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In this paper we study homogenization of elastic materials with a periodic microstructure.
Homogenization is a tool to determine effective macroscopic material laws for microstructured
materials that are in a statistical sense periodic on the microscale. For the computations
Composite Finite Elements (CFE), tailored to geometrically complicated shapes, are used in
combination with appropriate multigrid solvers.

We consider representative volume elements constituting geometrically periodic media and a
suitable set of microscopic simulations on them to determine an effective elasticity tensor. For
this purpose, we impose unit macroscopic deformations on the cell geometry and compute the
microscopic displacements and an average stress. Using sufficiently many unit deformations,
the effective (usually anisotropic) elasticity tensor of the cell can be determined.

In this paper we present the algorithmic building blocks for implementing these ‘cell prob-
lems’ using CFE, periodic boundary conditions and a multigrid solver. We apply this in case of
a scalar model problem and linearized elasticity. Furthermore, we present a method to determine
whether the underlying material property is orthotropic, and if so, with respect to which axes.

Keywords: Homogenization, macroscopic elastic properties, trabecular bone, anisotropic
elasticity.
AMS Subject Classifications: 74S05, 74B05, 74Q05, 65N55

1 Introduction

A microstructured material of special biomechanical interest is human trabecular bone which is
mainly located in the epiphyses of long bones, in the distal forearm, and in the vertebral body. The
raising lifetime in the western world shifted this material in the focus of science. This is due to the
fact that trabecular bone is often affected by osteoporosis.

Osteoporosis is characterized by low bone mass and the occurrence of nontraumatic fractures, i.e.
fractures which occur from trauma less than or equal to a fall from standing height [20]. Altogether
90 % of all fractures of elderly Caucasian woman can be attributed to osteoporosis [37]. The
International Osteoporosis Foundation estimates direct costs of 31.7 billion Euro from estimated
3.79 million osteoporotic fractures for Europe in 2000. These costs will raise to an estimated 76.7
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Figure 1: The Z-shaped geometry (top left) is shown under tensile loading (1 % vertical strain).
Top middle: No displacement boundary conditions are enforced on the side faces. Top
right: We impose periodic boundary conditions on the side faces and affine-periodic
boundary conditions at top and bottom. Color (same color scale for all plots) encodes
the von Mises stress at the surface of the structure. Bottom: A bigger part of the
periodic domain under tensile loading.

billion Euro in 2050 [32]. These numbers triggered the development of new treatment techniques
such as vertebroplasty and kyphoplasty [19, 16, 34] for vertebral fractures or special implant types
for osteoporotic and normal trabecular bone [18, 12].

Finite Element (FE) simulations are used in the development and assessment of those treatment
techniques [45, 41, 14, 13, 44]. FE models of whole bones which resolve even the microstructure
of trabecular bone require a huge amount of resources [47] and are thus inefficient for parameter
studies on the bone-treatment complexes. Instead, continuum models can be used which rely on a
proper assessment of the effective material parameters of the bone. These parameters however are
almost impossible to be found experimentally, since it is hardly possible to reproduce the in-situ
situation of bone specimens. Therefore, they lead just to apparent material properties. Instead,
small bone samples of validated rather large scale Micro-FE (µFE) models can be used to determine
effective material properties [15]. The in-situ situation of the bone samples is then reproduced
numerically. For that, a proper numerical homogenization tool is required. This tool should integrate
the true underlying periodic microstructure and incorporate proper boundary conditions.

1.1 Composite Finite Element Simulations

Composite Finite Elements (CFE), introduced in [24, 25] and implemented for complicated 3D
geometries [35, 42], are an efficient tool to compute elastic deformations of specimens of com-
plicated shape. They have been applied to artificial trabecular objects under uniaxial loading in a
parameter study to measure the influence of thinning and degradation of trabeculae on compressive
and shearing stiffness [52].
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Figure 2: For one periodic cell ω in a periodic domain Ω with a complicated microstructure ΩM
visible at high resolution, homogenization is the problem of finding an effective
material parameter on Ω.

Modeling physical experiments on individual small specimens, however, does not yield an
appropriate approximation of the effective material properties on the macroscale. E.g. natural
boundary conditions on the side faces (if displacement boundary conditions are applied to the
top and bottom) permits the specimen to bulge and deform in a way that is not admissible if the
specimen is a period cell in a larger scale elastic structure, see Figure 1.

1.2 Homogenization

Determining effective material properties for a microscopically inhomogeneous but macroscopically
(in general at least statistically) homogeneous material is generally referred to as ‘upscaling’ [4, 49]
or ‘homogenization’ [46] and for instance may be used for two-scale FE simulations [2, 3].

It is possible to use multigrid coarsening for upscaling [39, 36], however, using standard geometric
coarsening just yields the arithmetic average of the coefficients [38] ignoring any underlying
geometric structure. So usually more elaborate coarsening techniques are used [17]. This ‘black-
box’ multigrid method has some automatic way of choosing a coarsening scheme adapted to the
problem (in that application: preserving flux across internal interface). Note that this is not algebraic
multigrid but respects a grid. We furthermore refer to [5, 6, 10] for overviews on multigrid and
other upscaling techniques.

Here, we consider a combination of composite finite elements for the numerical solution of
the microscopic problem and multigrid methods to assemble macroscopic information for the
identification of macroscopic stress and resulting elasticity tensors. Thus, we consider a ‘cell
problem’ as discussed e.g. in [1, Chapter 1]. See [46] for some review and theoretical background by
Luc Tartar, who introduced the underlying concept in the 1970s. Here, the idea is that macroscopic
stresses and strains can be obtained by the simulation of uniaxial loading on a periodic cell with
affine-periodic boundary conditions on the microscale. Finally, the homogenized elasticity tensor
can be determined from a set of such macroscopic stress-strain pairs.

