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Composite Finite Elements for 3D Elasticity
with Discontinuous Coefficients

Lars Ole Schwen∗ Tobias Preusser† Martin Rumpf∗

For the numerical simulation in continuum mechanics the Composite Finite Element (CFE)
method allows an effective treatment of problems in which material parameters are discontinu-
ous across geometrically complicated interfaces. Instead of complicated and computationally
expensive tetrahedral meshing, specialized CFE basis functions are constructed on a uniform
hexahedral grid. This is a convenient approach in practice because frequently in biomechanics
geometric interfaces are described via 3D image data given as voxel data on a regular grid.
Then, for a particular coupling condition that depends on an underlying physical conservation
law and the local geometry of the interface, one constructs CFE basis functions that are capable
of representing functions satisfying this coupling condition. In this paper we present in detail
this construction for heat conduction and linear elasticity as scalar and vector-valued model
problems. Furthermore, we show first numerical results.
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1 Introduction

In many technical and medical applications physical processes on multi-phase materials with
complicated interfaces have to be simulated. Let us mention a few examples. Technical applications
include heat conduction in chip design [9] and the elastic behavior of composite materials, e.g. [23].
Some medical applications are the simulation of heat distribution during RF ablation therapy [15],
electric fields in the human body as the forward problem of electrocardiography [12], the brain
shift in neurosurgery [35], and effects of vertebroplasty on macroscopic properties of trabecular
microstructure [14].

The standard FE procedure in this context is to generate a geometrically complicated simplicial
(i.e. triangular or tetrahedral in 2D or 3D, respectively) FE mesh that represents the interface between
the different materials and then use relatively simple FE basis functions for the discretization of
the physical quantities. Good 3D meshing, however, is not a trivial task [2, 10, 28, 30, 29] and
may require substantial user interaction. There are already various approaches available in the
literature that avoid meshing, see [6, 1, 16, 8] for overviews on those “meshless methods”. In
many applications, the geometric description of the objects considered is obtained by 3D imaging
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(MRI, CT, . . . ). Such voxel data inherently defines a uniform (topologically) hexahedral grid.
Binary segmentation and assigning material properties (cf. [20, 33, 19, 31, 37, 5] for the case of
material-void interfaces) suffers from a non-smooth interface representation. This can be remedied
by subsequent smoothing of the mesh [3], at the possible cost of distorting elements.

As an alternative, the Composite Finite Element (CFE) [26, 17, 25, 24] method presented here
uses a standard hexahedral grid and represents the geometric complexity of the interface via
adapted basis functions. Given the geometry of an interface, material properties on both sides and
a physical conservation law, one can derive local coupling conditions for the physical quantity
under consideration, e.g. continuity along the interface and a discontinuous derivative across the
interface. CFE basis functions are constructed such that they can suitably represent this behavior
when applying a corresponding nodal interpolation on the standard hexahedral grid.

The overall construction of the adapted basis function is as follows. The hexahedral grid cells are
first divided in six tetrahedra. These are further subdivided such that the interface is approximated
via piecewise planar facets. This local construction is never stored but only temporarily generated to
assemble the required finite element matrices. We refer here to [17] for the algorithmic description
of this temporary subdivision process in the context of composite finite elements and to the classical
marching cubes [18] and marching tetrahedra [32] algorithms for the overall algorithmic approach.
In [17] composite finite elements are discussed in the case of complicated domain boundary
represented as level sets of a given function on a hexahedral mesh, whereas in this paper we treat
the case of complicated interior interfaces. Thus, based on this local and temporary grid, we present
here the construction of a local linear interpolation scheme from neighboring nodes of the “regular”
computational grid to additional nodes on the local, temporary grid obeying the local coupling
condition. These interpolation weights are used to compose CFE basis functions as weighted sums
of standard affine tent functions on the virtual grid—hence the term “composite”.

Outline of the article. The intention of this article is to provide a detailed discussion of coupling
conditions and consequently the construction of CFE basis functions for two model problems:
(scalar) heat conduction and (vector-valued) linear elasticity. In Section 2, we will discuss the
construction for 2D isotropic heat conduction, already explaining all essential steps in the simpler
scalar case. Furthermore we investigate how this can be extended to 3D and anisotropic material
properties. The CFE construction for 2D Lamé-Navier elasticity and its extension to 3D and
anisotropic linear elasticity is then presented in Section 3. Some algorithmic aspects assembling
CFE matrices are discussed in Section 4. Finally, Section 5 shows first results obtained by the
proposed CFE method.

2 Composite Finite Elements for Heat Diffusion

Let us first consider heat diffusion as a scalar model problem, with the corresponding elliptic
operator

u 7→ −div(A∇u) (1)

on a domain Ω for A being a second-order thermal diffusivity tensor and temperature u. We
assume that the domain Ω is subdivided into two subdomains Ω+ and Ω− (Ω = Ω+ ∪Ω− and
Ω+∩Ω− = /0) with a piecewise smooth but geometrically complicated interface Ω+∩Ω−. The
diffusivity, represented by the diffusion tensor A is now allowed to jump on the interface. In
what follows we already assume that the interface is piecewise polygonal and consists of facets of
simplices generated in the local subdivision step mentioned above.
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2.1 Coupling Condition for Isotropic Heat Diffusion in 2D

At first we consider isotropic heat diffusion with corresponding operator

u 7→ −div(a∇u) (2)

with a scalar thermal diffusivity coefficient a (i.e. A = a1 in Equation (1)). Energy conservation at
the interface implies a continuous heat flux across (i.e. in normal direction N to) the interface

〈a+∇u+,N〉= 〈a−∇u−,N〉 (3)

which translates to

∂Nu+ =
a−

a+
∂Nu− =: κ∂Nu− (4)

where κ will be referred to as “kink ratio” and where we use the notation 〈·, ·〉 for scalar products in
Rd . Moreover, the temperature u is continuous along the interface.

2.2 Locally Admissible Profiles

Let us now consider a point z on the interface between Ω− and Ω+ with (unit) normal N and (unit)
tangent T , see Figure 1 (middle). Such z will be called virtual node to reflect that the node is only
used for the construction of basis functions but has no associated degree of freedom (DOF). A
locally (in a neighborhood of z) admissible temperature profile has the form

u : x 7→

{
κ〈b(x− z),N〉+ c〈x− z,T 〉+d x ∈Ω+ ,

〈b(x− z),N〉+ c〈x− z,T 〉+d x ∈Ω− .
(5)

The space of locally admissible temperature profiles is spanned by the local prototype functions

η0(x) =

{
κ〈x− z,N〉 for x ∈Ω+

〈x− z,N〉 for x ∈Ω−

η1(x) = 〈x− z,T 〉
η2(x) = 1

(6)

2.3 Simplex-Wise and Local and Interpolation Scheme

Now let σ = (r0,r1,r2) be three nodes of a triangle containing an interface point z on an edge. We
will apply the following considerations for a triangle generated by the first not interface adapted
subdivision of initial regular mesh. Without any restriction, let r0,r2 ∈Ω− and r1 ∈Ω+, see Figure 1
(middle).

