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Abstract

Generative dimensionality reduction methods play an important role in machine
learning applications because they construct an explicit mapping from a low-
dimensional space to the high-dimensional data space. We discuss a general
framework to describe generative dimensionality reduction methods, where the
main focus lies on a regularized principal manifold learning variant. Since most
generative dimensionality reduction algorithms exploit the representer theorem
for reproducing kernel Hilbert spaces, their computational costs grow at least
quadratically in the number n of data. Instead, we introduce a grid-based dis-
cretization approach which automatically scales just linearly in n. To circumvent
the curse of dimensionality of full tensor product grids, we use the concept of
sparse grids.

Furthermore, in real-world applications, some embedding directions are usu-
ally more important than others and it is reasonable to refine the underly-
ing discretization space only in these directions. To this end, we employ a
dimension-adaptive algorithm which is based on the ANOVA (analysis of vari-
ance) decomposition of a function. In particular, the reconstruction error is used
to measure the quality of an embedding. As an application, the study of large
simulation data from an engineering application in the automotive industry (car
crash simulation) is performed.

1. Introduction

In real-world applications, nominally high-dimensional data often resides on
a lower-dimensional manifold. Due to this observation, one of the main topics in
mathematical learning theory, see e.g. [1, 2, 3], and machine learning algorithms,
see e.g. [4, 5], is the dimensionality reduction of a high-dimensional data set.
To this end, it is assumed that there exists an m-dimensional manifold M
embedded in Rd on which the data resides. The task of dimensionality reduction
is to build an approximate representation of the low-dimensional manifold M
from the available data in Rd and by that to obtain a description of the data in
the new coordinate system T ⊂ Rm governed by the manifold.



While there is a vast amount of algorithms to achieve this, the class of
generative algorithms in this context is quite small, see [5, 6]. Most algorithms
result in a mapping P : Rd → T which allows to describe the available data in
terms of the manifold coordinates. A generative approach however provides two
maps P : Rd → T and f : T → Rd. This way, given a generative algorithm, we
can project new data points from M into T by means of P , we can interpolate
between two data points in the low-dimensional representation of the manifold
and thus generate new, meaningful data on M by means of f .

While the principal component analysis (PCA) is the method of choice for
linear manifoldsM, the nonlinear case is more relevant for practical applications
but also more involved. Here, the explicit determination of general manifoldsM
is quite complicated. To this end, generative methods usually assume that there
exists a bijective map ζ : [0, 1]m → M, i.e. the manifold can be described by
one chart. The generative algorithm then takes T = [0, 1]m and approximates ζ
by f . A generative model is of special interest when the high-dimensional data
space Rd represents simulation results, for instance the coefficient vector of a
finite element solution of a partial differential equation. Here, the comparison
of original data and reconstructed surrogates of the d-dimensional simulations
is inevitable for the quality control of the resulting mapping f .

Two well-known examples for nonlinear generative methods are the genera-
tive topographic mapping (GTM), see [7], and the regularized principal manifold
learning (PML) algorithm, see [8]. Here, the question arises how the mappings f
and P are computed. In the original GTM [7] a discretization of f is performed
by a full tensor product grid approach. This naturally suffers from the curse of
dimensionality, see [9], i.e. the case m > 3 cannot be treated computationally.
In the PML algorithm [8] a kernel-based ansatz centered in the data points
is chosen for f . This relies on the representer theorem for reproducing kernel
Hilbert spaces, see e.g. [4]. While this approach is well-suited if the number n
of data is moderate (up to several hundred data points), a grid-based approach
is more favorable for large n. However, as for the GTM, a full tensor product
grid does not work in the case m > 3.

To circumvent the curse of dimensionality at least to some extent, sparse
grid approaches have been introduced for both the GTM, see [10, 11], and the
PML, see [12]. With a sparse grid discretization it is possible to exploit higher
regularity of ζ, i.e. if ζ has Sobolev regularity of bounded mixed smoothness we
obtain almost the same approximation quality as in the full tensor product grid
approach but with significantly lower computational complexity, see [13].

In this paper we will introduce an adaptive sparse grid PML approach which
is an enhancement of [12]. To this end, we will present an alternating minimiza-
tion scheme to solve the PML optimization problem over a generalized sparse
grid to obtain f : [0, 1]m → Rd. We suggest error indicators which rely on
the so-called hierarchical surplus of a sparse grid basis function. These error
indicators are then used to refine the underlying sparse grid space in spatial
directions in which the current approximation of f varies the most. The alter-
nating minimization and the refinement of the underlying sparse grid space are
then iterated until a given computational complexity threshold of a maximum
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refinement level is reached.
We will apply our method to a high-dimensional data set of finite element

simulations. This specific scenario is based on the virtual product development
arising in typical engineering applications, in particular we consider the auto-
motive industry. Here, as part of the development cycle for a new car model, the
influence of design parameters on the crash behavior of a car is analyzed by an
engineer with the help of numerical crash simulations [14]. Each simulation con-
sists of approximately one million finite element nodes and up to several hundred
snapshots in time, and is therefore very high-dimensional, i.e. approximately 108

(time × nodes). The resulting huge data bases of finite element simulations can
be used for sophisticated data-driven analysis steps, see [15, 16]. For example,
the detection of the number of different effects such as tearing or bending be-
havior in a set of crash simulation data is of special interest. As an example,
we will study the deformation of several beams in the front part of the car with
the help of our dimension-adaptive PML method.

The outline of this paper is as follows: In section 2 we will introduce the idea
of generative dimensionality reduction in the most general setting followed by
a more detailed view of two common generative approaches - the PCA and the
PML methods - and how they fit into our general setting. In section 3 we will
shortly review the concept of sparse grids and introduce an adaptive version of
the sparse grid PML method. Section 4 deals with a state-of-the-art big data
manifold learning problem which stems from current demands in the automotive
industry. We apply our adaptive sparse grid PML algorithm to this problem
and compare the results to the linear PCA method. Section 5 contains some
concluding remarks.

2. Generative dimensionality reduction

Let us assume that we are given n data points {x1, . . . ,xn} ⊂ Rd which have
been drawn i.i.d. according to an unknown probability measure ρ on Rd which
is absolutely continuous with respect to the Lebesgue measure. Furthermore,
let ρ be supported on an unknown compact manifold M ⊂ Rd of dimension
m. Since the treatment of general manifolds is very involved we impose an
additional condition on the structure of M and assume that there exists a
bijective map ζ : [0, 1]m →M, i.e. the compact manifold M can be described
by a single chart. The problem of determining M now becomes the problem of
approximating ζ. Note here that ρ contains more information about M than
ζ does because it also gives a weight to each region on M. The fact that this
information is lost when we are just given ζ is resembled by the invariance of
M under reparametrization, i.e. any bijective map ψ : [0, 1]m → [0, 1]m can be
employed and ζ ◦ ψ : [0, 1]m → M is still bijective. Thus there are infinitely
many possibilities to describe the manifold. It is reasonable that the general
generative approach also takes the weighting of different regions in M into
account.
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2.1. General generative approach

A general approach reads
min
g∈G
Aρ(g)

where Aρ : G → R is a (possibly nonlinear) functional over a set of functions
G ⊂ {g : [0, 1]m → Rd}. Aρ(g) describes the error that is made when using g
to describe the manifold M given implicitly by ρ. Usually Aρ has the form