Determining effective elastic properties of cellular solids from unit cells has been of interest for
many years [21, 51, 22]. This technique has also been presented in the biomechanics literature
[30, 29, 54, 54, 33]. There, periodic cells are frequently denoted as ‘representative volume elements’
[31] or ‘representative elementary volume’ [23].
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2 Homogenization

2.1 Notation

Let us first consider a (geometrically) periodic domain Ω⊂R3 with periodic cells ω . Let ΩM ⊂Ω

be the domain of a ω-periodic elastic (micro)structure as shown in Figure 2.

Domain Description by Levelset Functions. We assume ΩM (ω-periodic) to be defined by a
levelset function [40], that is a function Φ : ω →R (ω-periodic) satisfying

{x ∈ ω |Φ(x) < 0}= ωM (1)

For instance, this could be obtained from a CT or MRT scan with (denoised) grey values g(x) by
Φ(x) =−(g(x)− threshold) or as the signed distance function to some artificial, analytically given
object.

Periodic Functions. Let a be an ω-periodic coefficient function a : ω → Rd where d is the
dimension of the image space of u (e.g. for the scalar test problem d = 1 and can be viewed
as a temperature, and for the three-dimensional elasticity problem d = 3). We assume that any
ω-periodic function a is smooth on the whole macroscopic domain Ω.

We use lowercase letters (u) for analytic quantities (scalar and vector-valued), upper case letters
(U) for discrete quantities and matrices, vector arrows (~U) for vectors of discrete values and boldface
uppercase letters (E) for (block-)matrices and discrete value vectors in the vector-valued problems.

Bars will denote the nonoscillatory part ū : Ω→Rd , see Section 2.3, whereas tildes will denote
the oscillatory periodic part ũ : ω→Rd of u. A homogenized coefficient a is denoted by āω ≡ const
on ω . Discrete ω-periodic quantities are denoted by U#.

2.2 Model Problems

Scalar Problem: Steady State of Heat Conduction. The steady state of heat conduction is
described by the partial differential equation (PDE)

−div(a(x)∇u(x)) = f (x) in ΩM (2)

with a : ΩM→R3×3 being an ω-periodic (and possibly anisotropic) diffusion tensor and f : ΩM→R

being an ω-periodic source term with zero average
∫

ωM
f = 0 (this constraint ensures that a physical

steady state is reached).

Vector-Valued Problem: Elasticity. Linear elasticity is described by the system of PDEs

−div(a(x)ε [u(x)]) = f (x) in ΩM (3)

with

ε [u] =
1
2
(
∇u+(∇u)T) (4)

being the strain tensor for a displacement u, a(x)≡ a∈R3×3×3×3 being the ω-periodic fourth-order
elasticity tensor

ai jkl = λδi jδkl + µ
(
δikδ jl +δilδ jk

)
(5)
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with the Lamé-Navier constants λ and µ that can be computed from Young’s modulus E and
Poisson’s ratio ν via

λ =
E ·ν

(1+ν)(1−2ν)
, µ =

E
2(1+ν)

(6)

and with f : ΩM→R3 being an ω-periodic source term (volume force) with zero average
∫

ωM
f = 0

(else a macroscopic net force would be applied, which contradicts a physical steady state). In
our later applications, we only consider the case f ≡ 0, but we will include volume forces in the
homogenization for the sake of completeness.

2.3 Determining Effective Parameters

Heat Conduction. In order to obtain an effective diffusion tensor āω , let us consider the heat flux
q = a∇u for a given temperature profile u on ω . q is macroscopically given as

q̄ω = āω
∇u. (7)

We want to solve (7) for the matrix āω , so we need at least 3 pairs (ui, q̄ω
i )i=0,1,2 with linearly

independent ∇ui. For this purpose, consider ū with ∇ū = ei, where ei is the ith canonical basis
vector of R3, i.e. the temperature ū has constant unit gradient. The cell problem is now to find a
correction profile ũ such that the sum

u = ū+ ũ (8)

is the actual physical temperature profile on the microstructure ΩM having the same macroscopic
temperature gradient as ū. From u, we can then compute the heat flux as

q̄ω =
∫

ωM

q(x) =
∫

ωM

a(x)∇u(x) =
∫

ωM

a(x)∇(ū+ ũ) . (9)

For each i ∈ {0,1,2}, we consider ūi satisfying ∇ūi ≡ ei, compute the corresponding ũi via (14)
and q̄ω

i via (9). Plugging q̄ω
i and ūi into (7) immediately gives us the ith column of āω .

Elasticity. For obtaining an effective elasticity tensor āω on ω , we consider the (second-order)
stress tensor σ = aε [u] for a given deformation profile u on ΩM. σ is macroscopically given as

σ̄
ω = āω

ε [u] . (10)

In order to solve Equation (10) for the fourth-order tensor āω , we need 3×3 pairs (ui j, σ̄
ω
i j )i, j=0,1,2

with linearly independent ∇ui. For this purpose, consider ū with ∇ū = ei⊗ e j, i.e. ū being a ‘unit
strain’. The cell problem is now to find a correction profile ũ such that the sum

u = ū+ ũ (11)

is the actual physical displacement profile leading to the same macroscopic strain and stress as ū.
From the actual displacements u, we can then compute the stress as

σ̄
ω =

∫
ωM

σ(x) =
∫

ωM

a(x)ε [u(x)] =
∫

ωM

a(x)ε [ū+ ũ] . (12)

So in order to obtain āω , we consider ūi j satisfying ∇ū≡ ei⊗ e j, compute the corresponding ũi j
via (18) and σ̄ω

i j via (12). Plugging all ūi j and σ̄ω
i j (i, j = 0,1,2) into (10) allows us to compute āω .

