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Abstract

There is a growing demand for high precision tex-
ture formats fed by the increasing number of tex-
tures per pixel and multi-pass algorithms in dy-
namic texturing and visualization. Therefore sup-
port for wider data formats in graphics hardware
is evolving. The existing functionality of current
graphics cards, however, can already be used to pro-
vide higher precision textures. This paper shows
how to emulate a 16 bit precise signed format by use
of RGBA8 textures and existing shader and register
operations. Thereby a 16 bit number is stored in two
unsigned 8 bit color channels. The focus lies on a
16 bit signed number format which generalizes ex-
isting 8 bit formats allowing lossless format expan-
sions, and which has an exact representation of 1,
0 and � �

allowing stable long-lasting dynamic tex-
ture updates. Implementations of basic arithmetic
operations and dependent texture loop-ups in this
format are presented and example algorithms deal-
ing with 16 bit precise dynamic updates of displace-
ment maps, normal textures and filters demonstrate
some of the resulting application areas.

1 Introduction

The programmability of graphics hardware and the
set of available operations has been growing rapidly
in recent years. Researches make use of this situa-
tion either by extending hardware algorithms and
designing new applications which still are sup-
ported by new graphics features or by analysing
software based graphics packages and extracting or
simplifying parts, such that these can be mapped
on the new graphics hardware functionality. Both
cases have in common that a growing number of

complex multi-pass algorithms try to make the best
possible use of the available resources and the ap-
plications are becoming computationally more and
more demanding.

Even when the set of available operations was
more restricted various algorithms were designed to
exploit graphics features for computations [1, 4, 6].
With the wider availability of extensions like multi-
texturing and pixel textures the area of applica-
tions widened strongly reaching from lighting and
shading computations [7, 8, 12, 13] to various im-
age processing applications [5, 9, 10, 11, 20] and
advanced hardware accelerated shading languages
[14, 15]. The author himself has implemented
complicated numerical schemes solving parabolic
differential equations fully in graphics hardware
[16, 17].

In all these applications dealing with multi-
passes and multiple textures there is a concern about
the inevitably occurring error due to the low reso-
lution of the color channels which usually consist
of only 8 bits. Especially when dealing with high
dynamic range images [2, 18] several color chan-
nels are used together to handle this problem. New
HILO texture formats introduced by NVIDIA [3]
also mean to provide higher precision texturing in
particular for lighting computations. These solu-
tions, however, are restricted to certain applications,
so that they cannot be used for arbitrary high preci-
sion computations or visualizations. We intend to
overcome this difficulty by demonstrating that the
existing extensions already allow the introduction
of a composite 16 bit format on RGBA8 textures,
on which the same operations as on the low preci-
sion formats can be applied. The idea behind this
emulation, however, is not as much to provide a
complete support for 64 bit rendering, as this will
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be covered by future graphics hardware more effi-
ciently, but rather to allow an easy and bandwidth
efficient concurrent usage of 8 and 16 bit rendering
such that the higher precision format can be used
to quickly resolve partial accuracy problems on to-
days 8 bit architectures. Similarly, in the presence
of a native 16 bit format this approach would allow
to emulate a 32 bit format.

The techniques of implementing high-precision
arithmetic from low-precision building-blocks as
such are elaborate and have been used in countless
architectures. The problem of doing this in graphics
hardware, however, lies in the very restricted avail-
ability of conditional statements on a per fragment
basis. The extensions of pixel shaders and register
combiners available on a GeForce3 seemed to of-
fer the highest flexibility for this purpose and have
been used for the implementations. Theoretically
the alpha-test and some kind of dependent texture
access, would also suffice to obtain the same func-
tionality, however, the performance would suffer
heavily due to numerous passes. But as the imple-
mentations of the emulated operations are indepen-
dent and do not all rely on the same graphics fea-
tures, some of them may also be efficiently realized
in a more restricted setting.

We will first review the different number formats
under OpenGL and explain the choice of a compos-
ite 16 bit format. The following main section will
then present the implementation of the arithmetic
and dependent texture operations and describe ex-
ample usage.

