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Abstract

We investigate the rate of convergence of linear sampling numbers of the embedding
H*B(T4) — H7(T?). Here o governs the mixed smoothness and 3 the isotropic smooth-
ness in the space H*#(T%) of hybrid smoothness, whereas H”(T¢) denotes the isotropic
Sobolev space. If v > [ we obtain sharp polynomial decay rates for the first embedding
realized by sampling operators based on “energy-norm based sparse grids” for the classical
trigonometric interpolation. This complements earlier work by Griebel, Knapek and Diing,
Ullrich, where general linear approximations have been considered. In addition, we study
the embedding HZ, (T¢) — H. (T%) and achieve optimality for Smolyak’s algorithm ap-
plied to the classical trigonometric interpolation. This can be applied to investigate the
sampling numbers for the embedding HZ, (T?) < Ly (T¢) for 2 < ¢ < oo where again
Smolyak’s algorithm yields the optimal order. The precise decay rates for the sampling
numbers in the mentioned situations always coincide with those for the approximation
numbers, except probably in the limiting situation 8 = ~ (including the embedding into
Ly(T%)). The best what we could prove there is a (probably) non-sharp results with a

logarithmic gap between lower and upper bound.

1 Introduction

The efficient approximation of multivariate functions is a crucial task for the numerical treat-
ment of several real-world problems. Typically the computation time of approximating al-
gorithms grows dramatically with the number of variables d. Therefore, one is interested in
reasonable model assumptions and corresponding efficient algorithms. In fact, a large class of
solutions of the electronic Schrédinger equation in quantum chemistry does not only belong
to a Sobolev spaces with mixed regularity, one also knows additional information in terms
of isotropic smoothness properties, see Yserentant’s recent lecture notes [40] and the refer-
ences therein. This type of regularity is precisely expressed by the spaces H*?(T¢), defined
in Section 2 below. Here, the parameter « reflects the smoothness in the dominating mixed
sense and the parameter [ reflects the smoothness in the isotropic sense. We aim at approx-
imating such functions in an energy-type norm, i.e., we measure the approximation error in
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an isotropic Sobolev space HY(T¢). This is motivated by the use of Galerkin methods for
the H 1(’JI‘d)—approximaution of the solution of general elliptic variational problems see, e.g.,
[1, 2, 11, 10, 12, 24]. The present paper can be seen as a continuation of [9], where finite-rank
approximations in the sense of approximation numbers were studied. The latter are defined as

am(T: X =-Y):= Aé?fy sup |[|[Tf—Aflly , meN,
rank Am Ifllx <1

where XY are Banach spaces and T € L(X,Y), where £(X,Y) denotes the space of all
bounded linear operators T': X — Y. In contrast to that, we restrict the class of admissible
algorithms even further in this paper and deal with the problem of the optimal recovery of
H*B_functions from only a finite number of function values, where the optimality in the worst-
case setting is commonly measured in terms of linear sampling numbers

m

gn(T: X =-Y):= inf inf sup HTf— f(x)qb()H , meN.

" () €T ()7, Y ||l x <1 ; 7y

Here, X C C(T%) denotes a Banach space of functions on T¢ and T' € £(X,Y"). The inclusion

of X in C(TY) is necessary to give a meaning to function evaluations at single points xj € T,
We will mainly focus on the situation X = H*?(T9) and Y = HY(T?). The condition

« > v — [ ensures a compact embedding

I HoA(T9) — HY(T?) (1.1)
such that we can ask for the asymptotic decay of the sampling numbers
gm (I« H¥P(T?) — HY(TY))

in m. By investing more isotropic smoothness v > 0 in the target space H?(T%) than 3 € R
in the source space H*? we encounter two surprising effects for the sampling numbers g,,,(I1)
if v > 5. The main result of the present paper is the following asymptotic order

(1)) = am () = m~ =) meN, (1.2)

which shows, on the one hand, the asymptotic equivalence to the approximation numbers
and, on the other hand, the purely polynomial decay rate, i.e., no logarithmic perturbation.
In the case f = 0 sampling numbers for these kind of embeddings were also studied in [13].
The current paper can be considered as a partial periodic counterpart of the recent papers
[7, 8] where the author has investigated the nonperiodic situation, namely sampling recovery
in L,-norms as well as corresponding isotropic Sobolev norms of functions on [0, 1]¢ from Besov
spaces Bg ’95 with hybrid smoothness of mixed smoothness « and isotropic smoothness 5. The

asymptotic behavior of the approximation numbers a,,(I; : H*#(T?) — HY(T%)) (including
the dependence of all constants on d) has been completely determined in [9], see the Appendix
in this paper for a listing of all relevant results. The present paper is intended as a partial
extension of the latter reference to the sampling recovery problem. The general observation is
the fact that there is no difference in the asymptotic behavior between sampling and general
approximation if we impose certain smoothness conditions on the target spaces Y. That is
v>Bif Y = H'(T?) and v > 0 if Y = H] . (T%).

It turned out, that the critical cases are v = 8 > 0. We were not able to give the precise
decay rate of

gm (I : HYP(T?) — HP(T?)) (1.3)



although we are dealing with a Hilbert space setting and additional smoothness in the target
space. However, the following statement is true if o > 1/2. We have

m~(logm) TV < a,,.(I5) < gm(I2) < m *(logm) @~ D+1/2) 9 <y e N,

Note, that if v = 8 = 0 this includes the classical problem of finding the correct asymptotic
behavior of the sampling numbers for the embedding
I3+ Hyo(T7) = La(T7) (1.4)
where HY, (T¢) denotes the Sobolev space of dominating mixed fractional order o > 1/2.
Originally brought up by Temlyakov [33] in 1985, this problem attracted much attention in
multivariate approximation theory, see Dung [4, 5, 6], Temlyakov [33, 34, 35] and the references
therein, Sickel [26, 27], and Sickel, Ullrich [29]-[31]. Temlyakov himself proved for av > 1/2 and
2 < m € N the estimate

m= (log m)2@D < ayy(Is) < gm(ls) S m~ (log m) @D+ (15)
which was later improved by Sickel, Ullrich [29] - [31], Duang [7], and Triebel [38] to
gm(I3 + H3(T) — Lo(T?) < m ™ (logm) @D+ 2 <m e N. (1.6)

The estimate for the approximation numbers in (1.5) can be found in [35, Theorem III.4.4].
What concerns the exact d-dependence we refer to Dung, Ullrich [9, Theorem 4.10] and the
recent contribution Kiithn, Sickel, Ullrich [16]. There still remains a logarithmic gap of order
(log m)(dfl)/ 2 between the given upper and lower bounds for the sampling numbers. It is a
general open problem whether sampling operators can be as good as general linear operators in
this particular situation. Let us refer to Hinrichs, Novak, Vybiral [15] and Novak, Wozniakowski
[19] for relations between approximation and sampling numbers in an general context. In this
paper, we did neither close the gap in (1.5) nor shorten it further. However, we were able to

recover these results within our new simplified framework in Subsection 5.3.
Surprisingly, the situation becomes much more easy, when we replace in (1.4) the target
space Lo(T?) by a Lebesgue space Ly(T?) with ¢ > 2. In fact, we observed for the embedding
Iy s HE (T — Ly(T?) (1.7)

mix
with o > 1/2 the sharp two-sided estimates

m—(@=1/241/4) (Jog ) (d=D(e=1/2+1/a) . 9 < 4 < o0,

(1) = an (1) = { e 1 P (1.9

q =00,

for 2 < m € N. The first result of type (1.8) was obtained in [4, 5] for the sampling numbers
gm (I : Bﬁoo(Td) — Ly(T%) with 1 < p < ¢ < 2, the case ¢ = 0o of (1.8) was observed by
Temlyakov [34], we refer to Dung [7] for nonperiodic results of type (1.8). Our method allowed
for a significant extension of these results with a shorter proof. As a vehicle for 2 < ¢ < co we
also took a look to the embedding

Is : Hiyi(T?) — Hy,, (TY) (1.9)
with o > max{v,1/2} and observed
gm(I5) = am(I5) < m~ @ (logm)@De=1 = 2<meN. (1.10)



Let us finally mention that the optimal sampling numbers in (1.8) and (1.10) are realized by
the well-known Smolyak algorithm. In other words we presented examples where the Smolyak
sampling operator yields optimality. It is also used for the upper bound in (1.6), but so far
not clear whether it is the optimal choice.