Note that the ε [ū] are not linearly independent due to the symmetry of the strain tensor. However,
the same symmetry holds in the stress tensor, so effectively Equation (10) is a system of 6 equations
in 6 unknowns.
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2.4 Cell Problems

Now, let us describe how to determine the correction terms ũ described in Section 2.3.

Heat Conduction. Plugging the decomposition (8) into the PDE describing the steady state of
heat conduction, Equation (2), using linearity and separating unknown and given terms on the left
and right hand side, respectively, we obtain:

−div(a∇(ũ+ ū)) = f in ωM (13)
⇒−div(a∇ũ) = f +div(a∇ū) in ωM (14)

where, as mentioned above, ũ is ω-periodic. To make the decomposition (8) unique (it is only
unique up to addition of a constant), we moreover require ũ to have zero average:

ũ periodic on ωM (15)∫
ωM

ũ = 0 (16)

Elasticity. Plugging the decomposition (11) into the elasticity PDE (3), using linearity and
separating unknown and given terms on the left and right hand side, respectively, we obtain:

−div(aε [ũ+ ū]) = f in ωM (17)
⇒−div(aε [ũ]) = f +div(aε [ū]) in ωM (18)

where, again, ũ is ω-periodic.
Note that in the elasticity case, the decomposition (11) in macroscopic and oscillatory part is also

not unique: ε [u] = 0 for any u of the form u(x) = Sx+b with b ∈R3 any vector (translation) and
S ∈R3 any skew-symmetric matrix. So the solution of (18) is unique only up to addition of such an
affine displacement. But if we require

ũ periodic on ωM and (19)∫
ωM

ũ = 0, (20)

(19) determines the skew-symmetric part and (20) determines the constant part. This is the lin-
earization of the fact that rigid body motions of elastic bodies are force-free, periodic boundary
conditions prevent rotations and fixing the average prevents translations.

3 Discretization

3.1 Composite Finite Elements

CFE for complicated geometries in 3D [35] are based on the idea that the shape of the microstructure
can be represented in the shape of the FE basis functions on a regular grid (rather than in an irregular
grid with simple basis functions). They are obtained from standard affine FE on a tetrahedral grid
by multiplying the standard basis functions with the characteristic function of the microstructure.
The tetrahedral grid results for a subdivision of every cube of a regular cubic grid representing the
voxel grid of our image dataset into 6 tetrahedra. Thus, we inherit the uniform structure of the
regular cubic grid and its canonical coarse scales, which permits efficient data storage and use of a
multigrid solver. For details on this approach and its implementation, we refer to [35, 42].
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Let ϕi denote the CFE basis functions for grid nodes xi used to discretize u:

U(x) = ∑
i

ϕi(x)u(xi) (21)

and let ~U = (u(xi))i be the vector of pointwise values.
Then the discrete weak form of the heat conduction PDE (14) with a≡ 1 is given by∫

ωM

∇Ũ ·∇ϕi =
∫

ωM

Fϕi−∇Ū ·∇ϕi ∀ϕi (22)

⇔
∫

ωM

∇

(
∑

j

~̃U jϕ j

)
·∇ϕi =

∫
ωM

∑
j

ϕ j~Fjϕi−∇

(
∑

j

~̄U jϕ j

)
·∇ϕi ∀ϕi (23)

⇔∑
j

(∫
ωM

∇ϕi ·∇ϕ j

)
︸ ︷︷ ︸

=:Li j

~̃U j = ∑
j

(∫
ωM

ϕiϕ j

)
︸ ︷︷ ︸

=:Mi j

~Fj−∑
j

(∫
ωM

∇ϕi ·∇ϕ j

)
~̄U j ∀ϕi (24)

Let us pick up the usual notation M = (Mi j)i j, L = (Li j)i j for the finite element mass and stiffness
matrix, respectively. Here the indices i and j are running over all nodal indices for which the support
of the classical hat-type basis function intersects the elastic domain ΩM. Then the system above
reads:

L~̃U = ~B := M~F−L~̄U (25)

Now let ψi be the set of vector-valued CFE basis functions. Then the discrete weak form of the
elasticity problem (18) with Lamé-Navier elasticity tensor as in (5) is given by∫

ωM

λdivŨdivψi +2µε
[
Ũ
]

: ε [ψi] =
∫

ωM

Fψi− (λdivŪdivψi +2µε [Ū ] : ε [ψi]) ∀ψi

⇔∑
j

(∫
ωM

λdivψ jdivψi +2µε
[
ψ j
]

: ε [ψi]
)

︸ ︷︷ ︸
=:Ei j

~̃U j = ∑
j

(∫
ωM

ψ jψi

)
︸ ︷︷ ︸

=:Mi j

~F j−∑
j

Ei j
~̄U j (26)

so that the system above reads

E~̃U =~B := M~F−E~̄U. (27)

If the ψi are ordered in blocks of fixed associated coordinate direction, the matrix E has the 3×3
block structure

E =

E00 E01 E02
E10 E11 E12
E20 E21 E22

 (28)

In this section, we explain how periodic boundary conditions can effectively be used in the
framework of composite finite elements.
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Figure 3: 2D periodic boundary conditions. Left: Inactive nodes (right/top boundary) are
shown in green, one pair of inactive node and its active counterpart are represented
by � and � symbols, respectively. Right: Supports of basis functions associated to a
DOFs in the periodic context.

3.2 Periodic Boundary Conditions

Periodic boundary conditions in the context of finite elements are treated by identifying certain
degrees of freedom. A node is called inactive if, by periodicity assumption, the value of u at that
node is the value of u at the counterpart node and thus no DOF is associated to that node. The node
to which we actually associate a DOF and that DOF will be called active counterpart node and
active counterpart DOF, respectively. For an active node, the term ‘counterpart’ just refers to the
node itself. See Figure 3 for an example.