2 Number Formats

In this section we discuss the different fixed-point
number representations in OpenGL and which con-
ditions would be desirable for a new signed 16 bit
number format.

Currently standard OpenGL knows only an un-
signed 8 bit fixed-point format, but the growing
arithmetic within the texture environments tends to-
wards a signed 9 bit format as used by the register
combiners. Recently NVIDIA introduced a signed
8 bit format and a signed and unsigned 16 bit for-
mat. Unfortunately switching from a lower to a
higher precision format does not always imply that
all numbers in the lower precision format can be
exactly represented in the higher one. This prob-
lem is not specific to the OpenGL setting, but a

general difficulty in defining fixed-point represen-
tations. The situation is even more confusing as the
unsigned formats may be re-interpreted as signed
numbers by the mapping �������� � �

, which is
available at some stages in the graphics pipeline.
Table 1 gives an overview of the different formats.

We see that the unsigned 8 bit format represents
a subset of the unsigned 16 bit format and that the
signed 8 bit represents a subset of the signed 16 bit
format, so that these pairs of formats can be used
together effectively. But the represented numbers
from the signed and unsigned formats have almost
nothing in common, so that conversions between
these would inevitably lead to loss of precision,
which would prohibit such conversions in accumu-
lating texture updates. Therefore we will require the
new composite format to be a superset of all of the
lower precision formats. Naturally the other 16 bit
formats cannot be generalized by a format with the
same resolution.

The best generalization so far of signed and un-
signed formats is given by the signed 9 bit format
which is a superset of both the unsigned 8 bit and
the normal expansion of the unsigned 8 bit format.
Moreover, the signed 9 bit format has the advan-
tage the it exactly represents the neutral elements
of addition 	 and multiplication

�
and its divisors� �

, which is very important for long-lasting dy-
namic texture updates. If, for example, we dynam-
ically change a texture every other frame using ad-
ditions and multiplications, but want some areas of
the texture to remain unchanged for some time or
even throughout the process, we must rely on the
exact representation of 0 and 1 or else we would
have to store the information about every region to
be protected somewhere and use some sort of frag-
ment test to leave them unchanged. By generalizing
the singed 9 bit format as required above, we will
automatically transfer this property of exact repre-
sentation of 
�	� � � � ���

to the composite format.

Additionally we would want the first 8 bit color
channel of the composite 16 bit number representa-
tion to be - on its own - the best possible approx-
imation of the signed 16 bit number. This would
allow us to use only the first part in cases where
the full precision is not required or difficult to use.
Finally we should choose a format which requires
only few operations to perform the carry-over arith-
metic necessary for 16 bit operations performed on
signed 8 bit multipliers and adders. Thus, we may
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Table 1: Comparison of number formats in OpenGL.

unsigned
8 bit

unsigned
16 bit

unsigned 8bit������������ signed
9 bit

signed
8 bit

signed
16 bit

formula ��� ����� ����� ����� � ����!�" � � � ���#" � ����� ��� ����� ��� �#��$ ����� �#��$%� ����&'"
range of ( ) *%+ �����-, ) *%+ &'����.'�-, ) *%+ �����-, ) �/����& + �����-, ) ���#��$ + �#��!-, ) �0.'��!�&�$ + .'��!�&'!-,

summarize the conditions for the desired signed 16
bit format as follows:1 The composite number format should be a su-

perset of all lower precision formats from Ta-
ble 1.1 Its first 8 bit channel should be the best possi-
ble approximation to the whole signed 16 bit
number.1 The format should allow an efficient imple-
mentation of the carry-over arithmetic.

