a f ; Pnϑ
1

,dϑ
1
) for l = 1

Q(l, f , P,ϑ) =Q(Ψ1:dϑ
l

,a f −Ψ1:dϑ
l−1

,a f ; Pnϑ
l

,dϑ
l
) for l > 1.

Note that the vector a is implicitly given by the subroutine f .

48 4 C++ Library for Numerical Experiments

To allow for adaptive strategies we manage the levels in a queue. A queue is a first-in
first-out (FIFO) data structure, that is new elements can only be added to its end and the
next element to read comes always from its front. We refer to this queue in the following
as level queue.

We desire the core implementation of the multilevel algorithm to be compatible with
both deterministic and randomized methods of integration point generation. In the ran-
domized case it might be of interest to compute the same level several times in order to
reach more stable outcomes by averaging. The strategy given in paragraph S3 of Section
4.4 uses multiple level computation, as well. However, from the core implementation’s
point of view it actually does not matter how we generate the integration points, it only
must know how often it has to repeat the computation of the current level.

Because the strategy ϑ determines the number of levels and on each level the eval-
uation dimension and the number of integration points, it has to fill the level queue.
Consequently, it already acts pretty much like a controller and we choose the strategy to
determine the number of level repetitions, as well. If it sets the number of level repetitions
to be M we denote the different outcomes by Q

(i)

l
for i = 1, ..., M .

As the core implementation does not know the meaning of the results Q
(i)

l
, it can not

decide how to map the outcomes to the actual level outcome Qres
l

being incorporated in
the total multilevel algorithm return value. In accordance with the previous approach we
let ϑ decide how to map the repeated outcomes to the level outcome.

The decisions made so far lead to Algorithm 4.1.

Algorithm 4.1 Basic Multilevel Algorithm Implementation

Input: function representer f , point generator P, strategy ϑ, error bound ǫ
Output: an approximation of I(f)

1: ϑ initializes level queue;
2: while level queue not empty do

3: l ← first element in level queue; remove first element from level queue
4: ϑ specifies number of level repetitions M ;
5: for i = 1, ..., M do

6: compute Q
(i)

l
← Q(l, f , P,ϑ);

7: end for

8: ϑ maps (Q(i)
l
)i=1,...,M to level result Qres

l
;

9: ϑ updates level queue;
10: end while

11: return
∑L

l=1
Qres

l
;

We omitted in Algorithm 4.1 those lines implementing the monitoring mechanism.
These involve the following subroutines:

• The subroutine notifyStart(f ,P ,ϑ,ǫ) is invoked before the multilevel algorithm actu-
ally has started. It tells the listeners which integrand, point generation, parameter
strategy and user-specific error bound the algorithm is currently running with.

• The subroutine notifyBeforeLevel(l,i,dl ,nl) is invoked within Q(l, f , P,ϑ) right before
the current level has been computed. It tells the listeners the current level l, the level

4.1 General Features and Core Components 49

repetition i, the current dimension dl and the current number of integration points
nl .

• The subroutine notify(fl , fl−1) is called within Q(l, f , P,ϑ) every time the algorithm
has evaluated the integrands in the currently considered dimensions dl and dl−1.
The listeners are told the evaluation outcomes fl and fl−1 for dimension dl and
dl−1, respectively.

• The subroutine notifyAfterLevel(l,i,Qres
l
) is invoked within Q(l, f , P,ϑ) right after a

level computation has finished. It tells the listeners the current level l, the level
repetition i and the level outcome Qres

l
.

• The subroutine notifyStop(R) is called just after the multilevel algorithm has finished
and tells the listeners the output R=

∑L

l=1
Qres

l
.

4.1.3 Multithreading

Multi-core processors are nowadays standard components of personal computers. Even
portable notebooks often come along with two cores. These multi-core architectures offer
the opportunity to save real computation time. Namely by explicitly delegating portions
of work involved with a multilevel algorithm run or a numerical experiment to different
programme threads that are executed in parallel.

Of course, we have to analyze carefully the dependencies between different computa-
tional steps, identifying those parts which can be computed independently of each other.
We briefly discuss two different approaches how to introduce multiple threads to our
code.

The simplest idea is to stick to the basic core implementation given by Algorithm 4.1
and put only different calls to this routine into parallel programme threads. This approach
seems suitable due to our focus being currently on numerical experiments where we have
to repeat the same computation many times. However, we meet a problem implementing
this straightforward. Our numerical experiments involve pseudorandom number genera-
tion. Thereby we are not offhand guaranteed that the pseudorandom numbers generated
for the different threads do not show any form of unintended correlation.

Having practical applications in mind another approach is introducing multi-threading
to Algorithm 4.1 itself. The first idea is, of course, to parallelize the computation of the
different levels. However, this might be tricky or impossible if we use adaptive strategies
for the choice of the multilevel parameters. A simple and possible way is to split each level
computation up into an number N of parts that corresponds to the number of available
CPU kernels. More precisely, if we are given nl integration points in level l we run N

threads each computing ⌊ nl

N
⌋ integrand evaluations (if nl is not a multiple of N we divide

the remaining integrand evaluations to the threads as equally as possible). If n < N we
run only one single thread. As the integration points are already generated when we split
the computation we avoid the problem with pseudorandom numbers as sketched above.

Currently we implemented the latter approach, reaching time savings of a factor up to
1.6 on a machine with two Intel P8700 2.5 GHz CPU kernels. But we consider this rather
as a workaround. It works badly if the computational effort for integrand evaluation is
not significantly higher than for pseudorandom number generation. Then not including

50 4 C++ Library for Numerical Experiments

the pseudorandom number generation with our multithreading approach may eliminate
a significant amount if not most of the time savings we intended to realize through multi-
threading.

4.2 Pathwise Computation of Asian Call Payoff

We recall from Section 2.1 that the prize of the Asian Call Option in the Black-Scholes
model on the time interval [0, T] is given by E[ϕAC(S)] where

St = Γ(W)t = exp((r −σ2/2) · t +σWt)

is a geometric Brownian motion and the payoff ϕAC is given by

ϕAC(f) = e−rT max

1

T

∫ T

0

f (t)dt − K , 0

!
.

In Section 2.1 we also learned a number of approaches to compute the option prize
approximately. This involved distinct possibilities to approximate ϕAC(S) pathwise. In
this section we now discuss these from an implementational point of view and compare
their computational costs.

With regard to our multilevel algorithm implementation introduced in the previous sec-
tion we have to implement the pathwise approximations as subroutines f which behave
as follows: Given a vector x (integration point) and an integer d (dimension) the compo-
nent f uses the first d components of x to compute a pathwise approximation of ϕAC(S).
We denote the result by f (x1:d).

It is important to note here that we assume the component not to care how x is gener-
ated but to treat it always as a vector of numbers each of which is sampled independently
according to the standard normal distribution.

4.2.1 Comparison of Distinct Approaches

Put

i(m, j) =

(
0 if m = j = 0,

2m−1+ j otherwise.

and dl = 2l .
Then for the Lévy-Ciesielski expansion let

L(l)(x1:dl
) =

l∑

m=0

J(m)∑

j=0

x i(m, j)em, j

denote the l-th partial sum of the Lévy-Ciesielski expansion where the realization of Xm, j

took the value x i(m, j). Analogously, for the Karhunen-Loève expansion let

K (l)(x1:dl
) =

dl∑

j=1

x je j .

4.2 Pathwise Computation of Asian Call Payoff 51

Furthermore, denote by Ŵ (l)(x1:dl
) the path of the Euler approximation in setting R1

which we obtain if the Brownian increments took the values 2−l/2x j for j = 1, ..., dl .

By ζ(l)R2 we denote the map given by the Euler-Maruyama on the path space in case of
setting R2, see Remark 2.3.

Now, according to Section 2.1, we may implement components f1, ..., f5 which compute
pathwise approximations of ϕAC(S) in the following five different ways. In relation to
setting R1 we have:

F1: A subroutine computing an approximative path of Brownian motion by means of
the Lévy-Ciesielski partial sum:

f1(x1:dl
) = ϕAC ◦Γ(L(l)(x1:dl

)). (4.1)

F2: A subroutine computing an approximative path of Brownian motion by adding up
Brownian increments:

f2(x1:dl
) = ϕAC ◦ Γ(Ŵ (l)(x1:dl

)). (4.2)

F3: A subroutine computing an approximative path of Brownian motion by means of
the Karhunen-Loève partial sum:

f3(x1:dl
) = ϕAC ◦Γ(K (l)(x1:dl

)). (4.3)

In relation to setting R2 we have:

F4: A subroutine computing an approximative path of geometric Brownian motion using
the Euler-Maruyama scheme where Brownian increments are determined from the
Lévy-Ciesielski partial sum:

f4(x1:dl
) = ϕAC ◦ ζ(l)R2(L

(l)(x1:dl
)). (4.4)

F5: A subroutine computing an approximative path of geometric Brownian motion using
the Euler-Maruyama scheme where Brownian increments are determined directly
from x1:dl

:

f5(x1:dl
) = ϕAC ◦ ζ(l)R2(Ŵ

(l)(x1:dl
)). (4.5)

We analyze the cost to compute fk(x1:dl
) for k = 1, ..., 5. Thereby we focus on clarifying

how the cost depend on dl . In the following denote in by w in either case the path we
obtain according to the given approach.