Furthermore, identifying inactive DOFs and their active counterparts means identifying the
associated CFE basis functions. This implies that the support of basis functions for such nodes is
disconnected within the periodic cell ω , see Figure 3.

When working with CFEs on complicated domains, counterparts of inactive nodes are not
necessarily degrees of freedom of the CFE grid of the periodic cell ω , even though periodicity
implies the same intersection of the domain with periodic faces of ω , see Figure 4 for an example.

This is not surprising, however, because a CFE grid for the periodic extension of such domains
does have DOFs at such positions. In summary, we observe that the sets of CFE DOFs and their
active counterpart DOFs may be distinct and none is subset of the other, see Figure 5 for an example.

3.3 Periodicity

Periodicity in data vectors and for matrices must be taken into account when passing between
the interpretation of ω as a single cell and a periodic cell, respectively. For simplicity (and
computational efficiency, at the cost of additional memory requirement), we use data structures for
a full discretization of the periodic cell ω .

When dealing with vectors containing point values, the point value at an inactive node is the
same as at its active counterpart node, so the corresponding entries in the vector are simply set to
zero. We call this operation (periodic) restriction and denote it by the symbol Pv. The inverse P−1

v ,
filling those entries back in by copying them, will be referred to as (periodic) extension.

The identification of basis functions leads to a larger support for certain basis functions. When
dealing with integrated quantities in a data vector or when dealing with matrices (containing
integrals of basis functions or their derivatives), this translates to adding entries of inactive nodes to
the entries of their active counterparts. Let us call this operation (periodic) collapsing and denote it
by Pb. We use the notation X# for periodized objects (matrices, vectors).

8



L. O. Schwen et. al. Effective Elasticity Parameters of Microstructured Materials

Figure 4: The CFE grid for one periodic cell does not have a DOF at the bottom left node (�)
even though that node is the counterpart node of the two � nodes. The thick red line
indicates the level set boundary of the periodic cell ωM.

3.4 Dealing with the constraints in the discrete case

The constraint
∫

U = 0 for a discrete function U can be rewritten as follows:∫
ωM

U =
∫

ωM

U1=
1∫

ωM
1

∫
ωM

1U = 0⇔ 1

M~1 ·~1
M~1 ·~U = 0 (29)

where M is the FE mass matrix,~1 is the all-1 vector and ~U the nodal vector corresponding to u. To
simplify notation, let us define

~J :=
1

M~1 ·~1
M~1. (30)

In the heat conduction case, the resulting system of equations is given by (discretizing (14) and
(15))

L#~̃U
#
= ~B# (31)

where L# = Pb(L) and B# = Pb(M
~̃F)−Pb(L~̄U).

The system matrix has a one-dimensional eigenspace corresponding to one additive constant. It
becomes uniquely solvable if we require the additional equation

~J# · ~̃U
#
= 0 (32)

where ~J# = M#~1#

M#~1#·~1# with M# = Pb(M) and~1# := Pv(~1).

Now, let us consider how to project onto the subspace of given constraints. Let s := {u|
∫

u = 0}
be the subspace of all temperature profiles satisfying the average-zero constraint. The projection
onto s is given by Πsu = u− (

∫
u)1 for any temperature profile u. In discrete form, projection onto

the subspace S := span(~J)⊥ using ~J defined in (30) is

ΠS~U = ~U−
(
~J ·~U

)
~1. (33)

In the vector-valued case, the system of equations (cf. (31)) isE#
00 E#

01 E#
02

E#
10 E#

11 E#
12

E#
20 E#

21 E#
22



~̃U

#

0
~̃U

#

1
~̃U

#

2

=

~B#
0

~B#
1

~B#
2

 (34)
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Figure 5: The CFE grid for one periodic cell has the set of DOFs on the left, active counterpart
nodes are those on the right. These sets are mutually not contained.

with E# = Pb(E), right hand side ~B# = Pb(M
~̃F)−Pb(E~̄U). The constraint (32) is now ‘zero

average displacement in all three space directions’:

~J# · ~̃U
#

0 = ~J# · ~̃U
#

1 = ~J# · ~̃U
#

2 = 0, (35)

so projection (33) is now performed in the three components separately.

3.5 Numerical Algorithms for the Cell Problem

Heat Conduction. Let us now summarize the steps necessary for computing one periodic correc-
tion term:

1. set up vectors ~̄U,~̃F ,~1 and matrices M, L

2. compute right hand side ~B# := Pb(M
~̃F)−Pb(L~̄U)

3. periodize M,L,~1 M# := Pb(M) L# := Pb(L) ~1# := Pv(~1)

4. compute constraint vector ~J# = M#~1#

M#~1#·~1#

5. solve the system

L#~̃U
#
= ~B# = (M~̃F)

#
− (L~̄U)

#

subject to ~J# · ~̃U
#
= 0

6. periodically extend and add macroscopic part ~U = P−1
v (~̃U

#
)+ ~̄U

Elasticity. In the vector-valued case, we have a 3×3 block system of equations instead of the
matrix L on the left hand side, subject to constraints for all three components of the displacement.
Other than that, the procedure is the same.

4 Projecting Solvers

In this section, we describe appropriate iterative solvers for the constrained linear system problem
to be solved for the periodic cell problem (cf. item 5 in the procedure in Section 3.5).

10
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4.1 Projecting Conjugate Gradient Solver

[42] shows that a conjugate gradient solver [28] may encounter difficulties for systems of equations
resulting from CFE discretizations because small virtual CFE tetrahedra may lead to large condition
numbers. In many situations this can be remedied by (block-)diagonal preconditioning [43].
However, we only use CG as the solver on the coarsest grid and do not encounter this problem.

CG, being a Krylov-space method [7], has the nice property that (in exact arithmetics) the iterates
stay in the subspace satisfying our ~J-constraints for uniqueness if the starting value lies inside it. As
we usually start with the zero initial guess, this condition is trivially satisfied.