A format which fulfills these conditions can be
defined on a RGBA8 texture in the following way.
We let 2435��687 represent the first signed 16 bit
number and 2:9;�'<;7 the second. The representation
of a fixed-point number is given by:= 2?>@��(A7CB D ������5E 2:��> � ��F�F@7�G ��#��$ 2?( � � �@H�7�I

D ������ � �#��$ 2:�@F@JK2?> � � �@HL7MGN(A7O 243;��687PB D E ��3 � � I G ��#��$QE 6 � �� I
D E ��3 � ����&����� IRGTS�#��$0U

The first row defines the correspondence for integer> and ( , and the second for fixed point 3VDW>LX@��F�F
and 6YDZ([X@��F@F (1 corresponds to 255 and

��
to 128). From the first formula we see that our
composite format generalizes the lower precision
formats from Table 1, as it produces all numerators
from � �@F�F]\ � �@H to GM�@F�F]\ � �@H for the common
denominator ��F@F^\ � �@H . Moreover, by definition the
mapping of the first color channel R corresponds to
the normal expansion of an unsigned 8 bit format
giving the best possible approximation to the whole
16 bit number. Thus the format fulfills the first
two conditions given above. The satisfaction of
the third condition will become clear in Section 3
where we will present the exact implementations of
arithmetic operations.

At the end of this section we should look at pos-
sible drawbacks of this format. The problem with
fixed-point numbers having an exact representation
of 
�	K� � � � ���

is an unavoidable representation of

numbers outside of the range _ � � � � ` . In case of
the signed 9 bit format this is � ����&����� and in our
case all numbers with >aDb�@F�F�'(dc � �@H and>PDe	�'(gf � ��H . It would be very unpleasant hav-
ing to define an external format with a resolution
depend number range. This problem is well known
and has influenced the decision against such exter-
nal formats as discussed in NVIDIA’s texture shader
specification [3]. But as in the case of the signed
9 bit format additional clamping operations would
solve the main disadvantage of over-representation
and would gain smoother transitions between the
existing formats.

3 Operations

In this section we will present how the basic arith-
metic operations addition, subtraction, multiplica-
tion, division and dependent texture look-ups can
be realized at a 16 bit precision with our composite
number format in RGBA8 textures. Short examples
will demonstrate possible uses of the operations.

While the predefined 16 bit formats can only
be used in few special operations and their values
must be uploaded from main memory, the opera-
tions from this section will exhibit the main advan-
tage of the new composite format by allowing dy-
namic changes to the the operands.

All occurring textures will be two dimensional.
They will usually contain the first 16 bit channel
in the colors 243;�'6h7 and the second in 2:9;�'<i7 ,
where 3;�j9;��<P�'6lkm_ 	K� � ` represent fixed-point
values in 8 bit. This choice will become clear
in Section 3.3. Textures will be seen as two-
dimensional four-valued mappings: noB02?�p��qA7r� � �ns_ 3M98<56 ` 2?����qA7 . The necessary operations in the
pixel shaders and register combiners will be given
in pseudo-code notation, where ’ � � � ’ means is
mapped to , ’ � ’ means is stored in , ’ 1 ’ denotes
the dot-product and ’ \ ’ the component-wise multi-
plication.
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3.1 Dependent Texture Look-Ups

Let t be any texture which should be accessed
via a dynamically generated displacement map n
with the 16 bit x-displacement in 243;�'6h7 and the 16
bit y-displacement in 2:9;�j<i7 . Then a quick 8 bit
precise texture offset t52?�uGgvw\�ns_ 3 ` ��qRGgvw\�ns_ 9 ` 7
can be realized in pixel shaders through:

x 2?yzG|{}\�~g_ � ` ���]G�{�\�~�_ � ` 7
0: tex2d 2?���-q�����7r� � ��ns2?����qA7
1: dot2d
blue to

��� � D�2:��v��'	�'� � v�7 1 24ns_ 3 ` ��ns_ 9 ` � � 7D��5G�v�\L2:��ns_ 3 ` � � 7
2: lut2d
blue to

���/� D�24	K�'��v��'q � v�7 1 24ns_ 3 ` �jns_ 9 ` � � 7D�q8G�v}\�2:�@ns_ 9 ` � � 7
� � �dt52 � � � � � 7

where v is a user set scaling factor, which deter-
mines the maximal possible offset.