All our proofs are constructive. We explicitly construct sequences of sampling operators
that yield the optimal approximation order. Let us briefly describe the framework. The
sampling operators will be appropriate sums of tensor products of the classical univariate
trigonometric interpolation with respect to the equidistant grid

27l

ty = {=0,1,....,2

/ 2m+17 D) , 4110,
given by

1 2m
b f0):= gy 2 S0F) Dt = 17). (111)
where in(( 1/2)t)
; +
Dy (t) := ikt _ SN teR.
n(t)i= 3 e sin(t/2) <
[k|<m

It is well-known that I,,f ——— f in Lo(T) for every f € H*(T) with s > 1/2. Due to
m—0o0

telescoping series argument we may also write
oo

f=hLf+> (I —Iy)f.
k=1

Therefore, we put for m € Ny

. Iom — Igm—1 if m>0,
Il if m=20.

The special structure of the 7, immediately admits the following tensorization
G =My @ ... O Ny kENg. (1.12)

Finally, for a given finite A C Ng we define the general sampling operator Qa as

Qa:=> a (1.13)

keA

Our degree of freedom will be the set A. We will choose A according to the different situations
we are dealing with. That means in particular that A may depend on the parameters of the
function classes of interest. The most interesting case is represented by the index set

A@€) = Aa, B,7:€) == {k €N s alkls — (v~ Bkl < €}, €>0, (1.14)



ko

k1
Figure 1: d=2, a=2, =0, v=1, £ =20

or more exactly, by an e-modification of it given by

AE(&):A(Eva’/va;g) = {kENg (a_€)|k|1_(7_6_5)’k‘00§£} ) €>0) (115)

and £ > 0 chosen sufficiently small (but not close to zero). These index sets will be used in
connection with the embedding (1.1). The set of sampling points used by (1.13) will be called
“energy-norm based sparse grid”. This phrase stems from the works of Bungartz, Griebel and
Knapek [1, 2, 10, 11, 12] and refers to the special case where the error is measured in the “energy
space” H'(T?). These authors were the first observing the potential of this modification of the
classical “sparse grid”. Here we use the phrase “energy-norm based grids” in the wider sense of
being adapted to the smoothness parameter v of the target space H7(T¢) (with a considered
to be fixed). These extensions with respect to approximation numbers as well as to sampling
numbers have been discussed in [8] (non-periodic case) and [9] (periodic case). In particular,
(1.14) in case v # 1 goes back to [9], and (1.15) in the case v > 0 to [8].
The second important example is given by the index set

A(€) = Ala;§) = {keNg:alkh <&}, €>0, (1.16)

ko

k1
Figure 2: d=2, a=1, £ =20

and represents the classical Smolyak algorithm, originally introduced in [32]. Although
this set represents a special case of (1.14) it has a completely different geometry and leads
to structurally different results. The sampling points used by the associated Qa is commonly
called “sparse grid”. Putting £ = am in (1.16) it is well-known, see [39] and [30, 29], that the



operator Q)¢ samples the function f on the grid

o 27l 27l ‘
Glm) = {(23'1+1+1""’21'd+1+1) '
0<l;<2ii=1,... .4 m—d+1§\j\1gm}. (1.17)

It turned out that the previously defined framework fits very well to the function space setting
described above. In Lemma 2.7 below we give the Littlewood-Paley decomposition of H®?(T?),
i.e.,
HOP(T) = { £ € a0 |17l ray i= 30 2HIH=) gy ()] < oo}
kend

As usual, 6;(f), k € N¢, represents that part of the Fourier series of f supported in a dyadic
block
Pk = Pk1 X--~><Pkd, (1.18)

where Pj := {{ € Z : 2771 < |¢| < 27} and Py = {0}. In fact, looking at the approximation
scheme in (1.13) it would be desirable to have an equivalent norm where we replace & (f)
by qx(f) from (1.12). Under additional restrictions on the paramaters (one has to at least
ensure an embedding in C(T9)) this is indeed possible as Theorem 3.6 below shows. This
gives us convenient characterizations of the function spaces of interest in terms of the sampling
operators we are going to analyze.

The paper is organized as follows. In Section 2 we define and discuss the spaces Hr‘flix(']l'd)
and H*#(T?). Section 3 is used to establish our main tool in all proofs involving sampling
numbers, the so-called “sampling representation”, see Theorem 3.6 below. The next Section 4
deals in a constructive way with estimates from above for the sampling numbers of the embed-
ding (1.1) by evaluating the error norm ||/ —Qa|| with the corresponding A from (1.15). With
the limiting cases (1.3) leading to the classical Smolyak algorithm we deal in Section 5. Here
we also consider the embeddings (1.9) and (1.7). In Section 6 we transfer our approximation
results into the notion of sampling numbers and compare them to existing estimates for the
approximation numbers. The relevant estimates are collected in the appendix.

Notation. As usual, N denotes the natural numbers, Ny the non-negative integers, Z the
integers and R the real numbers. With T we denote the torus represented by the interval
[0,27]. The letter d is always reserved for the dimension in Z¢, R%, N¢, and T¢. For 0 < p < oo
and r € R? we denote |z], = (Zle |z;[P)1/? with the usual modification for p = co. We write
ej, j = 1,...,d, for the respective canonical unit vector and 1 := Z?:l ej in Re. If X and Y are
two Banach spaces, the norm of an operator A : X — Y will be denoted by ||[A: X — Y.
The symbol X — Y indicates that there is a continuous embedding from X into Y. The
relation a,, < b, means that there is a constant ¢ > 0 independent of the context relevant
parameters such that a, < c¢b, for all n belonging to a certain subset of N, often N itself. We
write a, < by, if a, < b, and b, < a,, holds.

2 Sobolev-type spaces

In this section we recall the definition of the function spaces under consideration here. They
are all of Sobolev-type. In a first subsection we consider the periodic Sobolev spaces Hg‘lix(']l‘d)
of dominating mixed fractional order a > 0. In the second subsection the more general classes
H*B(T%) are discussed.



2.1 Periodic Sobolev spaces of mixed and isotropic smoothness

All results in this paper are stated for function spaces on the d-torus T¢, which is represented
in the Euclidean space R? by the cube T¢ = [0, 27]¢, where opposite faces are identified. The
space Lo(T?) consists of all (equivalence classes of) measurable functions f on T? such that

the norm 1/2
Ifll2:= ([, @) o)

is finite. All information on a function f € Lo(T?) is encoded in the sequence (cx(f))x of its
Fourier coefficients, given by

ex(f) = (2;lr)d /Jl‘d f(z)e ™ dg kezd.

Indeed, we have Parseval’s identity

1713 = 20 3 Jex(f (2.1)

kezd

as well as

fa@) =3 alf)et

kezd

with convergence in Lo(T?).

