
Hardware Efficient PDE Solvers in
Quantized Image Processing

Vom Fachbereich Mathematik
der Universität Duisburg-Essen

(Campus Duisburg)

zur Erlangung des akademischen Grades eines
Doktors der Naturwissenschaften

genehmigte Dissertation von

Robert Strzodka
aus Tarnowitz

Referent: Prof. Dr. Martin Rumpf
Korreferent: Prof. Dr. Thomas Ertl

Datum der Einreichung: 30 Sep 2004
Tag der mündlichen Prüfung: 20 Dez 2004

ii

Contents

Abstract v

1 Introduction 1
1.1 Motivation . 2
1.2 Thesis Guide . 5
1.3 Summary . 8
Acknowledgments . 11

2 PDE Solvers in Quantized Image Processing 13
2.1 Continuous PDE Based Image Processing 15
2.2 Discretization - Quantization . 24
2.3 Anisotropic Diffusion . 43
2.4 Level-Set Segmentation . 55
2.5 Gradient Flow Registration . 59
2.6 Data-Flow . 63
2.7 Conclusions . 67

3 Data Processing 69
3.1 Data Access . 71
3.2 Computation . 84
3.3 Hardware Architectures . 97
3.4 Conclusions . 105

4 Hardware Efficient Implementations 107
4.1 Graphics Hardware . 110
4.2 Reconfigurable Logic . 156
4.3 Reconfigurable Computing . 165
4.4 Comparison of Architectures . 180

Bibliography 187

Acronyms 201

Index 205

iii

iv

Abstract

Performance and accuracy of scientific computations are competing aspects. A close interplay
between the design of computational schemes and their implementation can improve both
aspects by making better use of the available resources. The thesis describes the design of
robust schemes under strong quantization and their hardware efficient implementation on data-
stream-based architectures for PDE based image processing.

The strong quantization improves execution time, but renders traditional error estimates use-
less. The precision of the number formats is too small to control the quantitative error in
iterative schemes. Instead, quantized schemes which preserve the qualitative behavior of the
continuous models are constructed. In particular for the solution of the quantized anisotropic
diffusion model one can derive a quantized scale-space with almost identical properties to the
continuous one. Thus the image evolution is accurately reconstructed despite the inability to
control the error in the long run, which is difficult even for high precision computations.

All memory intensive algorithms are, nowadays, burdened with the memory gap problem
which degrades performance enormously. The instruction-stream-based computing paradigm
reenforces this problem, whereas architectures subscribing to data-stream-based computing
offer more possibilities to bridge the gap between memory and logic performance. Also more
parallelism is available in these devices. Three architectures of this type are covered: graphics
hardware, reconfigurable logic and reconfigurable computing devices. They allow to exploit
the parallelism inherent in image processing applications and apply a memory efficient usage.
Their pros and cons and future development are discussed.

The combination of robust quantized schemes and hardware efficient implementations deliver
an accurate reproduction of the continuous evolution and significant performance gains over
standard software solutions. The applied devices are available on affordable AGP/PCI boards,
offering true alternatives even to small multi-processor systems.

v

Abstract

AMS Subject Classification (MSC 2000)

• 65Y10 Numerical analysis: Algorithms for specific classes of architectures

• 68U10 Computer science: Image processing

ACM Computing Classification System (CSS 1998)

• G.4 Mathematical Software: Efficiency, Reliability and robustness, Parallel and vector
implementations

• I.4.3 [Image Processing and Computer Vision]: Enhancement—Smoothing, Registra-
tion

• I.4.6 [Image Processing and Computer Vision]: Segmentation—Region growing and
partitioning

• G.1.8 [Numerical Analysis]: Partial Differential Equations—Finite element methods,
Finite difference methods, Parabolic equations, Hyperbolic equations, Multigrid and
multilevel methods

• B.3.1 [Memory Structures] Semiconductor Memories—Dynamic memory (DRAM)

• I.3.1 [Computer Graphics]: Hardware Architecture—Graphics processors

• B.7.1 [Integrated Circuits]: Types and Design Styles—Gate arrays

• C.1.3 [Processor Architectures]: Other Architecture Styles—Adaptable architectures

• C.4 Performance of Systems: Performance attributes

• J.3 Life and Medical Sciences: Health

General Terms: Algorithms, Languages, Performance, Theory

Keywords

quantization, qualitative error control, quantized scale-space, memory gap, performance, data-
stream-based processing, graphics hardware, reconfigurable logic, reconfigurable computing

vi

1 Introduction

Contents

1.1 Motivation . 2

1.1.1 Operation Count and Performance 2

1.1.2 Precision and Accuracy . 3

1.1.3 Choice of Applications and Architectures 3

1.2 Thesis Guide . 5

1.2.1 Thesis Structure . 5

1.2.2 Index and Acronyms . 5

1.2.3 Notation . 6

1.2.4 Binary Prefixes . 7

1.3 Summary . 8

1.3.1 PDE Solvers in Quantized Image Processing 8

1.3.2 Data Processing . 10

1.3.3 Hardware Efficient Implementations 10

Acknowledgments . 11

Tables

1.1 General notation. 6

1.2 International decimal and binary prefixes. 7

The motivation section presents the broader picture of the thesis and outlines ideas which em-
brace the different chapters. In the Thesis Guide we present a quick overview of the thesis and
cover presentational aspects. The chapter ends with a summary of the results and acknowl-
edgments.

1

1 Introduction

1.1 Motivation

Numerical mathematics is concerned with the design of fast and accurate schemes for the
approximate solution of mathematical problems. Computer systems are the target platforms
for the implementation of theses schemes. So the trade-off between the competing factors
of performance and accuracy applies both to the mathematical level where approximations of
different accuracy order are chosen, and the implementational level where number formats
and operations of different precision are used. Traditionally, the optimization processes are
performed separately by mathematicians and computer scientists respectively. The common
interface is the operation count of a scheme which is sought to be reduced. We argue that this
measure is much too simple as it completely ignores the diverse performance characteristics
of computer systems. Thus apparently efficient mathematical schemes perform surprisingly
badly on actual systems. In the area of partial differential equation (PDE) based image pro-
cessing the thesis demonstrates how an early consideration of performance relevant hardware
aspects and a close coupling of the scheme design and its implementation fully exploit the
available resources and so deliver fast and accurate solutions.

1.1.1 Operation Count and Performance

The merits of the exponential development in semiconductors have benefited memory and
computing elements in different respects. Data transport and data processing have not devel-
oped at the same pace. The consequences are far-reaching but can be outlined by an example.

If we consider a simple addition of two vectors C̄ = Ā+B̄ of size N , then the operation count
is N . Modern micro-processors can process two operands made up of four 32-bit floats in one
clock cycle. So if the processor runs at 3GHz it can perform 12G floating point OPS (FLOPS)
and we should finish the addition in N/12 ns. Real performance values are at least an order
of magnitude lower. The processor can really run almost 12G FLOPS if not disturbed by
anything else, but the data cannot be transported that quickly. The parallel operations namely
require 96GB/s of input data and 48GB/s for the output. But the current memory systems
can provide a bandwidth of at most 6.4GB/s. This means that the computational unit spends
95% of time waiting for the data. So global data movement and not local computations are
expensive and decisive for the overall performance.