Example: Brownian motion. Let � be a vector
field with random x-components in 2435��687 , random
y-components in 2:9;�'<;7 and the wrap mode set to
repeat, and n a displacement map as above initially
set to zero. Then the following short algorithm will
produce a random local motion in the texture t :

> � D random 2:� �:& 7 �> � D random 2:� �:& 7 ��VD��P2?�5G�> � \��z_ 3 ` ��qMG�> � \��z_ 9 ` 7 �nVG}D��i\��i�3�D�t52?�5G|ns_ 3 ` ��qMG|ns_ 9 ` 7 �
where � steers the speed of the motion and 3 holds
the resulting texture in each step. Although the
look-up itself takes place in only 8 bit, the motion
can vary across the texture with 16 bit since the dis-
placement n is stored and calculated in 16 bit. The
implementation of 16 bit precise addition and mul-
tiplication is shown in the following subsections.
In particular, the user may vary � within a bigger
range, without having to fear that the motion stops
altogether, because the multiplication with � evalu-
ates to zero.

As the predefined texture offset operations
require a DSDT or HILO input format we
would currently need two separate textures for
x-displacement n � _ 98< `

and y-displacementn � _ 98< `
with n � _ 3 `

and n � _ 3 `
set to one for a

dynamic 16 bit precise look-up in pixel shaders:

x 2?yzG|{�\�~]��_ ��� ` � �zG�{�\�~]��_ ��� ` 7
0: tex2d 2?�p��q/����7�� � ��n � 2?���-qA7
1: tex2d 2?�p��q/����7�� � ��n � 2?����qA7
2: dot2d � � D�2?�5G�v ����&����� �j�@v�� v�X � ��HL71 2 � �jn � _ 9 ` �jn � _ < ` 7D��;G�v}\ O 24n � _ 9 ` �jn � _ < ` 7
3: lut2d �/� De2?q8G�v ����&����� �j�@vL�'v�X � ��HL71 2 � �jn � _ 9 ` �jn � _ < ` 7D�q8G�v�\ O 24n � _ 9 ` �jn � _ < ` 7

� � ��t52 � � � � � 7
where v again scales the offset. Here we could
also obtain an absolute and not an offset-texture
look-up by eliminating the coordinates � and q in
the pixel shaders 2 and 3. Then n � �'n � would
address t absolutely, i.e. the result would bet524n � _ 98< ` �'n � _ 98< ` 7 . Such a construction can be
used to evaluate an arbitrary function � of two 16
bit variables ��2?�s���i7�D�t524n � _ 98< ` �jn � _ 98< ` 7 .
The precision of this evaluation corresponds
directly to the size of the texture t which holds the
resulting values. In particular we could implement
a division between two 16 bit numbers in this way,
but naturally the resulting range would still be
confined to the same interval for all pixel values
in an image, i.e. division by small numbers really
requires floating-point formats.

We should also emphasize that the above use of
the dot-product 2d operation, where the first part
(shader 2) accesses a different previous texture,
namely n � , than the second n � is uncommon but
legitimate.

Example: Advection. Let � � _ 98< `
be the x-

component and � � _ 98< `
the y-component of a

continuous vector field � . Alike let n � _ 98< `
andn � _ 98< `

be the x and y-components of a displace-
ment map initially set to zero. Then the following
short algorithm will produce an advection of the
texture t along the vector field � :

n � G}D���\�� � 2?� � �0n � _ 98< ` ��q � �[n � _ 98< ` 7 �n � G}D��i\�� � 2?� � �0n � _ 98< ` ��q � �0n � _ 98< ` 7 �3�D�t52?� � n � _ 98< ` �'q � n � _ 98< ` 7 �
where � again steers the speed of the motion and3 holds the resulting advected texture in each step.
If we replaced � � by n � and � � by n � we would
obtain a self-advection of n � �'n � , which is a step
towards fluid dynamics. In this manner we could
simulate the motion of gas or water if we also
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forced 24n � ��n � 7 to be divergence free as required
by the incompressible Navier-Stokes-Equations,
for more details we refer to [19].

