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Nomenclature

The derivatives of a functional F : Rn → R
m, (ξ1, . . . , ξn) 7→ F [ξ1, . . . , ξn] with respect

to the i-th coordinate, respectively ξi, are denoted by either ∂iF or ∂ξi
F depending

on the context. The Jacobi matrix at a point ξ is denoted by DξF .

Differential Geometry

M a generic manifold
ψ : U ⊂ R

d → M local parametrization of a d-dimensional manifold
TpM tangent space of M at point p ∈ M
g, gp Riemannian metric (at p ∈ M), as well as its matrix

representation
L, E length and path energy functional on M
expp, logp exponential map and logarithm at p on M
W approximation of the squared Riemannian distance
LK , EK time-discrete length and path energy functional of order K;

minimizers of the energy are called discrete geodesics of
order K

Surfaces

S regular surface in R
3

n normal field on the surface

Sp, sξ shape operator at p ∈ M and its matrix representation

h, hp second fundamental form (at p ∈ M), as well as its matrix
representation

F : Ω → O(3) frame field on surface S, which is parametrized over Ω
P 1, P 2 transition matrices of the frame field

Discrete Surfaces

Sh connectivity of a triangle mesh
V, E , F sets of vertices, edges, and faces of a triangle mesh
V∗, E∗ sets of dual vertices and dual edges of a triangle mesh
X embedding or immersion of a discrete surface, i.e. its nodal

positions
S embedded or immersed discrete surface
Xv, Ee, T (f) embedded vertex, edge, or face respectively
G|f , H|f , S|f elementwise constant discrete first and second fundamental

forms, and shape operator
Nf , Ne face normal and dihedral angle bisecting edge normal
le, θe edge length and dihedral angle of an edge e
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Phyiscal Modeling

φ, Φ continuous respectively discrete deformation
G[φ], G[Φ] continuous respectively elementwise constant discrete

distortion tensor
W generic deformation energy
Wmem, Wbend generic membrane and bending energy
WDS

bend
Discrete Shells bending energy for discrete surfaces

Lengths and Angles

z combined vector of edge lengths and dihedral angles
Z admissible lengths and angles, also the space of lengths and

angles

Z : R3|V| → R
2|E| map yielding the lengths and angles Z[X] of an immersion X

F : F → SO(3) discrete frame field on Sh
Rij : R2|E| → SO(3) induced transition rotation between faces fi and fj
Tf : R2|E| → R triangle inequality map for face f

Iv : R2|E| → SO(3) discrete integrability map for vertex v

Ĩv : R2|E| → R
3 x− y − z Euler angles of discrete integrability map for

vertex v

R : R2|E| → R
3|V| generic reconstruction of nodal positions from lengths and

angles

PZ : R2|E| → R
2|E| generic projection on the space of lengths and angles Z

Wq, WTS quadratic and thin shells deformation energy on lengths and
angles

RW , PW
Z energy-based reconstruction and projection



Introduction

In modern computer animation, we witness highly complex deformations of character
models. Artists are given the opportunity to exploit the availability of tremendous
computational power to generate movements nearly indistinguishable from natural
ones. In addition, the technical development of motion capturing has created another
way to bring natural motions into computer animations. This surpasses professional
games and movies, clearly observable since the introduction of Microsoft Kinect. The
character models are commonly represented as high-resolution triangle meshes with
hundreds of thousands of triangles.

Both, discrete differential geometry and physical modeling play an important role
in creating realistic movements. However, to capture deformation paths of shapes in a
comprehensive mathematical model, we need to go one step further and introduce shape
spaces, an idea due to Kendall [Ken84]. Complex geometric objects, such as surfaces or
images, are considered points in these potentially infinite dimensional spaces, where we
exploit the physical modeling of deformations to define a nonlinear structure on them.
These spaces enable rigorously study of the geometry and physics of deformations
and mathematical notions such as geodesics and parallel transport have a practical
interpretation in the synthesis of animations.

This is part of the larger research area of geometry processing, which involves geo-
metric objects from creation over editing to rendering. In recent years, the fabrication
of the resulting shapes by means of modern additive methods has become an increas-
ing focus. In this thesis, we will focus on the processing of triangle meshes, also called
discrete surfaces under certain conditions. We are interested in the deformation of
triangle meshes in dense correspondence, meaning that we assume them to have the
same number of vertices and identical connectivity. In this context, the deformation
is completely described by the change of nodal positions.

However, when working with nodal positions, problems with rigid body motion in-
variance arise, thus we want to find degrees of freedom for deformations which are rigid
body motions invariant. In the continuous setting, the fundamental theorem of sur-
faces establishes that immersed surfaces can be modeled rigid body motions invariant
by their first and second fundamental forms. They already determine the immersion
provided they fulfill the Gauß-Codazzi equations. For discrete surfaces, edge lengths
and angles between the normals of neighboring triangles can be considered as counter-
parts to the fundamental forms which motivates their consideration as primal degrees
of freedom for deformations. Beyond their inherent invariance to rigid transformations,
they offer other benefits, such as occurring naturally in discrete deformation energies
and representing natural deformations in a localized sparse fashion.

The goal of this thesis is to develop a comprehensive understanding of lengths and
angles as primal degrees of freedom for deformations of discrete surfaces. This in-
cludes their introduction as discrete counterparts to the fundamental forms, adapting
deformation energies and investigating different, partially novel, approaches to con-
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struct nodal positions from lengths and angles. Furthermore, an in-depth study of the
discrete fundamental theorem from [WLT12] reveals conditions on lengths and angles
to belong to an immersed surface, akin to the Gauß-Codazzi equations. We will use
these conditions to introduce a nonlinear structure on the space of lengths and angles.
The resulting toolbox will be used to perform Principal Geodesic Analysis on this new
space and build a low-dimensional model of deformations from examples. This model
will be used in marker fitting, a problem related to motion capturing.

Structure We will start with two chapters of preliminary notions used throughout
this thesis. In the first chapter, we will focus on surfaces, their discrete counterpart
and modeling them as midsurface of thin elastic objects. Afterwards, the notions from
Riemannian geometry necessary for shape spaces and a time-discrete geodesic calculus
will be introduced together with a brief explanation of the application to the space of
discrete shells. These two chapters are kept very brief and mainly serve to introduce
a consistent notation for the remaining thesis.

Hence, the third chapter will be the first to deal with edge lengths and dihedral
angles. In that chapter, we will consider them as discrete counterparts to the funda-
mental forms, which will include the study of the discrete fundamental theorem from
[WLT12]. Also, we will introduce and compare several ways to construct nodal posi-
tions for given lengths and angles. Finally, in the fourth chapter, this will be applied to
introduce the space of lengths and angles. A simplified version of Principal Geodesic
Analysis on this space and the model fitting application will be provided.

Implementation Accompanying this thesis is an implementation of the different
elements of the lengths and angles toolbox that will be studied below. The imple-
mentation was used to conduct the different numerical experiments throughout this
thesis and is based on an C++ framework previously developed in the group of Prof.
Dr. Martin Rumpf. Main parts of the existing components are tools for the space of
discrete shells developed in the context of [Hee16]. In the course of this thesis, there
will be remarks on how to use the introduced notions in implementations, which will
be clearly recognizable due to their box with a grey background.
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Chapter 1

Discrete Surfaces and Thin Shells

In this first of two chapters introducing basic notions, we start with the central objects
of our studies, surfaces and their discrete approximation. As noted in the introduction,
there is a rich set of applications for surfaces as modeling tool be it in mathematical
physics or in computer graphics. Independent of this, they have been an object of math-
ematical studies at least since ancient Greece and hence there is rich theory describing
their topology and geometry. Through the advent of modern computers, numeri-
cal representations of surfaces have become increasingly important in simulation and
graphics. One popular choice to represent surfaces is to approximate them by triangle
meshes, under certain conditions also called discrete surfaces. The studies of discrete
surfaces have accumulated in the active field of discrete differential geometry, aiming
to develop a comprehensive theory for them akin to continuous surfaces. Moreover,
discrete surfaces have recently become modeling tools used in additive manufacturing
beyond their interpretation as approximations of continuous surfaces. This is reflected
for example in publications on discrete developability such as [SGC18, RHSH18] or on
related so-called zippables [SPSH18]. Nevertheless, already before this, surfaces have
been used in mathematical physics to model thin deformable objects, which led to the
rigorous deduction of physically plausible deformation energies.

In this chapter, we will consider these three perspectives by first introducing para-
metric continuous surfaces in three-dimensional space. Then we will go on to introduc-
ing discrete surfaces and briefly describe some basic notions of their geometry without
going into much detail at this point. The last section will then be concerning the
modeling of thin elastic objects as surfaces and give a concise exposition of continuous
and discrete deformation energies.

1.1 A Brief Introduction to Surfaces

In this section, we briefly introduce the necessary properties of embedded surfaces
(i.e. two-dimensional manifolds) S ⊂ R

3. As it is sufficient for this thesis, we will
only consider a parametric description of surfaces as defined in the following. This
introduction is kept very brief and is based on [Hee17, dC76], to which we also refer
for further reading.

We begin with the first very basic definitions of a surface and its tangent space.

Definition 1.1 (Regular surface). The set S ⊂ R
3 is a regular surface if for each p ∈ S

there is an ε > 0, an open set Ω ⊂ R
2, and a smooth mapping ψ : Ω → R

3, such that

(i) ψ(Ω) = S ∩Bε(p) and ψ : Ω → S ∩Bε(p) is a homeomorphism.

3
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(ii) The Jacobi matrix Dξψ ∈ R
3×2 has rank two for each ξ ∈ Ω.

Definition 1.2 (Tangent space). Let S ⊂ R
3 be a regular surface, and let p ∈ S.

Then we define the tangent space at p

TpS := { γ̇(0) | γ : (−1, 1) → S smooth, γ(0) = p}.

Elements of this space are called tangent vectors.

Note that TpS is a two-dimensional vector space. Let us now consider a parametriza-
tion ψ : Ω → R

3 of S, for which we let ξ ∈ Ω and let p = ψ(ξ) ∈ S. If we then consider
a smooth α : (−1, 1) → Ω with α(0) = ξ and γα := ψ ◦ α we have γ̇α(0) = Dξψα̇(0)
and get

TpS = ImDξψ = span{∂ξ1
ψ(ξ), ∂ξ2

ψ(ξ)} .

We will call this basis of the tangent spaces the canonical basis and define

Vi = ∂ξi
ψ(ξ), i = 1, 2

as handy abbreviations.

Differentiation For a smooth function ϕ : S → R and p ∈ S we define the differential
Dpϕ as a linear form acting on tangent vectors V ∈ TpS as directional derivative, i.e.

Dpϕ(V ) :=
d

dt
ϕ(γ(t))

∣∣∣
t=0

for an arbitrary curve γ : (−1, 1) → S with γ(0) = p and γ̇(0) = V . For a vector-
valued deformation φ : S → R

3 the definition above holds for each component of φ =
(φ1, φ2, φ3). In particular, Dpφ defines a linear map between the tangent spaces, i.e.

Dpφ : TpS → Tφ(p)φ(S) .

1.1.1 Fundamental Forms

We want to measure lengths and angles on the surface, for which we need an inner
product at each point.

Remark. In the following, we will introduce the structure of a Riemannian manifold
on the surface, which we will be discussed in more generality in Chapter 2.

Definition 1.3 (First fundamental form). The first fundamental form in p ∈ S is
given by

gp : TpS × TpS → R, (U, V ) 7→ 〈U, V 〉R3 .

We see that gp is a scalar product on TpS and thus we can consider its matrix
representation in the canonical basis, which by abuse of notation we also denote as gp.
It is given by

gp = (〈Vi, Vj〉R3)ij ∈ R
2×2.

This matrix is invertible because it is positive definite by assumption and we denote
the coefficients of the inverse by superscript indices, i.e.

g−1
p = (gij)ij ∈ R

2×2.

As scalar product, gp allows us to measure then lengths of tangent vectors and the
angle between two of them. We can use this to measure the lengths of curves on the
surface.
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Definition 1.4 (Length of a curve). Let α : (−1, 1) → Ω and γα := ψ ◦ α, then the
length of γα is defined as its integrated velocity

L[γα] :=

∫ 1

−1
|γ̇α(t)| dt =

∫ 1

−1

√
〈Dψα̇(t), Dψα̇(t)〉R3 dt

=

∫ 1

−1

√
〈DψTDψα̇(t), α̇(t)〉R3 dt ,

where we write Dψ = Dα(t)ψ to shorten the expression.

This way we can also define arbitrary integrals on the surface for some function
ϕ : S → R by

∫

A
ϕ da :=

∫

ψ−1(A)
(ϕ ◦ ψ)(ξ)

√
det gξ dξ ,

Second fundamental form The first fundamental form allows us to study objects
that live on the surface. Moreover, we are also interested in studying how the surface
S is bent, i.e. its curvature. To this end, we have to introduce some more definitions,
especially another bilinear form called the second fundamental form.

Definition 1.5 (Normal field). Let S2 ⊂ R
3 be the 2-dimensional unit sphere. The

(unit) normal field of S is a mapping n : S → S2 with n(p) ⊥ TpS for all p ∈ S.
We say that S is orientable if there is a continuous normal field. In particular, as
rank(Dψ) = 2, we will write

n(p) = (n ◦ ψ)(ξ) =
∂1ψ × ∂2ψ

|∂1ψ × ∂2ψ|
(ξ) .

Definition 1.6 (Shape operator). Let S ⊂ R
3 be a regular and orientable surface,

p ∈ S. The shape operator Sp : TpS → TpS at p is the linear mapping defined via
Sp(U) = Dpn(U) for U ∈ TpS.

Remark. As Tn(p)S
2 = n(p)⊥ = TpS the shape operator Sp is indeed an endomorphism

on TpS.

Definition 1.7 (Second fundamental form). Let S ⊂ R
3 be a regular and orientable

surface, and p ∈ S. The second fundamental form hp is the bilinear form on TpS
associated with Sp, i.e.

hp(U, V ) := gp(SpU, V ) , U, V ∈ TpS .

We will exploit this bilinear form later to define different notions of curvature of a
surface. Again, we can derive a matrix representation in the canonical basis, which by
abuse of notation we also denote as hp. As before, this is achieved by pulling back hp
to R

2 using Dξψ. It is given by

hp = Dξ(n ◦ ψ)TDξψ ∈ R
2×2,

where ψ(ξ) = p. In the following, the explicit dependence on the point p of the funda-
mental forms will typically be dropped when it is clear which point we are considering.

One can see, that the second fundamental form is symmetric, i.e. that Sp is self-
adjoint with respect to the first fundamental form gp. This means that we can diago-
nalize Sp as s linear map with an orthonormal basis, and thus it has two eigenvalues.
These eigenvalues now allow us to define different notions of curvature.
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Definition 1.8 (Curvatures). The eigenvalues κ1 and κ2 of Sp are called the principal
curvatures of S at a point p ∈ S. The mean curvature in p is defined as the sum
Hp = trSp = κ1 + κ2 and the Gaussian curvature in p is defined as the product
Kp = detSp = κ1κ2.

To define a physically-plausible model for the deformations we need to measure the
bending of surfaces under deformation. Bending corresponds to a change of the second
fundamental form or shape operator, which is captured by the following definitions.

Definition 1.9 (Pulled-back shape operator). The pulled-back shape operator
S∗
p [φ] : TpS → TpS is given by

gp
(
S∗
p [φ]U, V

)
= hφ(p) (DpφU, DpφV ) , ∀U, V ∈ TpS . (1.1)

Definition 1.10 (Relative shape operator). The relative shape operator Srelp [φ] is
defined as the pointwise difference, i.e.

Srelp [φ] : TpS → TpS , Srelp [φ] := Sp − S∗
p [φ] . (1.2)

Again, we obtain matrix representations in the canonical basis s∗
ξ [φ] ∈ R

2×2 and

srelξ [φ] ∈ R
2×2 of S∗

p [φ] and Srelp [φ], respectively, which are given by

s∗
ξ [φ] = g−1

ξ h̃ξ , srelξ [φ] = sξ − s∗
ξ [φ] = g−1

ξ (hξ − h̃ξ) . (1.3)

1.1.2 Fundamental Theorem

A natural question one could ask is if there is a criterion when two surfaces will be
congruent, i.e. only differ by a rigid transformation. This question will also arise in
the physical modeling of surface deformations later on, where will consider energies
invariant to rigid transformations of the surface. Thus a more involved question to
ask would be if we can parametrize surfaces up to rigid body motions. In this section,
we will answer those two question by showing that the fundamental forms determine
when two surfaces are congruent and that if we define fundamental forms fulfilling
certain compatibility conditions there will be a surface in R

3 admitting them. This
will constitute the fundamental theorem of surfaces. The exposition below is completely
based on [Küh15] and [Pal03]. Again we will work only locally, i.e. assume that we
have global parametrizations ψ of our surfaces.

We start with a simple definition.

Definition 1.11 (Standard frame). Let S be a regular surface with parametrization
ψ : Ω → R

3, then at each coordinate ξ ∈ Ω we define the standard frame at ξ by

F (ξ) = (F1(ξ), F2(ξ), F3(ξ)) := (∂1ψ(ξ), ∂2ψ(ξ), (n ◦ ψ)(ξ)). (1.4)

This yields a matrix-valued map F : Ω → O(3) called a frame field, where we consider
the different components as rows.

Note, that F (ξ) is a basis of R3, where the first two basis vectors are the canonical
basis of Tψ(ξ)S, and thus we can express each vector of R

3 in it. Especially, we can

apply this to the derivatives of F itself, i.e. determine coefficients P kji such that

∂kFj(ξ) =
2∑

i=1

P kji(ξ)Fi(ξ). (1.5)
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The P kji define two matrices P k, k = 1, 2 and we can write this as a pair of equations
of matrix-valued functions

∂1F = FP 1 (1.6a)

∂2F = FP 2, (1.6b)

which are called the frame equations for S.

In the following, we will show that the transition matrices P k can be calculated
from the coefficients of the first and second fundamental form. Then we can consider
the frame equations as a coupled pair of first-order partial differential equations for
the frame field F , and it will follow from Frobenius’ theorem that we can solve these
equations and then by another integration recover the surface parametrization ψ.

We start with the first part.

Proposition 1.1 ([Pal03]). Let S be a regular surface with parametrization ψ : Ω →
R

3, and P 1, P 2 the transition matrices as defined above. Then

P 1 = G−1A1 :=



g11 g12 0
g21 g22 0
0 0 1







1
2 ∂ξ1

g11
1
2 ∂ξ2

g11 h11

∂ξ2
g12 − 1

2 ∂ξ1
g11

1
2∂1g22 h12

−h11 −h12 0


 (1.7a)

P 2 = G−1A2 :=



g11 g12 0
g21 g22 0
0 0 1







1
2 ∂2g11 ∂2g12 − 1

2 ∂1g22 h12
1
2∂1g22

1
2∂2g22 h22

−h12 −h22 0


 . (1.7b)

Proof. Remember, that ∂kFj =
∑2
i=1 P

k
jiFi and thus when we apply 〈 · , Fl〉 we get

〈∂kFj , Fl〉 =
2∑

i=1

P kji〈Fi, Fl〉. (1.8)

If we define matrices G := (〈Fi, Fl〉)il =



g11 g12 0
g21 g22 0
0 0 1


 and Ak := 〈∂kFj , Fl〉jl ∈ R

3×3

equation (1.8) becomes

Ak = GP k,

and have to compute the coefficients of Ak to prove the proposition. For i = 1, 2 we
get:

Akii = 〈∂k∂iψ, ∂iψ〉 =
1

2
∂k〈∂iψ, ∂iψ〉 =

1

2
∂kgii.

Next, we note ∂1g12 = ∂1〈∂1ψ, ∂2ψ〉 = 〈∂1∂1ψ, ∂2ψ〉 + 〈∂1ψ, ∂1∂2ψ〉 = 〈∂1∂1ψ, ∂2ψ〉 +
1
2∂2g11〉, and thus

A1
21 = 〈∂1∂1ψ, ∂2ψ〉 = ∂1g12 −

1

2
∂2g11,

and in the same way it follows

A2
12 = 〈∂2∂2ψ, ∂1ψ〉 = ∂2g12 −

1

2
∂1g22,

A1
12 = 〈∂2∂1ψ, ∂1ψ〉 =

1

2
∂2g11,

A2
12 = 〈∂2∂2ψ, ∂1ψ〉 =

1

2
∂2g11.
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For i = 1, 2, we get

Aki3 = 〈∂k(n ◦ ψ), ∂iψ〉 = 〈Dpn(∂kψ), ∂iψ〉 = hki,

and since F3 is orthogonal to Fi, we have

0 = ∂k〈F3, Fi〉 = 〈∂kF3, Fi〉 + ∂k〈F3, ∂kFi〉,

and hence

Ak3i = −Aki3.

Finally since 〈F3, F3〉 = 1 it follows ∂k〈F3, F3〉 = 0, so

Ak33 = 0.

In the following, we will consider the matrix-valued functions G,G−1, Ak, and P k

as being defined by the formulas in the above proposition. From this, we can deduce
necessary conditions on the coefficients on the first and second fundamental form to
stem from a regular surface.

Corollary 1.1 (Gauß-Codazzi Equations, [Pal03]). If (gij) and (hij) are the coeffi-
cients of the first and second fundamental forms of a regular surface S with parametriza-
tion ψ : Ω → S, then the matrix-valued functions P 1 and P 2 defined on Ω by Proposi-
tion 1.1 satisfy

∂2P
1 − ∂1P

2 = P 1P 2 − P 2P 1. (1.9)

Proof. We differentiate the first frame equation in (1.6) with respect to ξ2 and the
second with respect to ξ1 and then by symmetry of second derivatives it follows

∂2FP
1 + F∂2P

1 = ∂1FP
2 + F∂1P

2.

Substituting for ∂1F and ∂2F their values from the frame equations (1.6) gives

F (∂2P
1 − ∂1P

2 − (P 1P 2 − P 2P 1))

and the corollary follows from F being an invertible matrix.

Next, we want to show that the Gauß-Codazzi equations are in fact sufficient
conditions on the coefficients of the first and second fundamental form to stem from a
surface, i.e. we will see that just given the coefficients we can construct a surface with
those fundamental forms.

Theorem 1.1 (Fundamental Theorem of Surfaces, [Pal03]). Congruent regular sur-
faces in R

3 have the same first and second fundamental form and conversely, two
parametric surfaces with the same first and second fundamental forms are congruent.

Moreover, if g : Ω → R
2×2, and h : Ω → R

2×2 are C2 quadratic forms on an open
and connected domain Ω ⊂ R

2 fulfilling the Gauß-Codazzi equations, then there exists
a regular surface ψ : Ω → S ⊂ R

3 with g and h as (matrix representations of) first and
second fundamental form.
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Proof. The first point is clear from the definition of the fundamental forms and the
invariance of the Euclidean scalar product to rigid body motions.