The situation becomes even worse when the components of the vectors Ā, B̄ are not arranged
one after another in memory, e.g. if they are part of larger structures or arranged in irregular
lists. Then memory latency, the time needed to find the individual components in memory,
becomes dominant and the performance can drop by as much as an order of magnitude again.
Therefore, it is often advisable to enforce a linear arrangement of vector components, even if
this means the inclusion of additional entries to fill up the gaps of the irregular arrangement.
The operation count is increased, but the data can be processed in a seamless data stream,
avoiding the latencies.

These two components data addressing and data transport dominate the execution times of

2

1.1 Motivation

many algorithms. This fact has been acknowledged for some time already, and remedies have
been developed, but the problem grows with each generation of new processors. Meanwhile
hardware architectures subscribing to a data oriented computing paradigm have evolved. We
evaluate three different representatives of this concept on image processing applications. The
results show that the focus on regular data handling instead of minimal operation count deliv-
ers superior results.

1.1.2 Precision and Accuracy

In image processing applications performance is very critical. For this purpose one is often
prepared to sacrifice strict accuracy requirements as long the quality of the results does not
suffer significantly. The question arises how can we secure robust results with less precise
computations.

A number format has only finitely many representations for the real numbers in a computer.
So beside the error introduced by the discretization of the continuous PDE models, we also
have an additional error associated with the quantized number representation and the approx-
imate computations. Thus the quality of the final result depends both on the precision of the
quantization and the properties of the schemes. It is very dangerous to trust in high precision
alone. The simple computation 1 − 1.0002 · 0.9998 in the single float format, for example,
evaluates to zero, although the correct result 4 · 10−8 can be represented exactly. Even long
double float formats do not save us from these problems (see Section 2.2.2.1 on page 27).

But for the sake of performance we want to operate on much smaller number formats, e.g.
8−16 bit. The mathematical challenge is to design schemes which can still deliver satisfactory
results in this setting. For one iteration of a scheme strict error bounds can be derived. But
these bounds avail to nothing if we iterate the scheme up to several hundred times. Since
the number of iterations is sometimes even larger than the number of representable values in
the number format (256 for 8 bit), all hope concerning accuracy seems to be lost. In fact,
accuracy in the usual sense of error bounds which quantitatively relate the computed to the
continuous solution cannot be obtained for such low precision. But the quality of the results
depends not necessarily on this quantitative relation, but rather the qualitative behavior of the
PDE model. So the guiding idea is to preserve invariants and characteristics of the evolution
of the continuous models. These properties depend more on the appropriate design of the
quantized schemes than the precision of the number formats. So despite a lack of control on the
quantitative error we obtain accurate results in the sense of reproduced qualitative properties.

1.1.3 Choice of Applications and Architectures

We have chosen the field of image processing, because it favors the use of parallel compu-
tations, which are widely used by our architectures, and allows the qualitative computational
approach discussed in the previous section. We intentionally did not restrict ourselves to the

3

1 Introduction

study of discrete algorithms, but chose the PDE based models to demonstrate that the continu-
ous properties can be preserved even with low precision computations. Having the continuous
models in the background has also the advantage that from their analysis one knows a-priori
which qualitative properties of the evolution are desirable and how they are influenced by
the parameters. There is no dependence on the discrete nature of a computing model at the
continuous stage, so that all such effects can be more easily identified in the implementation.

The choice of architectures has been motivated by the focus on processing in data streams
as discussed in Section 1.1.1 on page 2. We evaluate three different architectures: graphics
hardware, reconfigurable logic and reconfigurable computing devices. Their way to perfor-
mance gains is similar: massive parallelism and efficient memory usage, but the programming
models are quite different. To fortify the practicability of the presented approach to image
processing, we have deliberately selected architectures which are available on affordable AGP
or PCI accelerator boards and can be used with a standard Personal Computer (PC). The pro-
cessing capabilities of graphics hardware even come for free, since every current PC already
contains a powerful Graphics Processor Unit (GPU).

Throughout the thesis we argue strongly for the early consideration of hardware characteris-
tics in the design of numerical solvers. However, this does not mean that we favor machine-
intimate, low level languages over standardized High Level Languages (HLLs). Although
Hardware Description Languages (HDLs) offer more opportunities to utilize the full potential
of the hardware, they have several disadvantages concerning the design effort, code reuse,
compatibility and maintenance. We do not advocate the change from the currently predom-
inant extreme of ’hardware blind’ programming, to the other extreme of low level HDLs.
The primary advantages of data oriented architectures can be exploited with high level con-
siderations about the arrangement of data, memory access and the use of parallel processing
elements (PEs). In most of our implementations we had to resort to low level languages only
because standard HLLs are basically blind to hardware aspects and hardware efficient HLLs
are yet in the development. We hope that these new HLLs will soon allow to solve problems
of much higher complexity with full hardware support.

Despite the high parallelism of the architectures and good applicability to the image process-
ing tasks we have restricted the implementations to 2D data sets. The PDE models and the
quantized schemes can be extended to 3D easily. The implementations require reorganization
to a different extent for 3D, but basically no new implementational ideas are involved. The
reason why we do not present 3D examples, is our conviction that adaptive methods are in-
dispensable for three dimensions. Even the massive parallelism of our architectures cannot
compete with adaptive methods if data volume grows cubically. Naturally, adaptivity in 2D
can also gain performance, but because of the trade-off between operation count and regular
data access (Section 1.1.1 on page 2) the advantages are less striking. Initial work on hardware
efficient adaptive 3D methods has already been performed and will be continued, but it is an
extensive topic on its own facing many new challenges and therefore is not part of this thesis.

4

1.2 Thesis Guide

1.2 Thesis Guide

This is a quick guide dealing with issues which concern the thesis as a whole.

1.2.1 Thesis Structure

The chapters begin with a list of contents, figures and tables, and a sketch of the discussed
topics. The last section in each chapter contains a detailed summary of the themes with accu-
rate references to the previous sections. It may serve as a good overview for someone familiar
with the subject. For a first orientation we give very concise information on the contents and
prerequisites of the following chapters. For a summary of the results we refer to Section 1.3 on
page 8 at the end of this chapter.

• 2. PDE Solvers in Quantized Image Processing
Here we introduce the PDE models for image processing and perform analysis of the
properties of the discrete, quantized solvers. The chapter assumes a general understand-
ing of PDEs and Finite Element (FE) methods. It is fairly independent of the other
material. Mathematicians not interested in the reasoning about the implementation may
want to proceed, after the quantized scheme analysis in each section, directly to the
corresponding result sections in Chapter 4.

• 3. Data Processing
This chapter explains the reasons for the memory gap problem and how the different
computing paradigms deal with it. It describes the suitability of various hardware archi-
tectures for image processing algorithms and thus motivates the selected devices used in
Chapter 4. The chapter is basically self-contained and assumes only very basic knowl-
edge about computer systems.