3.2 Addition and Subtraction

Let the texture  �¡��/	 hold a pair of 16 bit pre-
cise x and y coordinates in 2¢ �¡��/	A_ 3 ` �� �¡��/	A_ 6 ` 7
and 2¢ �¡��/	A_ 9 ` �� �¡��0	A_ < ` 7 respectively, and the
texture  �¡�� � another pair in 2¢ �¡�� � _ 3 ` �� �¡�� � _ 6 ` 7 ,2¢ �¡�� � _ 9 ` �� �¡�� � _ < ` 7 . For the x and y coordinate let2:v � �jv � 7�k£
 � � � ���¥¤ 
 � � � ��� encode indepen-
dently whether an addition (

�
set) or a subtraction

( � �
set) should be performed. Then the two simul-

taneous 16 bit precise additions or subtractions of
the x and y coordinates can be mapped onto the
register combiner functionality:
¦�§ yp¨�_ �]©ª�%��� ` G«24{ � ��{ � 7Q\ ¦%§ yr¬/_ �P©�%�]� `
0: RGB 2¢ �¡��/	K_ 3898< ` � �� 7®G¯2:v � �jv � �'v � 7�\\u2¢ �¡�� � _ 3M98< ` � �� 7��° �¡��/	K_ 3M98< `
0: A  �¡��/	A_ < ` G±v � 2¢ �¡�� � _ < ` � �� 7�²v�³/	A_ 6 `
1: RGB 2:v�³/	A_ 6 ` f �� 7�´ � 24	K��2:v � � � 7�X��@µL� �� 7B � 24	K��2:v � G � 7�X@�@µ�� � �� 7�}¶·��� v�³/	A_ 3M98< `
1: A  �¡��/	A_ 6 ` G±v � 2¢ �¡�� � _ 6 ` � �� 7�²v�³/	A_ 6 `
2: RGB  �¡��/	K_ 3898< ` G¯24	K� � � � � � 7ª\\uv�³0	A_ 3M98< ` �° �¡��/	K_ 3M98< `
2: A 2¢ �¡��/	A_ 6 ` � �� 7®G±v � 2¢ �¡�� � _ 6 ` � �� 7�� �¡��/	K_ 6 `
3: RGB 2:v�³/	A_ 6 ` f �� 7�´ � 2�2:v � � � 7�X�� µ �'	K� �� 7B � 2�2:v � G � 7�X���µL�'	K� � �� 7� ¶·��� v�³/	A_ 3M98< `
4: RGB  �¡��/	K_ 3898< ` G¯2 � � �'	�j	L7ª\\uv�³0	A_ 3M98< ` �° �¡��/	K_ 3M98< `
4: A  �¡��/	A_ 6 ` G¸2 � � 7w\�v�³0	A_ < `

�� �¡��/	K_ 6 `
The result of the two parallel 16 bit precise ad-
ditions or subtractions lies in  �¡��/	 and can be
further processed by more register combiners or
lighting operations in the final combiner. For
clarity of presentation input mappings for constants
are not explicitly given, but the ranges of the

color channels have been chosen such that there
always exists an appropriate mapping. Moreover,
due to the number of occurring constants we use
the NV register combiners2 extension providing
combiner dependent constants.

Each 16 bit addition above is emulated by per-
forming a componentwise addition on the color
channels, then checking the sum of the lower com-
ponent for an overflow and finally correcting both
components appropriately. The great advantage
of the introduced composite number format is that
only one such check is necessary to handle both
positive and negative overflow for both addition and
subtraction. In this way our format fulfills the third
condition required in Section 2. This efficient carry-
over arithmetic is due to the fact that the initial in-
put mapping �¹��C� � �� for the addends is not
the correct mapping ( �o��º��� � �

) for the first
color channel in our representation. The resulting
difference introduces a »����� error, which cannot be
represented in the first color channel. But the ap-
propriate

������ correction applied to the second color
channel corrects a possible overflow therein and the
sum of these corrections can be represented in the
first channel. Therefore only one condition has to
be checked to decide in which direction a correc-
tion on the second channel should take place.