For the second statement, let ψi : Ω → Si ⊂ R
3, i = 1, 2 be two parametric surfaces

such that they have the same first and second fundamental form. After translation, we
can assume that both map some coordinates ξ to the origin of R3. By assumption, we
have (Dξψ

1)⊺Dξψ
1 = g0 = (Dξψ

2)⊺Dξψ
2 and thus after an orthogonal transformation

we can assume the standard frames F 1 of S1 and F 2 of S2 to agree at ξ. Since ψ1 and
ψ2 have identical frame equations (1.6), which are integrable by Frobenius’ theorem,
it follows that F 1 and F 2 agree on all of Ω. In particular, we have Dξ̃ψ

1 = Dξ̃ψ
2 for

all ξ̃, implying that ψ1 and ψ2 only differ by a constant, and as they agree at ξ they
are identical, proving the second part.

Now, for the third part, note that since g is positive definite for each ξ it is invertible
and thus G−1 and P k from Proposition 1.1 are well-defined. Moreover, since the Gauß-
Codazzi equations are exactly the integrability conditions of the Frobenius theorem,
it follows that we can integrate the frame equations uniquely given arbitrary initial
values for F at some ξ0 ∈ Ω. For these initial values, we choose a basis F (ξ0) of R3

such that 〈Fi, Fj〉 = Gij(ξ0), which is possible since g and hence G are positive definite.

Having a frame field F , we need to solve the system ∂iψ = Fi, i = 1, 2 to get
a parametrization ψ : Ω → R

3. This requires another application of the Frobenius
theorem and now the compability condition is

∂2F1 = ∂1F2,

which by the frame equations becomes

∑

j

P 2
j1Fj =

∑

j

P 1
j2Fj .

If we inspect the definitions of P k in Proposition 1.1, we in fact see that the second
column of P 1 agrees with the first of P 2. Hence we can find a unique ψ with ψ(ξ0) = 0
and ∂iψ = Fi for i = 1, 2.

It remains to show that ψ defines a regular surface in R
3 with g and h as matrix

representations of the first and second fundamental form. This means we have to show
for all ξ ∈ Ω

• rankDξψ = 2,

• F3(ξ) ⊥ Tψ(ξ)S,

• ‖F3(ξ)‖ = 1,

• Dξψ
⊺Dξψ = gψ(ξ), and

• DξF
⊺
3Dξψ = hψ(ξ).

As first step we prove that Φ := (〈Fi, Fj〉)ij = G, which implies all but the last
bullet points of the list. We compute ∂1Φij = 〈∂1Fi, Fj〉 + 〈Fi, ∂1Fj〉 = (A1)ij + (A1)ji,
and thus ∂1Φ = A1 + (A1)⊺. If we look at the definition of A1 we immediately see
that ∂1G = A1 + (A1)⊺, thus ∂1Φ = ∂1G and by a similar computation ∂2Φ = ∂2G.
Therefore, Φ and G only differ by a constant and since they agree at ξ0 they are
identical.
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For the last point, we compute the second fundamental form of S = ψ(Ω), again
using the frame equations,

〈∂1F3, Fj〉 = 〈(FP 1)3, Fj〉 = (g11h11 + g12h12)〈F1, Fj〉 + (g12h11 + g22h12)〈F1, Fj〉

= (g11h11 + g12h12)g1j + (g12h11 + g22h12)g2j

= h11(g11g1j + g12g2j) + h12(g21g1j + g22g2j)

= h11δ1j + h12δ2j .

Hence, 〈∂1F3, F1〉 = h11, 〈∂1F3, F2〉 = h12 and a similar computation for ∂2F3 proves
that DξF

⊺
3Dξψ = hψ(ξ).

1.2 Discrete Surfaces

Next, we will study discrete surfaces, a certain class of polygonal meshes. These
are the kind of objects we are actually dealing with in our applications/numerical
implementations, hence we want to apply the differential and geometric notions from
Section 1.2 to them. However, they required the surface to be sufficiently smooth but
polygonal meshes are piecewise affine and thus globally only of class C0. One aims
to introduce discrete equivalents of notions from differential geometry, which allow
computing approximations of the properties of a smooth surface. In this section, we will
provide a formal definition for discrete surfaces and briefly introduce several geometric
notions. As before, this chapter is not meant to provide a complete introduction to
discrete differential geometry (DDG), for this, we refer the reader to existing literature
such as [Hee17, CdGDS13] on which this section is based.

Topology The connectivity Sh of a triangle mesh can be represented as a graph
structure. We have a finite set of vertices V = {v1, . . . , v|V|} and a set of triangle faces
F = {f1, . . . , f|F|} ⊂ V × V × V. From these two we can furthermore deduce a set of
edges E = {e1, . . . , e|E|} ⊂ V × V. Note, that we could equivalently deduce the set of
faces F from the set of edges E and all further structural properties of the mesh, such as
neighboring relationships or boundary can be derived from them. We will now derive
a topology for the mesh solely based on this connectivity. This will yield a language
clearly separating the topology of a discrete surface from the geometry induced by
an embedding, which will come in handy later on. We begin with introducing the
topological notions that correspond to our connectivity.

Definition 1.12 (Abstract simplicial complex). An abstract simplicial complex K
consists of a set of vertices V together with a set ∆ of finite non-empty subsets of V,
called simplices, such that

1. if σ ∈ ∆ and ∅ 6= τ ⊂ σ then τ ∈ ∆, and

2. for every v ∈ V we have {v} ∈ ∆.

We call a σ ∈ ∆ with p+ 1 elements a p-simplex. The dimension of K is the largest p
such that it contains a p-simplex.

Such an abstract simplicial complex provides a combinatorial way of describing the
structure of a simplicial complex. It is basically a construction plan for the ’gluing’
of simplices to form a simplicial complex. Note, that giving the connectivity Sh =
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(V, E ,F) of a triangle mesh is equivalent to giving a set of vertices V and a set of
simplices ∆ consisting of the vertices, edges and triangles, hence by abuse of notation
we refer by Sh to both.

Remark. In this thesis, we are solely interested in 2-dimensional abstract simplicial
complexes with a finite number of vertices (and thus simplices). Especially, we will
assume this implicitly in the following when we are talking about them. One could also
develop the following notions for infinite(-dimensional) abstract simplicial complexes,
but this would require an even more abstract language which is not desirable at this
point.

Now that we have the combinatorial structure of a simplicial complex, we will
associate to it a topological space.

Definition 1.13 (Geometric realization). Let K be an abstract simplicial complex with
finitely many vertices V = {v1, . . . , v|V|}. Then we define the geometric realization |K|
of K as the set ⋃

{vi1
,...,viK

}∈∆

Conv(ei1 , . . . , eiK ) ⊂ R
|V| (1.10)

together with subspace topology given by R
|V|.

In the following, we will by abuse of notion often refer to the connectivity Sh of a
triangle mesh as topological space, by which we mean exactly this geometric realization
even though we might not explicitly use the notation |Sh|.

Remark. We could describe this as a functor from the category of abstract simplicial
complexes to the category of topological spaces such that abstract p-simplices are sent
to geometric p-simplices and the image of an arbitrary abstract simplicial complex is
constructed from them. This would give a more abstract viewpoint, which we do not
need in this thesis.

Furthermore, if we have a valid triangle mesh, i.e. without self-intersections etc.,
then it is homeomorphic to the geometric realization of the simplicial complex. Hence,
in those cases, we would not need to construct the topological space differently, but
we wanted to stress that we can construct it just from the connectivity to more clearly
separate it from the geometry of the surface.

Lastly, we have to get rid of unwanted singularities, such as holes or lower dimen-
sional structures, to get to the notion of a discrete surface. Note, that the following
definition is equivalent to the one used for example in [DKT08], just derived in a more
abstract fashion.

Definition 1.14 (Discrete surface). A discrete surface or two-dimensional discrete
manifold Sh is an abstract simplicial 2-complex, such that in its geometric realization
for each vertex the union of all incident simplices is homeomorphic to a disk or a
half-disk if the vertex is on the boundary.

Dual topology Additionally to the primal topology of the surface, we will also
consider its dual. In the dual topology, or dual graph, the faces of the surface become
the vertices, that is

V∗ = F .

The edges in the dual graph describe the neighboring relationships of primal faces and
are given by

E∗ = {(k, l) ∈ F × F | k and l share a common edge} .
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Note, that the dual edges are in one-to-one correspondence with primal interior edges
by mapping a dual edge to the common primal edge of the two faces. Thus, they
will often be indexed and referred to by their primal counterpart. The dual graph
allows us to formalize notions such as iterating over neighboring triangles, which we
will need later on when talking about conditions on edge lengths and dihedral angles
to be admissible.

Orientation The order of the local indices of nodes within one face determines
the orientation of the face and hence of the discrete surface. In the following, only
orientable (discrete) surfaces will be considered, and thus we will implicitly assume
that indices are ordered consistently.

Geometry So far, we have studied the underlying topology of a triangle mesh, yet
in practice, of course, we work with geometric realizations of this topology in three-
dimensional space. Hence, we consider these next.

Definition 1.15 (Embedding). Let Sh be a discrete surface. An embedding of Sh is an
injective piecewise linear map X : |Sh| → R

3 such that it is an homeomorphism onto
its image. We call a discrete surface together with an embedding an embedded discrete
surface S.

We will not always be able to only consider embed-
dings of a discrete surface due to their global injectiveness.
Therefore, we also consider immersions of discrete surfaces,
which replace this global condition by a local one allowing
self-intersection of the surface as long as for each vertex a
neighborhood is embedded. This enables considering dis-
crete surfaces such as the triangulated Klein bottle shown
in the inset figure.

Definition 1.16 (Immersion). Let Sh be a discrete sur-
face. An immersion of Sh is a piecewise linear map X : |Sh| → R

3 such that it is a local
injection for each one-ring of faces around a vertex, and thus a local homeomorphism.
We call a discrete surface together with an immersion an immersed discrete surface S.

As the embedding or immersion X is piecewise linear it is uniquely determined by
its restriction to the vertices X|V . To simplify formulas, we denote for v ∈ V by Xv

the image of v and if we have an enumeration of V we denote for i ∈ N by Xi the
image of vi. We denote the image X(e) of an edge e ∈ E by Ee, or again if we have
an enumeration by Ei the image of ei. If we consider a face f = (vi0 , vi1 , vi2) ∈ F , we
denote the embedded triangle by

T (f) = Conv (Xi0 , Xi1 , Xi2) ⊂ R
2.

Furthermore, we define Xj(f) := X(vij ) and

Ej(f) := Xj−1(f) −Xj+1(f)

for j ∈ {0, 1, 2}, where in the last equation the indices are to be read modulo 3.
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Parametrization In Section 1.1, we gave formulas for many objects in terms of a
(local) parametrization of the surface. Now, for an embedded triangle of a discrete
surface, we can easily derive a local parametrization, as well. For this, we consider the
unit triangle in R

2

ω := Conv

((
0
0

)
,

(
1
0

)
,

(
0
1

))
⊂ R

2

as reference domain. Then we get our local parametrization as the affine mapping

Ψf : ω → T (f), (ξ1, ξ2) 7→ ξ1X1(f) + ξ2X2(f) + (1 − ξ1 − ξ2)X0(f)

for the baraycentric coordinates ξ ∈ ω. We can collect all these local parametrization
into one global map on the reference domain Ωh = ω × F

Ψ: Ωh → X(Sh), (ξ, f) 7→ Ψf (ξ)

and by abuse of notation call this a global parametrization of the immersed discrete
surface. Later on, we will drop the explicit dependence on f and use Ψ whenever
possible to simplify our notation.

1.2.1 Fundamental Forms

Now that we have introduced the topology and geometry of discrete surfaces we go
on to study their geometry more thoroughly. In Section 1.1, the first and second
fundamental form where crucial tools for understanding the geometry of differentiable
surfaces. Hence, we will introduce their discrete counterparts in this section.

Discrete first fundamental form Remember that for an regular embedded surface
S ⊂ R

3 with (local) parametrization ψ we can represent the first fundamental form
by g = Dψ⊺Dψ. Furthermore, the local parametrization Ψ of an immersed discrete
surface is affine, thus its derivative is constant on each triangle f ∈ F and given by

DΨ|f =

(
∂Ψf

∂ξ1
,
∂Ψf

∂ξ2

)
=
[
X1(f) −X0(f)

∣∣∣X2(f) −X0(f)
]

(1.11)

=
[
E2(f)

∣∣∣ − E1(f)
]

∈ R
3×2 . (1.12)

From this the definition of a discrete first fundamental form follows canonically.

Definition 1.17 (Discrete first fundamental form). Let Sh be a discrete surface with
immersion X. The elementwise constant discrete first fundamental form is given by

G|f := (DΨ|f )⊺DΨ|f =

(
‖E2(f)‖2 −〈E1(f), E2(f)〉

−〈E1(f), E2(f)〉 ‖E1(f)‖2

)
∈ R

2×2 (1.13)

for each f ∈ F .

Discrete second fundamental form We also need a discrete counterpart of the
second fundamental form to be able to talk about extrinsic invariants of discrete sur-
faces. To this end, we will present a triangle-averaged discrete second fundamental
form H introduced in [HRWW12]. Combining these, two we can derive a matrix rep-
resentation of a shape operator living on triangles by setting S|f := G|−1

f H|f ∈ R
2×2.

First, we need to introduce some basic geometric notions.
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Definition 1.18 (Normals). For an immersed discrete surface S, we define the face
normal Nf ∈ S2 on the face f = (vi0 , vi1 , vi2) ∈ F by

Nf :=
(Xi1 −Xi0) × (Xi2 −Xi0)

‖(Xi1 −Xi0) × (Xi2 −Xi0)‖
. (1.14)

Furthermore, for an edge e with adjacent faces fl and fr we set

Ne :=
αlNfl

+ αrNfr

‖αlNfl
+ αrNfr

‖
, (1.15)

with dihedral angle bisecting weights αl = αl = 1
2 .

Definition 1.19 (Dihedral angle). For an immersed discrete surface S, we define the
dihedral angle of an edge e with adjacent faces fl and fr as

θe = ∠ (Nfl
, Nfr

) , (1.16)

where, as before, E denotes the embedded edge.

Now, remembering Definition 1.7 and (1.11), we get for the entries of a matrix
representation H on a face f

H11 =
〈
dN(E2), E2

〉
R3
, H12 = −

〈
dN(E2), E1

〉
R3
,

H21 = −
〈
dN(E1), E2

〉
R3
, H22 =

〈
dN(E1), E1

〉
R3
,

where e0, e1, e2 ∈ E are the edges of f and N0, N1, N2 ∈ S2 the corresponding edge
normals. Now, one can consider dN as a discrete 1-form in the context of discrete
exterior calculus (DEC), which acts on line segments connecting edge midpoints. At
this point, we will not explain in more detail what is meant by this and refer to available
literature such as [DKT08]. What is important to us is, that one can use the notation
of DEC to derive

dN(Ek) = 2(Ni −Nj), (1.17)

where the notation is such that i, j, and k are complimentary indices of edges in f .
This can be used to simplify H|f to

H11 = 2 〈N0, E2〉 + 2 〈N1, E0〉,

H12 = H21 = 2 〈N0, E2〉,

H22 = 2 〈N0, E2〉 + 2 〈N2, E1〉,

where we have used 〈Ni, Ei〉 = 0 and E0+E1+E2 = 0. Hence, we get the representation

H|f = 2
2∑

i=0

〈Ni, Ei−1〉Mi ,

with a basis (M0,M1,M2) of symmetric 2 × 2-matrices given by

M0 =

(
1 1
1 1

)
, M1 =

(
1 0
0 0

)
, M2 =

(
0 0
0 1

)
. (1.18)

We can give a more geometric interpretation of this by observing

〈Ni, Ei−1〉 = −2
af

‖Ei‖
cos

θi + π

2
.

All this then accumulates to the following definition.
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Definition 1.20 (Discrete second fundamental form, [Hee16]). Let Sh be a discrete
surface with immersion X. The elementwise constant triangle-averaged discrete second
fundamental form is given by

H|f = −4af

2∑

i=0

cos θi+π
2

‖Ei‖
Mi (1.19)

for each f ∈ F , where (M0,M1,M2) is the basis of symmetric 2 × 2-matrices from
(1.18).

Note, that this is one possible choice of discrete second fundamental form, proposed
by Wardetzky in unpublished work and elaborated by Heeren in [Hee16], which is
particularly suitable for our applications while other choices do exist. Lastly, we can
use both triangle-based discrete fundamental forms to define a discrete notion of the
shape operator.

Definition 1.21 (Discrete shape operator, [Hee16]). Let Sh be a discrete surface with
immersion X. The elementwise constant triangle-averaged discrete shape operator is
given by

S|f = G|−1
f H|f (1.20)

for each f ∈ F .

Remark (Curvature). In the continuous case, we have derived different notions of the
surface’s curvature from the eigenvalues of the shape operator. We can define corre-
sponding discrete notions of curvature the same way using the triangle-averaged shape
operator. Especially, we can define a triangle-averaged mean curvature trS|f with
explicit formula

trS|f = −
2∑

i=0

cos θi+π
2

af
‖Ei‖. (1.21)

1.3 Thin Shell Modeling

Our goal is to study deformations of discrete surfaces and their applications. In many of
those, for instance, animation movies, the discrete surfaces represent complex shapes
such as the skin of characters and the deformations are supposed to model natural
motions. To create such, we need a physically plausible model for the deformation
behavior of discrete surfaces.

We will go one step back to continuous surfaces and present the model developed
within this context by Heeren et al. in [HRWW12, HRS+14, Hee16]. It starts with
the assumption that the surfaces represent thin shells, three-dimensional solids with a
high ratio from width to thickness. To derive two-dimensional models from this one
starts with three-dimensional elasticity and investigates deformation energies of solids
Ωδ ⊂ R

3 with δ being a tiny but finite thickness of the material, and then considers
the limit δ → 0 based on the notion of Γ-convergence. Qualitative insights from the
mathematical rigorous study of this limit in [LR95, LR96, FJM02, FJGM03] were then
used to define a generic thin shell model.

Elasticity We begin with introducing our notation for three-dimensional elastic-
ity, which is based on [Hee17]. Let O ⊂ R

3 be a solid object with boundary and
φ ∈ W 1,2(O;R3) a potentially large and nonlinear deformation. We assume that φ is
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orientation preserving, i.e. detDφ(x) > 0 for all x ∈ O, and injective. Especially this
implies that it is a homeomorphism onto its image. We then postulate that we have an
hyperelastic material with a deformation energy given as integral of an elastic energy
density W , i.e.

W[φ,O] =

∫

O
W (Dφ)dx. (1.22)

A fundamental axiom of continuum mechanics is the frame indifference of W , i.e.
W (Dφ) = W (Q⊺DφQ) for all Q ∈ SO(3), furthermore we assume O to be isotropic,
i.e. W (Dφ) = W (DφQ) for all Q ∈ SO(3). From these two assumptions it fol-
lows by the Rivlin-Ericksen-Theorem [RE55] that the energy density only depends
on ‖Dφ‖F , ‖cof Dφ‖F , and detDφ. Additionally, we assume that isometries φ are lo-
cal minimizers with W (Dφ) = 0, this holds especially for all rigid body motions, and
that W (Dφ) → ∞ for detDφ, hence W (Dφ) = ∞ for detDφ ≤ 0. These assumptions
will be upheld for the rest of this section.

A particular choice for a nonlinear energy density we will consider was introduced
in [Wir10] as

W (Dφ) =
µ

2
‖Dφ‖2

F +
λ

4
(detDφ)2 −

(
µ+

λ

2

)
log detDφ− µ−

λ

4
, (1.23)

which is a concrete instance of a Mooney-Rivling model [Cia88] and fulfills all our
assumptions. Furthermore, we are also interested in a generic isotropic material de-
scribed by the St. Venant-Kirchhoff density

W StVK(F ) =
λ

8
(tr(F TF − Id))2 +

µ

4
tr(F TF − Id)2 . (1.24)

In both cases µ and λ are positive material constants.
We can use this to define a notion of distance between different shapes.

Definition 1.22 (Elastic dissimilarity measure). Let OA and OB be two solid ob-
jects/shapes. Then we define the elastic dissimilarity measure for a given energy
density W as

d2
elast(OA,OB) := min

φ : φ(OA)=OB

∫

OA

W (Dφ)dx. (1.25)

1.3.1 Membrane and Bending Energies

Now, that we have established basic notions, we turn towards the model of Heeren et al.,
which consists of a membrane and a bending part, that we will present separately. In
both cases, they used qualitative insights into analytical models to develop a physically-
sound deformation energy. Especially they took into consideration on which properties
of the surface the limit depends. The qualitative parts of the results, such as physical
constants in the limit, are not relevant, as they will be chosen individually in different
applications.

Membrane model For the membrane model, we need the right Cauchy-Green strain
tensor C[φ] = Dφ⊺Dφ, which is a pointwise linear operator describing the infinites-
imal change of lengths on the surface under the deformation φ. A two-dimensional
representation of C[φ] ∈ R

3×3 by a distortion tensor G[φ] ∈ R
2×2 was derived in

[LDRS05, CLR04]. In particular, we can write

G[φ] = g−1gφ (1.26)
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with g and gφ denoting the first fundamental form of the undeformed and deformed
configuration, respectively.

Then Heeren et al. derived a membrane shell energy Wmem from the results of Le
Dret and Raoult in [LR95, LR96]. It is supposed to measure the tangential stretching
and shearing induced by a deformation φ of the surface S.

Definition 1.23 (Membrane energy). Let S be a regular surface and φ a deformation.
Then the membrane energy is given by

Wmem[S, φ] =

∫

S
Wmem(G[φ])da, (1.27)

with density (1.23).

Bending energy For the bending part of the model, Heeren et al. used results
from Friesecke et al. [FJM02, FJGM03], who investigated the energy for isometric
deformations of thin shells in the Γ-limit. This led to the following generic bending
shell energy, which measures the change of the second fundamental form for isometric
deformations.

Definition 1.24 (Bending energy). Let S be a regular surface and φ a deformation.
Then the bending energy is given by

Wbend[S, φ] =

∫

S
Wbend(Srelφ )da , (1.28)

where in general we make use of the density

Wbend(A) = α(trA)2 + (1 − α) ‖A‖2
F , α ∈ {0, 1} . (1.29)

Recall that the matrix representation of the relative shape operator in the param-
eter domain Ω was defined in Section 1.1.1 as

srelξ [φ] = sξ − s∗
ξ [φ] = g−1

ξ (hξ − h̃ξ) .

Based on this it was verified in [Hee16] that for α = 0 one gets

Wbend[S, φ] =

∫

S
‖Srelφ ‖2

F da =

∫

Ω
tr
(
srelξ [φ]2

)√
det g dξ , (1.30)

and for α = 1 one gets

Wbend[S, φ] =

∫

S

(
trSrelφ

)2
da =

∫

Ω

(
tr srelξ [φ]

)2√
det g dξ . (1.31)

Full elastic model Given a surface S ∈ R
3 representing a physical shell and a

deformation φ : S → R
3, we consider the following generic elastic deformation energy

WS [φ] =

∫

S
Wmem(G[φ]) + ηWbend(Srelφ ) da, (1.32)

where the bending weight η represents the squared thickness of the shell. Note that
WS [φ] is invariant with respect to rigid body motions, which is a desirable property
from the standpoint of modeling, but will cause us some headaches later on when
working with numerical schemes. With this energy, we can also define an elastic
dissimilarity measure for surfaces as in Definition 1.22.
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1.3.2 Discrete Deformations Energies

In the following, we will consider (discrete) deformations Φ of immersed discrete sur-
faces and present the discretization of the above model, which was also derived by
Heeren et al. in [HRWW12, Hee16]. As before, we assume that the deformations are
homeomorphisms onto their image, and hence the topology of the surface remains un-
changed. Before, we have seen that the topology of a discrete surface is induced by
its connectivity and in the following, we will restrict us to immersed discrete surfaces
which share the same connectivity. Then studying discrete deformations comes to
studying the differences between immersions of a discrete surface Sh. We formalize
this in the following two definitions.