52 4 C++ Library for Numerical Experiments

Cost analysis for F4 and F5

The cost to evaluate ϕAC(w) basically result from calculating the one-dimensional inte-
gral

∫ T

0

w(t)dt . (4.6)

The path w is piecewise linear between the points w(t i), t i = i2−l for i = 0, ..., 2−l . Hence
we have

∫ T

0

w(t)dt =

2l−1∑

i=0

∫ ti+1

ti

w(t)dt =

2l−1∑

i=0

1

2
(w(t i) +w(t i+1)) · (t i+1− t i).

As we use the Euler-Maruyama scheme the values w(t i), i = 0, ..., 2l are successively
determined by

w(t i+1) = (1+ r2−l +σ2−l/2x i) ·w(t i)

with w(0) = s0 in case of the fifth approach. Hence we basically iterate once over the
elements of x1:dl

.
For the fourth approach we proceed analogously but have to determine the Brownian

increments from the Lévy-Ciesielski partial sum. This requires to access the components
of x1:dl

in a more complicated order but still can be done in a number of operations which
increases linear in dl , see Section 4.2.2 below.

We conclude that for k = 4,5 we can compute fk(x1:dl
) in O(dl) using only simple

arithmetic and access operations. For k = 4 the number of required operations is approx-
imately 5 times higher than for k = 5 due to the more complicated usage of x1:dl

with the
Lévy-Ciesielski partial sum.

Cost analysis for F1 and F2

The cost analysis here is basically analogue as in case k = 4,5 except that now we have
additional calls to the exponential function due to the integral to be computed being now

∫ T

0

Γ(w)(t)dt . (4.7)

The path w is again piecewise linear. Having

w(t) = w(t i) +
t − t i

t i+1− t i

(w(t i+1)−w(t i))

for t ∈ [t i, t i+1) we rewrite it as w(t) = c1(i) · t + c2(i) with

c1(i) = (t i+1− t i)
−1(w(t i+1)−w(t i))

4.2 Pathwise Computation of Asian Call Payoff 53

and c2(i) = w(t i)− c1(i)t i. Put r̃ := r −σ2/2. Then
∫ T

0

Γ(w)(t)dt =

2l−1∑

i=0

(r̃ +σc1(i))
−1
�

exp
�
(r̃ +σc1(i))t +σc2(i)

��ti+1

ti

=

2l−1∑

i=0

(r̃ +σc1(i))
−1
�

exp (r̃ t +σw(t))
�ti+1

ti
.

Consequently, for k = 1,2 computing fk(x1:dl
) requires a number of operations which

increases linear in dl . Compared to the case k = 4,5 we now have additional 2dl calls to
the exponential function.

Cost analysis for F3

Approach 3 uses the Karhunen-Loève expansion. Since

e j(t) =
p

2
sin(π(j− 1/2)t)

π(j− 1/2)

the path w is now not piecewise linear as it has been the case before. Hence we can not
determine ∫ T

0

w(t)dt

exactly anymore. In addition, approximating the integral requires to use some quadrature
rule U , e.g. the trapezoidal rule. The computational cost for this quadrature rule rises
proportionally to the number NU of interpolation points it uses.

It is natural here to expect the output f3(x1:dl
) to have a higher precision the greater dl

gets. If we use a fixed NU it is unlikely to reach this demand for arbitrary large dimensions
dl . So, taking the demand for increasing precision fully into account would require to raise
NU in some way if dl is increased. However, from a practical point of view, when the range
of used dimensions dl is bounded, it might be reasonable to fix some NU or to limit NU to
some maximal value. In our current implementation NU grows quadratically in dl .

Besides the fact that the form of e j makes the integral calculation more complicated, it
also has the consequence that we have to perform NU · dl expensive sine computations.

We conclude that the third approach is quite expensive. If we incorporate the demand
for precision increasing with the dimension, then the cost do not grow linear in dl . But
it might be legitimate to assume Nu fixed or bounded by some maximal value. Moreover,
practical experience shows that we struggle to increase the precision of the output f3(x1:dl

)

reliably. We observed the problem for dl > 1000. Then for some values of x1:dl
summing

up a large number of expression of the form

s0 exp((r −σ2/2)t +σ

dl∑

j=1

x je j(t))

within the quadrature rule U temporarily requires more than double floating point preci-
sion.

Remark 4.2. The results on the cost of the approaches F1,F2,F4 and F5 justify the cost
model in Subsection 2.2.2 as a reasonable abstraction for theoretical analysis of integra-
tion problems.

54 4 C++ Library for Numerical Experiments

4.2.2 Implementation of the Lévy-Ciesielski Expansion

We recall from Subsection 2.1.4 that the Schauder functions (em, j)m∈N, j=0,...,J(m) on the
time interval [0,1] are given by e0,0(t) = t for m= j = 0 and for m > 0 by

em, j(t) =2
(m−1)

2





t − k−1

2m if t ∈ I(k− 1, m)
k+1

2m − t if t ∈ I(k, m)

0, else

with k = 2 j + 1 and I(m, k) = [k

2m , k+1

2m [. To treat the case of an time interval [0, T]

with T 6= 1 we simply have to consider the transformed Schauder functions given byp
Tem, j(t/T). Hence we may w.l.o.g. content ourself with assuming T = 1.
For fixed n ∈ N the Lévy-Ciesielski partial sum

L(n) =

n∑

m=0

J(m)∑

j=0

Xm, jem, j

is affine linear on each interval I(n, i), i = 0, ..., 2n − 1, and hence

L
(n)
t = c1(n, i) · t + c2(n, i)

for t ∈ I(n, i) as well as coefficients c1(n, i) and c2(n, i) being linear combinations of the
Xm, j that depend on the given interval. We explicitly determine the linear combinations
and derive an recursive scheme to calculate c1 and c2.

Recursive Scheme

In the following we denote (em, j) j=0,...,J(M) as the m-th level of Schauder functions. Fix
in ∈ {0, ..., 2n − 1}. Further let for m < n the integer im ∈ {0, ..., 2m − 1} be such that
I(n, in) ⊆ I(m, im). From the definition of the Schauder functions we see immediately
that on each level m = 0, ..., n there is precisely one Schauder function which takes values
different from zero on I(m, im). We denote by j(m, im) the index of the corresponding
Schauder function in the m-th level. Then on I(n, in) we have for s = 1,2 that

cs(n, in) =

n∑

m=0

λs(m, im)Xm, j(m,im)

with λs(m, im) ∈ R.
For m = 0 we immediately see that λ1(0,0) = 1 and λ2(0,0) = 0. To determine the

coefficients λs(m, im) on level m ∈ {1, ..., n} we put k(m, im) := 2 j(m, im) + 1 and observe

I(m, im) =

(
I(m, k(m, im)− 1) if im is even,

I(m, k(m, im)) if im is odd.
(4.8)

We conclude for t ∈ I(m, im) that

em, j(m,im)
(t) =

h
(−1)im · 2 m−1

2

i
· t + (−1)im+1 · 2 m−1

2 · b(m, im) (4.9)

4.2 Pathwise Computation of Asian Call Payoff 55

with

b(m, im) =

(
k(m,im)−1

2m if im is even,
k(m,im)+1

2m if im is odd.

So we have

λ1(m, im) = (−1)im · 2 m−1
2 ,

λ2(m, im) = (−1)im+1 · 2 m−1
2 · b(m, im).

Though we have characterized j(m, im) and λs(m, im)we are yet lacking formulae which
allow an efficient computation. Fortunately, we can obtain them easily. From (4.8) and
k(m, im) = 2 j(m, im) + 1 we derive

j(m, im) = ⌊im/2⌋,

b(m, im) =
2⌊(im+ 1)/2⌋

2m
.

(4.10)

Now that we are able to compute j(m, im) and λs(m, im) efficiently it remains to derive
explicit formulae which describe the relation between the numbers i0, ..., in. The subset
relation I(m, im) ⊆ I(m− 1, im−1) implies

im = 2im−1 ∨ im = 2im−1+ 1.

So, in either case, if we are given im we have im−1 = ⌊im/2⌋.
Combining the formulae derived so far gives rise to a recursive scheme to compute

cs(m, im) for the interval I(m, im): first we compute λs(m, im), then we recursively de-
termine cs(m − 1, ⌊im/2⌋) for the interval I(m− 1, ⌊im/2⌋). Finally, we sum both parts
up:

c1(m, im) =λ1(m, im) · Xm, j(m,im)
+ c1(m− 1, ⌊im/2⌋)

c2(m, im) =λ2(m, im) · Xm, j(m,im)
+ c2(m− 1, ⌊im/2⌋)

(4.11)

Now if we are given a realizations of Xm, j with m = 0, ..., n and j = 0, ..., J(m) in form
of a vector x1:2n the recursive scheme involves n access operations to the vector. Each
coefficient λs(m, im) can be calculated in O(1). Thereby note that powers of 2 can be
computed in constant time using bit shifts. We conclude that the recursive scheme has
computational cost in O(n).

