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Abstract

In this thesis we develop the numerical tools to simulate heat diffusion in a tissue domain
(liver) with a pair of blood vessel trees, coupled with heat advection through these vessels.
This problem arises as part of the simulation of radio-frequency ablation of tumors.

We develop our methods for a two-dimensional geometry to keep testing and visualization
simple while being able to focus on the numerical properties of the methods. Since planar
organs are a purely artifical problem, we first need to generate suitable geometries which
can be used for our computations.

Then we first consider the problem of heat diffusion in the tissue while the vessel trees
are viewed as stationary sources of energy. We use finite elements to numerically solve
this problem. Next we present a method to simulate advection in the vessel trees while the
surrounding tissue is viewed as a stationary source. For this problem, we develop and use an
ELLAM scheme. Finally, these two processes are coupled such that conservation of energy
is locally satisfied.

Zusammenfassung

In der vorliegenden Arbeit entwickeln wir Werkzeuge zur numerischen Simulation von
Wärmediffusion in einem Gebiet von (Leber-)Gewebe, das von einem Paar von Blutgefäß-
Bäumen durchsetzt ist, gekoppelt an Wärmetransport durch diese Blutgefäße. Dieses Prob-
lem tritt auf als Teil der Simulation von Radiofrequenz-Ablation von Tumoren.

Wir entwickeln diese Methoden für eine zweidimensionale Geometrie, um die Visuali-
sierung und das Testen einfach zu halten und uns konzentrieren zu können auf die nu-
merischen Eigenschaften der Methoden. Da ebene Organe ein rein künstliches Problem
sind, müssen wir zunächst eine für unsere Rechnungen passende Geometrie generieren.

Dann betrachten wir zuerst das Problem der Wärmeleitung im Gewebe, wobei die Blutge-
fäße als stationäre Energiequelle angesehen werden. Um dieses Problem numerisch zu lösen,
benutzen wir finite Elemente. Anschließend präsentieren wir eine Methode zur Simulation
des Transportes durch die Gefäßbäume, wobei das umgebende Gewebe als stationäre Quelle
angesehen wird. Für dieses Problem entwickeln und benutzen wir ein ELLAM-Verfahren.
Schließlich werden diese beiden Prozesse so gekoppelt, dass lokal Energieerhaltung erfüllt
ist.
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1 Introduction

1.1 Medical Background

The treatment of liver carcinoma is an important problem in medicine. A standard technique
is surgical resection, but it can be problematic as entire segments of the liver may need to be
removed, in many cases it is even impossible due to the size or location of the tumor relative
to the key vessel [34].

A schematic image of a human liver (from [20]) is shown in Figure 1.1.
Minimally invasive RF ablation is an alternative: An RF probe consisting of two electrodes

is inserted into the organ, it uses AC current of about 500 kHz. This current leads to a
heating due to the Ohm resistance of the tissue. At a temperature of about 320 K (45 –
50 ◦C), intracellular proteins denaturate and cell membranes are destroyed [34, 25, 26].

A more complex RF probe (from [34]) is shown in Figure 1.2.
The problem with this method of treatment is that strictly local heating is not possible,

thermal energy is distributed to regions other than the tumor by heat conduction through the
tissue and blood flow through blood vessels. One is interested in optimizing the treatment
such that the tumor is destroyed but damage to the surrounding organ is minimized, for this
purpose, simulations of the heat distribution are necessary.

The setting is schematically shown in Figure 1.3 where an RF probe is inserted into a
tumor located near a bifurcating blood vessel. This image was taken from [25].

Figure 1.1: Schematic image of a human liver with blood vessels, from [20].

1.2 Our Model

We present a two-dimensional model of part of the physical effects involved. The model
involves a square domain of tissue with an arterial and a venous vessel tree, binary trees
consisting of one-dimensional straight line segments that are self- and mutually intersection
free.
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1 Introduction

Figure 1.2: Structure of a four-tine RF probe for hepatic tumor ablation, from [34].

Figure 1.3: Schematic sketch of an RF probe inserted into a tumor near a large blood vessel,
from [25].

Tissue and vessels are viewed as one closed system with respect to energy. We have inflow
and outflow of blood through the root segments of the two vessel trees and external heating
of the tissue (but not the vessels) by the RF probe. Internally, we model heat conduction (but
no blood flow) in the tissue and blood flow but no heat conduction in the vessel trees. Be-
tween those two geometries, heat conduction between tissue and the non-terminal segments
of the vessel trees and outflow / inflow along the terminal segments of the trees into / out
of the tissue will be modeled.

For the tissue domain, we have a two-dimensional diffusion problem with Neumann
boundary values and both area (probe heating) and line sources (heat exchange with the
vessels), for the vessel trees, we have one-dimensional advection with line sources on a
branching structure.

A suitable geometry, that is a pair of vessel trees within a square two-dimensional domain
of tissue, does not appear in nature, so the first step towards our simulation is to generate
such vessel trees. The trees are generated to obtain a homogeneous supply of blood for the
tissue to some extent, velocities of blood flow through the individual segments are balanced
to minimize the dissipation of kinetic energy in the tissue.
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2 Vessel Trees in 2D

In this chapter, we introduce notation for vessel trees, explain how suitable data structures
for such trees can be implemented and what tools we need to discretize the individual
segments of the trees compatible to a rectangular discretization of the underlying tissue
domain.

Then, we present a method to generate two-dimensional vessel trees suitable for our pur-
poses. This involves two optimization procedures.

2.1 Notation

2.1.1 Binary trees

We use the notation of [28] for binary trees that describe the topological structure of our
vessel trees.

Definition 2.1.1. A directed graph is a pair (N, A) with the following properties:

1. N is a finite, nonempty set,

2. ∅ 6= A ⊂ N × N and

3. a = (ki, kt) ∈ A =⇒ ki 6= kt.

The elements k of N are called nodes, the elements a of A are called arcs. If a = (ki, kt) ∈ A,
ki and kt are the initial and terminal node, respectively.

Definition 2.1.2. The multiplicity of a node k ∈ N in a directed graph (N, A), m(k), is defined
to be the number of arcs leaving k:

m(k) :=
∣∣{a ∈ A

∣∣ a = (k, k̃) for some k̃ ∈ N
}∣∣

Definition 2.1.3. If k is a node, p is a segment with terminal node k and d is a segment with
initial node k, p is called the parent segment of d, d is called the daughter segment of p.

If d and e are the two distinct segments with the same initial bifurcation node k, they are
called siblings.

Definition 2.1.4. A (positive) path from k0 ∈ N to kr ∈ N is a P = (k0, a1, k1, a2, . . . , ar, kr)
where kρ ∈ N ∀ ρ = 0, . . . , r and aρ = (kρ−1, kρ) ∈ A ∀ ρ = 1, . . . , r.

Definition 2.1.5. A binary tree is a directed graph satisfying:

1. there is exactly one node r ∈ N called root that has no incoming arc: there is no k̃ ∈ N
with (k̃, r) ∈ A,

2. for each node k ∈ N, there is a unique path from the root r to k,
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2 Vessel Trees in 2D

3. each node k ∈ N has multiplicity at most two

Remark 2.1.6. 2. implies that the tree is connected, 3. means that there are no multifurcations,
at most bifurcations.

There are three possible values for the multiplicity of a node k:

1. m(k) = 0: leaves

2. m(k) = 1: intermediate nodes that may be used for subdividing arcs

3. m(k) = 2: bifurcation nodes

Bifurcations are denoted by (p � d, e) or (d, e � p) if p is the parent and d, e are the daugh-
ters, depending on the type of tree (see below).

2.1.2 Geometric Binary Trees

Other than the purely topological information of a binary tree, we also need to store geomet-
ric information and further data for the nodes and arcs. We now describe the data structure
necessary for this as well as further geometric restrictions. Part of the terminology here is
based on [17].

Definition 2.1.7. A node in the context of vessel trees is a node that has two coordinates
x, y ∈ R, its location, and a level l ∈N∪ {0}.

The level is the number of bifurcation points on the (unique) path from the root (included
when counting) to the node (not included when counting), the root always has level 0.

Definition 2.1.8. A segment of a vessel tree is an arc that is viewed as a one–dimensional
closed line segment (i. e. containing initial and terminal point) from its initial node to its
terminal node. In some situations (where necessary from a physical point of view), we view
the segment as a two–dimensional object, so we assign a radius r ∈ [0, ∞). As we consider
flows through the vessel trees, we assign a constant velocity v ∈ [0, ∞) to the segment.

Later, we assign one–dimensional grids to each segment to discretize functions on the
segment.

Definition 2.1.9. A terminal node is a leaf in a vessel tree, a terminal segment is a segment
terminating in a leaf.

Note that level and generation are different concepts: Along a path in the tree, generation
(of segments) strictly increases whereas level (of nodes) increases at bifurcation nodes but
stays constant at intermediate nodes.

2.1.3 Vessel Trees

We only consider binary trees for which the root node has multiplicity one, i. e. there is a
unique root segment.

Definition 2.1.10. A vessel tree is a binary tree with root node of multiplicity one for which
nodes and segments have the additional data described above and for which no two seg-
ments intersect geometrically except for connected segments that may (and do) intersect at
the connecting point. We consider an arterial tree and a venous tree.
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2.1 Notation

In the arterial tree, blood flow is directed from the root to the leaves, in the venous tree,
it is directed from the leaves to the root node. This explains why we do not allow negative
velocities.

A tree with n terminal segments is called n-tree for short.

We identify a tree with the union of its segments indexed in such a way that the root node
always has index 0 and the root segment always has index 0 as well: T =

⋃
i Si.

Moreover, the tree of arteries, Ta, and the tree of veins, Tv, in our model may not touch at
all, not even in a single (connection) point. This means Ta ∩ Tv =

⋃
i Sai ∩

⋃
j Sv j = ∅. This is

called a valid pair of trees.
For a segment s (or with index s, this will be clear from the context), we write

• rs for its radius

• A∅,s for its cross section area (in 2D, this is the diameter: A∅,s = 2rs).

• `s for its length

• vs for the velocity of its blood flow

• θs = vs A∅,s
vp A∅,p

for the flow splitting ratio from parent segment p to s.

Later in Chapter 4, we want to treat vessel trees as one-dimensional objects, despite their
branching structure. For this purpose, we identify a vessel tree with a finite union of closed
intervals in R:

Let T =
⋃

i Si, K ∈ N : K > li ∀ i, then identify T with
⋃

i[iK, iK + `i]. On an arterial tree,
iK corresponds to the initial node of arc i, on a venous tree, iK corresponds to the terminal
node of segment i. This representation is shown in Figure 2.1. The connectivity structure of
the tree is then represented by relations between boundary points.

In case of the arterial tree, we consider a flow from the root to the leaves with splitting at
bifurcations (p � d, e), for the venous tree, flows originate at the leaves and flow towards the
root being combined at bifurcations (d, e � p).

Let f : T → R be a function defined on the arterial tree and (p � d, e) be a bifurcation, then
there is some relation between

f (pterm) = f (pK + `p),
f (dinit) = f (dK) and
f (einit) = f (eK)

that is typically derived from some physical conservation law. pterm denotes the terminal
node of p, similarly dinit and einit are the initial nodes of d and e. This is the same (bifurcation)
node viewed as part of each of the segments.

We use the same notation for both representations of trees, f : T ⊂ R2 → R and f : T ⊂
R→ R.

In case of a bifurcation (d, e � p) in the venous tree, relations are between

f (pterm) = f (pK),
f (dinit) = f (dK + `d) and
f (einit) = f (eK + `e).
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2 Vessel Trees in 2D

Ta Tv

Ω

0
1

2

0K + 0 1K + 0 2K + 0
1K + `a

1

0K + 0 1K + 0 2K + 0
0K + `v

0 1K + `v
1 2K + `v

2

0K + `a
0 2K + `a

2

R

R

Figure 2.1: Tissue, vessels and one-dimensional representation of the vessel trees used for
our computations.

Note that initial and terminal node refer to the connectivity structure of the tree and parent
segments always terminate in a bifurcation node whereas the 1D interval representation is
different on arterial and venous tree.

Under the identification above, we have a mapping ψ of coordinates between 1D and 2D
as follows:

ψ : (x, y) 7→ Λ = K · s + λ s ∈N, λ ∈ [0, `s]

ψ−1 : Λ = K · s + λ 7→ (x, y)
(2.1)

such that[
x
y

]
= ks,init + λ(ks,term − ks,init).

For ψ to be uniquely defined on bifurcation points, we view a bifurcation point as part of
the parent segment and not of the daughters1.

Values that are constant for each segment can then be viewed as functions constant on the
corresponding intervals.

For our computations we use the setting shown in Figure 2.1: a valid pair of arterial tree
and venous tree branching into the domain Ω = [0, 1]2 from the left respectively the right
boundary.

2.2 Computer Generation of Vessel Trees

Figure 2.2 is a photograph of a tree. This shows both the motivation for defining a concept
of geometric trees and a problem when dealing with a two-dimensional model.

Real-world data for vessel trees is inherently three-dimensional. In general, projection of
three-dimensional trees leads to loops and taking a cross-section results in non-connectedness.

1this is consistent with the way we discretize vessel trees in Section 4.3
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2.2 Computer Generation of Vessel Trees

Figure 2.2: A tree in Brandenburg in winter

Leaves and very thin parts of the body (the authors of [41] mention rabbit ears, frog mesen-
tery, rat cremaster muscles and hamster cheek pouches) may be viewed as an approximation
in some sense of a two–dimensional tree, but for our purposes, we use computer-generated
trees.

Schreiner, Neumann et. al. developed a method to generate a two-dimensional vessel tree
in a specified domain, [30, 23], but this was a single tree only. We need to adapt their model
to the case of generating a pair of trees.

Note that there is a fundamental difference from a pair of trees in three dimensions: in
two dimensions, vessel segments (line segments) have codimension 1, so few segments of
one tree can stop the other tree from branching into substantially large regions of the domain.
In three dimensions, segments of the two trees can quite easily “wind around each other”.

2.2.1 Motivation for Constrained Constructive Optimization

The authors of [30] consider the problem of finding a tree that supplies a domain of tissue as
homogeneously as possible with blood, minimizing the volume of the vessel tree. The root
node is assumed to be lying on the boundary of the domain since supply of blood requires
inflow from the outside.

Other than the root and the terminal nodes, all nodes are bifurcation nodes.
The radii of the segments satisfy the power law [40, 23]:

r3
parent = r3

daughter 1
+ r3

daughter 2
. (2.2)

For real vessel segments with two-dimensional cross section area in 3D, this radius ratio
leads to decreasing velocity when flow is split at bifurcations.

The radii of terminal segments are assumed to be a fixed value. This is reasonable because
the authors assume homogeneous supply by a fixed number of homogeneously distributed
terminal nodes.

If `s is the length of a segment s and A∅,s is the cross section area, the total volume is the
sum over all segments in the tree

∑
s

`s · A∅,s. (2.3)
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2 Vessel Trees in 2D

Analytically, this is an optimization problem:

Proposition 2.2.1. Given

• the geometric location of the root node on the boundary of the domain

• the number of terminal nodes as well as their (mutually distinct) geometric location,

• a terminal radius rterm ∈ R for all terminal segments and other radii satisfying (2.2) at all
bifurcations,

• a sufficiently small δ ∈ R,

there is a vessel tree with bifurcations only satisfying

dist(s, s′) ≥ δ for all (1D line) segments s, s′ that are not connected (2.4)

that has minimal total volume.

Proof. For a finite number of terminal nodes, there is only a finite number of topologies of
binary geometric trees, not necessarily for all of these a valid (satisfying (2.4)) vessel tree can
be found.

For sufficiently small δ, there is at least one topology for which we get a valid vessel tree,
this is shown in Lemma 2.2.2.

Fix one topology for which a valid vessel tree can be found. Then the radii (and thus
the cross section areas) of the segments are can be computed by enforcing (2.2) at each
bifurcation.

The total volume Vtot is a function of the location of the bifurcation nodes (for n terminal
nodes, there are (n− 1) bifurcation nodes. The feasible set for Vtot is{

(x1, y1, . . . , xn−1, yn−1) ∈ R2(n−1) | the tree with these bifurcation nodes satisfies (2.4)
}

.

If δ is small enough, this set is nonempty, due to the ≥ condition in (2.4) it is closed and
obviously it is bounded.

Lengths of the segments depend continuously on the geometric location of the endpoints,
so Vtot is a continuous function.

A continuous function attains its minimum on a nonempty compact set, so there is an
optimal tree for the fixed topology.

So finally, we need to find a tree with minimal volume among the optimal trees for each
of the finitely many topologies (need not be unique).

Lemma 2.2.2. For a finite number of nodes and a given root node, there exists a vessel tree which
has exactly these nodes as terminal nodes and which satisfies the minimum distance condition in
Proposition 2.2.1 for some sufficiently small δ.

Proof. The idea how to find one is given in Figure 2.3 Without loss of generality assume that
the root node lies on the left boundary (otherwise rotate). First connect the root node to a
rightmost node, if another nodes lies on the connecting straight line, make a detour.

Then connect all other nodes to this first line by vertical segments, again making detours
whenever two or more nodes lie on a horizontal line on the same side of the first line.

Since the number of nodes is finite, it is possible to satisfy the minimum distance condition
for sufficiently small δ.

12



2.2 Computer Generation of Vessel Trees

Figure 2.3: Finding a valid tree connecting a finite number of terminal nodes

Note that even for a moderate number of terminal nodes, the number of topologies be-
comes very large and the minimization for each fixed topology becomes quite complex, so
this approach does not work in practice.

Instead, the authors use a procedure that adds terminal nodes to the tree one-by-one, each
time finding an optimal bifurcation. The location of the terminal nodes is random to some
extent.

2.2.2 CCO for a Single Tree

First we explain the method of Schreiner, Neumann et. al. [30], afterwards we will explain
how we extended this procedure to generate a valid pair of vessel trees.

First, a random terminal node is chosen and connected to the root node of A by a single
segment of radius rterm.

Further terminal nodes are added to the tree according to the following procedure:

1. Repeat choosing new random points until one is sufficiently far away from currently
existing segments in the tree (the threshold is taken proportional to (# segments)−1/2

and slowly decreases with each attempt of choosing a new point).

This results in a rather uniform distribution of the terminal nodes, much more uniform
than if they were chosen at random.

2. For each existing segment, consider the local subtree obtained by connecting the new
point to the center of the existing segment. Change the radius of the new local parent
segment so that the power law (2.2) is satisfied in the subtree.

Now optimize the position of the bifurcation point to minimize the volume of the
subtree. We use a steepest descent method with Armijo step size rule ([4], see Section 2.5.3)
until the decrease in one step is less than some threshold (e. g. 0.1 %).

Subtracting the volume of the original segment from the volume of the optimized
subtree gives a volume increase.

Looping over all segments in the tree finds a segment with least increase.

13



2 Vessel Trees in 2D

3. Now plug this back into the full tree if the trees is still valid afterwards. It is interesting
to note that (as in the authors found in [30]), self–intersections do not occur. If a
new connection to one segment produces an intersection with another segment, then
connecting the new node to that other segment produces less increase in volume.

4. Since we only adapted the radius locally, we finally need to adapt the radii of the
segments between the root and the new bifurcation point to ensure the power law for
all bifurcations in the tree. Also, levels of nodes have changed, so these need to be
updated as well.

Note that increasing the number of terminal nodes produces trees of similar overall ge-
ometric structure when using the same random seed. Segments added at a later stage of
growth only lead to small geometric displacements of already existing segments.

2.2.3 CCO for a Pair of Trees

For a pair of trees, existence of an optimal tree cannot be proven as in Proposition 2.2.1. Even
for mutually distinct geometric positions of nodes for both trees, there need not exist a valid
pair of vessel trees having these nodes as terminal nodes.

In our generating procedure, this is no problem: If one point cannot be connected to the
tree under consideration, we discard this point and try another one.

When generating a pair of arterial tree A and venous tree V, we add segments to A and V
in turn. Two things need to be changed:

1. In 1, we consider the total number of segments for the threshold. The distribution of
terminal nodes is not uniform in the whole domain for each tree.

2. For the first node of V and in 3, we always need to make sure that the pair of trees is
remains valid. In particular, A nd V must not intersect.

As we are interested in trees that branch into each other to some extent, we started our
growing procedure with the initial configuration shown in Figure 2.4.

With these changes, the trees do not touch but other effects may occur:

1. long segments at an early stage of growth in one tree may stop the other tree from
reaching substantial parts of the domain.

2. trees “almost touch”, i. e. arterial and venous segments have a “very small” distance,
this would require a very fine discretization of the underlying tissue later on

3. segments may become “very short”, which would require a small time step later on

4. segments may become “very long”, this is unnatural for thin segments away from the
root

There are two ways to avoid this: Either by postprocessing and modifying problematic
segments after the generation or directly during the generation process.

As modifying the tree afterwards may have substantial side effects, we decided to use the
second method and made sure that adding a new terminal node and a bifurcation to the tree

1. preserves a certain minimum distance between the two trees, the threshold is relative
to the length of the arcs under consideration.

14



2.2 Computer Generation of Vessel Trees

Figure 2.4: Initial tree we started the CCO growing procedure with. The arterial tree (left) is
shown in red, the venous tree in blue.

2. no segment affected by the new bifurcation becomes shorter than an threshold η.

3. the new terminal segment is shorter than constant√
number of arcs present

.

This may still lead to neighboring long segments that should be connected to minimize
volume but where the connection would violate one of these conditions. However, this does
not happen too often and can be tolerated for our purposes.

The pairs of trees generated by this method are still random to some extent, so we cannot
expect all trees with different random seeds to look equally “nice”. So we first generate trees
with 64 terminal segments for different random seeds, pick one that looks most appropriate
and generate more complex trees out of this.

As for a single tree, the procedure above does not significantly change the coarse geometric
structure of the trees when terminal nodes are added later on, see Figure 2.5.

As the radius of all terminal segments needs to be fixed in advance, even if we use different
numbers of terminal segments, one step of postprocessing may be necessary: To obtain con-
stant inflow and outflow of blood for different trees, we can rescale the radii of all segments
at the end so that the root segment has a fixed radius. This preserves (2.2).

This is shown below in Figure 2.5. where we computed pairs of trees with 8, 16, 32, 64,
and 512 terminal nodes each according to the method above, starting with the same random
seed.

Computation times on a desktop PC with 1 GHz Athlon CPU are listed in Table 2.1.
A few more pairs of 64-trees generated with different random seeds are shown in Fig-

ure 2.6.

The pairs of trees generated by this procedure have a sufficiently complex and realistic
structure for our purposes. As this generating procedure is not the main focus of this thesis,
we did not geometric properties of a pair of trees generated by this procedure to those of real
three–dimensional vessel trees in [39, 40] and we did not refine this rather crude procedure
to systematically produce even more realistic trees.

15



2 Vessel Trees in 2D

Figure 2.5: A sequence of pairs of trees with 8, 16, 32, 64 and 512 terminal segments each.
Arteries are shown in red, veins in blue, thickness of the lines represents thickness
of the vessels.

16



2.2 Computer Generation of Vessel Trees

number of terminal segments cputime (s)
8 0.05

16 0.50∗

32 3.88
64 20.30∗

128 318
512 14 580

Table 2.1: Cputime to generate pairs of vessel trees of different complexity. The starred val-
ues are approximate times.

Figure 2.6: Pairs of 64-trees generated with different random seeds.
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2 Vessel Trees in 2D

Also, few such pairs of trees are sufficient for our purposes and we do not need a large
set of different trees, so we did not put much effort into optimizing the implementation of
this generating procedure.

Later on, in three dimensions, we will be able to (and we will probably want to) use
real–world data for the trees, see e. g. [13].

2.3 Implementation of Vessel Trees

2.3.1 Data Structures

For a geometric tree, we store an STL vector of nodes and an STL vector of arcs.
The class node has the following member variables:

• two floating point numbers for the coordinates of the node

• one integer for the level of the node,

the class arc has

• two integers for the indices of initial and terminal node

• four integers for the indices of parent, two daughter and sibling segment

• one float for the radius r of the segment

• one float for the velocity v of blood flowing through

• one float for the flow splitting ratio θ to its parent arc, see Section 2.1.3.

and it provides functions to compute length ` and cross section area A∅.

2.3.2 Feasibility of Arcs and Nodes

Determining whether an arc may be added to the tree or whether it intersects or gets too
close to other arcs is an easy geometrical problem since we are dealing with straight line
segments and the coordinates of their end points are known.

We do not explain this in detail here.

2.3.3 File Format

Once generated, we want to save vessel trees for later use. We use separate files for the
arterial and venous tree, each file has the following format:

• first line: integer nn: number of nodes

• second line: integer na: number of segments

• next nn lines: two floats x and y, coordinates of the node in [0, 1]2

• next na lines: two integers: indices of initial node and terminal node, two floats: radius
of the segment and flow velocity
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2.4 Vessel Trees and Grids

The lines describing the nodes and arcs may contain further data in the line after the values
described. This may be useful to store additional information like level of nodes or constant
values on segments, but in this case it is necessary to use appropriate save and load routines.

Information about the level of nodes and parent, sibling and daughters of segments are
redundant information if data as above is given, hence they can be computed at runtime (if
necessary) and are not saved.

2.4 Vessel Trees and Grids

2.4.1 Vessel Segments and Grid Cells

In our numerical computations we have a square domain divided into grid cells together
with a pair of vessel trees. We need to know which segments lie partially in a given grid cell.
In this context, segments are viewed as one-dimensional objects, i. e. identified with their
center lines.

For each grid cell we store a list of arcs intersecting it with the following information:

• the index of the arc intersecting the cell

• local coordinates (relative to the grid cell) of the initial node and the terminal node
projected onto the grid cell along the segment. Those points are either the initial or
terminal node of the segment if this node lies within the grid cell or they are the
intersection points of the segment and the boundary of the grid cell.

• local coordinate (relative to the segment) of those two points

Conversely, for each segment we store a list of grid cells (grid cell indices) intersected by
the segment together with the local coordinates mentioned before.

Determining the grid cells intersected by a given segment and the local coordinates of the
points described above is a technical but easy geometric problem if we start at the initial
node of the segment and trace which grid cells are passed on the way towards the terminal
segment.

A discretization of a squared domain is of level d if it has (2d + 1)× (2d + 1) grid points.
In this case, the grid spacing is h = 2−d.

For complex trees (512-trees) and a fine discretization of both tissue (level 7) and vessels
used in Chapter 5, these lists only require some 100 kB of memory.

2.5 Determining Flow Splitting Ratios

In Section 2.2, we generated a pair of trees determining the geometric location of the seg-
ments and their radii. We now need reasonable velocities of the blood flow in each segment.

In [22], results about the pressure gradients in segments of 3D vessel trees can be found,
[35] explains Poiseuille’s law relating flow and pressure.

However, we can not simply adapt these results from 3D to 2D. If we ignore the boundary
of our domain of tissue and the fact that there are regions where there are only arteries or
veins, wide-range components of the flow could dominate the transport through tissue.