The mixed Sobolev space H™ (T¢) with smoothness vector m = (my, ..., mq) € N% is the

collection of all f € Lo(T¢) such that all distributional derivatives DY f of order v = (71, ..., 7a)
with v; <mj, j =1,...,d, belong to Ly(T%). We put

/
1l o = (32 107113) " (22)

0<~;<m;
j=1,...,d

One can rewrite this definition in terms of Fourier coefficients. However, it is more convenient
to use an equivalent norm like

/
1wy = [ S lesls |2H O 2.3

kezZ4

For m € N we denote with H™(T%) the space H™1(T4). Inspired by (2.3) we define Sobolev
spaces of dominating mixed smoothness of fractional order « as follows.

Definition 2.1. Let o > 0. The periodic Sobolev space Hror‘nx('ll‘d) of dominating mized smooth-
ness a is the collection of all f € La(T?) such that

d
/
1 W oy = [ lenth)] Iy )] < oo (2.4)

kezd

Remark 2.2. There is different notation in the literature. E.g., Temlyakov and others use
MW (T?) instead of H2; (T%), whereas Amanov, Lizorkin, Nikol’skij, Schmeisser and Triebel
prefer to use S$W (T9).

We also need the (isotropic) Sobolev spaces HY(T?).



Definition 2.3. Lety > 0. The periodic Sobolev space HY(T?) of smoothness  is the collection
of all f € La(T?) such that

1/2
1 Wy o= | D les(DIP+IRB)] " < o0 (2.5)

kezd

Remark 2.4. It is elementary to check

HOUT?) — Hy,

(T4) — H*(TY).

In addition it is known that H?(T?) < C(T%) if and only if HY(T%) < L. (T?) if and only if
v > d/2, see [28].

2.2 Hybrid type Sobolev spaces

To define the scale H*#(T?) we look for subspaces of H, (T¢) obtained by adding isotropic
smoothness. To make this more transparent we start again with a situation where smoothness
can be described exclusively in terms of weak derivatives. It is easy to see that isotropic
smoothness of order n € N can be achieved by “intersecting” mixed smoothness conditions,
ie.,

Hn(Td) — H(n70770) (Td) m H(Q7n707"’0) n . m H(07077n) .

mix mix mix

Let m € N and n € Z such that m +n > 0. We will use the above principle to “add” an
isotropic smoothness of order n to the mixed smoothness of order m. The hybrid type Sobolev

space H™"™(T?) is the set

HH(TdY L >0,

mix

.
I Da

Hm,n(Td) — .
gritre(md)y L op<o.

mix

e

<
Il
-

A function f € Ly(T¢) belongs to H™"(T%), if and only if the semi-norm

max) <;<d Hf|| mine; 0 0 20,
Hmon(Td) =
(T4) min;<;<q HfHH::]llxl+neJ (74) : n<0,

is finite. The norm of f in H™"(T?) is defined as || f||" mn(Td) = || fll2 + ]f\}{m,n(w). Hence,
one can verify that

d

/

17 Wy = [ 3l R( T+ ™)+ i) .
J=1

kezd
This motivates the following definition.

Definition 2.5. Let o > 0 and 8 € R such that o+ 5 > 0. The generalized periodic Sobolev
space H*B(T?) is the collection of all f € Lo(T?) such that

d
1 Weaion = [ 3 0P (IL 0 +160) Va+ ] <. 20

kezd



Remark 2.6. (i) Obviously we have H*(T%) = H?

mix mix
More important for us will be the embedding

(T and H>? (T4) = HP(TY), B8 > 0.

mix

HYP(T4) — HY(TY)  if 0<~y<a+8. (2.7)

(ii) Spaces of such a type have been first considered by Griebel and Knapek [11]. Also in
the non-periodic context they play a role in the description of the fine regularity properties
of certain eigenfunctions of Hamilton operators in quantum chemistry, see [40]. The periodic
spaces H®(T4) also occur in the recent works [9] and [13].

mix

A first step towards the sampling representation in Theorem 3.6 below will be the following
equivalent characterization of Littlewood-Paley type. We will work with the dyadic blocks from
(1.18) and put for £ € Nd

Se(f) =Y er(f)e™™.

kePy
Hence, for all f € Ly(T?) we have the Littlewood-Paley decomposition
= %) (2:8)
¢end
The following lemma is an elementary consequence of Definition 2.5.
Lemma 2.7. Let a > 0 and 8 € R such that o + 8 > 0.
(i) Then
o (pd d 2(alkl1+Blklc) 2\ /2
HOP(TY) = { € La(T) 1 groncrey 1= (D 225 ()3) 7 < oo}
keNd

in the sense of equivalent norms.
(ii) We have

Ha..i-l-ﬂej (Td) . 5>0,

mix
1

d o1
ZIH;;SBJ(W) . B<O0.
]:

e

Ha,ﬁ(Td) — ]

We need a few more properties of these spaces. For £ € Ng we define the set of trigonometric
polynomials

=1, d
Of course, dy(f) € T* for all f € Ly(T?).

Lemma 2.8 (Nikol’skij’s inequality). Let 0 < p < q < oo. Then there is a constant C =
C(p,q) > 0 (independent of g and £) sucht that

1 1
lolly < €27 2ig]),
holds for every g € T and every { € Nd.

Proof. A proof can be found in [22, Theorem 3.3.2]. [



To give a meaning to point evaluations of functions it is essential that the spaces under
consideration contain only continuous functions. To be more precise, they contain equivalence
classes of functions having one continuous representative.

Theorem 2.9. Let a > 0, 8 € R such that min{a + 8, + g} > 1. Then
H*A(T9) — C(T%).
Proof. Applying Lemma 2.8 yields
S Il = 3 2 e Dl

< Zgalkhwwkm (k)9 3 5y /)]
keNd

Employing Hoélder’s inequality we find

S 16l < (Z2—2(a|k|1+6|k|oo>2|k|1>5(Z22(a|k|1+ﬁkm>,‘5k(f)uz>

ol

keNg keNg keNg
1
—2(alk|1+8lk k12
< (Z 9—2(alkl1+B8lkl) 9 I1) 11l gecs (pay -
keNg

Using |k|so < |k|1 < d|k|oo gives in case 5 >0

3 g 2eklitAlke)gltl < §7 - a+G-3kh < o
keNg keNg

whenever o + g > % For the case 8 < 0 observe that

S o 2elklitBlkledglh < § o—2at+f—)lkl ~ o
keNg keNg

if @4+ B > 3. Since C(T?) is a Banach space, the sum ZkeNg 5x(f) belongs to C(T?) due to
its absolute convergence. Further
= a(f)

keNd

holds in Lo(T¢). Consequently, the equivalence class f € H .8 (T?) has a continous represen-
tative. |

Remark 2.10. (i) With essentially the same proof technique as above the assertion in Theorem
2.9 can be refined as follows. Let o« > 0 and 8 € R such that « + 8 > 0. Then it holds the
embedding

H*B(TY) { Hﬁli/g(Td) . >0,
HYP(TY) @ B <0.
This embedding immediately implies Theorem 2.9.
(ii) The restrictions in Theorem 2.9 are almost optimal. Indeed, let g € H®3(T), then the
function
fl@y,... zq) i=g(z1), xR,
belongs to H%?(T9). Hence, from H*#(T?) < C(T?) we derive H**#(T) «— C(T) which is
known to be true if and only if o + 8 > 1/2. In case a = 0 we know H*?(T9) = HA(T?).
Hence, H%? «— C(T%) if and only if 3/d > 1/2.