Traversing the Lévy-Ciesielski Binary Tree

Let dn = 2n. When using the Lévy-Ciesielski partial sum L(n) within f2(x1:dn
) and

f4(x1:dn
) as given in the previous subsection we have to compute the coefficients cs(n, in),

s = 1,2, successively for each interval I(n, in), in = 0, ..., 2n − 1.
Using the recursive scheme given by (4.11) the cost to compute cs(n, in) is in O(log(dn)).

So, overall we would have cost in O(dl log(dl)) for computing all coefficients. However,
the recursive scheme is not the optimal way for this purpose yet. When we are given

cs(n, in) =

n∑

m=0

λs(m, im)Xm, j(m,im)

56 4 C++ Library for Numerical Experiments

on the interval I(n, in) and go from in to in + 1 not all numbers im change for m < n.
Consequently, it is not necessary to recompute every summand in the linear combination
every time.

The previously mentioned relation

I(m, im)⊆ I(m− 1, im−1) =⇒ im = 2im−1 ∨ im = 2im−1+ 1

suggests to imagine the intervals

I(m, i), m= 0, ..., n, i = 0, ..., J(m+ 1)

forming a binary tree with root node I(0,0). We refer to this tree representation as
Lévy-Ciesielski binary tree.

We use the picture of the Lévy-Ciesielski binary tree to derive an algorithm which
computes all the cs(n, in) together with cost in O(dn) using O(log dn) extra memory.
Therefor let us turn around the level order in the computation and start with comput-
ing λs(0,0)X0,0. Furthermore introduce vectors c1 and c2 of size n + 1 which store for
each level m = 0, ..., n respectively the value of c1(m, i) and c2(m, i) we computed at last.

Figure 4.1: Traversing the Lévy-Ciesielski binary tree

Then, if we identify visiting the node I(m, i) with computing λs(m, i)Xm, j(m,i) and up-
dating

cs[m] := cs[m− 1] +λs(m, i)Xm, j(m,i),

we obtain an algorithm which computes each λs(m, i)Xm, j(m,i) exactly one time by walking
through the Lévy-Ciesielski binary tree in a suitable order. For n = 3 Figure 4.1 gives a
graphical demonstration. The cost to traverse a tree is linear in the number of nodes. As
the Lévy-Ciesielski binary tree has 2n+1 nodes we conclude that we can compute all the
coefficients cs(n, in) together with cost in O(dn) using O(log dn) extra memory.

We reach this by implementing the traversal with a stack based approach. A stack is a
data container following the last-in-first-out principle. This means that elements are taken
from the container in exact the opposite order in which they were stored to the container.
Let s denote a stack of maximal size 2n+1 and i a vector of size n+1. The stack s stores
the levels m which have to be proceeded yet and the vector i for each level m the number
im we currently consider. Then Algorithm 4.2 yields the desired traversal.

4.2 Pathwise Computation of Asian Call Payoff 57

Algorithm 4.2 Computing Coefficients by Traversing the Lévy-Ciesielski Binary Tree

Input: realization x= x1:2n of (Xm, j)m=0,...,n, j=0,...,J(m).
1: c1[0]← x[0];
2: c2[0]← 0;
3: store m= 1 to s twice;
4: for m= 0, ..., n do

5: i[m]← 0;
6: end for

7: while s not empty do

8: take m from s;
9: compute: λs(m, i[m]);

10: update: cs[m]← cs[m− 1] +λs(m, i[m]) · x
�

2m−1+ ⌊i[m]/2⌋
�

;
11: if m 6= n then

12: store m+ 1 to s twice;
13: else

14: use c1[n], c2[n] to compute respectively (4.6) and (4.7) on I(n, i[m]).
15: end if

16: i[m]← i[m] + 1;
17: end while

Remark 4.3. Algorithm 4.2 can be slightly improved by exploiting the following. Since
L(n) has continuous paths we have

c1(n, in− 1) · t in
+ c2(n, in− 1) = c1(n, in) · t in

+ c2(n, in).

Hence the coefficient c2(n, in) is uniquely determined by

c2(n, in) = c2(n, in− 1) + t in

�
c1(n, in− 1)− c1(n, in)

�

and the vector c2 can be replaced by a single variable which stores the value of c2 on the
previously considered interval.

Remark 4.4. With the multilevel algorithm we have to compute differences of the form
f (x1:dl

)− f (x1:dl−1
) with dl = 2kdl−1 for k ∈ N. Therefor we do not have to execute the

traversal of the Lévy-Ciesielski binary tree twice, but while doing the traversal for n = dl

all values needed for n = dl−1 are computed "on the way".

4.3 Methods of Integration Point Generation

Components for generation of integration points basically share the following interface in
our library:

• A method prepare(l,d,n) which allows to tell the component that we expect it to
compute a number of n integration points in dimension d on level l in the multilevel
algorithm.

• A method getPoint(p, i) which saves the i-th integration point to the vector p.

58 4 C++ Library for Numerical Experiments

Currently the library contains two such components. The first simply generates pseudo-
random integration points. We refer to this component as Prand. The second component
implements (shifted) rank-1 lattices where the lattice generator is computed using the
fast CBC algorithm of [Ny07]. We refer to this component as Plattice.

4.3.1 Mersenne Twister

The component Prand generates integration points p which are element-wise uniformly dis-
tributed on [0,1]. The pseudo random numbers are generated using a Mersenne Twister
in the version MT19937 provided by the GNU Scientific Library [GSL11]. At the beginning
we once initialize the Mersenne Twister with the default seed 4357.

The method prepare contains no instructions for this component. When invoking
getPoint(p, i) the value i has no effect but for each component of p simply the Mersenne
Twister is called.

We stress that the current implementation does not support multiple threads. If the
component is used with multiple threads the access has to be synchronized between the
threads. In particular, this means that all pseudo random numbers originate from one
sequence.

4.3.2 (Shifted) Rank-1 Lattices

The component Plattice generates integration points forming from a rank-1 lattice which
can be either unshifted, with user-specified shift or randomly shifted. The core of this
component is an implementation of the fast CBC algorithm which is used to compute
the rank-1 lattice generator. Note that we currently implemented only the version of the
fast CBC algorithm which accepts numbers of integration points that are prime, but there
are also versions which accept more general numbers of integration points and hence
compute generators for lattices other than rank-1 lattices, see [Ny07, Chapter 4].

We begin with discussing the usage of the Plattice. On creation the component requires
the following parameters to be specified:

• a function describing a shift-invariant kernel ω on [0,1] × [0,1]. The kernel is
expected to be given in terms of one variable, cf. Remark 2.61.

• functions describing sequences of weights β = (βi)i∈N and γ = (γi)i∈N, respectively.

• a flag indicating how random shifts are introduced. The component supports two
distinct modes:

1. No random shifts. Then the user may manually specify a shift.

2. Independent random shifts. That is, for each level and each repetition the cor-
responding shift is sampled independently, the shift being in each component
distributed according to the uniform distribution on [0,1].

Given ω, β and γ, invoking prepare(l,d,n) the generator z= (z1, ..., zd) ∈ {1, ..., n−1}d
of a rank-1 lattice Pn(z) is computed by determing z component by component. Thereby
each component zs is chosen such that

e2(Q(·, Pn(z)), B(Kd,β ,γ))

4.3 Methods of Integration Point Generation 59

is minimized while keeping the previously determined components z1, ..., zs−1 fixed. Here
Q(·, Pn(z)) denotes the rank-1 lattice rule using the lattice generated by z. The class of
integrands is the unit ball B(Kd,β ,γ) of the RKHS which has the shift-invariant reproducing
kernel

Kd,β ,γ(x,y) =

d∏

j=1

(β j + γ jω({x j − y j}).

Example 4.5. Let γ = (γ j) j∈N be a sequence of weights and let K1:d denote the kernel of
the anchored weighted Sobolev space with product weights given by γ. Then with

β j = 1+
γ j

3
,

ω({·}) = B2({·})

the kernel Kd,β ,γ is the associated shift-invariant kernel of K1:d , see Proposition 3.16.

Once a lattice generator is given, the calculation of the integration points is trivial, cf.
Section 2.4. After invoking getPoint(p, i) the elements of p are

p j =

�
i · z j

n
+∆ j

�
, j = 1, ..., d

where the method prepare generated the shift ∆ according to the selected mode. In
particular, the shift may be ∆= 0.