The reason for the awkward repeated negation in
combiners 1[RGB], 2[RGB] and similar in 3[RGB],
4[RGB] and 4[A] with intermediate 2 � �� 7 -output
mapping is an effort to implicitly realize an addi-
tion of

�� although there is no such input or output
mapping. It is necessary for the re-encoding of the
results from the signed range _ � �� � �� 7 back to _ 	K� �%` .
Example: Rotation of normals. Let the texture¼ � define the x-component and the texture

¼ �
the y-component of a normal map, whereas the z-
component is implicitly defined if we think of the
normals to be of unit length. Then we can use the
following algorithm to rotate the normals around
the z-axis.¼ � D�2 � �g½ 7 ¼ � G ½ ¼ � �¼ � De2 � �g½ 7 ¼ � �g½ ¼ � �3�D«¾�2 ¼ � _ 9 ` � ¼ � _ 9 ` 7
where ½ is a constant steering the speed of the
rotation and ¾ is a texture which, addressed
by the main components of

¼ � and
¼ � , deliv-

ers the normal with the computed z-component¿ � � ¼ � _ 9 ` � � ¼ � _ 9 ` �
.
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3.3 Functions and Multiplication

We have suggested to arrange the two 16 bit num-
bers into the color channel pairs 2435��687 and 2:9;�'<;7
because these pairs can be used for a dependent
texture look-up. Such look-ups implement the
application of arbitrary functions on our composite
16 bit format and within the 4 pixel shaders both 16
bit channels can be mapped by a different function.
Let n be again a displacement map with an x
and y component as before, and let ¾ � and ¾ � be��F�J ¤ ��F@J textures encoding nonlinear functions on
the composite 16 bit format. Then we can apply ¾ �
and ¾ � simultaneously to n using pixel shaders:À � 24~g_ �P© ` 7 � À � 24~g_ ��� ` 7
0: tex2d 2?���-q�����7r� � ��ns2?����qA7
1: ar2d 24ns_ 6 ` �'ns_ 3 ` 7�� � ��¾ � 24ns_ 386 ` 7
2: gb2d 24ns_ 9 ` �jns_ < ` 7Á� � �£¾ � 24ns_ 98< ` 7

The textures ¾ � and ¾ � should contain the values
such that addressed by AR, where R is the first
color channel in the number representation, they
deliver the function value in AR and addressed
by GB they deliver it in GB. If it is clear that a
function need not to be used in both dependent
modi, then a single texture ¾ storing the values of
both ¾ � and ¾ � would suffice. One could evade this
difficulty by storing the first channel of the number
representation in A instead of R, but this would
imply many more difficulties in other operations.

Example: Linear filters. In the former examples
we have used multiplications of the form ��\p�
where � is a user defined constant and � an in-
termediate texture result. To implement such an
multiplication in 16 bit precision one defines a tex-
ture tpÂ containing the product values of arbitrary
16 bit values with � and applies it to � obtain-
ing 2¢t�ÂA_ 386 ` 24ns_ 3h6 ` 7 ��t�Â[_ 98< ` 24ns_ 98< ` 7 . Since
the application of the function uses only the pixel
shaders and the addition only the register combin-
ers, one can perform an operation like n�Gg�5\%� in
one pass. In particular one can quickly implement a
16 bit precise filter using a 3 by 3 stencil:

3�D
�Ã

Ä%Å + Ä%Æ�Ç ��� ½ Ä�Å + Ä Æ \ t;2?�5G�È � ��q8G¥È � 7 �
where ½ Ä Å + Ä Æ are the filter coefficients and 3 con-
tains the filtered texture t . If each of the coeffi-
cients is different, which is seldom the case, one

would need 9 textures t Ä Å + Ä Æ encoding the values
of a multiplication with ½ Ä Å + Ä Æ and also 9 passes to
compute the result 3 . But as all computations are
performed in 16 bit, the result is significantly better
than in 8 bit, especially for small coefficients.