Now, we ask for an interpolation scheme on σ of the form

u(z) = wr0
z u(r0)+wr1

z u(r1)+wr2
z u(r2) (7)

that is capable of correctly interpolating any locally admissible function. Taking into account the
local prototype functions ηi, we obtain the system of linear equations

η0(z) = wr0
z η0(r0)+wr1

z η0(r1)+wr2
z η0(r2)

η1(z) = wr0
z η1(r0)+wr1

z η1(r1)+wr2
z η1(r2)

η2(z) = wr0
z η2(r0)+wr1

z η2(r1)+wr2
z η2(r2)

(8)
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Figure 1: Left: Interface (red line) cutting through a square of the regular grid, divided in two
regular triangles σ0,σ1 subdivided in virtual triangles (by dotted blue line). Middle:
Normal and tangential directions at a virtual node z in a triangle (r0,r1,r2). Right:
One virtual node z lies in a tetrahedron (r0, . . . ,r3) being cut by an interface (red
plane) with normal direction N and tangential directions S and T .

corresponding to the system of equations 〈r0− z,N〉 κ〈r1− z,N〉 〈r2− z,N〉
〈r0− z,T 〉 〈r1− z,T 〉 〈r2− z,T 〉

1 1 1

wr0
z

wr1
z

wr2
z

=

0
0
1

 (9)

which we can solve for the interpolation weights. Let Pz be the set of adjacent simplices to one
virtual node z, cf. Figure 1 (left). In case of a planar interface, the interpolation is exact on any
adjacent simplex. If the interface is curved and thus the piecewise planar approximation of the
interface is not globally planar, this is no longer true. In either case, arithmetic averaging of
the interpolation weights over all adjacent simplices (up to ignoring very thin or small and thus
“numerically unreliable simplices”, cf. [24]) can be used to define a local interpolation operator.

Let the notation wr,σ
z denote that the interpolation weight from r to z was obtained on the

simplex σ . Moreover, let the tilde indicate that the averaged interpolation weights will now be used
for a different purpose:

w̃r
z =

1
|Pz| ∑

σ∈Pz

wr,σ
z (10)

Let Cing(z) =
{

r regular node
∣∣ w̃r

z 6= 0
}

be the set of constraining regular nodes (short: constraints)
of a virtual node z. Interpolation of u from regular nodes r to a virtual node z is then defined as

I [u](z) := ∑
r∈Cing(z)

w̃r
zu(r). (11)

2.4 Composite Finite Element Basis Functions

Starting from the regular hexahedral grid, a virtual grid can be defined by first subdividing each cube
in six tetrahedra, adding the virtual nodes and introducing additional edges consistently across facets
of the cube and in such a way that we obtain a piecewise planar approximation of the interface. This
construction is an automatic and purely local operation. Standard piecewise affine basis functions
on this virtual grid will be denoted virtual basis functions ψ4. The term “virtual” reflects the fact
that these will not be used directly for the calculation because the virtual tetrahedra may be of very
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low quality (e.g., there is no lower bound on their aspect ratio [30]). DOF are associated only to
nodes of the regular hexahedral grid.

Let us now reinterpret the interpolation of Subsection 2.3 to use it for the construction of CFE
basis functions: we consider linear combinations of virtual basis functions ψ4 (with DOF on the
local auxiliary grid) to obtain CFE basis functions ψCFE (with DOF on the regular rectangular grid
only).

For this purpose, let us interpret the interpolation weights in Section 2.3 in a different way:
consider a function b with discrete values b(r) = 1 at the regular node r and b(s) = 0 at all other
regular nodes s, then by (11) the interpolation of b at a virtual node z is I [b](z) = wr

z. Even though
such b does not globally satisfy (3), we can use wr

z as a (coarsening) weight with which the virtual
basis function ϕ

4
z contributes to a CFE basis function ϕCFE

r .
Let C(r) =

{
z virtual node

∣∣r ∈Cing(z)
}
∪{r} and w̃r

r := 1. We define the Composite Finite
Element (CFE) basis functions as

ψ
CFE
r (x) := ∑

z∈C(r)
w̃r

zψ
4
z (x) (12)

and define

SCFE := span
{

ψ
CFE
r

∣∣r regular node
}
. (13)

For two regular nodes r,s, we have w̃r
s = δrs (with the Kronecker symbol δ ). This implies nodality

of the basis functions, thus the ψCFE
r indeed form a basis. Due to the construction, they are piecewise

affine with additional kinks at the edges of the virtual grid. The last equation in (9) implies that
they form a partition of unity. However, (12) is not a convex combination, thus basis functions may
attain negative values; moreover the support of CFE basis functions is still local but larger than
for standard piecewise affine FE (resulting in a different sparsity structure of CFE matrices, see
Figure 3). Figure 2 shows examples for 2D CFE basis functions.

2.5 Extension to Anisotropic Heat Diffusion

In case of anisotropic heat diffusion (1), the coupling condition is still relative to the orientation
of the interface with normal N = (N0,N1) and tangent vector T = (T0,T1). For the change of the
coordinate system from the canonical basis to the basis (N,T ) we obtain[

N0 N1
T0 T1

][
∂0u
∂1u

]
=

[
∂Nu
∂T u

]
⇔
[

∂0u
∂1u

]
=

[
N0 T0
N1 T1

][
∂Nu
∂T u

]
=: G

[
∂Nu
∂T u

] (14)

with the orthonormal 2× 2 transformation matrix G. The continuity of the heat flux in normal
direction, 〈A+∇u+,N〉= 〈A−∇u−,N〉, now reads as follows:

〈
A+G

[
∂Nu+

∂T u+

]
,N
〉
=
〈
A−G

[
∂Nu−

∂T u−

]
,N
〉
. (15)

Thus, written in components and using Einstein summation convention we get

A+
i jN jNi∂Nu++A+

i jTjNi∂T u+ =A−i jN jNi∂Nu−+A−i jTjNi∂T u− (16)
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Figure 2: 2D CFE Basis functions are depicted. In the first row a top view with the virtual grid
is shown, whereas in the second row a side view is displayed using a hsv blue-to-red
color transition to additionally encode the values of the basis function. Away from the
interface, we obtain standard piecewise affine tent functions on the usual cross grid
(left). Near the interface indicated by magenta lines the CFE construction produces
modified basis functions for a kink ratio κ = 10 (middle and right).

so the complete set of of coupling conditions at the point z is given by[
A+

i jN jNi A+
i jTjNi

0 1

]
︸ ︷︷ ︸

=:K+

[
∂Nu+

∂T u+

]
=

[
A−i jN jNi A−i jTjNi

0 1

]
︸ ︷︷ ︸

=:K−

[
∂Nu−

∂T u−

]

⇒
[

∂Nu+

∂T u+

]
= (K+)−1K−

[
∂Nu−

∂T u−

]
=:
[

KNN KNT
0 1

][
∂Nu−

∂T u−

]
(17)

where K+ is invertible iff A±i jN jNi 6= 0. The entries of K depend on the thermal conductivity tensor
A and the local geometry (N,T ).