Definition 1.25 (Dense correspondence). We say that two immersed discrete surfaces
S and S̃ are in dense correspondence or in 1-to-1-correspondence if they share the same
connectivity Sh.

Definition 1.26 (Discrete deformations). Let S and S̃ be two immersed discrete
surfaces in dense correspondence, i.e. we have a discrete surface Sh with two immersions
X : Sh → R

3 and X̃ : Sh → R
3. Then a discrete deformation Φ: S → S̃ is the unique

piecewise affine map defined by its nodal values Φ(X(v)) = X̃(v) for all v ∈ V.

Remark. Restricting ourselves to the study of immersed discrete surfaces in dense
correspondence guarantees the well-definedness of an elastic dissimilarity measure (cf.
(1.25)).

In the following, we will sometimes refer to connectivity properties of S̃ with a
tilde (e.g. f̃) even though they are the same as for S. This allows us to easier refer to
properties of the immersed surface, e.g. we can write T (f̃) for the embedded triangle
of the deformed surface when actually the embedded property T differs rather than
the connectivity f .

Discrete membrane model In Section 1.2.1, we have introduced an elementwise
constant first fundamental form (cf. Definition 1.17) and now this is combined with
the membrane model (1.27). Hence, to describe tangential distortions induced by Φ,
we consider the elementwise constant discrete distortion tensor

G[Φ]|f = (G|f )−1GΦ|f ∈ R
2×2. (1.33)

Here, we denote by GΦ the discrete first fundamental form on S̃, and will continue
to use this notation throughout this section. Putting this into the membrane model
(1.27), one arrives at the following

Definition 1.27 (Discrete membrane energy, [HRWW12]).

Wmem[S, S̃] :=

∫

S

Wmem(G[Φ])da =
∑

f∈F

af ·Wmem(G[Φ]|f ) , S̃ = Φ(S) . (1.34)

In this energy, one can continue to use the energy density (1.23), where trG[Φ]|f
controls the change of edge lengths and detG[Φ]|f controls the local change of triangle
area. Moreover, let us note that the use of (1.23) prevents the degeneration of triangles.
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Discrete bending model Next, we will connect the triangle-averaged discrete sec-
ond fundamental form from Definition 1.20 and the corresponding shape operator with
the bending model (1.28) using the density (1.29). By choosing α = 1, we can derive
a discrete version of the Willmore energy.

Definition 1.28 (Discrete bending energy, [HRWW12]).

Wbend[S, S̃] :=
∑

f∈F

af ·
(

tr(Sf − SΦ
f )
)2
, S̃ = Φ(S) . (1.35)

Heeren has shown in [Hee16] that one can derive the following Discrete Shells
bending model by simplifying the above bending energy, which is a different path than
in the original publication [GHDS03].

Definition 1.29 (Discrete Shells bending energy, [GHDS03, Hee16]).

WDS

bend
[S, S̃] :=

∑

e∈E

(θe − θ̃e)
2

de
l2e , , S̃ = Φ(S) , (1.36)

where de = 1
3(af + af ′) for the two faces f, f ′ adjacent to e ∈ E .

Discrete dissimilarity measure Finally, we are able to combine the membrane
and bending part and arrive at a discrete deformation energy, which at the same time
can also be considered as a dissimilarity measure as in (1.25).

Definition 1.30 (Discrete deformation energy, [HRWW12]). Let S and S̃ be two
immersed discrete surfaces in dense correspondence and let Φ be their unique affine
deformation with S̃ = Φ(S). The discrete deformation energy W[S, S̃] = WS[Φ] is
defined by

W[S, S̃] = Wmem[S, S̃] + ηWDS

bend
[S, S̃], (1.37)

where the bending weight η represents the squared thickness of the shell. As the
deformation is unique, we call this also the discrete dissimilarity measure.

Remark. We have associated the physical model of thin shells with discrete surfaces,
hence we will also call them discrete shells.
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Chapter 2

Riemannian Shape Spaces

Now that we have a grip on (discrete) surfaces and physical modeling, we are turning
our attention towards mathematical modeling of collections of deformations as they
occur for example in computer graphics. Kendall [Ken84] developed in this context the
notion of a shape space in which points are complex geometric objects on their own.
This is related to the concept of moduli spaces in pure mathematics, of which the
projective space and Grassmannians are the perhaps most well-known examples. The
first ingredient is to equip the shape space with a mathematical structure going beyond
that of a set. In many instances, such a structure will not be that of a linear vector
space, for instance in nodal positions linear interpolation will often lead to strange
results. Hence, we turn to nonlinear structures and then equipping the shape space
with the structure of a Riemannian manifold is a common approach. Through the local
metric, one can induce a sense of distance which is based on geometrical or physical
plausible models of deformations. Then many problems from computer graphics can
be modeled as mathematical concepts from Riemannian geometry. Interpolation of
two shapes will correspond to geodesics, extrapolation of movements to the exponen-
tial map, detail or pose transfer can be modeled as parallel transport, and keyframe
interpolation can be achieved by Riemannian splines. Moreover, one can study the
structure of the shape space itself to gain insights into the deformation of surfaces and
use tools from Riemannian statistics to develop data-driven approaches. To apply this
to real world data, one needs a discretization of the continuous concepts, which can
be computed numerically. In this context, Rumpf and Wirth developed a variational
time discretization of geodesic calculus together with a mathematically rigorous theory
containing the convergence to continuous counterparts. This discretization has been
applied to different problems in computer graphics and other areas and will pose the
framework for the analysis of deformations in this thesis.

To this end, we will introduce very briefly the necessary concepts from Riemannian
geometry in this chapter. From this, we will turn to the time-discretization, where we
will present how to discretize the different notions but will omit the rigorous theory
behind it completely. Lastly, how this can be applied to discrete surfaces together with
the physical modeling of thin shells will be discussed.

2.1 Riemannian Manifolds in a Nutshell

As we have explained, our goal is to model the shape space as a Riemannian manifold,
hence we will introduce the needed concepts from Riemannian geometry to read the
following chapters. We do not aim to give an even remotely comprehensive introduction
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into this very broad and interesting topic. Instead, we refer the reader to standard
textbooks such as [dC92] and [Lan95] for a more detailed treatment. This section is
also based on them as well as on [Hee17].

Remark (Dimension). In this section, everything will be presented on finite dimensional
manifolds, although the geodesic calculus is set up in a way that it also works on infinite
dimensional manifolds. Nevertheless, considering the second case would require more
care and unnecessarily complicate this overview and the application to discrete shells
we are interested in leads to a finite dimensional manifold anyway. If one is interested
in more details on infinite dimensional manifolds, we refer to [Lan95].

We begin with the basic definitions introducing our objects of study.

Definition 2.1 (Differentiable manifold). A differentiable manifold M of dimension
d < ∞ is a set together with a family of injective maps ψα : Uα ⊂ R

d → M of open
sets Uα of Rd into M such that

1.
⋃
α ψα(Uα) = M, and

2. for any pair α, β with ψα(Uα) ∩ψβ(Uβ) = W 6= ∅, the sets ψ−1
α (W ) and ψ−1

β (W )

are open in R
d and the map ψ−1

β ◦ ψα is differentiable.

The pair (Uα, ψα) with p ∈ ψα(Uα) is called a parametrization of M at p.

Remark. Typically one assumes that the differentiable structure in Definition 2.1 is
maximal with respect to the given conditions. This is can, in general, be achieved by
extending the structure by parametrizations compatible with condition (2).

To simplify notation, we are going to assume in the following that we have indeed
a global surjective parametrization ψ : U ⊂ R

d ։ M.

Definition 2.2 (Tangent space). The tangent space TpM of M at p ∈ M is defined
as

TpM = {γ̇(0) | γ : (−ε, ε) → M is a smooth curve with γ(0) = p, ε > 0}.

If ψ : U ⊂ R
d → M is a parametrization with ψ(ξ) = p for some ξ ∈ U , then Vi(ξ) :=

∂ξi
ψ for i = 1, · · · , d is a basis of TpM, called the canonical basis.

This defines the topology of our manifold, and we are going to add geometric
structure to it next.

Definition 2.3 (Riemannian manifold). Let M be a d-dimensional differentiable man-
ifold. A Riemannian metric on M is a family of bilinear, symmetric and positive-
definite forms gp : TpM × TpM → R smoothly varying with p ∈ M, in the sense that
for a parametrization ψ : U ⊂ R

d → M the map ξ 7→ gij(ξ) := gψ(ξ)(Vi(ξ), Vj(ξ)) is
a smooth function on U . A manifold equipped with a Riemannian metric is called a
Riemannian manifold.

As (gij)ij is an invertible matrix in R
d×d we have an inverse g−1 ∈ R

d×d, which we
denote by (gkl)kl, i.e. gijg

jk = δik.

Remark. Remember that in Section 1.1 we have studied embedded surfaces in R
3

together with their first fundamental form. If we now compare this to our definitions
above, we realize that those are in fact two-dimensional Riemannian manifolds with a
metric induced by the embedding into R

3. This also provides an intuition for the metric
as ability to measure local lengths and angles on those higher-dimensional manifolds.
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Paths and geodesics As for surfaces, one can define the length of a smooth path
y : [0, 1] → M on a Riemannian manifold (M, g) in terms of the metric as

L[(y(t))t∈[0,1]] =

∫ 1

0

√
gy(t)(ẏ(t), ẏ(t))dt . (2.1)

Note that the path length is invariant to reparametrization. The path energy is defined
as

E [(y(t))t∈[0,1]] =

∫ 1

0
gy(t)(ẏ(t), ẏ(t))dt , (2.2)

which is not independent of the parametrization. By Cauchy-Schwarz inequality, one
can directly see that

L[(y(t))t∈[0,1]] ≤
√

E [(y(t))t∈[0,1]] (2.3)

and equality holds if and only if gy(t)(ẏ(t), ẏ(t)) = const.

Definition 2.4 (Geodesic path). For yA, yB ∈ M a minimizer of the path energy
among all paths y : [0, 1] → M with y(0) = yA and y(1) = yB is denoted as geodesic
path connecting yA and yB.

Remark. Readers familiar with Riemannian geometry might know a different definition
of geodesics using the covariant derivative. The definition above is in fact equivalent
to this definition, which one can see by investigating the Euler-Lagrange equations.

Rumpf and Wirth have shown in [RW15] that a minimizer of E exists and is unique
under suitable assumptions. Moreover, based on this definition one can introduce the
exponential map, which “shoots” geodesics in prescribed directions.

Definition 2.5 (Exponential map). Let y(t) = y(t, p, V ) : I → M, 0 ∈ I, be the
solution of D

dt ẏ(t) = 0 for initial data y(0) = p and ẏ(0) = V . The (geometric)
exponential map expp : TpM → M is defined as expp(V ) = y(1, p, V ).

One can show that the exponential map is locally bijection, i.e. there exists a
δ > 0, such that expp : Bδ(0) → expp(Bδ(0)) is a bijection, which follows from the local
uniqueness of geodesics. The image Up := expp(Bδ(0)) is called a normal neighborhood
of p

Definition 2.6 (Logarithm). The inverse operator of the exponential map is called the
(geometric) logarithm logp : Up → TpM, where Up denotes the normal neighborhood
of p.

Proofs for the well-definedness of all these objects (even in the infinite-dimensional
case) can, for instance, be found in [RW15].

2.2 Time-discrete Geodesic Calculus

Now that we have introduced the various notions of Riemannian geometry, which
are elements of what we call geodesic or geometric calculus, we want to be able to
compute them in practice. Instead of using numerical methods for ordinary differ-
ential equations, we will present the elements of a variational time discretization of
geodesic calculus, which was introduced by Rumpf and Wirth in a sequence of pa-
pers [Wir10, WBRS09, RW13, RW15]. The resulting time-discrete geodesic calcu-
lus is well suited for the application to shape space, as demonstrated for example in
[HRWW12, HRS+14, HRS+16, BER15, MRSS15]. In this section, only the definitions
and some basic intuition of the different discrete notions will be presented. For more
details and especially for detailed results on convergence, we refer to [RW15].
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Metric The continuous geodesic calculus presented in Section 2.1 was developed
starting from a Riemannian metric, allowing to locally measure lengths and angles.
In contrast, the discrete geodesic calculus we will see below is completely based on
the notion of a (squared) Riemannian distance. The Riemannian distance is naturally
induced by the metric as the minimal length of a curve connecting two points. Con-
versely, given the Riemannian distance dist, one can recover the Riemannian metric at
some point p ∈ M by

gp(V,W ) =
1

2
∂2

2 dist2(p, p)(V,W ) , V,W ∈ TpM . (2.4)

Coming up with a notion of distance is in many applications much easier than defining
an inner product on tangent vectors. For example, in the context of physical shape
spaces defining a Riemannian metric would be quite difficult whereas distances can
be constructed by dissimilarity measures such as (1.25). Nevertheless, computing a
precise evaluation of such a distance might still be challenging in practice, because it
requires solving an optimization problem. Therefore, one introduces an approximation
W of the squared Riemannian distance, which is easy to evaluate, and the discrete
geodesic calculus will be based on this approximation. Precisely, one assumes there is
a smooth functional W : M × M → R such that for y, ỹ ∈ M

W[y, ỹ] = dist2(y, ỹ) +O(dist3(y, ỹ)) . (2.5)

Note that W is not required to fulfill the axioms of a metric, and thus is easier to define
in practice. The next theorem shows, that the condition (2.5) implies consistency
with the metric as in (2.4) and is even necessary given a certain smoothness. This
means for g smooth enough, a valid approximation is, for instance, given by W[y, ỹ] =
1
2gy(ỹ − y, ỹ − y).

Theorem 2.1 (Consistency conditions, [RW15]). If W is twice Gâteaux-differentiable
on M × M with bounded second Gâteaux derivative, then W[y, ỹ] = dist2(y, ỹ) +
O(dist3(y, ỹ)) for ỹ close to y ∈ M implies

W[y, y] = 0 , ∂2W[y, y](V ) = 0 , ∂2
2W[y, y](V,W ) = 2gy(V,W )

for any V,W ∈ TyM. Furthermore, ∂1W[y, y](V ) = 0 and

∂2
1W[y, y](V,W ) = −∂1∂2W[y, y](V,W ) = −∂2∂1W[y, y](V,W ) = ∂2

2W[y, y](V,W ) .

If W is even three times Fréchet-differentiable, the implication becomes an equivalence.

Time-discrete geodesics As noted in the beginning, the central building block of
the time-discretization is the notion of a discrete geodesic. To this end, we denote an
ordered set of points Y K = (y0, . . . , yK) ⊂ M as a time-discrete K-path. Usually, one
thinks of such a discrete path as an uniform sampling of a smooth curve γ : [0, 1] → M
by yk = γ(kτ) for k = 0, . . . ,K where τ = K−1 and K ∈ N is the sample size.

To relate the continuous path energy (2.2) to the Riemannian distance, one con-
siders the following two estimates

L[(y(t))t∈[0,1]] ≥
K∑

k=1

dist(yk−1, yk) , E [(y(t))t∈[0,1]] ≥
1

τ

K∑

k=1

dist2(yk−1, yk) , (2.6)

where equality holds for geodesics paths due to the constant speed property. The first
estimate simply follows from the definition of the length and the distance, whereas
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the second is an application of the Cauchy-Schwarz inequality. This second estimate
suggests that the sum on the right-hand side might be a reasonable approximation of
E , which motivates the following definition.

Definition 2.7 (Discrete length and energy, [RW15]). For a discrete K-path Y K =
(y0, . . . , yK) with yk ∈ M for k = 0, . . . ,K, the discrete length LK and the discrete
energy EK are given by

LK [Y K ] =
K∑

k=1

√
W[yk−1, yk] , EK [Y K ] = K

K∑

k=1

W[yk−1, yk] . (2.7)

Then a discrete geodesic (of order K) is defined as a minimizer of EK [Y K ] for fixed
end points y0, yK .

Rumpf and Wirth showed in [RW15] that discrete geodesics exist and are locally
unique, that the discrete path energy Γ-converges to the continuous path energy, and
that minimizers converge as well. Furthermore, they showed that the points along the
discrete geodesic are equidistributed in terms of the Riemannian distance.

They used this definition of a discrete geodesic as the foundation to develop a rich
time-discrete geodesic calculus including discrete counterparts for the logarithm and
exponential map. Therefore are time-discrete geodesics the first objects to study when
one wishes to use this discrete calculus, which we will adhere to later on.

2.3 The Space of Discrete Shells

Our objective is to study the deformations of discrete shells and derive useful appli-
cations from this, for instance in animation. As mentioned at the beginning of the
chapter, we do this by considering a so-called shape space, i.e. a space containing
shapes as points. In our case, the shapes will be discrete surfaces, and we will the
equip the shape space with the structure of a Riemannian manifold based on the phys-
ically sound deformation energies from Section 1.3. This structure was introduced by
Heeren et al. in [HRWW12, HRS+14, Hee16] and allows us to phrase different prob-
lems which are relevant in computer graphics via the geometric notions we have seen
in Section 2.1. Applying the time-discretization from Section 2.2 allows us to compute
numerical solutions to these problems.

As in Section 1.3, we will only consider discrete surfaces in dense correspondence
(cf. Definition 1.25). Hence, we are given the connectivity Sh of a triangle mesh and
consider different immersions of it into three-dimensional space.

Definition 2.8 (Shape space of discrete shells, [Hee16]). Given the connectivity Sh
of a triangle mesh, the shape space of discrete shells M[Sh] is given by all immersions
of Sh into R

3, i.e. all immersed discrete surfaces S in dense correspondence with Sh,
modulo rigid body motions.

Definition 2.9 (Riemannian shape space, [Hee16]). Given the connectivity Sh of a
triangle mesh, the Riemanninan shape space of discrete shells (M[Sh], g) is given by the
shape space of discrete shells M[Sh] together with the Riemannian metric g induced
by the discrete deformation energy from Definition 1.30.

Remark. That the discrete deformation energy, in fact, induces a Riemannian metric
on the shape space was proven in [HRS+14]. At this point, we simply assume that the
above notion is indeed well-defined.
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In the following, we are assuming that we work with a fixed connectivity Sh and
thus will drop the explicit dependence on it and simply write M for the shape space.
As the immersion of a discrete surface is uniquely determined by the nodal positions,
we can also identify M with R

3|V|/SE(3).

Remark on implementation. In practice, of course one cannot directly work
with R

3|V|/SE(3) and hence solves the resulting problems in R
3|V|, while taking

care of the rigid body motions in the algorithms. This need to deal with rigid body
motions complicates numerical treatments. Especially working with the tangent
space, e.g. in the context of a discrete logarithm or exponential map, is numerical
cumbersome because of it.

Computing a time-discrete geodesic interpolating between y0 and yK , which
is the central building block of the time-discrete geodesic calculus, amounts to
solving the optimization problem

minimize
y1,...,yK−1

K
K−1∑

i=0

W [yi, yi+1] .

This is a highly nonlinear and high dimensional problem, and is typically solved
using Newton’s method. As the minimizer of this problem is only unique up to
rigid body motions, one has to take care of this in the implementation because
otherwise, the Hessian of the functional would be singular. This can be done for
example by adding a small regularization term to the Hessian, fixing at least three
nodal positions not on a line, or adding a suitable constraint. For more details on
these problems, see the work of Heeren et al. in [HRWW12, HRS+14, Hee16].

To tackle the high dimensionality of the optimization problems, often mul-
tiresolution schemes are employed. In the existing framework, this is achieved
by coarsening all inputs simultaneously by applying an iterative edge collapse ap-
proach based on minimizing the quadric error metric [GH05] computed groupwise
[MG03] to preserve the dense correspondence. The coarse solution will then be
prolongated using an approach from [BSPG06]. For more details on this procedure,
we refer to [Hee16].



Chapter 3

Lengths and Angles

In this chapter, our goal is to develop efficient tools for the computation and analysis
of deformations of discrete shells. As we assume dense correspondence (cf. Defini-
tion 1.25), we want to derive a parameterization of the immersions of a discrete sur-
face allowing for efficient computations. One important point is that it has to be rigid
body motions invariant, i.e. if two immersed discrete surfaces only differ by a rigid
transformation they should have the same “coordinates”. In Section 1.1.2, we have
seen that for smooth surfaces, such a parameterization is given by first and second
fundamental forms fulfilling the Gauß-Codazzi equations. Furthermore, in Section 1.3
these fundamental forms turned out to be the right properties for physically-sound
deformation energies. Altogether, this motivates to study our discrete notions of first
and second fundamental form as coordinates for immersed discrete surfaces.

In [WDAH10], Winkler et al. proposed to use edge lengths and dihedral angles
as primary degrees of freedom to interpolate between different shapes and employed
a hierarchical shape matching technique to construct the nodal positions that best
match the interpolated points. Previously, lengths and angles were used as properties
of the mesh to compute deformations in the Discrete Shells model [GHDS03], which
Fröhlich et al. realized and connected in [FB11]. They developed a computationally
efficient scheme allowing interpolation and shape editing based on formulating the
reconstruction of nodal positions as a nonlinear least-squares problem, which is solved
using the Gauß-Newton method and a multi-resolution scheme. It was also used in
[HRS+16, Hee16] to compute Riemannian splines in the space of discrete shells. In
this thesis, their approach is present in form of the quadratic deformation energy and
the energy-based reconstruction.

Not all combinations of edge lengths and dihedral angles are admissible, meaning
that we can construct nodal positions admitting them. In [WLT12], Wang et al.
derived conditions, akin to the Gauß-Codazzi equations, for them to be. Their work is
based on [LSLCO05], which proved similar conditions for a different vertex-based mesh
representation and [CDS10] introducing certain connections between tangent spaces on
discrete surfaces. The conditions on length and angles will play an important role in
this thesis and Section 3.2 is entirely devoted to explaining the results from [WLT12].
An unexpected application of the transition matrices that were investigated in this
context is given by Schonsheck et al. in [SDL18] for generalizing Convolutional Neural
Networks to discrete surfaces.

Comparing the number of lengths and dihedral angles to the number of nodal
degrees of freedom quickly reveals that the former overparameterize immersions. Chern
et al. used this in [CKPS18] to create discrete immersions for given edge lengths, while
Amenta et al. investigated only the dihedral angles as a scale-invariant description of
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discrete surfaces in [AR18]. A similar approach was used by Baek et al. in [BLL15] to
create almost isometric interpolations by varying the dihedral angles and keeping the
edge lengths as fixed as possible. Another way to get a scale-invariant description is
to use interior angles instead of edge lengths, which is pursued in [LWLL14], however
without investigating the admissibility of configurations.

There are certainly numerous other local descriptions of meshes [BS08] and other
reconstruction problems for surfaces [BEKB15], but as our focus is lengths and angles,
we will keep it at those two exemplary references.