Our approach is to balance the flow through the vessel trees such that dissipation of kinetic
energy by friction is minimized.
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2 Vessel Trees in 2D

2.5.1 Model

Assume that there is a fixed inflow rate of blood, say c, into the root segment of the arterial
tree equal to the outflow out of the root segment of the venous tree. Blood flows out of the
arterial tree all along the terminal segments (and only these) at a constant rate on each seg-
ment, similarly it flows from the tissue into the venous tree all along the terminal segments
of the venous tree (and only these) at a constant rate on each segment.

Pressure in a Porous Medium

We assume isotropic incompressible flow through a porous medium with zero Neumann
boundary conditions at the outer boundary. The terminal segments (and only these) of
the arterial and venous tree are 1D line sources and sinks for the flow, respectively. The
diffusion coefficient is set to 1.

This is modeled by the same boundary value problem as the steady state of heat conduc-
tion, see Section 3.3. The methods used to solve this PDE numerically are better explained
in that context which also is the main focus of this thesis, so we only quote results here.

Our steady state boundary value problem is to find p, the pressure of fluid in a porous
medium, satisfying

−∆p ∗= f in Ω
∂ν p = 0 on ∂Ω∫
Ω̂

p = 0

(2.5)

where f is nonzero only on the terminal segments of the arterial and venous tree and the
equation is meant in a distributional sense, see Section 3.3.

The weak form of the problem with line source terms f ∈ H−1(Ω) is to find p ∈ V ={
v ∈ H1(Ω)

∣∣ ∫
Ω v = 0

}
such that

+
∫

Ω
∇p · ∇v dx =

∫
Ta∪Tv

f v dγ =
∫

Ta

fav dγ +
∫

Tv

fvv dγ ∀ v ∈ V (2.6)

where dx denotes integration in R2 whereas dγ denotes line integration along 1D lines in
R2. Here,

fa := f |Ta , fv := f |Tv

By assumption,
∫

Ta∪Tv
f = 0. Requiring

∫
Ω p = 0, by Proposition 3.3.1, there is a unique

solution p = −∆−1 f , p ∈ H1(Ω),
∫

Ω p = 0 to problem (2.6).
Let m, n be the number of terminal segments in the arterial and venous tree, respectively,

z = m + n. Let

S = (a1, . . . , am, v1, . . . , vn) ∈ Rz

be the vector of source terms where aµ is the flow out of the µth terminal segment of the
arterial tree divided by the length of the segment (similarly vν the flow into the νth terminal
segment of the venous tree divided by the length of the segment).

la = (`a
1, . . . , `a

m, 0, . . . , 0) ∈ Rz, lv = (0, . . . , 0, `v
1, . . . , `v

n) ∈ Rz

are vectors containing the length of the terminal segments. Then we can write f = f [S] and

p(x) = −∆−1 f [S](x) = p[S](x).
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2.5 Determining Flow Splitting Ratios

Dissipation of Kinetic Energy by Friction

In our case, the rate of dissipation of kinetic energy by friction for a fluid flowing through a
porous medium is given by (see [24])

E(p) =
∫

Ω
∇p · ∇p

and we want to minimize this quantity depending on the outflows and inflows S subject to
the constraints

la · S = c
lv · S = c

S ∈ Rz
+.

The first two constraints representing the total flow condition is denoted S ∈ Λc for short,
the third condition is nonnegativity of the flow: Rz

+ = [0, ∞)z.
So write E in terms of S:

E(S) =
∫

Ω
∇p[S](x) · ∇p[S](x) dx

=
∫

Ω
p[S](x) · (−∆p[S](x)) dx

=
∫

Ω
p[S](x) · f [S](x) dx −→ min! (2.7)

where p is the solution to problem (2.6).
So we have the problem of minimizing the function E : Rz → R, S 7→ E(S) over Λc ∩Rz

+.
Λc is an affine subspace of codimension 2, for strictly positive lengths `a

1, . . . , `a
m, `v

1, . . . , `v
n

its intersection with Rz
+ is a bounded convex polyhedron of dimension (z− 2) in Rz.

Proposition 2.5.1. E as in (2.7) attains its minimum in Λc ∩Rz
+.

Proof. p = −∆−1 f ∈ H1 depends continuously on f ∈ H−1(Ω), so in total E(S) is a com-
position of continuous functions, thus depends continuously on S, the feasible set for S is
closed and bounded (and finite dimensional, thus compact), so the minimum of E is attained
somewhere in Λc ∩Rz

+.

2.5.2 Discretization

We use the same finite element discretization as in Section 3.3 and use F for the grid approx-
imation to f on a grid with N grid points.

We can write

F = A · S

for an appropriate matrix A ∈ RN×t mapping the inflow vector to the L2 scalar product of
constant inflow on segment and appropriate base function:

Ak,j = Sj

∫
segment j

ϕk

= ∑
grid cell g

Sj

∫
g∩j∩supp(ϕk)

ϕk.
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2 Vessel Trees in 2D

These entries are computed in a similar way as in Section 3.3. The function (flow) values
are constant on each segment. The basis functions ϕ are piecewise bilinear, so the integrand
is a second order polynomial (piecewise bilinear function on straight line segment), so three-
point Lobatto quadrature used for assembling A is exact.

The discrete energy function can be written as

E(S) = P̄(S) · LP̄(S) = P̄(S) · F(S)

so minimizing E is equivalent to minimizing

h(S) = P̄(S) · F(S)

= L−1F̄(S) · F(S)

= L−1AS · AS

= AT L−1AS · S
=: HS · S.

Here, L−1 is the discrete solution operator for the discretization of problem (2.6), the ex-
tended system as in (3.12).

So our discrete problem is to minimize the quadratic function h(S) over a convex polyhe-
dron Λc ∩Rz

+. h is continuous, so analytically this problem has a solution.
We use a feasible direction method for the numerical optimization because we want to

avoid inequality constraints in a Lagrangian approach and because projection onto Λc ∩Rz
+

is not easy which excludes projection methods.

2.5.3 Conditional Gradient Method for the Quadratic Optimization Problem

In a feasible direction method, we start with some initial guess S0 of the minimum and then
compute a sequence (Sk)k where Sk+1 = Sk + αkdk. dk is a feasible descent direction and αk

is some positive stepsize.

Definition 2.5.2. Let Sk ∈ Λc ∩Rz
+.

dk is a feasible direction :⇐⇒ ∃ε0 : Sk + εdk ∈ Λc ∩Rz
+ ∀ ε < ε0.

dk is a descent direction :⇐⇒ ∃ε0 : h(Sk + εdk) < h(Sk) ∀ ε < ε0.

S0: Initial Guess

At this stage, we have no information about what might be a good starting point, so we take
the uniform distribution having the same total flow out of each terminal arterial segment
and the same total flow into each terminal venous segment:

S0 =
(

c
m · `a,1

, . . . ,
c

m · `a,m
,

c
n · `v,1

, . . . ,
c

n · `v,n

)
.

dk: Feasible Descent Direction

For generating descent directions, we use the conditional gradient method, also known as Frank-
Wolfe method: See [4], Section 2.2.

22



2.5 Determining Flow Splitting Ratios

Let dk = S̃k − Sk where

S̃k = argmin
S∈Λc∩Rz

+

∇h(Sk) · (S− Sk)

= argmin
S∈Λc∩Rz

+

∇h(Sk) · S (2.8)

because ∇h(Sk) · Sk is constant.
For h defined above, ∇h(S) = 2AT L−1AS.
This subproblem is a linear optimization problem over a (convex) polyhedron. A linear

function always attains its minimum over a bounded polyhedron at a vertex of the poly-
hedron. The minimum need not be unique, but for the conditional gradient method, any
minimum works.

The vertices of Λc ∩Rz
+ are{(

c
`a,i

ei +
c

`v,j
ej

)
| i ∈ {1, . . . , m}, j ∈ {m + 1, . . . , m + n}

}
where ei is the canonical basis vector of Rz, so we need to find the minimum over mn vertices.

Due to the form of the vertices, the function evaluation for (2.8) only takes two multipli-
cations, finally one vector subtraction needs to be computed, so in total finding a descent
direction takes O(mn) flops. Typically, m and n are approximately z

2 , so it takes O(z2) flops
to find each descent direction.

Note that due to S̄k ∈ Λc and Sk ∈ Λc, dk is a feasible direction.

αk: Stepsize

The stepsize is chosen according to the Armijo step size rule [4]: for given parameters s >
0, β ∈ (0, 1), σ ∈ (0, 1) let αk = s · βm where m is the smallest nonnegative integer satisfying
Sk + sβmdk ∈ Λc ∩Rz

+ for which

h(Sk + sβmdk)− h(Sk)
sβm ≤ σ∇h(Sk) · dk

⇐⇒ |secant slope| ≥ σ|tangent slope|.
Function evaluation is the expensive part of the computation. For each m, we need to

evaluate h once, this requires

• mapping from Rz to RN : S 7→ AS

• solving a linear system in RN : AS 7→ P̄ = L−1AS (in fact, the system has one additional
equation and unknown due to

∫
Ω p = 0, see Section 3.3).

• computing the dot product of a vector in RN with itself: P̄ 7→ P̄ · P̄.

Since the grid discretizing the domain should resolve the segments sufficiently well, N =
(2j + 1)2 is typically large compared to t. “Fine” trees we use have z = 1024, for a “moder-
ately fine” grid, z = 8 implies z = 66, 049.

Mapping between the different dimensions is only a matrix-vector multiplication, setting
up and solving the linear system in between is the most expensive part of this, not only in
terms of cputime, but also in terms of memory. Our implementation, see Section 2.5.4, needs
20 MB of memory for g = 8, 80 MB for g = 9 and so on, increasing g by 1 increases the size
of the system, thus the memory requirement, by a factor of four.
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2 Vessel Trees in 2D

Stopping Criterion

We stop the optimization as soon as the relative decrease in one step h(Sk)
h(Sk−1) is bigger than

some threshold, e. g. 0.999, i. e. the improvement is less than 0.1 %.

Convergence

Proposition 2.5.3. For the sequence (Sk) generated by the conditional gradient method with Armijo
stepsize, every limit point is a stationary point of the objective function h.

Proof. For a proof and a detailed discussion of feasible direction methods, we refer to [4],
Section 2.2.

Unfortunately, not only each step is expensive, but also convergence is slow. There is no
guarantee of even linear convergence [4].

Improvement by a Cascadic Approach

When trying to find a good starting point for solving this problem for a fine discretization
of Ω, it seems plausible that a solution for a coarser discretization is a better starting point
than the uniform distribution described above. This is also what the idea of multigrid methods
([6, 33]) is based on.

Note that we are optimizing a function defined on the terminal segments of the trees and
not on the grid, so restriction and prolongation of the solution are not necessary.

Here, we can use this idea as follows:

1. Start with a coarse grid (e. g. grid level g = 2), solve the optimization problem for this
grid

2. Refine the grid by a factor of 2 (increase g by 1), take the solution from the step before
as an initial guess to solve the optimization problem on the current grid

3. Repeat step 2 until a sufficiently fine grid is reached (e. g. g = 8).

Typically, the finest grid level here is the grid level on which further computations will be
carried out.

To make sure that this cascadic approach does not worsen things, in each step we can
check whether the solution on a coarser grid is a better starting value than the uniform
initial guess.

2.5.4 Implementation and Results

Implementation

We solve the steady-state problem as in the heat-conduction case using the quocmesh library.
For and AT L−1A, we implemented the composition of operators where domain and range

have different dimension. This requires storing temporary vectors of appropriate size. L−1

is implemented in the same way as in Section 3.3.
The feasible direction method and Armijo step size search were implemented to perform

the computations described above.
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2.5 Determining Flow Splitting Ratios

16-tree 64-tree
level # steps cputime (s) # steps cputime (s)
2 95 0.15 530 4.59
3 102 0.31 349 3.89
4 30 0.45 150 3.39
5 14 1.58 81 9.08
6 13 27.21 21 46.20
7 4 88.34 16 322.27
8 3 359.24 15 1457.80

Table 2.2: Number of optimization steps and computation times for the flow splitting opti-
mization on the trees with 16 and 64 terminal segments

Results

We present the results of applying this method to a tree with 8 terminal segments where
we ran the optimization from grid level 2 to 8. The parameters for the Armijo rule were
s = 0.2, β = 0.4, σ = 0.5, no more than 50 steps were carried out (k ≤ 50), if no descent
was found within 50 steps of the Armijo rule, we set Sk+1 = Sk. This is reasonable because
0.450 ≈ 1.2 · 10−20. Our relative stopping criterion was 0.9995.

In Figure 2.7, we show the results for an optimization on a tree with 16 terminal segments
on grid levels 2 to 8, where the flow velocities are color-coded on a logarithmic color scale
shown in Figure 2.10 where red corresponds to velocity 1 and blue to 1/1024. All lower
velocities are also shown in this blue.

The pressure is also shown, the same scaling was used for all four pressure plots for the
same tree where the same colors scale is now used as a linear color scale: red corresponds
to maximal pressure, green to zero pressure and blue to minimal pressure.

We used the same parameters and grid levels 4 to 8 for a tree with 64 terminal segments,
the result is shown in Figure 2.8.

The computation was carried out on a desktop PC with a 1 GHz Athlon CPU, computation
times and the number of successive optimization steps on each grid level are shown in
Table 2.2.

We can see that the flow velocities decrease as we go down the tree (this follows from
flow conservation and equation (2.2)) and that velocities on the terminal segments, thus the
outflow, behave as expected: terminal segments close to terminal segments of the other tree
have significantly more out/inflow than those further apart.

Moreover, at least for these trees, grid level 6 resolves the pressure problem very well so
that the (expensive) computation on finer grid levels is not necessary. However, it may be
necessary to use even finer grids if we deal with more complex trees.

Limitations

We can also see two limitations of our model: Short segments only have a small influence on
the pressure distribution, so the optimization of the corresponding variables only happens
at a very late state of the overall optimization.

Segments pointing from one tree towards the other tree (those can be seen in the center of
both trees) are assigned a lower velocity than one might expect. This is due to the fact that
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2 Vessel Trees in 2D

we assumed constant outflow and inflow on each terminal segment. It would be necessary to
refine the model to obtain more realistic flow velocities. In the three-dimensional application
however, flow velocities will be given, moreover the results are acceptable for our purposes,
so we did not refine this model any further.

Improvement by a Cascadic Method

Finally, we were interested in whether our cascadic approach really is an improvement of the
method. As a measure for this, we plotted the logarithm of the function value h(Sk) versus
the time it took to attain this value. From a theoretical point of view, the number of function
evaluations might be more interesting, but the function is evaluated with respect to different
grids, and as we did not investigate the theoretical properties of the cascadic method, from
a practical point of view the cputime is more interesting to us.

To check whether our cascadic approach above really helps, we compared running our
method on the tree with 16 terminal segments and the same Armijo parameters as above
and a stopping threshold of 0.999 on level 5 only compared to solving it on level 4 and using
the solution as a starting point for the optimization on level 5. We repeated this for levels 5
and 6.

The same comparison was run for the tree with 64 terminal segments, the same threshold
and the same grid levels.

In Figure 2.9, we plotted cputime vs logarithm of value of h attained at that time. The green
curve is for a computation on one level only whereas the red curve shows the behavior for
a computation on two levels. (1) and (3) compare level 5 only to levels 4 and 5, (2) and (4)
compare level 6 only to levels 5 and 6.

The jumps in case of our cascadic method are due to the fact that evaluating h requires
solving a pressure problem on a grid of the corresponding grid level, so different grids lead
to different solutions.

We can see that the cascadic approach speeds the computation up to some extent. Solving
on levels 4 and 5 instead of 5 only for the 64-tree did not help, this might be due to the fact
that a grid of level 4 cannot resolve this tree appropriately.

The non-smoothness of the curves show that different steps of the minimization take dif-
ferent amounts of cputime and lead to different decreases in the function value.

Further experiments and analysis will be necessary to determine if and in which case
it makes sense to use this approach in general. We will also need to investigate whether
using finer grid discretizations leads to a convergence of L−1AS to a continuous pressure
distribution and of h(S) to the continuous energy function.

Finally, Figure 2.11 shows the flow velocities determined for the trees shown in Figure 2.5
in the same color code as above. The trees with these velocities will be used later on.
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(2) (4)

(6) (8)

(2) (4)

(6) (8)

Figure 2.7: Determining flow velocities via a pressure model, successive optimization on grid
levels 2, 4, 6 and 8: Flow velocities and pressure distributions for a tree with 16

terminal segments
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(2) (4)

(6) (8)

(2) (4)

(6) (8)

Figure 2.8: Determining flow velocities via a pressure model, successive optimization on grid
levels 2, 4, 6 and 8: Flow velocities and pressure distributions for a tree with 64
terminal segments
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Figure 2.9: Comparison of computation time versus log value of h attained, one level only
vs. computing initial guess on coarser grid, for the 16-tree (1,2) and 64-tree (3,4)

Figure 2.10: The color scale used in our plots: Red (left) corresponds to maximal values, blue
(right) to minimal values with a hsv transition in between.
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Figure 2.11: Flow velocities (color coded) determined for the trees shown in Figure 2.5.
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3 Heat Conduction in Tissue

As a first computational problem we consider isotropic heat conduction in the domain of tissue
Ω = [0, 1]× [0, 1] ∈ R2 during the time interval [0, T] with constant heating / cooling by the
two vessel trees and perfectly insulated boundary of the domain. For simplicity, the heat
conduction coefficient is assumed to be 1. Also, we ignore external heating by the RF probe
at first.

We view the trees as line sources, the source term on the arterial tree Ta is called fa,
similarly the source term on the venous tree Tv is fv. In the continuous model, this is only
possible if the source terms are understood in a distributional sense. fa is constant and
positive on each segment of the arterial tree and proportional to the cross section area A∅,s,
fv negative, constant on each segment of the venous tree and proportional to the cross section
area (corresponding to heating / cooling with fixed constant temperatures on the two trees).
In particular, fa and fv are constant in time.

3.1 Continuous and Weak Problem

3.1.1 Continuous Formulation

Heat conduction with a source term and Neumann boundary conditions in general is mod-
eled by the following initial-boundary value problem, see [27, Chapter 11] for u : [0, T] ×
Ω→ R, u(t, ·) ∈ C0,1(Ω), u(·, x) ∈ C0((0, T)):

∂tu(t, x)− ∆xu(t, x) ∗= f (t, x) in (0, T)×Ω
∂νu(t, x) = 0 on (0, T)× ∂Ω

u(0, x) = u0(x) on Ω.

(3.1)

where ∆x = ( ∂2

∂x2
1
+ ∂2

∂x2
2
) denotes the Laplacian in space and ∂ν is the derivative with respect to

the outer normal of the domain. Here, our initial condition is u0(x) = 0 such that u0 ∈ L2(Ω)
and

∫
Ω u0 = 0.

The starred equation is to be understood in a distributional sense with f (t, ·) ∈ H−1(Ω),
as in equation (3.4) below.

3.1.2 Weak Formulation

First define the following function spaces:

V :=
{

v ∈ H1(Ω)
∣∣∣∣ ∫Ω

v =
∫

Ω
u0 = 0

}
< H1(Ω)

L2((0, T); V) :=
{

u : (0, T)→ V
∣∣∣ u is measurable ∧ ‖u(t, ·)‖H1(Ω) ∈ L2((0, T))

}
C0([0, T]; L2(Ω)) :=

{
u : [0, T]→ V

∣∣ u is measurable ∧ u(·, x) ∈ C0([0, T]) ∀ x ∈ Ω
}

.

(3.2)
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3 Heat Conduction in Tissue

v ∈ V ⊂ H1(Ω) has a trace on Ta ∪ Tv ⊂ Ω, ṽ ∈ L2(Ta ∪ Tv). We omit the tilde and use v
for both functions.

Ω \ (Ta ∪ Tv) does not have Lipschitz boundary, but still a trace theorem holds, the proof
is similar to the proof of the trace theorem in [2, Section A5].

Hence f : v 7→
∫

Ta∪Tv
f · v is a linear map from V to R so f can be viewed as an element

f ∈ DV, the dual space of V. V is a subspace of H1Ω, so H−1(Ω) is a subspace of DV, see
Section 6.2.2.

So for f (t, ·) ∈ H−1(Ω) and f (·, x) constant (in time), we have f ∈ L2((0, T); DV).

The weak form of our heat conduction problem is:
Given f ∈ L2((0, T); DV) as above, find u : [0, T]×Ω→ R, u ∈ L2((0, T); V)∩C0([0, T]; L2(Ω))

so that ∀ v ∈ V, t ∈ [0, T]:∫
Ω

∂tu(t, x) · v(x) dx +
∫

Ω
∇u(t, x)∇v(x) dx =

∫
Ta

fa(t, x) · v(x) dγ +
∫

Tv

fv(t, x) · v(x) dγ

u(0, x) = u0(x) = 0 ∀ x ∈ Ω.
(3.3)

For sufficiently smooth u, we can combine the integrations over the trees∫
Ω

∂tu(t, x) · v(x) +∇xu(t, x) · ∇xv(x) dx =
∫

Ta

fa(t, x) · v(x) +
∫

Tv

fv(t, x) · v(x)

=
∫

Ta∪Tv

f (t, x) · v(x) dγ

∀ v ∈ V, t ∈ [0, T], apply partial integration in space and obtain:∫
Ω

(∂tu(t, x)− ∆xu(t, x)) · v(x) dx +
∫

Ta∪Tv

[∇u(t, x) · n(x)] · v(x) dγ =
∫

Ta∪Tv

f (t, x) · v(x) dγ∫
Ω

(∂tu(t, x)− ∆xu(t, x)) · v(x) dx =
∫

Ta∪Tv

f (t, x) · v(x)− [∇u(t, x) · n(x)] · v(x) dγ

(3.4)

∀ v ∈ V, t ∈ [0, T], where [. . . ] in the integration denotes the jump in the spatial normal
derivative of u(t, x) across the vessel segments. n(x) is the normal on the vessel segment
oriented the same way as the jump, so this expression is well-defined.

This is the distributional interpretation in problem (3.1).

3.1.3 Existence of Weak Solutions

To prove the existence of weak solutions, we need the following lemmas:

Lemma 3.1.1. The bilinear form a : V ×V → R, (u, v) 7→
∫

Ω∇u(x) · ∇v(x) dx is continuous.

Proof.

|a(u, v)|2 =
∣∣∣∣∫Ω
∇u · ∇v

∣∣∣∣2
≤ ‖∂xu∂xv + ∂yu∂yv‖2

L1(Ω)

≤ 2
(
‖∂xu∂xv‖2

L1(Ω) + ‖∂yu∂yv‖2
L1(Ω)

)
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3.2 Discretization

by Hölder’s inequality, see Lemma 6.2.8,

≤ 2
(
‖∂xu‖2

L2(Ω)‖∂xv‖2
L2(Ω) + ‖∂yu‖2

L2(Ω)‖∂yv‖2
L2(Ω)

)
≤ 2 ·

(
‖u‖2

L2(Ω) + ‖∂xu‖2
L2(Ω) + ‖∂yu‖2

L2(Ω)

)
·
(
‖v‖2

L2(Ω) + ‖∂xv‖2
L2(Ω) + ‖∂yv‖2

L2(Ω)

)
= ‖u‖2

H1(Ω)‖v‖
2
H1(Ω).

Lemma 3.1.2. a is coercive.

Proof. For our Ω, we have Lemma 6.2.7:

‖v‖H0(Ω) ≤ C
(

v̄ + |v|H1(Ω)

)
∀ v ∈ H1(Ω)

where v̄ = 1
vol Ω

∫
Ω v. For v ∈ V, v̄ = 0, so

‖v‖H0 ≤ C|v|H1

⇒‖v‖2
H0 ≤ C2|v|2H1

⇒|v|2H1 + ‖v‖2
H0 ≤ (1 + C2)|v|2H1

⇒‖v‖2
H1 ≤ (1 + C2)|v|2H1

⇒|v|2H1 ≥
1

1 + C2 ‖v‖
2
H1

⇒
∫

Ω
∇v · ∇v ≥ 1

1 + C2 ‖v‖
2
V .

Now we can apply an existence theorem for weak solutions [27, theorem 11.1.1 and remark
11.1.1] for this type of problem:

Proposition 3.1.3 (Existence of a Weak Solution). Problem (3.3) has a unique solution.

Proof. By the preceeding Lemmas 3.1.2 and 3.1.1, we know that a is a coercive and continuous
bilinear form on V.

We assumed f ∈ L2((0, T); DV) and u0 ∈ L2(Ω), so the existence theorem can be applied.
For the proof and a more detailed discussion, we refer to [27, Section 11.1].

3.2 Discretization

We first discretize the weak problem in space using finite elements to obtain a system of cou-
pled ODEs, then we apply a time stepping method to also achieve temporal discretization.
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3 Heat Conduction in Tissue

3.2.1 Discretization in Space

Let Vh = span(ϕj) be the space of piecewise bilinear finite elements for a uniform quadratic
grid with grid size h and (ϕj) be the standard basis of Vh, see Section 6.3.

The discrete problem is to find U ∈ Vh such that

∂t

∫
Ω

U(t, x)V(x) dx +
∫

Ω
∇xU(t, x) · ∇xV(x) dx =

∫
Ta

faV +
∫

Tv

fvV ∀V ∈ Vh

U(0, ·) = U0(·)
(3.5)

where U0(x) is the discretization of the initial data u0(x).
It is sufficient if this holds for all basis functions ϕj:

∂t ∑
i

Ui

∫
Ω

ϕi ϕj︸ ︷︷ ︸
=:Mi,j

+ ∑
i

Ui

∫
Ω
∇ϕi · ∇ϕj︸ ︷︷ ︸

=:Li,j

=
∫

Ta

fa ϕj +
∫

Tv

fv ϕj︸ ︷︷ ︸
=:Fj

∀ j

∂t MŪ + LŪ = F

(3.6)

where M := (Mi,j)i,j and L := (Li,j)i,j are the 2D FE mass and stiffness matrices, respectively,
see Section 6.3. This is a system of coupled ODEs. Since M is symmetric and positive definite,
there is a unique solution U to the corresponding initial value problem ([15], Section 49):

∂tz(t) + M−1Lz(t) = M−1F(t) t ∈ (0, T)
z(0) = z0.

(3.7)

3.2.2 Discretization in Time

For temporal discretization, we apply the Backward Euler time stepping method [19, Section
6.2] to (3.6). Let τ be the temporal grid width, tk = kτ and tR = T. Then Backward Euler is

M · Ūk+1 − Ūk

τ
+ L · Ūk+1 = F.

Note that F is constant in time because the source terms fa, fv are.
Now rearrange terms in order to get an expression for Ūk+1:

M · Ūk+1 −M · Ūk + τL · Ūk+1 = τF

⇔ (M + τL) · Ūk+1 = M · Ūk + τF

⇔ Ūk+1 = (M + τL)−1 ·
(

M · Ūk + τF
)

. (3.8)

3.2.3 RHS Source Integrals

For the entries of the vector F, i. e. the source integrals in (3.6), we need to evaluate

Fk =
∫

Ta

fa(ξ) · ϕk(ψ−1(ξ)) dξ +
∫

Tv

fv(ξ) · ϕk(ψ−1(ξ)) dξ
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3.2 Discretization

for all basis functions ϕk. Those integrals are computed as (in case of the arterial tree,
similarly for the venous tree)

∑
g grid cell

∑
s∈Ta

∫
g∩s

fa(ξ) · ϕk(ψ−1(ξ)) dξ.