• 4. Hardware Efficient Implementations
Chapter 4 picks up the quantized schemes from Chapter 2 and discusses their efficient
implementation under the considerations from Chapter 3. For readers interested mainly
in the implementations it is probably best to get first an idea of the continuous model
properties in Section 2.1 on page 15, and then continue with the corresponding imple-
mentation section in Chapter 4. The chapter does not assume familiarity with the non-
standard architectures used, but for those new to this subject we recommend reading
Chapter 3 for a broader picture and a better understanding.

1.2.2 Index and Acronyms

The index contains a list of key words. Referenced occurrences of these terms appear in italic
in the text. Bold italic marks the main reference position for a term. At this position the
meaning and context of the term can be found.

5

1 Introduction

Table 1.1 General notation.

Symbol Example Explanation

u, φ u(x) = x2 continuous functions

U, Φ U(x) =
∑

α ŪαΘα(x), (Θα)α basis discrete functions

Ū , Φ̄ Ūα = (Ū(0,0), ..., Ū(Nx−1,0), ..., Ū(Nx−1,Ny−1))
> nodal vectors

α, β α = (αx, αy) = (1, 2) 2D multi-indices

Q Q = { n
255
|n = 0, . . . , 255} quantized number system

⊕,	,�,� V̄ ⊕ W̄ quantized arithmetic

evalQ(term) evalQ(V̄ − W̄) = V̄ 	 W̄ quantized evaluation

=Q

√
1
2

=Q
180
255

quantized evaluation

g(.) g(x) = exp(−cgx) functions

f [.] f [u](x) =
∫ x

0
u(y)dy operators

Symbol Definition Explanation

11 11(x):= x, (11Ū)α:= Ūα continuous, discrete identity

0̄, 1̄ 0̄:= (0, . . . , 0)>, 1̄:= (1, . . . , 1)> zero and one vector

#I:= minf :I→N injective max f(I) number of elements in a set

δ δαβ:= {1 if α = β; 0 else} Kronecker symbol

diag diag(L):= (δαβLαβ)αβ diagonal of a matrix

supp supp (u):= {x ∈ Ω|u(x) 6= 0}, u : Ω→ R support of a function

Acronyms are written out in the long form at least once, when they appear first in the text.
Their meaning is also explained in an alphabetical listing on page 201 just before the index.

1.2.3 Notation

Table 1.1 summerizes the general notation. Hereby, most continuous quantities involved in
the PDE models are typed in small letters, e.g. u. The corresponding discrete functions are
set in capital letters (U). The nodal vectors defining the discrete functions are marked by a bar
(Ū) and addressed (Ūα) by two dimensional multi-indices, e.g. α = (αx, αy) ∈ N × N. For
further details we refer to Section 2.2.1.2 on page 26.

The nodal vectors are generally assumed to be already quantized elements of some quantiza-
tionQ. Quantized arithmetic operations are denoted by } ∈ {⊕,	,�,�} (Section 2.2.3.1 on
page 36). Quantized evaluations of terms are written as evalQ(term) or =Q (Sec-
tion 2.2.3.2 on page 38).

6

1.2 Thesis Guide

Table 1.2 International decimal and binary prefixes.

Decimal Decimal Decimal Binary Binary Binary

factor name symbol factor name symbol

103 kilo k 210 kibi Ki

106 mega M 220 mebi Mi

109 giga G 230 gibi Gi

1012 tera T 240 tebi Ti

1015 peta P 250 pebi Pi

1018 exa E 260 exbi Ei

We distinguish between functions g(u(x)) and operators f [u](x) with different brackets. The
first case is actually a composition of functions (g ◦ u)(x) and represents the value of the
function g at the position u(x). In the second case f is an operator which takes the function u
as an argument and returns a new function f [u] as a result. This new function is then evaluated
at x.

For clarity, we keep up this distinction in the discrete case, e.g. G(V̄), L[V̄], although a
discrete operator could also be seen as a high dimensional function of the finitely many vector
components.

1.2.4 Binary Prefixes

There is a confusion about the use of the Système International d’Unités (SI)-prefixes in com-
puter science, where typically the binary system is used and byte (B) or bit (b) quantities are
multiples of 2. When the referred numbers were small the capitalization of 1kB = 1000B
to 1KB = 1024B provided an appropriate distinction, but this does not apply to the larger
prefixes, e.g. 1MB has been used for both 1, 000, 000B and 10242B = 1, 048, 576B depending
on the context.

Since 1999 there exists an international standard on the naming of 210n factors [IEC, 2000].
Table 1.2 presents the decimal and binary symbols and names. Initially the standard has been
generally ignored, but the approval of the symbols by the Linux developers in 2001 and the
trial-use announcements by the Institute of Electrical and Electronics Engineers (IEEE) and
American National Standards Institute (ANSI) in 2002 have helped to widen its popularity.
We make use of the handy distinction throughout the work and also translate quantities from
other sources into this terminology. Where the sources are not totally clear which prefixes
were meant we have made a choice to the best of our knowledge.

Due to the organization of memory (see Section 3.1.1 on page 71), sizes of memory chips,
caches and sizes of data objects stored therein use almost exclusively the binary factors, while

7

1 Introduction

bandwidth and throughput are expressed with the decimal factors, because they are based
on frequencies given in MHz or GHz. For mass storage devices the situation is inconsistent
with the capacity of hard discs, DVDs and most other disk or tape devices being given in the
decimal system, while the dimensions of CDs and flash memory based devices (USB sticks,
CompactFlash cards, etc.), and the file sizes in operating systems are calculated in the binary
system, but displayed misleadingly with the decimal factors. The confusion is complete for
floppy disks where ’1.44MB’ means neither 1.44MB nor 1.44MiB but 1, 440KiB, which is
twice the capacity of old 720KiB disks and derived as 512B(sector size) · 9(sectors/track) ·
80(tracks) · 2(sides) = 720KiB. Although current disk and tape devices use also binary sector
sizes like 1KiB or 4KiB for the smallest storable data block, similar to the floppy disk their
arrangement does not depend on powers of two, so that the more marketing friendly decimal
factors are used.

1.3 Summary

The main contribution of the thesis is the close coupling of the numerical scheme design with
the implementation. Careful treatment of roundoff behavior in the discrete PDE solvers se-
cures qualitatively accurate results despite strong quantization, and thorough consideration of
the performance characteristics of the hardware architectures delivers high performance. The
numerical and hardware aspects, which are usually dealt with separately by mathematicians
and computer scientists, receive here an integral treatment to the benefit of both performance
and accuracy.

The following sections summarize the individual chapters. For a very concise overview and
prerequisites of the chapters see Section 1.2.1 on page 5.

1.3.1 PDE Solvers in Quantized Image Processing

We deal with three important application areas of image processing: denoising, segmentation
and registration (Section 2.1 on page 15). The solution to these problems is often needed in
real-time, such that the requirements on performance are very high. Each task is modeled by a
PDE and an approximate, numerical solution can be obtained after time and space discretiza-
tion (Section 2.2 on page 24). Bounds on the difference between the continuous and discrete
solution exist, but these bounds assume error-free computations. In real computer systems
quantization as a third source of error comes into play.