In this chapter, we will first argue for the use of edge lengths and dihedral angles
(i.e. the angle between normals of neighboring triangles) as equivalent notions to the
discrete fundamental forms. Then, we are going to present in detail a correspond-
ing fundamental theorem for discrete surfaces from [WLT12] introducing conditions
reminiscent of the Gauß-Codazzi equations. Furthermore, we will study deformation
energies on length and angles. Based on these two, different approaches for the recon-
struction of an immersion from given lengths and angles will be discussed.

3.1 Discrete Fundamental Forms

Let us recall the discrete first fundamental form from Definition 1.17, which was ele-
mentwise constant and given by

G|f =

(
‖E2(f)‖2 −〈E1(f), E2(f)〉

−〈E1(f), E2(f)〉 ‖E1(f)‖2

)
(3.1)

for each f ∈ F . We directly see that the entries of the diagonal are simply edge lengths
of the triangle T (f). Additionally, the off-diagonal entries are given by Euclidean scalar
products of edge vectors and from linear algebra we recall that for two vectors v, w ∈ R

3

we have 〈v, w〉 = ‖v‖‖w‖ cos(γ), where γ is the angle between v and w. Hence, in our
case, we need to compute the interior angles of a triangle from its edge lengths which
is possible due to a classic result from trigonometry.

Lemma 3.1 (Law of cosines). Assume we have a triangle whose sides have lengths
a, b, and c. Then the angle opposite to c is given by

γc = arccos

(
a2 + b2 − c2

2ab

)
. (3.2)

We, therefore, see we can describe our discrete first fundamental form solely in
terms of edge lengths. In Section 1.3, we also needed the determinant of G|f , which
is given by the triangle’s squared area. Let us note, that this can also be computed
directly from edge lengths by another classic result from trigonometry, which will come
in handy later on.

Lemma 3.2 (Heron’s formula). Assume we have a triangle whose sides have lengths
a, b, and c. Then its area is given by

A =
√
s(s− a)(s− b)(s− c), (3.3)

where s is its semiperimeter, i.e. s = a+b+c
2 .

Remark. Essentially, we used above that the geometry of a Euclidean triangle is com-
pletely determined by its edge lengths.
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Next, we recall the triangle-averaged discrete second fundamental form, which is
elementwise constant and given in Definition 1.20 by

H|f = −4af

2∑

i=0

cos θi+π
2

‖Ei‖
Mi (3.4)

for each f ∈ F , where (M0,M1,M2) is the basis of symmetric 2 × 2-matrices from
(1.18). Again, we immediately see that we need the edge lengths to define the matrix,
as well as the triangle’s area, which can be deduced from them. Additionally, we need
the dihedral angles (i.e. the angle between adjacent face normals, cf. Definition 1.19)
of the immersed discrete surface.

Altogether, we can fully describe our discrete fundamental forms by lengths and
angles, and we will treat them as such in the following.

Definition 3.1 (Lengths and Angles). For an immersion X ∈ R
3|V| of a discrete

surface Sh. we denote by (le(X))e∈E its edge lengths and by (θe(X))e∈E its dihedral
angles. We combine them in a single vector and thus obtain a map

Z : R3|V| → R
|E| × R

|E|

X 7→ ((le(X))e∈E , (θe(X))e∈E).
(3.5)

In the following, we will denote by z = (le, θe)e∈E a set of lengths and angles in
R

2|E|, regardless of the fact whether it belongs to an immersion of our discrete surface
or not, and by Z[X] the lengths and angles of a specific immersion. Note, that the map
Z is well-defined only on vertex positions in R

3|V| which do not lead to degenerated
triangles, i.e. belong to an immersion as in Definition 1.16. Otherwise, the dihedral
angles would not be well-defined. Then, restricted to this open domain, Z is a smooth
map.

Remark on implementation. When implementing the law of cosines and
Heron’s formula one has to pay attention to numerical stability. The formulas
given in the statements above are in fact numerically unstable, as they would lead
to problems with elimination for slim triangles.

Furthermore, we can interpret them as maps from edge lengths to interior
angles R

|E| → R
3|F| and to triangle areas R

|E| → R
|F| respectively. These maps

are smooth on their domain of definition, i.e. away from edge lengths violating the
triangle inequality.

We present numerical stable formulations of the two formulas from [Kah14] as
well as derivatives in Section A.1.

3.2 Admissible Lengths and Angles

In Section 1.1.2, we have seen that not all bilinear forms are fundamental forms of an
immersed surfaces, but rather they have to fulfill conditions called the Gauß-Codazzi
equations. The same holds for elements in R

2|E| that are actually given as edge lengths
and dihedral angles of an immersion of our discrete surface.

Definition 3.2 (Admissible lengths and angles). Let Sh be a discrete surface. Then
we define the admissible lengths and angles Z as the subset of R2|E| consisting of those
lengths and angles for which an immersion admitting them exists, i.e.

Z := {z ∈ R
2|E| | ∃X ∈ R

3|V| : Z[X] = z}.
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While this description as the image of Z yields a valid definition of Z it does not
offer much of an insight into the structure of Z. Moreover, using it as a constraint in
optimization problems to ensure the admissibility of solutions is cumbersome because
it requires keeping track of the corresponding nodal positions. Our goal is now to
develop a more thorough understanding by describing Z through a set of conditions
on lengths and angles to be admissible, reminiscent of the Gauß-Codazzi equations.
The proof that these conditions fully describe Z will lead to the fundamental theorem
for discrete surfaces introduced by [WLT12].

This understanding will also be useful for applications later on. For example,
through the conditions we can consider Z as a submanifold of R2|E| and thus compute
its tangent space TzZ. This will be exploited this later in the context of Principal
Geodesic Analysis (PGA). Besides, we can use the conditions more conveniently as
constraints for minimization problems in lengths and angles ensuring the admissibility
of the results, which will lead to more natural results and simplify reconstruction of
an immersion. Lastly, proving the sufficiency of the conditions will provide a way to
reconstruct the immersion, i.e. nodal positions, from admissible lengths and angles,
which will be discussed in more detail in Section 3.4.2.

This section is largely presenting the work of Wang et al. in [WLT12]. We provide
a more comprehensive derivation of the transition rotations and discrete integrability
conditions below, while the definitions themselves are directly adopted from [WLT12].
Afterwards, the central theorems and their proofs given in [WLT12] will be presented
and at the same time, we are going to provide a rigorous definition of accumulated
translations not present there. Furthermore, we will report our experience with using
the different conditions in numerical implementations, especially as constraints for
optimization problems.

3.2.1 Triangle Inequality

The first condition is quite simple. We have to ensure that the lengths actually describe
valid Euclidean triangles. This is guaranteed by the triangle inequality, which reads
as condition on all three edge lengths a, b, c of a triangle

a+ b+ c− 2 max(a, b, c) > 0.

This can be used directly as a constraint on lengths and angles, formalized in the
following definition.

Definition 3.3 (Triangle inequality constraints). For a face f ∈ F with edges ei, ej ,
and ek, we define the triangle inequality map on lengths and angles z to be

Tf (z) = li + lj + lk − 2 max(li, lj , lk). (3.6)

We say that lengths and angles z fulfill the triangle inequality constraints if

Tf (z) > 0 for all f ∈ F . (T)

Remark on implementation. In practice, using the triangle inequality map as
defined above might not be feasible because it is discontinuous at points where
two edges of a triangle have the same length. When using it in constraints for
optimization problems we need its derivatives and thus might get into problems.
Therefore, it is also relevant for practical implementations to consider a vector-
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valued triangle inequality map

T̃f (z) =



li + lj − lk
lj + lk − li
lk + li − lj


 , (3.7)

such that (T) has to hold component-wise. Using these separate inequalities has
the advantage that they are all differentiable and thus on their own far easier to
treat when optimizing. On the other hand, this increases the number of constraints
by going from one per triangle to three per triangle. This, of course, leads to
different numerical challenges when solving the constraint optimization problem.

Furthermore, enforcing the triangle inequalities explicitly is not always neces-
sary. We will introduce another condition on lengths and angles next, which is only
well-defined when the triangle inequalities are fulfilled and will be formally defined
and implemented such that it is violated when one of the triangle inequalities is vi-
olated. Hence, requiring this second condition will also entail the fulfillment of the
triangle inequalities. Also, the nonlinear energy we will introduce in Section 3.3.2
converges to infinity for edge lengths getting close to violating the triangle inequal-
ity. Hence, when using it in the objective of our optimization problem this leads
to an inbuilt penalty. Nevertheless, in some cases, it might be helpful to explicitly
require the triangle inequalities to somewhat guide the optimization method.

3.2.2 Discrete Integrability Conditions

Next, we will derive the conditions reminiscent of the Gauß-Codazzi equations. They
ensure that we can integrate the local change of geometry induced by the lengths
and angles to get the immersed discrete surface. By this, we mean that constructing
the immersion starting from a single triangle is well-defined in the sense that it is
invariant with respect to the order of construction. Therefore, they are called discrete
integrability conditions. To formulate them, we have to introduce the notion of frames
on triangles and transition rotations, which describe their connection.

Frames In the following, we will work with face normals and thus localize tangent
spaces on the triangles of an immersed discrete surface. For a triangle f ∈ F , where
again by abuse of notation we identify it with its immersion, we denote by Nf ∈ S2

its normal and by TfS its tangent plane, i.e. the plane spanned by its edge vectors.

Definition 3.4 (Discrete frame). Given a discrete surface Sh with immersion X ∈
R

3|V|, we define a discrete frame on a face f to be an orthonormal basis Ff = (b1, b2, b3)
with b3 = Nf , hence (b1, b2) forms an orthonormal basis of the tangent plane TfS.

b3

b1

b2

T (f)

The notion of discrete frames provides a for-
mal way to talk about the triangles’ orientation of
the immersed surface as orthonormal bases. This
will allow us in the following to describe the lo-
cal change of geometry using changes of bases and
hence matrices.

On a single immersed triangle, there naturally
exist uncountably many discrete frames through
the different choices for the orthonormal basis (b1, b2) of the tangent plane TfS. For
all of them, the third vector of the basis is fixed, and hence the first two can only be



32 CHAPTER 3. LENGTHS AND ANGLES

changed by a rotation around it, precisely in the plane of the triangle. Thus, the choice
of a discrete frame on a triangle can be completely characterized by the angle of its
first basis vector b1 to one of the edges. This leads us the notion of a standard discrete
frame, which is also depicted in the inset sketch.

Definition 3.5 (Standard discrete frame). Considering a face f with edges e1, e2, and
e3, where we assume the local indices to be ordered consistently, we define the standard

discrete frame to be Ff =
(

E1

‖E1‖ ,
E1×Nf

‖E1×Nf ‖ , Nf

)
.

Remark. If we choose discrete frames for all faces this leads to a map F : F → SO(3),
which we call a discrete frame field.

Transition rotations Now, we introduce a relation between the frames of adjacent
triangles on which the integrability conditions will be built. It describes the change of
the frames induced by the dihedral angles through change of basis matrices, but can
also be explained by the reconstruction of a triangle from an adjacent triangle. We
first consider the second explanation.

θe

γ42

X4

X1

X3

X2

E43E13

E23

N2N1

γ12

f1 f2

Let us look at two faces f1 and f2

with vertices v1, v2, v3 and v2, v3, v4 re-
spectively, i.e. e = (v2v3) is the common
edge of the two. As before, we denote
by (Xi)i∈{1,2,3,4} the coordinates of im-
mersed vertices, by Eij = Xi − Xj the
corresponding edge vectors, and by N1

resp. N2 the normals of the faces. Our
goal is now to reconstruct E43 and N2

from E13 and N1. For notational sim-
plicity, we assume that E43 and E13 have
both unit length, hence we only have to
describe a rotation that maps them onto
each other. One quickly observes in the
inset sketch, that the rotation R̃ := RN2

(γ42)RE(θe)RN1
(γ21) maps E13 to E43 and N1

to N2, where γij is the angle opposite of Eij .

We can rewrite this in terms of frames by defining the local frames

F̃1 =
(
E13,

E13×N1

‖E13×N1‖ , N1

)
and F̃2 =

(
E43,

E43×N2

‖E43×N2‖ , N2

)
. Then one sees that the

above rotation R̃ yields the change of basis in the sense that F̃2 = R̃F̃1. If we consider

arbitrary frames F1 and F2 one can compute F2F
−1
1 = RN2

(γe,F2
)RE(θe)RN1

(γF1,e),
where γe,F2

is the angle between the common edge E and the first vector of F2, and
γF1,e is the angle between the first vector of F1 and E. This leads us to the following
definition.

Definition 3.6 (Extrinsic transition rotation). Given an immersed discrete surface S

with frames Ff for all faces f ∈ F , we define for an edge e with adjacent faces fi and
fj the extrinsic transition rotation by

REij = RNj
(γe,Fj

)RE(θe)RNi
(γFi,e), (3.8)

where γe,Fj
and γFi,e denote the angles between the immersed edge E and the first

vector of the frames Ffi
resp. Ffj

, Ni and Nj denote the normals of fi resp. fj .
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Hence, the extrinsic transition rotations describe the change of basis between frames
of adjacent triangles. The problem is, that it includes rotations around the normals
and edges, hence cannot be formulated directly in lengths and angles. Therefore, we
derive an intrinsic formulation, where we try to find a matrix R such that F2 = F1R. It
encodes how the coefficients have to change if we want to express a vector given in F2

by coefficients in F1. Let us take a closer look at this. First, we introduce intermediate

frames F̃1 =
(
E, E×N1

‖E×N1‖ , N1

)
and F̃2 =

(
E, E×N2

‖E×N2‖ , N2

)
. Then

R = F−1
1 F2

= F−1
1 F̃1F̃

−1
1 F̃2F̃

−1
2 F2.

Now, as both F1 and F̃1 are orthogonal, and F−1
1 F̃1z = z we see that F−1

1 F̃1 is

a rotation around the z-axis. Furthermore, by F1F̃
−1
1 E = F11 and the fact that

trF1F̃
−1
1 = trF−1

1 F̃1, we deduce F−1
1 F̃1 = Rz(γe,F1

). In the same fashion, we obtain

F̃−1
1 F̃2 = Rx(−θe) and F̃−1

2 F2 = Rz(γF2,e) and therefore

R = Rz(γe,F1
)Rx(−θe)Rz(γF2,e),

which justifies the following definition.

Definition 3.7 (Intrinsic transition rotation). Given an immersed discrete surface S

with frames Ff for all faces f ∈ F , we define for an edge e with adjacent faces fi and
fj the intrinsic transition rotation by

RIij = Rz(γe,Fi
)Rx(−θe)Rz(γFj ,e), (3.9)

where γe,Fj
and γFi,e denote the angles between the immersed edge E and the first

vector of the frames Ffi
resp. Ffj

.

If the frames Ff are standard discrete frames, the angles γ are given by the inner
angles of the triangles. Hence, they can be computed from edge lengths using the law
of cosines and thus the transition rotations RIij can be completely determined from
the length and angles of the immersed surface. This allows us to define transition
rotations for lengths and angles without knowing the immersion, as long as they fulfill
the triangle inequality, formalized as follows.

Definition 3.8 (Induced transition rotation). Given a discrete surface Sh and an
element z ∈ R

2|E| such that Tf (z) > 0 holds for all f ∈ F , we define for an edge e with
adjacent faces fi and fj the induced transition rotation by

Rij(z) = Rz(γe,i)Rx(−θe)Rz(γj,e), (3.10)

where γe,j and γi,e denote the interior angle between the common edge e and the first
edge of fi resp. fj , determined from the edge lengths of z.

Conditions Starting from this description of how the frames of adjacent triangles
are related to each other, we can derive a necessary condition for lengths and angles to
be admissible. Let us first consider the extrinsic point of view. Thereby, we consider
an interior vertex v which is the center of a n-loop of faces f0, . . . , fn−1 with frames
F0, . . . , Fn−1. As above, to foster intuition we can think of them as given by the normal
and one of the edges. We have seen that we can reconstruct them from each other
using the extrinsic transition rotations introduced above by Fj = REijFi.



34 CHAPTER 3. LENGTHS AND ANGLES

f0

f1

f5

f4

R50

R01

R12

R23

R34

R45

As this amounts to reconstructing a triangle
from its neighbor, if we apply this sequentially
along the loop, we will get back to the original
triangle, formally F0 =

∏n−1
i=0 R

E
n−i−1,(n−i) mod nF0

and hence
∏n−1
i=0 R

E
n−i−1,(n−i) mod n = Id. Equiva-

lently, we can formulate this using intrinsic rota-
tion matrices as F0 = F0

∏n−1
i=0 R

I
i,(i+1) mod n and

∏n−1
i=0 R

I
i,(i+1) mod n = Id. Now, assume that we

have an element z ∈ R
2|E| and consider its induced

transition rotations Rij(z). Then for z to be ad-
missible those transitions have to fulfill the equal-
ity as well.

Definition 3.9 (Discrete integrability conditions). Given a discrete surface Sh, for
each interior vertex v we define the discrete integrability map on lengths and angles
z ∈ R

2|E| as

Iv(z) =





n−1∏
i=0

Ri,(i+1) mod n(z) if Tf (z) > 0 for all f ∈ Nv

diag(∞,∞,∞) else
(3.11)

for the n-loop of faces Nv = {f0, . . . , fn−1} around v. We say that lengths and angles
z satisfy the discrete integrability conditions if

Iv(z) = Id for each v ∈ V. (I)

Remark. Note that for an immersed discrete surface the conditions are independent
of the choice of local frames. Another choice for the discrete frame on the triangle fj
would only differ by a rotation around the normal and thus would affect both Rz(γe,Fj

)
and Rz(γFj ,e′) canceling the effect in the product.

Furthermore, we have extended the definition of the discrete integrability map to
edge lengths not fulfilling the triangle inequality such that (I) implies (T), as previously
mentioned.

Remark on implementation. The first thing to remark with respect to im-
plementing the notions described in this section is that one has to pay attention
to the signs of the angles, for instance in (3.10). The sign of the dihedral angle
depends on a notion of left and right of an edge. Moreover, the angle between
two edge vectors depends on their relative orientation, which can be misleading
when drawing a triangle. Hence, the signs of all the angles depend on the stored
orientation of the edges in the implementation.

Now, using condition (I) as a constraint in an optimization problem would lead
to nine scalar constraints per vertex. For discrete surfaces with a high resolution,
and thus numerous vertices, this would lead to a massive amount of constraints,
rendering the numerical treatment of such problems expensive. We can exploit the
structure of the integrability map to reduce the number of constraints. Note that
all matrices multiplied in (3.11) are rotations and thus their product Iv(z) is also a
rotation matrix. Hence, we have Iv(z) ∈ SO(3), and SO(3) can be parameterized
locally using Euler angles. This will give us three scalar conditions per vertex and
thus reduce the number of constraints significantly. We explicitly choose Euler
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angles in x− y − z orientation, which are given for a matrix Q ∈ SO(3) as

(arcsinQ31, atan2(Q32, Q33), atan2(Q21, Q11)), (3.12)

where atan2(y, x) is the angle in the Euclidean plane between the positive x-axis
and the ray to the point (x, y). Note, that this is only a local parameterization
and it is important to choose the right orientation of Euler angles. Otherwise
would the resulting map not be differentiable at admissible lengths and angles.
Requiring that Iv(z) = Id is the same as saying that all of the above Euler angles
are zero. To this end, we introduce the modified integrability map

Ĩv(z) = (arcsin Iv(z)31, atan2(Iv(z)32, Iv(z)33), atan2(Iv(z)21, Iv(z)11)), (3.13)

which leads to the modified integrability condition

Ĩv(z) = 0 for each v ∈ V. (̃I)

This replaces (I) in implementations.
Finally, we have remarked above that the integrability condition does not de-

pend on the choice of frames on the triangles. Especially, we can also make
different choices for validating the condition on different vertices. This allows us
to depart in the implementation from the fixed choice of standard frames used
in Definition 3.8 to check (I) more efficiently by reducing the number of needed
rotations. For this approach, let us consider the vertex v ∈ V with the n-loop of
faces f0, . . . , fn−1 around it. Then there are also n edges connected to v and we
create a one-to-one correspondence between faces and edges such that the edge
belongs to the face. This can be thought of as “always picking the left/right edge”.
Based on this, we choose the frames F0, . . . , Fn−1 such that the chosen edge is al-
ways the first basis vector. Then the corresponding transition rotations simplify
to RIij = Rx(θe)Rz(γj,v), where γj,v is the interior angle at v in fj . By this, the
product of transition rotations Iv(z) becomes an alternating product of rotations
about the interior and dihedral angles. The reduced number of rotations leads to
shorter computational times and also simplifies the computation of derivatives of
Iv. These are needed if we use (I) as a constraint for minimization problems and
are given in Section A.2.

3.2.3 Fundamental Theorem

So far, we have introduced necessary conditions for lengths and angles of a simply
connected discrete surface to be admissible, meaning that we have shown

Z ⊆
{
z ∈ R

2|E| | Tf (z) > 0 for all f ∈ F , Iv(z) = Id for all v ∈ V
}
. (3.14)

In this section, we will prove first, following [WLT12], that this is actually an equality.
Furthermore, we will generalize the result, also following [WLT12], to general discrete
surfaces, which will constitute a discrete fundamental theorem of surfaces.

Theorem 3.1 (Local constructability, [WLT12]). Given a discrete surface Sh with
disk-like topology, if z ∈ R

2|E| satisfies the discrete integrability conditions and the
triangle inequalities, then there exists an immersion X ∈ R

3|V| of the surface in three-
dimensional Euclidean space admitting z as edge lengths and dihedral angles.



36 CHAPTER 3. LENGTHS AND ANGLES

v

Pj→i

Si→j

Sj→i

fj

fi

Figure 3.1: Domain (gray overlay) and dual paths (black) resulting from removing a
single vertex v (black dot).

Remark. By disk-like topology, we mean that Sh as topological space is homeomorphic
to the closed disk. Most importantly, this implies that it is simply connected.

Proof. We start with constructing a consistent frame field F on the surface. Based on
our explanations above, we can construct a frame on the face fj from the neighboring
face fi by

Fj = FiRij(z). (3.15)

Beginning with a seed frame F0 and iterating the above gives frames for all faces. We
have to show that this is well-defined, meaning that if two faces fi and fj are connected
by two dual paths, then constructing Fj by repeatedly applying (3.15) along each of
the paths produces the same result. The two paths together form a dual cycle, which
without loss of generality we can assume to not be self-intersecting because otherwise,
the result would follow from proving it for each sub-cycle. We proceed by induction on
the number of vertices k enclosed by the dual loop. If k = 1, the dual cycle encloses
a single vertex, meaning it is a loop of triangles as in Definition 3.9 and thus the
accumulated rotation will be the identity. This implies that the construction of frames
agrees for both paths.

For larger k, due to the disk-like topology of our surface, we can always find an
enclosed vertex v, such that removing it leaves the remaining region simply connected
(cf. Figure 3.1). We denote the common segment of the dual loop around v and the
original loop by Si→j and the remainder of the vertex loop by Sj→i. The other part
of the original loop is denoted by Pj→i, see also Figure 3.1. By RΓ∗ we denote the
multiplication of transition rotations along a dual curve Γ∗, hence

RΓ∗ :=
∏

(k, l)∈Γ∗

Rkl(z).