10



We will need the following Bernstein type inequality.
Lemma 2.11. Let min{a,a+ 3 —~} > 0 and £ € N¢. Then

£l s (T4) < gallli+(8— 7)|€‘°°||f||m

holds for all f € T*.

Proof. Indeed, for f € T, we have

1 Besimay = 3 22O 5 (£ < max 22(@RhE=lk)

ki <t;
ki <t; =1 eed
i=1,,d

< 22elthtB=ml<) || £] 12,

3 Sampling representations

(2.9)

> 2H=a ()13

ki <t;
i=1,-

,d

Our main aim in this section consists in deriving a specific Nikol’skij-type representation for
the spaces H*#(T?) in the spirit of Lemma 2.7. Specific in the sense, that the building blocks

in the decomposition originate from associated sampling operators of type (1.12).

need some technical lemmas.

Lemma 3.1. Let a >0, 8 € R, min{a,a+ 8} > 0 and
Y(k) = alkh + Bkl , k€N
Then there is an € > 0 such that
U(k) < (k) —e(|K |1 — |k]1)
holds for all k', k € N& with k' > k component-wise.

Proof. Let k' > k. This implies

(k) = (k) = alk’ =kl = B([K oo — [kloo)

We need to distinguish two cases.
Case 1. If 5 > 0 we have as an immediate consequence of (3.1)

(k) < (K) — alk’ — K.

Case 2. Let 5 < 0. From (3.1) and
K |oo = |Kloo < K = Kloo < |K — kL1

we obtain

(k) < (k) = (a+ B)IK — Kl .

11

First we

(3.1)



Recall the linear operator ¢ has been defined in (1.12). Let us settle the following cancel-
lation property.

Lemma 3.2. Let {,k € N¢ with k, < £, for some n € {1,...,d}. Let further f € T* and q; be
the operator defined in (1.12). Then qo(f) = 0.

f — Z am eimx

Im;j| <2*i
]:17 7d

Proof. Since f € T* we have

and

w(N@) = Y ama(e™)(z) = am [ ] e, (€77 ().
mjj| <2*i Imj|<2®i  J=1
]:17 7d ]:17 7d

Due to 2n=1 > 9kn > m, we have
1, (€7 ) (@) = (Ien — Tyen—1) ("™ ) (p) = 0
which implies ¢;(f) = 0. |

Now we are in the position to proof Nikol’skij’s type representation theorems for the spaces
HB(T9).

Proposition 3.3. Let min(a, a + 3) > 1/2. Then every function f € H*5(T?) can be repre-
sented by the series

f=> alf) (3.2)

keNg

converging unconditionally in Ho"ﬁ(’]l‘d), and satisfying the condition

S g2l b gy ()13 < Ol s (3.3)

keNgd
with a constant C = C(a, 5,d) > 0.
Proof. Step 1. We first prove (3.3) for f € Ho"ﬁ(']I'f). Let us assume 8 # 0, otherwise set
B = = 0. For technical reasons we need to fix &, (, 5 € R sucht that

- ~ 1
min{&—C,d—(+ﬁ}>0,a—d>0,5<6and(>§ (3.4)

holds. For 3 > 0 it is easy to find parameters &, ¢, 8 fulfilling (3.4). Critical is the case 5 < 0.
Here we choose the parameters in the following way:

1
B 0 2 a+ B ey
} } } H

a

¢

o T

The condition o + 8 > % implies that there is some ¢ > 0 such that a + 8 — ¢ > % holds.

Choosenow&,B,CERs.t.5—%<3<ﬂand%<§<5z<awith

1 ¢ - 1
O<a—§—§<a—g<a—§.

12



Obviously this is possible. It is easy to check that such a choice fulfills the properties in (3.4)

- ~ 1 e €
a—Cc+p > (amg-9+(6-3)
1
= (a+6-¢) -3
> 0.
We claim that there exists a constant ¢ such that
_ . B 1
2&‘€|1+B|Z|oo‘|q€(f)”2 <ec ( Z 22(cx|k‘|1+5|k‘|oo)||5k(f)||%) 2 (3.5)
ki>{;
i=1,-.d

holds for all ¢ € N¢. Because of f = ZkeNg 3,(f) and linearity of g5 we have

lae(Hl = || 32w,

keNg

Using 0x(f) € T*, Lemma 3.2, and the triangle inequality we find

lae(Hllz=1| D @@ < D laeldr(F))ll2-
2
T T

Using Lemma 5 in [30] and known results about the approximation power of the I,,, see [25],
we obtain

lae(Nll2 < 2717 166 e ay-
i2h

Lemma 2.11 yields

lge(£)ll2 S 27> 2 5 ()]l
ki>¢;
i=1,,d

We proceed by inserting an additional weight and apply Hoélder’s inequality

. 1 3 . 1
||qz(f)||252—<|é|1< 3 2—2[<a—<>|k|1+6|k|oo})2< s 22<a|k|l+ﬁ|k|oo>||5k(f)||g)2' (3.6)

1=1,-,d i=1,-,d

Lemma 3.1 with £ > 0 chosen such that min{a — {,& — { + B} > £ leads to

S o U@ OkHAlka) < g-2(@-Qlth+Blllx] 5 g-2elk—th

=1, ,d i=1,-,d

9—2[(a=0)[€l1+5l¢lc]

A

Inserting this into (3.6) proves (3.5).

13



Taking squares and summing up with respect to £ in (3.5) we get

D 2R gy (fF £ 3T PG HT AT 5y (1) .
0eNd £eNG k>t
i=1,,d
Next, interchanging the order of summation yields

Z22(a‘k‘1+5‘k‘°°)Hqg(f)Hg < Z22(d|k|1+ﬁlk|oo)||5k(f)”g Z 92((a=&)[t[1+(B=P) o

£eNG keNg £;<k;
=1, d

One more time we apply Lemma 3.1, this time with 0 < £ < o — &, which results in

Z 92(alkli+Blkloo) |10, (£)]|2

¢eNd
< 3 Q2EHBI) |5, ()3 22BN E-Dlkx) § g2kt
keNg ‘Zilgkid
=1,
S 3 el 5y ()]
kend

This proves (3.3).

Step 2. Let f € H*P(T?). We will show that f can be represented by the series (3.2)
converging in the norm of H*#(T?). Applying Lemma 2.11, Hélder’s inequality and (3.3)
yields

Do lae(Nllgesmey <Y 2008k g (1)1

keNg keNg
Cll £l e (ray < o0 (3.7)

IN

Hence ZkeNg gk (f) | o8(ray < oo and therefore ZkeNg qr(f) converges unconditionally in
H*#(T?) if min{a, o + B} > 1. We denote the limit as F := ZkeNg qr(f). By the definition
of the norm in H*#(T?)