Basic Idea of the Fast CBC Algorithm

We briefly summarize [Ny07, Chapter 3] to outline the crucial idea behind the fast CBC
algorithm. Algorithm 4.3 demonstrates a first naive approach to perform the component-
by-component search. There we use that the squared worst case error is given by

e2(Q(·, Pn(z)), B(Kd,β ,γ)) = e2
d,γ,β
(z)

with

e2
s,γ,β
(z1, ..., zs) := −

s∏

j=1

β j +
1

n

n−1∑

k=0

s∏

j=1

�
β j + γ jω

�¨
k · z j

n

«��
. (4.12)

To emphasize that in the s-th iteration only the component zs is changed we rather write
e2

s,γ,β
(zs) instead of e2

s,γ,β
(z1, ..., zs) omitting the preceding components in the argument

list.
We easily see that a direct implementation of Algorithm 4.3 would require a number of

arithmetical operations in O(d2n2). But in iteration s the product

s∏

j=1

(β j + γ jω({(k · z j)/n}))

60 4 C++ Library for Numerical Experiments

Algorithm 4.3 First naive component-by-component construction

1: for s = 1, ..., d do

2: for zs = 1, ..., n− 1 do

3: calculate e2
s,γ,β
(zs) =−

∏s

j=1
β j +

1

n

∑n−1

k=0

∏s

j=1

�
β j + γ jω

�n
k·z j

n

o��

4: end for

5: zs = argminz=1,...,n−1 e2
s,γ,β
(z1, ..., zs)

6: end for

is fix up to the s-th factor. Hence, if we introduce a vector ps−1 ∈ Rn storing the result of
multiplying the factors 1, ..., s− 1 for each k,

ps−1,k =

s−1∏

j=1

�
β j + γ jω

�¨
kz j

n

«��
,

we can immediately reduce the number of arithmetical operations to be in O(dn2). The
prize we pay is that we now need additional memory in O(n) for the vectors ps−1 (we can
overwrite the same memory for each iteration s).

Defining the matrix

Ωn :=

�
ω

��
k · z

n

���

z=1,...,n−1
k=0,...,n−1

,

the shorthand β̄s =
∏s

j=1
β j and the worst-case error vector

e2
s,γ,β

:= (e2
s,γ,β
(i))i=1,...,n−1

we may write

e2
s,γ,β
=−β̄s1n−1×1 +

1

n
(βs1n−1×n+ γsΩn)ps−1.

The crucial discovery of the inventors of the fast CBC algorithm is now that there is a
n× n permutation matrix Π such that, for Π and the submatrix Π′ we obtain by deleting
the first row and the first column, we get the following:

• the permuted worst-case error vector E2
s,γ,β

:= Π′⊤e2
s,γ,β
(z1, ..., zs) takes the form

E2
s,γ,β
=−β̄s1n−1×1+

1

n
(βs1n−1×n+ γsΩ

′
n)qs−1

Here Ω′n and qs−1 denote basically the permuted forms of Ωn and ps−1, respectively.
The matrix Ω′n is of the form

Ω
′
n = [ω01n−1×1 Cn−1]

where Cn−1 is a circulant matrix. For such matrices matrix-vector multiplications
can be done in O(n log(n)) arithmetical operations instead of O(n2) when using a
Fast Fourier Transform (FFT).

4.3 Methods of Integration Point Generation 61

• the components z1, ..., zs of the lattice generator in the unpermuted space can be
computed in constant time from the components w1, ..., ws of the lattice generator
in the permuted space if we use O(n) memory.

Overall, this leads to a component-by-component search which needs O(dn log(n)) arith-
metical operations using O(n) extra memory.

Remark 4.6. For k ∈ {1, ..., n−1

2
} the shift-invariance of ω implies

ω

��
n− k

n

��
=ω

��
k

n

��
.

Thus it suffices to search the lattice generator components z j in the set {1, ..., n−1

2
} reduc-

ing the cost of the fast CBC algorithm by a factor 2.

Implementation

Our implementation of the fast CBC algorithm is basically a translation of the Matlab
code provided by [Ny07, Listings 3.1, 3.2 and 3.3, p. 69/70] into C++ code. Thus
we content ourself with discussing two pieces of code where translation into C++ code
meant more than simple copy and paste.

Line 9 of [Ny07, Listing 3.1] involves the multiplication of two integers. This demands
particular attention as the product may become very large, even larger than the capacity
of the primitive datatype long (at least on a 32 bit machine).

In Matlab the programmer does not have to bother since Matlab itself is capable of
handling arbitrarily large integers. C++ does not provide this capability by default. If
one is not aware of this circumstance in advance it is a source of undetected false lat-
tice generator calculation since potential integer overflows are unrecognizable at compile
time.

Fortunately, there are numerous implemented solutions to this problem available. We
decided to use the small library by McCutchen [MM10] which provides us with proper
datatypes.

The second part in [Ny07, Listing 3.1] where we had to do extra work were those pieces
of code dealing with fast Fourier transformations. The concerned lines are 15 and 17. First
of all, the C++ standard library has no FFT implementations. So again, we had to seek
out for existent implementations. Though certainly not the best freely available solution
we opt for the FFT routines of the GNU Scientific Library (GSL) [G97]. We decided so as
they seemed the easiest to use and required the least practice to get it running.

Abstractly speaking, lines 15 and 17 in [Ny07, Listing 3.1] now do the following: For
m= (n− 1)/2 and a given real valued vector x= x0:m−1 the fast Fourier transform FFT is
utilized to compute the discrete Fourier transform (DFT) of x,

x̃= FFT(x).

As x is real valued the result x̃ is a conjugate symmetric complex valued vector, that is it
obeys the symmetry

x̃k = x̃∗
m−k

62 4 C++ Library for Numerical Experiments

where ∗ denotes the complex conjugation and m− k is taken modulo m. Moreover, we
always have x̃0 ∈ R and if m is even x̃m/2 ∈ R, as well. Alternatively, we also say that x̃ is
half-complex.

The DFT is computed for another real valued vector y= y0:m−1. Of course, the resulting
vector ỹ = FFT(y) obeys the same properties as x̃. Now for z̃ being the vector we obtain
by component-wise forming the complex product z̃k = x̃k · ỹk, the algorithm computes the
inverse DFT of z̃ by means of a inverse fast Fourier transform (IFFT),

z= IFFT(z̃) ∈ Rm.

If we implemented what we described above just as we put it there it would require
to temporarily store the vectors x̃ and ỹ by means of complex valued datatypes. How-
ever, we can halve the required memory if we use an implementation of FFT, say FFTr ,
which is specialized for real valued input and respectively a special version of IFFT, IFFThc ,
accepting only half-complex input. The GNU Scientific Library comes along with such im-
plementations. They use a special storing scheme which stores a half-complex vector
ã in a corresponding real valued vector ahc of same length, thus halving the consumed
memory.

We describe the storing scheme. For this purpose, define a map τm : {0, ..., m − 1} →
{0, ..., m− 1} by

τm : k 7→





0 if k = 0

2k− 1 if 0< k < m+1

2
3(m+1)

2
− 2k if m+1

2
≤ k < m

for m odd and

τm : k 7→





0 if k = 0

2k− 1 if 0 < k ≤ m

2
3

2
m− 2(k− 1) if m

2
< k < m

if m is even. Then ã and ahc are related as follows:

• For k = 0 we have Re ãk = ahc
k

and Im ãk = 0.

• For m odd and 0< k < m it holds true that

Re ãk = ahc
τm(k)

Im ãk =

(
ahc
τm(k)+1

if 0 < k < m+1

2

−ahc
τm(k)+1

if m+1

2
≤ k < m

.

• For m even we have the same relation except for Im ãm/2 = 0.

Now let x̃, ỹ and z̃ as given above. We get the vectors xhc and hhc by applying FFTr to x

and y, respectively. Hence the crucial point here is how to obtain the vector zhc from xhc

and yhc . Based on the storing scheme we derive that zhc is calculated as follows:

4.3 Methods of Integration Point Generation 63

• for k = 0 we calculate zhc
k
= xhc

k
· yhc

k

• for odd k with 0< k < m− 1 we calculate

zhc
k
= xhc

k
· yhc

k
− xhc

k+1
yhc

k+1
.

• for even k with 0< k < m− 1 we calculate

zhc
k
= xhc

k−1
· yhc

k
+ xhc

k
· yhc

k−1
.

• if m is even we additionally calculate zhc
m−1
= xhc

m−1
· yhc

m−1
.

Shortcomings of the GSL FFT Routines

For the facts we refer to in this paragraph, see [G97]. The cost in O(n log n) which
is claimed for the fast CBC algorithm basically founds on the fast Fourier transformation
to compute the DFT of a vector of size n in O(n log n) arithmetical operations instead of
O(n2).

The FFT routines of the GSL follow up on this promise merely with restrictions as we
are going to sketch briefly in the following. Assume we are given n ∈ N. Then the number
of arithmetical operations needed for computing the DFT of a vector x of size n by means
of the GSL FFT routine is generally bounded by

Cn

s∑

k=1

fk

where C > 0 is some constant and n = f1 f2... fs is a factorization of n. But then it depends
highly on the given factorization whether the cost are close to Cn log n or rather close to
Cn2. For instance, if n= 2m for m ∈ N then we actually see a bound of the form C ′n log n

for C ′ = C/ log 2.
From a practical point of view it is even more important to note that the size of the

constant C heavily depends on the given factorization. Only for factors f = 2,3,4,5,6

the GSL implementation uses heavily optimized subroutines, otherwise a rather slow sub-
routine for general factors f is used.

However, see [Ny07, p. 76] for references that it is possible to implement FFTs with
O(n log n) cost for general n.