Then we have

RPj→i
RSi→j

=
(
RPj→i

R−1
Sj→i

) (
RSj→i

RSi→j

)
= Id, (3.16)

because the first part is the identity by the induction hypothesis and the second by
the discrete integrability condition for v. Hence, we have shown that we can construct
a consistent frame field from a seed frame and z.

Next, we have to construct consistent vertex positions, for which we again start
with the position of a seed vertex v0. First, we will show that Fj being consistent with



3.2. ADMISSIBLE LENGTHS AND ANGLES 37

Rij , i.e. (3.15) holds, implies that the edge vector Ee of the common edge e is the same
if we construct it from either face. The edge lengths of z induce local coordinates

aie =




cos γe,Fi

sin γe,Fi

0


 , aje =




cos γe,Fj

sin γe,Fj

0


 , (3.17)

for the edge vector in the respective frames, i.e. we want Fia
i
e = Ee = Fja

j
e, where

the γs are defined as in Definition 3.8. This is consistent with Rij in the sense that
Rija

j
e = aie and therefore Fja

j
e = FiRija

j
e = Fia

i
e. Hence, we get consistent edge vectors

from the frames and local coordinates induced by z.
X1

X2 X3

E2E3

E1

Furthermore, for a single triangle with edges e1, e2, e3

it holds that ae1
+ ae2

+ ae3
= 0, because if we add the

three edge vectors of a triangle we get back to the starting
vertex and the edge lengths fulfill the triangle inequality.
See also the inset sketch. By induction, using the simply
connectedness as above, this follows for each primal edge
cycle and thus can the nodal positions be constructed con-
sistently without any harmful translation.

Global theorem The last element of the proof above was to show that we do not
acquire any inconsistent translations when we integrate the change of geometry induced
by lengths and angles. This argument appeared to be rather unnecessary considering
that it simply followed from the fact that all edge lengths induce Euclidean triangles.
However, in the general case of non-simply connected surfaces, we need to introduce
an explicit condition for this, whose necessity we will also illustrate in an example
later on. To this end, we will formalize the notion of translation accumulated when
integrating along a path below.

Definition 3.10 (Accumulated translation). Let Sh be a discrete surface, z ∈ R
2|E|

fulfilling (I), and Γ = (e1, . . . , eJ) be a path of primal edges. Then, for each edge
ei we choose a face fi such that ei ∈ fi and denote for each i > 1 by Rei→ei−1

the
accumulated induced transition rotation along the shorter of the possible dual paths
from fi to fi−1 around their common vertex. We define the accumulated translation
along the path of primal edges as

K∑

j=1

Re2→e1
· · ·Rej→ej−1

aej
, (3.18)

where aej
are the induced local coordinates of Ej in fj , defined as in the proof of

Theorem 3.1.

Remark. The above definition is only well-posed if its accumulated transition rotation
is equal for both paths around a common interior vertex, which is the case as z is
required to fulfill the integrability condition (I). The choice of face for the interior
edges in the definition does not matter as the corresponding edge vectors will agree by
the same argument, see the proof of Theorem 3.1.

Furthermore, the definition is made independently of an initial frame, as this only
affects the direction of the resulting translation and for our purposes only its magnitude
is relevant.
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Lastly, let us note once again that computing Rij and also aej
requires fixing a

specific choice of orientation for frames in the plane of the triangles, for instance always
picking standard frames. However, this does not affect the accumulated translation as
long as everything is chosen consistently.

Equipped with this definition, we can now present the central theorem and its proof
from [WLT12].

Theorem 3.2 (Discrete fundamental theorem of surfaces, [WLT12]). Given a discrete
surface Sh with genus g, if for a z ∈ R

2|E|

(i) the discrete integrability condition is fulfilled for all but one arbitrary vertex,

(ii) the discrete integrability condition is fulfilled for every element of a dual homology
basis (non-contractible loops), and

(iii) the accumulated translation along every loop in a primal homology basis is zero,

then we can create an immersion of Sh in three-dimensional space admitting z as
lengths and angles, unique up to rigid body motions.

Proof. For a simply connected surface with boundary, this is Theorem 3.1.

Iv

Iv′

For a closed surface with genus zero, remov-
ing one triangle allows to apply Theorem 3.1 and
reconstruct all vertex positions. The three addi-
tional dihedral angles appearing when adding the
triangle back in are consistent with z as they are
completely determined by the integrability condi-
tions for any two of the triangle’s three vertices.

For a not simply connected surface, for exam-
ple, a closed surface of higher genus, we need to
adjust the proof of Theorem 3.1 taking into ac-
count the non-contractible primal and dual loops.
We do this by adding them to the start of the in-
duction. In case of frame construction, this leads
to the second, additional condition on the transition rotations, because now each dual
loop can be broken down into loops around vertices and the non-contractible loops
in a dual homology basis. Before, we had no explicit condition on translations, be-
cause they were automatically consistent for a single triangle and this sufficed as start
of the induction. However, in the case of not simply connected surfaces, we will get
non-contractible primal edge loops that are not reducible to cycles of edges of a single
triangle. Hence, we have to explicitly enforce that the accumulated translation is zero
for each element in a basis of non-contractible primal edge loops, which is the third
condition. If we put all this together, we have extended the proof of Theorem 3.1 to
the general case.

Example 3.1. We want to illustrate the additional conditions’ necessity by the simple
example of a ring, shown in Figure 3.2. First, we see that fulfilling the integrability
condition for each interior vertex is an empty condition, as there are none. Still, ensur-
ing that the frames match when reconstructing them along the ring is clearly necessary
to have consistent dihedral angles, which is achieved by the second condition of the
global theorem. Nevertheless, this still does not suffice, as we could accumulate un-
wanted translations when reconstructing the vertex positions around the ring. This
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Figure 3.2: Example showing possible inconsistency occurring when the accumulated
translation is not controlled for non-contractible primal cycles.

phenomenon is illustrated in the right half of Figure 3.2, where we can certainly find a
dihedral angle for the edge at the jump, such that the frames match, i.e. the integrabil-
ity condition is fulfilled, and also the induced edge vectors in both adjacent triangles
agree. The accumulated translation along the edge loop around the hole, however,
makes it impossible to find an immersion admitting this dihedral angle because it
would lead to the seen gap. Hence, we have to explicitly require that the accumulated
translation along this loop is zero, which is exactly the third condition of the global
theorem.

Remark on implementation. The basis of the dual non-contractible cycles
can be computed using the tree-cotree decomposition of Eppstein [Epp03], and a
corresponding basis of the primal non-contractible loops can be derived from it.
In our current implementation, only the conditions for simply connected surfaces
are included.

3.3 Deformation Energies on Lengths and Angles

In Section 1.3, we have presented a deformation energy on discrete surfaces in dense
correspondence which we used in the context of a variational time-discretization of
geodesic calculus in Section 2.2. Our goal is to use lengths and angles as a parame-
terization of the immersions of a discrete surface to allow for efficient computations in
shape space. This raises the need for deformations energies W on lengths and angles.

3.3.1 Quadratic Energy

The simplest way to define a deformation energy on lengths and angles would be to
just use the squared euclidean distance ‖z− z̃‖2. Building on this idea, we can consider
the case of a weighted quadratic energy.

Definition 3.11 (Quadratic deformation energy). For a discrete surface Sh, we define
the quadratic deformation energy on lengths and angles z, z̃ ∈ R

2|E| as

Wq[z, z̃] =
∑

e∈E

ws,e‖le − l̃e‖
2 + η

∑

e∈E

wb,e‖θe − θ̃e‖
2, (3.19)

where the ws,e and wb,e are weights tailored to the application.
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The second term measures the difference in the bending between triangles. In fact,
it is the same approximation used in the Discrete Shells energy for nodal positions and
we call it the bending term, which makes η the bending weight. The first term measures
the stretching of the triangles, hence the failure of the deformation to be an isometry
and is zero for isometric deformations. Therefore, we call it the membrane term.

The edge specific weights ws,e and wb,e make the energy robust to remeshing and
can be chosen in different ways. The choice introduced along with this quadratic model
in [FB11] is

ws,e =
1

l̄2e
, wb,e =

l̄2e
d̄e
, (3.20)

and another choice, used in [HRS+16], is

ws,e =
d̄e

l̄2e
, wb,e =

l̄2e
d̄e
. (3.21)

In both cases, we use the lengths l̄e and edge-associated areas d̄e (cf. Definition 1.29) of
some reference configuration X̄. In practice, this reference configuration may be chosen
differently for each problem we are solving to improve the quality of the results, even
though it then does not induce a consistent metric anymore.

This constant choice of weights leads to an energy quadratic in the lengths and
angles, which we consider an approximation of the thin shells deformation energy
introduced in Definition 1.30. From a computational point of view, this is, of course,
a benefit leading to faster and more robust computations. On the other hand, this
means that all the variables are independent of each other, which is a drawback from
a physical point of view. One instance of this drawback is that there is no penalization
of the degradation of triangles and compression, which might lead to very short edges
and very small interior angles.

3.3.2 Thin Shells Energy

In Section 1.3, we have derived a physically sound model for the deformation behavior
of discrete surfaces. They were built on the discrete fundamental forms and can thus
be adapted easily to lengths and angles as primary degrees of freedom. This will be
done in this section, where we implicitly assume that all considered sets of lengths and
angles z ∈ R

2|E| fulfill at least the triangle inequality to make the needed results from
trigonometry well-defined.

Membrane energy The membrane part penalized the deviation from being an isom-
etry by considering the discrete distortion tensor G[X, X̃]|f = (G|f )−1G̃|f and applying
a nonlinear energy density to it, which has a global minimum at the identity. At the
beginning of this chapter, in Section 3.1, we discovered that we can express the dis-
crete first fundamental form solely in terms of edge lengths. Now, we can combine
this to derive a physically sound membrane deformation model for lengths and angles.
To achieve this, we express the trace and determinant of G[X, X̃]|f in terms of edge
lengths, interior angles, and triangle areas, which can all be derived from edge lengths.
The determinant takes the form,

det G[X, X̃]|f = (detG|f )−1 det G̃|f = a−2
f ã2

f , (3.22)
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whereas the trace is not as straightforward. First, we recall the inverse of the discrete
fundamental form, given by Cramer’s rule as

(G|f )−1 =
1

detGf

(
‖E1‖2 〈E1, E2〉

〈E1, E2〉 ‖E2‖2

)
,

which implies

tr G[X, X̃]|f =
1

4a2
f

(
‖E1‖2‖Ẽ2‖2 − 2〈E1, E2〉〈Ẽ1, Ẽ2〉 + ‖Ẽ1‖2‖E2‖2

)
.

As the computation of all terms only requires edge lengths, we define G[z, z̃]|f as the
distortion tensor induced by lengths and angles, which agrees for admissible ones with
above’s definition. This allows us to define the membrane energy.

Definition 3.12 (Membrane energy). For a discrete surface Sh, we define the mem-
brane energy on lengths and angles z, z̃ ∈ R

2|E| as

Wmem[z, z̃] =
∑

f∈F

af ·Wmem(G[z, z̃]|f ), (3.23)

where

Wmem(A) :=
µ

2
trA+

λ

4
detA−

(
µ+

λ

2

)
log detA− µ−

λ

4
,

for positive material constants µ and λ.

Bending energy We have seen that the bending model in Section 1.3 was based on
the discrete shape operator, which is defined using the first and second fundamental
form and thus can be described using only lengths and angles. Now, the discrete
bending energy from Definition 1.28 could be completely reformulated using lengths
and angles. Yet, we will only consider the approximation through the Discrete Shells
bending energy (cf. Definition 1.29), because it is the energy we are interested in for
practical applications. To express this energy in lengths and angles requires no further
calculations, and as before we replace its primary variables with lengths and angles.

Definition 3.13 (Discrete Shells bending energy). For a discrete surface Sh, we define
the Discrete Shells bending energy on lengths and angles z, z̃ ∈ R

2|E| as

Wbend[z, z̃] =
∑

e∈E

(θe − θ̃e)
2

de
l2e , (3.24)

where de = 1
3(af + af ′) for the two faces f, f ′ adjacent to e ∈ E .

Deformation energy As before, we combine the membrane and bending energy in
a weighted sum.

Definition 3.14 (Discrete deformation energy). Let Sh be a discrete surface and let
z, z̃ ∈ R

2|E| be two sets of lengths and angles. The thin shells energy on lengths and
angles is defined by

WTS[z, z̃] = Wmem[z, z̃] + ηWbend[z, z̃], (3.25)

where the bending weight η represents the squared thickness of the shell.
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3.4 Reconstruction

In many applications, we are eventually not interested in the lengths and angles them-
selves but the corresponding immersion. Thus, we need to able to reconstruct it in
terms of nodal positions. This means we are looking for a map R : Z → R

3|V| such
that z ◦ R is the identity, where Z : R3|V| → Z is the map to lengths and angles, as
before. Note, that we cannot expect R ◦ Z ≡ Id, as lengths and angles describe the
immersion only up to rigid body motions. In particular, this means that we aim for
R ◦ Z(X) = QX, where Q ∈ SE(3) is a rigid body motion acting on the immersion.
This is in fact already implied by Z ◦ R = Id and the discrete fundamental theorem
we have seen.

Furthermore, we want to reconstruct immersions from elements z ∈ R
2|E| even if

they are not admissible and thus, there will not be an immersion admitting those
lengths and angles. Formally, we want to extend our map R to the ambient space, i.e.
R : R2|E| → R

3|V|, such that R|Z is still a right inverse of Z.
We will introduce two classes of methods to define and compute such a reconstruc-

tion. The first one is based on computing a deformation of a given immersion and
thus solving an optimization problem in the nodal positions, whereas the second one
is based on the constructive nature of the proof of Theorem 3.1. Afterwards, we will
compare both in numerical experiments on different examples.

3.4.1 Energy-based Reconstruction

The underlying idea of this approach is to search for the element of the admissible
lengths and angles Z closest to a target z∗ = (l∗, θ∗) ∈ R

2|E|. Hence, we want to
compute the element z ∈ Z which minimizes dist2(z∗, z), i.e. for which the squared
distance dist2(z∗,Z) is obtained. To this end, we will use the description of Z using
nodal positions. Recall that by Z(X) we denote the lengths l(X) and dihedral angles
θ(X) of the immersed discrete surface with immersion/nodal positions X ∈ R

3|V|.
Now, the above’s distance has to be elaborated. As introduced in Section 3.3,

we choose some deformation energy W on lengths and angles as approximation of
a notion of squared distance. Usually, we pick the same energy used to compute the
deformations. This enables us to extend our physically motivated setup for Z to obtain
a dissimilarity measure on arbitrary elements of R2|E|. Additionally, we parameterize
Z by nodal positions, hence replace z ∈ Z by Z(X) where X ∈ R

3|V|. This leads to
the resulting minimization problem

minimize
X∈R3|V|

W [z∗, Z(X)] (3.26)

and we obtain a reconstruction for z∗ as its solution.
The solution to the above problems is not unique, as Z is invariant to rigid body

motions. Hence, in practice, we need a way to deal with them and obtain a particular
minimizer as we have already discussed at the end of Section 2.3. To obtain a map to
R

3|V|, we introduce this in terms of an abstract operator C returning an element from
the equivalence class of immersions solving (3.26).

Definition 3.15. Let Sh be an immersed discrete surface, let z∗ ∈ R
2|E|, and let

W be a deformation energy on lengths and angles. Then we define the energy-based
reconstruction map as

RW [z∗] := C

[
arg min
X∈R3|V|

W [z∗, Z(X)]

]
, (3.27)
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Figure 3.3: Energy-based reconstruction with Wq (η = 1) of lengths and angles of a
plate leading to degenerated triangles, even though the lengths and angles
fulfill the triangle inequalties.

where C is an operator choosing a particular minimizer.

Remark. Posing the reconstruction as a minimization problem certainly raises ques-
tions about the well-definedness, i.e. about existence and uniqueness of minimizers
(beyond rigid body motions), which we will not cover in this thesis.

The main benefit of this method is that it easily allows treating target lengths and
angles z∗ which are not admissible. As long as they do not lead to an infinite value of
the energy, we can simply plug them into the problem and solve it. One has to keep in
mind that in this case, the resulting lengths and angles Z(X) may be far away from z∗

in the sense that the residual energy W [z∗, Z(X)] of the minimization problem might
be large. Overall, we need to solve a high-dimensional and nonlinear optimization
problem as (3.26) is formulated in nodal positions. In general, this might be a difficult
and costly undertaking, which poses a potential disadvantage of this method.

We obtain a special variant of this method when choosing W to be the quadratic
deformation energy from Definition 3.11. This is the way the method was first in-
troduced by [FB11] and used for example in [HRS+16]. This offers benefits from a
computational point-of-view (see below), while on the other hand using the quadratic
deformation energy might lead to unwanted non-physical behavior. Especially, if the
target lengths and angles z∗ are far away from Z, artifacts may occur as seen in Fig-
ure 3.3, where the lacking penalization of compression leads to degenerate triangles.
Nevertheless, in many instances, it leads to pleasant results in relatively short time.

Remark on implementation. The choice of the quadratic energy above turns
the minimization problem (3.26) into a nonlinear least-squares problem. Indeed,
this is beneficial from a computational point-of-view, as such problems can be
treated efficiently by the Gauß-Newton method [NW06]. If we have an admissible
target z∗ and the initialization of the Gauß-Newton method is close to the solu-
tion, it usually converges in only a few iterations. We have also implemented the
Hessian of the problem and tried using Newton’s method without any approxima-
tion of the Hessian. In our experiments, this usually performed worse than using
the Gauß-Newton approximation, which indicates that it seems to be an efficient
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preconditioning for this problem. For more experiments and especially timings of
this method, we refer to Section 3.4.3.

3.4.2 Frame-based Reconstruction

This method performs the reconstruction of nodal positions using frames and tran-
sition rotations, which were described in Section 3.2.2. The idea of the method was
introduced in [LSLCO05] and the application to lengths and angles as described in this
section was introduced in [WLT12]. First, we will look at a direct way to reconstruct
nodal position based on the constructive proof of Theorem 3.2, and at a novel adap-
tive modification of this algorithm to apply it to non-admissible lengths and angles.
Afterwards, we will briefly point at a relaxation which leads to a linear least-squares
problem.

Direct reconstruction Assume, we are given an admissible target z∗ ∈ Z, consist-
ing of edge lengths l∗ and dihedral angles θ∗. Furthermore, as the reconstruction from
lengths and angles is only defined up to rigid body motions, we assume that we are
given the position X0 of one vertex v0 and the orientation of an adjacent triangle f0

in the form of a frame F0. Now, denote by fi0 , fi1 , and fi2 the neighboring triangles
of f0. From z∗, we determine the induced transition rotations R0i0 , R0i1 , and R0i2 (cf.
Definition 3.8) and thus determine frames Fi0 , Fi1 , and Fi2 on the triangles by

Fj = F0R0j . (3.28)

Repeating this for all neighboring triangles of fi0 , fi1 , and fi2 and continuing iteratively,
we can construct frames Ff for all faces f ∈ F . This is well-defined, in the sense that
if we have two paths connecting a triangle f to f0, then the frames constructed along
the two paths agree by Theorem 3.2.

Given frames Ff for all faces f ∈ F and hence the orientation of all triangles,
we next reconstruct the nodal positions. To this end, recall that two frames for the
same embedded triangle only differ by a rotation around the normal and hence we
have an additional degree of freedom. We get rid of it by assuming that the given
frame F0 and thus the others are in fact standard discrete frames. Given one nodal
position of a triangle, our goal is to construct the remaining two positions using the
given frame and edge lengths. If we repeat this iteratively, starting with v0 and f0,
we can then reconstruct all nodal positions. For this, consider a face f with vertices
(vi)i∈{1,2,3}, nodal positions (Xi)i∈{1,2,3}, edge vectors Ej = Xj−1 − Xj+1 (indices
modulo 3), discrete frame F , and target edge lengths (l∗i )i∈{1,2,3}. As we have chosen
F to be a standard discrete frame, we obtain that

E1 = l∗1F




1
0
0


 , E2 = l∗2F




− cos γ3

sin γ3

0


 , E3 = l∗3F




− cos γ2

− sin γ2

0


 , (3.29)

as visualized in Figure 3.4. Combining these two steps, we obtain Algorithm 1.
As one can imagine, the direct frame-based reconstruction with a spanning tree

of the dual graph built by breadth-first search is very sensitive to violations of the
integrability. In this case, the violation means that reconstructing nodal positions of a
face along two different paths connecting it to the initial face f0 would lead to different
results. Hence, we get inconsistent nodal positions for the triangle leading to visual
artifacts. Moreover, the errors occurring when walking over such a violation propagate
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γ2 γ3γ3




1
0
0







cos γ2

sin γ2

0







− cos γ3

sin γ3

0



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X2 X3

E2E3

E1

T

Figure 3.4: Vertex reconstruction from identity frame F = Id and vertex X2 at the
origin

Algorithm 1 Direct frame-based reconstruction

Input: Discrete surface Sh = (V, E ,F), admissible target edge lengths l∗ and dihedral
angles θ∗, position of first vertex X0, frame F0 for first face f0

Output: Nodal positions X with l(X) = l∗ and θ(X) = θ∗

1: Traverse the dual graph of Sh breadth-first starting at f0

2: for all dual edges (fi, fj) do

3: Construct induced transition rotation Rij
4: Construct frame Fj = FiRij
5: Compute interior angles γ1, γ2, γ3 of fj
6: Determine edge vectors E1, E2, E3 according to (3.29)
7: Determine nodal positions for fj from known vertices and E1, E2, E3

to all following reconstructions and are even amplified. We will see examples for this
later in the numerical experiments.

Adaptive spanning trees Next, we want to change the order of reconstruction in
Algorithm 1 to make it more robust against violations of the integrability. In examples,
we observed that this violation is highly localized, as the deformation itself is highly
localized, see Section 3.4.3. Furthermore, we do not need to reconstruct the orientation
of all triangles to reconstruct the nodal positions, as some will directly follow from
already constructed vertices. Thus, an instinctive idea is to build a spanning tree which
is adapted to this localization and tries to avoid the locations of the violation during
reconstruction as much as possible. To this end, we introduce a novel modification of
the frame-based reconstruction which we call adaptive frame-based reconstruction.