Aρ(g) =

∫
Rd

c(g,x)dρ(x), (1)

where c : G × Rd → [0,∞) is called cost function. Since ρ is unknown, it is
substituted with the empirical measure

1

n

n∑
i=1

δxi . (2)

Here δxi
denotes the Dirac distribution centered in xi. This leads to the empir-

ical minimization functional

Aemp(g) =
1

n

n∑
i=1

c(g,xi) (3)

instead of Aρ. Depending on the choice of G the minimization of Aemp can be an
ill-posed problem and therefore a restriction of the search set can be necessary
for numerical minimization. To this end, typically an additional regularization
term λS(g) is added to Aemp with regularization parameter λ > 0. Then, the
solution f of a general generative approach is defined by

f := arg min
g∈G

Aemp(g) + λS(g). (4)

Here, S usually penalizes large norms of g, i.e. S(g) = ‖g‖2H where the space
H reflects the smoothness requirements on g. Two examples are the Sobolev-
Bochner space

H = Hk([0, 1]m;Rd)

=

g : [0, 1]m → Rd | ‖g‖2Hk :=
∑
‖l‖1≤k

∫
[0,1]m

‖Dlg(t)‖2`2dt <∞


of order k ∈ N, see e.g. [8], and the Sobolev-Bochner space

H = Hk
mix([0, 1]m;Rd) (5)

=

g : [0, 1]m → Rd | ‖g‖2Hk
mix

:=
∑
‖l‖∞≤k

∫
[0,1]m

‖Dlg(t)‖2`2dt <∞
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of dominating mixed smoothness of order k ∈ N, see e.g. [12]. Here, we denote
by l = (l1, . . . , lm) ∈ Nm a multivariate index and use the multivariate derivative

operator Dl := ∂(l1,...,lm)

∂
l1
t1
...∂lm

tm

.

As depicted in [5] in a detailed manner, dimensionality reduction methods
can be categorized into distance preserving and topology preserving methods.
The first ones aim at maintaining the pairwise distances between the original
data points also for the embedded points in the low-dimensional space. The
latter ones target at preserving proximities in the data in a qualitative way,
i.e. points which are close to (or far from, respectively) each other in the orig-
inal data should be mapped to low-dimensional points which are also close to
(or far from, respectively) each other. A generative dimensionality reduction
approach with smoothness regularization can be interpreted as a topology pre-
serving method. To this end, assume that g ∈ G is Lipschitz-continuous with
constant C > 0 and let t1, t2 ∈ [0, 1]m be points in the low-dimensional space.
Then, we obtain

‖g(t1)− g(t2)‖`2 ≤ C‖t1 − t2‖`2 .
Therefore, if two points on the manifold are far apart from each other, i.e.
‖g(t1) − g(t2)‖`2 is large, then the corresponding low-dimensional points are
also far apart from each other, i.e. ‖t1 − t2‖`2 is large, or the function g has a
large Lipschitz constant, i.e. C is large. Since the optimal Lipschitz constant is
directly related to the first derivative of g, a dimensionality reduction algorithm
with an H1 regularization can be interpreted as a topology preserving method in
the this sense. However, since H1([0, 1]m;Rd) is no reproducing kernel Hilbert
space (RKHS), see e.g. [17], for m ≥ 2, a regularization with the H1 norm can
still lead to an ill-posed problem. Therefore, higher order Sobolev spaces or
spaces of dominating mixed smoothness are a suitable choice as they lead to
both, a well-posed minimization problem, and a topology preserving method.

We will now shortly review how the linear principal component analysis
(PCA) and the nonlinear principal manifold learning (PML) algorithm fit into
this setting. Note that also the generative topographic mapping (GTM) is
compatible with our general framework. Since we focus on PCA and PML we
provide a corresponding description for the GTM only in the appendix for the
sake of completeness.

2.2. Principal Component Analysis

There exist many different interpretations of the principal component anal-
ysis [18] in terms of a minimization problem, see e.g. [19]. We will stick to a
geometrically motivated variant here. To simplify our notation we assume that
Eρ[x] =

∫
Rd x dρ(x) = 0. Then, g ∈ G = {W | W ∈ Rd×m,WTW = I} is a

linear orthogonal map, i.e. g is a matrix, and

Aρ(g) =

∫
Rd

min
t∈[0,1]m

‖x− gt‖22dρ(x),
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i.e. c(g,x) = mint∈[0,1]m ‖x − gt‖22. In the case of finite data and unknown ρ
this becomes

Aemp(g) =
1

n

n∑
i=1

min
ti∈[0,1]m

‖xi − gti‖22.

Note that the assumption of centered data has to be made for this representa-
tion, i.e.

0 = E 1
n

∑n
i=1 δxi

[x] =
1

n

n∑
i=1

xi.

If this is not the case the data has to be centered first. Without centering, the
representation is more involved, see e.g. [19].

It can easily be shown that the PCA minimization problem is well-posed.
Therefore, no regularization is needed. To compute the optimal f , an eigen-
decomposition of the covariance matrix of the data xi, i = 1, . . . , n, has to be
done. Then, the columns of f ∈ Rd×m are the m eigenvectors corresponding
to the m largest eigenvalues of the data covariance matrix. For a g ∈ G, the
preimage points ti of xi are the images

P (xi) = arg min
ti∈[0,1]m

‖xi − gti‖2`2 (6)

under the projection P : Rd → T . For the optimal matrix f , they can be
determined by a basis transform of xi into the eigenbasis of the covariance
matrix and a subsequent truncation of the result.

The PCA is clearly a linear method. It works well in many situations (pro-
vided that m is sufficiently large) but can deteriorate or even fail in finding a
low-dimensional representation for nonlinear manifold data. Then a nonlinear
approach like the PML is superior.

2.3. Principal Manifold Learning

For principal manifold learning we let g ∈ G with

G = L2([0, 1]m;Rd) :=

{
g : [0, 1]m → Rd | ‖g‖2L2

:=

∫
Rd

‖g(t)‖2`2dt <∞
}
.

Analogously to [4], the goal is to find a function g ∈ G such that the ρ-dependent
error

Aρ(g) :=

∫
Rd

inf
t∈[0,1]m

dist(x, g(t)) dρ(x)

for a fixed distance function dist : Rd × Rd → R+ is minimized. A common
choice for dist is the squared Euclidean norm of the difference of the arguments.
Thus, we get

Aρ(g) :=

∫
Rd

inf
t∈[0,1]m

‖x− g(t)‖2`2 dρ(x)

and c(g,x) = inft∈[0,1]m ‖x − g(t)‖2`2 . The evaluation of c now involves solving
a global nonlinear optimization problem in m dimensions which can be very
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hard to handle numerically. However, as we will explain in the next section,
our discretized variant of the PML will deal with a search set G which consists
of piecewise linear functions. This can be exploited for the efficient evaluation
of c. After substituting ρ by the empirical measure (2) we obtain

Aemp(g) :=
1

n

n∑
i=1

inf
ti∈[0,1]m

‖xi − g(ti)‖2`2 .

Due to the structure of the cost function c the preimage ti = P (xi) of a data
point xi is individually determined by solving the m-dimensional minimization
problem

P (xi) = arg min
ti∈[0,1]m

‖xi − g(ti)‖2`2 . (7)

Note that even if P (xi) exists (e.g. for continuous g ∈ G) it is not necessarily
unique. Analogously to the evaluation of c, the computation of P (xi) also
involves the solution of a global optimization problem which is only feasible for
specific choices of g.