Again, for the isotropic caseA= κ1, Equations (15) and (17) simplify to (3) and (4), respectively.
Prototype functions for locally admissible temperature profiles in this case are:

η0(x) =

{
KNN〈x− z,N〉 for x ∈Ω+

〈x− z,N〉 for x ∈Ω−

η1(x) =

{
KNT 〈x− z,N〉+ 〈x− z,T 〉 for x ∈Ω+

〈x− z,T 〉 for x ∈Ω−

η2(x) = 1

(18)

The remaining construction using these local prototype functions, i.e. setting up and solving a
system similar to (9), averaging interpolation weights (10), and defining CFE basis functions (12))
is done in the same manner as before.
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2.6 Extension to Heat Diffusion in 3D

In three space dimensions, we have the normal direction N plus two tangential directions S and T ,
cf. Figure 1 (right). This implies in the isotropic case that locally admissible temperature profiles
are of the form

u : x 7→

{
κb〈(x− z),N〉+ c0〈x− z,S〉+ c1〈x− z,T 〉+d x ∈Ω+

b〈(x− z),N〉+ c0〈x− z,S〉+ c1〈x− z,T 〉+d x ∈Ω−
(19)

and can be written as a linear combination of the prototype functions

η0(x) =

{
κ〈x− z,N〉 for x ∈Ω+

〈x− z,N〉 for x ∈Ω−
,

η1(x) = 〈x− z,S〉 ,
η2(x) = 〈x− z,T 〉 ,
η3(x) = 1 .

(20)

If we consider a tetrahedron with vertices r0,r2 ∈Ω− and r1,r3 ∈Ω+ (see Figure 1, right), we
obtain the system of linear equations (cf. Equation (9))

〈r0− z,N〉 κ〈r1− z,N〉 〈r2− z,N〉 κ〈r3− z,N〉
〈r0− z, S〉 〈r1− z, S〉 〈r2− z, S〉 〈r3− z, S〉
〈r0− z,T 〉 〈r1− z,T 〉 〈r2− z,T 〉 〈r3− z,T 〉

1 1 1 1




wr0
z

wr1
z

wr2
z

wr3
z

=


0
0
0
1

 (21)

to be solved for the interpolation weights wr j
z . Again, the remaining construction is performed as in

Subsections 2.3 and 2.4. Now, let us consider the anisotropic case. Using (cf. Equation (14))∂0u
∂1u
∂2u

= G

∂Nu
∂Su
∂T u

 with G =

N0 S0 T0
N1 S1 T1
N2 S2 T2

 , (22)

the anisotropic coupling condition (cf. (17)) is of the formA+
i jN jNi A+

i jS jNi A+
i jTjNi

0 1 0
0 0 1

∂Nu+

∂Su+

∂T u+

=

A−i jN jNi A−i jS jNi A−i jTjNi

0 1 0
0 0 1

∂Nu−

∂Su−

∂T u−


⇒

∂Nu+

∂Su+

∂T u+

=:

KNN KNS KNT
0 1 0
0 0 1

∂Nu−

∂Su−

∂T u−

 . (23)

Locally admissible profiles η are defined in the same manner as in (18) and (20) and the remaining
construction is again the same as in the previous subsections.
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3 Composite Finite Elements for Linear Elasticity

Linear elasticity is described by the elliptic operator

u 7→ −div(Cε(u)) (24)

with the symmetrized gradient (strain) ε(u) = 1
2

[
∇u+(∇u)T ] for a displacement u and a fourth-

order linear elasticity tensor C. Coupling conditions are obtained from continuity of u in tangential
direction and the equilibrium of forces at the interface, i.e. continuity of the normal stress

C+ε(u+)N = C−ε(u−)N (25)

across the interface (in normal direction N). We will see that this generally implies a coupling of the
derivatives of all spatial components of u. The Lamé-Navier elasticity tensor (isotropic) is given by

Ci jkl = λδi jδkl +µ(δikδ jl +δilδ jk) with λ =
E ·ν

(1+ν)(1−2ν)
,µ =

E
2(1+ν)

(26)

where the Lamé numbers λ ,µ depend linearly on Young’s modulus E (stiffness) and nonlinearly on
Poisson’s ratio ν (bulging/volume conservation parameter). Moreover, the normal stress is given by

Cε(u)N = λ (divu)1N +µ
(
∇u+∇uT)N = λ (divu)N +µ

(
∇u+∇uT)N. (27)

We are interested in the case where both E and ν are discontinuous across an interface.

3.1 Coupling Condition for Lamé-Navier Elasticity in 2D

Let N =

[
N0
N1

]
and T =

[
T0
T1

]
, then we can express ∇u in terms of directional derivatives (cf. (14))

∇u
[

N0 T0
N1 T1

]
=

[
∂0u0 ∂1u0
∂0u1 ∂1u1

][
N0 T0
N1 T1

]
=

[
∂Nu0 ∂T u0
∂Nu1 ∂T u1

]
(28)

so that

∇u =

[
∂Nu0 ∂T u0
∂Nu1 ∂T u1

][
N0 T0
N1 T1

]−1

=

[
∂Nu0 ∂T u0
∂Nu1 ∂T u1

][
N0 N1
T0 T1

]
=

[
N0∂Nu0 +T0∂T u0 N1∂Nu0 +T1∂T u0
N0∂Nu1 +T0∂T u1 N1∂Nu1 +T1∂T u1

]
,

divu = tr∇u = N0∂Nu0 +N1∂Nu1 +T0∂T u0 +T1∂T u1.

(29)

Hence

∇u+∇uT =

[
2N0∂Nu0 +2T0∂T u0 N1∂Nu0 +T1∂T u0 +N0∂Nu1 +T0∂T u1

N0∂Nu1 +T0∂T u1 +N1∂Nu0 +T1∂T u0 2N1∂Nu1 +2T1∂T u1

]
= 2ε(u) =: 2G

[
∂Nu0 ∂T u0
∂Nu1 ∂T u1

]
. (30)

If we let R =

[
N0 N1
T0 T1

]
, then the fourth-order tensor G is given by Gi jkl =

1
2

(
δikRl j +δ jkRli

)
.

Now, we collect the terms necessary for computing Cε(u)N:(
∇u+∇uT)N =

[
(2N2

0 +N2
1 )∂Nu0 +(N0N1)∂Nu1 +(2N0T0 +N1T1)∂T u0 +(N1T0)∂T u1

(N0N1)∂Nu0 +(N2
0 +2N2

1 )∂Nu1 +(N0T1)∂T u0 +(N0T0 +2N1T1)∂T u1

]
,

8
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(divu)N =

[
N2

0 ∂Nu0 +N0N1∂Nu1 +N0T0∂T u0 +N0T1∂T u1
N0N1∂Nu0 +N2

1 ∂Nu1 +N1T0∂T u0 +N1T1∂T u1

]
(31)

Making use of the orthonormality of N and T (N2
0 +N2

1 = T 2
0 +T 2

1 = 1, N0T0+N1T1 = 0) we obtain

Cε(u)N =


[
λN2

0 +µ(1+N2
0 )
]

∂Nu0 +[λN0N1 +µN0N1]∂Nu1 + . . .
. . .+[λN0T0 +µN0T0]∂T u0 +[λN0T1 +µN1T0]∂T u1

[λN0N1 +µN0N1]∂Nu0 +
[
λN2

1 +µ(1+N2
1 )
]

∂Nu1 + . . .
. . .+[λN1T0 +µN0T1]∂T u0 +[λN1T1 +µN1T1]∂T u1

 . (32)

Hence, the coupling condition across the interface is given by the system of linear equations
λ+N2