First, we introduce edge weights w ∈ R
|E| for the dual graph based on the integra-

bility. Each dual edge corresponds to a primal edge e = (vv′) ∈ E and we can assign a
value of integrability we by averaging the violation of integrability at the two adjacent
vertices v and v′. For this, we need a scalar version of this integrability violation.
Remember, that Iv(z) is always a rotation matrix and thus its distance to the identity
is measured by its rotation angle. This angle can, in turn, be computed from the trace
of Iv(z), which is three for the identity and less otherwise. Therefore, we define our



46 CHAPTER 3. LENGTHS AND ANGLES

Algorithm 2 Adaptive frame-based reconstruction

Input: Discrete surface Sh = (V, E ,F), target edge lengths l∗ and dihedral angles θ∗,
position X0 of first vertex, frame F0 for first face f0

Output: Nodal positions X with l(X) ≈ l∗ and θ(X) ≈ θ∗

1: Evaluate the discrete integrability map Iv(z) for each vertex v ∈ V

2: Define edge weights we =
| tr Iv(z∗)−3|+| tr Iv′ (z∗)−3|

2 for e = (vv′) ∈ E
Alternative 1:

3: Construct a minimal spanning tree of the dual graph with edge weights w
Alternative 2:

3: Construct a shortest path tree of the dual graph with edge weights w
4: Iterate as in Algorithm 1

edge weights to be

we :=
| tr Iv(z

∗) − 3|+| tr Iv′(z∗) − 3|

2
. (3.30)

Now, we use these weights to build a spanning tree adapted to the problem. The
first variant is to construct a minimal spanning tree (MST) of the dual graph, which
is built such that the sum of all edge weights in the tree is minimal. For instance,
this can be done by Prim’s algorithm and provides a way to traverse the dual graph
while avoiding unnecessarily large violations of the integrability. Another variant is to
construct a shortest path tree (SPT), which is built such that the path distance from
the root to any other vertex in the tree is the shortest path distance in the whole dual
graph. For instance, this can be achieved by Dijkstra’s algorithm and provides a way
to traverse the dual graph such that for each face the sum of integrability violation
along the dual path used for its reconstruction is minimal. Then, we use this spanning
tree as before, which leads to Algorithm 2.

Remark (Preassembled spanning tree). When executing Algorithm 2 the main part
of its runtime is needed for the construction of the minimal spanning tree. Hence, if
we plan to reconstruct numerous immersions of a discrete surface with a very high
resolution (i.e. many vertices) it would be desirable to use a preassembled spanning
tree. Of course, this preassembled tree has to be reasonable for all sets of lengths and
angles we plan to reconstruct. We will now present a simple approach for this based
on sampling.

Assume that we only want to reconstruct lengths and angles from a compact subset
U ⊂ R

2|E|. A particularly interesting instance of this would be an affine subspace with
bounds for the coefficients of the different coordinate directions. Then, we draw finitely

many samples (zi)
ns

i=1 ⊂ U and compute for each of them the edge weights (w
(i)
e )ns

i=1

from above. Those samples can be distributed uniformly over all of U or can be only a
set of extremal points, such as the points with maximal coefficients in a single direction
in the affine subspace case. Those edge weights are combined to a single weight vector

by taking the maximum, i.e. w̃e = max
{
w

(i)
e | i ∈ {1, . . . , ns}

}
. Now, we can construct

a minimal spanning tree with respect to these weights and use it for the reconstruction
as in Algorithm 2.

Remark on implementation. In practice, we only once need to construct more
than one nodal position for a face f in Algorithm 1, namely for the first triangle.
For all other triangles we need to construct at most one nodal position, and often
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even none as the positions are already determined.
Furthermore, the traversal of the dual spanning tree for reconstructing faces

and nodal positions could be parallelized to speed up both algorithms. So far, we
have not done this in our implementation.

In the formal exposition above, we have assumed that the triangle inequal-
ity is not violated for the target z∗ ∈ R

2|E| because otherwise, the results from
trigonometry are not well-defined anymore. However, in practice, sometimes we
might have targets which do violate the triangle inequality and we still want to
apply our algorithm to them. We incorporate this in all applications by setting
the interior angles γ of a triangle f ∈ F with Tf (z∗) ≤ 0 to zero, as they cannot
be determined from the edge lengths. By our definition of I and edge weights w,
those triangles will be automatically considered as late as possible in the adaptive
algorithm.

The overall runtime of Algorithm 1 and Algorithm 2 depends mainly on the
implementation of the dual spanning tree. In the non-adaptive case, the breadth-
first search has a worst-case time complexity of O(|F| + |E|) when implemented
using priority queues. Thus, the overall algorithm also has a worst-case time
complexity of O(|F| + |E|) as the time complexity of the reconstruction operation
in Algorithm 1 is constant for each face. In the adaptive case, Prim’s algorithm and
Dijkstra’s algorithm have both a worst-case time complexity of O(|E|+ |F| log |F|)
when implemented using Fibonacci heaps. In both cases, this leads to an overall
time complexity of O(|F| + |E| + |F| log |F|) for Algorithm 2.

Least-squares Relaxation Wang et al. proposed in [WLT12] a different way to
handle non-admissible target lengths and angles z∗ ∈ R

2|E|, when we cannot apply
Theorem 3.2 anymore. In their approach, they relax the equalities in (3.28) and (3.29)
from the direct reconstruction. They do so by only requiring them in a least-squares
sense, i.e. for the frames, they introduce the quadratic mismatch energy

EF (F ) =
1

2

∑

(i,j)∈E∗

wij,F‖Fj − FiRij(z
∗)‖2

F (3.31)

and for edge vectors, they introduce

EE(X,F ) =
1

2

∑

(i,j)∈E

∑

fk⊃(i,j)

wij,E‖Eij − Fka
k
ij(z

∗)‖2, (3.32)

where the akij are the corresponding vectors from (3.29). The weights w serve again to
increase robustness against remeshing and can, for example, be chosen as the cotan-
weights [WLT12].

The nodal positions can be reconstructed from this in a two-step approach as in
[LSLCO05]. First, the frames F are constructed by minimizing EF , which means find-
ing the set of frames whose change over the discrete surface deviates from the prescribed
transition rotations as little as possible. Then, the nodal positions X are reconstructed
by minimizing EE( · , F ), i.e. for given frames, they find the nodal positions which best
fit to the ones prescribed from the different frames.

In [WLT12], these two steps were combined into a single step by introducing a
composite energy

EC(X,F ) = wEF (F ) + EE(X,F ), (3.33)

where w is relative weighting factor. By summing the two energies, they introduce
a trade-off between meeting the prescribed transitions rotations and having vertex
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(a) Two poses from the Dyna dataset (b) Two poses of the cactus

Figure 3.5: Input data of the two examples.

positions consistent with the edge lengths and the different frames. In both approaches,
minimizing the energies means solving linear least-squares problems, which amounts
to assembling and solving linear systems.

During the course of this thesis, we have not yet explored this relaxation approach.
Especially, we have not evaluated its performance in comparison to our new adaptive
approach. It could also provide a possible way to post-process the output of the
adaptive approach to cheaply smooth out the remaining jumps. This would certainly
be a relevant task for future work on extending our lengths and angles toolbox.

3.4.3 Numerical Experiments

Now, with several methods to nodal positions from length and angles at hand, we will
compare them on different examples in numerical experiments.

Examples We consider three different examples from different datasets for our nu-
merical experiments.

The first example consists of two poses of a human body model from the Dyna
dataset [PMRMB15], seen in Figure 3.5a, which contains numerous human body shapes
in dense correspondence with 6890 vertices each. The two poses feature the human
once in a resting state and once in a running motion. We use the lengths and angles
of the second immersion (the running one) as an admissible target, and the average of

the lengths and angles Z[X1]+Z[X2]
2 of the two immersions X1, X2 as a non-admissible

target. This leads to deformations with a lot of bending (i.e. change of dihedral angles)
but only a small change in the edge lengths.

The cactus shape [BS08] with 5261 vertices of which we consider two different
immersions is our second example, seen in Figure 3.5b. Again, we use the lengths and
angles of the second immersion as an admissible and the average as a non-admissible
target. It serves as an example for a rather smooth shape. The deformation is highly
non-isometric but only exhibits minimal bending.
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(a) Cactus (b) DYNA (c) Finger

Figure 3.6: Visualization of the violation of integrability on the three different exam-
ples using a rainbow color scale. Note, that the color scale does not match
for the different examples.

The last example consists of two poses of a skeleton finger model from the Large Ge-
ometric Models Archive at the Georgia Institute of Technology, also used in [KMP07].
With 2046 vertices, it is the discrete surface with the fewest number of vertices among
our examples. For the finger, we show only the average as a non-admissible target,
because the second immersion did not offer additional insightful results.

The violation of integrability of the three resulting non-admissible targets is shown
in Figure 3.6.

Parameters In the Dyna example, we used the quadratic energy Wq in the energy-
based reconstruction with bending weight η = 10−3 and the resulting optimization
problem (3.27) was solved using the Gauß-Newton method. To fix the rigid body
motions, the nodal positions of a single triangle on the front of the torso were fixed (cf.
Figure 3.7e), which was also used as the starting point for the frame-based approaches.

In the Cactus example, in opposition to above, we used η = 10−1. To fix the rigid
body motions, the nodal positions of a single triangle on the bottom of the cactus were
fixed (cf. Figure 3.8e), which was also used as the starting point for the frame-based
approaches. For the smoothing of the results from the frame-based approaches, we
used a single iteration of the Gauß-Newton method in the energy-based approach with
the same parameters.

In the skeleton finger example, the same material parameters as in the cactus
example were used in the energy-based reconstruction. To take care of the rigid body
motions, the nodal positions of a single triangle on the base joint were fixed, which
also served as the starting point for the frame-based approaches.

Results on admissible targets On the admissible example targets, the non-adaptive
frame-based approach (Algorithm 1) worked without any problems and led to a repro-
duction of lengths and angles up to numerical errors. The energy-based approach with
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Gauß-Newton converged for the cactus example to numerical precision within 5 iter-
ations. For the Dyna example, however, it did not fully converge but stopped after
approximately 20 iterations without finding an admissible step size. This behavior
cannot be easily fixed by changing the material parameter η, as an increase worsens
the convergence behavior and a decrease leads to unwanted crumpling of the surface.
However, for the parameters given above, there occur no visual artifacts. Typically, one
would use a multiresolution scheme to improve the convergence, as explained in [FB11],
but as this was not our focus, we have not employed it within these experiments.

Results on non-admissible targets As we can see in Figure 3.7, the energy-
based reconstruction with Wq works well on the non-admissible Dyna example for
which it takes about 19 iterations, whereas the non-adaptive frame-based approach
fails miserably. This is due to the violated integrability in both armpits, and at the
left hip (cf. Figure 3.6b), which leads to clearly visible artifacts in both arms and the
left leg, hence essentially all moving body parts. However, in Figure 3.6b we also
see that the violation of integrability is highly localized, which allows the adaptive
method to perform very well with both, a minimal spanning and a shortest path tree.
Here, changing the way the adaptive spanning tree is built only slightly changes the
results. We can see in Figure 3.7, that the adaptive methods create a different order for
the reconstruction of frames and vertices, which avoids the violations of integrability,
whereas the simple spanning tree built by breadth-first search simply walks over them.
This leads to an increased depth of the dual spanning tree, meaning that the maximal
number of reconstruction steps used to construct a triangle is larger for the adaptive
spanning trees than the breadth-first tree. Furthermore, the results from the adaptive
approach exhibit small differences compared to the reconstruction from the energy-
based approach. We should point out, the energy-based result matches the target
lengths and angles more precisely, which also leads to a visible difference in the right
arm’s pose. However, the convergence behavior of the latter is again dependent on the
material parameters as explained above.

In the cactus example, seen in Figure 3.8, the energy-based approach works well and
takes about 6 iterations for the shown result. Interestingly, we see that in this example
the adaptive frame-based approach with both kinds of spanning trees leads to clearly
visible jumps on the body of the cactus, whereas the non-adaptive reconstruction only
exhibits some crumpling at the top of the cactus. A possible explanation is that the
violation of integrability is not so strongly localized, even though, it is smaller than in
the Dyna example. In Figure 3.6a, we can see that there are some hot spots at the
top, but there is also some violation all over the body. Then, the adaptivity leads to
spanning trees which are rather deep and there are triangles on the cactus, where two
reconstruction paths meet. The jumps occur exactly at those points, which can be seen
in Figure 3.8. Hence, in all cases, we smoothed the results using a single Gauß-Newton
iteration of the energy-based reconstruction, which removed the artifacts entirely in
the case of a breadth-first and minimal spanning tree. For the case of a shortest path
tree, it at least reduced them visibly and using more iterations would remove them
completely.

In the skeleton finger example, only the non-adaptive frame-based approach pro-
duced artifacts, which can be seen in Figure 3.9a, such as sharp edges on the tip of
the finger. In this rendering, the results were colored by the mismatch to the target
lengths and angles measured using Wq, which shows that this mismatch is the largest
at the artifacts. This localization of the mismatch at the visual artifacts could, in
fact, be observed for all examples in this section. All other algorithms produced visu-
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(a) Using
Algorithm 1

(b) Using
Algorithm 2
with MST

(c) Using
Algorithm 2
with SPT

(d) Using (3.27)
with Wq

(e) Breadth-first
search

(f) Minimal
Spanning Tree

(g) Shortest Path
Tree

Figure 3.7: Reconstruction of the non-admissible average of lengths and angles of the
two Dyna poses (a – d). Number of reconstruction steps leading to a
triangle (e – g), indicated by color from blue (few steps) to red (many
steps). Note, that the color scale does not match for the different examples.
The maximal number of steps is 138 for BFS, 305 for the MST, and 232
for the SPT.
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(a) Using
Algorithm 1

(b) Using
Algorithm 2
with MST

(c) Using
Algorithm 2
with SPT

(d) Using (3.27)
with Wq

(e) Breadth-first
search

(f) Minimal
Spanning Tree

(g) Shortest Path
Tree

(h) BFS after
smoothing

(i) MST after
smoothing

(j) SPT after
smoothing

Figure 3.8: Reconstruction of the non-admissible average of lengths and angles of the
two cactus poses (a – d). Number of reconstruction steps leading to a
triangle (e – g), indicated by color from blue (few steps) to red (many
steps). Note, that the color scale does not match for the different examples.
The maximal number of steps is 180 for BFS, 409 for the MST, and 297
for the SPT. Lastly, the results after smoothing the reconstruction (h – j).



3.4. RECONSTRUCTION 53

(a) Using Algorithm 1 (b) Using Algorithm 2 with SPT

Figure 3.9: Reconstructed average of the lengths and angles of two finger skeleton
poses. The color indicates the difference of the lengths and angles of the
reconstructed shape to the prescribed target measured using Wq.

Example BFS MST SPT

Model |V| |E| |F| Tree Traversal Tree Traversal Tree Traversal

Cactus 5.2k 16k 11k 0.9 7.9 9.6 4.3 9.0 4.6

Dyna 6.9k 21k 12k 0.9 9.6 12.2 5.1 11.9 5.3

Finger 2k 6.4k 4k 0.3 2.7 3.6 2.1 3.3 2.0

Table 3.1: Runtimes (in ms) of the two identified steps in the frame-based algorithms.

ally pleasing results, and we only illustrate the result of the adaptive approach with a
shortest path tree in Figure 3.9b.

Timings As the last step of this section, we present the time it takes to compute
the immersions of our examples.

The frame-based reconstruction algorithms consist of two parts mainly contributing
to the runtime. First, establishing the dual spanning tree, which, in the case of adaptive
variants, also entails the computation of the violation of integrability. The second
component arises from traversing the dual spanning tree and actually reconstructing
the nodal positions, which means that we have to compute the interior angles and the
transition rotations.

On the other hand, the energy-based reconstruction, which performed is using the
Gauß-Newton method, consists of four steps in each iteration constituting most of the
runtime. First, there is the computation of the gradient, and following the compu-
tation of the Gauß-Newton approximation of the Hessian by squaring the gradient.
Next, we need to compute the descent direction by solving a linear system, for which
we use the UMFPACK solver from the SuiteSparse package [Dav04] in our current im-
plementation. Finally, determining the step size is the last major step, which we have
implemented by a simple backtracking line search accepting the first step leading to a
decrease of the energy. We also tried out more involved line search approaches based
on the Armijo or Wolfe conditions, but this did not lead to improved performance.

Overall, the time measurements show that for the adaptive frame-based recon-
struction Algorithm 2, the computational effort for constructing the dual spanning
tree is larger than for the actual reconstruction. This indicates that preassembling the
tree whenever possible is important to achieve interactive rates, as proposed before.
Nevertheless, for large-scale models, it is also necessary to reduce the cost of the ac-
tual reconstruction, for example by parallelization. Furthermore, if we want to use
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Example Total Gradient Hessian Linear solve Step size

Cactus 310 15 (5 %) 44 (14 %) 240 (77 %) 2 (1 %)

Dyna 328 19 (6 %) 49 (15 %) 265 (81 %) 8 (2 %)

Finger 90 5 (6 %) 13 (14 %) 74 (81 %) 2 (2 %)

Average 6 % 15 % 80 % 2 %

Table 3.2: Runtimes (in ms) of the identified steps in a Gauß-Newton iteration, along
with their share of the overall runtime of an iteration.

Gauß-Newton as a possible way to smoothen the reconstruction while retaining the
possibility to obtain interactive rates, we should first try to reduce the time it takes to
solve the linear system.



Chapter 4

The Space of Lengths and Angles

So far, we have introduced lengths and angles as a discrete counterpart to the fun-
damental forms and presented a way to describe the ones belonging to immersions
Z. This yields natural degrees of freedom for our study of deformations of discrete
surfaces, as they are rigid body motions invariant, appear naturally in our discrete
deformation energies, and also provide a natural encoding of the locality of defor-
mations. By the latter we mean, that lengths and angles change the most at edges
naturally associated to a deformation, such as the edges at joints in human shapes,
whereas the nodal displacement is the largest at points, whose alteration is a result of
the deformation, exemplified by the tip of a finger. Due to their rigid body motion
invariance, it is more practical to use model order reduction techniques, such as sub-
space methods in lengths and angles than in nodal positions. The reason is that such
methods construct linear subspaces which requires special care in the presence of rigid
body motions. Thus, lengths and angles describe natural degrees of freedom for the
Riemannian shape space introduced in Chapter 2.

To this end, in this section, the structure of a Riemannian manifold will be intro-
duced on Z and discrete geodesics will be considered as a key element of time-discrete
geodesic calculus on it. Afterwards, we will present a computationally efficient ap-
proximation of this time-discrete geodesic calculus by working in the ambient space
and projecting back onto Z. This procedure was introduced in [FB11] and used for
example in [HRS+16]. Ultimately, we will study Principal Geodesic Analysis (PGA)
on Z as an efficient way to conduct statistical analysis in the shape space of discrete
shells, which was, in fact, the starting point of this thesis.

4.1 Nonlinear Structure

To allow the notion of Z being a nonlinear space, in the following, we are going to equip
it with the structure of a manifold. This enables us to study and exploit its structure
for computing deformations of discrete shells. In this chapter, we will assume Sh to
be a closed simply connected discrete surface, to reduce our exposition to the local
integrability conditions.

Remember, that in this case, we showed

Z =
{
z ∈ R

2|E| | Tf (z) > 0 for all f ∈ F , Iv(z) = Id for all v ∈ V
}
. (4.1)

First, we note that the triangle inequalities Tf (z) > 0 define an open subset of R2|E|

and thus are not of interest for describing the nonlinear structure of Z. However, for
our following deduction to be well-defined, we need to restrict ourselves to the subset

55
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fulfilling these inequalities. We will not state this explicitly but use R
2|E| to simplify

our notation, as all following notions need to hold only locally anyway.

Hence, we return to the integrability condition and its corresponding map

I : R2|E| →
(
R

3×3
)|V|

, which in fact only maps to rotation matrices due to its structure
and therefore, we have I : R2|E| → SO(3)|V|. Now, we want to use this map as an im-
plicit description of Z as a submanifold of R2|E|, and thus go to a chart of SO(3) about
the identity. In fact, we already did this when explaining in Section 3.2.2 how to use
the integrability conditions in implementations. There we used certain Euler angles
to define a smooth integrability map Ĩ : R2|E| → R

3|V| and this is exactly composing I
with a chart about the identity for each vertex. Now, one would typically require the
differential of Ĩ to have full rank for each z ∈ Z, but we have already seen that some
vertices are redundant in Theorem 3.2, hence we cannot expect this to hold. However,
we state the following conjecture, which would allow us to use Ĩ as implicit description
since it would induce a consistent dimension by the implicit function theorem.

Conjecture 1. Let Sh be a discrete surface and let Z ⊂ R
2|E| be the set of its admissible

lengths and angles. Then, for every z ∈ Z, we have

rankDzĨ = 3|V| − 6. (4.2)

In our numerical experiments, this was true in all instances. Yet, as of writing this
thesis, rigorously proving the conjecture is still an open problem.

We will, however, assume that it holds, which allows the following definition.

Definition 4.1. Let Sh be a discrete surface. We call its admissible lengths and angles
Z ⊂ R

2|E| together with the (sub)manifold structure induced on it by the implicit
description through Ĩ the space of lengths and angles.

Remark. Other names for this space include discrete Gauß-Codazzi submanifold, al-
luding to the resemblance of the discrete integrability conditions to the Gauß-Codazzi
equations in the continuous case.

Remark (Dimension). Based on Conjecture 1, we can determine the dimension of Z as

dim Z = 3|V| − 6 = |E|. (4.3)

Note, however, that this does not imply that the dihedral angles of a closed discrete
surface are already determined by its edge lengths. A (local) parametrization of Z
would need a different choice of coordinates.

Beyond the question of the definition being well-posed, there are more open ques-
tions regarding the structure of Z, for example, whether it is connected or not. These
might be interesting problems to tackle in future theoretical work.

Tangent space As we have introduced the structure of a submanifold of R
2|E| on

Z given by an implicit description, we can explicitly describe the tangent space at a
point z as the kernel of the differential of Ĩ, i.e.

TzZ = {v ∈ R
2|E| | DzĨ · v = 0} =: kerDzĨ. (4.4)

This explicit description of the tangent space, along with the possibility to numerically
compute it (see below), is a very helpful tool in shape analysis. When working with
nodal positions, the tangent space of M[Sh] at an immersion X is a set of equivalence
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classes, due to the need to factor out rigid body motions. This renders the numeri-
cal treatment of M[Sh]’s tangent bundle cumbersome and entails the development of
complicated nonlinear tools in nodal positions as supplements. For the case of Princi-
pal Geodesic Analysis, this was done in [HZRS18], which lead to nonlinear, physically
plausible modes of shape variation and motivated our study of lengths and angles to
develop more efficient numerical schemes for this purpose.

Remark on implementation. Given the differential A := DzĨ of Ĩ at z, nu-
merically computing its kernel can be achieved in different ways. We can directly
compute an orthonormal basis of it by computing the Singular Value Decompo-
sition (SVD) of DzĨ and taking the right-singular vectors corresponding to the
singular value zero. The same can be achieved by a rank-revealing QR decompo-
sition.

If due to time or memory constraints, it is not feasible to compute a basis this
way, we can compute the orthonormal projection of a vector v ∈ R

2|E| onto the
tangent space by

(Id −A⊺(AA⊺)−1A)v,

where the linear system (AA⊺)−1x = Av can be solved using a Cholesky decom-
position. This allows efficiently computing the projection for various vectors.

In our implementation, we used the SVD from the Eigen library [GJO10] for
small examples and the projection approach with the CHOLMOD solver from the
SuiteSparse package [CDHR08] for larger examples.

Riemannian structure Next, we want to equip Z with a Riemannian structure,
i.e. a smoothly varying scalar product gz on TzZ. As before, we use a metric induced
by a deformation energy W by taking the Euclidean Hessian of W and projecting it
onto the tangent space TzZ.

Definition 4.2. Let Sh be a discrete surface, let W be a deformation energy on lengths
and angles. Then we define the Riemannian metric induced by W as

gz(v, w) :=
1

2
v⊺ ∂2

2 W[z, z]w, (4.5)

for tangent vectors v, w ∈ TzZ.