Due to finite precision in the implementation, however, we still need to check whether the
~J-constraints are satisfied after each CG update. If necessary (e.g. constraint violated by more than
a given threshold), the iterate needs to be projected back to the space S as shown in (33) to avoid
‘drifting’ of the numerical solution.

4.2 Projecting Multigrid Solver

Periodicity changes neighborhood relations, this means that any inactive node p being identified
with its active counterpart node f makes p’s neighbors f ’s neighbors and vice versa, see Figure 6.

A multigrid algorithm for the composite finite elements is straightforward. Let us suppose that
the underlying hexahedral grid is dyadic and generated by successive splitting of edges leading to
an octree structure with underlying hierarchy of tetrahedral grids. We define the coarse grid basis
functions and the prolongation and restriction operators respectively by local Galerkin products [26]
on regular tetrahedral meshes. This involves the weights 1, 1/2, and 0 in the prolongation matrices
for the interpolation from a coarse grid-level to the next finer grid-level. The restriction is, as usual,
the transpose of the prolongation. Coarse grid basis functions are obtained as the corresponding
weighted sums of the fine grid basis functions.

This standard approach leads to piecewise affine basis functions on the coarse tetrahedral grids
which are cut off by multiplication with a characteristic function of the computational elastic
domain ΩM. Note that in general the coarse grids are not able to resolve the computational domain.
Consequently, the support of a coarse grid basis function may consist of several disconnected
components. However, it is easy to see that the basis functions still form a partition of unity on the
computational domain. Finally, by standard Galerkin coarsening, one defines corresponding coarse
grid linear systems.

We then use a multigrid method with symmetric Gauß-Seidel iterations [26] as a smoother. For
scalar problems, the Gauß-Seidel smoother is a standard one, for vector valued problems, we use a
Block-Gauß-Seidel method. The unknowns are (implicitly reordered and) indexed in such a way
that we treat the spatial components of our solution simultaneously. In case of a three-dimensional
problem, we use Gauß-Seidel iterations on 3×3 blocks. In our computations in Section 6, V-cycles
with no more than 3 pre- and post-smoothing steps turned out to be a reasonable choice.

We now explain the modifications to the CFE multigrid solver presented in [35, 42] that are
necessary for our purposes here. For an introduction to multigrid methods (originally introduced in
[8]), we refer to [26, 9].

Prolongation and Restriction in the Periodic Case. The prolongation operator must respect the
additional neighborhood relations introduced by periodicity and the fact that they are dealing with
integrated quantities, which have to be collapsed periodically. As usual, the prolongation weight
from a coarse grid node c to a fine grid node f is simply the value of the coarse grid basis function
located at c evaluated at f . In our case these weights are 0, 0.5, or 1. This means that we loop over
all coarse nodes which are active DOF nodes or whose active counterpart nodes are active DOF

11
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Figure 6: Identification (red arrows) of an inactive node with its active counterpart changes
standard neighborhoods for prolongation and restriction. Left: All fine (blue) grid
nodes ♦ are active neighbors of coarse (black) grid node �. Right: At a corner, we
have multiple inactive counterparts and their active neighbors ♦ as fine grid neighbors
of the active coarse grid node �.

nodes. In either case, we prolongate only to a fine neighbor of the coarse node if the fine node is an
active DOF node, see Figure 6.

As in the non-periodic case, the restriction is the adjoint (transpose) of the prolongation and
subject to the same modifications due to periodicity.

Coarsening of the operators is computed as above by precomposing with prolongation and
postcomposing with restriction. This can be implemented by explicit multiplication of sparse
matrices or, as the neighborhood structure of grid points and thus the sparsity structure of the
matrices is known a priori, by direct computation of the coarse matrix.

Gauß-Seidel Smoothing. As a smoothing operation, we use standard or block-wise Gauß-Seidel
smoothing [26] on the set of unknowns after periodization. No further modification of the smoothing
is necessary.

Constraints and Projection. Coarsened ~J constraints, see Equation (30), are computed using
all-1 vectors corresponding to the coarse grid and using coarsened mass matrices. For this purpose,
we use the same coarsening method as for the system matrices (in the scalar case). The smoothing
operations used in our multigrid solver do not guarantee that we stay inside the subspace satisfying
the ~J constraints, so the multigrid solver has to perform projections to the space S as shown in (33).

Our approach is to perform this projection after presmoothing, coarse-grid correction and
postsmoothing on each but the coarsest level. On the coarsest level, we use a projecting CG
solver to make the coarsest problem uniquely solvable.

The coarsening process accumulates rounding errors in the coarsened system matrices so that
constant vectors no longer exactly lie in the zero eigenspace. Thus, the projection may destroy
convergence of the CG solver. To remedy this, observe that constant vectors are eigenvectors to the
eigenvalue 0 if and only if each row of the matrix has sum zero. If this condition is not satisfied
due to rounding errors, we can enforce it by modifying the diagonal entry in such rows. This
modification is of the same magnitude as the rounding errors.

12
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R ∈ SO(3)

Figure 7: Orthotropy axes in the actual configuration (right) are not aligned with the coordinate
axes but rotated from a reference configuration (left) by some rotation R.