As we directly see, the functional Aρ and the projection P are exactly the
same for PCA and PML. The two methods only differ in the search set G which
is much larger for PML than for PCA. Thus, for principal manifold learning, the
minimization of Aemp over G is an ill-posed problem and a regularization term
S(g) = ‖f‖2H has to be added. Therefore, the overall minimization problem for
PML becomes

f = arg min
g∈G

Aemp(g) + λ‖g‖2H (8)

with a fixed regularization parameter λ, see also (4). In [8] different choices of
reproducing kernel Hilbert spaces were introduced for H. In [12] the regulariza-
tion is done in the mixed Sobolev-Bochner space H = H1

mix([0, 1]m;Rd) which
is also an RKHS.

The numerical minimization is done analogously to the expectation-maxi-
mization (EM) scheme, where the minimization with respect to g and the mini-
mization with respect to ti, i = 1, . . . , n, is split into separate minimizations for
each argument. This scheme is then iterated until convergence is reached. In
the first step, Aemp(g) + λ‖g‖2H is minimized for fixed ti, i = 1, . . . , n, i.e. the
infti∈[0,1]m in front of ‖xi − g(ti)‖2`2 disappears. In [8], the famous representer
theorem for reproducing kernel Hilbert spaces is used in this step to obtain a
finite kernel expansion

g(t) =

n∑
j=1

K(tj , t)αj (9)

for the principal manifold g, where αj ∈ Rd, j = 1, . . . , n. Here, K : H ×H →
Rd×d denotes the matrix-valued reproducing kernel of H. We refer to [4, 17] for
details on the representer theorem and on matrix-valued reproducing kernels.
With (9) we see that only a finite-dimensional optimization problem has to
be solved, even though the minimization takes place in the possibly infinite-
dimensional RKHS H. In the second step of the alternating scheme g is kept
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fixed and (7) is evaluated to obtain updated values for P (xi) = ti for every
i = 1, . . . , n. Note that also in the case of reproducing kernel Hilbert spaces
P (xi) still has to be computed by solving an m-dimensional global nonlinear
optimization problem. The two steps of the alternating scheme are then iterated
until convergence.

3. Discretized PML with adaptive sparse grids

As we showed in (9), the application of the representer theorem leads to a fi-
nite expansion of g in terms of the point evaluated kernel functions K(tj , t), j =
1, . . . , n. Then, it is easy to see that for fixed t1, . . . , tn a minimizer of (8) solves
the system of linear equations

(K̄ + λI)~α = ~x

with an n × n kernel block matrix given by K̄i,j = K(ti, tj) ∈ Rd×d. Here, I
denotes the nd-dimensional identity matrix, ~α = (α1, . . . ,αn)T is the coefficient
vector and ~x = (x1, . . . ,xn)T represents the data vector. Since K̄ is usually a
dense matrix, the computational costs of solving this equation system scale
like (nd)3 for a naive direct approach and at least like (nd)2 for more involved
algorithms. Therefore, this is not feasible for problems with large data set size
n. Alternatively, it is possible to work with localized kernel functions such that
most K̄i,j are negligible, see [6]. In this case however, the problem of choosing
an appropriate scale parameter for the kernel has to be dealt with.

To overcome these problems, we again use a finite basis representation as
in (9), but this time choose a grid based ansatz instead of the kernel basis.
To simplify our notation we consider the components g(i), i = 1, . . . , d, of g
independently, i.e. for every g(i) we have

g(i)(t) =

Ni∑
k=1

β
(i)
k γ

(i)
k (t), (10)

where Ni is the number of basis functions spent to represent g(i), γ
(i)
k : [0, 1]m →

R is the k-th such basis function and β
(i)
k ∈ R is the corresponding coefficient.

Using the notation (10) in (8) we obtain the following alternating minimization
approach:

Algorithm 1 - Grid-based PML

1. Initialize ti by a PCA of the data xi, i = 1, . . . , n.
2. Solve the minimization problem

min
g∈G

1

n

n∑
i=1

‖xi − g(ti)‖2`2 + λ‖g‖2H .

If H is a Hilbert space and g ∈ G is defined by (10), the minimization
problem can be translated into d systems of linear equations (i = 1, . . . , d):
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(
(B(i))TB(i) + nλC(i)

)
~β
(i)

= (B(i))T~x (11)

with matrices defined by B
(i)
j,k = γ

(i)
k (tj), C

(i)
k,l = 〈γ(i)k , γ

(i)
l 〉H and the

coefficient vector ~β
(i)

=
(
β
(i)
1 , . . . , β

(i)
Ni

)T
.

3. Solve the m-dimensional nonlinear minimization problem (7) to determine
the updated ti for each i = 1, . . . , n.

The steps 2 and 3 are then iterated until convergence, see [12] for details.
For better readability, we will restrict ourselves to the scalar-valued case

in the following explanations and omit the upper index (i). A vector-valued
function is then built by the d scalar-valued component functions (10).

3.1. Isotropic sparse grids

A common choice for a multivariate basis function γk : [0, 1]m → R is a
tensor product of piecewise linear hat functions. To this end, let φ : R→ [0, 1]
be defined by

φ(t) :=

{
1− |t|, if t ∈ [−1, 1]

0 else

and let
φl,i(t) := φ(2l · t− i)|[0,1]

for any l, i ∈ N be a dilated and rescaled version of φ restricted to the interval
[0, 1]. The construction of an m-variate hat function is now straightforward via
the tensor product

φl,i(t) :=

m∏
j=1

φlj ,ij (tj),

where l = (l1, . . . , lm) ∈ Nm is the multivariate level index and i = (i1, . . . , id) ∈
Nm denotes the multivariate position index. After proper re-indexing, the γk
can now be identified with the φl,i.

Next, we will define full grid spaces and sparse grid spaces. To this end, let

Il :=

{
i ∈ Nm

∣∣∣∣ 0 ≤ ij ≤ 1, if lj = 0
1 ≤ ij ≤ 2lj − 1, ij odd if lj > 0

for all 1 ≤ j ≤ m
}
.

(12)
Then, we define the hierarchical increment space Wl := span {φl,i | i ∈ Il} and
the space of piecewise m-linear functions on the regular (isotropic) full grid of
level l ∈ N by

Vl :=
⊕
|k|∞≤l

Wk ,

represented in the so-called hierarchical basis

{φk,i | i ∈ Ik, |k|∞ ≤ l} .
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Here, |k|∞ := maxi=1,...,m ki denotes the `∞ norm. If

hl =
∑
|k|∞≤l

∑
i∈Ik

βk,iφk,i

is the L2-best approximation of h ∈ H2 ([0, 1]m) in Vl it holds that

||h− hl||L2([0,1]m) = O
(
2−2l

)
. (13)

However, since the dimension |Vl| =
(
2l + 1

)m
of Vl grows exponentially in m,

this approach is not feasible for m > 3 already for moderate level l. Therefore,
we introduce the sparse grid space with similar approximation properties but
significantly smaller basis size. We define the regular sparse grid space of level
l by

V sl :=
⊕
k∈Nm

θm(k)≤l

Wk , (14)

where θm(0) := 0 and

θm(k) := |k|1 −m+ |{j | kj = 0}|+ 1

for every other k ∈ Nm. Here, |k|1 :=
∑m
j=1 |kj | denotes the `1 norm. This

specific definition of θm guarantees that the resolution of grids on the boundary
is the same as the resolution of grids in the interior of the domain. If

hsl (t) =
∑

k∈Nm

θm(k)≤l

∑
i∈Ik

βk,iφk,i(t) ∈ V sl

is the L2-best approximation of h ∈ H2
mix([0, 1]m) in V sl , it holds that

||h− hsl ||L2([0,1]m) = O
(
2−2llm−1

)
.