In terms of hardware resources, the multiplica-
tion is a much more complex operation than the ad-
dition and therefore more difficult to emulate us-
ing lower precision computing blocks. The starting
point is the decomposition of the 16 bit product into
a sum of 8 bit products. Let É and n be two tex-
tures encoding the 16 bit numbers to be multiplied
in the colors 2:9;�'<;7 . First multiplying the represen-
tations of Éi_ 98< `

and ns_ 98< `
we obtain:

O 2:Éi_ 9 ` � Éi_ < ` 7�\ O 24ns_ 9 ` �jns_ < ` 7�D
E ��Éi_ 9 ` � � I \ E ��ns_ 9 ` � � I
G ��#��$;E^E ��Éi_ 9 ` � � I \ E ns_ < ` � �� I

G E �@ns_ 9 ` � � I \ E Éi_ < ` � �� I}I
G ��#��$ · E}E Éi_ < ` � �� I \ E ns_ < ` � �� IuI

The first addend of the result can be evaluated at 16
bit to ÊË2:Éi_ 9 ` �jns_ 9 ` 7 by a texture look-up with
the first components Éi_ 9 `

and ns_ 9 `
addressing a

multiplication table Ê . The second addend may be
computed and rounded by the register combiners,
while the third gives at most

������ · , which is almost
one half of the smallest representable number������ � �#��$ , and thus will be ignored. In this way
we can implement a one-pass texture-texture
multiplication in 16 bit precision, but unlike the
addition only one of the 16 bit channels can be
multiplied at once.
Ì _ � ` \�~�_ � `

0: tex2d 2?�p��q/����7�� � �£Éi2?����qA7
1: tex2d 2?�p��q/����7�� � ��ns2?����qA7
2: dot2d � � D�24	K� � �j	L7 1 24	K�jÉi_ 9 ` � Éi_ < ` 7DWÉi_ 9 `
3: lut2d � � De24	� � �'	�7 1 24	�'ns_ 9 ` � ns_ < ` 7D�ns_ 9 `

� � �±Êe2 � � � � � 7
The resulting textures  �¡��/	�- �¡�� � and  �¡��/Í are
now further processed in the register combiners
to compute the mixed products and sum up the
addends of the multiplication formula.
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¦�§ y�Îp_ ��� ` G¦�§ yp¨�_ � ` \ ¦�§ yr¬/_ � ` G ¦�§ yr¬/_ � ` \ ¦%§ yp¨�_ � `
0: RGB 2:�u\� �¡��/	K_ 3M98< ` � � 7 1 24	� � �j	�7�²v�³/	A_ 3M98< ` �2:�u\� �¡�� � _ 3898< ` � � 7 1 24	� � �j	�7�²v�³ � _ 3M98< `
1: A v�³0	A_ < ` \¢2¢ �¡�� � _ 3M98< ` � �� 7RGÏv�³ � _ < ` \\�2¢ �¡��/	A_ 3M98< ` � �� 7g�²v�³/	A_ 6 `
2: RGB 24	K�'	� � 7Q\�v�³/	A_ 6 ` �° �¡��/	K_ 3M98< `
2: A v�³0	A_ 6 ` G �� �Ðv�³/	K_ 6 `
3: RGB 2:v�³/	A_ 6 ` f �� 7�´ � 24	K� � � X�� $ � �� 7B � 24	K�'	� � �� 7� ¶·��� v�³/	A_ 3M98< `
4: RGB  �¡��/	K_ 3898< ` G¯24	K� � � � � � 7ª\\uv�³0	A_ 3M98< ` �° �¡��/	K_ 3M98< `
5: RGB 2¢ �¡��/	K_ 3898< ` � �� 7®G2¢ �¡��/ÍA_ 3M98< ` � �� 7��° �¡��/	A_ 3M98< `
5: A  �¡��/	A_ < ` Ge2¢ �¡��/ÍK_ < ` � �� 7��²v�³/	A_ 6 `
6: RGB 2:v�³/	A_ 6 ` f �� 7�´ � 24	K��	K� �� 7B � 24	K� � X�� $ � � �� 7� ¶·��� v�³/	A_ 3M98< `
7: RGB  �¡��/	K_ 3898< ` G¯24	K� � � � � � 7ª\\uv�³0	A_ 3M98< ` �° �¡��/	K_ 3M98< `