0 +µ+(1+N2
0 ) λ+N0N1 +µ+N0N1 λ+N0T0 +µ+N0T0 λ+N0T1 +µ+N1T0

λ+N0N1 +µ+N0N1 λ+N2
1 +µ+(1+N2

1 ) λ+N1T0 +µ+N0T1 λ+N1T1 +µ+N1T1
0 0 1 0
0 0 0 1




∂Nu+0
∂Nu+1
∂T u+0
∂T u+1



=


λ−N2

0 +µ−(1+N2
0 ) λ−N0N1 +µ−N0N1 λ−N0T0 +µ−N0T0 λ−N0T1 +µ−N1T0

λ−N0N1 +µ−N0N1 λ−N2
1 +µ−(1+N2

1 ) λ−N1T0 +µ−N0T1 λ−N1T1 +µ−N1T1
0 0 1 0
0 0 0 1




∂Nu−0
∂Nu−1
∂T u−0
∂T u−1


which we abbreviate by K+

[
∂Nu+0 ,∂Nu+1 ,∂T u+0 ,∂T u+1

]T
= K−

[
∂Nu−0 ,∂Nu−1 ,∂T u−0 ,∂T u−1

]T and
finally obtain

∂Nu+0
∂Nu+1
∂T u+0
∂T u+1

=
(
K+
)−1 K−


∂Nu−0
∂Nu−1
∂T u−0
∂T u−1

=:


KN0N0 KN0N1 KN0T0 KN0T1

KN1N0 KN1N1 KN1T0 KN1T1

0 0 1 0
0 0 0 1




∂Nu−0
∂Nu−1
∂T u−0
∂T u−1

 (33)

where again the structure of (K+)
−1 K− follows from simple matrix algebra. Clearly, the coupling

condition K?? depends on N,T (the “direction” of the interface) and λ±,µ± (Lamé-Navier material
properties). Let us point out that, in Equation (33), normal and tangential derivatives are even
coupled for ν± = 0 (which implies λ± = 0) and a jump only in E.

Note that K+ is in fact invertible if the upper left block has strictly positive determinant

det
[

λ+N2
0 +µ+(1+N2

0 ) λ+N0N1 +µ+N0N1
λ+N0N1 +µ+N0N1 λ+N2

1 +µ+(1+N2
1 )

]
= det

[
N2

0 (λ
++µ+)+µ+ (λ++µ+)N0N1

(λ++µ+)N0N1 N2
1 (λ

++µ+)+µ+

]
=
(
N2

0 (λ
++µ

+)+µ
+
)(

N2
1 (λ

++µ
+)+µ

+
)
−
(
(λ++µ

+)N0N1
)2

= N2
0 N2

1 (λ
++µ

+)2 +µ
+(N2

0 +N2
1 )(λ

++µ
+)+(µ+)2−N2

0 N2
1 (λ

++µ
+)2

= µ
+(λ++µ

+)+(µ+)2 > 0

(34)

which is satisfied for physically meaningful values of E > 0 and −1 < ν < 0.5.
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3.2 Locally Admissible Profiles

Again let us consider a point z on the interface between Ω− and Ω+ with (unit) normal N and (unit)
tangent T . Locally admissible displacements now lie in the span of

η0(x) =



[
KN0N0 0
KN1N0 0

][
〈x− z,N〉
〈x− z,T 〉

]
[
〈x− z,N〉

0

] , η1(x) =



[
KN0N1 0
KN1N1 0

][
〈x− z,N〉
〈x− z,T 〉

]
x ∈Ω+[

0
〈x− z,N〉

]
x ∈Ω−

,

η2(x) =



[
KN0T0 1
KN1T0 0

][
〈x− z,N〉
〈x− z,T 〉

]
[
〈x− z,T 〉

0

] , η3(x) =



[
KN0T1 0
KN1T1 1

][
〈x− z,N〉
〈x− z,T 〉

]
x ∈Ω+[

0
〈x− z,T 〉

]
x ∈Ω−

,

η4(x) =
[

1
0

]
, η5(x) =

[
0
1

]
.

(35)

3.3 Simplex-Wise and Local and Interpolation Scheme

Let us again consider the simplex formed by (r0,r1,r2) with r0,r2 ∈Ω− and r1 ∈Ω+ (cf. Figure 1,
right). The simplex-wise interpolation scheme (cf. Equation (7)) is now given by[

u0(z)
u1(z)

]
=W r0

z

[
u0(r0)
u1(r0)

]
+W r1

z

[
u0(r1)
u1(r1)

]
+W r2

z

[
u0(r2)
u1(r2)

]
(36)

with interpolation weights W r j
z which are now 2× 2 matrices. We have six prototype functions,

each of them with two components. Hence, we obtain twelve equations to determine the twelve
unknowns in the interpolation weights: ηi(z) =W r0

z ηi(r0)+W r1
z ηi(r1)+W r2

z ηi(r2) ∀i implies

η0 :
[

0
0

]
=W r0

z

[
〈r0− z,N〉

0

]
+W r1

z

[
KN0N0 0
KN1N0 0

][
〈r1− z,N〉
〈r1− z,T 〉

]
+W r2

z

[
〈r2− z,N〉

0

]
,

η1 :
[

0
0

]
=W r0

z

[
0

〈r0− z,N〉

]
+W r1

z

[
KN0N1 0
KN1N1 0

][
〈r1− z,N〉
〈r1− z,T 〉

]
+W r2

z

[
0

〈r2− z,N〉

]
,

η2 :
[

0
0

]
=W r0

z

[
〈r0− z,T 〉

0

]
+W r1

z

[
KN0T0 1
KN1T0 0

][
〈r1− z,N〉
〈r1− z,T 〉

]
+W r2

z

[
〈r2− z,T 〉

0

]
,

η3 :
[

0
0

]
=W r0

z

[
0

〈r0− z,T 〉

]
+W r1

z

[
KN0T1 0
KN1T1 1

][
〈r1− z,N〉
〈r1− z,T 〉

]
+W r2

z

[
0

〈r2− z,T 〉

]
,

η4 :
[

1
0

]
=W r0

z

[
1
0

]
+W r1

z

[
1
0

]
+W r2

z

[
1
0

]
,

η5 :
[

0
1

]
=W r0

z

[
0
1

]
+W r1

z

[
0
1

]
+W r2

z

[
0
1

]
.

(37)

The resulting weights are general 2×2 matrices, in particular they are not symmetric or even
diagonal.
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3.4 CFE Basis Functions for Linear Elasticity

To build continuous CFE basis functions, we apply the same averaging scheme as in Equation (10),
now applied to the matrix valued weights and obtain

W̃ r
z =

1
|Pz| ∑

σ∈Pz

W r,σ
z . (38)

Finally, the CFE interpolation operator (cf. Equation (11)) is defined as follows

I
[

u0
u1

]
(z) := ∑

r∈Cing(z)

W̃ r
z

[
u0(r)
u1(r)

]
. (39)

Let Ψ
4
z;α := ψ

4
z ~eα be a standard tent function on the virtual grid “in space direction α” and W̃ r

r = 1
for regular nodes r. Then the vector-valued CFE basis functions (cf. (12)) are constructed via

Ψ
CFE
r;α (x) = ∑

z∈C(r)
W̃ r

z Ψ
4
z;α(x) = ∑

z∈C(r)
ψ
4
z (x)W̃ r

z~eα . (40)

Note that a single virtual basis function Ψ
4
z;α only discretizes displacement in one space direction α

whereas a single CFE basis function ΨCFE
r;α (near the interface) may have contributions in all three

space directions because the weights W̃ r
z are not diagonal.