11 sy = S 228102)| 15, 1))
¢eNd

we see that the trigonometric polynomials are dense in H*?(T%). Let now ¢ be a trigonometric
polynomial. We consider ||[F — t||ga,5(ray. Clearly, t = ZkeNg qr(t) and, by definition, F' =
> keng @ (f) implying

Fot=3 a1 (33)

keNg

with convergence in H®? (T?) for every trigonometric polynomial ¢. Now, for every trigono-
metric polynomial ¢ we have

IF = fllgescray < 1F =t gesray + 1t = fll geos ey (3.9)

14



By (3.7) and (3.8) we get
IE" = tll s (ray < Clf = tll s (pa)-

Putting this into 3.9 yields

| F = fllgesay < (C+ DIf — tll gesray-

Choosing t close enough to f gives

I = fllgesmay <e

for all € > 0 and hence ||F' — f|| go.5(ray = 0 which is

F=> af)

keNd

in HA(T9).
[

Proposition 3.4. Let f € R, min{o, 0 + S} > 0 and (fk)keNg a sequence with fy € T

satisfying
2(alkli+B8lk|oo) 2
2 [fll2 < oo
keNd

Assume that the series ZkeNg fx converges in Ly(T¢) to a function f. Then f € H®P(T9),
and moreover, there is a constant C = C(«, 5,d) > 0 such that

| £l1Zge.sgay < C D 2IEAR) £, (3.10)
keNd

Proof. Step 1. Let 0 < @ < o and & + 8 > 0. We claim that there exists a constant ¢ such
that

2Bkl 5, (F)lla < o (D7 2XeBhHA) fy 2 ) (3.11)

ki>t;
=1 d

holds for all £ € N&. Clearly, 6 : La(T9) — La(T?) is an orthogonal projection. The projection
properties of the operator d; together with fi € 7% yields

15e(Hllz < D 16e(fi)l2- (3.12)
ki>t;
i=1,.d

Thanks to || 67 |L2(T?) — Lo(T?)|| = 1 we conclude

e A)ll2 < D7 I fl- (3.13)
ki>t;
i=1,,d
Holder’s inequality yields
1 1
el < (30 22 (ST 2 ) (3.14)
k>0 ki >t;
i=1,d =1, d

15



Now we apply Lemma 3.1 and find

S o Halkh+Alk) < 9-2althiBltle) 7 gkt < 9=2Aaldh+6llc)

ki>t; ki>t;
i=T e d i=T,meeyd

This proves (3.11).
Step 2. Inequality (3.11) yields

Z 92(altli+81s) | 5,(£)]2 < Z 22(a—a)lth Z 22(alkl1+Blkleo))| £, 112
¢eNd £eNgd kizb;
i=1,-d
Z 22(d|k|1+5|k\m)“fk”§ Z 22(04707”5‘1
keNd ‘eilgkid
1=1,,
SEDDE e T

keNg

Since the left-hand side coincides with || f ||§{a,B(Td) Proposition 3.4 is proved. [ |

After one more notation we are ready for the main result of this section.

Definition 3.5. Let min{a, o + 8} > 5. We define

[N

11y = (D2 224D g (1)]3)

keNg
for all f € HYP(T9).

Theorem 3.6. Let min{«, a+(} > % Then a function f on T? belongs to the space HP(T4),
if and only if f can be represented by the series (3.2) converging in H*B(T?) and satisfying
the condition (3.3). Moreover, the norm || f| gre.s(1a) is equivalent to the norm ]\f\\;aﬁ(ﬂ,d).

Proof. This result is an easy consequence of Proposition 3.3 and Proposition 3.4, applied with

e = a(f) u

Remark 3.7. (i) The restriction min{a, o + 5} > % is essentially optimal, see Remark 2.10.
(ii) The potential of sampling representations has been first recognized by Dung [7, 8]. There
the non-periodic situation in connection with tensor product B-spline series is treated in the
unit cube.

4 Sampling on energy-norm based sparse grids

In this section we consider the quality of approximation by sampling operators using energy-
norm based sparse grids. In fact, a suitable sampling operator QA uses a slightly larger set
A, compared to A from (1.14) with the same combinatorial properties, see Lemma 6.4 below.
We put

Ac(§) ={keNg: (a—e)kh —(y =B -9kl <&} , £>0, (4.1)

16



Theorem 4.1. Let « > 0, v > 0 and 8 < 7 such that min{a,a + B} > % Let further
0 <e<~v—p <a. Then there exists a constant C = C(«a, B,7,€,d) > 0 such that

I1f = Qace) Sl array < C278 | fll gros (e (4.2)

holds for all f € H*B(T9) and all € > 0.

Proof. Step 1. The triangle inequality in H?(T%), Lemma 2.11, and afterwards Holder’s
inequality yield

17 = Qaneflman = || 3 @), 00 X laPlanm
< Y 2Welg(f)]l2
kEA:(€)
_ Z 2oc|k|1+/3|k|oo2_(a|k|1+’8|k|"°)2’y'klwHQk(f)HQ
kgA:(£)
1 1
< (X a3
ké A (€) kAL (€)

Applying Theorem 3.6 we have

1
Z 22(04|k|1+/3|k|00)qu(f)”%)2 < Ifllga.s(ra)-
kgAL(€)

Consequently, we obtain the following inequality

1
||f _ QAE(g)fHH’Y(’]I‘d) < ( Z 2—2a‘k‘1+2(’7_ﬂ)|k|00) 2 ||f||H0"B(Td)‘ (43)

kEA:(€)

Step 2. Now we consider the sum

Z 2—2a|k|1+2’y B) k|0 <Z Z 2~ 2ak|1+2(y— ﬁ)|k|oo

wisdo Seiao

where

Ki={keN: k=lklo} i=1,...,d (4.4)
We want to find a proper upper bound for

S g-2alr2—f)

kgA:(€)
keK;

For simplicity we restrict ourselves to the case i = 1 with k1 = |k|~ and set
k= (kg kg). (4.5)
Indeed, |k|; = ki + |k|; holds for all k € N&. So the following equivalence is true
kg Al = (a=g)kh = ((v=5) —e)k1>¢
— (a=g)kh+(a—(y=P)k >¢
§— (a—¢)[kh
- (=8

17
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Using this equivalence we can proceed with

Z 9 2alkl1+2(v=B)lklc Z o—2alk|s Z 9—2ak1+2(y—=pB)k1

kA, keNg—! i —(a—e)|k
%GK({E) k€Ng k1>max{\k\w—17%}

_ Z o—2alkl Z 9—2ak1+2(y—B)ki1 (4.6)
ken k12|]~§|00

+ Z 272a|];|1 Z 2720&k1+2('}/75)k‘1’ (47)
k¢ lcp%

where ~
s _ond-1. - (a—g)lkh 5
L={keNI"t: >——— < |k}
0 (=5 "

First we compute an upper bound for the sum in (4.6). Because of
92((y—B)—a) k| oo < 9—2(&~la—e])lkh if kel,

we conclude

Z Z o—20k142(y—B)k1 < CZ272a|%|122((776)*a)\15\oo
];:611 k‘12|];‘|oo /;6[1

Z Z 272ak1+2(’yfﬁ)k1

];?611 k12|12|00
< 9% Z o—2lk|1
]~€€Il
< 27

AN

Here the constant behind < does not depend on &.
Step 2. Next, we estimate the sum in (4.7). Similarly as above we find

Z 2—2a\l~c\1 Z 2—2ak1+2('y—5)k1 < Z 2—2a|1~c|12—2(§—(a—5)|l~c|1
k¢n PRl D | LY k¢l

a—(v—8)
272,

N

As a consequence we have

Z 9—2alkli+2(v=B)[klec < 9—2¢
k¢Ac(8)
This together with (4.3) proves the claim. ]

The previous result includes the case v = 0. Let us state this special case seperately.

Corollary 4.2. Let a > 0, 5 < 0 such that o + 8 > % and 0 < e < —f < «a. Then there is a
constant C = C(«a, ,e,d) > 0 such that

I1f = Qace)fllz < C27 8| fll et ray (4.8)

holds for all f € H*P(T%) and & > 0.