The main calculations take place in combiner 1[A]
where the sum of the mixed products is computed,
and in combiner 5[RGB] where the former sum
is added to the result of the multiplication table.
Combiners 3[RGB], 4[RGB] and 6[RGB], 7[RGB]
perform again the carry-over arithmetic as in the
case of addition and subtraction. They have differ-
ent correction directions, because of the implicit 0
in tex0[G] due to combiner 2[RGB].

Example: Nonlinear filters. In the last example
we have seen how a texture can be filtered with a
stencil of constant coefficients. If we use several
textures instead of the constants, the coefficients
may vary depending on the coordinates and we
obtain a nonlinear filter:

3�D
�Ã

Ä%Å + Ä%Æ�Ç ���#Ñ
Ä%Å + Ä%Æ 2?�p��qA7w\ t52?�5G|È � �'q8G�È � 7 �

where Ñ
Ä Å + Ä Æ are now textures containing the

varying weights of the filter for each direction2?È � ��È � 7 . Nonlinear filters can be effectively used

for edge sensitive denoising of images. Figure 1
shows the advantages of the increased precision in
this application.

3.4 Performance

Apart from the multiplication the new operations on
the composite 16 bit format will perform at almost
50% of the normal speed. Using the dot-product
operation instead of the offset-texture for dependent
texture look-ups costs a factor of 2. The 5 combin-
ers of the addition would normaly cost a factor of
3, but since some sort of the much slower depen-
dent texture access will usually preceed the addi-
tion (a multiplication with a constant for example)
multiple register combiners seldom reduce overall
performance. Finally, the multiplication is compa-
rably slow because the dot-product operation takes
8 times longer than a normal texture access. This
factor, however, is not surprising as the complex-
ity of a multiplication grows quadratically with the
bitlength of the operands, so it is rather amazing that
it can be realized in a single pass at all. Moreover,
other time consuming procedures such as texture
object switching or implicit pipeline flushing may
absorb these theoretical extra costs, as has been ex-
perienced in the filter example (Figure 1).

4 Conclusions

A composite 16 bit number format has been pre-
sented on which precise arithmetic and dependent
texture operations can be efficiently performed.
In particular this format allows dynamic accurate
changes to displacement maps, normals and filters.
These high precision operations naturally require
more texture memory and computing time, but are
still fast enough to be used in precision sensitive
parts of real-time multi-pass algorithms. Also the
details of this 16 bit emulation may seem deterrent
at first, however, once implemented the operations
can be used in a simple modular way. We hope that
by use of this virtual 16 bit format more precision
sensitive visualization and computing can be accel-
erated in graphics hardware.
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8 bit results 8 bit encolored virtual 16 bit results virtual 16 bit encolored

Figure 1: From top to bottom every tenth result of a nonlinear diffusion filter applied to a noisy ��F�J � image
is shown. Although the last 8 bit result may seem pleasant at first, the dark blue background and the yellow
and green color of the moon clearly convey a mass defect. The new 16 bit format, on the other hand,
preserves the overall mass and eliminates artefacts much smoother due to the finer quantization.
For a direct comparison both sequences were computed on RGB8 textures (the read-back for LA8 was very
slow). The 8 bit computation took 5ms for a time-step and the virtual 16 bit computation 8ms. Although
three independent 8 bit filters could have been used in parallel on RGB8, the performance of more than
50% of the normal speed together with the higher quality results count in favour of the virtual 16 bit format.
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