Thus, compared to (13), the accuracy is only slightly worse by a factor lm−1.
However, the number of basis functions in the sparse grid ansatz space is just
N = O

(
2l · lm−1

)
and the exponential dependence of m now only affects the

level l instead of 2l. For a thorough treatment of sparse grids, approximation
results and complexity issues we refer to [13] and the references cited therein.

Let us now consider the computational costs of algorithm 1 with a sparse
grid basis and an H1

mix regularization: In step 1 of the algorithm a PCA of the
data has to be calculated. To this end, the d × d covariance matrix is built
and an eigen-decomposition of it is computed. Therefore, the runtime of this
step is O

(
nd2 + d3

)
. When dealing with a few data points in a high-dimensional

space, i.e. d > n, one can also do an eigen-decomposition of the Gramian matrix
instead of the covariance of the data, see e.g. [5]. Then, the computational costs
of step 1 become O

(
dn2 + n3

)
. Usually, since we only have to compute the

eigenvalues of the covariance matrix once, the runtime of the initial PCA is
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still much smaller than the computational effort a kernel PML which solves
an nd × nd equation system in every iteration of the alternating minimization
scheme. However, if the initial PCA is still infeasible one can also initialize the
ti ∈ [0, 1]m randomly. In this case, algorithm 1 might end up in a local minimum
of Aemp(·) + λ‖ · ‖2H which does not characterize the true manifold as good as
the PCA-initialized variant. Another, more sophisticated initialization method,
would be to use the projection of the input data points onto the hyperplane
which results from a PCA of a small random subset of the input data.

To solve the systems of linear equations in step 2 of algorithm 1 we employ a
diagonally-preconditioned CG-solver. To this end, we do not have to assemble
the matrices B(i) and C(i) explicitly for i = 1, . . . , d but compute their applica-
tion to a vector instead. Here, the structure of the sparse grid and the locality
of the basis functions allow for a runtime of O

(
d ·
(
2m+l · lm−1 + nlm−1

))
for a

single step of the CG-algorithm with a sparse grid of level l in all d components,
see [20] for details on exploiting the specific sparse grid structure to obtain a
fast iterative solver. Although the number of CG iterations is not constant in
general, a suitable choice of the regularization parameter λ leads to a small
number of iterations until the CG algorithm reaches a prescribed error bound.
Therefore, we neglect the iterations count in the complexity analysis.

In the third step of algorithm 1, we have to solve the optimization problem
(7) for a given function g ∈ V sl . As we mentioned above, the application of
a nonlinear optimization algorithm on the whole domain [0, 1]m can not be
afforded in general. Therefore, we will instead use a heuristic approach which
exploits the sparse grid structure and restricts the search domain to a small
hyperrectangle on which g is linear. To this end, we first compute the best
sparse grid point p, i.e.

pi := arg min
ti∈grid(V s

l )

‖xi − g(ti)‖2`2

for each i = 1, . . . , n which costs O (dnN). Here, N is the number of basis
functions |V sl | and

grid(V sl ) := {t | φl,i(t) = 1 for some φl,i ∈ V sl }

is the set of points in the sparse grid of level l. Then, we employ a Newton-
type minimization on a restricted domain D(pi) to obtain the minimum of (7)
for each i = 1, . . . , n. This search domain D(pi) is the hyperrectangle R with

corner pi on which g is multilinear and for which
(
∇‖g(pi)− xi‖2`2

)T
ω(R) is

smallest, where ω(R) ∈ {−1, 1}m is the unique vector such that pi+ω(R) points
into the direction of R. This can be interpreted as one steepest descent step to
determine the optimal hyperrectangle R. Within the domain D(pi) the Newton-
type algorithm only needs O(1) iterations to converge. The determination of
D(pi) can be done in O (2mdN). In each Newton step the gradient and the
Hessian of the target function in (7) have to be computed and an m×m system
of linear equations has to be solved for each i = 1, . . . , d. Therefore, the overall
runtime of step 3 can be bounded from above by O

(
m3dNn

)
.
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Finally, assuming that a constant number of iterations of the alternating
minimization scheme is used, the computational costs of algorithm 1 with a
sparse grid discretization can be bounded by

O
(
nd2 + d3 + d ·

(
2m+l · lm−1 + nlm−1

)
+ dnN + 2mdN +m3dnN

)
= O

(
d
(
nd+ d2 + n2m+llm−1

))
,

where we used N = O
(
2llm−1

)
and m3 = O (2m). As we directly see, the

runtime is linear with respect to the number of samples n in contrast to a
kernel-based method. As we mentioned above, another initialization could be
used in step 1 to get rid of the higher order dependence on the dimension d.

3.2. Dimension-adaptive sparse grids

Our sparse grid construction has been purely isotropic so far. Thus, every
spatial direction is equally resolved by the discretization. However, in most
practical applications some directions are more important than others and it is
reasonable to resolve these directions in more detail. Since the importance of
different directions is not known a-priori, an adaptive approach is the method
of choice to achieve an appropriate discretization. The dimension-adaptive al-
gorithm we employ here is based on [21].

First, we define the altered index sets

Ĩl :=

i ∈ Nm
∣∣∣∣∣∣
ij = 0, if lj = −1
ij = 1, if lj = 0
1 ≤ ij ≤ 2lj − 1, ij odd if lj > 0

for all 1 ≤ j ≤ m


(15)

and also allow the negative level −1. Furthermore, we define the univariate
basis function φ−1,0 := χ[0,1] to be the indicator function of the interval [0, 1].
With this and the definition

W̃l := span{φl,i | i ∈ Ĩl}

we see that Wl and W̃l are the same for a multilevel index l with lj ≥ 1 for
all j = 1, . . . ,m. This way, we just have split the space of linear functions on
[0, 1], which was previously spanned by the two linear basis functions associated
to the two boundary points, further into the sum of one constant (level −1)
and one linear function (level 0). If we define the `1 norm of a level index with
possibly negative coordinates as

|l|1 := |(max(l1, 0), . . . ,max(ld, 0))|

we can maintain our previous definition of sparse grid spaces (14) using

θ̃m(k) :=

{
0 if kj ≤ 0 for all 1 ≤ j ≤ m
|k|1 −m+ |{j | kj ≤ 0}|+ 1 else

12



instead of θm(k). This slightly different choice of the hierarchical increment
spaces W̃l results in a direct analogy of the altered discretization to the so-
called analysis-of-variance (ANOVA) decomposition, see [22] for a detailed ex-
planation.

We now return to the vector-valued notation to describe the dimension-
adaptive procedure. The main component for the algorithm is the error indicator
which decides if the ansatz space is refined in a certain direction. To this end,
let g = (g(1), . . . , g(d))T be a vector valued function with components g(i), i =
1, . . . , d, given in the form

g(i) =
∑

k∈K(i)

∑
j∈Ĩk

β
(i)
k,jφk,j,

analogously to (10). Here K(i) ⊂ (N ∪ {−1})m is the set of level indices of the
grid in direction i ∈ {1, . . . , d}. Then, the error indicator for component i is
defined by

ε
(i)
k := max

j∈Ĩk

∣∣∣∣∣∣β(i)
k,jφk,j

∣∣∣∣∣∣
L2([0,1]m)

.