5 Orthotropy Directions

In this section, we present a method how to determine whether a given macroscopic elasticity tensor
describes orthotropic material properties. Hence, we have to identify orthotropy axes are not aligned
with the coordinate axes. A straightforward idea, see e.g. [48, 53], is to determine the rotation
R ∈ SO(3) that ‘best rotates the effective tensor to an orthotropic one’. Such a method immediately
provides a mechanism to check whether the orthotropy assumption was justified: for the optimal
rotation the remaining defect from an orthotropic structure of the elasticity tensor is a measure for
the lack of orthotropy. Rotations in R ∈ SO(3) can be described as

R = R(α,β ,γ) = Rxy(α)Rxz(β )Ryz(γ) (36)

=

cosα −sinα 0
sinα cosα 0

0 0 1

cosβ 0 −sinβ

0 1 0
sinβ 0 cosβ

1 0 0
0 cosγ −sinγ

0 sinγ cosγ

 (37)

with α,β ,γ ∈ A := (−π,π] being the rotations in the xy,xz and yz plane, respectively. Note that
rotations do not commute, the inverse rotation is given by

Rback(α,β ,γ) = Ryz(−γ)Rxz(−β )Rxy(−α) (38)

5.1 Rotation of Tensors

Heat Conduction. Suppose we have a material with orthotropic heat conductivity a for which
the orthotropy axes are not aligned with the coordinate axes but rotated by some rotation matrix
R ∈ SO(3), see Figure 7.

Let u denote our temperature in the actual configuration, obtained from a profile u? in the aligned
reference configuration. Then

x? = RT x , u(x) = u?(x?) ∇u(x) = R∇u?(x?) , (39)

if gradients are written as column vectors. Moreover,

q? = a?
∇u? = a?RT

∇u ⇒ q = Rq? = Ra?RT
∇u (40)

⇒ a = Ra?RT (41)

or, written in components and using the Einstein summation convention we obtain amn = Rmia?
i jR

T
jn =

RmiRn ja?
i j , which describes how the conductivity tensor changes under rotation.
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Elasticity. In the vector-valued case, also our function u must be rotated and its component-wise
gradients are interpreted as rows of ∇u, hence we obtain

u(x) = Ru?(x?) , ∇u(x) = R∇u?(x?)RT (42)

⇒ ε [u] =
1
2
(
∇u? +∇u?T)=

1
2

(
R∇u?(x?)RT +

(
R∇u?(x?)RT)T

)
(43)

=
1
2
(
R∇u?(x?)RT +RT T

∇u?(x?)RT)= Rε [u?]RT (44)

Moreover, from σ? = a?ε [u?] = a?RT ε [u]R we deduce σ = Rσ?RT = R
(
a?RT ε [u]R

)
RT . Again

written in components, we finally get

σmn = Rmi

[
a?

i jklR
T
l p ε [u]po︸ ︷︷ ︸

=ε[u]op

Rok

]
RT

jn = RmiRn jRokRpla?
i jklε [u]op (45)

⇒ amnop = RmiRn jRokRpla?
i jkl , (46)

which describes the effect of a given rotation on the elasticity tensor.

5.2 Finding the Rotation in the Elasticity Case

Voigt’s notation. Due to symmetry of strains and stresses, the 3×3 strain and stress tensors can
be written as vectors of length 6 and the 3×3×3×3 fourth order elasticity tensor can be written
as a symmetric 6×6 matrix, called Voigt’s notation [50]:

σxx
σyy
σzz
σyz
σxz
σxy

=


a00 a01 a02 a03 a04 a05
a10 a11 a12 a13 a14 a15
a20 a21 a22 a23 a24 a25
a30 a31 a32 a33 a34 a35
a40 a41 a42 a43 a44 a45
a50 a51 a52 a53 a54 a55




εxx
εyy
εzz

2εyz
2εxz
2εxy

 (47)

We will switch between standard tensor notation (with four indices) and Voigt’s notation (with two
indices).

Orthotropic Materials. For an orthotropic material whose orthotropy axes coincide with the
coordinate axes, the upper right 3×3 (and, due to symmetry, also the lower left 3×3) block of a is
zero and the lower right 3×3 block is diagonal.

Now, we consider the following minimization problem to determine a measure for the orthotropy
using a method similar to the one presented in [48]. Let F : R3×3×3×3→ R+ be some function
penalizing deviations of E from an aligned orthotropic tensor (see below). Then minimize

Ga(α,β ,γ) = F
(
RmiRn jRokRplai jkl

)
(48)

over the admissible set A where R is the matrix Rback(α,β ,γ). As F , we choose a function similar
to [48] but incorporate a weighting which reflects that entries in the Voigt tensor represent up to
four entries of the full fourth order tensor. Let

F(a) =
2∑

2
i=0 ∑

5
j=3 a2

i j +2∑
5
i=3 ∑

2
j=0 a2

i j +4∑
5
i, j=3,i6= j a2

i j

1∑
2
i, j=0 a2

i j +4∑
5
i= j=3 a2

i j
(49)
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z
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x

Figure 8: Sample geometry: d/l = (0.4,0.3,0.2) and corresponding macroscopic, orthotropic
elasticity tensor visualized.

be the sum of the squared undesired tensor entries divided by the sum of squares of the desired
entries. For an aligned orthotropic tensor a, we obviously have F(a) = 0.

An intrinsic difficulty in this optimization is that the function G is not convex. However, G is
not highly oscillatory and a function of only three variables, so there is no need to put much effort
in finding an efficient minimization method. Our approach is to simply discretize A with a certain
angular resolution, find the discrete minimum and continue choosing a smaller interval near the
discrete minimum until a fixed accuracy in the angles is reached. Compared to the actual finite
element simulations (nine per specimen), the workload of this postprocessing is negligible.

6 Results

We will now consider different geometric objects for which we determine effective elasticity
parameters by our homogenization method. To emphasize that we are considering artificial objects,
we assume an edge length of 1 m, microscopic isotropy with a Young’s modulus of E = 1 Pa.
Moreover, we set Poisson’s ratio ν = 0.33, resulting in λ = 0.747 and µ = 0.376.