In case of piecewise bilinear base functions that have the value one on exactly one grid
point and zero on all other grid points, we only need to consider four base functions whose
support contains the straight line segment g ∩ s.

Our basis functions ϕ are piecewise bilinear functions in 2D, so along a straight line seg-
ment within one grid cell they can be considered as polynomials of order 2. We had to
compute the points where the segment intersects the boundary of the grid cell earlier1, the
central point half way between those two is easily computed as well. So if we use three-point
quadrature according to Proposition 6.1.1, this is exact for fa being a first order polynomial.
Here, fa is constant for each integration, so the quadrature is exact. Later on in the coupled
problem, fa is piecewise linear, then we will have to subdivide the line of integration to
obtain exact quadrature.

F is not assembled entry-(grid point)-wise but we loop over all grid cells, then over all
segments intersecting that grid cell, and add up partial results in the appropriate entries of
F.

Fix one grid cell g indexed by (i, j) and one segment intersecting that cell at the points
(x`

i , y`
i ), (x`

t , y`
t ) (here, ` does not refer to length of the segment but denotes local coordinates

with respect to the grid cell). There are four base functions for which∫
g∩s

fa · ϕ dγ

does not vanish, index those with the grid point where they have value one2: ϕi,j, ϕi+1,j,
ϕi,j+1,ϕi+1,j+1

For x`
c := 1

2 (x`
i + x`

t ), y`
c := 1

2 (y`
i + y`

t ), the three-point Lobatto quadrature (see Proposi-
tion 6.1.1) looks as follows:∫

g∩s
fa ϕi,j =

A∅h
6
·
(

fa
(
x`

i , y`
i
)
· ϕi,j

(
x`

i , y`
i
)
+ fa

(
x`

t , y`
t
)
· ϕi,j

(
x`

t , y`
t
)

+ 4 · fa
(
x`

c , y`
c
)
· ϕi,j

(
x`

c , y`
c
) )

=
A∅h

6
·
(

fa
(
x`

i , y`
i
)
·
(
x`

i · y`
i
)
+ fa

(
x`

t , y`
t
)
·
(
x`

t · y`
t
)

+ 4 · fa
(
x`

c , y`
c
)
·
( 1

2 (x`
i + x`

t ) · 1
2 (y`

i + y`
t )
) )

∫
g∩s

fa ϕi+1,j =
A∅h

6
·
(

fa
(
x`

i , y`
i
)
·
(
(1− x`

i ) · y`
i
)
+ fa

(
x`

t , y`
t
)
·
(
(1− x`

t ) · y`
t
)

+ 4 · fa
(
x`

c , y`
c
)
·
( 1

2 ((1− x`
i ) + (1− x`

t )) · 1
2 (y`

i + y`
t )
) )

∫
g∩s

fa ϕi,j+1 =
A∅h

6
·
(

fa
(
x`

i , y`
i
)
·
(
x`

i · (1− y`
i )
)
+ fa

(
x`

t , y`
t
)
·
(
x`

t · (1− y`
t )
)

+ 4 · fa
(
x`

c , y`
c
)
·
( 1

2 (x`
i + x`

t ) · 1
2 ((1− y`

i ) + (1− y`
t ))
) )

∫
g∩s

fa ϕi+1,j =
A∅h

6
·
(

fa
(
x`

i , y`
i
)
·
(
(1− x`

i ) · (1− y`
i )
)
+ fa

(
x`

t , y`
t
)
·
(
(1− x`

t ) · (1− y`
t )
)

+ 4 · fa
(
x`

c , y`
c
)
·
( 1

2 ((1− x`
i ) + (1− x`

t )) · 1
2 ((1− y`

i ) + (1− y`
t ))
) ) .

Due to our model assumption of constant temperature on the tree, fa(x, y) = Ca · A∅,s
with some positive constant Ca for the arterial tree.

1when we determined which segments lie within which grid cells, see Section 2.4
2Do not confuse this notation with the summation indices used before: here the two indices refer to the location

of the support of ϕ.
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3 Heat Conduction in Tissue

Those four terms need to be computed and added up in the right hand side vector at the
corresponding position for each grid cell for each segment intersecting that cell.

For the venous tree, the same formulas are used, the main difference is a negative Cv
instead of Ca.

3.3 Steady State

If heating and cooling are constant in time and are in equilibrium and there is no flow of
thermal energy into or out of the domain through the boundary, we expect the analytic
solution to converge to a steady state. This is the case if∫

Ta

fa +
∫

Tv

fv = 0

⇐⇒
∫

Tv

fv = −
∫

Ta

fa. (3.9)

The steady state is characterized by ∂tu = 0, the corresponding problem is to find u∞(x)
satisfying

−∆xu∞(x) ∗= f (x) in Ω
∂νu∞(x) = 0 on ∂Ω∫
Ω

u∞(x) = 0.

(3.10)

in a distributional sense.
The weak form is obtained by multiplying with test functions v ∈ V, integrating and using

partial integration in space: Find u∞ ∈ V such that∫
Ω
∇u∞(x) · ∇v(x) dx =

∫
Ω

f (x) · v(x) dx ∀ v ∈ V. (3.11)

Proposition 3.3.1. If (3.9) holds, there is a solution u∞(x) to the weak steady-state problem (3.11).

Proof. The compatibility relation ([5])
∫

Ω(RHS) =
∫

Ta∪Tv
f =

∫
∂Ω ∂νu∞ = 0 holds. Let

a(u, v) =
∫

Ω
∇u · ∇v

l(v) =
∫

Ta∪Tv

f · v

where a : V ×V → R is obviously bilinear and l : V → R is linear. From Lemmas 3.1.1 and
3.1.2, we know that a is continuous and coercive.

So, by the Lax-Milgram theorem (Proposition 6.2.11), there is a solution to (3.11).

The discrete version of (3.11) is

LŪ = F

∑
i

Ui = (1, . . . , 1)Ū = 0.
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3.3 Steady State

Viewing this as an optimization problem

U = argmin
X∈RN

1
2

LX · X− F · X

subject to (1, . . . , 1)X = 0

we can introduce one Lagrange multiplier µ, and combine the equations to
1

L
...
1

1 . . . 1 0


 Ū

µ

 =

 F

0

 . (3.12)

The method of Lagrange multipliers is treated in [4], Chapter 3.

Proposition 3.3.2. If (3.9) holds and f (t, x) = f (x) is constant in time, the solution U(t, x) to
(3.6) converges to U∞ ∈ V as t→ ∞.

Proof. Consider the difference function W := U −U∞, then W satisfies

∂tW − ∆hW = F− F = 0 (3.13)

where ∆h is a discretization of the Laplacian for which the eigenvectors3 correspond to those
eigenfunctions of the continuous Laplacian that can be represented on the grid [19]:

Vp,q = (sin(pπ jh) · sin(qπkh))j,k p, q ∈ {0, . . . , N − 1}

where N is the number of unknowns in the grid in one dimension. This is a full set of
linearly independent eigenvectors. The corresponding eigenvalues are λp,q = −π2(p2 + q2).

The solution to the system of ODEs (3.13) is given by

W(t) = et∆hW0,

so convergence depends on the sign of the eigenvalues of ∆h.
λ0,0 = 0, and the corresponding eigenspace is span(1, . . . , 1)T, the one of constant vectors.

Since U0 = 0, W0 = U0 −U∞ and
∫

Ω u∞ = 0, we have W(t) = 0 ∀ t.
All other eigenvalues λp,q, (p, q) 6= 0, 0 are strictly negative, so in either case W(t) → 0 as

t→ ∞.

Remark 3.3.3. Formally, we can argue similarly on the continuous problem. The solution to
the initial value problem

∂tW = ∆W
W(0) = W0

is given by W(t) = et∆W0. ∆ has a family of eigenvalues λα,β = −α2− β2 with corresponding
eigenfunctions uα,β(x, y) = sin(αx) · sin(βx) for α, β ∈ R.

Again, all eigenvalues are negative except for one corresponding to constant functions,
but they are arbitrarily close to zero, so convergence is arbitrarily slow.

3Despite the double indices these are vectors. Ordering depends on the ordering of the unknowns on the grid.
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3 Heat Conduction in Tissue

Finally, rewrite (3.9) for our source terms: By assumption, fa, fv correspond to constant
temperatures on the trees, so (3.9) is equivalent to∫

Tv

fv = −
∫

Ta

fa

⇐⇒ Cv ∑
s∈Tv

A∅,s · `s = −Ca ∑
s∈Ta

A∅,s · `s. (3.14)

3.4 Implementation and Results

3.4.1 Heat Conduction

Implementation

We implemented this method in c++ using tools of the quocmesh library. For solving the
system (3.8), we use a diagonally preconditioned conjugate gradient solver ([4]).

For the system (3.12), we use a block operator and multivectors, for solving the system, a
conjugate gradient solver is used ([14, 4]).

Results

We used the first tree (16 terminal nodes) from Section 2.5.4, a 257× 257 grid and τ = 1
512 .

The values for the source term were set to Ca = 0.977436, Cv = −1.0, satisfying (3.14).
The output is linearly color-coded in the profile used before in Figure 2.10. Red corre-

sponds to maximal temperature, green to zero temperature and blue to minimal tempera-
ture.

We can see the location of the segments in the position of heating and cooling in our
domain, moreover the intensity is proportional to the cross section area of the segments.
Computing those 50 time steps took 726 seconds on a desktop PC with a 1 GHz Athlon
CPU.

3.4.2 Convergence to Steady State Solution

In order to check convergence to the steady state solution, we first compute the steady state
solution for the same tree as above, this time the domain is discretized by a 129× 129 grid
and we take τ = 1

256 . The source values are the same as above. Computing the steady state
solution and 300 time steps took 620 seconds.

We use the same color scale as before. A series of time steps is shown in Figure 3.2. At
first, the influence of the source terms is hardly visible in the graphic, but at later time steps,
we can see that the images look more and more similar to the steady state image.

In fact, computing the norm of the difference between the current time step and the steady
state solution confirms this. Figure 3.3 shows a plot of the squared error in each time step
relative to the squared norm of the steady state solution for the convergence experiment
described. For this, we took 172, 332, 652 and 1292 grids with timesteps τ = 1

32 , 1
64 , 1

128 , 1
256 .

We can also see that the final relative error (where the convergence flattens out) is propor-
tional to h. It is determined by the discretization error in M and L. This error can also be
observed in the time stepping procedure: the Ūk do not satisfy (1, . . . , 1)Ūk = 0 exactly even
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(01) (02)

(03) (10)

(20) (30)

(40) (50)

Figure 3.1: Time steps 1, 2, 3, 10, 20, 30, 40, 50 of the heat diffusion computation.
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3 Heat Conduction in Tissue

Figure 3.2: Convergence of time stepping solutions to the steady state solution:
Time steps 1, 2, 4, 8, 16, 32, 64, 256, and the steady state solution.
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convergence on level 7

Figure 3.3: Convergence of time stepping solutions to the steady state solution:
logarithmic plot of the squared norm of the difference relative to squared norm
of the steady state solution (initial error) vs. time step on grid levels 4, 5, 6, 7.

though Ū0 = 0, but for sufficiently large k, (1, . . . , 1)Ūk ≈ (1, . . . , 1)Ūk+1. Computing these
products on different grids, they also turn out to be O(h).
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4 Advection in Vessel Trees

This chapter deals with advection processes on the branching one-dimensional structure of
the two types of vessel trees. The goal is to develop an ELLAM (Eulerian-Lagrangian locally
adjoint method) to numerically solve the advection problem on these domains and to study
the properties of this method. ELLAM was introduced by Celia, Russel and Herrera in [8].

On the vessel trees, we consider a function u = uves being an energy content in the sense of
energy per length. On non-terminal segments, temperature is then given by 1

Cρ
uves
A∅

where C
is the specific heat capacity and ρ the density, whereas on terminal segments, energy content
decreases to zero at the terminal nodes. We will see later in (4.48) and (4.52) how this is
related to temperature.

In the plots in this chapter, we show temperature content defined as energy content at a
point multiplied with the cross section area of the segment. On non-terminal segments, tem-
perature content is proportional to temperature, on terminal segments, temperature content
decreases to zero at terminal nodes.

The segments of the trees are considered to have constant radius and velocity, the vel-
ocities have to be such that mass is conserved at bifurcations (p � d, e), (d, e � p) splitting and
combining flow:

A∅,p · vp = A∅,d · vd + A∅,e · ve.

So define the flow splitting ratios

θd =
A∅,d · vd

A∅,p · vp

θe =
A∅,e · ve

A∅,p · vp

where mass conservation above implies

θd + θe =
A∅,d · vd + A∅,e · ve

A∅,p · vp
= 1.

In the arterial tree, we specify an initial energy content profile, inflow into the root seg-
ment, moreover we assume continuous splitting of the temperature at bifurcations and out-
flow of energy along terminal segments such that the energy content drops down to zero at
leaf nodes.

In the venous tree, we also specify an initial energy content profile and zero energy content
at leaf nodes. We assume inflow of energy along terminal segments and weighted averaging
of temperatures at bifurcations according to the flow splitting ratios.

We first state the continuous problems and the corresponding ELLAM forms for our ad-
vection problem on the two vessel trees, afterwards we show how this is built up step by
step:
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4 Advection in Vessel Trees

1. We start with a single nonterminal segment for which inflow is given.

2. As a next step we consider simple bifurcations, both � and �, to study how splitting
and combination can be incorporated in our ELLAM framework. Again, inflow into
parent (� case) or daughter (� case) segments is given.

3. Then we make one of the daughter segments in the bifurcation a terminal segment to
present the appropriate source term for a terminal outflow / inflow segment.

4. Finally, we extend this to a pair of complete vessel trees.

Throughout this chapter, we consider two separate advection problems, one on the arterial
tree and one on the venous tree. In order to keep notation reasonably simple, we use v, f
and 1D interval representation for both trees. From the context, it will be clear which tree a
given equation refers to.

All velocities v are assumed to be nonnegative.

4.1 Continuous and ELLAM Formulation

4.1.1 Continuous Advection Problems

We order the unknowns in the segments such that velocity is always positive and formulate
the problems separately for the arterial and venous tree because the two processes have a
different nature. In the arterial tree, we impose one inflow and compute many outflows (one
for each leaf node), moreover, temperature splits continuously at bifurcations. In contrast,
we have many inflows into the venous tree (one for each leaf node) and only one outflow
condition, at each bifurcation we instantaneously obtain a weighted average of the two inflow
temperatures (and energy contents), thus temperature (and energy content) is inherently
discontinuous at bifurcations.

We map boundary data at inflow boundaries to initial data as explained below in equation
(4.5). As the segments of our trees are represented by intervals in R, we need to make sure
that these intervals do not intersect when extending the support of initial data to the left. So
let K ∈ N from Section 2.1.3 be sufficiently large so that (j− 1)K + `j−1 < jK − vjT for all
segments j when considering the time interval [0, T].

Arterial Tree

The advection problem on the arterial tree with a source term and constant velocities on the
segments during the time interval [0, T] is modeled by the initial-boundary value problem

∂tu(t, x) + v(x) · ∂xu(t, x) = f (t, x) on [0, T]× Ta = [0, T]×
⋃

j

[jK, jK + `j]

u(0, x) = u0(x)
u(t, 0) = uroot(t)

u(t, pK + `p) =
A∅,p

A∅,d
· u(t, dK) ∀ (p, d) parent and daughter

(4.1)
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4.1 Continuous and ELLAM Formulation

where f (t, x) is a source term, u0(x) is an initial energy content distribution, v(x) = v(i) is
constant on each of the segments above, inflow is given at the root and temperature is split
continuously at bifurcations. This implies for any p parent of d and temperatures ϑ:

ϑ(t, pK + `p) = ϑ(t, dK)

⇒ 1
Cρ
·

u(t, pK + `p)
A∅,p

=
1

Cρ
· u(t, dK)

A∅,d

⇒ u(t, pK + `p) =
A∅,p

A∅,d
· u(t, dK). (4.2)

f (t, x) consists of two parts, f (t, x) = fw(t, x) + ff(t, x), where fw describes source terms
describing energy transfer between non-terminal vessel segments and surrounding tissue
(“across the vessel walls”), ff describes the energy transfer by outflow out of terminal seg-
ments along the whole segment. In our model, fw is zero on terminal segments whereas ff
vanishes on non-terminal segments.

ff(t, x) is given by (see Section 4.4.1):

ff(t, x) = vj ·
u(t, x)

jK + `j − x
.

Venous Tree

On the venous tree, advection with a source term and constant velocities on the segments is
modeled by the initial-boundary value problem

∂tu(t, x) + v(x) · ∂xu(t, x) = f (t, x) on [0, T]× Tv = [0, T]×
⋃

j

[jK, jK + `j]

u(0, x) = u0(x)
u(t, jK) = 0 ∀ j terminal segments

u(t, pK) =
vd

vp
· u(t, dK + `d) +

ve

vp
· u(t, eK + `e) ∀ (d, e � p) bifurcation

(4.3)

where f = fw + ff is a source term with fw = 0 on terminal segments and ff = 0 on non-
terminal segments, u0(x) is an initial energy content distribution, v is constant on each of
the intervals above and temperature satisfies energy conservation when flow is combined at
a bifurcation.

Energy conservation implies (C specific heat capacity in J
K·kg , ρ density1 in kg

Vol , ϑ temper-
ature in K) for the limits of the function values at the bifurcation point in (4.3):

A∅,pvpCρ · ϑ(t, pK) = A∅,dvdCρ · ϑ(t, dK + `d) + A∅,eveCρ · ϑ(t, eK + `e)

⇒ A∅,pvpCρ · u(t, pK)
A∅,p

= A∅,dvdCρ · u(t, dK + `d)
A∅,d

+ A∅,eveCρ · u(t, eK + `e)
A∅,e

⇒ u(t, pK) =
vd

vp
· u(t, dK + `d) +

ve

vp
u(t, eK + `e). (4.4)

1Vol is two-dimensional volume here in our two-dimensional setting.
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4 Advection in Vessel Trees

t = kτ

t = (k + 1)τ

x = −ρ x = 0

uin(x)

uroot(t)

Figure 4.1: Sketch for mapping boundary data to initial data.

Note that energy content at leaf nodes is set to zero, so inflow into venous terminal seg-
ments is not given by boundary conditions at leaf nodes. Instead, we impose a source term
ff(x) on those segments, see Section 4.4.2:

ff(t, x) =
A∅v
`

usurr(t, x)

where usurr is the energy density of the surrounding tissue ( J
Vol ).

4.1.2 Existence of Solutions

In Proposition 4.2.1, we show that there exists a unique solution for the advection problem
on a single segment with sufficiently smooth initial and inflow boundary data.

This covers all types of segments of both trees except for terminal segments in the arterial
tree that have a different RHS term in the corresponding PDE. For those segments, existence
of a unique solution is shown in Section 4.4.1.

Arterial Tree

For our numerical method, we map boundary (root) conditions uroot(t ≥ 0) of the arterial
tree to initial data uin on an inflow domain, see Figure 4.1:

uin(x) := uroot

(
−1
v
· x
)
∀ x ∈ [vT, 0). (4.5)

Define extended initial data and source terms for the arterial tree:

ũ0(x) :=


uin(x) for x ∈ [−vT, 0)
u0(x) for x ∈ Ta =

⋃
j[jK, jK + `j]

0 else

(4.6)

f̃ (x) :=


0 for x ∈ [−vT, 0)
f (x) for x ∈ Ta =

⋃
j[jK, jK + `j]

0 else.

(4.7)

There is no inflow represented at leaf nodes of the arterial tree.
The advection problem on the arterial tree consists of coupled advection problems: outflow

out of upflow segments determines inflow to subsequent segments in downflow direction.
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4.1 Continuous and ELLAM Formulation

From this, we can conclude that there exists a solution for the transport problem on the
arterial vessel tree if the extended initial data ũ0 and source f̃ are sufficiently smooth:

Proposition 4.1.1 (Existence of Solution for the Arterial Tree). If

f̃ |Ta ∈ C0(Ta), ũ0|Ta∪[−vT,0) ∈ C1(Ta ∪ [−vT, 0])

and f̃ , ũ0, ũ′0 satisfy the bifurcation limits in problem (4.1), there is a unique solution to the continuous
advection problem on the arterial tree.

Proof. The solution is obtained by tracing back along the characteristics as in Section 4.2.1
through the branching structure considering the source terms. For a more detailed discus-
sion of advection equations, we refer to [32].

This is satisfied if f ∈ C0(Ta), u0 ∈ C1(Ta), uroot ∈ C1([0, T]), the transition between u0
and uroot at the origin, namely ũ0|Bε(0), is C1, and f , u0, u′0 satisfy the bifurcation limits.

Venous Tree

For the venous tree, we have zero boundary conditions at the leaf nodes, so u0(x) is extended
by 0 outside of Tv. Here,

ũ0(x) :=


0 for x ∈ [iK− vT, iK) for all terminal segments i
u0(x) for x ∈ Tv =

⋃
j[jK, jK + `j]

0 else

(4.8)

f̃ (x) :=


0 for x ∈ [iK− vT, iK) for all terminal segments i
f (x) for x ∈ Tv =

⋃
j[jK, jK + `j]

0 else.

(4.9)

(4.10)

Again, our transport model consists of coupled advection problems and we get a unique
solution if ũ0 and f̃ are sufficiently smooth and satisfy bifurcation and boundary conditions:

Proposition 4.1.2 (Existence of Solution for the Venous Tree). If

f̃ |Tv ∈ C0Tv, ũ0|Tv ∈ C1(Tv),

ũ0(jK) = 0 for all terminal segments j and f̃ , ũ0, ũ′0 satisfy the bifurcation limits in problem (4.3),
there is a unique solution to the continuous advection problem on the venous tree.

Proof. ũ0(jK) = 0 for all terminal segments j implies that

ũ0|Tv∪
⋃

i terminal segment[iK−vT,iK) ∈ C1
(

Tv ∪
⋃

i terminal segment

[iK− vT, iK)
)

. (4.11)

The solution is obtained by tracing back along the characteristics as in Section 4.2.1 through
the branching structure.
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4 Advection in Vessel Trees

4.1.3 ELLAM Formulation

Our aim is to discretize the advection PDE using an ELLAM (Eulerian-Lagrangian locally
adjoint method) as described by Celia et. al in [8]. ELLAM involves obtaining a weak for-
mulation of the advection problem using test functions that are constant along characteristic
curves of the PDE, i. e. test functions w satisfying

−∂tw(t, x)− vj · ∂xw(t, x) = 0 (4.12)

on each segment j during one time step of the calculation. For this purpose, the interval
[0, T] is split into a finite number time steps t0, . . . , tR, tk = k · τ, tR = T.

Function Spaces

At an arterial bifurcation, pterm is the downflow node of p, it coincides with dinit and einit, the
upflow nodes of d, e. At a venous bifurcation, dinit and einit are the downflow nodes of d, e
and coincide with pterm, the upflow node of p.

To use a more intuitive notation that respects the direction of flow, we write pdownf, dupf
and eupf in the arterial case and ddownf, edownf and pupf in the venous case.

Define the following function spaces for u(t, ·) for fixed time t: for the arterial vesseltree
Ta =

⋃
i Sa,i, (4.2) says how to choose the function space:

Ha := H1(Ta) :=
{

u
∣∣∣ u|Sa,i ∈ H1(Sa,i) ∀ i

}
‖u‖Ha = ∑

i
‖u‖H1(Sa,i)

Va =
{

u ∈ Ha

∣∣∣∣ u(pdownf) =
A∅,p

A∅,d
u(dupf) =

A∅,p

A∅,e
u(eupf) ∀ (p � d, e) bifurcation

}

and the venous vesseltree Tv =
⋃

i Sv,i, (4.4) says how to choose the function space:

Hv := H1(Tv) :=
{

u
∣∣∣ u|Sv,i ∈ H1(Sv,i) ∀ i

}
‖u‖Hv = ∑

i
‖u‖H1(Sv,i)

Vv =
{

u ∈ Hv

∣∣∣∣ u(pupf) =
vd

vp
u(ddownf) +

ve

vp
u(edownf) ∀ (d, e � p) bif., u(lupf) = 0 ∀ l leaf

}
.

Note that by Proposition 6.2.9, H1 functions on open intervals are continuous on the clo-
sure of these intervals, so the function spaces above are well-defined.

Va, Vv are the spaces of H1 functions describing feasible u profiles on the arterial and
the venous tree respectively. In particular, these function spaces incorporate the coupling
conditions for bifurcations.

Va ⊂ Ha and Vv ⊂ Hv are closed and convex subsets, see Lemmas 4.1.3 and 4.1.4 at the
end of this section.
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4.1 Continuous and ELLAM Formulation

For a fixed time step k, define the following function spaces for the test functions wk+1:

W̃a =
{

w ∈ Ha
∣∣w(pdownf) = θd · w(dupf) + θe · w(eupf) ∀ (p � d, e) bifurcation

}
Wk+1

a :=

w : [kτ, (k + 1)τ]× Ta → R

∣∣∣∣∣∣
w(t, ·) ∈ W̃a ∀ t
∧w(·, x) ∈ C0,1([kτ, (k + 1)τ]) ∀ x
∧− ∂tw(t, x)− v(x)∂xw(t, x) = 0 ∀ t, x


W̃v =

{
w ∈ Hv

∣∣w(pupf) = w(ddownf) = w(edownf) ∀ (d, e � p) bifurcation
}

Wk+1
v :=

w : [kτ, (k + 1)τ]× Tv → R

∣∣∣∣∣∣
w(t, ·) ∈ W̃v ∀ t
∧w(·, x) ∈ C0,1([kτ, (k + 1)τ]) ∀ x
∧− ∂tw(t, x)− v(x)∂xw(t, x) = 0 ∀ t, x

 .

Wk+1
a , Wk+1

v are the spaces of test functions describing advection with mass conservation.
In case of the arterial tree, mass is split θd : θe between the two daughters at a bifurcation,
so only a fraction of the mass flowing out of an upstream segment flows into one given
downstream segment. In the venous tree, this is different: all the mass flowing out of
an upstream (daughter) segment flows into the downstream (parent) segment. Hence the
coupling conditions in the W̃ spaces are different.

Note that there is duality to some extent: Va and W̃v have a similar structure, so do Vv and
W̃a. The structures are not the same, however, because coupling conditions in Va;v involve
an additional factor A∅,p

A∅,d
compared to the conditions in Wk+1

v;a .
This is due to the different nature of the two bifurcations: if flow is split, temperature is

continuous, if flow is combined, temperatures (and energy contents) are averaged discontin-
uously.

Also note that there is no continuity requirement for test functions from one time step to
the next, i. e.

wk+1(t, x) · χ(kτ,(k+1)τ) + wk+2(t, x) · χ((k+1)τ,(k+2)τ), wk+1 ∈Wk+1
a,v , wk+2 ∈Wk+2

a,v (4.13)

does not have a continuous extension to t = (k + 1)τ for fixed x.