For more elaborate techniques and details on how to choose a reliable and effi-
cient indicator for the case of specific norms of the error, we refer to [23].

Given a fixed threshold ε, the adaptive algorithm can now be described by
the following steps.

Algorithm 2 - Dimension-adaptive sparse grid PML

1. Set g = (g(1), . . . , g(d))T to the result of the alternating minimization
algorithm (Algorithm 1, steps 1-3) with regular sparse grid ansatz spaces
V(i) := V slstart of small level lstart for each component i = 1, . . . , d.

2. Initial Compression: For each i = 1, . . . , d: For each W̃l ⊂ V(i) check if

ε
(i)
k ≤ ε‖g(i)‖L2([0,1]m) for all k with k ≥ l and W̃k ⊂ V(i). If this is the

case, remove all these W̃k from V(i).
3. Set g = (g(1), . . . , g(d))T to the result of the alternating minimization algo-

rithm (Algorithm 1, steps 1-3) with ansatz spaces V(i) for each component
i = 1, . . . , d.

4. Adaption: For each i = 1, . . . , d: For each W̃l ⊂ V(i) check if εl ≥
ε‖g(i)‖L2([0,1]m). If this is the case add the spaces W̃k to V(i) for all
k ≤ l+ ej with all j ∈ {1, . . . ,m} with lj 6= −1. Here, ej denotes the j-th
unit vector.

The steps 3 and 4 are then iterated until a maximum refinement level lend is
reached in at least one direction. Then the algorithm ends after executing step
3 one last time. The solution f is defined as the resulting function g. In step
4 of algorithm 2 the choice of directions j with lj 6= −1 resembles the fact
that the algorithm only refines in directions in which the function g(i) is non-
constant, see [22] for details. This has the effect that the components of the
ANOVA decomposition of g(i) which have no relevance at all, i.e. lj = −1 after
the compression in step 2, are not refined again.

13



The dimension-adaptive procedure builds ansatz spaces V(i) for each i =
1, . . . , d, which are refined according to the relevance of a direction in terms of
the size of the coefficients in the sparse grid basis expansion. Note that we now
have to take the union of the different adaptive sparse grids in each component
function to find the best grid point for the projection onto the manifold (step
3 of algorithm 1) before running a Newton minimizer on the corresponding
restricted domain again. For a more elaborate description of the dimension-
adaptive algorithm, its benefits and the relation to the ANOVA decomposition
we refer to [21, 22].

Finally, note that the regular sparse grid PML and even the dimension-
adaptive sparse grid PML become computationally infeasible if the reduced
dimension m is still quite large, e.g. m > 10. The reason for this is that if
lstart ≥ 0 the initial space V slstart in algorithm 2 contains at least 2m functions.
To overcome this problem, the dimension-adaptive procedure could be changed
in such a way that we start with a grid which only consists of 1 point, i.e.
lstart = −1, and refine it once into each direction j = 1, . . . ,m. In order to
allow for appropriate refinement in the further adaption steps we then have
to add all spaces W̃k with k ≤ l + ej for each j ∈ {1, . . . ,m} in step 4 of
algorithm 2. Thus, in contrast to the original algorithm we would refine into all
directions instead of choosing only the ones where g(i) is non-constant. Although
these changes lead to a valid refinement heuristic which performs well in many
settings, see e.g. [24], they are not directly compatible with the theory of the
ANOVA decomposition since we would use information of lower-order ANOVA
terms to determine if we add higher-order terms into the representation of g(i),
see [21] for details. Another problem for large dimensionm is the fast application
of the matrices C(i) in the CG-algorithm in step 2 of algorithm 1 which also
introduces a factor of 2m to the computational runtime. To avoid this, one
could consider direct matrix assemblation of C(i) in the case of a moderate
number N of basis functions or alternatively change the regularization term such
that the resulting matrices allow for a faster matrix-vector multiplication, see
e.g. [24]. However, we do not need to consider the above mentioned alterations
to algorithm 1 and algorithm 2 as our application at hand is manifold learning
where the dimension m is usually small (up to 7) for most real-world problems.

4. Application of the dimension-adaptive PML

In this section we present results for the application of the PML method
from section 3. We use the H1

mix-semi norm, i.e. we omit the l = 0 term in
the sum in (5), to regularize the dimension-adaptive sparse grid PML approach.
We start with a toy problem: a two-dimensional S-shaped manifold embedded
in three dimensions where we will discuss the performance of the adaptivity.
Subsequently, we consider a state-of-the-art engineering problem where we aim
to build a generative model for numerical simulation data, which allows the
detection of intrinsic effects, and whose quality can be quantified by measuring
the reconstruction error. To this end, we compare the results of the dimension-
adaptive sparse grid PML to a linear PCA.
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Figure 1: 1000 samples of the S-shaped surface, without (left) and with (right) Gaussian noise.

4.1. A toy example: S-shaped manifold

We consider the commonly used two-dimensional S-shaped surface which is
given by

S(t1, t2) := (x1, x2, x3)
T

= (sin(t1), t2, sign(t1)(cos(t1)− 1))
T

(16)

for t1 ∈
[
− 3

2π,
3
2π
]
, t2 ∈ [0, 5]. We create input data x1, . . . ,x1000 by drawing

1000 independent, uniformly distributed samples t1, . . . , t1000 from
[
− 3

2π,
3
2π
]
×

[0, 5], applying S and adding three-dimensional N (0, 0.01 · I) distributed Gaus-
sian noise to each sample. The resulting data can be seen in Figure 1.

We now run the dimension-adaptive sparse grid PML algorithm with lstart =
2, lend = 7. To determine the optimal ε ∈ {0.05, 0.04, 0.03, 0.02, 0.01} and λ ∈
{0.1·2−i, i = 0, . . . , 10} we split the input data into a training set of size 900 and
a test set of size 100 randomly and run the dimension-adaptive algorithm on
the training set for all possible parameter combinations. The respective model
fε,λ is then applied to measure the mean squared error on the test data, i.e.