6.1 Visualization

We visualize the macroscopic elasticity tensors obtained from our simulations by deformed and
colored spheres, as suggested by [11, 27]. For this purpose, let n be any unit vector in R3 (cor-
responding to a point on the unit sphere). Then compute the compressive stiffness in direction
n we compute step by step N = n⊗n (Ni j = nin j), S = EN (Si j = Ei jklNkl) and finally σ = N : S
(σ = Ni jSi j) and draw the shape {σn|‖n‖= 1}.
Moreover we compute the bulk modulus, i.e. the resistance of the material against a volumetric
deformation, trS = ∑i Sii and color code the deformed sphere with the resulting value (hsv blue to
red, blue corresponds to zero, red to maximal value).

6.2 Aligned Orthotropic Specimens

As a first example, let us consider an object as in Figure 8: 1× 1× 1 cylinders of distance-
to-length ratios d/l = (0.4,0.3,0.2). Using different computational resolutions, we obtain the
following rotations for the best orthotropic description as described in Section 5.2 and the following
macroscopic elasticity tensors in Pa:
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93: rotation (−8.50 ·10−2,−4.52 ·10−2,−2.23 ·10−2)◦,


0.126657 0.012256 0.003419 −1.73 ·10−4 6.88 ·10−7 −2.37 ·10−4

0.012355 0.079110 0.002030 −5.08 ·10−5 9.45 ·10−5 −5.02 ·10−4

0.003537 0.002092 0.022781 −1.93 ·10−4 −8.81 ·10−5 1.16 ·10−4

−1.64 ·10−4 −4.53 ·10−5 −1.90 ·10−4 0.002714 −3.76 ·10−4 −1.21 ·10−4

−3.83 ·10−6 8.54 ·10−5 −1.06 ·10−4 −4.02 ·10−4 0.003323 1.31 ·10−4

−1.84 ·10−4 −3.74 ·10−4 1.88 ·10−4 −1.22 ·10−4 1.35 ·10−4 0.010845



333: rotation (−1.17 ·10−2,−1.98 ·10−2,1.50 ·10−2)◦,


0.128019 0.011907 0.005881 −2.70 ·10−5 −4.83 ·10−6 −1.25 ·10−5

0.012029 0.076170 0.003064 −1.76 ·10−5 4.00 ·10−5 −4.51 ·10−5

0.005877 0.003137 0.039644 −6.04 ·10−5 −2.65 ·10−5 1.49 ·10−5

−2.64 ·10−5 −4.60 ·10−5 −6.70 ·10−5 0.001768 −7.86 ·10−5 −1.86 ·10−5

−9.23 ·10−6 3.34 ·10−5 −2.40 ·10−5 −7.33 ·10−5 0.002691 2.81 ·10−5

−1.47 ·10−5 −1.19 ·10−5 5.47 ·10−5 −2.34 ·10−5 3.37 ·10−5 0.007038



1293: rotation (−1.22 ·10−3,−2.50 ·10−3,1.34 ·10−3)◦,


0.132389 0.012208 0.005717 −3.58 ·10−6 −1.09 ·10−6 −6.50 ·10−6

0.012258 0.081428 0.003551 −4.78 ·10−6 3.98 ·10−6 −1.34 ·10−5

0.005751 0.003553 0.039215 −1.04 ·10−5 −4.29 ·10−6 2.94 ·10−6

−3.28 ·10−6 −4.75 ·10−6 −1.10 ·10−5 0.001733 −8.19 ·10−6 −1.72 ·10−6

−1.10 ·10−6 4.23 ·10−6 −3.77 ·10−6 −8.81 ·10−6 0.002222 3.50 ·10−6

−6.48 ·10−6 −1.14 ·10−5 5.44 ·10−6 −2.00 ·10−6 3.56 ·10−6 0.006709



2573: rotation (−4.65 ·10−4,−8.84 ·10−4,2.79 ·10−4)◦,


0.132314 0.012126 0.005700 −1.65 ·10−6 −3.92 ·10−7 −3.64 ·10−6

0.012143 0.081494 0.003596 −1.94 ·10−6 1.33 ·10−6 −7.35 ·10−6

0.005700 0.003588 0.039394 −4.32 ·10−6 −1.54 ·10−6 1.43 ·10−6

−1.38 ·10−6 −1.85 ·10−6 −4.29 ·10−6 0.001718 −2.83 ·10−6 −5.03 ·10−7

−4.10 ·10−7 1.40 ·10−6 −1.37 ·10−6 −3.01 ·10−6 0.002182 1.26 ·10−6

−3.71 ·10−6 −6.58 ·10−6 2.62 ·10−6 −5.68 ·10−7 1.25 ·10−6 0.006620



Hence, we experimentally observe convergence for increasing resolution of the cell geometry. In
the tensor listing above, all entries that should be zero for an orthotropic material are shown in
exponential notation whereas the nonzero entries are printed in decimal notation. We observe the
following:

• With increasing resolution, the rotation angles (that should be exactly zero for our aligned
structures) converge to zero. This error may be due to the fact that the decomposition of cubes
in six tetrahedra is not symmetric and has preferred directions, so that the discretization of
the object has corresponding sub-pixel errors.

• Similarly, the tensor entries that are zero for a perfectly aligned orthotropic tensor, converge
to zero with increasing computational resolution. For the 93 resolution, entries in the lower
right diagonal block are of the same magnitude (10−4) as some entries that should be zero; at
computational resolution 2573, the difference is two orders of magnitude.

• In the upper left block of the Voigt tensor, we observe convergence to symmetry.
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Figure 9: Sample geometry: 5 by 5 by 5 with d/l = (0.4,0.3,0.2).

Comparison to Simulations on Individual Specimens. Let us now compare these homoge-
nization results to compressive and shearing stiffness obtained from the simulation on the non-
homogenized microstructure consisting of n×n×n structural elements (see [52]) subject to the
following boundary conditions: two opposite faces of the bounding cube are displaced by a fixed
value, no boundary conditions are imposed on the side faces. One such structure is shown in
Figure 9.