Now we can state the weak formulation of the advection problems for the kth time step
obtained by integration in both space and time:

Arterial Tree

Given f ∈ L2((0, T), Va) (this space is defined in (3.2)), u0 ∈ Va and uroot ∈ L2([0, T]), find

u ∈ L2((0, T); Va) ∩ C0([0, T]; L2(Ta))

such that∫
Ta

∫ (k+1)τ

kτ
(∂tu(t, x) + v(x)∂xu(t, x)) · w(t, x) dt dx =

∫
Ta

∫ (k+1)τ

kτ
f (x)w(t, x) dt dx ∀w ∈Wk+1

a

u(0, x) = u0(x)
u(t, 0) = uroot(t)

(4.14)

holds for each k ∈ {1, . . . R}.
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4 Advection in Vessel Trees

Venous Tree

Given f ∈ L2((0, T), Vv) and u0 ∈ Vv, find

u ∈ L2((0, T); Vv) ∩ C0([0, T]; L2(Tv)) (4.15)

such that∫
Tv

∫ (k+1)τ

kτ
(∂tu(t, x) + v(x)∂xu(t, x)) · w(t, x) dt dx =

∫
Tv

∫ (k+1)τ

kτ
f (x)w(t, x) dt dx ∀w ∈Wk+1

v

u(0, x) = u0(x)
u(t, jK) = 0 ∀ j terminal segment

(4.16)

holds for each k ∈ {1, . . . , R}.

Lemma 4.1.3. Va ⊂ Ha is convex and closed.

Proof. Convexity: We have for λ ∈ [0, 1] and v1, v2 ∈ Va:

(v1(pdownf) + λ(v2(pdownf)− v1(pdownf)))

=
A∅,p

A∅,d
v1(dupf) + λ

(
A∅,p

A∅,d
v2(dupf)−

A∅,p

A∅,d
v1(dupf)

)
=

A∅,p

A∅,d

(
v1(dupf) + λ(v2(dupf)− v1(dupf))

)
.

Closedness: Show that ∀w ∈ Ha \Va∃ε > 0 :

Bε(w) := {w̃ ∈ Ha | ‖w− w̃‖Ha < ε} ⊂ Ha \Va,

this is equivalent to Va being closed subset of Ha.
For w ∈ Ha \ Va, there exists at least one bifurcation at which the limit condition is not

satisfied. Let p, d be the lexicographically first pair of parent, daughter segment at such
bifurcations. Let Cb := A∅,p

A∅,d
. Then

w(pdownf)−
A∅,p

A∅,d
w(dupf) =: δ(w) = δ 6= 0.

For any fixed v ∈ Va, f := v− w, δ( f ) = δ(w).
Let η = min

(
|δ|, |δ|Cb

)
, then by Lemma 6.2.15,

| f (pdownf)| ≥
η

2
∨ | f (dupf)| ≥

η

2
.

By Lemma 6.2.14, we obtain

‖w− v‖Ha ≥ min

(
1
8

√
`pη,

1
4
√

`p
η

)

∨ ‖w− v‖Ha ≥ min
(

1
8

√
`dη,

1
4
√

`d
η

)
.
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4.1 Continuous and ELLAM Formulation

Thus

‖w− v‖Ha ≥ min

(
1
8

√
`pη,

1
4
√

`p
η,

1
8

√
`dη,

1
4
√

`d
η

)
=: ε

and ε is strictly greater than zero and depends on w and the tree but not on v, so we have
shown that Ha \Va is open in Ha.

Lemma 4.1.4. Vv ⊂ Hv is convex and closed.

Proof. Convexity: Again, this is the easier part. Let j be a terminal segment in the venous
tree, (d, e � p) be a bifurcation, λ ∈ [0, 1] and v1, v2 ∈ Vv:

v1(jupf) + λ(v2(jupf)− v1(jupf))

= 0 + λ(0− 0) = 0

and

v1(pupf) + λ(v2(pupf)− v1(pupf))

=
vd

vp
v1(ddownf) +

ve

vp
v1(edownf) + λ

(
vd

vp
v2(ddownf) +

ve

vp
v2(edownf)−

vd

vp
v1(ddownf)−

ve

vp
v1(edownf)

)
=

vd

vp
(v1(ddownf) + λ(v2(ddownf)− v1(ddownf))) +

ve

vp
(v1(edownf) + λ(v2(edownf)− v1(edownf))) .

Closedness: As before, we show that ∀w ∈ Hv \Vv∃ε > 0 :

Bε(w) := {w̃ ∈ Hv | ‖w− w̃‖Hv < ε} ⊂ Hv \Vv,

this is equivalent to Vv being closed subset of Hv.
For w ∈ Hv \Vv, there exists at least one terminal segment j where the boundary condition

is not satisfied or at least one bifurcation (d, e; p) at which the limit condition is not satisfied.
In the first case, let j be the troublesome terminal segment with smallest index, let δ(w) =

w(j, downf) = δ(w− v) = δ( f ) =: δ for all v ∈ Vv, f := w− v. Then, by Lemma 6.2.14, we
get

‖w− v‖Hv ≥ min

(
1
4

√
`jδ,

1
2
√

`j
δ

)
=: ε.

In the second case, let (d, e � p) be the first troublesome bifurcation with indices in lexico-
graphical ordering and define

v(pupf)−
vp

vd
v(ddownf)−

vp

ve
v(edownf) =: δ(w) = δ 6= 0.

For v ∈ Vv, f := v− w, we have δ( f ) = δ(w).
Let η = min

(
|δ|, vd

vp
|δ|, ve

vp
|δ|
)

, then by Lemma 6.2.15, we get

| f (pupf)| ≥
η

3
∨ | f (ddownf)| ≥

η

3
∨ | f (edownf)| ≥

η

3
.
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4 Advection in Vessel Trees

Again, Lemma 6.2.14 implies

‖w− v‖Hv ≥ min

(
1
12

√
`pη,

1
6
√

`p
η

)

∨‖w− v‖Hv ≥ min
(

1
12

√
`dη,

1
6
√

`d
η

)
∨‖w− v‖Hv ≥ min

(
1
12

√
`eη,

1
6
√

`e
η

)
.

Thus

‖w− v‖Hv ≥ min

 1
12

√
`{p,d,e}η,

1

6
√

`{p,d,e}
η

 =: ε.

In any case, ε > 0 independent of v, so we have shown that Hv \Vv is open in Hv.

4.2 ELLAM on a Single Segment

4.2.1 Continuous Problem

Advection on a single segment of length ` and for constant velocity v > 0, during the
time interval [0, T] with a source term f and initial conditions u0 is described by the initial-
boundary value problem

∂tu(t, x) + v · ∂xu(t, x) = f (t, x) in [0, T]× [0, `]
u(t, 0) = uroot(t) in [0, `]
u(0, x) = u0(x) in [0, T]

(4.17)

with uroot(t = 0) = u0(x = 0).
Here, mapping boundary conditions to an inflow domain and extending initial data and

source looks as follows:

ũ0(x) :=


uin(x) for x ∈ [−vT, 0)
u0(x) for x ∈ [0, `]
0 else

f̃ (x) :=


0 for x ∈ [−vT, 0)
f (x) for x ∈ [0, `]
0 else.

First we show the existence and uniqueness of a solution to this problem for sufficiently
smooth data and f constant in time:

Proposition 4.2.1. Let f ∈ C0(R), u0 ∈ C1(R), v > 0. Then the problem

∂tu(t, x) + v · ∂xu(t, x) = f (x) (t, x) ∈ [0, ∞)×R

u(0, x) = u0(x) on {0} ×R
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4.2 ELLAM on a Single Segment

has a unique solution given by

u(t, x) = u0(x− vt) +
∫ x

x−vt

1
v
· f (ξ) dξ. (4.18)

Proof. The solution is obtained by tracing back along the characteristics. We show that it is
in fact a solution: Let F(x) :=

∫ x
x0

1
v f (ξ) dξ for some x0 ∈ R, then

∫ x

x−vt
·1
v
· f (ξ) dξ = F(x)− F(x− vt)

u(t, x) = u0(x− vt) + F(x)− F(x− vt)
∂tu(t, x) = u′0(x− vt) · (−v)− F′(x− vt) · (−v)
∂xu(t, x) = u′0(x− vt) + F′(x)− F′(x− vt) · 1

⇒ ∂tu(t, x) + v · ∂xu(t, x) = u′0(x− vt) · (−v)− F′(x− vt) · (−v)
+ v

(
u′0(x− vt) + F′(x)− F′(x− vt)

)
= v · F′(x) = v · 1

v
· f (x) = f (x).

To show uniqueness, let s(t, x) be any solution of the initial value problem, then the differ-
ence function d(t, x) = s(t, x)− u(t, x) must satisfy

∂td(t, x) + v∂xd(t, x) = 0 (t, x) ∈ [0, ∞)×R

d(0, x) = 0 on {0} ×R,

hence d(t, x) = 0 ∀ (t, x) ∈ [0, ∞)×R, so s = u.

Remark 4.2.2. Values of the extended functions f̃ and ũ0 outside of the interval [−vT, `] are
irrelevant for our solution.
Remark 4.2.3. For (4.18) to make sense, f need not be continuous on all R.

Suppose f ∈ C0([0, `]), but f (0) 6= 0. Then for any ε > 0, f |[ε,`] can be extended to a C0(R)
function satisfying

f̂ (x) =


0 x ≤ 0
ε · f (ε) 0 < x < ε

f (x) ε ≤ x ≤ `

f (`) x > `

and u, û, the solutions for f , f̂ as in (4.18), satisfy:

û(t, x) = u0(x− vt) +
1
v

∫ x

x−vt
f̂ (ξ) dξ

= u0(x− vt) +
1
v

∫ ε

0
f̂ (ξ) dξ +

1
v

∫ x

ε
f̂ (ξ) dξ

= u0(x− vt) +
1
v

∫ x

ε
f (ξ) dξ + O(ε)

= u0(x− vt) +
1
v

∫ x

0
f (ξ) dξ −O(ε) + O(ε)

= u(t, x) + O(ε)
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4 Advection in Vessel Trees

Γl

x0 x1 xi

tk+1

tk

xn−2 xn−1

Γr

Γk+1

Γk

Figure 4.2: Boundary sets for a single ELLAM time step in case of Dirichlet boundary con-
ditions

because f ∈ C0([0, `]) implies that f is bounded.

So we get a unique solution for any f ∈ C0([0, `]).

Remark 4.2.4. Proposition 4.2.1 also holds if f is not constant in time, but sufficiently smooth.
In this case, we also need to integrate the source term f (t, x) along the characteristic as we
trace back to the initial condition.

So for our purposes, we state the following existence result:

Proposition 4.2.5. If f ∈ C0([0, T] × [0, `]) and u0 and uroot are such that ũ0 ∈ C1([−vT, `]),
problem (4.17) has a unique solution given by

u(t, x) = ũ0(x− vt) +
∫ x

x−vt

1
v
· f̃ (ξ) dξ. (4.19)

4.2.2 Temporal Discretization using ELLAM

For the spatial discretization we use a one-dimensional grid with equidistant grid points
x0 = 0, xi = i · h, xn = ` with grid width h = `

n , the temporal discretization is t0 = 0, tk =
k · τ, . . . tm = T with temporal grid width τ = T

m .
Let h and τ be sufficiently small that the grid has least four nodes and

ρ :=
v · τ

h
≤ 1. (4.20)

ρ is a scaling factor for the velocity so that ρ · v is the velocity in grid cells per time step.
The first condition guarantees that in our discretization and time stepping, we do not

have to consider inflow and outflow within the same ELLAM equation. As for the second
condition, we will explain the generalization to bigger ρ > 1 after treating the case ρ ≤ 1.

As mentioned before, we write a weak form of the advection problem using test functions
that satisfy (4.12).

For a single time step, we define the sets Γ shown in Figure 4.2 and derive the weak
formulation by first testing with functions w ∈Wk+1

1∫ `

0

∫ tk+1

tk
(∂t + v · ∂x) u · w =

∫ `

0

∫ tk+1

tk
f · w (4.21)

54



4.2 ELLAM on a Single Segment

and then integrating by parts

⇒
∫

Γk+1
u(tk+1, x) · w(tk+1, x) dx−

∫
Γk

u(tk, x) · w(tk, x) dx

+
∫ `

0

∫ tk+1

tk
u(t, x) (−∂t − v · ∂x) w(t, x) dt dx (4.22)

+ v ·
∫

Γr

u(t, `)w(t, `) dt− v ·
∫

Γl

u(t, 0)w(t, 0) dt =
∫ `

0

∫ tk+1

tk
f (t, x) · w(t, x) dx dt

where

H1 := H1((0, `))
V1 := H1

Wk+1
1 :=

{
w : [tk, tk+1]× [0, `]→ R

∣∣∣∣ w(t, ·) ∈ H1 ∀ t ∧ w(·, x) ∈ C0,1([tk, tk+1]) ∀ x
∧− ∂tw(t, x)− v(x)∂xw(t, x) = 0 ∀ t, x

}
.

Because of equation (4.12), the third integral on the left hand side of (4.22) drops out and
we obtain the weak ELLAM formulation of the advection problem for a single segment:

Given f ∈ L2((0, T), V1), u0 ∈ V1 and uin ∈ L2([0, T]), find

u ∈ L2((0, T); V1) ∩ C0([0, T]; L2(Ta))

such that∫
Γk+1

u(tk+1, x) · w(tk+1, x) dx−
∫

Γk
u(tk, x) · w(tk, x) dx (4.23)

+ v ·
∫

Γr

u(t, `)w(t, `) dt− v ·
∫

Γl

u(t, 0)w(t, 0) dt =
∫ `

0

∫ tk+1

tk
f (t, x) · w(t, x) dx dt ∀w ∈Wk+1

1

u(t, 0) = uin(t)
u(0, x) = u0(x)

is satisfied for each k ∈ {1, . . . , R}.

4.2.3 Spatial Discretization

For the discretization of u and f , we use standard finite elements in 1D with piecewise linear
nodal basis ϕj satisfying

ϕj(xk) = A∅ · δj,k

so that the discretization of u, u ≈ ∑j Uj ϕj, has coefficients Uj as energy per volume, thus
proportional to temperature. For a single segment, this has no big advantage, but it will be
useful later. Call this finite element space V̂1.

It will turn out that, at time tk, we do not yet know f (tk+1, ·), so we assume f to be constant
in time during [tk, tk+1].

For the discretization Ŵ1 of W1 it is now natural to use functions that have the same shape
as the ϕ on Γk+1, but height 1. As they are required to be constant along the characteristics
(4.12), we choose the roof-shaped functions of [8].
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4 Advection in Vessel Trees

xi−1 xi
x∗i−1 x∗i x∗i+1

xi+1

tk

tk+1

Ωk
i,1

Ωk
i,2

Figure 4.3: The ELLAM test function wk+1
i , height 1.

Let x∗i := xi − vτ and define the domains Ωk
i,{1,2} (parallelograms in space-time, convex

hull of their vertices):

Ωk
i,1 := conv

(
(kτ, x∗i−1); (kτ, x∗i ); ((k + 1)τ, xi−1); ((k + 1)τ, xi)

)
,

Ωk
i,2 := conv

(
(kτ, x∗i ); (kτ, x∗i+1); ((k + 1)τ, xi); ((k + 1)τ, xi+1)

)
.

Then

wk+1
i (t, x) =


x−xi−1

h + v · tk+1−t
τ (t, x) ∈ Ωk

i,1
xi+1−x

h + v · tk+1−t
τ (t, x) ∈ Ωk

i,2

0 else

are the ELLAM test functions of [8].
The domains and the functions are shown in Figure 4.3.
In this definition, the superscript k + 1 indicates that we want to compute the (k + 1)st

time step. From now on, we consider a fixed time step only and drop this index to simplify
notation.

An approximation of the RHS integral is

∫ `

0

∫ tk+1

tk
f (t, x) ·w(t, x) ≈ τ · 1

2

(∫ `

0
f (tk, x) · w(tk, x) dx +

∫ `

0
f (tk, x) · w(tk+1, x) dx

)
. (4.24)

We can now state the equations that form the discrete version of (4.23).

Inflow Boundary

As in the continuous case, see equation (4.5), we do not specify Dirichlet boundary condi-
tions but flow boundary conditions. The boundary sets used here are shown in Figure 4.4.
This requires mapping the inflow to Γin and a different treatment of the integrals near the
boundary.
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4.2 ELLAM on a Single Segment

x0 x1 xi xn−1

tµ+1

tµ

xnΓin Γk

Γk+1

Γout

Figure 4.4: Boundary sets for a single ELLAM time step used here

The discretization of (4.23) can be written as

x0 : Uk+1
0

∫
Γk+1

w0ϕ0 + Uk+1
1

∫
Γk+1

w0ϕ1

= Uk
0

∫
Γk

w0ϕ0 + Uk
1

∫
Γk

w0ϕ1 +
∫

Γin

w0Uin (4.25)

+
τ

2

(
Fk

0

∫
Γk+1

w0ϕ0 + Fk
1

∫
Γk+1

w1ϕ1

)
+

τ

2

(
Fk

0

∫
Γk

w0ϕ0 + Fk
1

∫
Γk

w0ϕ1

)
,

x1 : Uk+1
0

∫
Γk+1

w1ϕ0 + Uk+1
1

∫
Γk+1

w1ϕ1 + Uk+1
2

∫
Γk+1

w1ϕ2

= Uk
0

∫
Γk

w1ϕ0 + Uk
1

∫
Γk

w1ϕ1 + Uk
2

∫
Γk

w1ϕ2 +
∫

Γin

w1Uin(x) (4.26)

+
τ

2

(
Fk

0

∫
Γk+1

w1ϕ0 + Fk
1

∫
Γk+1

w1ϕ1 + Fk
2

∫
Γk+1

w1ϕ2

)
+

τ

2

(
Fk

0

∫
Γk

w1ϕ0 + Fk
1

∫
Γk

w1ϕ1 + Fk
2

∫
Γk

w1ϕ2

)
.

Interior Grid Points

At grid points sufficiently far from the boundary, boundary conditions do not have influence
on our scheme.

For the test functions wi, 2 ≤ i ≤ n − 1, we do not get contributions of either Γl or Γr.
Moreover, only the supports of certain wi and ϕj overlap, this is shown in Figure 4.5.

So equation (4.23) in fully discrete form becomes

xi : Uk+1
i−1

∫
Γk+1

wi ϕi−1 + Uk+1
i

∫
Γk+1

wi ϕi + Uk+1
i+1

∫
Γk+1

wi ϕi+1

= Uk
i−2

∫
Γk

wi ϕi−2 + Uk
i−1

∫
Γk

wi ϕi−1 + Uk
i

∫
Γk

wi ϕi + Uk
i+1

∫
Γk

wi ϕi+1 (4.27)

+
τ

2

(
Fk

i−1

∫
Γk+1

wi ϕi−1 + Fk
i

∫
Γk+1

wi ϕi + Fk
i+1

∫
Γk+1

wi ϕi+1

)
+

τ

2

(
Fk

i−2

∫
Γk

wi ϕi−2 + Fk
i−1

∫
Γk

wi ϕi−1 + Fk
i

∫
Γk

wi ϕi + Fk
i+1

∫
Γk

wi ϕi+1

)
.
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0 1−1−2
−1− ρ −ρ 1− ρ

(1) (3)(2) (4)

2− ρ

wj−1 wj wj+1 wj+2
ϕj

Figure 4.5: Sketch for the computation of
∫

wi ϕj away from the boundary. Note that wi (blue)
always has height 1 whereas ϕj (green) has height A∅ not necessarily equal to 1.

Outflow Boundary

At the outflow boundary, only the last equation is affected:

xn : Uk+1
n−1

∫
Γk+1

wn ϕn−1 + Uk+1
n

∫
Γk+1

wn ϕn

= Uk
n−2

∫
Γk

wn ϕn−2 + Uk
n−1

∫
Γk

wn ϕn−1 + Uk
n

∫
Γk

wn ϕn (4.28)

+
τ

2

(
Fk

n−1

∫
Γk+1

wn ϕn−1 + Fk
n

∫
Γk+1

wn ϕn

)
+

τ

2

(
Fk

n−2

∫
Γk

wn ϕn−2 + Fk
n−1

∫
Γk

wn ϕn−1 + Fk
n

∫
Γk

wn ϕn

)
.

Note that Γout 6⊂ Γk, so that no additional terms appear. We could explicitely compute
the outflow by integration over Γout. For bifurcations, we will see that the flow from one
segment to the next is treated implicitly, for terminal segments of the arterial tree, our model
does not allow any outflow out of the leaf node. Only on the root segment of the venous
tree, energy outflow out of our system might be interesting.

The outflow can be computed as

h
∫ 0

−ρ
Uk = Uk

n−2h
∫ 0

−ρ
ϕn−2 + Uk

n−1h
∫ 0

−ρ
ϕn−1

= Uk
n−2 · A∅h ·

(
ρ− 1

2
ρ2
)

+ Uk
n−1 · A∅h · 1

2
ρ2. (4.29)

4.2.4 System of equations

From the structure of those equations, we can see that we get a system of equations of the
form

M · Ūk+1 = Me · Ūk + B̄k (4.30)

where the integrals over Γk and Γk+1 lead to the entries of the two matrices M, Me whereas
the contributions of the boundary and the source terms can be put into the vector B̄k.
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4.2 ELLAM on a Single Segment

Entries of M

Due to the definition of wk+1
i ,

wk+1
i (tk+1, x) =

1
A∅

ϕj(x), i. e. wk+1
i |Γk+1 =

1
A∅

ϕi|Γk+1 .

So M is a standard 1D finite element mass matrix, see Section 6.3, weighted with the cross
section area A∅.

Entries of Me

These values are slightly more complicated to evaluate.
As shown in Figure 4.5, the support of ϕj(x) has nontrivial intersection with the support

of wk+1
i (x, tk+1) if and only if i ∈ {j− 1, j, j + 1, j + 2} and we need to integrate over piecewise

quadratic functions.
The integrals over Γk can be evaluated analytically, here A is short for A∅:

I44(A, h, ρ) := Ah ·
∫ 1

1−ρ
(1− x)(−1 + ρ + x) dx = Ah ·

(
1
6

ρ3
)

I32(A, h, ρ) := Ah ·
∫ 0

−ρ
(1 + x)(ρ + x) dx = Ah ·

(
−1

6
ρ3 +

1
2

ρ2
)

I33(A, h, ρ) := Ah ·
∫ 1−ρ

0
(1− x)(ρ + x) dx = Ah ·

(
−1

6
ρ3 − 1

2
ρ2 +

1
2

ρ +
1
6

)
I34(A, h, ρ) := Ah ·

∫ 1

1−ρ
(1− x)(2− ρ− x) dx = Ah ·

(
−1

6
ρ3 +

1
2

ρ2
)

I21(A, h, ρ) := Ah ·
∫ −ρ

−1
(1 + x)(1 + ρ + x) dx = Ah ·

(
1
6

ρ3 − 1
2

ρ +
1
3

)
I22(A, h, ρ) := Ah ·

∫ 0

−ρ
(1 + x)(1− ρ− x) dx = Ah ·

(
1
6

ρ3 − ρ2 + ρ

)
I23(A, h, ρ) := Ah ·

∫ 1−ρ

0
(1− x)(1− ρ− x) dx = Ah ·

(
1
6

ρ3 − 1
2

ρ +
1
3

)
I11(A, h, ρ) := Ah ·

∫ −ρ

−1
(1 + x)(−ρ− x) dx = Ah ·

(
−1

6
ρ3 +

1
2

ρ2 − 1
2

ρ +
1
6

)
.

Now we can compute:∫
Γk

wi ϕi−2 = I44(A, h, ρ) = Ah ·
(

ρ3

6

)
(4.31a)∫

Γk
wi ϕi−1 = I32(A, h, ρ) + I33(A, h, ρ) + I34(A, h, ρ) = Ah ·

(
−ρ3

2
+

ρ2

2
+

ρ

2
+

1
6

)
(4.31b)∫

Γk
wi ϕi = I21(A, h, ρ) + I22(A, h, ρ) + I23(A, h, ρ) = Ah ·

(
ρ3

2
− ρ2 +

2
3

)
(4.31c)∫

Γk
wi ϕi+1 = I11(A, h, ρ) = Ah ·

(
−ρ3

6
+

ρ2

2
− ρ

2
+

1
6

)
,

(4.31d)
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4 Advection in Vessel Trees

special cases are:

∫
Γk

w0ϕ0 = I23(A, h, ρ) = Ah ·
(

ρ3

6
− ρ

2
+

1
3

)
(4.31e)∫

Γk
w1ϕ0 = I33(A, h, ρ) + I34(A, h, ρ) = Ah ·

(
−ρ3

3
+

ρ

2
+

1
6

)
(4.31f)∫

Γk
wn ϕn−1 = I32(A, h, ρ) + I33(A, h, ρ) = Ah ·

(
−ρ3

3
+

ρ

2
+

1
3

)
(4.31g)∫

Γk
wn ϕn = I21(A, h, ρ) = Ah ·

(
ρ3

6
− ρ

2
+

1
3

)
. (4.31h)

Note that the matrix Me is not symmetric, not even its sparsity structure is symmetric.
Since we do not need to invert it, this is not going to cause much of a problem.

Entries of Bk

As noted above, the vector Bk consists of boundary terms and source terms.
First consider the boundary terms: We need the discrete Uin(x) in equations (4.25) and

(4.26).
Mapping continuous boundary data uroot(t) (energy content) to initial data uin(x) is ex-

plained in equation (4.5). For the discretization, we need to consider energy densities: Let
Uroot(t) be the instantaneous inflow of energy density, Uroot(kτ) = Rk

in, Uroot((k + 1)τ) =
Rk+1

in , then a linear approximation of Uroot(t) on the time interval [kτ, (k + 1)τ] can be writ-
ten as

Uroot(t) = Rk
in +

t− kτ

τ

(
Rk+1

in − Rk
in

)
.

Via equation (4.5), this can be mapped to initial data Uin(x) on [−ρ, 0]:

Uin(x) = Rk+1
in +

x + ρ

ρ

(
Rk

in − Rk+1
in

)
.

Note that inflowing energy density is proportional to inflowing temperature which will
later be body temperature (temperature of inflowing blood).

Then we can compute

bk
0 =

∫
Γin

Uinw0 dx = Ah
∫ 0

−ρ

(
Rk+1

in +
x + ρ

ρ
(Rk

in − Rk+1
in )

)
· ((1− ρ)− x) dx

= Ah
((

1
2

ρ− 1
3

ρ2
)

Rk
in +

(
1
2

ρ− 1
6

ρ2
)

Rk+1
in

)
,

(4.32)

bk
1 =

∫
Γin

Uinw1 dx = Ah
∫ 0

−ρ

(
Rk+1

in +
x + ρ

ρ
(Rk

in − Rk+1
in )

)
· (ρ + x) dx

= Ah
(

1
3

ρ2Rk
in +

1
6

ρ2Rk+1
in

)
.