Again, W̃ r
s = δrs1 implies nodality of the basis functions (which thus in fact form a basis), the

bottom four equations in (37) imply that they form a partition of unity.

3.5 Extension to Anisotropic Linear Elasticity

In an anisotropic linear elasticity setting, the normal stress condition (25) still holds. Using G
defined in Equation (30), we obtain (cf. (27))

C+G
[

∂Nu+0 ∂T u+0
∂Nu+1 ∂T u+1

]
N = C−G

[
∂Nu−0 ∂T u−0
∂Nu−1 ∂T u−1

]
N (41)

or, in components:

C+i jklGklmn

[
∂Nu+0 ∂T u+0
∂Nu+1 ∂T u+1

]
mn

N j = C−i jklGklmn

[
∂Nu−0 ∂T u−0
∂Nu−1 ∂T u−1

]
mn

N j. (42)

Expanding both sides of (42) (a vector of length 2) yields more complicated expressions than (32),
but it is obviously still linear in ∂{N,T}u{0,1}. Hence it can be rewritten in the same way as above in
(33). The remaining construction is done in the same fashion as in the previous Subsections 3.2, 3.3,
and 3.4.

3.6 Extension to 3D Anisotropic Elasticity

In 3D, let again N be the normal and S,T be two tangential directions so that N,S,T are orthonormal.
Using (29) we can define the fourth-order tensor G as the 3D analog of (30):

2ε(u) = ∇u+∇uT =: G

∂Nu0 ∂Su0 ∂T u0
∂Nu1 ∂Su1 ∂T u1
∂Nu2 ∂Su2 ∂T u2

 . (43)
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Let us now only consider general anisotropic linear elasticity. The normal stress can then be
written in the form (cf. Equation (32))

Cε(u)N = Ci jklGklmn

∂Nu0 ∂Su0 ∂T u0
∂Nu1 ∂Su1 ∂T u1
∂Nu2 ∂Su2 ∂T u2


mn

N j

=


m(0)
C,N,S,T (∂Nu0,∂Nu1,∂Nu2,∂Su0,∂Su1,∂Su2,∂T u0,∂T u1,∂T u2)

m(1)
C,N,S,T (∂Nu0,∂Nu1,∂Nu2,∂Su0,∂Su1,∂Su2,∂T u0,∂T u1,∂T u2)

m(2)
C,N,S,T (∂Nu0,∂Nu1,∂Nu2,∂Su0,∂Su1,∂Su2,∂T u0,∂T u1,∂T u2)


(44)

where the m( j)
C,N,S,T are linear in each partial derivative of each component of u with coefficients

depending on C±,N,S, and T . The continuity of normal stress can be expressed as (cf. (42))

C+i jklGklmn

∂Nu+0 ∂Su+0 ∂T u+0
∂Nu+1 ∂Su+1 ∂T u+1
∂Nu+2 ∂Su+2 ∂T u+2


mn

N j = C−i jklGklmn

∂Nu−0 ∂Su−0 ∂T u−0
∂Nu−1 ∂Su−1 ∂T u−1
∂Nu−2 ∂Su−2 ∂T u−2


mn

N j (45)

and we obtain a coupling condition of three equations for the normal direction, plus six equations
from the continuity in tangential direction. Both in case of Lamé-Navier elasticity and for the fully
anisotropic linear case, the normal stress is of the same form as in Equation (33):

∂Nu+0
∂Nu+1
∂Nu+2
∂Su+0
∂Su+1
∂Su+1
∂T u+0
∂T u+1
∂T u+1


=



KN0N0 KN0N1 KN0N2 KN0S0 KN0S1 KN0S2 KN0T0 KN0T1 KN0T2

KN1N0 KN1N1 KN1N2 KN1S0 KN1S1 KN1S2 KN1T0 KN1T1 KN1T2

KN2N0 KN2N1 KN2N2 KN2S0 KN2S1 KN2S2 KN2T0 KN2T1 KN2T2

0 0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 1





∂Nu−0
∂Nu−1
∂Nu−2
∂Su−0
∂Su−1
∂Su−1
∂T u−0
∂T u−1
∂T u−1


(46)

Locally admissible displacements now lie in the span of the following local prototype functions
η0, . . . ,η11 with ( j = 0,1,2) (cf. (35)):

η0+ j(x) =


KN0N j 0 0

KN1N j 0 0
KN2N j 0 0


〈x− z,N〉
〈x− z,S〉
〈x− z,T 〉

 x ∈Ω+

〈x− z,N〉~e j x ∈Ω−

,

η3+ j(x) =


KN0S j δ0 j 0

KN1S j δ1 j 0
KN2S j δ2 j 0


〈x− z,N〉
〈x− z,S〉
〈x− z,T 〉

 x ∈Ω+

〈x− z,S〉~e j x ∈Ω−

,

η6+ j(x) =


KN0Tj 0 δ0 j

KN1Tj 0 δ1 j

KN2Tj 0 δ2 j


〈x− z,N〉
〈x− z,S〉
〈x− z,T 〉

 x ∈Ω+

〈x− z,T 〉~e j x ∈Ω−

,

η9+ j(x) =~e j .

(47)
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In the same manner as before, we now need to determine an interpolation schemeu0(z)
u1(z)
u2(z)

=W r0
z

u0(r0)
u1(r0)
u2(r0)

+W r1
z

u0(r1)
u1(r1)
u2(r1)

+W r2
z

u0(r2)
u1(r2)
u2(r2)

+W r3
z

u0(r3)
u1(r3)
u2(r3)

 (48)

where the 36 unknown entries of the four interpolation weights in the W r j
z are determined by

plugging the spanning functions η into (48) which yields 12 · 3 = 36 equations. Again, we go
through the same remaining construction as in Subsections 3.2, 3.3, and 3.4.

4 Assembling CFE Matrices

In the implementation, neither the virtual grid nor the CFE basis functions are explicitly stored. The
CFE basis functions are temporarily and locally constructed to assemble the finite element matrices.
Here we consider the assembly of the corresponding mass and stiffness matrices, which enables
the solution of linear elliptic but also linear parabolic problems with implicit time discretization.
We confine here to the most general case of linear elasticity and do not detail the case of scalar
problems. Entries of the FE mass matrix M and stiffness matrix L for the heat conduction case are
defined as follows:

Mrs =
∫

Ω

ψ
CFE
r ψ

CFE
s = ∑

z∈C(r)
∑

y∈C(s)
wr

zw
s
y

∫
Ω

ψ
4
z ψ

4
y , (49)

Lrs =
∫

Ω

a(x)∇ψ
CFE
r ·∇ψ

CFE
s = ∑

z∈C(r)
∑

y∈C(s)
wr

zw
s
y

∫
Ω

a(x)∑
i

∂iψ
4
z ∂iψ

4
y . (50)

The global matrices are assembled using the usual element-by-element technique of computing
per-element contributions and summing them up in the global matrix. We can make use of the
fact that rows corresponding to nodes sufficiently far from the interface are essentially identical
throughout Ω− and Ω+ (and need to be stored only once), for this and further algorithmic aspects
we refer to [17].

Mass Matrices. Recalling Equation (40), we can write the (block) mass matrix for the elasticity
problem as follows

(Mαβ )rs =
∫

Ψ
CFE
r;α Ψ

CFE
s;β =

∫
Ω

(
∑

z∈C(r)
W̃ r

z ψ
4
z ~eα

)
·

(
∑

y∈C(s)
W̃ s

y ψ
4
y ~eβ

)

= ∑
z∈C(r)

∑
y∈C(s)

∑
k
(W̃ r

z )kα(W̃ s
y )kβ︸ ︷︷ ︸

=((W̃ r
z )

TW̃ s
y )αβ

∫
Ω

ψ
4
z ψ

4
y .