This is consistent with the definition of Riemannian Hessians for submanifolds, as
the part of it depending on the Riemannian structure of Z vanishes for zero gradients
of the function extended to ambient space, which is the case for ∂2 W[z, z].

This definition raises the question of the non-degeneracy (and positive-definiteness)
of the Hessian for the two deformation energies we have introduced before. In the case
of the quadratic energy Wq, this is straightforward to see, as its Hessian is simply a
diagonal matrix with the weights ws,e and wb,e as entries. For the discrete thin shells
energy, this follows from the result on the non-degeneracy of its Hessian up to rigid
body motions in the case of nodal positions as primal variables [HRS+14, Thm. 2].

Time-discrete Geodesic Calculus We have seen before, in Section 2.2, that the
central element of our time-discrete geodesic calculus is the notion of a discrete geodesic.
Recall, that for fixed end points z0, zK ∈ Z it is defined as a minimizer (z1, . . . , zK−1) ∈
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Z of EK [(z0, . . . , zK)]. Hence, computing a discrete geodesic in the space of lengths
and angles means solving the constrained optimization problem

minimize
z1,...,zK−1

K
K−1∑

i=0

W [zi, zi+1]

subject to Tf (zi) > 0 for each i ∈ {1, . . . ,K − 1}, f ∈ F

Ĩv(zi) = 0 for each i ∈ {1, . . . ,K − 1}, v ∈ V,

(4.6)

which is a highly nonlinear problem, that is difficult to solve in general.

Remark on implementation. To solve (4.6), one needs to employ a robust nu-
merical solver for inequality constrained, large-scale optimization problems. In our
current implementation, we use the Ipopt software package [WB06] for this pur-
pose, which is an interior-point filter line-search algorithm. This works quite well
for smaller problems, such as the plate example shown throughout this chapter.
However, for larger problems, we have observed that the Hessian of the Lagrangian
is indefinite, which the algorithm tries to counter by regularization, but still fails
to properly converge. This indicates, that we need to implement a trust-region
method to solve constrained optimization problems in Z for discrete surfaces with
a higher resolution, which is an important task for future work on the implemen-
tation.

4.2 Linear Approximation

In this section, we will present an approximation of time-discrete geodesic calculus on
the space of lengths and angles originally introduced in [FB11]. It was, for example,
was used in [HRS+16] to drastically speed up the computation of Riemannian splines
in the space of discrete shells. Instead of enforcing to stay on Z, we exploit that lengths
and angles are rigid body motions invariant coordinates for surfaces and thus can be
treated more easily in a linear approximation. Hence, we can work in ambient space
R

2|E| and then project the results back onto Z using a projection operator PZ , which
we will define in the following. This leads to a very computationally efficient scheme
for computing notions from time-discrete geodesic calculus, especially if we combine it
with the quadratic deformation energy from Definition 3.11.

Projection The projection operator PZ is typically realized using the reconstruc-
tion algorithms from Section 3.4, as these automatically yield the immersed surface S

belonging to the projected lengths and angles. In the following, we will focus on the
energy-based reconstruction from Definition 3.15, which is primarily used in the im-
plementation and has the nicest interpretation in the geometric context of Z. Recall,
we parameterized Z using nodal positions and minimized the difference in energy to a
given target. We adopt this approach to define a projection operator.

Definition 4.3 (Energy-based projection). Let z̃ ∈ R
2|E|. Then, we define the energy-

based projection onto Z by

PW
Z [z̃] := Z

[
arg min
X∈R3|V|

Ŵ [z̃, Z[X]]

]
. (4.7)
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0 1 2 3 4 5 6 7 8 9

Figure 4.1: The approximation of a discrete geodesic between two plates rolled up
in different directions computed using the quadratic energy Wq, and the
energy-based projection. Additionally, an diagram showing the energy be-
tween two steps.

Note, that this definition allows the nice reformulation to
PW

Z [z̃] = arg minz∈Z Ŵ [z̃, z] , up to the issues of existence and uniqueness of minimiz-
ers discussed above. Such an interpretation is not available for other reconstruction
operators, nevertheless, we can generalize our definition to them.

Definition 4.4 (Projection by reconstruction). Let z̃ ∈ R
2|E|, and let R : R2|E| →

R
3|V| be an reconstruction operator extended to ambient space. Then, we define the

corresponding projection by

PR
Z [z̃] := Z [R[z̃]] . (4.8)

Note, that in both cases we have, at least in theory, PZ [z] = z for z ∈ Z, which
means that we have indeed defined projections. Moreover, let us stress the distinction
between a projection, which yields elements in R

2|E|, and a reconstruction, which yields
nodal positions in R

3|V|, even though they are closely related in our setup above.

Time-discrete geodesic Again, we focus on the time-discrete geodesic as the cen-
tral building block, which also explains exemplary how to adapt other computations.
In the approximation, it is computed by first solving the unconstrained minimization
problem

minimize
z̃1,...,z̃K−1∈R2|E|

K
K−1∑

i=0

W [z̃i, z̃i+1] , (4.9)

for fixed end points z0, zK ∈ Z and afterwards applying the projection to get the
approximate discrete geodesic (z1, . . . , zK−1) ∈ Z by

zk = PZ [z̃k], for k = 1, . . . ,K − 1. (4.10)

This projection can be computed in parallel for each time step, which can speed-up
the computation significantly.

The downside of this approach is that the resulting approximations may have arti-
facts on the one hand but also more subtle shortcomings such as not being equidistant
with respect to the energy on Z. This may lead to visible jumps in the animation, as
seen in Figure 4.1, whereas the discrete geodesic computed by solving (4.6) is equidis-
tant (cf. Figure 4.2).
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0 1 2 3 4 5 6 7 8 9

Figure 4.2: Discrete geodesic between two plates rolled up in different directions com-
puted by solving (4.6) with the quadratic energy Wq, and the energy profile
with the same scale as in Figure 4.1.

Special case: Quadratic energy We obtain an even more efficient scheme by
using the quadratic energy Wq. In this case, the problem computing the geodesic
(4.9) becomes a (weighted) quadratic optimization problem, whose unique solution is
given by equidistant linear interpolation of the endpoints. Furthermore, as we have
explained before, the projection can be implemented efficiently using the Gauss-Newton
method. The downside of this approach is the possibility of artifacts due to missing
penalization of compression of triangles, as we have seen for example in Figure 3.3.
This typically becomes even more apparent when computing extrapolations that go
beyond a certain magnitude. However, as one can witness in [HRS+16], this linear
approximation already leads to visually pleasing results.

4.3 Principal Geodesic Analysis

As the last element of this thesis, we will study an application of statistical shape
analysis to the space of lengths and angles Z. Broadly speaking, our goal is to extract
a model for natural deformations of the discrete surface from a set of example defor-
mations. To provide an instructive example, we consider the shape of a human as a
discrete surface and want to extract possible movements, e.g. only at the joints of that
human. Principal Geodesic Analysis (PGA) [FJLP04] has been used previously on
shape spaces [FJLP04, TWC+09, FB12, ZHRS15, vTAMZ18, HZRS18] to construct
such models as low-dimensional submanifolds. When working with the space of dis-
crete shells, one quickly faces the problem of rigid body motion invariance requiring
adaption towards it, which increases computational cost. On the contrary, lengths
and angles are inherently rigid body motion invariant and thus provide a potential
way to simplify this application. In this section, we will briefly recapitulate Principal
Geodesic Analysis, explain its application to the space of lengths and angles, look at an
approximated version in the sense of the previous section, and consider an application
of the resulting low-dimensional submanifold to model fitting via soft constraints.

Principal Component Analysis Let us briefly recall Principal Component Analy-
sis (PCA) as a tool from the domain of linear statistics. For this, assume we are given
samples z1, . . . , zN ⊂ R

2|E|. First, we determine their Euclidean mean z̄ = 1
N

∑N
i=1 z

i

and center the samples by setting z̃i = zi − z̄ for i = 1, . . . , N , which we also ar-
range in the data matrix Z̃ = (z̃1, . . . , z̃N ) ∈ RN×2|E|. Now, in geometric terms, we
want to compute the J-dimensional subspace of R

2|E|, which approximates the sam-
ples as good as possible. If we think of the subspace in terms of an orthonormal basis
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U = (u1, . . . , uJ) ∈ R
J×2|E|, this can be expressed as the optimization problem

minimize
U∈RJ×2|E|

N∑

i=1

∥∥∥∥∥∥
z̃i −

J∑

j=1

〈uj , z̃
i〉uj

∥∥∥∥∥∥

2

2

subject to U⊺U = Id

. (4.11)

It turns out [HV05] that this problem can be solved by computing the first J eigenpairs
(λi, φi) in order of descending eigenvalue of the Gram’s matrix Z̃⊺Z̃ and setting ui =
λ−1
i Z̃φi for i = 1, . . . , J .

In statistics, the orthonormal basis u1, . . . , uJ is interpreted as the main directions
of the variance in the data and in physics as principal axis of angular momentum, which
also is the origin of the name Principal Component Analysis. It is a very important
tool for dimensionality reduction, be it to reveal statistical structure in data or as a
reduced order modeling technique to speed up complicated problems. In this case, it
is also known as Proper Orthogonal Decomposition (POD) [HV05, vRESH16].

Principal Geodesic Analysis We will generalize the different notions necessary for
PCA to nonlinear Riemannian manifolds. This generalization will be directly phrased
using the space of lengths and angles Z and thus yield the general recipe on how to
apply it in this context.

First off, is the notion of a mean, which we replace by a version using the squared
distance, called the Fréchet mean [Fré48], or Riemannian center of mass [GK73], given
as

z̄ := arg min
z∈Z

N∑

i=1

dist2(zi, z), (4.12)

which might not be unique in general.

The notion of a J-dimensional subspace UJ = span(u1, . . . , uJ) of R
2|E| will be

replaced by the notion of a J-dimensional submanifold ZJ ⊂ Z, and hence the task
will become to determine the best-approximating submanifold ZJ of our data contain-
ing z̄. We will compute an (approximate) solution of this problem by parametrizing
submanifolds through subspaces of the tangent space Tz̄Z at the mean, which yield
submanifolds by application of the exponential map.

To compute such a subspace, we need tangent vectors corresponding to our in-
put lengths and angles. These will be computed using the logarithm, which we have
introduced in Section 2.1 as the inverse of the exponential, and thus we define

vi := logz̄ z
i ∈ Tz̄Z, for i = 1, . . . , N. (4.13)

Therefore, we have reduced our problem to computing the optimal subspace of Tz̄Z
for the tangent vectors vi. This can be done by applying linear PCA with respect to
the Riemannian scalar product, i.e. as solution UJ of

minimize
U∈RJ×2|E|

N∑

i=1

∥∥∥∥∥∥
vi −

J∑

j=1

gz̄(uj , v
i)uj

∥∥∥∥∥∥

2

Tz̄Z

subject to gz̄(uk, ul) = δkl for all k, l ∈ {1, . . . , J}.

(4.14)

The resulting subspace UJ is in fact a subspace of the tangent space as its basis vectors
u1, . . . , uJ are given as linear combinations of the tangent vectors vi. From this, we
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get our low-dimensional submanifold by applying the exponential map

ZJ :=



exp

J∑

j=1

αjuj | α ∈ R
J



 . (4.15)

For a more detailed introduction to this technique, we refer to [FJLP04].

Remark (Discretization). A discretization of the Principal Geodesic Analysis on the
space of lengths and angles can be realized using the tools from time-discrete geodesic
calculus introduced in Section 2.2. Nevertheless, in this thesis, we will instead consider
a simplified version of it.

Approximation This simplified version will be achieved by linearizing the different
steps explained above and using the projection as we have done it in Section 4.2. In
the following, we will introduce approximations that will be considered as definitions
afterwards, thus by abuse of notation, we will denote them by equations.

Again, we will start with the mean, where we replace the Fréchet mean from before
by the projection of the linear mean of the input length and angles, i.e. we set

z̄ = PZ

[
1

N

N∑

i=1

zi
]
, (4.16)

which is sometimes referred to as the extrinsic mean on Z.
We replace the application of the logarithm from before by a simple linear projection

onto the tangent space

vi = P lin
Tz̄Z [zi − z̄] ∈ Tz̄Z, for i = 1, . . . , N. (4.17)

Furthermore, we also consider the variation, where we completely ignore the tangent
space and set

vi = zi − z̄, for i = 1, . . . , N. (4.18)

In the both cases, (4.14) remains untouched, which also means that in the latter case
we essentially perform linear PCA in the ambient space R

2|E|, however with respect to
the Riemannian metric g.

Finally, we obtain our submanifold by projecting elements from our subspace onto
Z, meaning that we have

ZJ =



PZ [z̄ +

J∑

j=1

αjuj ] | α ∈ R
J



 . (4.19)

Overall, this leads to a computationally efficient scheme for computing a low-dimensional
subspace/-manifold of lengths and angles. In the following, by abuse to notation, we
will refer to the matrix and the subspace spanned by the rows both as UJ

4.3.1 Application: Model Fitting via Soft Constraints

As explained at the beginning, our motivation to construct a low-dimensional subman-
ifold is to generate a model for natural deformations based on examples. The model
can be used to analyze the deformations present in the data or, as we will proceed
now, use it as a so-called template model. In this context, we are given external condi-
tions and want to compute a deformation which is natural according to our model and
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adheres to the external conditions as good as possible. This is a typical application
for low-dimensional models in computer graphics, which can either be entirely hand-
crafted, such as skeleton models [HH95, LCF00], or be computed from example data
[ASK+05, PMRMB15, HZRS18].

Marker We consider a special case of external conditions that we call markers or
landmarks, where we are given a set of positions in three-dimensional space X =
{x1, . . . , xM} ⊂ R

3, which indicate the wanted pose of our shape. Such marker posi-
tions are for example obtained using motion capture systems. Furthermore, we will
assume that we already know correspondences between the vertices of our discrete sur-
face and these markers, meaning that we have indices i1, . . . , iM such that the marker
position xm corresponds to the position of the vertex vim . Obtaining such correspon-
dences is a nontrivial problem itself, which we choose to disregard here as we focus
on the deformations. To tie these marker positions to the surface, or more correctly
its embedding, we consider a soft constraint approach, where we aim to minimize the
distances to the markers, which is opposite to a hard constraint approach setting them
as fixed boundary conditions. Thus, we obtain the energy

DX [X] :=
M∑

m=1

‖Xim − xm‖2
R3 . (4.20)

Physically, this corresponds to applying forces to the different vertices in direction of
the markers with their magnitude given by the distance to the marker.

Prior Now that we know the external conditions, we introduce a suitable way to
incorporate our low-dimensional submanifold/-space of Z into the problem. Given
our submanifold, we want to describe the distance between it and an embedding X,
which we do by minimizing the energy W[Z[X], z] over all z ∈ ZJ . In our simplified
approach, we replace the submanifold by the subspace and thus obtain

F [X] := arg min
z∈z̄+UJ

W [Z[X], z] . (4.21)

In statistics, one would call F a prior for our problem limiting the admissible solutions.
Note that in the case of the quadratic energy Wq, the solution to the minimization

problem of F is given by the orthogonal projection of Z[X] onto z̄ + UJ with respect
to the (constant) Hessian of the energy. Precisely, we have

F [X] := Wq

[
Z[X], z̄ + UJ(UJ)⊺M(z[X] − z̄)

]
, (4.22)

where M := ∂2
2Wq[z̄, z̄]. However, often we still include z ∈ z̄ + UJ in our overall

optimization as the orthogonal projection would lead to a densely populated Hessian,
which is an issue for meshes with large resolutions.

Overall problem We combine the data term D with the prior F to obtain our
overall problem

minimize JX [X, z] := DX [X] + γW [Z[X], z]

subject to X ∈ R
3|V|, z ∈ z̄ + UJ ,

(4.23)

where γ is called the prior weight. This problem resembles the variational problems
occurring in mathematical physics, where the term D corresponds to the external forces
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integrated over the surface and the prior F to the internal energy dissipation. In other
terms, this means that deformations on the manifold ZJ do not cost any energy and
thus, in this context, we sometimes call ZJ the rest manifold.

Furthermore, the problem can be considered an extension of the one introduced in
[FB11] by considering soft instead of hard constraints and by using a low-dimensional
model built from the example data instead of using the examples directly.

In case of a time series of marker positions (Xt)t, one could explicitly add another
term guaranteeing the smoothness of the results by penalizing the difference to the
previous step. Nevertheless, in our implementation, we took a more implicit and
simple approach by taking the previous solution as initialization of the optimization
method.

Remark on implementation. To solve (4.23), we consider both an alternating
and a joint optimization approach. In the alternating approach, we fix either X
or z and optimize with respect to the other one. In case of the quadratic energy,
optimizing with respect to z results in computing the orthogonal projection of
Z[X] onto z̄ + UJ as remarked before, which means it can be done using two
matrix multiplications, or one if we preassemble UJ(UJ)⊺. Then, optimizing with
respect to X is essentially our energy-based reconstruction from before with soft
constraints for which we can also use the Gauss-Newton approximation of the
Hessian to obtain a computationally efficient approach.

Typically, we initially employ multiple iterations of the alternating approach
and then use the result as initialization for a joint optimization of JX [X, z] with
respect to X and z. For this, we also found the Gauss-Newton approximation of
the Hessian of the prior term to be beneficial in terms of runtimes and robust-
ness. The improved initialization from the alternating approach also improved the
convergence behavior of the joint optimization.

4.3.2 Numerical Experiments

We will apply above’s variation of Principal Geodesic Analysis, along with the corre-
sponding model fitting approach, to human body shapes and marker positions mim-
icking dance movements.

Data As in our experiments on the reconstruction of embeddings in Section 3.4, we
used a selection of data from the Dyna dataset [PMRMB15]. From the shape 50009 (a
human male), we used a selection of 29 poses that were also used in [HZRS18], which
were fitted to 41 markers in a sequence from the Carnegie Mellon University Motion
Capture Database. Originally, the shapes had 6890 vertices each, but as (4.23) is
an optimization problem in nodal positions, we employed the multi-resolution scheme
explained in Section 2.3 to reduce the dimension by 80 percent to 1378 vertices, which is
still well-capable of capturing the deformation of interest. The coarse mesh is displayed
in Figure 4.3 alongside its fine counterpart.

Parameters We used the quadratic energy Wq with η = 0.005 on the coarse mesh.
Both, in the case of PGA, i.e. with projecting on the tangent space, and in the case
of plain PCA in R

2|E|, we constructed a J = 10 dimensional subspace. For the marker
fitting, we used a prior weight of γ = 5.5 in all cases.
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(a) Coarse resolution (b) Original resolution

Figure 4.3: Projected linear mean of input data, computed in coarse and prolongated
to original resolution.

Results on PGA In Figure 4.4, we show the first five principal modes constructed
from the Dyna dataset using the simplified PGA (with linear projection on the tangent
space) and PCA (in ambient space, without projection). The nodal positions were
reconstructed along a line segment zj(t) := z̄ + t uj at the mean in direction of the
principal components in lengths and angles. In the case of PGA, we used a maximal
factor of t = ±10 and in case of PCA a factor of t = ±2.5.

First off, we see that in both cases the principal modes represent motions an actual
human could perform, which indicates that they indeed yield a useful model. The
modes from PGA appear to be less dynamic than the ones constructed using PCA.
This indicates that the linear projection onto the tangent space might lose information
about the deformations present in the dataset. Furthermore, in some PGA modes, one
can observe an undesirable deflation or inflation of the moving parts, see for example
the hand in the fifth PGA mode in Figure 4.4.

Moreover, in the mode from PGA, the violation of integrability, especially the
violation of the triangle inequality, is more severe and less localized, which hinders an
application of the adaptive frame-based reconstruction. We have, however, observed
that if we use the full-resolution data in the model construction, the frame-based
reconstruction of the PGA modes is possible, as the higher number of faces allows to
avoid the violations more easily.

Results on Marker Fitting First off, we see that with the PGA and PCA sub-
spaces, the results improve comparing to only using the mean as prior, even though
using PGA the improvements are small. Without the subspaces, the motions look
rather stiff, which could be reduced by decreasing the bending or the prior weight, but
this leads to unwanted deformations such as a compression of the leg or torso.

Next, we observe that the use of our simplified PGA approach decreases the quality
of the results compared to the PCA approach. With the PGA subspace, the optimiza-
tion failed more often to find a deformation suitable for the marker position and got
stuck. This indicates that using the tangent space without the logarithm and expo-
nential map might not be a good approximation of our space Z due to the strong
deformations we are considering. Thus, the simple linear projection onto the tangent
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Figure 4.4: First five modes of PCA (green) and simplified PGA (orange) in lengths
and angles on Dyna.

space seems to lose information on deformations given in the examples.

Compared to the results of [HZRS18], we see that our approach is less capable
generalizing to movements requiring deformations different from the ones observed in
the dataset. For example, there are marker positions which require the shape to raise
the left leg behind their body, whereas in the training set, there are barely any examples
in which the left hip is moved backwards substantially. The completely nonlinear
method in nodal positions from [HZRS18] is able to produce visually pleasing results,
whereas our method produces results appearing a little stiff, nevertheless natural.1

Furthermore, we tried to use the whole Dyna dataset consisting of approximately
3,300 shapes for the model in the training of the model. However, we found that
with the same dimensionality of the subspace, this decreased the quality of the results,
which we assume to have multiple reasons. First, there are a lot of shapes in the dataset
with rather small deformations, because the deformations were created capturing real
human’s movements. Furthermore, due to the scanning procedure, there are some
shapes with artifacts included which could decrease the quality of the results, because,
in general, PCA is sensitive to outliers. Lastly, numerous motions in the dataset were
meant to show soft tissue movement, such as “jiggling”, which are therefore not helpful
for our task.

We also observed some numerical difficulties in our experiments due to triangles
(nearly) violating the triangle inequality, This leads to exploding gradients of the
quadratic energy on nodal positions, as the gradient of dihedral angles with respect
to nodal positions grows rapidly. To avoid this unwanted compression of triangles,
it might be interesting to consider the discrete shells energy on lengths and angles
we have discussed before because it strongly penalizes this violation in the energy.
Another way to reduce these issues could be to consider a different kind of coarsening

1Essentially we are saying that our dancer is less skilled after the same amount of training than the
dancer from [HZRS18].
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Example Mean Tangent space PCA

Model |V| N Decomposition Solve Gram’s EVD

Dyna 1.4k 29 1.3 s 9.2s 0.7 s 1.8 ms 2.5 ms

Dyna 1.4k 3288 1.3 s 9.2s 65 s 4.6 s 65 s

Dyna 6.9k 29 3.6 s 860s 8.5 s 5.8 ms 8.7 ms

Dyna 6.9k 3288 2.7 s 860s 900 s 16.4 s 65 s

Table 4.1: Runtimes of the identified steps in creating the subspace.

Example Mean Alternating Joint Prolongation Total

Dyna (Mean) 557 – – 20 577

Dyna (PCA, J = 10) – 1630 1397 20 3047

Dyna (PGA, J = 10) – 1403 1861 20 3284

Table 4.2: Average runtimes (in ms) of the identified steps in a model fitting step.

which takes them into account.