1

100

100∑
i=1

‖x̃i − fε,λ(t̃i)‖22,

where (t̃i, x̃i) for i = 1, . . . , 100 are the test data points. To reduce the influence
of the specific splitting into training and test data, we repeated this process
for five different randomly picked test sets and measured the average of the
mean squared errors for each parameter pair. The smallest average error of
0.0202 is obtained for (ε, λ) = (0.01, 0.1 · 2−8). The results we achieved with
the adaptive PML algorithm for these parameters on the whole data set of size
1000 are displayed in Figure 2. As we see, the structure of the initial manifold is
perfectly recovered by the algorithm. The overall number of degrees of freedom
in the sparse grid representation are 93. To resolve the S-shaped manifold with
a similar accuracy by a regular sparse grid PML we have to employ a sparse grid
of level four at least. This corresponds to an overall number of basis functions
of 339.
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Let us assume that a further reduction of the degrees of freedom is desirable.
To this end, instead of the parameter pair which achieves the best average MSE
on the test data, we consider the pair which leads to the smallest average basis
size and for which the average MSE is still smaller than 0.1. We now run
the dimension-adaptive sparse grid PML algorithm for the resulting parameters
λ = 0.1 · 2−4 and ε = 0.02. The results are shown in Figure 3. Again, the
algorithm recovers the structure of the original manifold nicely. This time the
reconstruction does not exhaust the whole S-shape and a few points cluster at
the boundary of the shape. However, the general order of the data points is kept
also in this projection. For this parameter set, our algorithm is able to detect
almost perfectly that each component of the S-shaped function depends on only
one variable as we see in Figure (4) which shows the three component sparse
grids of the solution. We observe that grid points are located almost solely on
the t1 or the t2-axes. This means that the corresponding basis functions employ
level −1 in the other direction, i.e. they are constant along that direction. The
effort needed to resolve the first component function is slightly overestimated as
it actually only depends on t1. The second component of (16) is linear in t2. To
this end, two grid points would suffice to describe it perfectly. Our algorithm
only spends one extra grid point here. The third component is resolved perfectly
as all employed basis functions only vary with respect to t1. The overall number
of basis functions in all three components is 35. Thus, the dimension-adaptive
algorithm is able to represent the manifold with only 10% of the amount of the
degrees of freedom that the regular sparse grid algorithm needs.

4.2. FEM simulations in automotive engineering

Let us first describe the considered data, which stem from numerical sim-
ulations in the automotive industry. Here, finite element simulations of a car
crash have become inevitable in order to allow a sophisticated virtual product
development process for new car models with respect to passenger safety and
to avoid the huge financial expenses of real crash tests as much as possible. In
the design process, parameters like plate thickness or material properties are
changed by the engineer to inspect the crash behavior of the respective model.
This results in a number of different, but related numerical simulations, one
for each specific choice of values for the set of parameters. Each simulation is
represented by a point in the high-dimensional data space. Since the different
simulations follow the same physical laws and observe the same mesh config-
uration and constraints, it is clear that the variation of the model parameters
result in simulation data which, in general, form a nonlinear, low-dimensional
structure in the high-dimensional simulation data space. Usually one simula-
tion run takes about half a day on the compute cluster resources available to the
engineer. The number of data points consequently stays small and is typically
in the range of only a few hundred.

As an example, we consider a frontal crash simulation of a Ford Taurus using
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Figure 2: Results of the dimension-adaptive PML for ε = 0.01, λ = 0.1 · 2−8. Left: the
projection of the input data onto the principal manifold computed by the dimension-adaptive
PML; Right: the projected input data in reduced (two-dimensional) coordinates.
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Figure 3: Results of the dimension-adaptive PML for ε = 0.02, λ = 0.1 · 2−4. Left: the
projection of the input data onto the principal manifold computed by the dimension-adaptive
PML; Right: the projected input data in reduced (two-dimensional) coordinates.
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Figure 4: The dimension-adaptive sparse grids for the three component functions of the
reconstructed S-shaped surface with 23 grid points for the x1 component (left), 3 grid points
for the x2 component (mid) and 9 grid points for the x3 component (right).
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Figure 5: For the experiments the plate thickness of 19 parts (shown on the left) in the front
of the car were changed by up to 5% to generate a realistic setup of numerical simulations. A
deformed car is shown on the right.

a model from the National Crash Analysis Center1, which is on-par with current
industry discretization resolutions. It involves around 900.000 finite element
nodes. With LS-DYNA2, n = 274 crash simulations with 300 time steps were
computed at the Fraunhofer Institute SCAI in cooperation with partners from
the automotive industry in the project “SIMDATA-NL”. Here, 19 underlying
parameters, namely the plate thicknesses of the 19 parts (= 15 beams and 4
attached further parts) shown in Figure 5, were varied by up to 5% each. This
led to n different crash simulations with n different outcomes. Note that a
similar approach for a smaller-sized toy problem can be found in [15].

Ultimately, a car engineer is interested in the variability of the simulations
with respect to the design parameter changes and also in the number of different
effects (such as bending in different directions) in safety-critical parts of the car
model. To this end, we look for the minimal embedding dimension of the high-
dimensional simulation data such that the resulting embedding describes the
data sufficiently well.

4.2.1. Input data for the generative algorithms

In the following we will consider the displacements of the finite element
nodes between the time step 150 (when most of the crash impact took place
and the car is not yet bouncing back from the obstacle) and the initial time
step 0 (where the simulation starts with specified speed for the car movement
fixed for all n simulations). For each simulation such a displacement vector now
has a dimension of approximately 3 · 900.000 where the factor 3 appears due to
the x-,y- and z-coordinates of the finite element nodes in physical space.

The number of different effects that appear between time step 0 and 150 in
the simulations can be understood as the numberm of dimensions of the intrinsic
representation of the manifold on which the n displacement vectors reside, see
[15, 16] for details. A dimensionality reduction of the 3D-dimensional vectors
would result in a manifold which describes the global behavior of the whole
car model. Since we are only interested in certain critical components of the

1http://www.ncac.gwu.edu/ This model has been developed by the NCAC of The George
Washington University under a contract with the FHWA and NHTSA of the US DOT.

2http://www.lstc.com/products/ls-dyna
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Figure 6: Top view of the Taurus. The 15 relevant beams and their positions in the car are
highlighted.

car, we will restrict our analysis to 15 parts of the car, the so-called beams,
see Figure 6. These parts absorb most of the impact during the frontal crash.
They are designed to have essential influence on the deformations resulting from
the crash and therefore on the safety of the passengers. We will denote the set
of these 15 parts by B. The number of finite element nodes in each part lies
between 934 and 4.675.

Let us now be more precise with the definition of our input data. We consider
the set pb,1, . . . , pb,kb ∈ N of kb nodes in the FE-model belonging to beam b
where b ∈ B. We denote their positions in the three dimensional space by
zib,1, . . . , z

i
b,kb
∈ R3, where i ∈ {1, . . . , n} is the number of a simulation run.

We next define the displacement δib,j between time step 150 and 0 for one finite
element node pb,j , j ∈ {1, . . . , kb}, and the displacement vector xb,i of dimension
db = 3kb for all nodes by

δib,j := zib,j − z̄b,j ∈ R3, xb,i :=
((
δib,1
)T
, . . . ,

(
δib,kb

)T)T ∈ Rdb , (17)

where z̄b,j ∈ R3 is the position of node pb,j at time 0. An xb,i is therefore a
point in the high-dimensional space Rdb and describes the displacement of beam
b ∈ B for the i-th numerical simulation, where i = 1, . . . , n. Thus, for each beam
b ∈ B we have translated the car-crash simulation results into n input vectors
of dimension db for the generative dimensionality reduction method.

4.2.2. Comparison of generative methods and data pre-processing

To achieve both, a compact and cost efficient description of the given simu-
lation data set, the high-dimensional displacement vectors xb,i, i ∈ {1, . . . , n},
in Euclidean space of dimension db = 3kb now have to be represented in a lower-
dimensional space. To this end, the intrinsic dimension mb of the n simulation
vectors has to be found for each b ∈ B. As mentioned earlier, mb corresponds
to the number of different intrinsic effects in beam b that influence the crash
behavior. Now the task arises to find the smallest possible mb such that the re-
construction error made by the representation of the db-dimensional simulations
as vectors in [0, 1]mb is still sufficiently small.
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Note that - in contrast to [15] - the size of our simulation data set at hand is
comparable to the size in real-world industry applications. Nevertheless, for each
beam b the number of data points (n = 274) in the corresponding dimensional-
ity reduction problem is still moderate and therefore a kernel method could also
be considered despite its quadratic or even cubic runtime in n. However, the
ultimate goal in the design-process in automotive industries is to consider sev-
eral simulation data sets with different car geometries and parameter changes at
once. Then, the amount of data points that serve as input for a dimensionality
reduction method is in the range of several thousands and therefore untreatable
by any data-based discretization such as kernel expansions. In this paper, we
focus on the case of a simulation data set with non-varying car model geometry
where only plate thicknesses change, i.e. scalar values for which a parametrized
design of experiments is easily computable. Note here that the process of creat-
ing a parametrized framework for different realistic geometries is very involved,
requires sophisticated engineering knowledge and goes beyond the scope of this
paper.