(51)

Note that Mαβ has 3×3 block structure with nonzero off-diagonal blocks.

Elasticity Matrices. For the linear elasticity matrix, we have to evaluate

(Lαβ )rs =
∫

Ω

Cε(ΨCFE
r;α ) : ε(ΨCFE

s;β )

=
∫

Ω
∑

klmn

Cklmn

4

[
∂m(Ψ

CFE
r;α )n +∂n(Ψ

CFE
r;α )m

][
∂k(Ψ

CFE
s;β )l +∂l(Ψ

CFE
s;β )k

] (52)
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a

b c

d

e

Figure 3: Visualization of (a) a CFE stiffness matrix for jumping heat conduction coefficient
with κ = 2, (b) a CFE mass matrix and (c) a CFE elasticity stiffness matrix for
(E−,ν−) = (1.0,0.3) and (E−,ν−) = (1.5,0.1) are shown. For comparison, (d) an
affine FE stiffness matrix and (e) a CFE elasticity stiffness matrix for a complicated
domain and (E,ν) = (1.0,0.3) are also shown. A nonlinear HSV blue-to-red color
scale represents the values of nonzero entries where green are entries almost
equal to zero and white are entries exactly equal to zero.

and hence terms of the form∫
Ω

[
∂m(Ψ

CFE
r;α )n

][
∂k(Ψ

CFE
s;β )l

]
=
∫

Ω

[
∑

z∈C(r)
(W̃ r

z )nα∂mψ
4
z

][
∑

y∈C(s)
(W̃ s

y )lβ ∂kψ
4
y

]

= ∑
z∈C(r)

∑
y∈C(s)

(W̃ r
z )nα(W̃ s

y )lβ

∫
Ω

∂mψ
4
z ∂kψ

4
y

(53)

have to be computed. Finally, we obtain

(Lαβ )rs =∑
zy

∑
klmn

Cklmn

4

[
(W̃ r

z )nα(W̃ s
y )lβ

∫
Ω

∂mψ
4
z ∂kψ

4
y +(W̃ r

z )nα(W̃ s
y )kβ

∫
Ω

∂mψ
4
z ∂lψ

4
y

+(W̃ r
z )mα(W̃ s

y )lβ
∫

Ω
∂nψ

4
z ∂kψ

4
y +(W̃ r

z )mα(W̃ s
y )kβ

∫
Ω

∂nψ
4
z ∂lψ

4
y

]
. (54)

In Figure 3 we visualize the sparsity structure of CFE matrices compared to affine FE and CFE
for complicated domains [17] with 15-band structures in each block. The underlying grid is a
discretization of [0,1]3 using 53 nodes and interface at |x|= 0.8

√
3. CFE for interior interfaces

yield a significantly denser band structure compared to CFE on complicated domains. Moreover,
off-diagonal blocks in the block mass matrix (c) contain nonzero entries corresponding to nodes
near the interface.

5 Numerical Results

One major advantage of the structured hexahedral grid underlying the CFE computation is the
underlying hierarchy of meshes. This in particular permits the use of geometric multigrid strate-
gies [4, 38, 39, 11] for solving or preconditioning. For the scalar heat conduction problems, we
have so far used standard coarsening (applying the same weights as for piecewise affine finite
elements, which are not adapted to the interface) up to some fixed coarse resolution and used one
(3,V,3) cycle with Block-Gauß-Seidel smoothing in a preconditioned conjugate gradient solver to
improve convergence. For the vector-valued case, we have so far used a preconditioned conjugate
gradient solver with block-SSOR preconditioning [13]. A four-stripe zebra-type ordering of the
unknowns [7] can be used for parallelizing the preconditioner. The results were visualized using
POV-Ray and VTK.
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Figure 4: Interface and spherical profile of function to be approximated.
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Figure 5: Approximation quality: Estimated convergence orders for the difference between
CFE approximation and a given analytic function (middle row) and the CFE solution
of an elliptic boundary value problem and the analytic solution (bottom row) for kink
ratios ranging between 1 (no kink) and 106 measured in L∞, L2, and H1 norm when
refining the grid: 53 ♦ 93 + 173 � 333 × 653 4 1293 ◦ 2573.

Approximation of a Given Function. Let us consider the spherically-symmetric function with
a kink across the spherical interface shown (cf. Figure 4). If we compute the error between the
analytic function and its CFE approximation at different resolutions, we observe second order
convergence in the L∞ and L2 norm and first order convergence in the H1 norm, where are the
approximation order breaks down in case of standard affine or multilinear FE on the same regular
hexahedral grid. Due to the built-in averaging at non-planar interfaces, the approximation quality
depends on the range of kink ratios. In explicit, we do not expect a proper approximation for very
large kink ratios.

Heat Conduction Simulation

As an example for a heat conduction simulation, let us consider a hexahedral sample of aluminum
foam (Al) embedded in polymethylmethacrylate (PMMA) with edge length 6.81 mm, resolved by
2573 voxels. A time-dependent heat conduction problem is then described by the partial differential
equation initial and boundary value problem

∂t [ρc(x)u(x, t)] = div [λ (x)∇u] in Ω,

u(x,0) = 293.15 in Ω,

u(bottom, t) = 194.65 t > 0,
u(top, t) = 373.15 t > 0,

∂ν(x)u(x, t) = 0 elsewhere on ∂Ω

(55)
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t = 0.0 t = 0.05 t = 1.0 t = 10.0 t = 20.0 t = 40.0

Figure 6: Results of a time-dependent heat conduction simulation on an aluminum foam em-
bedded in PMMA. An almost steady state is reached much faster in the aluminum
than in the PMMA.

undeformed deformed x displacements y displacements z displacements
−0.03 0.03 −0.2 0.0

Figure 7: Results of an elasticity simulation: Compression of a sphere (E◦ = 10.0,ν◦ = 0.1)
embedded in a cube (E� = 1.0,ν� = 0.3) by 20 %.

with volume-specific heat capacity ρc = {2.43,1.75} · 106 J/m3 K for aluminum and PMMA,
respectively, and thermal conductivities λ = {237.0,0.19}W/m K (thus a kink of ratio 1247 in λ ).
A visualization of the geometry and the temperature distribution at different times is shown in
Figure 6. The figure shows the development of the temperature distribution towards a steady state
with fast heat flux through the Al and slower heat flux through the PMMA.

Elasticity Simulation

As a first (toy) example, let us consider a spherical object (radius 0.3 m) with E◦ = 10 Pa and
ν◦ = 0.1 embedded in a cube of edge length 1 m with (E� = 1 Pa and ν� = 0.3), where the bottom
face is fixed and the top face is loaded with a downward displacement of 0.2 m. Figure 7 shows
the undeformed and deformed objects and a visualization of the displacements. Computational
resolution for this example was 653, resulting in a memory requirement of 572 MB.

Let us also consider an Al foam embedded in PMMA for an elasticity simulation. We consider a
specimen of 6×6×9.6 mm at resolution 100 µm, i.e. computational resolution 60×60×96. Both
materials are assumed to be isotropic with EAl = 70 GPa and νAl = 0.35, EPMMA = 3 GPa and
νPMMA = 0.38, subject to 1 % compression in longitudinal direction, cf. Figure 8.