For different values of n, we obtain the following stiffnesses for compression in x direction:

1×1×1 at resolution 1293: 0.133939 Pa

5×5×5 at resolution 1293: 0.133248 Pa

10×10×10 at resolution 1293: 0.132871 Pa

15×15×15 at resolution 2573: 0.132860 Pa

20×20×20 at resolution 2573: 0.132436 Pa

Moreover, for 10×10×10 at resolution 2573, we perform all uniaxial compression and shear
loading cases and obtain:

x compression: 0.132726 Pa

y compression: 0.082275 Pa

z compression: 0.039549 Pa

yz shearing: 0.0021291, 0.0020593 Pa

xz shearing: 0.0029628, 0.0026015 Pa

xy shearing: 0.0072422, 0.0068263 Pa

Here, compressive stiffnesses are almost the same as the ones obtained from homogenization,
so periodic or Neumann boundary conditions on side faces make almost no difference. This may
be due to the fact that the models do not include geometric nonlinearities such as buckling. Thus,
certain deformation modi are possibly not reflected by the simulations.
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Figure 10: A periodic rotated 5× 5× 5 rod sample with constant d/l = (0.4,0.4,0.4) and
corresponding macroscopic, orthotropic elasticity tensor.

6.3 Non-Aligned Orthotropic Specimens

As a non-aligned orthotropic specimen, we use a 5×5×5 structure with the same d/l =(0.4,0.4,0.4)
in all space directions, scaled and rotated in such a way (around the x axes by arctan

(1
5

)
) that we

obtain a geometrically periodic specimen, see Figure 10. We obtain the macroscopic elasticity
tensor

0.152681 0.019893 0.020356 −4.31 ·10−5 −5.99 ·10−5 −9.41 ·10−5

0.019934 0.140770 0.027302 −0.017407 7.45 ·10−5 −1.32 ·10−5

0.020442 0.027346 0.141225 0.017398 −4.16 ·10−5 1.15 ·10−4

−1.09 ·10−4 −0.017421 0.017344 0.022457 −1.67 ·10−4 −5.65 ·10−5

−5.84 ·10−5 5.87 ·10−5 −5.18 ·10−5 −1.71 ·10−4 0.015305 2.31 ·10−4

−5.98 ·10−5 5.13 ·10−6 1.51 ·10−4 −4.29 ·10−5 2.05 ·10−4 0.014825


which clearly does not have aligned orthotropic structure. After a minimization of the function G(·)
above we obtain the optimal set of rotations (−11.33,2.25 ·10−3,−1.72 ·10−2)◦, and the resulting
approximately orthotropic tensor

0.152681 0.019928 0.020322 −1.29 ·10−4 −8.13 ·10−5 −4.96 ·10−5

0.019996 0.148068 0.020053 −5.38 ·10−5 1.35 ·10−4 −4.27 ·10−5

0.020381 0.020067 0.148455 −3.43 ·10−5 −7.84 ·10−5 1.07 ·10−4

−1.98 ·10−4 −7.37 ·10−5 −9.41 ·10−5 0.015193 −1.45 ·10−4 −4.94 ·10−5

−7.30 ·10−5 1.23 ·10−4 −8.20 ·10−5 −1.47 ·10−4 0.015371 1.22 ·10−4

−1.62 ·10−5 −2.65 ·10−5 1.49 ·10−4 −3.95 ·10−5 9.60 ·10−5 0.014759



6.4 Nonorthotrpoic Honeycomb Structure

Consider the honeycomb-cylindrical structure shown in Figure 11. Assuming edge length of 1 m,
E = 1 Pa and ν = 0.33, we obtain the macroscopic elasticity tensor

0.162208 0.076465 0.078762 7.50 ·10−12 −1.57 ·10−12 0.002110
0.079205 0.140852 0.072619 −7.84 ·10−12 6.25 ·10−12 0.002309
0.079666 0.071715 0.362591 3.13 ·10−12 3.35 ·10−12 0.001458

4.45 ·10−11 −1.85 ·10−12 1.41 ·10−11 0.066276 0.000599 −7.13 ·10−13

−3.50 ·10−11 4.70 ·10−12 −1.00 ·10−11 0.000563 0.072523 1.64 ·10−11

0.001332 0.001463 0.000922 −2.59 ·10−13 1.33 ·10−12 0.025120


for which our optimization yields rotation angles (−4.38 ·10−9,−4.38 ·10−9,2.08)◦ and a rotated
tensor

0.162368 0.076484 0.078821 7.35 ·10−12 −6.00 ·10−12 0.000816
0.079335 0.140544 0.072560 −1.26 ·10−11 6.53 ·10−12 0.002715
0.079762 0.071619 0.362591 −8.51 ·10−12 −7.29 ·10−12 0.001165

4.55 ·10−11 −6.38 ·10−12 2.96 ·10−12 0.066242 0.000371 −6.20 ·10−12

−3.71 ·10−11 3.88 ·10−12 −2.03 ·10−11 0.000335 0.072557 1.41 ·10−11

0.000140 0.001970 0.000696 −4.05 ·10−12 −1.98 ·10−12 0.025193


which still shows the lack of orthotropy.
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Figure 11: Nonorthotropic honeycomb-cylindrical structure and corresponding macroscopic
elasticity tensor.

7 Conclusions

This paper gives an introduction to numerical homogenization in the context of periodic microstruc-
tures in linearized elasticity. It is meant as a proof of concept and demonstrates the applicability of
multigrid composite finite element methods in the biomechanical upscaling context.

A limitation of the homogenization method presented here is that it can only be applied to
geometrically periodic specimens. Future work will be devoted to stochastic media and non-cubic,
non-periodic samples as they are actually used in many experimental setups for the study of bone
microstructures.

A further limitation of our applications is the linear elasticity model.
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