4.4 Multilevel Parameter Strategies

The library comes along with three distinct strategies ϑ1,ϑ2 and ϑ3 controlling the choice
of the multilevel parameter values. As we standardized the communication between the
strategies and other components of the library, all strategy implementations use the user-
specified error bound ǫ to determine the parameter values.

The first two strategies are very simple and purely for experimental purposes. The
third strategy ϑ3 is adaptive in the sense that it chooses the dimension and numbers of
integration points for the multilevel algorithms based on a heuristic estimate of the the
rooted mean squared integration error. This estimate aims at meeting the user-specified
error bound ǫ.

To be compatible with our rank-1 lattice point generator implementation, all three
strategies choose only prime numbers for the numbers of integration points.

64 4 C++ Library for Numerical Experiments

S1. No-multilevel

Given the input ǫ the no-multilevel strategy chooses one dimension d = ǫ−1/2 and one
number of n integration points with n the next prime number greater than ǫ−1/2. Of
course, combined with our pseudorandom integration point generator the no-multilevel
strategy turns our multilevel algorithm into the classical Monte-Carlo method. Hence it
provides a baseline for other strategies.

S2. Strategy Based on Theoretical Results

Niu et al.[NHMR10, Proof of Theorem 3] achieve their results by a geometric growth
in the dimensions and geometric decay in the number of integration points. We form a
strategy ϑ2 from this as follows: If we are given an error bound ǫ we take the number of
levels L as

L =

log(ǫ−1)
£

. (4.13)

Then for each level l = 1, ..., L we specify the dimension to be

dl = 2l .

The number of integration points nl is specified to be the next prime number greater than
or equal to 2L−i+1.

S3. Adaptive Strategy Using Bias and Variance Estimates

Both the strategies we considered above lack in the possibility to check for the integra-
tion error of the multilevel algorithm on the run. The following adaptive strategy tries to
overcome this deficiency and was proposed in Giles et al.[GW09]. Let L denote the num-
ber of different levels the strategy triggers to be computed. Then let d = (d1, ..., dL) and
n = (n1, ..., nL) denote the corresponding dimensions and numbers of integration points,
respectively. Further put M = 32 as suggested by Giles et al. Now, for ϑ3 working as
intended there are two requirements on the used method of point generation P. First, the
component P must be such that the level quadrature rules Q l = Q(l, f , P,ϑ3), l = 1, ..., L,
become independent random variables, having the property that

E[Q l] = I(Ψ1:d1,a f) for l = 1,

E[Q l] = I(Ψ1:dl ,a
f −Ψ1:dl−1 ,a f) for l > 1.

Second, P has to be such that for i = 1, ..., M the repeated level computations Q
(i)

l
yield

independent realizations of Q l .
Denote by e the mean squared integration error (2.17) for the multilevel algorithm

Qml =Qml(f , P,ϑ,ǫ) and some fixed integrand f , that is

e2 = e2(Qml, f).

Further write

b2 = b2(Qml)

4.4 Multilevel Parameter Strategies 65

for the bias of Qml. As we generate the integration points independently for each level,
we obtain

Var(Qml) =

L∑

l=1

Var(Q l).

The idea is now to pick estimators bb and bVl for b and Var(Q l) respectively, and choose
the number of levels L, the dimensions d and the numbers of integration points n such
that

bb2+

L∑

l=1

bVl ≤ ǫ2.

For Var(Q l) we take the usual estimator

bVl =
1

M − 1

M∑

i=1

(Q
(i)

l
−Qres

l
)2 (4.14)

with Qres
l
= 1/M

∑M

i=1
Q
(i)

l
. For the bias b the authors propose the estimator

bb =max

�
1

2
|Qres

l−1
|, |Qres

l
|
�

. (4.15)

Finally, assuming that b2 and Var(Q l) contribute equally to e2 we get a strategy ϑ3 acting
as indicated in Algorithm 4.4.

Remark 4.7. We have no certainty on the quality of bb. Further the assumption that b2

and Var(Q l) contribute equally to e2 is heuristic, as well as the greedy approach in line
5 of Algorithm 4.4. Hence strategy ϑ3 yields a heuristic for the integration error. But as
numerical experiments show, we can hope that it leads to e ≤ ǫ most of the time, see
Section 5.4.

4.5 Estimating Orders of Convergence

Let f be a subroutine representing an integrand, P a method of integration point gen-
eration, and ϑ a strategy for multilevel parameter choice. In this section we describe an
experimental design which allows to estimate exponents of convergence for the integra-
tion error of the multilevel algorithm Qml(f , P,ϑ, ·) by means of a linear regression.

For this purpose we require to be given a target value for I(f). Further, we require to
be given a regression model which specifies an assumed functional relation between error
and cost up to constants and exponents.

66 4 C++ Library for Numerical Experiments

Algorithm 4.4 Adaptive Strategy Using Bias and Variance Estimates

1: ϑ3 sets L← 1, d1← 2, n1← 2 and then puts l ← 1 into level queue.
2: Qml pops level l from queue and computes the M realizations Q

(i)

l
. Then Qres

l
is taken

as level result.
3: ϑ3 updates bVl for l = 1, ..., L.
4: if

∑L

l=1
bVl ≥ ǫ2/2 then

5: ϑ3 doubles nl at level l with maximal bVl/(nldl) and puts this l into level queue.
6: Goto line 2.
7: else

8: if bb ≥ ǫ/
p

2 then

9: ϑ3 sets L← L + 1 and puts l ← L into level queue.
10: Goto line 2.
11: end if

12: end if

Data Acquisition

We execute the following procedure:

Input: user-specified error bounds ǫ1 > ... > ǫM , a sample size N , f , P, ϑ
for j = 1, ..., M do

for i = 1, ..., N do

Qml
i, j
← Qml(f , P,ϑ,ǫ j).

end for

end for

Thereby we assume that for each j = 1, ..., M we can treat (Qml
i, j
)i=1,...,N as a realization of

N i.i.d. copies of some random variable which describes the outcomes of Qml(f , P,ϑ,ǫ j).

Remark 4.8. The above proceeding is justified, e.g. if we use P = Prand or P = Plattice with
independent shift sampling for each level repetition.

For each outcome Qml
i, j

we record the cost Cml
i, j

the multilevel algorithm run produced.
Thereby we do not record actual runtimes or count arithmetic operations but follow an
adapted version of the variable subspace sampling cost model we introduced in Section
2.2.

The multilevel algorithm performs evaluations of f in the form of f (x1:d2
) or f (x1:d2

)−
f (x1:d1

) where d1, d2 denote dimensions with d1 < d2. In both cases we count the evalu-
ation cost with d2. This is reasonable for the integrands we encounter in this thesis since
calculating f (x1:d2

)− f (x1:d1
) roughly produces only the cost of calculating f (x1:d2

) while
getting f (x1:d1

) almost for free as a byproduct.
Let L(i,ϑ,ǫ j) denote the number of levels the strategy ϑ determined in run i for

the user-specified error bound ǫ j. Analogously, we denote by n(i,ϑ,ǫ j), d(i,ϑ,ǫ j) and
r(i,ϑ,ǫ j) the numbers of integration points, the dimensions and the number of repeated
level computations, respectively. Following the above argumentation on the evaluation
cost we record the cost Cml

i, j
such that

Cml
i, j
=

L(i,ϑ,ǫ j)∑

l=1

rl(i,ϑ,ǫ j) · nl(i,ϑ,ǫ j) · dl(i,ϑ,ǫ j).

4.5 Estimating Orders of Convergence 67

Data Interpretation

To prepare the observed data we require the user to specify a referential value R of I(f)

and then calculate the observed integration errors

Eml
i, j
= |Qml

i, j
− R|

for i = 1, ..., N and j = 1, ..., M . Then for each user-specified error bound ǫ j we compute
the sample mean square error

bE2
j
=

1

N

N∑

i=1

(Eml
i, j
)2

which is an unbiased estimator of e2(Qml(f , P,ϑ,ǫ j), f). Furthermore we compute the
sample mean square cost

bC2
j
=

1

N

N∑

i=1

(Cml
i, j
)2.

We estimate confidence intervals both for e2(Qml(f , P,ϑ,ǫ j), f) as well as for the cost
produced for given ǫ j . Therefor we split our sample into K batches of size Nb = N/K .
Then for A= E or A= C we calculate for each batch k the batch average

bA2
j
(k) =

1

Nb

kNb∑

i=1+(k−1)Nb

(Aml
i, j
)2

which is approximately Gaussian for Nb large enough. The mean over the batch averages
obviously is bA2

j
and the standard estimator for the variance of the batch averages is given

by

σ̂2
j
=

1

K − 1

K∑

k=1

(bA2
j
(k)− bA2

j
)2.

Using the Student t-distribution with K − 1 degrees of freedom and a significance level
α we obtain a confidence interval

(Â2
j
−δÂ2

j
, Â2

j
+δÂ2

j
)

with δbA2
j
= t1−α,K−1(

Æ
bσ2

j
/K). In this case the actual mean square integration error or

the actual mean cost lie in the corresponding confidence interval with probability 1−α.
Experience shows that a batch size Nb ≥ 15 is sufficient to get reliable confidence

intervals, see [KP92, p. 312].
Let us now finally turn to measuring orders of convergence. If theoretical results are

known for integration problems the relation between error e and cost Γ is usually of the
form

e = O(Γ−p)

or

e = O(Γ−p(logΓ)q).