18



Remark 4.3. (i) For the approximation of the embedding I : HY, (T%) — H"(T9), where
a > v > 0, we could have used a simpler argument which does not require the sampling

representation in Theorem 3.6 to estimate || f — Qa_(e)f | g (re) - In fact, we estimate

17 = Qs < || 30 6|, € X Mas(Dllrce
kgA(€) kgA(§)

S 2 g ()2
kA (6)

(4.9)

IA

Due to the tensor product structure of the space H%, (T¢) we are allowed to use [30, Lemma
5] to estimate ||gx(f)|l2. Indeed, it holds

MMW—WM9®MM2(HW:W ) = La(T)|) 1 Lz, v

< 2ok 1| 2o, (ray -

Putting this into (4.9) yields

1f = Qacfllgcray < I fllare, pay > 27kl

mlx k¢AE ( )

With exactly the same method as used in Step 2 of the proof of Theorem 4.1 we obtain that

Z g—alkli+ylkle < 2—§’
kEA:(§)

which yields
1f = Qacflmvrey S 27 N f Nl ey -

(ii) The method from (i) is not suitable if v = 0. In fact, it produces a worse bound compared
to the one obtained in Theorem 5.4 below, namely

Hf QA (am) f”2 <27 m® 1||f||H(’ (T9) -

mlx

This is actually the strategy used in [33] to obtain (1.5), see also [2].

(iii) Estimates of sampling operators of Smolyak-type with respect to the embeddings I :
He. ([0,1]%) — HY([0,1]¢) may be found also in the papers [1, 2, 10, 24] and the recent one

[13]. In particular, Bungartz and Griebel have used energy-norm based sparse grids in case

a = 2 and v = 1. These authors have taken care of the dependence of all constants on the

dimension d, an important problem in high-dimensional approximation, which we have ignored

here.

5 Sampling on Smolyak grids

In this section we intend to apply our new method to situations where the classical Smolyak
algorithm is used. On the one hand we give shorter proofs for existing results and extend some
of them concerning the used approximating operators on the other hand.
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5.1 The mixed-mixed case

We consider sampling operators for functions in H2; (T¢) measuring the error in H. (T%).

The associated operator QA is this time given by

A) = Ao, ={keN] : (a—kh <& , £€>0. (5.1)

Theorem 5.1. Let v > 0 and o > max{vy,1/2}. Then there is a constant C = C(a,7,d) >0
such that

If = Qae)fllm.

1 (Tdy < C27€”J0HH&X(Td)
holds for all f € HY, (T9) and & > 0.

Proof. We employ Proposition 3.4 to Hgnx(Td) with the sequence (fk)keNg given by

_J alh) = k¢EAQ),
f’f‘{% 0 : keA®).

Note, that the only restriction for Proposition 3.4 is v > 0. Clearly, f — Qae)f = > fr and

keNd
hence

If = QA(E)fH%{;iX(’]I‘d) S Z 22%‘1”&”%

keNd
= > 22 elMhgalkhyg ()3
kEA(E)
< 2723 92 g ()3,
keNg

Applying Theorem 3.6 (here we need a > 1/2) completes the proof since
S22 E g (D3 S 11 ey
keNg

As a direct consequence of Theorem 5.1, we obtain the following result for the weaker error
norm || - HH“/('Jl‘d)

Corollary 5.2. Let a > % and 0 < v < a. Then there is a constant C' = C(a,7y,d) > 0 such
that

1f = Qae) ey < C27 fllgeray (5.2)
holds for all f € HY, (T9) and & > 0.

Remark 5.3. Sampling with Smolyak operators has some history. Closest to us are Temlyakov
[33, 34, 35] and Dung [4]-[8], see also [26], [27] and [30]. In almost all contributions preference
was given to situations where the target space was Ly(T?). Let us also refer to the recent
preprint [13].
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5.2 Thecasea>y—p=0
Now we are interested in the embedding
I:HYP(TY) — HP(T?).

The sampling operator Qa(¢) is determined by A(§) from (1.16) . Let us simplify the structure
by considering the index sets A(am) for m € N which consists of all k € N satisfying |k|; < m.

Theorem 5.4. Let 8 =~v >0 and a > % Then there is a constant C' = C(«, 8,d) > 0 such
that

—ma =1
1f = Qacam) fllgsray < C27™m 2 || fl| gass (e
holds for all f € H*®(T?) and m € N.

Proof. We proceed as in proof of Theorem 4.1. The triangle inequality in H?(T?) yields

17 = Qatam flasen = | 3 D]y € 2 Nas(llmacrs

kEA(am) kEA(am)

Applying Lemma 2.11 gives

If = Qa@myfllassy S Y. 20F=lgu(f)]2-

k¢ A(am)

Proceeding with Holder’s inequality leads to

1 = Quagamyflla < (D2 27200 )* (37 gelkhr Akl g (1))3) 7.

|k|1>m |k >m

[N

Employing the upcoming lemma and Theorem 3.6 finishes the proof.

Lemma 5.5. Let o« > 0. Then

Z 272a\k\1 5 md71272am (53)

|k]1>m
holds for all m > 0.

Proof. This lemma is well known. Let us prove it for completeness. We decompose the sum
in the following two parts

S g2l = Y galkh . § g-Zalkh, (5.4)

|kl1>m |k[1>m [k|oo>m
|kfoo <m

First we compute an upper bound for the second sum in (5.4). Again we use the convention
for k of k from (4.5) and decompose as follows

d
Z 2—2a|k|1 < Z Z 2—2a|k|1 —d Z 2—2a|k|1 Z 9—aky
koo >m =1 ’Zi>NT;L l;eNéi)*l ki>m
€lNg
< 9—am
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The first sum in (5.4) gives

—2alk|1 - - - —2alkl|1
> 2 < D> DD 2
=m

koo < k2=0 kq=0 k1 —|]~€|1
|k|1>m
g (m + 1>d71272am.
Consequently,
Z 2—20&%‘1 5 md—12—204m (55)
|k|1>m
holds for all m > 0. |

5.3 The case vy =0
From Theorem 5.4 we immediately obtain the special case (v = 8 = 0)
_ d—1
If = Qamyfll2 < C27™m =" || fllga (gay , meEN,

compare with [26], [30]. With our methods we can additionally show an error bound for L. (T¢)
instead of Lo(T%).

Theorem 5.6. Let a > . Then there is a constant C = C(a,d) > 0 such that

1 d—1
I1f = Qaam) fllso < C27™O2)m 2 || f| e

mix(Td)
holds for all f € HY, (T%) and m € N.
Proof. As above with Lemma 2.8 we conclude
IF = Qaemfle = | 2 @ < X lalx
k¢ A(am) k¢ A(am)
< D 2lhiElthamelthyg (£));
|kl1>m
1 1
< (30 2D (N 2l (n3)t. (5.6)
|kl1>m k|1 >m
Applying Lemma 5.5 and Theorem 3.6 proves the claim. |

Now we turn to the case 2 < g < co. The following result allows for comparing the present
situation with the results in Subsection 5.1.

Lemma 5.7. Let 2 < q < co. Then

1/2 1/2
10e S (0 10e(nI2) s (32 22 s (n)3) T = sy

H2

) Td
keNg keNg mix (%)

holds true for any f € Lq(']I‘d), where the right-hand side may be infinite.
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Proof. The proof of the first relation in Lemma 5.7 is elementary using the Littlewood-Paley
decomposition in L, (T?) together with ¢/2 > 1, see for instance [35, Theorem 0.3.2, Page 20].
The second relation follows by an application of Nikol’skij’s inequality in Lemma 2.8. |

Remark 5.8. Let us mention that Lemma 5.7 can be refined to

_ 1/q
1l S (0 20215 pyg)

keNg

For this deep result we refer to [35, Lemma II.2.1] and to [7, Lemma 5.3] as well as [23,
Lemma 1] for non-periodic versions. In a more general context this embedding is a special case
of a Jawerth/Franke type embedding, see [14].