It is very important to realize that even high precision floating point formats such as long
double (s63e15) can easily lead to completely wrong results for simple computations (Sec-
tion 2.2.2.1 on page 27). In PDE solvers many iterative computations must be performed, so
that one cannot trust in high precision number formats alone. Deterministic, probabilistic and
empirical methods can be used to derive bounds for the quantization errors of algorithms. But
because of the very high performance requirements, image processing algorithms tend to use

8

1.3 Summary

low precision fixed point number systems (Section 2.2.2.2 on page 30). For these systems it
is impossible to guarantee numerical stability of iterative schemes in neither deterministic nor
probabilistic sense (Section 2.2.2.3 on page 33). In practice, empirical evidence from error
simulators and test suits is used on a case by case basis to estimate the effects of quantization
for a given algorithm. But this is a time consuming and intransparent procedure. Moreover,
the empirical evidence cannot guarantee the desired behavior for all possible input data.

The main result of Chapter 2 is the design of discrete schemes which can guarantee a cer-
tain behavior of the quantized PDE solvers despite strong quantization. The key idea is to
preserve the desired global properties of the continuous model rather than try to control the
accuracy of individual computations. Hereby, the factorization and aggregation of numbers
on different scales and the interactions between different node values deserve special atten-
tion (Sections 2.3.1 on page 43, 2.4.1 on page 55, 2.5.1 on page 59). In particular, a careful
implementation of the matrix vector product as a main ingredient of the discrete schemes is de-
cisive. Involved symmetric matrices have often unit column sums (∀j :

∑

i Aij = 1) preserv-
ing the overall mass (sum of the vector components) in a matrix vector product (Eq. 2.26 on
page 39). In low precision arithmetic underflows can easily violate the mass preservation and
other global properties, and the iterative nature of the algorithm quickly accumulates these
errors to produce visual artefacts (Figure 4.8 on page 140). The mass-exact matrix vector
product (Section 2.2.3.3 on page 39) guarantees the mass preservation irrespective of the used
quantization. Moreover, it is well suited for the field of image processing as it operates with
highest accuracy around edges (Section 2.2.3.5 on page 42).

When used in the anisotropic diffusion scheme the mass-exact matrix vector product also se-
cures other important properties of the quantized scale-space (Section 2.3.3 on page 49), most
notably the extremum principle (Eq. 2.53 on page 51) and Lyapunov functionals (Eq. 2.57 on
page 52). The derivation of the quantized scale-space is a very satisfactory result, as it inherits
almost all of the properties of the continuous scale-space of the anisotropic diffusion operator
(Section 2.1.1.2 on page 17). In particular, the decrease of energy, central moments and the
increase of entropy follow for arbitrary quantizations.

In case of the level-set equation used for segmentation we have put the focus on the best
possible resolution of different velocities during the evolution of the interface. Clearly the
quantization restricts the number of distinct velocities, but scaling schemes can secure that
the faster moving parts evolve with the highest available precision. Moreover, the stationary
asymptotic behavior equals the continuous model (Section 2.4.3 on page 58).

The multi-scale regularization of the registration problem makes the quantized scheme very
robust against quantization errors. Cutting the precision of the used number format in half
hardly changes the results (Section 4.1.5.2 on page 147). This is also achieved by the robust
diffusion schemes used in the regularization at various stages. So despite the high complexity
of the algorithm and numerous intermediate result stages, the quality of the low precision
results is not corrupted by roundoff errors.

The design of the robust schemes partly depends on a space discretization with an equidistant
grid (Section 2.2.1.2 on page 26). This impedes dynamic adaptivity, but trading operation

9

1 Introduction

count for a regular memory access pattern (Section 1.1.1 on page 2) is often advantageous,
because the regular data-flow of the image processing applications (Section 2.6 on page 63)
makes them suitable for highly parallel architectures.

1.3.2 Data Processing

The exponential growth of transistors on the same area of silicon has influenced the charac-
teristics of memory and computing logic differently (Section 3.1 on page 71). This is not a
necessity but economical forces steer the development to a great extent. With smaller feature
sizes the timings of PEs and the size of Dynamic RAM (DRAM) chips have risen expo-
nentially, but the timings of the memory core which stores the 0s and 1s have improved in
comparison very little (Section 3.1.1.1 on page 72). An order of magnitude lies between each
of the times needed for the addition of two numbers, their transport to the processor and their
localization in the memory in case of a random memory access.

The problem of diverging memory and logic performance, labeled memory gap, grows each
year, and from an economic point of view there is no remedy in sight. Current improvements
benefit mainly bandwidth, while in comparison latency even worsens (Section 3.1.1.2 on
page 76). For optimal performance almost all latencies can be hidden, but this requires a pre-
dictable data-flow of the algorithm. Processing of data in streams and maximal data reuse in
memory hierarchies (Section 3.1.3 on page 81) have become very beneficial for performance.

In view of the memory gap, Chapter 3 irradiates different computing paradigms (Section 3.2 on
page 84), parallelization options (Section 3.2.2 on page 87), the status quo of current hard-
ware architectures (Section 3.3.1 on page 97) and the future evolution of computing machines
(Section 3.3.2 on page 103). The resource utilization of multiple PEs with different types of
parallelism and the minimization of bandwidth and latency requirements play a decisive role
in these sections. But in many cases the availability of high level programming tools rather
than the characteristics of the hardware matter for the economic success of an architecture.
The easy serial programming model has mainly prevailed over performance considerations so
far, but the sheer number of new architectures (Sections 3.2.4 on page 93, 3.2.5 on page 96),
many of which are available as commercial products, indicates that the performance gains
are too large to be still ignored. The quantized schemes for the image processing tasks from
Chapter 2 are particularly suitable for the acceleration on these new devices.

1.3.3 Hardware Efficient Implementations

Three data-stream-based (DSB) architectures have been used for the implementation of the
image processing applications: GPUs, a Field Programmable Gate Array (FPGA) and the eX-
treme Processing Platform (XPP). The distribution of the solvers on the architectures reflects
their availability and ease of operation. GPUs are the most common and inexpensive, and
have been used for several implementations. Availability of FPGAs is high, but not so much
the costs of the hardware but those of the development tools pose higher barriers to common

10

1.3 Summary

usage. Finally, the coarse-grain XPP array has only been available for a limited period of time
as a clock cycle exact simulator. But now a PCI card with that device can be purchased.

The early implementations of the diffusion models and the level-set equation in graphics hard-
ware (Sections 4.1.3 on page 127 and 4.1.4 on page 132) demonstrated the applicability of
GPUs as scientific coprocessors and inspired other work in that area. The virtual signed 16
bit format (Figure 4.10 on page 141) was the first to overcome the 8 bit limitation of GPUs
in general, providing more suitability for scientific computations (Figure 4.11 on page 142).
On newer hardware more advanced numerical concepts such as multi-scale representation,
multi-grid solvers and adaptive time-step control have been realized for the registration prob-
lem (Section 4.1.5 on page 143). Although the other architectures offer even higher resource
utilization, the GPU has now the advantage of a high level access to its functionality which
greatly facilitates the programming. The complex algorithm for the registration would be very
difficult to code on a FPGA or the XPP.