68 4 C++ Library for Numerical Experiments

This motivates to do a linear regression in the logarithmized error and cost data

X := (log(bC j)) j=1,...,M

Y := (log(bE j)) j=1,...,M .

Following the cost-error relations sketched above possible models might then be

Y= β0+ β1X

or Y= β0+ β1 log(X) + β2X

with exp(β0) estimating the constant hidden behind the big-O notation and −β1 and β2

estimating p and q, respectively.

4.5 Estimating Orders of Convergence 69

5 Numerical Experiments for the Asian
Call Option

In Chapter 3 we presented anchored weighted Sobolev spaces for which theoretical results
on the order of convergence of deterministic multilevel rank-1 lattice rules and rank-1
lattice rules are available, both using deterministically shifted lattices.

But important integrands fitting in our setting R1 (see Section 2.1) are neither con-
tained in an anchored weighted Sobolev space nor are there yet any theoretical results for
suitable function spaces. In particular, this comprises the Asian Call Option in the Black
Scholes model where we recall that it is given by the payoff

ϕAC(S) = e−rT max

1

T

∫ T

0

St dt − K , 0

!

with S the geometric Brownian motion on the time interval [0, T]. Hence numerical
experiments are currently the only way to explore the potential of rank-1 lattices for the
calculation of the option prize.

We are particularly interested in how well the combination of rank-1 lattice rules and
the multilevel technique performs. For multilevel shifted rank-1 lattice rules recent nu-
merical experiments by Giles and Waterhouse [GW09] yield promising results. For the
Asian call option the experiments reveal the multilevel algorithm using shifted rank-1
lattice rules to have level variances declining significantly faster than with the building
blocks being classical Monte Carlo rules.

Motivated by the former we execute experiments to measure orders of convergence for
shifted rank-1 lattice rules both with and without the multilevel technique, comparing
these results to classical Monte Carlo integration. Then in a second line of experiments
we examine the impact of deterministic shifts on observed integration errors.

5.1 Preliminaries

For the reader’s convenience, we restate from Section 4.2 the implementations of the
Asian call option related to SDE setting R1:

F1: f1(x1:dl
) = ϕAC ◦Γ(L(l)(x1:dl

)),

F2: f2(x1:dl
) = ϕAC ◦Γ(Ŵ (l)(x1:dl

)),

F3: f3(x1:dl
) = ϕAC ◦Γ(K (l)(x1:dl

)).

For classical Monte Carlo integration it makes no difference whether we use the Lévy-
Ciesielski partial sum L(l) or Ŵ (l) as both share the same distribution. However, for

71

lattice based methods there a numerous numerical experiments where the former per-
formed much better than the latter, see [G08] for further references. Hence we focus on
implementation F1 and F3 in the following.

Recall that internally F3 has to apply a quadrature rule to approximate the integral over
the given approximate path of geometric Brownian motion. With our current implemen-
tation this actually leads to cost increasing nonlinearly in the evaluation dimension dl .
However, we take the liberty to assume the following fictitious modification:

F3a: We assume the internal quadrature rule to be given by a subroutine which always
approximates the pathwise integral in a number of operations increasing linear in
dl . This version F3a then has cost in O(dl).

Our motivation for F3a is as follows: the fictitious subroutine can not calculate the path-
wise integral better than F1 determines the corresponding integral anyway. Hence the
latter cost assumption allows to point out more clearly how well F3 utilizes the rank-1
lattice integration points compared to F1.

As parameters for the Asian call option we choose

T = 1, s0 = 2, r = 0.05, σ = 0.5, K = 2.

For this choice of parameter values [V02] states

E[ϕ(S)]≈ 0.246416

which we take as referential value.
All experiments described below follow the basic experimental setting given in Section

4.5. For confidence interval estimation we use a significance level of α= 0.01. Regarding
the choice of a regression model we find inspiration by Remark 2.34. Though referring to
SDE setting R2 we nevertheless expect to observe experimentally roughly the same orders
of convergence for classical Monte Carlo integration and implementations referring to
SDE setting R1. Moreover, we hope to observe structurally the same cost-error evolution
with lattice based methods. In particular, we suppose that the log N term does not only
show up in the upper bound (2.24) but is rather a crucial characteristic of the cost-error
evolution when the multilevel technique is involved.

Hence we are motivated to assume a cost-error relation

e(N) = c · (log N)β1 · Nβ2

with c = exp(β0) and consequently apply the regression model

Y= β0+ β1 log(X) + β2X

with X and Y according to Section 4.5. Note that we slightly abuse the notation as β0, β1

and β2 in the regression model are merely estimators of the corresponding quantities in
the assumed cost-error relation. We apply the regression model regardless of whether or
not the experiment involves the multilevel technique. In the latter case we expect β1 = 0

for ideal data.

72 5 Numerical Experiments for the Asian Call Option

For lassical Monte Carlo integration we use the pseudorandom integration point gen-
erator Prand and for lattice based methods the rank-1 lattice integration point generator
Plattice. Both are described in detail in Section 4.3. To obtain integration points suitable
for our purposes we transform the generated integration points in both cases by apply-
ing component-wise the inverse of the cumulative Normal distribution function using the
implementations provided by [GSL11].

The basic configuration of Plattice is as follows: As shift-invariant kernel we choose the
Korobov kernel

ω(x) = B2(x) = 2π2(x2− x +
1

6
).

For the weight sequences β and γ we set

β j = 1,

γ j = Cγ · j−4.

with Cγ = 1.

Remark 5.1. Note that we have no a priori information at hand how to choose the kernel
and the weights here. For the kernel we take B2 as it is the one we encounter with the
theoretical results given in Chapter 3. For the weights we played around a bit. At least, to
choose γ declining in j with polynomial order reflects the theoretical insight we gained in
Section 3.2.

5.2 Results for Multilevel Shifted Rank-1 Lattice Rules

The purpose of this experiment is to learn how well multilevel shifted rank-1 lattice rules
perform, compared with quadrature rules where the multilevel technique is omitted or
classical Monte Carlo sampling is done for the integration points.

Additionally to the basic setting we configure Plattice such that for each level computa-
tion a new shift is randomly generated according to the uniform distribution. Further-
more, we recall from Section 4.4 the strategy ϑ1 which uses always only on level (thus
turning the multilevel technique off). We also recall strategy ϑ2 where the dimensions
grow geometrically with the level and the numbers of integration points decay geomet-
rically with the level. Then we run our multilevel algorithm with the following four
combinations:

1. no-ml rand: (classical Monte Carlo rule) ϑ = ϑ1, P = Prand

2. no-ml lattice: (shifted rank-1 lattice rule) ϑ = ϑ1, P = Plattice

3. ml rand: (multilevel Monte Carlo rule) ϑ = ϑ2, P = Prand

4. ml lattice: (multilevel shifted rank-1 lattice rule) ϑ = ϑ2, P = Plattice

For combinations involving ϑ1 we spend 10 different user-specified error bounds per com-
bination to get results for different cost values, combinations involving ϑ2 get spend 15

user-specified error bounds each. We repeat this procedure N = 1000 times for each
combination.

5.2 Results for Multilevel Shifted Rank-1 Lattice Rules 73

Using implementation F1 the results are illustrated in the Figures 5.1. We see that mul-
tilevel rank-1 lattice rules clearly outperform the other methods, reaching an exponent
β2 = −0.71 which dominates the cost-error evolution on an asymptotic scale. Moreover,
we note that for classical Monte Carlo rules and multilevel Monte Carlo rules the ex-
perimental results are consistent with the theoretic results given by (2.23) and (2.24),
respectively. In particular, the upper bounds seem to be matching bounds for the corre-
sponding quadrature rules. Observing exponents β1 different from 0 for classical Monte
Carlo and shifted rank-1 lattice rules is due to a slight overfitting of the data by the re-
gression model. Particularly the data points at low cost values do not perfectly lie on a
line in the loglog plot.

Remark 5.2. To transform the plotted cost given in Figure 5.1 roughly into real runtime
cost one has to multiply by factor of 643 nsec = 643 · 10−9 sec.

We run the experiment for implementation F3, as well. For F3a the results suggest that
the principal component construction used with F3 utilizes rank-1 lattices even better
than the Brownian bridge construction used with F1, see Figure 5.2. However, if we
fully incorporate the cost of the quadrature rules which F3 uses internally, then we get
the results as given in Table 5.1. As the cost grow quadratically with the evaluation
dimension, now the β2 exponents are halved.

method c β1 β2

no-ml rand 0.36 0.04 -0.12
no-ml lattice 0.28 0.20 -0.22

ml rand 0.28 0.63 -0.25
ml lattice 0.27 0.94 -0.4

Table 5.1: Comparing orders of convergence for F3.

5.3 Effect of Constant Factors in the Weights

When we prepared the experiments described in the previous section we tried only dif-
ferent γ weights in terms of order of decay. Later we had the idea to test the effect of
constant factors in the γ weights on the performance of multilevel shifted rank-1 lattice
rules. Results based on F1 are given in Table 5.2.