(4.33)

The outflow is already incorporated in the Me matrix by integrating only over Γk and not
over Γout.
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4.2 ELLAM on a Single Segment

The influence of the source terms can be written as

τ

2
· (MF̄k + Me F̄k) . (4.34)

So B̄k can be written as

b̄k =


bk

0
bk

1
0
...
0

 (4.35)

B̄k = b̄k +
τ

2
· (MF̄k + Me F̄k) . (4.36)

Full System of Equations

Now we can write out the matrices for our time stepping procedure (4.30) that computes
Ūk+1 in terms of Ūk if vτ

h < 1 is satisfied:

M =



∫
Γk+1 w0ϕ0

∫
Γk+1 w0ϕ1∫

Γk+1 w1ϕ0
∫

Γk+1 w1ϕ1
∫

Γk+1 w1ϕ2∫
Γk+1 w2ϕ1

∫
Γk+1 w2ϕ2

∫
Γk+1 w2ϕ3

. . . . . . . . .∫
Γk+1 wn−2ϕn−3

∫
Γk+1 wn−2ϕn−2

∫
Γk+1 wn−2ϕn−1∫

Γk+1 wn−1ϕn−2
∫

Γk+1 wn−1ϕn−1


(4.37)

Me =



∫
Γk w0ϕ0

∫
Γk w0ϕ1∫

Γk w1ϕ0
∫

Γk w1ϕ1
∫

Γk w1ϕ2∫
Γk w2ϕ0

∫
Γk w2ϕ1

∫
Γk w2ϕ2

∫
Γk w2ϕ3

. . . . . . . . . . . .∫
Γk wn−2ϕn−4

∫
Γk wn−2ϕn−3

∫
Γk wn−2ϕn−2

∫
Γk wn−2ϕn−1∫

Γk wn−1ϕn−3
∫

Γk wn−1ϕn−2
∫

Γk wn−1ϕn−1


(4.38)

b̄k =



∫
Γin

Uk
inw0∫

Γin
Uk

inw1

0
...
0

 (4.39)
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4 Advection in Vessel Trees

In the system,

M · Ūk+1 = Me · Ūk + b̄k +
τ

2
· (MF̄k + Me F̄k)

⇒ Ūk+1 = M−1
[

MeŪk + b̄k +
τ

2
· (MF̄k + Me F̄k)

]
⇒ Ūk+1 = M−1

[
Me
(

Ūk +
τ

2
F̄k
)

+ b̄k
]
+

τ

2
F̄k.

(4.40)

M is a tridiagonal matrix, so inverting it can be done efficiently by Gaußian elimination.
However, as we will see in the next section, this only works in case of a single segment. Me

is the quadridiagonal (one upper, two lower diagonals) ELLAM matrix. Both these matrices
correspond to the case that the segment has an unknown associated to both its initial and its
terminal point.

4.3 ELLAM on Bifurcations

The coupling between the segments and the fact that one geometric point is part of three
segments can be modeled in at least three different ways:

• Treat all segments separately and explicitely compute outflow / inflow:

– For the arterial tree, compute the outflow from the parent segment, split it accord-
ing to the flow splitting ratio and use this as inflow for the daughter segments.

– For the venous tree, compute the outflows from the daughter segments, compute
a weighted average according to the flow splitting ratios and use this as inflow for
the parent segment.

This decouples the three segments, not allowing numerical artefacts to propagate in
upflow direction. This sounds good at first, but makes our method inconsistent in the
sense that splitting a segment in half by using a monofurcation (inserting intermediate
node of multiplicity one such that one segment is split in parent and daughter) changes
the properties of the numerical solution.

• Still assign three unknowns to what is geometrically one point and impose the limit
conditions in (4.1) or (4.3) as two additional equations.

In this case, splitting one segment in half by using a monofurcation still changes the
system of equations and might lead to the numerical solution being different.

• Assign only one unknown to the terminal point of the parent segment and no unknown
to the initial node of the daughter segment2

– For the arterial tree, the support of the (np − 1)st basis function of the parent
segment lies partially within the daughter segments.

– For the venous tree, the support of the 0th basis function of the parent segment
lies partially within the daughter segments.

Remark 4.3.1. In the implementation in c++, vectors are always indexed from 0 to n− 1, so we
need to be careful to use the correct correspondence between nodal values and the geometric
location of the nodes depending on the type of segment being considered.

2Note that initial and terminal segment do not refer to the direction of flow
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p

p

p

d

d

d

e

e

e
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Ad

Ad

Ae

ϕp,n−2

ϕp,n−1

ϕd,0

Figure 4.6: Basis functions ϕj of V̂a, the function space for discretization of energy content
profiles on the arterial tree. This corresponds to a bifurcation (p � d, e), the parent
segment p is shown on the left, the two daughters d, e are shwon in the center.
On the right, we visualize the branching structure of these three segments.

We chose the last method because of the consistency reasons explained above. In this
case, we need to modify our M and Me matrices above: let M` and Me,` be the submatrix
omitting the last row and column of M and Me, respectively. This corresponds to segments
with no unknown associated to their terminal point. Similarly, define Ma, Me,a by omitting
the first row and column for segments with no unknown associated to their initial point.

As for a single segment, we assume that each segment has at least four grid points as-
signed. This ensures that we do not need to treat left and right boundary within the same
ELLAM equation. This assumption will be refined when we treat trees in Section 4.5.

4.3.1 An Arterial � Bifurcation

We now need to explain what our basis functions for the discretization of Va and Wk+1
a ,

V̂a, Ŵk+1
a , look like at a � bifurcation:

When considering a bifurcation, it becomes clear why our basis functions do not have unit
height but A∅: we want to represent stationary (constant) temperature on all segments by
vectors that have all the same entries. So the basis functions ϕ of V̂a are chosen as for a single
segment but with the cross section area of the segment considered. This implies that ϕ are
discontinuous at bifurcations, see Figure 4.6.

For the test functions w ∈ Ŵk+1
a , mass conservation requires us to use a partition of unity.

The flow into d and e is θd and θe times the flow out of p, so when tracing back along the
characteristics across a bifurcation, the two components add up to 1.

The basis functions wj(tk+1, x) are shown in Figure 4.7, wj(tk, x) are shown in Figure 4.8.
We now look at the ELLAM equations associated with the points the bifurcation has in-

fluence on, xp,n−1, xd,0, xd,1, xe,0, xe,1:
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p

p

p

d

d
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e

e
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wp,n−1

wd,0

1
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1

Figure 4.7: Basis functions wj|Γk+1 of Ŵk+1
a , the space of ELLAM test functions for advection

in the arterial tree.

xp,np : Uk+1
p,n−2

∫
Γk+1

wp,n−1ϕp,n−2 + Uk+1
p,n−1

∫
Γk+1

wp,n−1ϕp,n−1︸ ︷︷ ︸
∗1

+Uk+1
d,0

∫
Γk+1

wp,n−1ϕd,0︸ ︷︷ ︸
∗2

+Uk+1
e,0

∫
Γk+1

wp,n−1ϕe,0︸ ︷︷ ︸
∗2

= Uk
p,n−3

∫
Γk

wp,n−1ϕp,n−3 + Uk
p,n−2

∫
Γk

wp,n−1ϕp,n−2︸ ︷︷ ︸
∗4

+Uk
p,n−1

∫
Γk

wp,n−1ϕp,n−1︸ ︷︷ ︸
∗5

+ Uk
d,0

∫
Γk

wp,n−1ϕd,0︸ ︷︷ ︸
∗6

+Uk
e,0

∫
Γk

wp,n−1ϕe,0︸ ︷︷ ︸
∗6

(4.41)

+
τ

2

[
Fk

p,n−2

∫
Γk+1

wp,n−1ϕp,n−2 + Fk
p,n−1

∫
Γk+1

wp,n−1ϕp,n−1︸ ︷︷ ︸
∗1

+ Fk
d,0

∫
Γk+1

wp,n−1ϕd,0︸ ︷︷ ︸
∗2

+Fk
e,0

∫
Γk+1

wp,n−1ϕe,0︸ ︷︷ ︸
∗2

+ Fk
p,n−3

∫
Γk

wp,n−1ϕp,n−3 + Fk
p,n−2

∫
Γk

wp,n−1ϕp,n−2︸ ︷︷ ︸
∗4

+Fk
p,n−1

∫
Γk

wp,n−1ϕp,n−1︸ ︷︷ ︸
∗5

+ Fk
d,0

∫
Γk

wp,n−1ϕd,0︸ ︷︷ ︸
∗6

+Fk
e,0

∫
Γk

wp,n−1ϕe,0︸ ︷︷ ︸
∗6

]
,
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p

p

p

p

d

d

d

d

e

e

e

e

1

1

1

1

1− ρd
1− ρe

θd(1− ρd) + θe(1− ρe)

ρd
θdρd

wd,0

wd,1

wp,n−2

wp,n−1

Figure 4.8: Basis functions wj|Γk of Ŵk+1
a , the space of ELLAM test functions for advection in

the arterial tree. Here, the flow velocities are such that ρp = 0.3, ρd = 0.5, ρe = 0.2.

xd,0 : Uk+1
p,n−1

∫
Γk+1

wd,0 ϕp,n−1︸ ︷︷ ︸
∗3

+Uk+1
d,0

∫
Γk+1

wd,0ϕd,0 + Uk+1
d,1

∫
Γk+1

wd,0 ϕd,1

= Uk
p,n−2

∫
Γk

wd,0 ϕp,n−2︸ ︷︷ ︸
∗7

+Uk
p,n−1

∫
Γk

wd,0 ϕp,n−1︸ ︷︷ ︸
∗8

+Uk
d,0

∫
Γk

wd,0 ϕd,0 + Uk
d,1

∫
Γk

wd,0 ϕd,1

+
τ

2

[
Fk

p,n−1

∫
Γk+1

wd,0 ϕp,n−1︸ ︷︷ ︸
∗3

+Fk
d,0

∫
Γk+1

wd,0ϕd,0 + Fk
d,1

∫
Γk+1

wd,0ϕd,1 (4.42)

+ Uk
p,n−2

∫
Γk

wd,0 ϕp,n−2︸ ︷︷ ︸
∗7

+Fk
p,n−1

∫
Γk

wd,0ϕp,n−1︸ ︷︷ ︸
∗8

+ Fk
d,0

∫
Γk

wd,0ϕd,0 + Fk
d,1

∫
Γk

wd,0 ϕd,1

]
,
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xd,1 : Uk+1
d,0

∫
Γk+1

wd,1ϕd,0 + Uk+1
d,1

∫
Γk+1

wd,1 ϕd,1 + Uk+1
d,2

∫
Γk+1

wd,1ϕd,2

= Uk
p,n−1

∫
Γk

wd,1ϕp,n−1︸ ︷︷ ︸
∗9

+Uk
d,0

∫
Γk

wd,1ϕd,0 + Uk
d,1

∫
Γk

wd,1ϕd,1 + Uk
d,2

∫
Γk

wd,1 ϕd,2

+
τ

2

[
Fk

d,0

∫
Γk+1

wd,1ϕd,0 + Fk
d,1

∫
Γk+1

wd,1ϕd,1 + Fk
d,2

∫
Γk+1

wd,1ϕd,2 (4.43)

+ Fk
p,n−1

∫
Γk

wd,1 ϕp,n−1︸ ︷︷ ︸
∗9

+Fk
d,0

∫
Γk

wd,1 ϕd,0 + Fk
d,1

∫
Γk

wd,1 ϕd,1 + Fk
d,2

∫
Γk

wd,1ϕd,2

]
.

All terms that are not computed in the standard way are marked. The equations for
xe,0, xe,1 have the same structure as those for xd,0, xd,1

The colored ∗s used here include the integration over Γk or Γk+1. They are for easier
recognition of the various terms, the colors do not have any meaning.

We define four more terms for specific parts of the integrals above:

J34(Ap, hp, ρp, ρd) = Aphp ·
∫ 0

−ρp

−x
(

(1− ρd)−
ρd

ρp
x
)

dx

= Aphp ·
(

1
2

ρ2
p −

1
6

ρdρ2
p

)
J22(Ap, hp, ρp, ρd) = Aphp ·

∫ 0

−ρp

(1 + x)
(

(1− ρd)−
ρd

ρp
x
)

dx

= Aphp ·
(

ρp −
1
2

ρ2
p −

1
2

ρdρp +
1
6

ρdρ2
p

)
J44(Ap, hp, ρp, ρd) =

ρd

ρp
· I44(Ap, hp, ρp)

J32(Ap, hp, ρp, ρd) =
ρd

ρp
· I32(Ap, hp, ρp)

Note that this is consistent with equivalent speeds relative to the grids:

For Ap = Ad, hp = hd, ρp = ρd,

J34(Ap, hp, ρp, ρd) = I34(Ap, hp, ρp) = I34(Ad, hd, ρd)
J22(Ap, hp, ρp, ρd) = I22(Ap, hp, ρp) = I22(Ad, hd, ρd)
J44(Ap, hp, ρp, ρd) = I44(Ap, hp, ρp) = I44(Ad, hd, ρd)
J32(Ap, hp, ρp, ρd) = I32(Ap, hp, ρp) = I32(Ad, hd, ρd).
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4.3 ELLAM on Bifurcations

Now we can compute:

∗1
∫

Γk+1
wp,n−1ϕp,n−1

= Aphp

∫ 1

0
x · x dx + Adhd

∫ 1

0
x · x dx + Aehe

∫ 1

0
x · x dx = Aphp ·

1
3

+ Adhd ·
1
3

+ Aehe ·
1
3

∗2
∫

Γk+1
wp,n−1ϕd,0

= Adhd

∫ 1

0
(1− x) · x dx = Adhd ·

1
6

∗3
∫

Γk+1
wd,0ϕp,n−1

= Adhd

∫ 1

0
(1− x) · x dx = Adhd ·

1
6

∗4
∫

Γk
wp,n−1ϕp,n−2

= I32(Ap, hp, ρp) + I33(Ap, hp, ρp) + θd J34(Ap, hp, ρp, ρd) + θe J34(Ap, hp, ρp, ρe)

∗5
∫

Γk
wp,n−1ϕp,n−1

= I21(hp, ρp) + θd J22(Ap, hp, ρp, ρd) + θe J22(Ap, hp, ρp, ρe) + I23(Ad, hd, ρd) + I23(Ae, he, ρe)

∗6
∫

Γk
wp,n−1ϕd,0

= I11(Ad, hd, ρd)

∗7
∫

Γk
wd,0ϕp,n−2

= θd J44(Ap, hp, ρp, ρd)

∗8
∫

Γk
wd,0ϕp,n−1

= θd J32(Ap, hp, ρp, ρd) + I33(Ad, hd, ρd) + I34(Ad, hd, ρd)

∗9
∫

Γk
wd,1ϕp,n−1

= I44(Ad, hd, ρd)

The whole three-segment problem can be put in a single system of equations of the fol-
lowing block structure:

M�
BLOCK · Ū

k+1
MULTI = Me,�

BLOCK · Ū
k
MULTI + B̄k

MULTI

where

B̄k
MULTI =

 B̄k
p

B̄k
d

B̄k
e

 =

 b̄k
p

0
0

+
τ

2

(
M�

BLOCK · F̄
k
MULTI + Me,�

BLOCK · F̄
k
MULTI

)
.

Here,

F̄k
MULTI =

 F̄k
p

F̄k
d

F̄k
e



67



4 Advection in Vessel Trees

and F̄ are the vectors of coefficients when discretizing f (t, x)|t∈[kτ,(k+1)τ) = f (x) with respect
to the appropriate basis functions:

f |p ≈∑
i
(F̄k

p)i · ϕp;i

f |d ≈∑
i
(F̄k

d )i · ϕd;i

f |e ≈∑
i
(F̄k

e )i · ϕe;i.

The overall structure is

 Mp + C�
p,d + C�

p,e C�,u
p,d C�,u

p,e

C�,l
p,d Mad1 0

C�,l
p,d 0 Mad2

 ·
 Ūk+1

p

Ūk+1
d1

Ūk+1
d2



=

 Me
p + Ce,�

p,d + Ce,�
p,e Ce,�,u

p,d Ce,�,u
p,e

Ce,�,l
p,d Ma,e

d1 0

Ce,�,l
p,d 0 Ma,e

d2

 ·
 Ūk

p
Ūk

d1
Ūk

d2

+

 B̄k
p

B̄k
d

B̄k
e



with

C�
p,d =

[
Θ

Adhd · 1
3

]
C�,u

p,d =
[

Θ
Adhd · 1

6

]
C�,l

p,d =
[

Adhd · 1
6

Θ

]
Ce,�

p,d =
[

Θ
∑δ∈{d,e} θδ J34(Ap, hp, ρp, ρδ) ∑δ∈{d,e} θδ J22(Ap, hp, ρp, ρδ) + I23(Aδ, hδ, ρδ)

]
Ce,�,u

p,d =
[

Θ
I11(Ad, hd, ρd)

]

Ce,�,l
p,d =

 θd J44(Ap, hp, ρp, ρd) θd J32(Ap, hp, ρp, ρd) + I33(Ad, hd, ρd) + I34(Ad, hd, ρd)
I44(Ad, hd, ρd)

Θ



where Θ denotes that the rest of the matrix has zero entries.
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4.3 ELLAM on Bifurcations

The following block structure shows where the coupling terms are added:

M�
BLOCK =



∗0 ∗0 ∗0 ∗0 ∗0 ∗0 ∗0 ∗0 ∗0 ∗0 ∗0 ∗0 ∗0 ∗0 ∗0
Mp

∗1 ∗2 ∗2
∗3

Mad

∗3
Mae



Me,�
BLOCK =



∗0 ∗0 ∗0 ∗0 ∗0 ∗0 ∗0 ∗0 ∗0 ∗0 ∗0 ∗0 ∗0 ∗0 ∗0
Me

p
∗4 ∗5 ∗6 ∗6
∗7 ∗8
∗9 Ma,e

d

∗7 ∗8
∗9 Ma,e

e



Note that different segments have different length and also the vectors of variables for
discretization have different length. Along the diagonal, the blocks of M�

BLOCK and Me,�
BLOCK

are quadratic matrices, the other blocks are rectangular. Block (p, d) is a (length of Ūd) ×
(length of Ūp) matrix.

The following lemma is important both for the existence and uniqueness of a solution to
the system above and allows us to solve the system efficiently using a conjugate gradient
solver.

As we expect for a generalized mass matrix,

Lemma 4.3.2. M�
BLOCK is a symmetric and positive definite matrix (spd matrix).

Proof. ∗2 = ∗3, so symmetry is obvious from the definition of the matrix, positive definite-
ness can easily be verified using the definition: Let a = np, b = np + nd, c = np + nd + ne,

x = [x0, x1, . . . , xa−1, xa|xa+1, xa+2, . . . , xb−1, xb|xb+1, xb+2, . . . , xc−1, xc]T.

To write M�
BLOCK in a more compact form, let p = Aphp

6 , d = Adhd
6 , e = Aehe

6 , these are positive,
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4 Advection in Vessel Trees

then x ·M�
BLOCKx can be written as

x0
x1
...

xa−1
xa

xa+1
xa+2

...
xb−1
xb

xb+1
xb+2

...
xc−1
xc



·



2p p
p 4p p

. . .
p 4p p

p 2p + 2d + 2e d e
d 4d d

d 4d d
. . .
d 4d d

d 2d
e 4e e

e 4e e
. . .
e 4e e

e 2e





x0
x1
...

xa−1
xa

xa+1
xa+2

...
xb−1
xb

xb+1
xb+2

...
xc−1
xc


= 2px2

0 + px0x1 + px1x0 + 4px2
1 + px1x2 + px2x1 + 4px2

2 + px2x3 + . . .
+ pxa−1xa−2 + 4px2

a−1 + pxaxa−1 + (2p + 2d + 2e)x2
a + dxaxa+1 + exaxb+1

+ dxa+1xa + 4dx2
a+1 + dxa+1xa+2 + dxa+2xa+1 + 4dx2

a+2 + dxa+2xa+3 + . . .
+ dxb−1xb−2 + 4dx2

b−1 + dxb−1xb + dxbxb−1 + 2dx2
b

+ exb+1xa + 4ex2
b+1 + exb+1xb+2 + exb+2xb+1 + 4ex2

b+2 + exb+2xb+3 + . . .

+ exc−1xc−2 + 4ex2
c−1 + exc−1xc + excxc−1 + 2ex2

c

= px2
0 + p(x0 + x1)2 + 2px2

1 + p(x1 + x2)2 + 2px2
2 + · · ·+ 2px2

a−1 + p(xa−1 + xa)2 + px2
a

+ dx2
a + d(xa + xa+1)2 + 2dx2

a+1 + d(xa+1 + xa+2)2 + 2dx2
a+2 + · · ·+ d(xb−1 + xb)2 + dx2

b

+ ex2
a + e(xa + xb+1)2 + 2ex2

b+1 + e(xb+1 + xb+2)2 + 2ex2
b+2 + · · ·+ e(xc−1 + xc)2 + ex2

c

≥ px2
0 + 2px2

1 + 2px2
2 + · · ·+ 2px2

a−1 + (p + d + e)x2
a + 2dx2

a+1 + 2dx2
a+2 + · · ·+ 2dx2

b−1 + dx2
b

+ 2ex2
b+1 + 2ex2

b+2 + · · ·+ 2ex2
c−1 + ex2

c ≥ 0

and equality holds if and only if x = 0.

Remark 4.3.3. Me,�
BLOCK is not spd, its structure is not even symmetric.

Now we see why our treatment of unknowns at bifurcations is consistent: The block
structure can be restricted to monofurcations in a straightforward way by considering only a
2× 2 block and no coupling terms for e. If A, h and v are equal for both segments, the block
system does not differ from a bigger system corresponding to one long segment without
monofurcation3.

We can not obtain this by simply setting θe = 0, ve = 0 or A∅,e = 0, because in this case
parts of the system corresponding to e become singular.

3In the implementation, differences may still occur because evaluating matrix-vector operations blockwise may
lead to different rounding effects than evaluating them on the whole matrix.
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Ap
AeAd

ped

ϕp,0

d e p

Adϕd,nd−1

Ap

pd e

ϕp,1

Figure 4.9: Basis functions ϕj of V̂v, the function space for discretization of energy content
profiles on the venous tree. The two daughter segments d, e of a bifurcation
(d, e � p) are shown on the left, the parent segment is shown in the center, the
direction of flow is to the right. On the very right, we visualize the branching
structure of the segments.

4.3.2 A Venous � Bifurcation

Here, we need to explain what our basis functions for the discretization of Vv and Wk+1
v , V̂v

and Ŵk+1
v look like at a � bifurcation (d, e � p).

Again, the base functions ϕ are chosen in such a way that the 1-vector represents the
stationary profile (constant temperature on all three segments), so they are discontinuous at
a bifurcation, see Figure 4.9.

For the test functions w ∈ Ŵk+1
v , due to mass conservation we again use a partition of

unity. Now tracing back the characteristics across the bifurcation yields two components of
1 each as weighting occurs in the forward direction only.

The test functions wj(tk+1, x) are shown in Figure 4.10, wj(tk, x) are shown in Figure 4.11.

Here, the bifurcation has influences on the ELLAM equations for the unknowns xd,nd−1,
xe,ne−1, xp,0, and xp,1:
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111
wp,0

ped

1
wd,nd−1

ped

1
wp,1

ped

Figure 4.10: Basis functions wj|Γk+1 of Ŵk+1
v , the space of ELLAM test functions for advection

in the venous tree.

xd,nd−1 : Uk+1
d,nd−2

∫
Γk+1

wd,nd−1ϕd,nd−2 + Uk+1
d,nd−1

∫
Γk+1

wd,nd−1ϕd,nd−1 + Uk+1
p,0

∫
Γk+1

wd,nd−1ϕp,0︸ ︷︷ ︸
∗3

= Uk
d,nd−3

∫
Γk

wd,nd−1ϕd,nd−3 + Uk
d,nd−2

∫
Γk

wd,nd−1ϕd,nd−2

+Uk
d,nd−1

∫
Γk

wd,nd−1ϕd,nd−1 + Uk
p,0

∫
Γk

wd,nd−1ϕp,0︸ ︷︷ ︸
∗9

(4.44)

+
τ

2

[
Fk

d,nd−2

∫
Γk+1

wd,nd−1ϕd,nd−2 + Fk
d,nd−1

∫
Γk+1

wd,nd−1ϕp,0︸ ︷︷ ︸
∗3

+Fk
p,0

∫
Γk+1

wd,nd−1ϕp,0

+Fk
d,nd−3

∫
Γk

wd,nd−1ϕd,nd−3 + Fk
d,nd−2

∫
Γk

wd,nd−1ϕd,nd−2

+Fk
d,nd−1

∫
Γk

wd,nd−1ϕd,nd−1 + Fk
p,0

∫
Γk

wd,nd−1ϕp,0︸ ︷︷ ︸
∗9

]
,
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pe d

1
wp,2

pe d

1
ρpρp

wp,1

pe d

1 1 1− ρp1− ρpwp,0

pe d

1wd,nd−1

Figure 4.11: Basis functions wj|Γk of Ŵk+1
v , the space of ELLAM test functions for advection

in the venous tree. Here, the flow velocities are such that ρd = 0.2, ρe = 0.5, ρp =
0.3.

xp,0 : Uk+1
d,nd−1

∫
Γk+1

wp,0 ϕd,nd−1︸ ︷︷ ︸
∗2

+Uk+1
e,ne−1

∫
Γk+1

wp,0ϕe,ne−1︸ ︷︷ ︸
∗2

+Uk+1
p,0

∫
Γk+1

wp,0ϕp,0︸ ︷︷ ︸
∗1

+Uk+1
p,1

∫
Γk+1

wp,0ϕp,1

= Uk
d,nd−2

∫
Γk

wp,0 ϕd,nd−2︸ ︷︷ ︸
∗6

+Uk
e,ne−2

∫
Γk

wp,0 ϕe,ne−2︸ ︷︷ ︸
∗6

+Uk
d,nd−1

∫
Γk

wp,0 ϕd,nd−1︸ ︷︷ ︸
∗4

+Uk
e,ne−1

∫
Γk

wp,0 ϕe,ne−1︸ ︷︷ ︸
∗4

+Uk
p,0

∫
Γk

wp,0 ϕp,0︸ ︷︷ ︸
∗5

+Uk
p,1

∫
Γk

wp,0 ϕp,1 (4.45)

+
τ

2

[
Fk

d,nd−1

∫
Γk+1

wp,0ϕd,nd−1︸ ︷︷ ︸
∗2

+Fk
e,ne−1

∫
Γk+1

wp,0ϕe,ne−1︸ ︷︷ ︸
∗2

+Fk
p,0

∫
Γk+1

wp,0 ϕp,0︸ ︷︷ ︸
∗1

+Fk
p,1

∫
Γk+1

wp,0ϕp,1

+Fk
d,nd−2

∫
Γk

wp,0 ϕd,nd−2︸ ︷︷ ︸
∗6

+Fk
e,ne−2

∫
Γk

wp,0ϕe,ne−2︸ ︷︷ ︸
∗6

+Fk
d,nd−1

∫
Γk

wp,0 ϕd,nd−1︸ ︷︷ ︸
∗4

+Fk
e,ne−1

∫
Γk

wp,0 ϕe,ne−1︸ ︷︷ ︸
∗4

+Fk
p,0

∫
Γk

wp,0ϕp,0︸ ︷︷ ︸
∗5

+Fk
p,1

∫
Γk

wp,0ϕp,1

]
,
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xp,1 : Uk+1
p,0

∫
Γk+1

wp,1 ϕp,0 + Uk+1
p,1

∫
Γk+1

wp,1ϕp,1 + Uk+1
p,2

∫
Γk+1

wp,1ϕp,2

= Uk
d,nd−1

∫
Γk

wp,1 ϕd,nd−1︸ ︷︷ ︸
∗7

+Uk
e,ne−1

∫
Γk

wp,1 ϕe,ne−1︸ ︷︷ ︸
∗7

+Uk
p,0

∫
Γk

wp,1ϕp,0︸ ︷︷ ︸
∗8

+Uk
p,1

∫
Γk

wp,1ϕp,1 + Uk
p,2

∫
Γk

wp,1ϕp,2 (4.46)

+
τ

2

[
Fk

p,0

∫
Γk

wp,1 ϕp,0 + Fk
p,1

∫
Γk

wp,1ϕp,1 + Fk
p,2

∫
Γk

wp,1ϕp,2

+Fk
d,nd−1

∫
Γk

wp,1 ϕd,nd−1︸ ︷︷ ︸
∗7

+Fk
e,ne−1

∫
Γk

wp,1ϕe,ne−1︸ ︷︷ ︸
∗7

+Fk
p,0

∫
Γk

wp,1ϕp,0︸ ︷︷ ︸
∗8

+Fk
p,1

∫
Γk

wp,1ϕp,1 + Fk
p,2

∫
Γk

wp,1 ϕp,2

]
.