The FPGA implementation of the level-set equation exploits the full flexibility of the low level
reconfigurability (Section 4.2.3 on page 161). Application specific data paths and operations,
and variable precision arithmetic bring the small device (approx. one third of a DX8 GPU) in
lead of much larger and higher clocked processors. More recent FPGAs can further increase
performance of such algorithms by utilizing embedded hardwired multipliers, which otherwise
consume a lot of configurable resources.

The size of the XPP64-A1 architecture is comparable to a DX8 GPU (approx. 50M transis-
tors), but its flexible access to massive parallelism beats the competitors (Section 4.3.3 on
page 175). Similar to the FPGA the whole scheme is merged into a fully pipelined super
computation unit which delivers a result pixel in each clock cycle.

Despite the low precision number formats available on the devices, the special quantized
schemes from Chapter 2 allow to retain the main properties of the continuous models. At
the same time the implementations can outperform a comparable micro-processor by factors
of 5 to 20. Thus the goal of fast low precision computations with preserved global properties
has been reached. The current hardware development and the better scalability of the archi-
tectures suggest that these factors will grow further in future. Concurrently, the complexity of
the problems will increase and the availability of hardware efficient High Level Language will
gain even more relevance for the broad success of these architectures.

Acknowledgments

First of all my thanks goes to my advisor Martin Rumpf who encouraged me to work on
this interdisciplinary topic and supported me in the sometimes difficult advancement of the
research. I am particularly grateful for his initiative towards the use of different hardware
architectures, which lead to a broader and more abstract perspective on the topic.

During the work I have received plenty of help from my colleagues and the administration of

11

1 Introduction

the Institute of Applied Mathematics at the University of Bonn and the Numerical Analysis and
Scientific Computing group at the University of Duisburg-Essen. In Bonn, Ralf Neubauer and
Michael Spielberg were very helpful in designing the first implementations, Thomas Gerstner
worked with me on volume rendering and Jochen Garcke often helped with computer prob-
lems. In the difficult beginning the former PhD students Martin Metscher and Olga Wilderotter
offered advice. Both in Bonn and Duisburg the development of the applications was expertly
supported by Tobias Preusser, Marc Droske and Ulrich Clarenz. Udo Diewald was an uneb-
bing source of helpful tips and information, and Ulrich Weikard, my room mate in Duisburg,
was always ready for an inspiring discussion. He and Martin Lenz proof-read and discussed
the thesis with me. Martin’s scientific vicinity to parts of the thesis also helped me with some
complex improvements of it. Special mention deserves Birgit Dunkel, our ever helpful sec-
retary in Duisburg. Many thanks to all my colleagues for their different contributions to the
success of this work.

I am also grateful to many persons of other facilities who have helped me in various ways. The
successful research with Oliver Junge and Michael Dellnitz from the University of Paderborn
brought about my first scientific publication and fortified my decision towards this thesis.
The German National Academic Foundation supported me during my PhD allowing me to
participate in many stimulating discussions. Heinz-Josef Fabry from the Faculty of Catholic
Theology at the University of Bonn was my consultant and gave me much insight outside of
the mathematical universe. The work of Matthias Hopf and Thomas Ertl from the Univer-
sity of Stuttgart made me aware of the looming computing potential in graphics hardware.
The fruitful discussions with Matthias also helped me with the peculiarities of early graphics
hardware. Markus Ernst, Steffen Klupsch and Sorin Huss from the Technical University of
Darmstadt introduced me to the world of Reconfigurable Logic. Markus and Steffen directly
contributed to the thesis by coding the hardware configuration for the level-set equation on
a FPGA. The company PACT XPP Technologies from Munich granted me a temporary free
research license to work with their XPP architecture and Prashant Rao readily answered my
questions concerning its programming. In late 2002 I joined the caesar research center in
Bonn directed by Karl-Heinz Hoffmann, who has generously supported my further research.
Although the recent results are not directly included in this thesis my coworkers have posi-
tively influenced its contents. I am indebted to Marcus Magnor and Ivo Ihrke from the Max
Planck Institute for Computer Science in Saarbrücken, Alexandru Telea from the Technical
University of Eindhoven, Aaron Lefohn and John Owens from the University of California,
Davis, Ross Whitaker from the University of Utah, Salt Lake City, and Christoph Garbe from
the University of Heidelberg for inspiring discussions.

In such long lasting work not only the scientific but also the social support is of great impor-
tance. Special thanks to my friends and above all my parents and brothers and sisters who
accompanied me through the highs and lows. Their constant encouragement made this work
possible.

12

2 PDE Solvers in Quantized Image
Processing

Contents

2.1 Continuous PDE Based Image Processing 15

2.1.1 Denoising - Diffusion Processes 15

2.1.1.1 Generic Diffusion Model 15

2.1.1.2 Scale-Space . 17

2.1.1.3 Related Work . 19

2.1.2 Segmentation - Level-Set Methods 19

2.1.2.1 Curve Evolution . 19

2.1.2.2 Hamilton-Jacobi Equation 21

2.1.2.3 Related Work . 21

2.1.3 Registration - Energy Gradient Flows 22

2.1.3.1 Energy Model . 22

2.1.3.2 Multi-Scale Hierarchy 23

2.1.3.3 Related Work . 24

2.2 Discretization - Quantization . 24

2.2.1 Discrete Operators . 24

2.2.1.1 Time Discretization . 25

2.2.1.2 Space Discretization . 26

2.2.2 Quantization . 26

2.2.2.1 Floating Point Numbers 27

2.2.2.2 Fixed Point Numbers 30

2.2.2.3 Numerical Stability . 33

2.2.3 Quantized Operators . 36

2.2.3.1 Arithmetic Operations 36

2.2.3.2 Composed Operations 38

2.2.3.3 Matrix Vector Product 39

2.2.3.4 Scaling . 41

2.2.3.5 Backward Error . 42

13

2 PDE Solvers in Quantized Image Processing

2.3 Anisotropic Diffusion . 43
2.3.1 FE Scheme . 43

2.3.1.1 Discrete Schemes . 44

2.3.1.2 Weighted Stiffness Matrix 45

2.3.2 Quantized Diffusion . 48

2.3.3 Quantized Scale-Space . 49

2.4 Level-Set Segmentation . 55
2.4.1 Upwind Scheme . 55

2.4.2 Quantized Propagation . 56

2.4.3 Asymptotic Behavior . 58

2.5 Gradient Flow Registration . 59
2.5.1 Multi-Grid Discretization . 59

2.5.2 Quantized Registration . 61

2.5.3 Quantized Descent . 62

2.6 Data-Flow . 63
2.6.1 Explicit and Implicit Schemes . 63

2.6.2 Data Locality . 65

2.6.3 Local Computations . 65

2.7 Conclusions . 67

Figures
2.1 An equidistant grid with enumerated nodes and elements. 27

2.2 The unit spheres of different vector norms in 2D. 57

2.3 High level data-flow of the PDE solvers. 64

This chapter contains the theoretical analysis of different PDE based image processing algo-
rithms with respect to quantization. For a given quantization every operation can be performed
up to a certain precision. The aggregation of this effect is similar to the effects of time and
space discretization of the continuous models and accordingly we are interested in conver-
gence and approximation behavior. In particular for fixed point numbers, which exhibit large
relative error in many computations, we find equivalent reformulations of the discrete solvers
which reproduce their qualitative behavior even under strong quantization.