Furthermore, let us consider an elasticity tensor which is discontinuous across an interface and
also varies continuously within one material. To show the difference to constant elasticity tensor
in each material, we first run a compression (20 %) simulation on a circular column as shown in
Figure 10. In the upper row we assume isotropic elasticity with E� = 1 Pa and ν� = 0.38 in the
surrounding material and E◦ = 10 Pa and ν◦ = 0.33 at the top and bottom of the column, linearly
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undeformed deformed x displacements y displacements z displacements
−0.001 0.001 −0.01 0.0

Figure 8: Results of an elasticity simulation on an Al foam (EAl = 70 GPa, νAl = 0.35) embed-
ded in PMMA (EPMMA = 3 GPa, νPMMA = 0.38) subject to 1 % compression, here
shown scaled by a factor 20.

varying to the transversely isotropic tensor VC listed in Figure 9 in the center (corresponding to half
the compressive stiffness in transverse direction). In contrast, in the lower row, the elasticity tensor
for the column is constant to the value at top and bottom above. Combined with the surrounding
material, this leads to slightly less bulging of the column for the constant-isotropic column.

Finally, let us consider the 5×5×5 grid of circular rods shown in Figure 11 subject to rotation
by 20 degrees (which is intended to enhance the visualization; in reality, this is outside the range
where a linear model is valid). For the trabecular centers, we assume transversely isotropic elasticity
tensors VT (cf. Figure 9) of vertebral trabecular bone [36], rotated accordingly; averaged to an
isotropic tensor in the trabecular crossings and interpolated trilinearly. The embedding material is
assumed to be isotropic PMMA with EPMMA = 3 GPa and νPMMA = 0.38.

6 Conclusions

This paper shows the construction of Composite FE basis functions for simulating different physical
processes on objects with geometrically complicated interfaces between different materials. CFE
show optimal convergence behavior for the interpolation error for piecewise affine interpolation.
We consider applications to artificially constructed objects described by level set functions [21]
and real objects described by µCT scans. In both cases, the construction of CFE basis functions is
fully automatic and the simulations profit from efficient data structures for the underlying regular
hexahedral computational grid.

The construction presented here is limited to linear problems and piecewise affine (C)FE basis
functions. We have only discussed the case of a single material interface, the extension to multiple
(separated) interfaces, however, is straightforward. Our current implementation can only deal
with cuboid domains with a complicated interface inside, but it is possible to combine CFE for
discontinuous coefficients and CFE for complicated domains [17, 25], see [22], to treat more general
shapes. Boundary conditions are applied to the outside of the (cuboid) specimen, but besides the
coupling, no additional boundary conditions are prescribed to the interface.

Further research will include the application of CFE to homogenization, i.e. determining effective
material properties of specimens with microstructure, as previously studied in [27]. There is still
potential to improve the preconditioning and solver strategies and optimize the C++ implementation
and parallelization. Moreover, validation of the method still has to be performed.
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VC :=


7.408 3.649 3.649
3.649 7.408 3.649
7.298 7.298 14.82

3.759
3.759

1.880

 VT :=


19.78 8.419 8.419
8.419 16.18 7.615
8.419 7.615 16.18

8.567
9.471

9.471


Figure 9: Transversely isotropic elasticity tensors in GPa in Voigt’s notation [34] used for the

simulations in Figures 10 (VC) and 11 (VT).

z displacement x displacements y displacements z displacements
−0.2 0.0 −0.04 0.04 −0.2 0.0

difference in difference in difference in
x displacements y displacements z displacements

−0.004 0.004 −0.0005 0.0005

Figure 10: Top row: 20 % compression of an embedded column with varying (isotropic—
transversely isotropic—isotropic) elasticity tensor in the column. From left to right,
the images show the deformed configuration with z displacements on the interface
between column and embedding and displacements in the three space directions
on a slice through the center of the combined object. Bottom row: For comparison,
we show the differences to displacements obtained for a constant isotropic tensor
throughout the column.

undeformed deformed x displacements y displacements z displacements
−0.16 0.16 edge length

Figure 11: Torsion of an artificial trabecular dataset with varying tranverse isotropy embedded
in softer isotropic material. Displacements in the three space directions are shown
in a slice near the front of the sample.

18



L. O. Schwen et al. Composite Finite Elements for Discontinuous Coefficients

Acknowledgments

Ole Schwen was supported by the DFG project RU567/8-2 “Multiscale Simulation and Validation
of the Elastic Microstructures of Vertebral Bodies”. The authors would like to thank Hans-Joachim
Wilke and Uwe Wolfram for the datasets used in the simulations shown in Figures 6 and 8. We
are grateful to Stefan Sauter for his advice on composite finite elements and to Benedikt Wirth for
extensive discussions on the construction of the elasticity interpolation scheme.

References

[1] T. Belytschko, Y. Krongauz, D. Organ, M. Fleming, and P. Krysl, Meshless methods: An overview and
recent developments, Computer methods in applied mechanics and engineering 139 (1996), 3–47.

[2] Marshall Bern and David Eppstein, Computing in Euclidian geometry, Lecture Notes Series on Com-
puting, vol. 1, ch. Mesh generation and optimal triangulation, pp. 23–90, World Scientific, Singapore,
1992.

[3] Steven K. Boyd and Ralph Müller, Smooth surface meshing for automated finite element model
generation from 3D image data, Journal of Biomechanics 39 (2006), no. 7, 1287–1295.

[4] Achi Brandt, Multi-level adaptive solutions to boundary-value problems, Mathematics of Computation
31 (1977), no. 138, 333–390.

[5] Yan Chevalier, Dieter Pahr, Helga Allmer, Mathieu Charlebois, and Philippe Zysset, Validation of a
voxel-based FE method for prediction of the uniaxial apparent modulus of human trabecular bone using
macroscopic mechanical tests and nanoindentation, Journal of Biomechanics 40 (2007), 3333–3340.

[6] C. Armando Duarte, A review of some meshless methods to solve partial differential equations, TICAM
Report 95-06, Texas Institute for Computational and Applied Mathematics, University of Texas at
Austin, U.S.A., 1995.

[7] Iain S. Duff and Gérard A. Meurant, The effect of ordering on preconditioning conjugate gradients,
BIT Numerical Mathematics 29 (1989), 635–657.

[8] Thomas-Peter Fries and Hermann-Georg Matthies, Classification and overview of meshfree methods,
Informatikbericht 2003-3, Institute of Scientific Computing, Technical University Braunschweig, 2004,
(revised version).

[9] T. Gao, W. H. Zhang, J. H. Zhu, Y. J. Xu, and D. H. Bassir, Topology optimization of heat conduction
problem involving design-dependent heat load effect, Finite Elements in Analysis and Design 44 (2008),
no. 14, 805–813.

[10] N. A. Golias and T. D. Tsiboukis, An approach to refining three-dimensional tetrahedral meshes based
on Delaunay transformations, International Journal for Numerical Methods in Engineering 37 (1994),
793–812.

[11] T. Grauschopf, M. Griebel, and H. Regler, Additive multilevel preconditioners based on bilinear
interpolation, matrix-dependent geometric coarsening and algebraic multigrid coarsening for second-
order elliptic PDEs, Applied Numerical Mathematics 23 (1997), no. 1, 63–95.