Cγ c β1 β2

0.001 0.46 0.84 -0.68
0.05 0.46 0.91 -0.71

0.2 0.45 0.98 -0.73
1 0.44 0.94 -0.71
2 0.44 0.84 -0.64

20 0.44 0.41 -0.54

Table 5.2: Effect of constant Cγ on the orders of convergence, using implementation F1.

We see rather no improvement. But increasing Cγ seems to counteract the multilevel
technique. With β1 becoming smaller, the cost-error curve tends to a form which is similar

74 5 Numerical Experiments for the Asian Call Option

e
rr
o
r
(r
m
s
e
)

10-4

10-3

10-2

10-1

100100

cost

100 101 102 103 104 105 106

 method c β1 β2

 no-ml rand 0.33 0.18 -0.27

 no-ml lattice 0.31 0.38 -0.45

 ml rand 0.43 0.63 -0.49

 ml lattice 0.44 0.94 -0.71

Figure 5.1: Comparing orders of convergence for F1.

e
rr
o
r
(r
m
s
e
)

10-4

10-3

10-2

10-1

100100

cost

100 101 102 103 104 105

 method C β1 β2

 no-ml rand 0.37 0.04 -0.24

 no-ml lattice 0.32 0.20 -0.43

 ml rand 0.44 0.64 -0.49

 ml lattice 0.52 0.92 -0.80

Figure 5.2: Comparing orders of convergence for F3a.

5.3 Effect of Constant Factors in the Weights 75

as in the case of shifted rank-1 lattice rules. The β2 exponent seems to tend towards the
value we observed for shifted rank-1 lattice rules in the previous experiment.

5.4 Results for Adaptive Multilevel Parameter Strategy

So far we determined the multilevel parameters for the multilevel shifted rank-1 lattice
rule statically, in the sense that we only use a priori evidence from theory how to choose
the parameters. However, using strategy ϑ2 we do not have any indication whether the
choice is optimal for a given integrand. Moreover, we have no estimate at runtime which
error the multilevel algorithm currently produces.

Mainly the latter makes this strategy useless in practice. Hence we pass on to testing
the adaptive strategy ϑ3 we introduced in paragraph S3 of Section 4.4. Recall that using
this strategy the evaluation dimension still increases geometrically with the level but the
number of levels and the number of integration points in each level is determined adap-
tively on the basis of a heuristic rooted mean square error estimate. Further note that this
strategy uses a number M = 32 of level repetitions.

The experiment’s result is given in Figure 5.3. The plotted data points are the rooted
mean square errors given at rooted mean square cost observed for user-specified error
bounds

ǫ =
1

100
,

1

400
,

1

900
,

1

1600
,

1

2500
,

1

3600
,

1

4900
,

1

6400
,

1

8100
,

1

10000
.

The mean values are taken over a sample size of N = 600.
A first interesting observation is that the current multilevel parameter strategy seems to

produce "flat regions" where increasing the cost does not diminish the error. From Table
5.3 we learn further that for the user-specified error bound ǫ = 1/6400 the corresponding
rooted mean square error is even larger than ǫ.

The exponent β2 = −1.03 estimated by the regression indicates that we improved
the multilevel shifted rank-1 lattice rule on an asymptotic scale. Note that the estimate
stays roughly the same even when we eliminate the data points being far away from the
regression curve. But we are not sure how trustworthy this estimate is. In particular,
due to the results we are less committed to the regression model than in the previous
experiments.

5.5 Shift Sensitivity of Rank-1 Lattice Rules

With multilevel shifted rank-1 lattice rules the shift is merely used as an element to intro-
duce randomization. In this way we conceal that we do not now how to choose a good
shift deterministically. Nevertheless we now try to explore how small we would be able to
make the integration error if we knew a good shift. It is reasonable to start experimenting
with rank-1 lattice rules, omitting the multilevel technique, as we can not expect the same
shift to have equal effects in each level in the first place.

We run the following experiment. Using implementation F1 and strategy ϑ1 we config-
ure Plattice such that the shift is now manually set, resulting in a rank-1 lattice rule with
deterministic shift. Then we limit ourself to examine shifts on the diagonal. In prepara-
tion of the experiment we found that the error reacts on changes in the shift up to the

76 5 Numerical Experiments for the Asian Call Option

e
rr
o
r
(r
m
s
e
)

10-4

10-2

cost (rms)

105 106 107 108

 method c β1 β2
 adaptive 1.26e-06 8.16 -1.03

Figure 5.3: Adaptive Strategy S3 applied to F1.

e (rmse) ǫ e− ǫ
3.87e-03 1/100 -6.13e-03
1.67e-03 1/400 -8.31e-04
7.90e-04 1/900 -3.21e-04
4.96e-04 1/1600 -1.29e-04
3.88e-04 1/2500 -1.25e-05
1.93e-04 1/3600 -8.51e-05
1.89e-04 1/4900 -1.49e-05
1.85e-04 1/6400 2.84e-05
9.27e-05 1/8100 -3.07e-05
9.34e-05 1/10000 -6.61e-06

Table 5.3: Difference between rms error e and user-specified error bound ǫ.

5.5 Shift Sensitivity of Rank-1 Lattice Rules 77

fourth digit after the decimal point. Hence we start with ∆ = 0.0001 and successively
increase the shift by 0.0001 until we reach ∆ = 0.9999, resulting in a number of 10,000

runs of the multilevel algorithm each time changing the shift.
Results for dimensions d = 16,64 and numbers of integrations points n = 17,37,67

are illustrated in Figure 5.4. On the x -axis we plot the values of ∆, on the y-axis we
plot the absolute integration error. We see that the shift heavily affects the integration
error. There a shifts where the computed integral value almost matches the reference
value (which is specified up to the sixth digit after the decimal point). The number of
those shifts approximately coincides with n. However, what we find irritating in the data
is that we observe greater minimal, maximal and average errors when we increase the
dimension d but keep the number n of integration points fixed, see Table 5.4. This is
rather counterintuitive since larger values of d correspond to finer path approximations.

d n min e max e avg e

16 17 4,70e-06 0,9051 0,0841
16 37 3,08e-06 0,4259 0,0435
16 67 6,98e-07 0.2230 0.0228
64 17 1,60e-05 1,1634 0,1111
64 37 1.79e-05 0.5626 0.0690
64 67 9,27e-06 0,2999 0,0346

Table 5.4: Minimal, maximal and average error for tested shifts.

We conclude this section by noting that we applied the same experimental setting as
above to multilevel rank-1 lattice rules with deterministic shift. We did not examine the
results for all shifts, but for those we did we roughly found the situation exemplarily
illustrated by Figures 5.5 and 5.6. Note that in both plots the ith data point corresponds
to a multilevel algorithm run using i levels. The algorithm runs which use two levels
(L = 2) most of the time reach the best integration error in the range of tested numbers
of levels L. Then integration errors worsen, going up and down for some values of L and
eventually decrease steadily with L.

If we do a regression as in the previous sections, but now only for the range of level
numbers where we see a stable error decline, we observe values of β2 only up to 0.5,
which is less than what we observed in the randomized case in Section 5.2. We conclude
that if it was possible to search for good shifts this would have to be done on a per-level
basis.

78 5 Numerical Experiments for the Asian Call Option

e
rr
o
r

0

0,2

0,4

0,6

0,8

1

shift

0 0,2 0,4 0,6 0,8 1

d = 16, n = 17

 0,0841

e
rr
o
r

0

0,2

0,4

0,6

0,8

1

shift

0 0,2 0,4 0,6 0,8 1

d = 16, n = 37

 0,0435

e
rr
o
r

0

0,2

0,4

0,6

0,8

1

shift

0 0,2 0,4 0,6 0,8 1

d = 16, n = 67

 0,0228

e
rr
o
r

0

0,2

0,4

0,6

0,8

1

shift

0 0,2 0,4 0,6 0,8 1

d = 64, n = 17

 0,1111

e
rr
o
r

0

0,2

0,4

0,6

0,8

1

shift

0 0,2 0,4 0,6 0,8 1

d = 64, n = 37

 0,0690

e
rr
o
r

0

0,2

0,4

0,6

0,8

1

shift

0 0,2 0,4 0,6 0,8 1

d = 64, n = 67

 0,0358

Figure 5.4: Shift sensitivity of rank-1 lattice rule using F1. The red bar shows the average

error over all tested shifts.

5.5 Shift Sensitivity of Rank-1 Lattice Rules 79

e
rr
o
r

10-2

10-1

100100

cost

100 102 104 106

Figure 5.5:Multilevel rank-1 lattice rule using F1 and shift∆= 0.8125.

e
rr
o
r

10-2

10-1

100100

cost

100 102 104 106

Figure 5.6: Multilevel rank-1 lattice rule using F1 and shift∆= 0.4.

80 5 Numerical Experiments for the Asian Call Option

6 Prospects
We give a few examples of open problems and possible future work related to this thesis.

How to Find a Good Shift

In our experiments we saw that the shift heavily affects the quality of deterministic rank-
1 lattice rules and multilevel rank-1 lattice rules. However, neither are there theoretical
results nor are there heuristic known yet how to find a good shift. We would find it
fascinating to find at least a heuristic for this purpose. But even if we had one we would
probably still have to rely on randomization in order to get error estimates.