The equation for xe,ne−1 has the same structure as the one for xd,nd−1. The nonstandard
integrals are marked and can be computed as follows:

∗1
∫

Γk+1
wp,0ϕp,0

= Aphp

∫ 1

0
x · x dx + Adhd

∫ 1

0
x · x dx + Aehe

∫ 1

0
x · x dx = Aphp ·

1
3

+ Adhd ·
1
3

+ Aehe ·
1
3

∗2
∫

Γk+1
wp,0ϕd,nd−1

= Adhd

∫ 1

0
x · (1− x) dx = Adhd ·

1
6

∗3
∫

Γk+1
wd,nd−1ϕp,0

= Adhd

∫ 1

0
(1− x) · x dx = Adhd ·

1
6

∗9
∫

Γk
wd,nd−1ϕp,0

= I11(Ad, hd, ρd)

∗6
∫

Γk
wp,0ϕd,nd−2

= I44(Ad, hd, ρd)

∗4
∫

Γk
wp,0ϕd,nd−1

= I32(Ad, hd, ρd) + I33(Ad, hd, ρd) + J34(Ad, hd, ρd, ρp)

∗5
∫

Γk
wp,0ϕp,0

= I21(Ad, hd, ρd) + I21(Ae, he, ρe) + J22(Ad, hd, ρd, ρp) + J22(Ae, he, ρe, ρp) + I23(Ap, hp, ρp)
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4.3 ELLAM on Bifurcations

∗7
∫

Γk
wp,1 ϕd,nd−1

= J44(Ad, hd, ρd, ρp)

∗8
∫

Γk
wp,1 ϕp,0

= J32(Ad, hd, ρd, ρp) + J32(Ae, he, ρe, ρp) + I33(Ap, hp, ρp) + I34(Ap, hp, ρp)

Again, we can put the three-segment problem into one block system:

M�
BLOCK · Ū

k+1
MULTI = Me,�

BLOCK · Ū
k
MULTI + Bk

MULTI

where

B̄k
MULTI =

 B̄k
p

B̄k
d

B̄k
e

 =

 0
b̄k

d
b̄k

e

+
τ

2

(
M�

BLOCK · F̄
k
MULTI + Me,�

BLOCK · F̄
k
MULTI

)

and F̄k
MULTI is given in the same way as for � bifurcations.

The overall structure is

 Mp + C�
p C�,u

p,d C�,u
p,e

C�,l
p,d M`d 0

C�,l
p,e 0 M`e

 ·
 Ūk+1

p

Ūk+1
d

Ūk+1
e

 =

 Me
p + Ce,�

p Ce,�,u
p,d Ce,�,u

p,e

Ce,�,l
p,d M`,e

d 0

Ce,�,l
p,e 0 M`,e

e

 ·
 Ūk

p
Ūk

d
Ūk

e

+

 Bk
p

Bk
d

Bk
e



with

C�
p =

[
Adhd · 1

3 + Aehe · 1
3

Θ

]
C�,u

d,p =
[

Adhd · 1
6

Θ

]
C�,l

d,p =
[

Θ
Adhd · 1

6

]

Ce,�
p =

∑δ∈{d,e} I21(Aδ, hδ, ρδ) + J22(Aδ, hδ, ρδ, ρp)
∑δ∈{d,e} J32(Aδ, hδ, ρδ, ρp)

Θ


Ce,�,u

d,p =

 I44(Ad, hd, ρd) I32(Ad, hd, ρd) + I33(Ad, hd, ρd) + J34(Ad, hd, ρd, ρp)
J44(Ad, hd, ρd, ρp)

Θ


C�,l

d,p =
[

Θ
I11(Ad, hd, ρd)

]
.
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The following block structure shows where the coupling terms are added:

M�
BLOCK =



∗1 ∗0 ∗0 ∗0 ∗0 ∗0 ∗0 ∗0 ∗0 ∗2 ∗0 ∗0 ∗0 ∗0 ∗2
Mp

M`d
∗3

M`e
∗3



Me,�
BLOCK =



∗5 ∗0 ∗0 ∗0 ∗0 ∗0 ∗0 ∗0 ∗6 ∗4 ∗0 ∗0 ∗0 ∗6 ∗4
∗8 Me

p ∗7 ∗7

M`,e
d

∗9

M`,e
e

∗9



Again, M�
BLOCK is a generalized mass matrix, so we expect it to be symmetric and positive

definite.

Lemma 4.3.4. M�
BLOCK is symmetric and positive definite.

Proof. The proof is very similar to the proof of Lemma 4.3.2.

∗2 = ∗3, so symmetry is obvious from the definition of the matrix, positive definiteness
can easily be verified using the definition: As before, let

x = [x0, x1, . . . , xa−1, xa|xa+1, xa+2, . . . , xb−1, xb|xb+1, xb+2, . . . , xc−1, xc]T
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4.3 ELLAM on Bifurcations

and p, d, e as in the proof of Lemma 4.3.2. Then x ·M�
BLOCKx can be written as

x0
x1
...

xa−1
xa

xa+1
xa+2

...
xb−1
xb

xb+1
xb+2

...
xc−1
xc



·



2p + 2d + 2e p d e
p 4p p

. . .
p 4p p

p 2p
2d d
d 4d d

. . .
d 4d d

d d 4d
2e e
e 4e e

. . .
e 4e e

e e 4e





x0
x1
...

xa−1
xa

xa+1
xa+2

...
xb−1
xb

xb+1
xb+2

...
xc−1
xc


= (2p + 2d + 2e)x2

0 + px0x1 + dx0xb + ex0xc + px1x0 + 4px2
1 + px1x2 + px2x1 + 4px2

2 + px2x3 + . . .
+ pxa−1xa−2 + 4px2

a−1 + pxaxa−1 + 2px2
a

+ 2dx2
a+1 + dxa+1xa+2 + dxa+2xa+1 + 4dx2

a+2 + dxa+2xa+3 + 4dx2
a+3 + . . .

+ dxb−1xb−2 + 4dx2
b−1 + dxb−1xb + dxbx0 + dxbxb−1 + 4dx2

b

+ 2ex2
b+1 + exb+1xb+2 + exb+2xb+1 + 4ex2

b+2 + exb+2xb+3 + 4ex2
b+3 + . . .

+ exc−1xc−2 + 4ex2
c−1 + exc−1xc + excx0 + excxc−1 + 4ex2

c

= px2
0 + p(x0 + x1)2 + 2px2

1 + p(x1 + x2)2 + 2px2
2 + · · ·+ 2px2

a−1 + p(xa−1 + xa)2 + px2
a

+ dx2
a+1 + d(xa+1 + xa+2)2 + 2dx2

a+2 + · · ·+ 2dx2
b−1 + d(xb−1 + xb)2 + 2dx2

b + d(xb + x0)2 + dx2
0

+ ex2
b+1 + e(xb+1 + xb+2)2 + 2ex2

b+2 + · · ·+ 2ex2
c−1 + e(xc−1 + xc)2 + 2ex2

c + e(xc + x0)2 + ex2
0

≥ (p + d + e)x2
0 + 2px2

1 + 2px2
2 + · · ·+ 2px2

a−1 + px2
a + dx2

a+1 + 2dx2
a+2 + · · ·+ 2dx2

b−1 + 2dx2
b

+ ex2
b+1 + 2ex2

b+2 + · · ·+ 2ex2
c−1 + 2ex2

c ≥ 0

and equality holds if and only if x = 0.

Remark 4.3.5. Me,�
BLOCK is not spd, its structure is not even symmetric.

4.3.3 Implementation and Convergence Experiments

Implementation

The methods presented here were implemented using the quocmesh library. We wrote spe-
cial band matrix classes for the Mb and Mt blocks that are optimized for fast matrix-vector
multiplication.

BlockOperators were used for the matrix block structures, MultiVectors to store the vectors
of unknowns.

In contrast to the case of one segment, the system matrices are no longer tridiagonal, so
Gaußian elimination or banded solvers are no longer efficient. Renumbering the segments in
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Figure 4.12: Initial temperature content profile used to verify order of convergence. The
parent segment is shown on the left, the first daughter in the center and the
second daughter on the right. The flow will be directed to the right.

order to decrease overall bandwidth could be applied (e. g. by the Cuthill-McKee algorithm,
see [21, 10]), but still a lot of fill-in would be produced.

From Lemmas 4.3.2 and 4.3.4, we know that the system matrices are symmetric and posi-
tive definite, so we can apply a CG solver.

Convergence Experiments

[29] refers to [37] for the following error estimate for ELLAM advection in 1D and zero
source term.

Our advection problem on the trees consists of individual such problems coupled by flows
through bifurcations, so we expect the same convergence order for our methods.

Proposition 4.3.6. Let u(x, t) be the exact solution and U(x, t) be the ELLAM approximation. Then
the following error estimate holds

max
k
‖U(·, tk)− u(·, tk)‖L2(Ω) + ‖U(L, ·)− u(L, ·)‖L2([0,T]) ≤ C

(
h2 + τ

)
. (4.47)

We performed a few numerical experiments to check whether this convergence estimate
holds for our method on trees.

We considered a simple � bifurcation (p � d, e) for convergence experiments and plotted
temperature content as described at the very beginning of this chapter. The plots show the
profile on p, d and e from left to right.

Our initial profile was a Gaußian bell curve shown in Figure 4.12 with appropriate inflow
data. Our source term was assumed to be zero.

In cases 1a and 1b, the flow is split 50 : 50 in the two daughter segments, 1a advects the
bell until it lies in the two daughter segments, 1b advects them further out. In case 2 we
used a 75 : 25 split, in case 3 we used different lengths and cross section areas for the three
segments. The parameters are shown in Table 4.1.

The final profiles are shown in Figure 4.13

We chose np = 17, 33, 65, 129, 257, 513, 1025, nd = ne = np − 1.
To obtain second-order convergence in h, we need to use τ = h2 due to (4.47). However,

using a larger time step τ = h, we do not lose accuracy.
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4.3 ELLAM on Bifurcations

Case 1a 1b 2 3

lp 1.0 1.0 1.0 1.15
ld 1.0 1.0 1.0 1.34
le 1.0 1.0 1.0 0.85

A∅,p 1.0 1.0 1.0 1.23
A∅,d 0.5 0.5 1.0 1.47
A∅,e 0.5 0.5 1.0 0.82
vp 0.8 0.5 0.8 0.8
vd 0.4 0.4 0.6 0.421714
ve 0.4 0.4 0.2 0.4444
θd 0.5 0.5 0.75 0.63
θe 0.5 0.5 0.25 0.37
T 1.25 2.50 1.25 1.0

Table 4.1: Parameters for convergence experiments
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Figure 4.13: Final temperature content profiles in the convergence experiment, top: cases
1a, 1b, bottom: cases 2, 3 for np = 129. The initial profile, see Figure 4.12 has
advected from the parent segment (left) into the two daughter segments (center
and right), direction of flow was to the right.
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This is also the stability limit due to the CFL condition (in [9]): Our method cannot handle
ρ > 1, so the CFL condition is vτ

h < 1, and our velocities satisfy v ≤ 1.
Results of our convergence experiment are shown in Table 4.2 and plotted in Figure 4.14.

The computation was performed on a desktop PC with an 1 GHz Athlon CPU.

Limitations of our Method

Other experiments show some limitations: our ELLAM cannot handle discontinuities very
well. An example for this is shown in Figure 4.15.

We start with a rectangular and a triangular pulse on the parent segment of a � bifurcation,
as an inflow over time we use a cosine.

Oscillations of high frequency and significant magnitude appear in the downflow direction
of the discontinuity as it is advected. These oscillations are smoothed out slightly when
transferred to the daughter segment.

The amplitude of the triangular pulse slowly decreases as the pulse is advected. This is an
effect of numerical diffusion or dissipation.

At the outflow boundary of the two daughter segments, the profile is advected out smoothly
without any visible oscillations in upflow direction.

In Figure 4.16, we used the same initial profile on the two daughter segments and equal
speed. In this case, temperature and temperature content (but not energy content) are con-
tinuous across the bifurcation.

In case of a � bifurcation combining the two incoming flows, a related effect can be ob-
served. Unlike in the splitting case where the values are continuous at the bifurcation, the
inflow to the parent segment in case of combination becomes a weighted average of the
outflows of the two daughter segments. So, in general, it is not continuous.

In Figure 4.17, we have combined two cosine profiles of different frequency arriving at the
bifurcation out of phase. In the parent segment, we see a correctly weighted average. How-
ever, in the daughter segments we see oscillations in the upflow direction of the bifurcation.

Numerically, this leads to oscillations in the upflow direction of the discontinuity at the
bifurcation.

4.3.4 Further Extensions: ρ > 1 and Multifurcations

The method presented above can be generalized to velocity greater than one grid cell per
time step, allowing bigger time steps for fixed grid on the segments.

Assuming that the velocities are still small enough so that no ELLAM equation is affected
by two bifurcations at the same time, the following changes:

• The first bρc+ 2 equations are be affected by the inflow boundary rather than only the
first two, see (4.25) and (4.26). Here, bρc := max {n ∈N | n ≤ ρ}.

• Thus b̄k
p has bρc+ 2 nonzero entries at the beginning, see (4.32) and (4.33). They still

depend on Rk
in and Rk+1

in .

• The last bρc + 1 equations are affected by the outflow rather than only the last one,
(4.28).
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case 1a: case 1b:
h error cputime(s) h error cputime
0.0625 2.33866e-04 0.01 0.0625 3.16118e-04 0.02
0.03125 3.02458e-05 0.04 0.03125 4.46117e-05 0.08
0.015625 4.46823e-06 0.15 0.015625 7.15554e-06 0.29
0.0078125 7.05806e-07 0.53 0.0078125 1.21150e-06 1.06
0.00390625 1.15822e-07 2.10 0.00390625 2.13716e-07 4.14
0.00195312 1.94554e-08 8.52 0.00195312 3.77569e-08 17.03
0.000976562 3.31875e-09 39.75 0.000976562 6.67517e-09 78.17

case 2: case 3:
h error cputime(s) hp error cputime
0.0625 9.94837e-03 0.01 0.071875 3.94829e-03 0.01
0.03125 1.41214e-04 0.03 0.0359375 6.84522e-04 0.04
0.015625 3.19938e-04 0.11 0.0179687 1.22199e-04 0.13
0.0078125 8.12095e-05 0.41 0.00898437 2.36154e-05 0.49
0.00390625 2.19118e-05 1.56 0.00449219 5.08129e-06 1.89
0.00195312 6.20890e-06 6.44 0.00224609 1.28790e-06 7.65
0.000976562 1.82766e-06 31.21 0.001123045 3.66321e-07 38.20

Table 4.2: Results of the convergence experiments
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case 2
case 3

2nd order convergence

Figure 4.14: loglog plot of error vs h for the different sets of parameters.
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Figure 4.15: Advection of an temperature content profile split at a bifurcation and oscillating
inflow. The parent segment is shown on the left, the two daughters in the center
and on the right, direction of flow is to the right. The flow velocities of the two
daughter segments are different.
1: initial profile
2: initial profile advected within parent segment
3: discontinuity being split at the bifurcation
4: initial rectangular and triangular pulse being advected through the daughter
segments
5: continuous oscillation being split at the bifurcation
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Figure 4.16: Advection of a temperature content profile combined at a bifurcation and os-
cillating inflow. The direction of flow is to the right, flow out of the daughter
segments (center, right) is into the parent segment on the left. The flow velocities
of the two daughter segments are equal.
1: initial profile within the daughter segments
2: initial profile advected within the daughter segments
3: discontinuity being combined at the bifurcation
4: initial rectangular and triangular pulses combined being advected through
the parent segment
5: continuous oscillations being combined at the bifurcation, discontinuity being
advected out of the parent segment
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Figure 4.17: Combination of two cosine (different frequency) shaped temperature content
profiles: The discontinuity causes upflow oscillations. Again, the direction of
flow is to the right, out of daughter segments (center, right) into parent segment
(left).

• Me matrices still have four adjacent bands, but they are shifted to the left by bρc, see
(4.38). Their entries can still be computed as before by taking only the fractional part of
ρ in (4.31). Other entries in the top left and the bottom right corner have to be treated
as special cases.

• The flow transfer between segments couples the last bρc+ 2 nodal values of the upflow
segment(s) and the first bρc+ 2 of the downflow segment(s). So the sparsity structure
of the Ce matrices change. The additional entries are shifted further to the left, maybe
into a different block, also the integrals change.

Coupling becomes more complicated if velocities are still bigger so that more than one
bifurcation needs to be considered during one time step.

Moreover, the method above can be generalized to multifurcations. In this case we get
more than two times two nonzero off-diagonal blocks. For an intermediate node (a mono-
furcation), it is only one times two nonzero off-diagonal blocks.

4.4 Treatment of Terminal Segments

4.4.1 Terminal Segments in the Arterial Tree

In a terminal segment of the arterial tree, we have outflow of mass, thus energy, along the
whole segment [sK, sK + `s]. Without loss of generality, assume4 s = 0 and set ` = `s. Note
that our model assumes that there is no heat conduction between terminal segments and the
surrounding tissue.

As u is the energy per length contained in the segment, we want u to drop off to zero along
terminal segments. In 2D, cross section area is proportional to radius, so we can view this
as regular advection of temperature (∼ energy per volume), integrated over an apparent cross
section area that drops off linearly to zero. Note that A∅ is always constant along segments
and does not mean the apparent cross section area.

4To simplify notation only. In this section we relax the condition that segment 0 is always the root segment
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4.4 Treatment of Terminal Segments

The temperature ϑ on a terminal segment of the arterial tree is given by

ϑ(ξ) =
1

Cρ
· u(ξ)

A∅ ·
(

1− ξ
`

) . (4.48)

We could use an approach based on decreasing cross section area, modify the basis func-
tions and incorporate the outflow in the transport. The approach presented here, however,
allows an easier treatment of energy exchange processes with the surrounding tissue.

To motivate the appropriate right hand side, suppose we advect a profile of constant non-
zero temperature through the tree. In this case, we want the u profile to drop off linearly
along a terminal segment. So we need a right hand side term satisfying

u(t, x) =
−1
v

∫ `

x
f (y) dy

⇒ u(t, x) =
−1
v

(F(`)− F(x))

where F(z) =
∫ z

0 f (y) dy, so

∂xu(t, x) =
1
v
· ∂xF(x)

=
1
v
· f (x).

Using the linear drop off ∂xu(t, x) = u(t,`)−u(t,x)
`−x to zero, u(t, `) = 0, we obtain

−u(t, x)
`− x

=
1
v
· f (x)

⇒ f (x) = −v · u(t, x)
`− x

.

Below, we show that this makes sense on the closed interval despite the root of the de-
nominator for x → `.

So our advection problem on (outflow) terminal segments is described by

∂tu(t, x) + v · ∂xu(t, x) = f f (t, x) = −v · u(t, x)
`− x

on [0, `)

u(0, x) = u0(t)
u(t, 0) = uin(t).

(4.49)

Proposition 4.4.1 (Existence of a solution). If the boundary data for x = 0 is mapped to C1 initial
data as in (4.5), there is a unique solution to problem (4.49) given by

u(t, x) = u0(x− vt) · `− x
`

. (4.50)
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4 Advection in Vessel Trees

Proof.

u(t, x) = u0(x− vt) · `− x
`

∂tu(t, x) = u′0(x− vt) · (−v) · `− x
`

∂xu(t, x) = u′0(x− vt) · `− x
`

+ u0(x− vt) · −1
`

,

so

∂tu(t, x) + v · ∂xu(t, x) = v · u0(x− vt) · −1
`

=
−v
`
· u(t, x)

`

`− x

= −v · u(t, x)
`− x

.

Uniqueness is proved as for Proposition 4.2.1: let s(t, x) be any solution of the initial value
problem, then the difference function d(t, x) = s(t, x)− u(t, x) must satisfy

∂td(t, x) + v · ∂xd(t, x) = 0 (t, x) ∈ [0, ∞)×R

d(0, x) = 0 on {0} ×R,

hence d(t, x) = 0 ∀ (t, x) ∈ [0, ∞)×R, so s = u.

The solution (4.50) can be extended to x = `: u(t, `) = 0.
Approximate the right hand side of the weak form (4.23) as in (4.24) to obtain temporal

quadrature:

∫ `

0

∫ tk+1

tk
f f (t, x)w(t, x) =

∫ `

0

∫ tk+1

tk
−v · u(t, x)

`− x
· w(t, x)

≈ −vτ

2

(∫ `

0

u(tk, x)w(tk, x)
x− `

+
∫ `

0

u(tk, x)w(tk+1, x)
x− `

)
As for the spatial quadrature, we need to pay attention to the singularity of 1

x−` for x → `.
This factor 1

x−` is assigned to the test functions w, so the spatial discretization can be com-
puted by using mass matrix M` and ELLAM matrix M`,e with each row scaled accordingly,
corresponding to a multiplication with a diagonal matrix on the left:

B̄k =
−vτ

2`

[
diag

(
n

n− i− 1

)
i=0,...,n−1

·M` + diag
(

n
n− i− 1 + ρ

)
i=0,...,n−1

·M`,e

]
Ūk (4.51)

where, in the first diagonal matrix, we set 0
0 := 0 because this line describes the influence of

Ūk
n−1 (analytically 0) on Ūk+1.
Near the leaf node, i. e. at the end of the terminal segment, this approximation becomes

worse because of the singularity of 1
`−x . We need to be particularly careful when interpreting

these energy content values as temperatures by division by the small apparent cross section
areas.
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4.4 Treatment of Terminal Segments

Remark 4.4.2. Individually, the error in the spatial quadrature is biased. 1
x−` , by which the

test functions w(t, x) are weighted, is a decreasing and strictly concave function on (0, `). In
the quadrature, it is approximated by the value at the center of the support of wi(t, ·). Hence,
the quadrature tends to underestimate the intensity of our source (loss of energy content).

With a better combined temporal-spatial quadrature or exact integration, we should be
able to improve the accuracy here.

4.4.2 Terminal segments in the Venous Tree

In case of the venous tree, inflow accumulating along a terminal segment is determined by
the temperature of the surrounding tissue. Again, suppose the terminal segment is [0, `].

The temperature ϑ on a terminal segment of the venous tree is given by

ϑ(ξ) =
1

Cρ
· u(ξ)

A∅ · ξ
`

. (4.52)

If a terminal segment lies within an area of tissue of constant temperature (energy density),
we want it to have an energy content corresponding to that temperature at the end. For this,
we need a right hand side term f (t, x) = A∅v

` utis(t, ψ−1(x)) where utis is the energy density
of the surrounding tissue.

In general, the advection problem on a terminal segment of the venous tree is given by

∂tu(t, x) + v · ∂xu(t, x) = fw(t, x) =
A∅v
`
· utis(t, ψ−1(x))

u(0, x) = u0(t)
u(t, 0) = 0

(4.53)

where ψ−1 maps the point x on the segment to its corresponding location in 2D, see (2.1)
and the boundary condition u(t, 0) = 0 reflects that the energy advected into the segment is
zero and inflow happens only along the segment.

This type of source terms is treated in (4.34).
Again, this approach allows us to easily describe the corresponding sink terms in the

diffusion problem.

4.4.3 Implementation and Results

We modified the � bifurcation such that the second daughter segment becomes an outflow
segment and we applied a source term to part of the first daughter segment. We started with
a continuous initial profile and used cosine inflow condition, the flow is split 60 : 40 between
the two daughters. The result for this is shown in Figure 4.18.

The first plot shows the initial profile we started with, then we can see how the source
term affects the first daughter segment and how constant temperature inflow to the second
daughter segment does not change the profile on this segment. Finally, the cosine waves
advect through the bifurcation and are affected by the source term on the first daughter and
by the outflow source on the second daughter.

We also modified the � bifurcation such that there is constant inflow to the first daughter
and the second daughter segment is a terminal inflow segment. This is a 50 : 50 flow
combination. In this case, we applied no further source terms.
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Figure 4.18: Advection of a temperature content profile split at a bifurcation with oscillating
inflow, a source term on one daughter (center) and a terminal segment as the
other daughter (right): Initial profile and four time steps. The parent segment is
shown on the left, the direction of flow is to the right.
1: initial profile
2: oscillating inflow on parent segment, influence of the source term on the first
daughter (center), linear drop-off on the second daughter
3: influence of heating on the first daughter has fully developed
4: oscillating pattern reaches both daughters
5: oscillating pattern advected through both daughters and experiences heating
in the first daughter (center) and linear drop-off of the amplitude on the second
daughter (right)
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Figure 4.19: Advection of a temperature content profile combined at a bifurcation with one
terminal inflow segment (right): Initial profile and two time steps. The parent
segment is shown on the left, the other (non-inflow) daughter in the center,
direction of flow is to the right.
1: initial profile: zero initial conditions on parent segment and second daughter
(right), the profile on the first daughter (center) is chosen such that there will be
no discontinuity at the bifurcation
2: boundary condition for the first daughter (center) is constant and leads to a
continuous profile, inflow source terms along the second daughter (right) show
first effects, flow combination at the bifurcation into the parent segment occurs
continuously
3: fully developed influence of the inflow source terms on the second daughter
(right) has just reached the parent segment
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4 Advection in Vessel Trees

In Figure 4.19, first the initial profile is shown, on the first daughter (center) it is chosen
such that temperature is continuous at the bifurcation and we do not observe numerical
artefacts due to discontinuities. The next two plots show how the terminal inflow to the
second daughter segment increases its energy content.

4.5 ELLAM on Vessel Trees

We now have all necessary tools to set up a simulation of advection on full arterial and
venous trees.

Recall how the flow into and out of the different types of segments is treated:
On the arterial tree,

• root segment: inflow at root node is given explicitely, see (4.32), (4.33); outflow is
treated implicitly via coupling terms of the daughter segments, see (4.41), (4.42), (4.43)

• intermediate segment: inflow is computed implicitly via coupling, see (4.41), (4.42),
(4.43); same for outflow.