6 Sampling numbers

In this section we will restate the approximation results from Sections 4 and 5 in terms of
the number of degrees of freedom. We additionally show the asymptotic optimality with
regard to sampling numbers of the sampling operators considered in Sections 4 and 5. This
requires estimates of the rank of the corresponding sampling operators. A lower bound for the
rank is deduced from the fact that the respective sampling operators reproduce trigonometric
polynomials from modified hyperbolic crosses Ha. Recall that our approximation scheme is
based on the classical trigonometric interpolation. We have used several times the fact that
the operator I,,, defined in (1.11) reproduces univariate trigonometric polynomials of degree
less than or equal to m. What concerns the operator Qa in (1.13) we can prove the following
general reproduction result.

Lemma 6.1. Let A C N¢ be a solid finite set meaning that k € A and £ < k implies £ € A.
Then Qa reproduces trigonometric polynomials with frequencies in

Ha = P, (6.1)
keA

where Py, is defined in (1.18).

Proof. We follow the arguments in the proof of [30, Lemma 1]. By the fact that |A| < co we
find a m > 0 such that
A c{o,...,m}%

Let

d d
T := Z ®77ki and R:= Z ®77ki-
kgA  i=1

[kloo<m =1
[kloo <m.

Of course, it holds

Qa=T-R
Since
m
Z N = Iom
k=0
we obtain .
T == ® Ig'm .
i=1



Obviously, for £ € Ha the univariate reproduction property yields
d .
Tezﬁ H Igme o _ ezlm

for all x € T?. It remains to prove Re’ = 0. Let k = (ki,...,kq) € N such that k ¢ A. Due
to ¢ € Hp there exists u € A with [¢;] < 2% for all ¢ = 1,...,d. The solidity property of A
yields the existence of j € {1,...,d} with

u; < kj.

This gives
|6j] < 25 < 2kimh < 2k,

Finally, by the univariate reproduction property, we obtain

My (€4°) = (L, — Ly, 1)e' = 0.

The previous result immediately implies the relation

rank Qa > Z 2lkl1

keA
if A C Ng is solid.
Lemma 6.2. Let a >0, 7> 0 and B < such that 0 < v — B < «

(i) The index sets A(a, B,7;&) defined in (1.14) and A(e, o, B,7;€) defined in (1.15) are
solid sets in the sense of Lemma 6.1 for every & > 0.

(ii) The index set A(c; &) defined in (1.16) is a solid set for every £ > 0.
Proof. The second result is trivial. We prove the first one. Let
Y(k) = alkli — (v — B)|k|-
The set A(€) consists of all k € Ng with ¢(k) < £&. Applying Lemma 3.1 yields
(k) < k) <€
for all k' < k € A(€). That means all the k" also belong to A(€). [ ]

Remark 6.3. Hyperbolic crosses Hae) (with A(§) from (1.14) and (1.16)) in the 2-plane:
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b4+

Figure 3: a =2, §=0,v=1, £ =4 Figure 4: a =1, £ =14

Comparing Figure 8 and 4 shows that energy norm based hyperbolic crosses contain “mostly”
anisotropic building blocks than its classical (Smolyak) counterpart.

In the next lemma we give sharp estimates for } ;¢ 2kl with A(€) from (1.14).
Lemma 6.4. Leta >0, v >0, 8 € R such thaty > 3 and o >~ — 3. Then
S ol < gam
keA(S)
holds for all £ > oo — (v — ), where the constants behind “<” only depend on o, v — 3, and d.

Proof. Step 1. First we deal with the upper bound. We are going to use the same notation
as in (4.4) and (4.5). We obtain the following inequality

Z:ﬂh<§§ S gk

keA(§) =1 ke K;NA(E)
By symmetry it will be enough to deal with ¢ = 1. Hence

Z 9lkl1 < d Z olkl1

keA(€) ke K1iNA(¢)

Now we want to decompose the summation over k. Since k1 > |k|~ we find

ke Al§) < alkli—(y—B)k <¢

= a(lkh+k)— (y— Bk < ¢
¢ — olkl
a—(y=p)

<— k<

This implies

e v = alkli + (a— (v = B))lkle <&
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We shall use these inequalities to produce an appropriate decomposition of K1 N A(£) which
results in

E—alkly
_a=(v=B)
d ool < 4 3 2Fh §™ gk
keA(§) i keng—* i k1=k|oo
alkli+(a—(v=8))lklo <&
< 25w 3 9a=tr—p k1

alkl1+(a—(y—PB))|kloo <&

£
5 2a=(r-5A)

since o/ (a — (v — ) > 0.
Step 2. We prove the lower bound. First we claim that

. 3
K= Lai (wﬁ)J(l’O’ ,0) € A(6).
Indeed,

e A§) = alk'i— (v =Bk <&

£ §
— (a—¢g)|————|—-((7=-B)—&)|—————=1| <
-9l =09 ;=g =
£
< o — — — | <&,
(-t-0)| ;5] =¢
Obviously, the last inequality is true. Consequently
Z 2|k|1 > 2|k*|1 — zlaf(ifﬁ)J > 20(_(3_5)_1.
keA(E)
The proof is complete. n

Corollary 6.5. Let « >0, v >0, 8 € R such that v > 8 and a > v — 3. Let further A(§) as
in (1.14).

£
(i) The sampling operator Q) uses at most C22=0=7) function values, where the constant

C > 0 only depends on o, v — 8 and d.
(ii) The rank of the linear operator Q) satisfies

£
rank QA({) = 20-0=A) §>a— (/7 - B)v
where the constants behind “<” only depend on o, v — 3, and d .

Proof. Clearly, I,,f uses 2m + 1 values of function f, hence n,,f is using < 2"*? function
values. This implies that g f applies < 2242kt function values. As a consequence of Lemma
6.4 we find that Qa () f is using

DI
keA(E)

function values of f. Part (ii) follows from Lemma 6.1 and the lower bound in Lemma 6.4. W
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Let us now count the degree of freedom for a classical Smolyak grid.

Lemma 6.6. For any d € N and m € Ng, we have the inequality

|k[1<m

Proof. This assertion is a direct consequence of [9, Lemma 3.10] together with the well-known
relation
N\» N eN\n
G =0)= ()
n n n

Corollary 6.7. Let m € N and

A={keNd : |k <m}.

(i) The sampling operator Qa is using at most Cm?=12™ function values, where C decays
super-exponentially in d.

(ii) The rank of the linear operator Qa satisfies
rank Qa =< mé 12", m € N.

Proof. Part (i) follows from the fact that g (f) uses 22¢2/¥l function values for any k together
with the upper bound in Lemma 6.6. The second assertion can be derived by using the
reproduction properties of Qa, see Lemma 6.1, and the lower bound in Lemma 6.6. |

Remark 6.8. For d = 2 the sampling grids of Qa(e) as in (1.14) and (1.16) look like:

2y 2y

2 2

Figure 5: a =2, f=0,v=1, =5 Figure 6: a =1, £ =5

These figures show that the point sets of Q¢ have a lot of internal structure. However, they
are far from being uniformly distributed within T¢.

Now we are in position to formulate our results in terms of sampling numbers.

Theorem 6.9. Let o, 3,7 € R such that min{o,aa + f} > 1/2, v >0 and 0 < v - < «.
Then it holds

gm(Iy - HYB(TY) = HY(TY) < a,, (1) : H*P(T?) — HY(T?) < m= @8 m>1.
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Proof. Proposition 7.1 below shows
m~@=O=A) < g, (1) : HYP(TY) — HY(T?) < go(I; : H*P(T?) — HY(T?)), meN.