To measure the reconstruction error we follow the usual machine learning
setup of training and testing data. All of the following steps are performed for
each b ∈ B individually. We split a given data set {xb,i | i = 1, . . . , n} ⊂ Rd
into a training and a testing set. To this end, we pick a set Itest ⊂ {1, . . . , n} of
10 indices at random. The training set is then given by Yb := {xb,i| i ∈ Itrain} ,
Itrain := {1, . . . , n} \Itest. To reduce the impact of the randomly chosen test
data set on the results, we repeated this process five times to result with five
different Istrain, Istest, Ysb for s = 1, . . . , 5 and averaged all of our results with
respect to these splittings as we will describe in the next section.

Moreover we perform three pre-processing steps of the data, which are done
for each s = 1, . . . , 5 individually. As an initial step we first center the data
(i.e. training and testing data) around the mean of Ysb and then perform a
lossless principal component analysis on Ysb . The training and testing data
is then transformed into a representation with respect to the corresponding
eigenvectors. Finally, the transformed training data is used to compute the
maps3 fPCA, PPCA by the PCA and fPML, PPML by the dimension-adaptive
sparse grid PML method (Algorithm 2) for fixed dimension m and beam b.
In the following ∗ will stand for PCA or PML, respectively. For reasons of
simplicity we will assume that f∗ and P∗ map directly between [0, 1]m and Rd,
i.e. in our notation we neglect the initial lossless PCA step which first maps

xb,i ∈ Rd to x̃b,i ∈ Rd̃ with m < d̃ = |Istrain| = 264 < d. Therefore, we can write

3Up to this point we called the resulting functions of any generative method f and P . As
we are now dealing with both PCA and PML, we denote the functions corresponding to the
PCA by fPCA and PPCA and the functions corresponding to the PML by fPML and PPML

respectively. Note that these functions also depend on the dimension m, the beam b, the
splitting index s and - in the case of PML - also on the sparse grid levels lstart, lend and the
threshold ε. We omit these parameters for ease of notation.
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the residual as

Res*(b, i) := (Id− f∗ ◦ P∗) (xb,i) = xb,i − f∗ ◦ P∗(xb,i) (18)

for each i = 1, . . . , n and b ∈ B. In other words, we first map a vector xb,i
from the high-dimensional space Rd by P∗ into the low-dimensional space and
then map the result by f∗ back to the high-dimensional space. To estimate the
quality of both P∗ and f∗ we consider a suitable norm of (18) which will be
explained in the next section.

4.2.3. Results

We will now introduce two different error measures for the residual (18).

Reconstruction error per beam. First we measure the average relative recon-
struction error on beam b ∈ B on the testing data by

BeamError(b) =
1

5

5∑
s=1

1

10

∑
i∈Istest

‖xb,i − f∗ ◦ P∗(xb,i)‖2`2
‖xb,i‖2`2

. (19)

To simplify the presentation of the quantitative results we give only the average
error over all 15 beams, which is be computed by

AverageBeamError(B) =
1

15

∑
b∈B

BeamError(b). (20)

We now compare the results of our sparse grid PML approach with the
results of the PCA. We use manifold dimensions mb = m ∈ {1, 2, 3} for b ∈ B
and the PML parameters4 λ = 10−3, lstart = 2, lend = 7, ε = 10−2. The results
can be found in Table 1.

Clearly, the dimension-adaptive sparse grid PML outperforms the standard
PCA for each m with respect to reconstruction accuracy. Only on beam 7 for
m = 3 the PML error is slightly larger than the PCA error. However, both errors
are already very small and the regularization of the PML method was probably
too strong for this specific beam. Note at this point that the computational
costs for a PCA are of course smaller than that for the PML. However, given
the fact that we are interested in the number of effects, we are more interested in
the smallest possible embedding dimension m for a given error threshold than
just a cost efficient representation of the data. Furthermore, it is important
to allow for interactive exploration and visualization of the low-dimensional
embedded data to aid the engineer in the car design process [25, 26]. To this
end, it is necessary to obtain a suitable representation of the data which is as
low-dimensional as possible. Let us consider the value ν := 10−6 as an example

4Note that we also computed the errors for different parameters λ, lstart, lend and ε but the
qualitative results proved to be stable within a certain range and we thus keep the parameters
fixed for our presentation here.
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Table 1: Beam error (see (19)) and average beam error (see (20)) times 10−5 of PCA and
PML. mb = m is the same for every beam b ∈ B

m 1 2 3 1 2 3
PCA PML

Beam 1 1.76 0.96 0.43 0.92 0.43 0.29
Beam 2 4.79 3.34 2.55 3.41 2.00 1.56
Beam 3 1.24 0.63 0.25 0.58 0.23 0.15
Beam 4 2.77 2.18 1.60 2.23 1.31 1.04
Beam 5 3.62 2.47 1.68 3.15 1.52 1.24
Beam 6 3.58 2.48 1.77 1.94 1.28 1.04
Beam 7 0.92 0.41 0.09 0.42 0.17 0.11
Beam 8 1.84 1.45 1.22 1.38 0.88 0.74
Beam 9 2.47 1.57 0.96 1.75 0.97 0.81
Beam 10 0.68 0.39 0.25 0.31 0.16 0.11
Beam 11 0.61 0.31 0.11 0.28 0.14 0.10
Beam 12 2.95 1.77 0.97 1.79 0.78 0.58
Beam 13 2.34 1.17 0.63 1.17 0.62 0.41
Beam 14 2.13 0.98 0.55 1.08 0.46 0.34
Beam 15 2.29 1.12 0.63 1.34 0.48 0.36
Average 2.27 1.41 0.91 1.45 0.76 0.59

for the overall error threshold. Then, as we can see in Table 1, for m = 1 the
PCA achieves an error below this threshold for 3 beams and the PML for 5
beams. For m = 2 the result is even clearer as the PCA achieves a BeamError
which is smaller than ν on 6 beams while the PML does this on 11 beams. For
m = 3 the results of PCA (10 BeamErrors below ν) and PML (11 BeamErrors
below ν) are almost equal and the benefit of using the nonlinear PML is less
evident than for m = 1, 2. Since the results for PML do not improve for m = 3
compared to m = 2 we see that two dimensions are sufficient to describe the
main effects in the simulations when using the PML. The linear PCA however
needs at least three dimensions to reduce the error to ν for as many beams as
the PML does.