• terminal segment: inflow is computed via coupling, see (4.41), (4.42), (4.43), outflow
on the whole segment is described by (4.51), there is no outflow at the leaf node.

on the venous tree,

• root segment: inflow is computed via coupling, see (4.44), (4.45), (4.46); outflow at root
node can be computed, see (4.29).

• intermediate segment: inflow is computed via coupling, see (4.44), (4.45), (4.46); same
for outflow

• terminal segment: inflow at leaf node is zero, inflow over whole segment described by
source as in (4.53); outflow is computed via coupling terms of the daughter segments,
see (4.44), (4.45), (4.46);

The extension of the block system presented for a single bifurcation can easily be extended
to more complex trees. In this case, our block systems become bigger and the coupling
matrices have to be put and added in the correct position corresponding to the connectivity
structure of the tree.

For arterial trees, the block system for a venous tree is set up as follows: For each bifurca-
tion (p � d, e),

• add C�
p,d, C�

p,e to the block (p, p) of M�
BLOCK

• put C�,u
p,d to the block (p, d) of M�

BLOCK

• put C�,l
p,d to the block (d, p) of M�

BLOCK

• put C�,u
p,e to the block (p, e) of M�

BLOCK

• put C�,l
p,e to the block (e, p) of M�

BLOCK

• add Ce,�
p,d, Ce,�

p,e to the block (p, p) of Me,�
BLOCK
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4.5 ELLAM on Vessel Trees

• put Ce,�,u
p,d to the block (p, d) of Me,�

BLOCK

• put Ce,�,l
p,d to the block (d, p) of Me,�

BLOCK

• put Ce,�,u
p,e to the block (p, e) of Me,�

BLOCK

• put Ce,�,l
p,e to the block (e, p) of Me,�

BLOCK

For each bifurcation (d, e � p),

• add C�
p to block (p, p) of M�

BLOCK

• put C�,u
d,p into block (p, d) of M�

BLOCK

• put C�,l
d,p into block (d, p) of M�

BLOCK

• put C�,u
e,p into block (p, e) of M�

BLOCK

• put C�,l
e,p into block (e, p) of M�

BLOCK

• add Ce,�
p to block (p, p) of Me,�

BLOCK

• put Ce,�,u
d,p into block (p, d) of Me,�

BLOCK

• put Ce,�,l
d,p into block (d, p) of Me,�

BLOCK

• put Ce,�,u
e,p into block (p, e) of Me,�

BLOCK

• put Ce,�,l
e,p into block (e, p) of Me,�

BLOCK

The discretization of the segments of our trees is always such that the (1D) grid on the
root segment has at least four grid points and grids on intermediate and terminal segments
have at least three grid points. This avoids dealing with two segment boundaries within the
same ELLAM equation.

Definition 4.5.1. The grid spacings on a tree are

hj =


lj

number of grid points on j−1 for the root segment j
lj

number of grid points on j for intermediate and terminal segments j

because non-root segments do not have grid points assigned to their initial points.

Definition 4.5.2. A grid with at least four grid points on the root segment and at least three
on all other segments is is said to be of level d if all grid spacings satisfy hj ≤ 2−d.
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4 Advection in Vessel Trees

tree level # timesteps cputime (s) cputime / time step (ms)
8-tree 7 800 4.52 5.65

8 1600 15.62 9.76
9 3200 50.18 15.68

10 6400 291.87 45.61
16-tree 9 3200 96.14 30.04

Table 4.3: Number of time steps and computation times for advection on an 8-tree and a
32-tree.

4.5.1 Implementation and Results

As an example, we used a pair of tree with 8 terminal segments each.
We specified an oscillating inflow to the arterial tree with outflow on the terminal seg-

ments, for the venous tree we assumed the surrounding tissue to have constant temperature
of 1. On both trees the initial temperature was set to 0. This is not realistic because initial
temperature distributions should be such that the vessels have the same local temperatures
as the surrounding tissue. It is used to demonstrate how our method works on trees.

The output shown in Figure 4.20 is the parallel projection of a three-dimensional plot: in
the xy plane, we show the structure of our tree (red for the arterial tree, blue for the venous
tree), in z direction, the temperature contents at the corresponding position are shown. On
non-terminal segments, this corresponds to temperature, on terminal segments, this shows
the drop-off from an temperature content corresponding to full temperature to zero at leaf
nodes.

In addition to the height, the values are also color-coded on the same color scale as in
Figure 2.10, red corresponding to 1 and blue corresponding to 0. These plots were written
out as eps files by our program.

On the arterial tree, we can see that

• our inflow profile is advected into the tree

• temperature transitions at bifurcations are C0 but not C1 since the velocities change

• values drop down to zero on terminal segments (in this case, the amplitude of the
raised cosine waves drops down to zero linearly along the terminal segments)

on the venous tree, we can see that

• terminal segments collect energy according to their length

• the profiles are advected out of the tree

• transitions at bifurcations are discontinuous and lead to upflow oscillations

• at the root, the profile advects out without visible numerical upflow effects

The computation above was performed with a grid of level 8. To show the influence of
a coarser and finer discretization, we repeated the computation above with grids of level 7
to 10 and show the result of the advection until the same time in Figure 4.21. Computation
time for these calculations are shown in Table 4.3.
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Due to the limitation that ρ must be less than 1 on each segment and as our flow velocities
are less than 1, the time step we can use is limited, so the number of time steps increases if
a finer discretization is used.

In Figure 4.21, we can see some effects on the coarser tree:

• In the arterial tree in the terminal segment on the left below the root, the high frequency
oscillations cannot be resolved on the terminal segment, so they are lumped together.

• In the venous tree in the central inflow segment, the discontinuity at the end of the
segment leads to upflow oscillations. These sawtooth-like ripples are less prominent
in the trees with finer resolution.

• The venous tree is not in steady state yet (constant temperature profile has not been
fully advected until the root), and due to different velocities there are discontinuities at
the bifurcations in the lower half of the venous tree. Upflow oscillations appear, their
magnitude does not decrease on finer resolution.

We also computed advection with the same initial setting a tree with 32 terminal segments.
Due to the more complex structure of this tree, a three-dimensional plot does not intuitively
show results, so we present these results in a view from the top using color-coding only.
Thickness of the lines here does not correspond to the radii of the segments but is the same
for all segments. Some timesteps of this calculation are shown in Figure 4.22.

Again, we can see how the first pulse of temperature is advected through the arterial tree
and how energy starts flowing up the venous tree from the terminal segments. In both
trees, we can see that velocities decrease on segments of higher generation, in particular that
velocities are almost zero on those segments far away from the other tree. On those segments
with very small flow velocity, there is almost no inflow of mass, thus their temperature
content remains almost unchanged.
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4 Advection in Vessel Trees

Figure 4.20: Advection on a pair of vessel trees: temperature content profiles after 200, 750
and 1600 time steps. There is no coupling between the two trees (by energy
exchange or in another way).
On the arterial tree, the drop-off of temperature content on terminal segments
can be observed, similarly on the venous tree, the effect of inflow source terms
along terminal segments can be seen. In case of discontinuous flow combination,
we obtain upflow oscillations.
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Figure 4.21: Advection on a pair of 8-trees, comparison of different discretizations (grid lev-
els). Compare these profiles to second tree in Figure 4.20. There is no coupling
between the two trees.
On the upper arterial tree, discretization is not fine enough to resolve some high
frequency oscillations. On the venous trees, we can see that upflow oscillations
in case of discontinuous flow combination cannot be reduced in amplitude by
finer discretization.
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0400 0800

1200 1600

2400 3200

Figure 4.22: Temperature content profiles at time steps 400, 800, 1200, 1600, 2400, 3200 for ad-
vection on pairs of 32-trees, color-coded temperature content times cross section
area. There is no coupling between the two trees. This shows the same as the
two three-dimensional plots before, but now seen from the top so that tempera-
ture content information is only encoded in color, not height.
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5 Coupling Transport and Diffusion

After having treated heat diffusion in the tissue and advection in the two vessel trees as
separate problems, we can now couple the two problems by modeling an exchange of heat
between tissue and vessels.

Throughout this chapter, x is used as the variable in 2D tissue whereas ξ is the variable
for 1D representations of trees.

We use A∅,j for the cross section area of a segment j, but also A∅(ξ) = A∅,j ∀ ξ ∈ [jK, jK +
`]. Indices art and ven are added to distinguish between the two vessel trees whenever
necessary.

5.1 Problem Formulation

5.1.1 Energy Transfer

Let Cves be the specific heat capacity of the vessels (equal for arterial and venous vessels),
similarly ρves their density, Ctis, ρtis specific heat capacity and density of the tissue.

For an exchange of energy by heat conduction to occur, there needs to be a temperature
gradient. Recall how temperatures are computed from our quantities: In the tissue, we
consider an energy density utis(x), so temperature ϑtis is

ϑtis(x) = utis(x) · 1
Ctisρtis

whereas in the vessels, we consider an energy content uves(ξ) and temperature ϑves is (see
the beginning of Chapter 4 and equations (4.48) and (4.52)):

ϑves(ξ) = uves(ξ) · 1
Cvesρves

·



1
A∅,{art,ven},j

on non-terminal segment j
1

A∅,art,j·
(

1− ξ−jK
`j

) on terminal segment j of the arterial tree

1

A∅ven,j·
(

ξ−jK
`j

) on terminal segment j of the venous tree

= uves(ξ) · 1
Cvesρves

·



1
A∅,{art,ven},j

on non-terminal segment j
1

A∅,art,j·
(

jK+`j−ξ

`j

) on terminal segment j of the arterial tree

1

A∅,venj·
(

ξ−jK
`j

) on terminal segment j of the venous tree.

Non-Terminal Segments

For the non-terminal segments of the vessel trees, we model a transfer of energy between
one-dimensional vessel segments and the two-dimensional tissue. The flow is assumed per-
pendicular to the vessel segments, but as they are 1D line segments, the notion of heat
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conductivity in the usual sense of power
temperature difference · length needs to be adapted for our pur-

pose.
The energy flow is proportional to the temperature difference between blood vessel and

surrounding tissue, it must satisfy energy conservation, and it must be taken into account
that we do not get equal temperature instantaneously at one point in a vessel and the tissue
at that position. For this purpose, we consider a heat transmittivity and consider a heat
transmittivity coefficient κtrans in units W

K Vol . κtrans is the heating of the tissue divided by
local temperature difference (between vessels and tissue) per unit volume.

The temperature difference at a point ξ in a non-terminal segment of one of the trees and
the corresponding point in the tissue x = ψ(ξ) is:

ϑdiff :=
uves(ξ)

A∅ · Cvesρves
− utis(x)

Ctisρtis

where C are the specific heat capacities and ρ are the densities of vessel and tissue respec-
tively.

Then source terms fves,w(ξ) in units of energy content per time (power per length) for the
vessels and source terms ftis,w in units of energy density per time (power density) are of the
form

fves,w(ξ) = A∅(ξ) · κtrans · (−ϑdiff(ξ))
ftis,w(x) = κtrans · ϑdiff(x).

Writing these in more detail and including time dependence, the mutual source terms for
the arterial and venous non-terminal vessel segments are

fart,w : [0, T]× Ta → R

fart,w(t, ξ) = A∅,art(ξ) · κtrans

[
utis(t, ψ−1

art (ξ))
Ctisρtis

− uart(t, ξ)
A∅,art(ξ) · Cvesρves

]
(5.1)

fven,w : [0, T]× Tv → R

fven,w(t, ξ) = A∅,ven(ξ) · κtrans

[
utis(t, ψ−1

ven(ξ))
Ctisρtis

− uven(t, ξ)
A∅,ven(ξ) · Cvesρves

]
, (5.2)

and for the tissue, the source term is

ftis,w : [0, T]×Ω→ R

ftis,w(t, x) =


ftis,art,w(t, x) if x ∈ non-term. segm. of Ta

ftis,ven,w(t, x) if x ∈ non-term. segm. of Tv

0 else

(5.3)

=


−1

A∅,art(ψart(x)) · fart,w(t, ψart(x)) if x ∈ non-term. segm. of Ta
−1

A∅,ven(ψven(x)) · fven,w(t, ψven(x)) if x ∈ non-term. segm. of Tv

0 else.
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Terminal Segments

For terminal segments, we have outflow and inflow of blood as described in Section 4.4.1.
The effect on the energy content of terminal segments by this outflow and inflow was ex-
pressed as source terms for the vessels, see equations (4.49) and (4.53):

fart,f : [0, T]× Ta → R

fart,f(t, ξ) = −vart,j ·
uart(t, ξ)

jKart + `art,j − ξ
(5.4)

fven,f : [0, T]× Tv → R

fven,f(t, ξ) =
A∅,ven,jvj

`ven,j
· utis(t, ψ−1

ven(ξ)). (5.5)

As we do not model advection in the tissue, we cannot simply take the sink terms for
the tissue corresponding to those source terms on the vessels. If we would do this, we
would replace a source of mass and energy by a source of energy only. Then the physically
stationary state (constant temperature in the whole system, i. e. in tissue and all vessels)
would not be a stationary state in our model.

Instead, we microscopically inspect what we model as outflow segments: In the arterial
tree, blood flows from arterial vessels into fine capillaries and tissue that already contain
blood at a certain temperature. Heating and cooling, i. e. energy sources for the tissue, are
only effective if there is a difference between inflowing and existing temperature. In the
venous tree, blood flows from fine capillaries and tissue into venous vessels. Due to the
opposite flow direction (there is no mass flowing in from the outside), this has no heating or
cooling effect for the tissue.

We obtain source terms ftis,art,f and ftis,ven,f in units of energy density per time (power
density) for the tissue that are of the form:

ftis,art,f(x) = Ctisρtis ·
v
`
· ϑdiff(x)

ftis,ven,f(x) = 0

where, for terminal segments, we need to use the apparent cross section area for computing
temperature (see Section 4.4.1)

ϑdiff :=
uves(ξ)

A∅ ·
`j+jK−ψart(x)

`j
· Cvesρves

− utis(x)
Ctisρtis

.

Writing this in more detail with correct velocity and length, and adding time dependence,
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the mutual source terms for the tissue are

ftis,f : [0, T]×Ω→ R

ftis,f(t, x) =


ftis,art,f(t, x) if x ∈ non-term. segm. of Ta

ftis,ven,f(t, x) if x ∈ non-term. segm. of Tv

0 else

(5.6)

=


Ctisρtis

vart,j
`art,j
·

 uart(t,ψart(x))

A∅,art,j·
(

`j+jK−ψart(x)
`j

)
·Cvesρves

− utis(t,x)
Ctisρtis

 if x ∈ term. segm. j of Ta

0 if x ∈ term. segm. of Tv

0 else.

In particular, this means that we do not model heat diffusion (transmission) between tissue
and venous terminal segments.

5.1.2 Coupled Problems

Advection in the Arterial Tree

Advection in the arterial tree as a one-dimensional problem with flow velocities vart(ξ) = vj
being constant on each segment j, boundary values ua,root(t) at the root and initial profile
uart,0(ξ) is modeled by

∂tuart(t, ξ) + vart(ξ) · ∂ξuart(t, ξ) = fart(t, ξ) in [0, T]× Ta

uart(t, 0) = ua,root(t) in [0, T]
uart(0, ξ) = uart,0(ξ) in Ta.

(5.7)

The source term fart has the form

fart(t, ξ) =

{
fart,w(t, ξ) on non-terminal segments
fart,f(t, ξ) on terminal segments

(5.8)

=

A∅,art,j · κtrans ·
[

utis(t,ψ−1
art (ξ))

Ctisρtis
− uart(t,ξ)

A∅,art,j·Cvesρves

]
on non-terminal segments j

−vart,j
uart(t,ξ)

jKart+`art,j−ξ on terminal segments j.

Advection in the Venous Tree

Advection in the venous tree as a one-dimensional problem with flow velocities vven(ξ) = vj
being constant on each segment j, zero boundary values at the leaf nodes and initial profile
uven,0(ξ) is modeled by

∂tuven(t, ξ) + v(ξ) · ∂ξuven(t, ξ) = fven(t, ξ) in [0, T]× Tv

uven(t, K · l) = 0 in [0, T], ∀ l leaf node
uven(0, ξ) = uven,0(ξ) in Tv.

(5.9)
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5.1 Problem Formulation

The source term fven has the form

fven(t, ξ) =

{
fven,w(t, ξ) on non-terminal segments
fven,f(t, ξ) on terminal segments

(5.10)

=

A∅,ven,j · κtrans ·
[

utis(t,ψ−1
ven(ξ))

Ctisρtis
− uven(t,ξ)

A∅,ven,j·Cvesρves

]
on non-terminal segments j

A∅,ven,jvj
`ven,j

· utis(t, ψ−1
ven(ξ)) on terminal segments j.

Heat Diffusion in Tissue

Isotropic heat conduction with constant heat conduction coefficient κ, zero Neumann bound-
ary values and initial data utis,0 is modeled by

∂tutis(t, x)− κ · ∆xutis(t, x) = ftis(t, x) + fprobe(t, x) in [0, T]×Ω

∂νutis(t, x) = 0 in [0, T]× ∂Ω
utis(0, x) = utis,0(x) in Ω

(5.11)

where fprobe is an L2(Ω) source describing heating by the probe whereas ftis(t, ·) ∈ H−1(Ω)
is meant in a distributional sense as in equation (3.4):

∫
Ω

(∂tutis(t, x)− κ · ∆xutis(t, x)) ϕ(x) dx =
∫

Ta∪Tv

ftis(t, x)ϕ(x) dγ +
∫

Ω
fprobe(t, x)ϕ(x) dx

for test functions ϕ where, again, dx is integration in 2D whereas dγ denotes integration
along 1D line segments in 2D.

ftis has the form:

ftis(t, x)

=



ftis,art,w(t, x) x ∈ non-term. segm. j of Ta

ftis,art,f(t, x) x ∈ term. segm. j of Ta

ftis,ven,w(t, x) x ∈ non-term. segm. j of Tv

ftis,ven,f(t, x) x ∈ term. segm. j of Tv

0 else

=



−1
A∅,art,j

· fart,w(t, ψart(x)) x ∈ non-term. segm. j of Ta

Ctisρtis ·
vart,j
`art,j
·

 uart(t,ψart(x))

A∅,art,j·
(

`j+jK−ψart(x)
`j

)
·Cvesρves

− utis(t,x)
Ctisρtis

 x ∈ term. segm. j of Ta

−1
A∅,ven,j

· fven,w(t, ψven(x)) x ∈ non-term. segm. j of Tv

0 x ∈ term. segm. j of Tv

0 else
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5 Coupling Transport and Diffusion

=



κtrans ·
[

uart(t,ψart(x))
A∅,art,j·Cvesρves

− utis(t,x)
Ctisρtis

]
x ∈ non-term. segm. j of Ta

Ctisρtis ·
vart,j
`art,j
·

 uart(t,ψart(x))

A∅,art,j·
(

`j+jK−ψart(x)
`j

)
·Cvesρves

− utis(t,x)
Ctisρtis

 x ∈ term. segm. j of Ta

κtrans ·
[

uven(t,ψart(x))
A∅,ven,j·Cvesρves

− utis(t,x)
Ctisρtis

]
x ∈ non-term. segm. j of Tv

0 x ∈ term. segm. j of Tv

0 else.

Remark 5.1.1. Some of the factors here could be canceled, but the form presented here is used
for the actual computation.

Time Step

To avoid numerical artefacts in the advection computation, we may choose the level of the
vessel discretization to be greater than the level of the tissue discretization. Since the dif-
fusion in tissue dominates the memory requirement and causes a significant part of the
runtime if the discretizations are equally fine, we try to discretize the tissue as coarse as
tolerable.

Finally, we get a bound on our time step: τ ≤ htis and τ · vj ≤ hves,j ∀ j ∈ Ta ∪ Tv.
This bound is critical for the advection problem: Advection is treated explicitely, so the

time step restriction is necessary for stability. For the diffusion problem that we treat semi-
implicitly (explicit sources but implicit computation of diffusion), this time step restriction is
necessary for consistency but we would still get stability for a bigger time step. For a more
detailed treatment of consistency and stability of time stepping methods, we refer to [19].

This shows that generalizing our ELLAM to ρ > 1 would allow us to refine the discretiza-
tion of the vessels without being forced to use a smaller time step.

Mutual Source Terms

For the source terms, we consider three different types of source terms:

• F̄art and F̄ven, the actual sources for the advection problems

• F̃tis,art and F̃tis,ven, virtual sources on the two vessel trees whose sum corresponds to

• F̄tis, the actual source terms for the diffusion problem.

In the implementation, we compute

1. F̄art,f, discretization of fart,f as in equation (4.51), the outflow of energy content out of
terminal segments of the arterial tree

2. F̃tis,art,f, discretization of ftis,art,f as a function on the arterial vessel tree, see equation
(5.4), the inflow of energy into tissue (from terminal segments of the arterial tree if
there is a temperature difference)

3. F̄ven,f, discretization of fven,f as in equation (4.53), the inflow of energy content into
terminal segments of the venous tree
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5.2 Heating by the RF Probe

4. F̃tis,ven,f = 0, discretization of ftis,art,f = 0, as a function on the venous vessel tree see
equation (5.5)

5. F̄art,w, discretization of fart,w as in equation (5.1), the diffusive flow of energy content
out of non-terminal segments of the arterial tree (into tissue)

6. F̃tis,art,w, discretization of ftis,art,w as a function on the arterial vessel tree, this is simply
proportional to F̄art,w, see equation (5.3)

7. F̄ven,w, discretization of fven,w as in equation (5.2), the diffusive flow of energy content
out of non-terminal segments of the venous tree (into tissue)

8. F̃tis,ven,w, discretization of ftis,ven,w as a function on the venous vessel tree, again this is
simply proportional to F̄ven,w, see equation (5.3)

These discrete functions are defined on the whole trees. Then we have:

F̄art = F̄art,f + F̄art,w,
F̄ven = F̄ven,f + F̄ven,w,

F̃tis,art = F̃tis,art,f + F̃tis,art,w,
F̃tis,ven = F̃tis,ven,f + F̃tis,ven,w.

Finally, like in Section 3, the source terms F̄tis, a discrete function on the tissue, is computed
from F̃tis,art and F̃tis,ven.

The source terms F̄art,w and F̄ven,w for the advection problem are set up by looping over
all grid cells of all non-terminal segments of both trees and computing the instantaneous
energy transfer from the local temperature differences at the beginning of the time step and
assuming a constant source during the time step, see Section 4.2.3. Similarly F̃tis,art,f, the
discretization of fart,f, is computed from local temperature differences.

The error in this temporal approximation is biased: The temperature difference, thus the
energy transfer, decays during the time step, so this numerical approximation considering
only the temperature difference at the beginning of the time step tends to overestimate the
flow of energy.

5.2 Heating by the RF Probe

We use a very simple model for the additional source term for our diffusion problem de-
scribing the influence of an RF probe. A more detailed treatment of this heating can be
found in [16].

Here, fprobe(t, x) is set to

fprobe(t, x) =

C(ϑ(t, (xs, ys)) · exp
(

−1
1+ (x−xs)2+(y−ys)2

σ2

)
for (x− xs)2 + (y− ys)2 < σ2

0 else
(5.12)

where (xs, ys) is the position where the source is centered, σ the radius of the domain heated
and C(ϑ(t, (xs, ys)) depends nonlinearly on the average temperature on some neighborhood
of (xs, ys), it is some constant positive value if ϑ(t, (xs, ys) is smaller than some temperature
threshold ϑthres, otherwise zero.
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5 Coupling Transport and Diffusion

Figure 5.1: The two corresponding color scales used for the plots in this chapter, top: for
vessels, bottom: for tissue.

Remark 5.2.1. fprobe(t, ·) is a C∞(R2) function with compact support.
fprobe|[0,1]2(t, ·) is C∞([0, 1]2).

5.3 Implementation and Results

In addition to heat conduction and advection on trees that were implemented before, we
now need to find a common time step and deal with the mutual source terms described
above.

As our flow velocities may vary throughout the simulation but will always satisfy vj ≤ 1,
our restriction for the time step is: τ ≤ hves and τ ≤ hves,j ∀ j ∈ Ta ∪ Tv.

A class tissue_vessel_geometry was written to store the discrete data on the tis-
sue and on the vessels, it also keeps track of the discretizations and provides functions for
computing the mutual source terms.

In each time step of the calculation, we first set up the mutual source terms, then compute
one time step of diffusion and one time step of advection. Both methods are explicit, no
source term of one problem depends on the new time step of the other problem, so the order
in which the two time steps are computed does not matter and we could compute them in
parallel.

The output shown is a superposition of the tissue temperature and the vessel temperature
where the tissue is shown with an opacity of 60 %. The corresponding color scales are
shown in Figure 5.1. The combined plots were generated from the tissue temperature plots
(ppm bitmap graphics) and vessel temperature plots (eps vector graphics) written out by our
program, converting these to ppm images of the same size and finally producing a composite
image using pnmcomp and an appropriate alpha mask.

Note that we now plot temperature for the vessels, not energy content as in Chapter 4.

5.3.1 Limitations of our Model

Two significant limitations of our model are shown in Figure 5.2:

• If segments lie perpendicular to a temperature gradient (left of the probe), we observe
artificial cooling (or heating).

The temperature difference between the vessel and warmer surrounding tissue leads
to an energy source for the vessel and a sink for the tissue. This sink acts isotropically
on the tissue and finite element basis functions on both sides of the vessel segment are
involved which causes this effect.
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5.3 Implementation and Results

Figure 5.2: An RF probe placed near the venous vessel tree: Vessel temperatures from 0
(blue) to 1 (red), tissue temperatures from −0.3 (blue) to 1 (red) showing two
limitations of our model

• The terminal segments lying close to the probe only show nonzero temperature at their
downflow end.

Due to their very low flow velocity, they accumulate mass and temperature very slowly.
The temperature in the last grid cell of one of these terminal segments is computed
using a basis function of its parent segment, this explains the jump of temperature at
the end.

Also due to the low flow velocity, their influence on the parent segment is small, so the
discontinuity does not cause significant numerical artefacts.

Potentially, very short segments may create other numerical artefacts because they are
discretized with grids of only few grid points. This problem was not observed in the com-
putations of this chapter.

A future extension of our model will have to deal with these problems.

When showing the results of some simulations in the next subsection, we restrict the
temperature intervals to [0, 1] and we only plot vessel segments with flow velocity bigger
than some threshold so that the problems described here are not visible.

5.3.2 Results

We present results of simulations of different scenarios:

1. a pulse of warm blood flowing into our system through the arterial tree
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5 Coupling Transport and Diffusion

2. pulses of warm blood flowing in with pulsed flow velocities

3. a probe located near one branch of the arterial vessels with constant inflow temperature
and constant velocities

4. a probe located in the center of the domain

5. a probe located near the venous vessel tree

where we use the pair of vessel trees with 512 terminal segments each and velocities shown
in Figure 2.11.

We discretize the tissue with a grid of level 7 (129× 129) and the vessels with grids of level
9 (grid spacings ≤ 1/512). The time step is τ ≈ 0.00166727 ≈ 1

599.784 .