[12] Ramesh M. Gulrajani, The forward and inverse problems of electrocardiography, IEEE Engineering in
Medicine and Biology 17 (1998), no. 5, 84–101.

[13] Wolfgang Hackbusch, Iterative solution of large sparse systems of equations, Applied Mathematical
Sciences, vol. 95, Springer, 1994.

19



L. O. Schwen et al. Composite Finite Elements for Discontinuous Coefficients

[14] V. Kosmopoulos and T. S. Keller, Damage-based finite-element vertebroplasty simulations, European
Spine Journal 13 (2004), 617–625.

[15] Tim Kröger, Inga Altrogge, Tobias Preusser, Philippe L. Pereira, Diethard Schmidt, Andreas Weihusen,
and Heinz-Otto Peitgen, Numerical simulation of radio frequency ablation with state dependent material
parameters in three space dimensions, Medical Image Computing and Computer-Assisted Intervention
– MICCAI 2006 (R. Larsen, M. Nielsen, and J. Sporring, eds.), Lecture Notes in Computer Science, vol.
4191, Springer, 2006, pp. 380–388.

[16] Shaofan Li and Wing Kam Liu, Meshfree and particle methods and their application, Applied Mechanics
Reviews 55 (2002), no. 1, 1–34.

[17] Florian Liehr, Tobias Preusser, Martin Rumpf, Stefan Sauter, and Lars Ole Schwen, Composite finite
elements for 3D image based computing, Computing and Visualization in Science 12 (2009), no. 4,
171–188.

[18] William E. Lorensen and Havey E. Cline, Marching cubes: A high resolution 3D surface construction
algorithm, Computer Graphics 21 (1987), no. 4, 163.

[19] Elsie F. Morgan, Oscar C. Yeh, and Tony M. Keaveny, Damage in trabecular bone at small strains,
European Journal of Morphology 42 (2005), no. 1/2, 13–21.

[20] Ralph Müller, Tor Hildebrand, and Ralph Rüegsegger, Non-invasive bone biopsy: a new method to
analyse and display the three-dimensional structure of trabecular bone, Physics in Medicine and
Biology 39 (1994), no. 1, 145–164.

[21] Stanley Osher and James A. Sethian, Fronts propagating with curvature dependent speed: Algorithms
based on Hamilton–Jacobi formulations, Journal of Computational Physics 79 (1988), no. 1, 12–49.

[22] Torben Pätz, Composite FE für ein Mehrphasen-Modell zur Simulation von Radio-Frequenz-Ablation,
Diplom thesis, Universität Bremen, November 2008.

[23] A. Pegoretti, L. Fambri, G. Zappini, and M. Bianchetti, Finite element analysis of a glass fibre reinforced
composite endodontic post, Biomaterials 23 (2002), no. 13, 2667–2682.

[24] Tobias Preusser, Martin Rumpf, Stefan Sauter, and Lars Ole Schwen, 3D composite finite elements
for elliptic boundary value problems with discontinuous coefficients, SIAM Journal on Scientific
Computing, accepted.

[25] Tobias Preusser, Martin Rumpf, and Lars Ole Schwen, Finite element simulation of bone microstruc-
tures, Proceedings of the 14th Workshop on the Finite Element Method in Biomedical Engineering,
Biomechanics and Related Fields, University of Ulm, July 2007, pp. 52–66.

[26] S. A. Sauter and R. Warnke, Composite finite elements for elliptic boundary value problems with
discontinuous coefficients, Computing 77 (2006), 29–55.

[27] Lars Ole Schwen, Uwe Wolfram, Hans-Joachim Wilke, and Martin Rumpf, Determining effective
elasticity parameters of microstructured materials, Proceedings of the 15th Workshop on the Finite
Element Method in Biomedical Engineering, Biomechanics and Related Fields, University of Ulm, July
2008, pp. 41–62.

[28] Jonathan Richard Shewchuk, Lecture notes on Delaunay mesh generation, 1999.

[29] , What is a good linear element? Interpolation, conditioning, and quality measures, Proceedings
of the 11th International Meshing Roundtable, Sandia National Laboratories, September 2002, pp. 115–
126.

20



L. O. Schwen et al. Composite Finite Elements for Discontinuous Coefficients

[30] Shang-Hua Teng and Chi Wai Wong, Unstructured mesh generation: Theory, practice and applications,
International Journal of Computational Geometry & Applications 10 (2000), no. 3, 227–266.

[31] P. J. Thurner, P. Wyss, R. Voide, M. Stauber, M. Stampanoni, U. Sennhauser, and R. Müller, Time-
lapsed investigation of three-dimensional failure and damage accumulation in trabecular bone using
synchrotron light, Bone 39 (2006), 289–299.

[32] G. M. Treece, R. W. Prager, and A. H. Gee, Regularized marching tetrahedra: improved iso-surface
extraction, Computers and Graphics 23 (1999), no. 4, 583–598.

[33] B. van Rietbergen, R. Huiskes, F. Eckstein, and P. Ruegsegger, Trabecular bone tissue strains in the
healthy and osteoporotic human femur, Journal of Bone and Mineral Research 18 (2003), no. 10,
1781–1788.

[34] W. Voigt, Ueber die Beziehung zwischen den beiden Elasticitätsconstanten isotroper Körper, Annalen
der Physik 274 (1889), no. 12, 573–587.

[35] Adam Wittek, Ron Kikinis, Simon K. Warfield, and Karol Miller, Brain shift computation using a
fully nonlinear biomechanical model, Medical Image Computing and Computer-Assisted Intervention –
MICCAI 2005 (J. Duncan and G. Gerig, eds.), Lecture Notes in Computer Science, vol. 3750, Springer,
2005, pp. 583–590.

[36] Uwe Wolfram, Hans-Joachim Wilke, and Philippe K. Zysset, Transverse isotropic elastic properties of
vertebral trabecular bone matrix measured using microindentation under dry conditions (effects of age,
gender and vertebral level), Journal of Mechanics in Medicine and Biology, accepted.

[37] Dae Gon Woo, Ye-Yeon Won, Han Sung Kim, and Dohyung Lim, A biomechanical study of osteoporotic
vertebral trabecular bone: The use of micro-CT and high-resolution finite element analysis, Journal of
Mechanical Science and Technology 21 (2007), 593–601.

[38] Jinchao Xu, Theory of multilevel methods, PhD dissertation, Cornell University, May 1989.

[39] , Iterative methods by space decomposition and subspace correction, SIAM Review 34 (1992),
no. 4, 581–613.

21


	Introduction
	Composite Finite Elements for Heat Diffusion
	Coupling Condition for Isotropic Heat Diffusion in 2D
	Locally Admissible Profiles
	Simplex-Wise and Local and Interpolation Scheme
	Composite Finite Element Basis Functions
	Extension to Anisotropic Heat Diffusion
	Extension to Heat Diffusion in 3D

	Composite Finite Elements for Linear Elasticity
	Coupling Condition for Lamé-Navier Elasticity in 2D
	Locally Admissible Profiles
	Simplex-Wise and Local and Interpolation Scheme
	CFE Basis Functions for Linear Elasticity
	Extension to Anisotropic Linear Elasticity
	Extension to 3D Anisotropic Elasticity

	Assembling CFE Matrices
	Numerical Results
	Conclusions