Suppose 0 < ¢ < v — . Let D.(§) be the number of function values the operator A.(§) is
using. Then Theorem 4.1 yields

D.(§) >a7(776)

If = Qace) [l (ray S (m D(&)™ OB || ]l gras oy -

Applying Corollary 6.5, (i) with & — ¢ and v — 8 — ¢ shows that

D.(&)
Sa—tpy < Cile, a7 = B,d).

This proves the estimate from above in case m = D.. The corresponding estimate for all m
follows by a simple monotonicity argument. |

Remark 6.10. In case § = 0 Griebel and Hamaekers recently proved a similar upper bound
for gm(I1) (see [13, Lemma 9]). Under the conditions of Theorem 6.9 the family of sampling
operators Qa (¢ for 0 <& <~ — (3 is optimal in order.

The next theorem collects sharp results for sampling numbers which are based on Smolyak’s
algorithm.

Theorem 6.11. Let o > 1/2 and suppose 0 < vy < a.
(i) We have for m > 2

gm(I5 : HS (T — HY. (T) < apm(I5 : H (T — HY. (T%) < m~ (@) (logm) @@=

mix mix mix mix ( )
6.3
(ii) Let 2 < q¢ < co. Then we have for m > 2
gm(Ll Hr?nx(’]rd) - Lq(Td)) = (Im(L,L Hr?ux(’]rd) - Lq(Td)) 6.4
=m oty (logm)(d_l)(a_%jﬁ) ) (64)

(iii) In case ¢ = oo it holds for all m > 2
(s = Hiyo(T%) = Loo(T%) < @ (I : Higy(T?) = Loo(T%) < m=*2 (logm)=D. (6.5)

Proof. Proof of (i).
Proposition 7.1, (iii) below shows for m > 2

m= (D (log m) DO < (15 - Hio(T) = Hyo (T) < g7

mix

Hii Hyi(T?) — HY(T%).

Concerning the estimate from above we apply Theorem 5.1 with £ = (a — v)m for m € N.
This gives
If = Qaa—yym)fllm, (ray S 27 (@=ym = meN. (6.6)

Let D(m) be the number of function values used by Qa((a—)m)f- By Theorem 6.7,(i),(ii) we
know that
D(m) = m® 2™ and logD(m) = logm.

Rewriting (6.6) gives
1f = Qaa—yym) f i _ray S D(m) =7 (log D(m)) =D
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Obvious monotonicity arguments complete the proof.

Proof of (ii).

The estimate from below for the approximation numbers is due to Romanyuk [21]. The cor-
responding estimate from above for the sampling numbers is an immediate consequence of
Lemma 5.7 together with (i), where v =1/2 —1/q.

Proof of (iii).

The estimate from below for the approximation numbers is due to Temlyakov [34]. Let us
mention that this lower bound is also applied by a recent general result by Cobos, Kiihn and
Sickel [3]. For the details we refer to Proposition 7.1 below. The estimate from above for
sampling numbers follows from Theorem 5.6 combined with Corollary 6.7,(i),(ii) in the same
way as in (i). [ |

Remark 6.12. As we have mentioned before, not all the results in Theorem 6.11 are new.
Part (iii) reproduces a result due to Temlyakov [34]. Note, that our methods allow for proving
this result in the framework of classical trigonometric interpolation, see Theorem 5.6, whereas
Temlyakov had to use de la Vallée-Poussin sampling operators. In any case, it is remarkable
that Smolyak’s algorithm yields optimal bounds here. A non-periodic version of (ii) has been
proved recently in Dung [7].

7 Appendix: approximation numbers

Corresponding estimates for the approximation numbers serve as a natural benchmark for the
sampling problem we are interested in. In the sequel we mainly collect the relevant results
from [9].

Proposition 7.1. (i) Let « >~y — 3> 0. Then
an(I : HYP(TY) — HY(TY)) < n="=F  peN.
(ii) Let « >~y — =0. Then
an(ly - H?(TY) — H(T?) < =% (logn)@ Y 2<neN.

(iii) Let o>~y > 0. Then

an(I5 : H (T4 — HY (T%) < =@ (logn)@-De=) = 92<pneN.
In particular,
an(Is : HE (T — Ly(T?) =< n~® (logn)®@ D, 2<neN. (7.1)
(iv) Let > . Then
an(Ly : HY (T%) — Loo(TY) < n *T2(logn)*@ D,  neN.

Proof. Let us consider (iii) first. The relation in (7.1) is due to Temlyakov [34, Theo-
rem II1.4.4]. For v > 0 we use the commutative diagram

HI?liX (Td) #) Hr’l/lix (Td)

Al ]B
HO(TY) —Ls Ly(T9),

mix
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where

(1+ Iy 22 e,

Af(x) = > al(f)

—

kezd Jj=1
d

Bf(x) = Y al(f) [T+ 1k} 72
kezd Jj=1

Clearly, A : H2, (T¢) — HZ 7(T¢) and B : Lo(T¢) — H). (T?) are isomorphisms. In

addition, we have I = B o I* o A. The multiplicativity of the approximation numbers implies

an(I: HY (T%) — H?

mix

(T9) < N A Bl an(I* : Hipy (T?) = La(T%) .

mix

Taking (7.1) into account yields the estimate from above. For the lower bound we use the
commuative diagram the other way around to see I* = B~' oo A~'. We obtain

an(I* - Hyp (1) = Lo(TY)) < | AT B [ an(I : Hi(TY) — Hyyp (T9)

mix

Again (7.1) yields (iii). To prove (ii) we use the commutative diagram

Ho8(Tdy —L— HB(TY)

Al [

He. (T?) —L s Ly(T%)

mix

with A, B modified accordingly. The result follows by (7.1).

The proof of (i) can be found in [9, Theorem 4.7], however, with the additional restriction
that 2(y — 8) > a > v — 3. For the convenience of the reader we give a proof without this
restriction. The lower bound in (i) is a consequence of a well-known abstract result (see [36,
Theorem 1] or [17, Theorem 1.4, p. 405]) on lower bounds for linear n-widths, namely

Lemma 7.2. Let L1 be an n + 1-dimensional subspace in a Banach space X, and By 41(r) :=

{f€Llpnti: ||fllx <r}. Then
An(Bpyi(r), X) > .

Here \p(Bp+1(r), X) denotes the linear n-width of the set Bp4+1(r) in X.

We apply this Lemma with X = HY and L, to be the subspace of all trigonometric polyno-
mials with frequencies in Hag) from (6.1) with A(§) = A(e, 3,7;€) and £ chosen accordingly.
From Lemma 6.4 we get n = 28/(@=(r=8))  We immediately see the Bernstein type inequality

1Fllgas S 25 0f e f € Loga s (7.2)

Hence, by choosing r := 27¢ we get from (7.2) that B,1(r) is contained in the unit ball of
H#_ Finally, by Lemma 7.2 we conclude

an(l1) > A(Bpi1(279), HY) = 278 < p~(a=(=A) |

For the proof of (iv) we apply a lemma that goes back to the work of Osipenko and Parfenov
(see [20]). For more details we refer to the recent preprint by Cobos, Kiithn and Sickel [3].
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Plugging (7.1) into [3, Lemma 3.3] yields

an(Iy : HY, (T — Loo(TY)) >

mix

w\sm.

(Za 13 mzz Td) —> L2(Td))) '
> (iy"?a 1og<j>2<d‘”“> } (7.3)
j=n

Estimating the sum by an integral gives

ZJ (log j)2@=De < / y~2*(log y) =12 dy

> (logn)*@-be / Y dy
= (logn)2d-Dap=2a+L (7.4)

Inserting (7.4) into (7.3) yields the lower bound in (iv). |
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