Inflowing Warm Blood, Constant Velocities

In this simulation, we start with zero initial temperature of our system (tissue and vessels)
and let set the inflow condition of the arterial tree, uroot(t) such that the corresponding
temperature is

θroot(t) =

{
1−cos( 2πt

200τ )
2 for t ∈ [0, 200τ]

0 else.

This is a C1,1 function of t, i. e. θroot ∈ C1 ∧ θ′root ∈ C0,1.
Heat transmittivitiy κtrans and heat conduction coefficient κ were set to reasonable values

such that there is still a significant temperature difference between blood reaching terminal
segments and the surrounding tissue and such that energy transport by diffusion is slower
than energy transport by advection.

Figures 5.3 and 5.4 show some time steps of this simulation. The vessel structures are thin,
so the thermal impact of the temperature difference between vessels and tissue is small.
In our setting, the maximal temperature in the tissue is about three orders of magnitude
smaller than the maximal temperature in the vessels. To produce a combined plot anyway,
we use two different color scales. Temperature in the vessels ranges from 0 (blue) to 1 (red),
temperature in the tissue ranges from 0 (blue) to 0.00125 (red).

We can see that the volume of warm blood is advected through our vessel system, being
split at bifurcations. Heat is transmitted from the vessels into surrounding tissue, leading to
a slow decrease in temperature in the vessels and to a heating of the tissue near the vessel.

Near bifurcations, there are more than one segment heating certain parts of the tissue, in
these locations we observe stronger heating than away from bifurcations. Moreover, heating
is stronger at those segments with lower flow velocities.

At bifurcations where one daughter segment has a very small flow velocity (flow splitting
ratio close to zero), we observe almost no influence of the volume of warm blood passing
that bifurcation. Only very little warm blood enters this daughter and due to the small flow
velocity, heat transmission out of the segment dominates.
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Inflowing Warm Blood, Pulsed Velocities

The next simulation assumes that there are several pulses of warm blood flowing in while
all flow velocities vj change periodically:

θroot(t) =

{
1−cos( 2πt

1000τ )
2 for t ∈ ⋃k∈{0,1,2,3,4}[4000τk, 4000τk + 1000τ]

0 else

vj(t) = vj ·
(

0.6 + 0.4 cos
(

2πt
1000τ

))
.

Again, we show timesteps in Figures 5.5 and 5.6 using two different color scales, temper-
ature in the vessels ranges from 0 (blue) to 1 (red), temperature in the tissue ranges from
0 (blue) to 0.0286 (red). The time steps shown here are the second volume of warm blood
flowing in and span almost three pulsations of velocity.

Similar effects as for the simulation before can be observed, additionally, the flow velocities
vary periodically.

Each time new warm blood flows into our system, thermal energy is added. Heat diffusion
leads to a relatively uniform temperature in the center of the domain after one volume of
warm blood has been advected through the vessel system and before the next one arrives.

Due to the different color scales, we cannot see how the venous tree is influenced by the
rise of temperature in the domain, but after 30000 time steps it can be observed that the
tissue becomes warmer near the root of the venous vessel tree but not in the top-right and
bottom-right corner of the domain.

Pulsation is visible better if all images produced in this simulation are combined to an
mpeg video clip. This and video clips for the other simulations will be available on the INS
website, see below.

Probe near the Arterial Tree

As a further scenario, we start in zero initial state and place a probe source near one branch
of the arterial tree. Inflow temperature into our system is zero and flow velocities are kept
constant. Except for the probe source term, our system is linear (and for probe source, we
only need to shift the temperature threshold), so this corresponds to body temperature as
initial state and blood of body temperature flowing in while an RF probe is being used.

Results are shown in Figure 5.7 where we can now use the same color scale for both
tissue and vessels: temperatures range from 0 (blue) to 1 (red). We only plotted those vessel
segments with flow velocity greater than a threshold (0.0005).

Here, we can see that the blood flowing through the vessel near the probe is heated by
heat transmission from the tissue and the tissue near the vessel is cooled correspondingly.
Heat is transported through part of the arterial tree and we can see how the tissue near that
part is affected as well.

Heat diffuses through the tissue and reaches the venous vessel tree after a while. It is
advected through the venous tree, also transmitted to tissue near the arterial tree and fi-
nally, we can also observe an increasing temperature of the blood flowing out of our system
(through the root segment of the venous tree).
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5 Coupling Transport and Diffusion

Probe in the Center

Next, we use the same scenario as before but move the probe to the center of our domain
where both arterial and venous vessel tree are present. Again, we use combined tissue-vessel
plots with the same color scales for both tissue and vessels and only plot vessel segments
with flow velocity greater than 0.0005: see Figure 5.8.

Now the flow through the arterial vessel tree leads to some cooling of the tissue heated by
the probe, also heat is advected further through the arterial vessel tree.

The venous vessel tree is affected affected immediately by the rising temperature and
advects heat towards its root segment, also transmitting energy to its surrounding tissue.

Probe near the Venous Tree

Finally, we place the probe near the venous tree. Again, we use combined tissue-vessel plots
with the same color scales, do not plot vessel segments with very small flow velocities and
show results of this computation in Figure 5.9.

Again, venous vessel segments near the probe are heated (as energy is transmitted from
the tissue to the vessels), heat is advected through the venous vessel tree, heating the sur-
rounding tissue of the downflow segments.

Even though we have clipped temperature to [0, 1], the artificial cooling effect mentioned
above in Section 5.3.1 can be observed opposite venous vessels near the location of the probe.

The venous vessel tree is relatively far away from the source so that no effect of or on the
arterial vessels is visible in the output.
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Figure 5.3: Advection-diffusion for inflowing warm blood (constant velocities) on a 1024-
tree: Time steps 100, 200, . . . , 1100, 1200.
These combined plots show temperature in the vessels and temperature in the
tissue on two different color scales.
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Figure 5.4: Advection-diffusion for inflowing warm blood (constant velocities) on a 1024-
tree: Time steps 1300, 1400, . . . , 2100, 2200, 3000, 10000.
These combined plots show temperature in the vessels and temperature in the
tissue on two different color scales.
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Figure 5.5: Advection-diffusion with pulsed inflow and pulsed velocities on a 1024-tree:
Time steps 4000, 4060, . . . , 5320, 5380.
These combined plots show temperature in the vessels and temperature in the
tissue on two different color scales.
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Figure 5.6: Advection-diffusion with pulsed inflow and pulsed velocities on a 1024-tree:
Time steps 5440, 5500, . . . , 6760, 6820.
These combined plots show temperature in the vessels and temperature in the
tissue on two different color scales.
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Figure 5.7: Advection-diffusion with a source near the arterial vessel tree and constant ve-
locities on a 1024-tree: Time steps 3000, 6000, . . . , 27000, 30000, 50000, 90000.
These combined plots show temperature in the vessels and in the tissue on the
same color scale.
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Figure 5.8: Advection-diffusion with a source near the center of the tissue and constant ve-
locities on a 1024-tree: Time steps 3000, 6000, . . . , 27000, 30000, 50000, 90000.
These combined plots show temperature in the vessels and in the tissue on the
same color scale.
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Figure 5.9: Advection-diffusion with a source near the venous vessel tree and constant ve-
locities on a 1024-tree: Time steps 3000, 6000, . . . , 27000, 30000, 50000, 90000.
These combined plots show temperature in the vessels and in the tissue on the
same color scale.
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5 Coupling Transport and Diffusion

16 term segm 512 term segm
test case cputime (s) per time step cputime (s) per time step
1 0.266 2.83
2 0.330 3.41
3 0.300 2.83
4 n/a 2.91
5 0.322 2.81

Table 5.1: cputime per time step of the advection-diffusion simulation

In Table 5.1, we compared how long the computation of one time step of our computation
took in the five different cases on a desktop PC with 1 GHz Athlon CPU. The actual calcu-
lations here were performed on several PCs at the INS, University of Bonn. For comparison,
this table also shows computation times for the same scenarios with a pair of 16-trees.

More time steps of these calculations were combined to video clips that are available on
the INS web page:

http://numod.ins.uni-bonn.de/people/schwen/advectdiffuse.html

We also show results of a simulation with probes located in the same positions as above
with pulsed flow velocities.
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6 Mathematical Background

6.1 Numerical Integration

Proposition 6.1.1 (Lobatto’s rule).

∫ 1

0
f (x) dx ≈ 1

6
f (0) +

2
3

f (0.5) +
1
6

f (1)

is exact if f is a polynomial of order 3, see [7].

Proof. Let a, b, c, d ∈ R, f (x) = a + bx + cx2 + dx3 be a polynomial of order three. Then

∫ 1

0
f (x) dx =

∫ 1

0
a + bx + cx2 + dx3 dx

=
[

ax +
1
2

bx2 +
1
3

cx3 +
1
4

dx4
]1

0

= a +
1
2

b +
1
3

c +
1
4

d

and

1
6

f (0) +
2
3

f (0.5) +
1
6

f (1) =
1
6

a +
2
3

(
a +

1
2

b +
1
4

c +
1
8

d
)

+
1
6

(a + b + c + d)

=
(

1
6

+
2
3

+
1
6

)
a +

(
2
6

+
1
6

)
b +

(
2
12

+
1
6

)
c +

(
2
24

+
1
6

)
d

= a +
1
2

b +
1
3

c +
1
4

d

On a different domain of integration [α, β], the quadrature formula is

∫ β

α
f (x) dx ≈ 1

6

[
f (α) + 4 · f

(
α + β

2

)
+ f (β)

]
.
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6 Mathematical Background

6.2 Sobolev Spaces

6.2.1 Lp Spaces

Let S be any subset of Rn, Ω be an open subset of Rn. Then define the following function
spaces:

C0(S) := { f : S→ R | f is continuous on S}

C0,α(S) :=

{
f : S→ R

∣∣∣∣∣ sup
x 6=y∈S

| f (x)− f (y)|
|x− y|α < ∞

}
∀ 0 < α ≤ 1

Cm(Ω) := { f : Ω→ R | f is m times continuously differentiable on Ω} ∀m ∈N∪ {∞}
Cm

0 (Ω) := { f ∈ Cm(Ω) | supp f = K ⊂ Ω is a compact set }

Lp(Ω) :=

{
f : Ω→ R measurable

∣∣∣∣∣ ‖ f ‖Lp(Ω) :=
(∫

Ω
| f |p

) 1
p

< ∞

}
∀ p ∈ R, p ≥ 1

L∞(Ω) :=

{
f : Ω→ R measurable

∣∣∣∣∣ ‖ f ‖L∞(Ω) := inf
λ(N)=0

sup
Ω\N
| f | < ∞

}

Functions in C0,α are called Hölder continuous, functions in C0,1 are called Lipschitz continuous.
For compact sets K ⊂ Rn, Cm(K) consists of Cm functions on the interior of K for which

all partial derivatives up to mth order have a continuous extension to the boundary. As
boundaries of compact sets in Rn are sets of (n-dimensional) measure zero, Lp spaces on
compact sets can also be defined.

We quote the following results from [2, Chapter 1]:

Lemma 6.2.1. 1. ‖ · ‖Lp(Ω) are norms for 1 ≤ p ≤ ∞.

2. Lp(Ω) are Banach spaces for 1 ≤ p ≤ ∞.

3. L2(Ω) with the scalar product ( f , g)L2(Ω) :=
∫

Ω f g is a Hilbert space.

The following lemma is the imbedding theorem for Lp spaces over domains with finite
volume [1, Thm. 2.8]:

Lemma 6.2.2. Let Ω ⊂ R be open and satisfy vol Ω < ∞, 1 ≤ p ≤ q ≤ ∞. If u ∈ Lq(Ω), then
u ∈ Lp(Ω) and

‖u‖Lp(Ω) ≤ (vol Ω)
1
p−

1
q ‖u‖Lq(Ω)

6.2.2 Hm spaces

Let Ω be an open subset of Rn, f ∈ C∞(Ω). Then∫
Ω

∂s f · ϕ = (−1)|s|
∫

Ω
f · ∂s ϕ ∀ ϕ ∈ C∞

0 (Ω) (6.1)

and all multiindices s = (s1, . . . , sn), si ∈ N∪ 0 ∀ i ∈ {1, . . . , n} where |s| = s1 + · · ·+ sn and
∂s f = ∂s1

x1 . . . ∂sn
xn f (x1, . . . , xn).

118



6.2 Sobolev Spaces

However, f need not be differentiable (not even continuous) for the right hand side of (6.1)
to make sense.

Let

Hm(Ω) :=
{

f ∈ L2(Ω)
∣∣∣∣ ∀ |s| ≤ m∃ f (s) ∈ L2(Ω) :

∫
Ω

f · ∂s ϕ = (−1)|s|
∫

Ω
f (s) · ϕ ∀ ϕ ∈ C∞

0 (Ω)
}

Hm(Ω) is called Sobolev space1, f (s) is called weak derivative of f .
Here, we identify equivalence classes of functions in L2(Ω) with their representatives.
We quote some results from [2, Chapter 1]:

Lemma 6.2.3. 1. If f is Cm, f (s) = ∂s f ∀ |s| ≤ m. So weak derivatives are a generalization of
classical derivatives.

2. For k ≤ m, a semi-norm on Hm(Ω) is defined:

|u|k,Ω :=
√

∑
|s|=k
‖ f (s)‖2

L2(Ω) (6.2)

3. A norm on Hm(Ω) is defined by

‖u‖Hm(Ω) :=
√

∑
|s|≤m

‖ f (s)‖2
L2(Ω) (6.3)

4. Hm(Ω) with this norm is a Banach space.

5. C∞(Ω) is a dense subset of Hm(Ω).

The dual of Hm is denoted H−m and it is described in [1, Chapter 3]:

Lemma 6.2.4. Let Hm(Ω) be a Sobolev space as above, then its dual is denoted by H−m(Ω).
Hm(Ω) is a subspace of L2(Ω), so (L2(Ω))′ = L2(Ω) is a subspace of H−m(Ω) and for f ∈

L2(Ω),

‖ f ‖H−m = sup
0 6=v∈Hm

|
∫

Ω f v|
‖v‖Hm

Definition 6.2.5. Ω ⊂ Rn has Lipschitz boundary if there is a finite open cover
⋃n

i=0 Ui ⊃ Ω̄
such that for each i, ∂Ω ∩Ui is graph of a Lipschitz continuous function.

A counterexample is a domain with a cusp, Ω2 in Figure 6.1.

Definition 6.2.6. Ω ⊂ Rn satisfies the cone condition if there exists a bounded cone with
positive angle that can be moved within the domain to touch each boundary point such that
the cone lies inside the domain.

This means that all inner angles are positive. A counterexample is Ω1 in Figure 6.1, the
complement of a domain with a cusp.

1More generally, Sobolev spaces Hm,p can be defined based on Lp for p 6= 2. We only use Hm,2 spaces and drop
the 2.
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6 Mathematical Background

Ω1 Ω2

Figure 6.1: A cusp. Ω1 does not satisfy the cone condition, both Ω1,2 do not have Lipschitz
boundary.

Lemma 6.2.7 (A Friedrich’s Inequality). Let Ω ⊂ Rn be open, satisfy a cone condition and have
Lipschitz boundary. Then for v ∈ H1(Ω),

‖v‖L2(Ω) ≤ C (v̄ + |v|1,Ω) (6.4)

where v̄ = 1
vol Ω

∫
Ω and C only depends on Ω.

Proof. For a proof, we refer to [5, Section II.1].

Lemma 6.2.8 (Hölder’s Inequality). Let Ω ⊂ Rn be open and bounded, u, v ∈ L2(Ω). Then(∫
Ω
|u(x)v(x)|dx =

)
‖uv‖L1(Ω) ≤ ‖u‖L2(Ω) · ‖v‖L2(Ω). (6.5)

Proof. For a more general form of Hölder’s inequality and a proof, we refer to [3, Chapter
1].

Proposition 6.2.9 (Continuity of Sobolev functions). Let Ω ⊂ Rn open and bounded with ∂Ω
Lipschitz, m ≥ 1.

If m− n
2 > k ∈N∪ {0}, there is an embedding of Hm(Ω) into Ck(Ω̄).

Proof. For a proof, we refer to [2, Chapter 8].

In particular, Hm, m ≥ 1, functions in dimension n = 1 have continuous representatives
and Hm spaces can be defined on compact sets in 1D.

Definition 6.2.10. Let H be a Hilbert space, a : H× H → R bilinear. a is coercive if there exist
C > 0, c > 0 such that

1. a(u, v) = a(v, u) (symmetric)

2. |a(u, v)| ≤ C‖u‖H‖v‖H ∀ u, v ∈ H (continuous)

3. a(v, v) ≥ α‖v‖2
H ∀ v ∈ H (elliptic)

Proposition 6.2.11 (Lax-Milgram Theorem for convex sets). Let H be a Hilbert space, V ⊂ H
closed and convex, a : H × H → R bilinear and coercive, l : H → R linear and continuous. Then

J(v) :=
1
2

a(v, v)− l(v) −→ min! (6.6)

has a unique solution v∗ ∈ V.
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6.2 Sobolev Spaces

Proof. For a proof, we refer to [5, Section II.2].

Proposition 6.2.12 (Trace Theorem). Let Ω ⊂ Rn be an open, bounded set with ∂Ω Lipschitz.
Then there is a unique linear mapping B : H1(Ω) → L2(∂Ω) such that Bu = u|∂Ω for u ∈

H1(Ω) ∩ C0(Ω̄).

Proof. For a proof, we refer to [2, Section A5].

So Sobolev functions have boundary values in L2 sense. For continuous functions on the
closure of Ω, these coincide with classical boundary values.

We need the following inequalities:

Lemma 6.2.13. Let f ∈ C∞(0, `) ∩ C0([0, `]) for some 0 < ` ∈ R. Then

1. ‖ f ‖L2(0,`) ≥ 1√
`
‖ f ‖L1(0,`)

2. ‖ f ′‖L2(0,`) ≥ 1√
`
| f (`)− f (0)|

3. ‖ f ‖2
H1(0,`) ≥

1
`

[
‖ f ‖2

L1(0,`) + | f (`)− f (0)|2
]

This lemma also holds for intervals [a, a + `], a ∈ R.

Proof. 1. By Lemma 6.2.2 we have

‖ f ‖L1(0,`) ≤ vol([0, `])
1
1−

1
2 ‖ f ‖L2(0,`)

=
√

`‖ f ‖L2(0,`)

for f ∈ L2(0, `) ⊃ C∞(0, `) ∩ C0([0, `]), division by
√

` proves the first inequality.

2. By 1.,

‖ f ′‖L2(0,`) ≥
1√
`
‖ f ′‖L1(0,`)

=
1√
`

∫ `

0
| f ′|

≥ 1√
`

∫ `

0
f ′

=
1√
`

( f (`)− f (0))

Also,

‖ f ′‖L2(0,`) ≥
1√
`
‖ f ′‖L1(0,`)

=
1√
`

∫ `

0
| f ′|

≥ 1√
`

∫ `

0
(− f ′)

=
1√
`

( f (0)− f (`))

121



6 Mathematical Background

Together,

‖ f ′‖L2(0,`) ≥
1√
`
| f (`)− f (0)|

3. ‖ f ‖2
H1(0,`) = ‖ f ‖2

L2(0,`) + ‖ f ′‖2
L2(0,`), then use 1. and 2. to bound these two expressions.

Lemma 6.2.14. Let f ∈ C∞(0, `) ∩ C0([0, `]) for some 0 < ` ∈ R, |g(0)| = η or |g(`)| = η for
some η ≥ η̃ > 0. Then

‖g‖H1(0,`) ≥ min

(
1

2
√

`
η,

√
`

4
η

)
≥ min

(
1

2
√

`
η̃,

√
`

4
η̃

)
(6.7)

Proof. Let θ = η
4 . By the preceeding Lemma 6.2.13,

‖g‖2
H1(0,`) ≥

1
`
‖g‖2

L1(0,`) + ‖g′‖2
L2(0,`) (6.8)

Now consider two cases:

1. ‖g‖L1(0,`) ≥ θ`, then ‖g‖2
H1(0,`) ≥

1
`‖g‖2

L1(0,`) ≥
1
` (θ`)2 = `η2

16 .

2. ‖g‖L1(0,`) < θ`, then M := {x ∈ [0, `] | |g(x)| > 2θ } satisfies vol(M) < 1
2`.

So ∃γ ∈ (0, `) : |g(γ)| = 2θ (intermediate value theorem for continuous function [31]).

‖g‖2
H1(0,`) ≥ ‖g

′‖2
L2(0,`) and at least one of the following four cases holds:

a) g(0) = +η, g(γ) = +2θ:

‖g′‖L2(0,`) ≥ ‖g′‖L2(0,γ)

(6.2.11(2))
≥ 1√

γ
(g(0)− g(γ))

=
1√
γ

(η − 2θ) =
1√
γ

1
2

η

≥ 1

2
√

`
η

b) g(0) = −η, g(γ) = −2θ:

‖g′‖L2(0,`) ≥ ‖g′‖L2(0,γ)

(6.2.11(2))
≥ 1√

γ
(g(γ)− g(0))

=
1√
γ

(−2θ − (−η)) =
1√
γ

1
2

η

≥ 1

2
√

`
η
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6.3 Finite Elements

c) g(`) = +η, g(γ) = +2θ:

‖g′‖L2(0,`) ≥ ‖g′‖L2(γ,`)

(6.2.11(2))
≥ 1√

`− γ
(g(`)− g(γ))

=
1√

`− γ
(η − 2θ) =

1√
`− γ

1
2

η

≥ 1

2
√

`
η

d) g(`) = −η, g(γ) = −2θ:

‖g′‖L2(0,`) ≥ ‖g′‖L2(γ,`)

(6.2.11(2))
≥ 1√

`− γ
(g(γ)− g(`))

=
1√

`− γ
(−2θ − (−η)) =

1√
`− γ

1
2

η

≥ 1

2
√

`
η

So, ‖g‖2
H1(Ω) ≥

(
η

2
√

`

)2
= η2

4` .

So, either ‖g‖2
H1(0,`) ≥

`η2

16 or ‖g‖2
H1(0,`) ≥

η2

4` which proves the claim.

Lemma 6.2.15. For a, b ∈ R, δ = a + b > 0, |a| ≥ δ
2 or |b| ≥ δ

2 .
For a, b, c ∈ R, δ = a + b + c > 0, |a| ≥ δ

3 , |b| ≥ δ
3 or |c| ≥ δ

3 .

6.3 Finite Elements

For the discretization of the interval [0, 1] in one space dimension, we use equidistant grids
with grid spacing h = 1

N , i. e. xj = jh and piecewise linear nodal basis functions satisfying
ϕi(xj) = δi,j.

Typically, the number of unknowns is of the form N = 2g + 1 where g is the grid level.
For [0, 1]× [0, 1] in two space dimensions, we use an equidistant grid in both directions,

order the grid points lexicographically, and use piecewise bilinear nodal basis functions,
again satisfying ϕi(xj) = δi,j.

These basis functions form a partition of unity.
In finite element framework, a mass matrix M and stiffness matrix L are defined

M =
(∫

Ω
ϕi ϕj

)
i,j=0,...,N

L =
(∫

Ω
∇ϕi∇ϕj

)
i,j=0,...,N
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6 Mathematical Background

where Ω is the domain discretized.
In 1D,

M = h


2 1
1 4 1

. . . . . . . . .
1 4 1

2 1



L =
1
h


1 −1
−1 2 −1

. . . . . . . . .
−1 2 −1

−1 1



Remark 6.3.1. 1. In higher space dimension d, M and L have a more complex sparsity
structure depending on the ordering of the unknowns. M scales with hd, L with hd−2.

2. M and L matrices are symmetric, which can be seen immediately in the definition.

3. Like in the proof of Lemmas 4.3.2 and 4.3.4, using the definition of positive definiteness
and combining terms such that only squared terms remain, it can be seen easily that
M is positive definite. This is also true in higher space dimensions.

4. Multiplying L with the all-ones vector, it can be seen that L is singular. This is also true
in higher space dimensions.

5. The eigenvalues of L are the eigenvalues of the negative Laplacian corresponding to
those eigenfunctions of the Laplacian that can be represented on the grid [19]. So L is
positive semi-definite and the zero eigenvalue has multiplicity 1.
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7 Conclusions and Outlook

We have seen that our finite element method for 2D heat diffusion works well for sources
given on 1D line segments.

The ELLAM for transport in 1D on a branching structure also works well unless there
are discontinuities. In the medical application, initial data is continuous, so most of the
problems we have seen do not arise. Discontinuities in the combination of flow do arise due
to the nature of the problem, numerical effects of this may have to be dealt with.

Many aspects in the models used here can be refined to obtain more realistic model of the
physical and medical effects.

• The structure of the vessels and vessel trees can be refined:

– Real blood vessels are curved, this can be approximated either by using several
line segments and connecting them by monofurcations or by curved segments.
The authors of [18] suggest cubic splines for this purpose.

– Multifurcations can be allowed rather than successive bifurcations with short
segments—if this is realistic or useful in some way.

– The cross section area can vary along the segment.
– The segments can be viewed as 2D / 3D tubes rather than 1D line segments.
– The inner structure of the flow within the blood vessels can be modeled more

accurately [12]

• In the blood vessels, diffusion can be modeled in addition to advection. Also for
advection-diffusion in 1D vessels, ELLAM can be used [11], convergence for this type
of method is treated in [36].

• In the tissue, advection can be modeled in addition to diffusion. ELLAM for 2D
advection-diffusion is treated in [38].

• The 2D tree generation and flow velocity determination could be extended and the
optimization methods used can be improved, but this is not necessary as we want to
use real vessel trees in 3D for calculations.

• The methods have to be extended to three-dimensional tissue and vessel trees in
3D where the shape of the domain and boundary effects need to be adapted to the
anatomy.

• Material parameters of tissue and vessels vary nonlinearly depending on temperature.
For temperatures higher than a certain threshold, proteins start to coagulate [26, 25],
which is an irreversible process and changes their material properties, at even higher
temperatures, nitrogen and water vaporize.

• Heating by the RF probe can be modeled more accurately [16]. Also, a response of the
body to this heating, e. g. an increase in blood flow, can be taken into consideration.
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7 Conclusions and Outlook

• As always in numerical simulations, the more computing resources are available, the
finer the discretization and the more accurate the simulation can be.

• Finally, the simulations need to be validated by experiments.
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hsv transition, 29
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linear optimization problem, 23

Lipschitz boundary, 119
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Lipschitz continuous, 118

liver carcinoma, 5

Lobatto quadrature, 35

Lobatto’s rule, 117

mass conservation, 43

mass matrix, 123

multigrid methods, 24

multiplicity, 7

node, 8

initial, 7

terminal, 7

nodes, 7

numerical diffusion, 80

numerical dissipation, 80

parent segment, 7

path, 7

pnmcomp, 104

polyhedron, 23

porous medium, 20

pressure, 20

prolongation, 24

restriction, 24

RF ablation, 5

RF probe, 5

root, 7

root segment, 8

segment, 8

siblings, 7

Sobolev space, 119

spd matrix, 69

steady state, 36

steepest descent method, 13

stiffness matrix, 123

symmetric, 120

terminal node, 8

terminal segment, 8

trace theorem, 121

tree, 10

valid pair of trees, 9

venous tree, 8

vertex, 23

vessel tree, 8

weak derivative, 119
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