The problems of denoising, segmentation and registration are modeled by different differential
equations, but their discretizations focus on the creation of a common regular data-flow. The
choice of discretization is also influenced by the quantization since appropriate re-ordering of
operations in the schemes allows to retain a higher accuracy. By paying attention to such issues
the developed solvers unveil their sensitivity to hardware architectures and the performance
benefits are discussed in Chapter 4 on page 107.

14

2.1 Continuous PDE Based Image Processing

2.1 Continuous PDE Based Image Processing

Images undergo many modifications on the way from the acquisition to the output device. A
typical series of processing stages includes:

• Reconstruction of the image data from the raw data of the acquisition device.

• Removal of unavoidable noise in the image due to the acquisition process.

• Identification of segments in the image which are of special interest to the application.

• Correlation of the image information with other images of similar content.

• Visualization of the image with regard to the characteristics of the human visual system.

Each of these tasks has drawn a lot of research attention. The first is a little less accessible,
since the manufacturers of image acquisition devices usually know the peculiarities of their
hardware best and already include the reconstruction into the device. The last task on the other
hand is a very extensive field of its own, since the required form of data presentation varies
widely from application to application.

Therefore, we restrict ourselves to the three central tasks of image denoising, segmentation
and registration. Still there have been numerous ways of approaching these problems. We
concentrate on continuous PDE models which encode the nature of the problem implicitly in
functional equalities. This general choice of methods is motivated in Section 1.1.3 on page 3
in the introduction. The following sections review the PDE models associated with the three
afore mentioned image processing tasks.

2.1.1 Denoising - Diffusion Processes

Image data often contains noise stemming from the acquisition or transmission process. If
certain characteristics of the noise distribution are known, one usually incorporates appropri-
ate filters into the acquisition or transmission process itself. In the absence of other a-priori
knowledge, noise is often assumed to be normally distributed. A very simple but effective
method for reducing such noise is the application of a Gaussian filter, which is related to a
linear diffusion process. Unfortunately this technique also reduces highly relevant edge infor-
mation in the image. Non-linear methods which aim at distinguishing between relevant image
information which should be protected and noise fluctuations which should be removed are
necessary for a feature sensitive denoising. The anisotropic diffusion model represents a class
of these non-linear methods.

2.1.1.1 Generic Diffusion Model

We consider the function u : R+ × Ω → R in the domain Ω:= [0, 1]2 and an initial noisy
image given as a function u0 : Ω→ R. The idea is to evolve the initial image through a partial

15

2 PDE Solvers in Quantized Image Processing

differential equation such that in the sequence of the resulting images u(t, .), t > 0 the noise
dissolves while edges are preserved. The generic diffusion model reads:

∂tu− div (G(∇uσ)∇u) = 0 , in R+ × Ω ,

u(0) = u0 , on Ω ,

G(∇uσ)∇u · ν = 0 , on R+ × ∂Ω ,

(2.1)

where G : R→ R2×2 is the diffusion tensor depending on a mollification uσ of u.

We may distinguish three major choices for G:

• Linear diffusion model G(∇uσ):= 11

In this case we have the linear heat equation:

∂tu−∆u = 0 .

The solution can be obtained by convolution (denoted by ’*’)

u(t) = G0,
√

2t ∗ u0,

with a Gaussian function

Gµ,σ(y) := (2πσ2)−
1
2 exp

(

−1

2

(y − µ)2

σ2

)

.(2.2)

The parameter µ is not required here, but will be needed later in a different context
(Eq. 2.6 on page 20). According to this model the intensities in the image will dissolve
homogenously in every direction and with equal rate at every position. This model is
used for fast and simple smoothing and regularization, e.g. the mollification uσ may be
performed with the linear model:

uσ := u(σ2/2) = G0,σ ∗ u0 .

• Non-linear diffusion model G(∇uσ):= g̃(‖∇uσ‖) 11

Here the diffusion tensor depends on a non-negative, monotone decreasing scalar func-
tion g̃ : R→ R+

0 . A typical choice for g̃ is the Perona-Malik function

Pcg̃
(x) :=

1

1 + cg̃x2
(2.3)

or an exponential equivalent like exp(−cg̃x), such that for large gradient modulus ‖∇uσ‖
the function g̃ has small values meaning small diffusion rate, and for small gradient
modulus large values meaning high diffusion rate. The mollification uσ helps to distin-
guish edges from singular high gradients due to noise. Consequently the diffusion rate
in this model depends non-linearly on the modulus of the gradient of intensities at each
position, but the diffusion direction is homogenous.

16

2.1 Continuous PDE Based Image Processing

• Anisotropic diffusion model G(∇uσ):= B(∇uσ)>g(‖∇uσ‖)B(∇uσ)

This extends the previous model to a direction dependent diffusion rate. Now g is a diag-
onal matrix with independent diffusion coefficients for the direction along the smoothed
gradient and orthogonal to it, while B is the transformation from the vectors in the
canonical basis to the vectors in the gradient-normal basis:

B(∇uσ):=
1

‖∇uσ‖

(

∂xuσ ∂yuσ

−∂yuσ ∂xuσ

)

,(2.4)

g(‖∇uσ‖):=
(

g1(‖∇uσ‖) 0

0 g2(‖∇uσ‖)

)

.

Typically g1 is chosen as the Perona-Malik function P like in the previous case and
g2(x) = cg2 is some positive constant. In contrast to the previous, this model can smooth
distorted edges because diffusion will only be inhibited in the direction orthogonal to the
edge, while the smoothing along the edge will still take place in the non-linear fashion.

2.1.1.2 Scale-Space

The solution u : R+ × Ω → R can be regarded as a multi-scale of successively diffused
images u(t), t ≥ 0, which is called the scale-space of u0. We want to study the properties of
this scale-space in the form of the corresponding scale-space operator St, which is defined as

St[u0] := u(t).

See Section 1.2.3 on page 6 concerning the square bracket notation. St is thus the solution op-
erator of the diffusion problem. We list several interesting properties of this operator. Details
and proofs can be found in [Weickert, 1998], but many of the properties are straight-forward
consequences of the fact that the diffusion process is in divergence form and the diffusion
tensor G(∇uσ) depends solely on ∇uσ. The following properties hold true for an arbitrary
function v ∈ L2(Ω), all x ∈ R and all t, s ≥ 0 unless otherwise stated.

• Semigroup property

S0 = 11,

St+s = St ◦ Ss .

• Grey level shift invariance

St[0] = 0,

St[v + c] = St[v] + c, for c ∈ R.

• Reverse contrast invariance

St[−v] = −St[v] .