Proper Choice of Weights and a Kernel

We also saw in our experiments that we have an influence on the quality of multilevel
shifted rank-1 lattice rules by the choice of the weights on which the lattice generator is
based. We did not alter the kernel, but this would certainly have an effect, too. However,
we are in the situation that a given integrand usually will not give any indication how to
choose the weights the best.

Experiments for Other Integrands

Our numerical experiment were limited to the case of the Asian call option in the Black-
Scholes model. From a practical point of view it would be interesting to test multilevel
shifted rank-1 lattice rules as well for more complicated, but more realistic models for
pricing of options. A particular example would be the Heston model. There the price
process of the underlying asset is no longer modelled by a geometric Brownian motion
but by a process which solves the SDE

dX t = rX tdt +
p
νtX tdW X

t

where νt , the instantaneous variance, is given by

dνt = κ(θ − νt)dt + ξ
p
νtdW ν

t
.

In the above equations W X and W ν are Wiener processes with correlation ρ, and r, κ, θ
and ξ are situation-specific parameters.

Further Development of the Library

Our C++ library in its present form offers the opportunity for improvement at a number
of points:

• The random number generation is currently inapplicable with parallelized compu-
tation. This forces us to use one sequence of random numbers for all threads and
we are giving away a lot of performance. However, it is already well studied how to
configure the Mersenne Twister to generate uncorrelated pseudo random numbers
for computation executed in parallel, see [MN00]. Hence there is only some extra
implementational work to do.

81

• The strategy itself how we split parts of the multilevel algorithm into multiple pro-
gramme threads is rather rudimentary in its current version. But here it demands
probably a bit more hard work to design things more neatly, if possible at all.

• The library could be enhanced by further methods for integration point generation,
e.g. methods based on scrambling nets.

• It would be reasonable to replace the GSL routines we used for fast Fourier transform
by the implementations [FJ05] which seem to be state-of-the-art among the freely
available implementations.

82 6 Prospects

Bibliography
[A50] N. ARONSZAJN (1950): Theory of Reproducing Kernels, Transactions of the American

Mathematical Society, Vol. 68(3), 337-404.

[CDMR08] J. CREUTZIG, S. DEREICH, T. MÜLLER-GRONBACH, K. RITTER (2008): Infinite-

dimensional Quadrature and Approximation of Distributions, Found. Comp. Math, 391-
429.

[FJ05] M. FRIGO, S. G. JOHNSON (2005): The Design and Implementation of FFTW3, Pro-
ceedings of the IEEE 93 (2), 216-231.

[G08] M. B. GILES (2008): Multilevel Monte Carlo Path Simulation, Operations Research,
56(3), 2008.

[GW09] M. B. GILES, B. J. WATERHOUSE (2009): Multilevel Quasi-Monte Carlo Path Simu-

lation, Radon Series Comp. Appl. Math 8, 1-18.

[G97] B. GOUGH (May 1997): GSL FFT Algorithms, GNU Scientific Library Documentation,
http://www.gnu.org/software/gsl/manual/.

[GSL11] M. Galassi, J. Theiler et al. (2011): GNU Scientific Library,
http://www.gnu.org/software/gsl/.

[H98] S. HEINRICH (1998): Monte Carlo Complexity o Global Solutions of Integral Equa-

tions, Journal of Complexity (14), 151-175.

[H01] S. HEINRICH (2001): Multilevel Monte Carlo Methods, Lecture Notes in Computer
Science, Vol. 2179, Springer, 58-67.

[HS99] S. HEINRICH, E. SINDAMBIWE (1999): Monte Carlo Complexity of Parametric Inte-

gration, Journal of Complexity (15), 317-341.

[HSW04] F. J. HICKERNELL, I. H. SLOAN, G. W. WASILKOWSKI (2004): The Strong Tractability

of Multivariate Integration Using Lattice Rules, In [Ni04, pp. 259 - 273].

[HMNR10] F. J. HICKERNELL, T. MÜLLER-GRONBACH, B. NIU, K. RITTER (2010): Multi-level

Monte Carlo Algorithms for Infinite-dimensional Integration on RN, Journal of Complex-
ity (26), 229-254.

[K06] A. KLENKE (2006): Wahrscheinlichkeitstheorie, Springer (Berlin).

[KP92] P. KLOEDEN, E. PLATEN (1992): Numerical Solutions of Stochastic Differential Equa-

tions, Springer.

[KS98] I. KARATZAS, S. SHREVE (1998): Brownian Motion and Stochastic Calculus, Graduate
Texts in Mathematics, Springer, Second Edition.

83

http://www.gnu.org/software/gsl/manual/
http://www.gnu.org/software/gsl/

[MM10] M. MCCUTCHEN (2010): C++ Big Integer Library, version 2010-04-30 17:37:03
-0400,
https://mattmccutchen.net/bigint/.

[Ni04] H. NIEDERREITER (ED.) (2004): Monte Carlo and quasi-Monte Carlo methods 2002,
Springer, Berlin.

[NHMR10] B. NIU, F. J. HICKERNELL, T. MÜLLER-GRONBACH, K. RITTER (2010): Deterministic

Multi-level Algorithms for Infinite-dimensional Integration on RN, Journal of Complexity
(27), 331-351

[MNR11] T. MÜLLER-GRONBACH, E. NOVAK, K. RITTER (2011): Monte-Carlo Algorithmen,
Springer-Lehrbuch Masterclass, Springer.

[MN00] M. MATSUMOTO, T. NISHIMURA (2000): Dynamic Creation of Pseudorandom Num-

ber Generators, in Monte Carlo and Quasi-Monte Carlo Methods 1998, Springer, 56-69.

[NW10] E. NOVAK, H. WOŹNIAKOWSKI (2010); Tractability of Multivariate Problems, Volume

II: Standard Information for Functionals, European Mathematical Society, Chapter 16.

[NC06a] D. NUYENS, R. COOLS (2006): Fast algorithms for component-by-component con-

struction of rank-1 lattice rules in shift-invariant reproducing kernel Hilbert spaces, Math.
Comp. 75(2), 903-920.

[NC06b] D. NUYENS, R. COOLS (2006): Fast component-by-component construction, a

reprise for different kernels, in H. Niederreiter and D. Talay, editors, Monte Carlo and
Quasi-Monte Carlo Methods 2004, Springer-Verlag, 371-385.

[Ny07] D. NUYENS (2007): Fast Construction of Good Lattice Rules, PhD Thesis, ISBN
978-90-5682-804-2,
http://hdl.handle.net/1979/860.

[R00] K. RITTER (2000): Average-Case Analysis of Numerical Problems, Lecture Notes in
Mathematics, Springer.

[SJ94] I.H. SLOAN, S. JOE (1994): Lattice Methods for Multiple Integration, Oxford Univer-
sity Press.

[SR02] I. H. SLOAN, A. V. REZTSOV (2002): Component-by-component Construction of Good

Lattice Rules, Math. Comp. 71(237), 263-273.

[V02] J. VECER (2002): Unified Pricing of Asian Options, Risk, 113-116.

84 Bibliography

https://mattmccutchen.net/bigint/
http://hdl.handle.net/1979/860

	Introduction
	Fundamentals
	Pricing of Path Dependent Options in the Black-Scholes Model
	Approximation of Stochastic Differential Equations
	Euler Monte Carlo Method
	Multilevel Euler Monte Carlo Method
	Option Pricing as Infinite-dimensional Integral

	Information-based Complexity
	Quadrature Rules and General Multilevel Algorithm
	Cost and Error Models

	Reproducing Kernel Hilbert Spaces (RKHS)
	Definition and Existence
	Scaled Sums of RKHS
	Tensor Products of RKHS
	Restrictions of Reproducing Kernels

	Rank-1 Lattice Rules
	Rank-1 Lattices
	Rank-1 Lattice Rules for Weighted Kernel Spaces

	Multilevel Rank-1 Lattice Rules as Optimal QMC Algorithms
	Construction of the Function Space
	Construction for Finitely Many Variables
	Extension to Countably Many Variables

	Results for the Minimum-Kernel
	Anchored Weighted Sobolev Spaces
	Complexity Results

	C++ Library for Numerical Experiments
	General Features and Core Components
	Design of the Library
	Basic Variant of the Multilevel Algorithm
	Multithreading

	Pathwise Computation of Asian Call Payoff
	Comparison of Distinct Approaches
	Implementation of the Lévy-Ciesielski Expansion

	Methods of Integration Point Generation
	Mersenne Twister
	(Shifted) Rank-1 Lattices

	Multilevel Parameter Strategies
	Estimating Orders of Convergence

	Numerical Experiments for the Asian Call Option
	Preliminaries
	Results for Multilevel Shifted Rank-1 Lattice Rules
	Effect of Constant Factors in the Weights
	Results for Adaptive Multilevel Parameter Strategy
	Shift Sensitivity of Rank-1 Lattice Rules

	Prospects