Lastly, let us note that the lengths and angles z ∈ z̄ + UJ resulting from our
optimization often do not exhibit the strong locality of the integrability violation we
have seen in the separate modes or in Section 3.4.3. This prohibits the use of the
adaptive frame-based reconstruction approach from Section 3.4.2 in the model fitting
application.

Timings The creation of the subspace models contains three major steps that con-
sume most of the runtime. The first step is computing the mean, which essentially
means reconstructing a single set of lengths and angles. In the case of the simplified
PGA, we have to compute the linear projection onto the tangent space, for which we
use the approach without computing an explicit basis as explained before. Hence, this
step has two substeps. First, we factorize (Dz̄Ĩ)(Dz̄Ĩ)⊺ using the Cholesky decompo-
sition and then compute the projection of each input shape, which includes solving the
factorized linear system. As the last step in both cases, we have to solve the PCA prob-
lem, which includes computing the Gram’s matrix Z̃⊺Z̃ and its eigendecomposition.
We always compute the full eigendecomposition, hence its runtime is independent of
the subspace dimension J .

There are two or three steps in the model fitting application, depending on whether
we use a subspace or only the mean as prior. In both cases, we have the prolongation
of the result from the coarse to the fine mesh. This result is computed by solving a
single optimization of (4.23) with fixed z = z̄. In case of a subspace prior, we first run
multiple iterations of the alternating optimization and then the joint optimization.

Discussion Overall, we have introduced a data-driven approach for creating a tem-
plate model of surface deformations using PGA or PCA in the space of lengths and
angles. We have used this template model in a simple model fitting approach with
marker positions acting as soft constraints or forces on the surfaces. This yielded
naturally looking deformations of human shapes when fitting to markers of a dance
sequence. Compared to other methods, however, it exhibited some shortcomings in
the capability to generalize to deformations not present enough in the training data.

We expect that the template model would benefit from implementing more nonlin-
ear tools in the space of lengths and angles. Using the logarithm and exponential-map
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might allow for strong deformations and potentially close the gap in generalization
capability to [HZRS18]. Also, adaptations of PCA might result in improved models,
for example, Sparse PCA which enforces a certain sparsity of the modes, because as
we have explained before, this sparsity is a natural concept for our applications.

Furthermore, it might be helpful for the model fitting application to consider differ-
ent data terms than the one used above which required exact correspondences between
vertices and markers. These are currently created manually and are thus not always
optimal. Therefore, it would be interesting to remove the need for strict correspon-
dences and instead, for example, consider the distance of the marker to a patch of the
surface. In general, this is related to the question of how to couple the lengths and
angles model with extrinsic notions such as forces acting on the surface.

To achieve realtime capability with this approach, especially if we were to add more
nonlinearity, it would be interesting to investigate reduced order modeling approaches
to speed up the computations. Subspace methods as for example used in [vRESH16] are
potentially easier to apply to lengths and angles as they are rigid body motion invariant.
This would allow us to handle the nonlinearity in lengths and angles efficiently, but for
the model fitting application, we still need to work in nodal positions. Thus, it would
be interesting to develop a coupled reduced approach for both Z and nodal positions.
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Figure 4.5: Model fitted to shown markers using only the mean (blue), the PCA sub-
space (green), and the simplified PGA subspace (orange) as prior.
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Chapter 5

Conclusion

Summary

In this thesis, we studied edge lengths and dihedral angles as primal degrees of freedom
for deformations of a discrete surface and eventually used this approach to perform sta-
tistical analysis on those deformations. The reconstruction of immersions from lengths
and angles and the application to statistical analysis were investigated numerically on
an example dataset of human shapes.

Describing edge lengths and dihedral angles as discrete counterparts to the first
and second fundamental form allowed us to develop a comprehensive understanding of
them. Following [WLT12], we extensively studied which lengths and angles are actually
realizable by an immersion of the discrete surface in R

3. This led to a description of
the set of admissible lengths and angles Z by a set of equations, which are akin to the
Gauß-Codazzi equations of continuous surfaces, as they ensure that we can integrate
the local change of geometry induced by the lengths and angles to obtain an immersion.
Together, this constituted the discrete fundamental theorem of surfaces from [WLT12].
Moreover, we adopted the deformation energies previously used on nodal positions to
generate physically plausible deformations. This turned out to be a straightforward
task, which highlights that lengths and angles are in fact natural degrees of freedom
for our applications.

Eventually, we were typically interested in the immersion corresponding to a set of
lengths and angles, which led to our investigation of various approaches for constructing
them. The proof of the aforementioned discrete fundamental theorem yielded a way
to construct the immersion iteratively starting from a single triangle if the target
lengths and angles are admissible. However, we observed that this algorithm leads to
severe visual artifacts if the lengths and angles violate the integrability, even if this
violation is often highly localized. Based on the latter observation, we developed a
novel variation of this algorithm which adapts the order of integration to avoid the
vertices with violated integrability as much as possible. Nevertheless, sometimes the
constructed immersion still needs to be post-processed or the violation is not localized
prohibiting the application of the above algorithm. For these cases, we also considered
an energy-based reconstruction introduced in [FB11]. The methods were compared in
numerical experiments on different examples.

With this comprehensive toolbox for lengths and angles at hand, we introduced a
manifold structure on the admissible lengths and angles through the conditions given
in the discrete fundamental theorem. This description of the nonlinear structure has
the advantage that we are capable of explicitly computing the tangent space and use

71



72 CHAPTER 5. CONCLUSION

it in applications, which was previously not feasible as it required dealing with equiva-
lence classes. In this context, we introduced a simplified version of Principal Geodesic
Analysis on the space of lengths and angles and used the resulting low-dimensional
models in an application to the problem of fitting a model to sparse marker positions.

Outlook

This thesis offers a profound amount of possibilities for future work. First of all, only
the integrability conditions for simply connected surfaces are present in our current
implementation, which should be extended to the general case.

Furthermore, we currently post-process the results of the adaptive frame-based re-
construction, if necessary, by a small number of Gauß-Newton iterations. While this
works well, it is undesirable from the perspective of runtimes. Hence, to enable the
use of the reconstruction in interactive applications, we need to speed up the post-
processing. A first step could be the replacement of the linear solver in the implemen-
tation of the Gauß-Newton method as it takes up most of the runtime. Another idea
would be to investigate the least-squares relaxation proposed in [WLT12].

In light of our model fitting, we suspected that it would benefit from using the
nonlinear tools of geodesic calculus on the space of lengths and angles. Currently, they
are only available for discrete surfaces with a fairly small number of vertices, while for
surfaces with a higher resolution we run into problems with the line-search optimization
due to indefinite Hessian matrices. Thus, an important implementation task would be
to realize a trust-region solver for constrained problems in our framework.

Such a solver would also allow inspecting the application of lengths and angles
to problems in which constraints on geometric properties of the surface arise. One
example is constraints on the Gaussian curvature of the surface, which is an intrinsic
property and can thus be computed from the edge lengths only. Such constraints occur
when dealing with developable surfaces, which have constant zero Gaussian curvature,
or hyperbolic surfaces with a constant negative Gaussian curvature.

In Section 4.3.1, we explained that the marker positions essentially act as forces on
the surfaces. This raised the modeling question of how to couple lengths and angles
with extrinsic notions, such as mentioned forces. A first idea is to use the frame-based
reconstruction with a fixed spanning tree, possibly together with a rigid registration,
and consider it a differentiable map. To use this in an optimization problem would
require computing the derivatives of this map, which is a difficult undertaking but
might be a feasible application of modern automatic differentiation frameworks.

While our approach already improves the runtimes compared to [HZRS18], there is
still a considerable gap to real-time capability. To close it, especially if we were to add
more nonlinear problems in Z, it is necessary to investigate reduced order modeling
techniques. For computations entirely in lengths and angles, subspace approaches
might be a viable tool as our degrees of freedom are rigid body motion invariant.
However, if we consider applications with coupled nodal positions, such as the model
fitting, this would require an approach for the nodal positions as well. Hence, it would
be interesting to develop a combined approach.

Finally, there are also open theoretic problems on the space of lengths and angles.
The first is proving that our manifold structure is actually well-defined, meaning that
we have a constant dimension, which is the content of Conjecture 1. Furthermore, it
would be interesting to develop a better understanding of the structure of Z, which
might be helpful for future optimization problems and algorithms.
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Appendix A

Derivatives

A.1 Trigonometric Formulas

Heron’s formula

In Section 3.1, we introduced Heron’s formula to compute the area of a triangle from
its edge lengths a, b, c as

A(a, b, c) :=
√
s(s− a)(s− b)(s− c), (A.1)

where s = a+b+c
2 .

Stable formula Due to rounding errors, the formula (A.1) is inaccurate for needle-
like triangles, i.e. those for which two edge lengths add up to only a little more than
the third. In this case, s can be almost as big as c in floating-point arithmetic and
thus (s − a) and (s − b) can be inaccurate [Kah14]. To circumvent this, we first sort
the edge lengths such that a ≥ b ≥ c and then set

A(a, b, c) =
1
4

√
(a+ (b+ c))(c− (a− b))(c+ (a− b))(a+ (b− c)), (A.2)

where the parenthesis indicate the necessary order of evaluation.

Derivatives For the first partial derivatives, we get

∂aA(a, b, c) =
−a(a2 − b2 − c2)

8A(a, b, c)
,

∂bA(a, b, c) =
−b(a2 − b2 − c2)

8A(a, b, c)
,

∂cA(a, b, c) =
c(a2 + b2 − c2)

8A(a, b, c)
.

Law of cosines

We also introduced a formula for the interior angle of a triangle opposite to an edge
with length c as

γc(a, b, c) := arccos

(
a2 + b2 − c2

2ab

)
. (A.4)
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Stable formula Again, for needle-like triangles this formula suffers from numerical
inaccuracies and we thus define a more stable one in the following way, adopted from
[Kah14]. First, we define a helper variable µ by

µ(a, b, c) :=





c− (a− b) b ≥ c ≥ 0

b− (a− c) c > b ≥ 0

∞ else

, (A.5)

where in the last case a, b, c do not define valid edge lengths of a triangle. Now, we
compute the interior angle by

γc(a, b, c) := 2 arctan

(√
((a− b) + c)µ(a, b, c)

(a+ (b+ c))((a− c) + b)

)
, (A.6)

where for the special case that the denominator is zero and x positive, we define
arctan(x/0) = π

2 .

Derivatives For the first partial derivatives, we get

∂aγc(a, b, c) =
−a2 + b2 − c2

4aA(a, b, c)
,

∂bγc(a, b, c) =
a2 − b2 − c2

4bA(a, b, c)
,

∂cγc(a, b, c) =
2c

4A(a, b, c)
,

assuming that a, b, and c are positive.

A.2 Discrete Integrability Conditions

In Section 3.2.2, we discussed the conditions for lengths and angles to be admissible and
used them later in Chapter 4 to define the space of lengths and angles and formulate
optimization problems in it. For this, we need the derivatives of the integrability
conditions which we will derive now. Recall, the integrability map was given as I(z) =
(Iv(z))v∈V : R2|E| → (R3×3)|V|, where the individual components were defined as

Iv(z) =
n−1∏

i=0

Ri,(i+1) mod n(z) (A.8)

for the n-ring of faces Nv = {f0, . . . , fn−1} around v and induced transition rotations
Rij(z). We will ignore the triangle inequalities, as they define an open subset of R2|E|

and thus we can calculate the derivatives at points fulfilling them. Furthermore, recall
that we made a specific choice of frames for each triangle which simplified the induced
transition rotations to

Rij(z) := Rx(θe)Rz(γj,v), (A.9)

where e is the common edge of triangles fi and fj and γj,v is the interior angle in fj
at v. It is given by the edge lengths as

γj,v = arccos

(
l2a + l2b − l2c

2lalb

)
, (A.10)
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where c ∈ E is the edge opposite to γj,v and a, b ∈ E are the other two edges of fj .
Lastly, we also considered the concatenation with Euler angles

Ĩv(z) = (arcsin Iv(z)31, atan2(Iv(z)32, Iv(z)33), atan2(Iv(z)21, Iv(z)11)), (A.11)

which will require an additional application of the chain rule.

Structure

What makes it tractable to compute the derivatives explicitly is the structure of the
problem. For sure, we can compute the derivative for each component Iv : R2|E| → R

3×3

separately, which yields a sparse tensor-valued differential DzIv ∈ R
3×3×2|E|. We

denote our vector of lengths and angles by z = (l1, . . . , l|E|, θ1, . . . , θ|E|) = (z1, . . . , z2|E|)
and thus the differential consists of partial derivatives

DzIv =
(
∂z1

Iv(z), . . . , ∂z2|E|
Iv(z)

)
. (A.12)

Moreover, we can also assemble a second-order differential from partial second deriva-
tives by

DzIv = (∂zl
∂zk

Iv(z))kl ∈ R
3×3×2|E|×2|E|. (A.13)

For each partial derivative, we can apply the product rule for matrices (cf. [PP12])
to get

∂zk
Iv(z) = ∂zk

(
n−1∏

i=0

Ri,(i+1) mod n(z)

)

=
n−1∑

j=0

R01(z) · . . . · ∂zk
Rj,j+1(z) · . . . ·Rn−1,0(z),

where we will compute the individual local first derivatives ∂zk
Rj,j+1(z) explicitly,

later. The partial second derivatives are given by another application of the product
rule and consists of mixed first-order and second-order terms

∂zl
∂zk

Iv(z) = ∂zk

(
n−1∏

i=0

Ri,(i+1) mod n(z)

)

=
n−1∑

j=0

R01(z) · . . . · ∂zl
∂zk

Rj,j+1(z) · . . . ·Rn−1,0(z)

+
n−1∑

i,j=0
i6=j

R01(z) · . . . · ∂zl
Ri,i+1(z) · . . . · ∂zk

Rj,j+1(z) · . . . ·Rn−1,0(z),

where we will again compute the local second derivatives below.
Eventually, by the chain rule, we obtain

∂zk
Ĩv(z)1 =

(∂zk
Iv(z))31√

1 − Iv(z)2
31

,

∂zk
Ĩv(z)2 =

Iv(z)32 ∂zk
Iv(z)33 − ∂zk

Iv(z)32 Iv(z)33

Iv(z)2
32 + Iv(z)2

33

,

∂zk
Ĩv(z)3 =

Iv(z)21 ∂zk
Iv(z)11 − ∂zk

Iv(z)21 Iv(z)11

Iv(z)2
21 + Iv(z)2

11

,
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and thus for the second derivatives

∂zl
∂zk

Ĩv(z)1 =
Iv(z)31 ∂zk

Iv(z)31 ∂zl
Iv(z)31 + (1 − Iv(z)2

31) ∂zl
∂zk

Iv(z)31

(1 − Iv(z)2
31)3/2

,

and

∂zl
∂zk

Ĩv(z)2 =
∂zk

Iv(z)32 ∂zl
Iv(z)33 − ∂zl

Iv(z)32 ∂zk
Iv(z)33

Iv(z)2
32 + Iv(z)2

33

+
∂zl
∂zk

Iv(z)32 Iv(z)33 − Iv(z)32 ∂zl
∂zk

Iv(z)33

Iv(z)2
32 + Iv(z)2

33

−
(2 Iv(z)32 ∂zl

Iv(z)32 + 2 Iv(z)33 ∂zl
Iv(z)33)

Iv(z)2
32 + Iv(z)2

33

·
(∂zk

Iv(z)32 Iv(z)33 − Iv(z)32 ∂zk
Iv(z)33)

Iv(z)2
32 + Iv(z)2

33

,

and

∂zl
∂zk

Ĩv(z)3 =
∂zk

Iv(z)21 ∂zl
Iv(z)11 − ∂zl

Iv(z)21 ∂zk
Iv(z)11

Iv(z)2
21 + Iv(z)2

11

+
∂zl
∂zk

Iv(z)21 Iv(z)11 − Iv(z)21 ∂zl
∂zk

Iv(z)11

Iv(z)2
21 + Iv(z)2

11

−
(2 Iv(z)21 ∂zl

Iv(z)21 + 2 Iv(z)11 ∂zl
Iv(z)11)

Iv(z)2
21 + Iv(z)2

11

·
(∂zk

Iv(z)21 Iv(z)11 − Iv(z)21 ∂zk
Iv(z)11)

Iv(z)2
21 + Iv(z)2

11

.

Local first derivatives

As noted above, each induced transition rotation depends on one dihedral angle and
on the three edge lengths of a triangle. We simplify our notation for the computation
of the partial derivatives and define

R̂(θ, a, b, c) := Rx(θ)Rz

(
arccos

(
a2 + b2 − c2

2ab

))
. (A.19)

Then, we compute the following derivatives using Mathematica [Wol]

∂θR̂(θ, a, b, c) =




0 0 0

−
√

1 − (a2+b2−c2)2

4a2b2 sin(θ) −
(a2+b2−c2) sin(θ)

2ab − cos(θ)√
1 − (a2+b2−c2)2

4a2b2 cos(θ) (a2+b2−c2) cos(θ)

2ab − sin(θ)


 ,

and

∂aR̂(θ, a, b, c) =




a2−b2+c2

2a2b

a4−(b2−c2)2

8a2bA(a,b,c)
0(

(b2−c2)2
−a4

)
cos(θ)

8a2bA(a,b,c)

(a2−b2+c2) cos(θ)

2a2b
0(

(b2−c2)2
−a4

)
sin(θ)

8a2bA(a,b,c)

(a2−b2+c2) sin(θ)

2a2b
0



,

and

∂bR̂(θ, a, b, c) =




−a2+b2+c2

2ab2

b4−(a2−c2)2

8ab2 A(a,b,c)
0(

(a2−c2)2
−b4

)
cos(θ)

8ab2 A(a,b,c)

(−a2+b2+c2) cos(θ)

2ab2 0(
(a2−c2)2

−b4

)
sin(θ)

8ab2 A(a,b,c)

(−a2+b2+c2) sin(θ)

2ab2 0



,
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and lastly

∂cR̂(θ, a, b, c) =




− c
ab

c3−(a2+b2)c
4abA(a,b,c) 0

c(a2+b2−c2) cos(θ)

4abA(a,b,c) − c cos(θ)
ab 0

c(a2+b2−c2) sin(θ)

4abA(a,b,c) − c sin(θ)
ab 0



.

Local second derivatives

For the second derivatives, we have

∂θ∂θR̂(θ, a, b, c) =




0 0 0

−
√

1 − (a2+b2−c2)2

4a2b2 cos(θ) −
(a2+b2−c2) cos(θ)

2ab sin(θ)

−
√

1 − (a2+b2−c2)2

4a2b2 sin(θ) −
(a2+b2−c2) sin(θ)

2ab − cos(θ)


 ,

∂a∂θR̂(θ, a, b, c) =




0 0 0(
a4−(b2−c2)2

)
sin(θ)

8a2bA(a,b,c)
−

(a2−b2+c2) sin(θ)

2a2b
0(

(b2−c2)2
−a4

)
cos(θ)

8a2bA(a,b,c)

(a2−b2+c2) cos(θ)

2a2b
0



,

∂b∂θR̂(θ, a, b, c) =




0 0 0

−

(
(a2−c2)2

−b4

)
sin(θ)

8ab2A(a,b,c)

(a2−b2−c2) sin(θ)

2ab2 0(
(a2−c2)2

−b4

)
cos(θ)

8ab2A(a,b,c)

(−a2+b2+c2) cos(θ)

2ab2 0



,

∂c∂θR̂(θ, a, b, c) =




0 0 0

−
c(a2+b2−c2) sin(θ)

4abA(a,b,c)
c sin(θ)
ab 0

c(a2+b2−c2) cos(θ)

4abA(a,b,c) − c cos(θ)
ab 0


 ,

∂a∂aR̂(θ, a, b, c) =




(b−c)(b+c)
a3b

− X1(a,b,c)
64a3bA(a,b,c)3 0

X1(a,b,c) cos(θ)
64a3bA(a,b,c)3

(b−c)(b+c) cos(θ)
a3b

0
X1(a,b,c) sin(θ)
64a3bA(a,b,c)3

(b−c)(b+c) sin(θ)
a3b

0


 ,

∂b∂aR̂(θ, a, b, c) =




−a2+b2+c2

2a2b2 − X2(a,b,c)
128a2b2A(a,b,c)3 0

X2(a,b,c) cos(θ)
128a2b2A(a,b,c)3 −

(a2+b2+c2) cos(θ)

2a2b2 0
X2(a,b,c) sin(θ)

128a2b2A(a,b,c)3 −
(a2+b2+c2) sin(θ)

2a2b2 0


 ,

∂c∂aR̂(θ, a, b, c) =




c
a2b

− X3(a,b,c)
64a2bA(a,b,c)3 0

X3(a,b,c) cos(θ)
64a2bA(a,b,c)3

c cos(θ)
a2b

0
X3(a,b,c) sin(θ)
64a2bA(a,b,c)3

c sin(θ)
a2b

0


 ,

∂b∂bR̂(θ, a, b, c) =




(a−c)(a+c)
ab3 − X4(a,b,c)

64ab3A(a,b,c)3 0
X4(a,b,c) cos(θ)
64ab3A(a,b,c)3

(a−c)(a+c) cos(θ)
ab3 0

X4(a,b,c) sin(θ)
64ab3A(a,b,c)3

(a−c)(a+c) sin(θ)
ab3 0


 ,

∂c∂bR̂(θ, a, b, c) =




c
ab2 − X5(a,b,c)

64ab2A(a,b,c)3 0
X5(a,b,c) cos(θ)
64ab2A(a,b,c)3

c cos(θ)
ab2 0

X5(a,b,c) sin(θ)
64ab2A(a,b,c)3

c sin(θ)
ab2 0


 , and
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∂c∂cR̂(θ, a, b, c) =




− 1
ab −

c6−3(a2+b2)c4+3(a2−b2)2
c2−(a2−b2)2(a2+b2)

64abA(a,b,c)3 0

−X7(a,b,c) cos(θ)
64abA(a,b,c)3 − cos(θ)

ab 0

−X7(a,b,c) sin(θ)
64abA(a,b,c)3 − sin(θ)

ab 0


 ,

where

X1(a, b, c) :=
(
b2 + c2

)
a6 − 3

(
b2 − c2

)2
a4 + 3

(
b2 − c2

)2 (
b2 + c2

)
a2 −

(
b2 − c2

)4

X2(a, b, c) := c8 − 2
(
a2 + b2

)
c6 − 8a2b2c4 + 2

(
a2 + b2

)3
c2 −

(
a2 − b2

)4

X3(a, b, c) := c

(
a6 + 3(b− c)(b+ c)a4 +

(
−5b4 + 2c2b2 + 3c4

)
a2 +

(
b2 − c2

)3
)

X4(a, b, c) := c8 −
(
4a2 + 3b2

)
c6 + 3

(
2a4 + b2a2 + b4

)
c4

−
(
4a6 − 3b2a4 + 6b4a2 + b6

)
c2 + a2

(
a2 − b2

)3

X5(a, b, c) := c

(
a6 −

(
5b2 + 3c2

)
a4 +

(
3b4 + 2c2b2 + 3c4

)
a2 +

(
b2 − c2

)3
)

X7(a, b, c) := a6 −
(
b2 + 3c2

)
a4 +

(
−b4 + 6c2b2 + 3c4

)
a2 +

(
b2 − c2

)3
,

and A(a, b, c) is the area as before.
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