17

2 PDE Solvers in Quantized Image Processing

• Average grey level invariance

M
[
St[v]

]
= M[v] ,

whereM : L1(Ω)→ L1(Ω) is the averaging operator defined by

(M[v]) (x) :=
1

|Ω|

∫

Ω

v(y) dy .

• Translation invariance

(St ◦ τp)[v] = (τp ◦ St)[v] ,

for any translation (τp[v])(x):= v(x + p) with supp τp[v], supp (τp ◦ St)[v] ⊆ Ω.

• Isometry invariance

(St ◦R)[v] = (R ◦ St)[v] ,

for any orthogonal transformation R ∈ R2×2 defined by (R[v])(x):= v(Rx) with
supp R[v], supp (R ◦ St)[v] ⊆ Ω.

• Extremum principle

ess inf
Ω

v ≤ St[v(x)] ≤ ess sup
Ω

v .

• Lyapunov functionals
For v ∈ L2(Ω) and r ∈ C2[ess infΩ v, ess supΩ v] with r′′ ≥ 0, the functional

Φ[t, v] :=

∫

Ω

r (St[v(x)]) dx

is a Lyapunov functional:

Φ[t, v] ≥ Φ[0,M[v]] ∀t > 0,

Φ[., v] ∈ C[0,∞) ∩ C1(0,∞),

∂tΦ[t, v] ≤ 0 ∀t > 0.

If r′′ > 0 on [ess infΩ v, ess supΩ v] then Φ[t, v] is a strict Lyapunov functional:

Φ[0, v] = Φ[0,M[v]] ⇐⇒ v =M[v] a.e. on Ω,

∂tΦ[t, v] = 0 ⇐⇒ Φ[t, v] = Φ[0,M[v]] ⇐⇒ St[v] =M[v] on Ω ∀t > 0,

Φ[0, v] = Φ[t, v] for t > 0 ⇐⇒
{

v =M[v] a.e. on Ω and
Ss[v] =M[v] on Ω,∀s ∈ (0, t].

• Convergence

lim
t→∞
‖St[v]−M[v]‖p = 0 for p ∈ [1,∞).

We have listed these properties in such detail, because later we want to show that we can pre-
serve many of this continuous properties in equivalent form in the discrete-quantized setting
(Section 2.3.3 on page 49).

18

2.1 Continuous PDE Based Image Processing

2.1.1.3 Related Work

The non-linear diffusion models as we know them today were first introduced by a work of
Perona and Malik [Perona and Malik, 1990]. Their model denoises images while retaining
and enhancing edges. But analysis of the Perona-Malik model showed its mathematical ill-
posedness [Kawohl and Kutev, 1998; Kichenassamy, 1997; You et al., 1996]. A regularized
model [Catté et al., 1992] was derived, which can still preserve edges for an appropriately
chosen regularization parameter. A thorough rigorous axiomatic theory of these methods un-
der the term of scale-spaces was given in [Alvarez et al., 1993]. Different choices of the
non-linearity and especially the use of the so called structure tensor for direction sensitive
smoothing of images were presented in [Weickert, 1998].

2.1.2 Segmentation - Level-Set Methods

The distribution of intensities in an image is usually perceived as a collection of objects by
humans. Our visual system performs the task of segmenting the data into regions of certain
characteristics. The fact that these regions often represent known objects simplifies the task.
But even when meaning cannot be assigned, we still distinguish regions by certain features and
sometimes even complete them in mind despite the absence of the corresponding information
in the image. The human low level task of finding homogenous regions of some characteristic
is coupled with the recognition of objects. Computer segmentation, however, seeks to perform
the low-level task using appearance criteria only. The main difficulty lies in the appropriate
encoding of the target objects’ characteristics into these criteria. A very flexible method to
account for these characteristics is the controlled expansion of a curve. Starting with a small
circle such a curve is supposed to expand up to the borders of the segment in which it lies.
Different object characteristics can be encoded by steering the expansion velocity of the curve
with the local image values, their derivatives and the form of the curve. The level-set method is
an implicit formulation of this expansion process, which naturally incorporates curve splitting
and merging.

2.1.2.1 Curve Evolution

We are given the original image p : Ω→ R on Ω:= [0, 1]2 and the initial curve C0 : [0, 1]→ Ω.
We represent this curve implicitly as the zero level-set {x ∈ Ω

∣
∣φ0(x) = 0} of a continuous

function φ0 : Ω → R defined on the whole domain Ω. Then we ask for a solution φ :
R+ × Ω→ R to the level-set equation

∂tφ + fσ[φ] · ∇φ = 0 , in R+ × Ω ,

φ(0) = φ0 , on Ω ,
(2.5)

where fσ[φ] is the velocity field which drives the evolution of the level-set function φ. In case
of a complex velocity field with varying directions on the boundary it is not obvious how to

19

2 PDE Solvers in Quantized Image Processing

define boundary conditions for φ. Following [Sethian, 1999] we impose a mirror boundary
condition for φ on R+ × ∂Ω. The velocity field is usually composed of three different forces

fσ[φ] = fσ
g

∇φ

‖∇φ‖ + fκ[φ]
∇φ

‖∇φ‖ + fV ,

where fσ
g and fκ[φ] are forces in the normal direction of the level-sets and fV is independent

thereof. The square brackets denote operators, see Section 1.2.3 on page 6. The forces have
different impact on the evolution:

• External forces fσ
g (t, x) = c(t, x) + g1(p(x)) + g2(‖∇pσ(x)‖).

The first term c(t, x) can prescribe a default expansion speed and will usually be simply
a constant value. By using a characteristic function χR it can also favor the expan-
sion in an a-priori known region of interest R. The other terms take into account local
information of the image p and may take the following form:

g1(y) := Gµ,cg1
(y) = (2πcg1

2)−
1
2 exp

(

−1

2

(y − µ)2

cg1
2

)

,(2.6)

g2(y) := Pcg2
(y) =

1

1 + cg2y
2
,

with the similar use of the Gaussian function Gµ,cg1
and the Perona-Malik function Pcg2

as for the diffusion processes in Section 2.1.1.1 on page 15. The effect is to forward
expansion in areas with intensities similar to µ and small mollified gradients. The mol-
lification controlled by σ prevents too high sensitivity of the gradient to noise. Such
evolution produces segments with smoothly distributed intensity around µ. Depending
on the choice of cg1 and cg2 the similarity to µ or the smoothness of the segment is more
relevant.

• Curvature fκ[φ](t, x) = −cκκ[φ](t, x).
The curvature κ in two dimensions is given as

κ[φ] := ∇ · ∇φ

‖∇φ‖ =
φxxφ

2
y − 2φxφyφxy + φyyφ

2
x

(φ2
x + φ2

y)
3/2

,

where subscripts indicate partial derivatives here. The inclusion of this term will hamper
the formation of high curvature bends in the level-sets. This is especially useful in
preventing the propagation front from expanding through a narrow hole in an almost
complete segment border. By this one wants to mimic to a certain degree the human
ability for form completion. The general effect is an evolution of smoother level-sets.