Reconstruction error per node. Now we want to compare the reconstruction
error per node of a linear PCA approach and that of the PML algorithm. The
parameters are the same as in the previous section. In Figure 7, we plot

NodeError(b, j) :=
1

5

5∑
s=1

1

10

∑
i∈Istest

∣∣∣∣∣∣(xb,i)j − (f∗ ◦ P∗(xb,i))j
∣∣∣∣∣∣2
`2

(21)

for every node pb,j , j = 1, . . . , kb, and every beam b ∈ B. Here the index
j extracts the 3 spatial coordinates of node j. The displacements have been
measured in millimeters and therefore (21) is given in mm2.

Also for the error (21) we observe that the results of the dimension-adaptive
sparse grid PML method are significantly better than the results of the PCA in
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(a) PCA, m = 1 (b) PML, m = 1

(c) PCA, m = 2 (d) PML, m = 2

(e) PCA, m = 3 (f) PML, m = 3

Figure 7: The pointwise errors (21). The latent space dimensions mb = m are the same for
each b ∈ B and increase from top to bottom. Values greater than 50 are colored red. The
scale runs from 0mm2 (blue) to 50mm2 and larger (red).

the sense that a smaller dimension m suffices to achieve the same reconstruction
error as with the PCA. In almost every node the reconstruction error of the PML
method with fixed dimension m is at least as good as the reconstruction error
of the PCA with dimension m+ 1. Furthermore, in the front part of the beams
on the right side, there is a region where the reconstruction error of the PCA
method is larger than 50mm2 for each m = 1, 2, 3. Here, the PML method is
able to resolve this region more accurately already for m = 1.

The fact that there is not much difference between m = 2 and m = 3 for
the PML reinforces the claim that two dimensions are sufficient to describe the
most important effects with the PML. To confirm the statement that three di-
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mensional effects do not seem to be of much importance in the data, we can
examine the case m = 3 and look at the number of sparse grid points used to
learn the manifold. We observe that the average number of basis functions (per
component) which are constant in two of the three directions is 379, i.e. these
basis functions only vary along one coordinate. The average number of basis
functions which is constant in one of the three directions is 926, i.e. these basis
functions vary along two of the three coordinates. Finally, the average number
of basis functions which is non-constant in every direction is only 235. There-
fore, the dimension-adaptive algorithm detected that the contribution of basis
functions which are effectively two-dimensional is far more important than the
contribution of functions which vary along all of the three coordinates.

Note that there are beams on which the PML with m = 1 already suffices to
reduce the error to 5mm2 and below in almost every node while there also exist
certain local parts on large beams on which the error for the PML with m = 3 is
still of the size 20mm2 or larger. To overcome this effect to some extent, a more
fine-grained analysis of the beams could be considered. To this end, for example
an a-priori clustering of the car geometry can help to obtain a segmentation of
the car model which reflects the local crash behavior in a better way than the
fixed partitioning into design parts, see e.g. [15, 27].

5. Conclusion

In this paper, we discussed the idea of generative dimensionality reduction for
two examples: Principal Component Analysis (PCA), and Principal Manifold
Learning (PML). We explained how the PML method can be discretized in
terms of sparse grids and introduced a dimension-adaptive generalization of the
algorithm in [12]. Furthermore, we pointed out the relation to the ANOVA
decomposition of multivariate functions. As a typical field of application for
a generative dimensionality reduction method, we considered a state-of-the-art
machine learning problem from the field of automotive engineering. Here, we
were able to show that the application of our nonlinear PML algorithm leads
to superior results in comparison to the linear PCA. In particular we needed
less dimensions for a good reconstruction. Thus, using the PML, the number of
relevant effects governing the crash behavior is smaller than for the PCA. This
is due to the presence of nonlinear behavior and nonlinear effects in the car
crash simulation data set. Ultimately, an engineer would like to optimize design
parameters with respect to given safety-relevant target values. To this end,
it is crucial to detect the smallest possible embedding dimension of the high-
dimensional simulation data and to construct the corresponding embedding as a
first step towards such an optimization procedure. Here, already a difference of
one in the dimensionality of the low-dimensional space can lead to a significant
reduction in the amount of work that needs to be done for an analysis of the car
crash behavior during product development. Note finally that the difference in
the necessary dimensions for the PCA and the PML is more profound for more
complex nonlinear load cases.
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Appendix

Although we mainly deal with principal manifolds in this paper, for reasons
of completeness and comparison, we will shortly discuss how the generative
topographic mapping [7] fits into our generic generative approach from section
2. For the GTM the density corresponding to ρ is approximated by

qg,β(x) :=

(
β

2π

) d
2
∫
[0,1]m

exp

(
−β

2
‖g(t)− x‖2`2

)
dt,

with a parameter β ∈ (0,∞) which models the Gaussian noise in the measure-
ments. qg,β is a perturbation of a transformed m-dimensional uniform distri-
bution. Here, g ∈ G = {W(ξ1(·), . . . , ξN (·))T |W ∈ Rd×N} is a vector-valued
linear combination of N Gaussian kernel functions ξi with fixed centers ci for
i = 1, . . . , N , i.e. the j-th component function g(j) of g can be written as

g(j)(t) =

N∑
i=1

wjiξi(t) =

N∑
i=1

wji exp

(
−‖t− ci‖2

σ2

)
(22)

with a fixed variance σ2. Usually, the centers ci are chosen to form an isotropic
grid in [0, 1]m. The correct coupling between the number of basis functions N
and the variance parameter σ is crucial for a successful dimensionality reduction,
see [7] for details. Since the centers ci and the variance σ2 are fixed, the only
remaining degrees of freedom are the entries of W.

It can be shown that the original formulation of the GTM is equivalent to
minimizing the so-called cross-entropy between qg,β and ρ, i.e.

Aρ(g) = − inf
β∈(0,∞)

∫
Rd

log(qg,β(x))dρ(x)

and therefore c(g,x) = − log(qg,β(x)), see [10] for details. Note that there is
an additional outer minimization over β. After the substitution of ρ by the
empirical measure (2) the functional reads

Aemp(g) = − inf
β∈(0,∞)

1

n

n∑
i=1

log(qg,β(xi)).
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Depending on the a-priori choice of the Gaussian kernels ξi the GTM can
be run with or without regularization, see [11] for an H1

mix-regularized version
of the GTM and [7, 10] for unregularized versions.

To solve the GTM-minimization problem an additional density function ψ :
[0, 1]m × Rd → (0,∞) has to be introduced. Then it can be shown that the
minimization of Aρ is equivalent to the minimization of the free energy form

min
ψ,g,β

∫
Rd

∫
[0,1]m

ψ(t,x)

(
log(ψ(t,x)) +

β

2
‖g(t)− x‖2`2

)
dtdρ(x)− d

2
log

(
β

2π

)
,

see [10]. Note that the minimization with respect to g directly translates into
a minimization with respect to the matrix W from (22). Similar as for the
PML, this problem can be treated analogously to the expectation-maximization
algorithm, where the minimization with respect to ψ, g and β is split into
separate minimizations for each argument. This scheme is then iterated until
convergence is reached. For the GTM, the projection P (xi) is usually defined
as the expected value of the so called responsibilities, i.e.

P (xi) =
∑
tj∈Q

tj
exp

(
−β2 ‖g(tj)− xi‖2`2

)
∑

tk∈Q exp
(
−β2 ‖g(tk)− xi‖2`2

) .
Here the points tj form a fixed (usually isotropic) grid Q in [0, 1]m which has
a significantly higher resolution than the grid of the Gaussian basis function
centers ci from (22). In [7], the scaling |Q| ≈ 10m · N is suggested to obtain
meaningful results.
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