• Velocity field fV (t, x) = V (t, x).
Level-set methods are often used in the tracking of phase boundaries between different
materials or material states. In these applications the whole system is usually subjected
to forces which act on the interface independent of its form. Therefore, the possibility
of an external velocity field interfering with the evolution is given. But also in the case

20

2.1 Continuous PDE Based Image Processing

of segmentation such a field may be useful to penalize the deviation of the segment from
an a-priori given default form. This feature could also help to complete a segment in
areas where the boundary information is missing in the data.

The solution φ : R+×Ω→ R of the problem represents a family of successively evolved level-
sets L(t, c):= {x ∈ R2|φ(t, x) = c}, c ∈ R. The curves L(t, 0), t ≥ 0 describe the evolution
of our initial curve C0 = L(0, 0). In the asymptotic state t→∞ the curve L(t, 0) converges to
an equilibrium of forces or expands over the borders of the image. For applications, however,
we are interested only in a finite and preferably short evolution time T , such that the process
is stopped as soon as the changes in the level-sets become very small.

2.1.2.2 Hamilton-Jacobi Equation

By introducing the Hamilton function H(u):= fp‖u‖+fV ·u we may reformulate the level-set
equation in the form of a Hamilton-Jacobi equation

∂tφ + H(∇φ) = cκκ[φ]‖∇φ‖.

with a parabolic viscosity term on the right hand side. Further setting u:= ∇φ and differenti-
ating the above equation leads to the hyperbolic conservation law:

∂tu +∇(H(u)) = cκ∇
(

‖u‖∇ u

‖u‖

)

.(2.7)

Because of their importance in physics conservation laws and their numerical implementations
have been studied thoroughly [Corrias et al., 1995]. Therefore, this alternative perspective on
the level-set equation helps us later to find the appropriate discretization.

2.1.2.3 Related Work

Active contour models which describe the evolution of a initial curve driven by the underlying
image, external data and curve form have become a very popular tool in image segmentation
[Osher and Sethian, 1988]. The development started with explicitly parameterized curve rep-
resentations. But the key disadvantage of this method is a topological constraint: the curve
cannot split to approximate boundaries of not simply connected segments. Such problems
have been solved by introducing implicit models [Caselles et al., 1993; Malladi et al., 1995],
in which the initial curve is interpreted as the zero level-set of a function defined on the whole
domain. The evolution of this function is controlled by a PDE [Sethian, 1999]. Sensitivity of
the process to initialization has been later reduced by an appropriate choice of driving forces
[Xu and Prince, 1998]. Furthermore a general variational framework for Mumford-Shah and
Geman type functionals [Geman et al., 1990; Mumford and Shah, 1985] has been introduced
[Hewer et al., 1998], where edge boundaries are represented by a discontinuous function,
yielded by the minimization of an energy functional.

21

2 PDE Solvers in Quantized Image Processing

2.1.3 Registration - Energy Gradient Flows

Images often come as a series of exposures of the same object from different times or perspec-
tives, sometimes even acquired by different imaging technologies. The series are used for the
analysis of temporal changes or the overall structure of the object. The analysis requires an in-
formation correlation between two images. A correlation is ideally given by a deformation of
the images which matches the object representation of the first image onto that of the second.
The quality of the deformation depends on the definition of optimal matching criteria.

For a clearly arranged configuration the human visual system quickly suggest an appropriate
deformation. But without any semantic knowledge about the content of the images in the
computer, the matching criteria must rely solely on the image intensities and their geometric
distribution and therefore often do not suffice to pinpoint the optimal deformation, especially
when the images contain a diffuse distribution of intensities; then we are faced with a multitude
of possible solutions and must introduce some reasonable assumptions on the deformation to
distinguish among them. Energy gradient flows allow a very flexible way to define and control
these additional assumptions which are crucial in the search for a reasonable image correlation.

2.1.3.1 Energy Model

Given two images, a template and a reference T,R : Ω → R, Ω ⊂ R2, we look for a de-
formation φ : Ω → Ω which maps the intensities of T via φ to the intensities of R such
that

T ◦ φ ≈ R .

Since φ is usually small in comparison to |Ω| it can be suitably expressed as φ = 11 + u, with a
displacement function u. The displacement u is sought as the minimum of the energy

E[u] =
1

2

∫

Ω

|T ◦ (11 + u)−R|2 .

The square brackets are used for operators, see Section 1.2.3 on page 6.

A minimizer u in some Banach space V is characterized by the condition
∫

Ω

E ′[u] · θ = 0 ,

for all θ ∈ [C∞
0 (Ω)]2, with the L2-representation of E ′

E ′[u] = (T ◦ (11 + u)−R)∇T ◦ (11 + u) ,

if we assume T to be smoothly differentiable. This gradient may be used as the descent
direction towards a minimum in a gradient descent method. But there may be many minima
since any displacements within a level-set of T do not change the energy. To guarantee that the

22

2.1 Continuous PDE Based Image Processing

gradient descent converges to a unique solution, we have therefore to exclude solutions which
contain irregular mappings within the level-sets of T by applying a regularization technique.
The descent along the gradient will be regularized by A(σ)−1, with

A(σ) = 11− σ2

2
∆, σ ∈ R+ .

Then the regularized gradient flow

∂tu = −A(σ)−1E ′[u] , in R+ × Ω ,

u(0) = u0 , on Ω ,
(2.8)

has a unique solution u with u(t) ∈ V for some function space V (Theorem 3.1 [Clarenz et al.,
2002]). In the implementation the regularization with A(σ)−1 can be quickly realized by a
multi-grid cycle with few smoothing steps, because we do not require the exact solution but
rather the smoothing properties.

2.1.3.2 Multi-Scale Hierarchy

Since the energy E is non-convex the gradient descent path may easily get trapped in lo-
cal minima instead of finding the global minimum of E. Therefore, a continuous annealing
method is used by defining a multi-scale of image pairs

Tε := S(ε)T,(2.9)
Rε := S(ε)R,

for ε ≥ 0 with a filter operator S. The choice S(ε) = A(ε)−1 corresponds again to a Gaussian
filtering. The energy

Eε[u] =
1

2

∫

Ω

|Tε ◦ (11 + u)−Rε|2

induces the corresponding gradient flow on scale ε, which has the solution uε.

For the annealing process we choose an exponentially decreasing series of scales (εk)k=0,...,K ,
K ∈ N with ε0 = 0 and use the approximate solution of the gradient flow problem from a
coarser scale εk at a sufficiently large time tεk

as the initialization for the gradient flow problem
on a finer scale εk−1, i.e. we perform:

uεK
(0) := 0,

uεk−1
(0) := uεk

(tεk
) ,

for i = K − 1, . . . , 1 until the final solution uε0(tε0) on the finest scale ε0 is reached. In the
implementation the multi-scales can be efficiently encoded in a multi-grid hierarchy.

23

2 PDE Solvers in Quantized Image Processing

2.1.3.3 Related Work

If we measure image coherence by the energy E[u] = 1
2

∫

Ω
|T ◦φ−R|2, where T,R are the in-

tensity maps of the images and φ the deformation, then the minimization problem is ill-posed,
because arbitrary deformations within the level-sets of T do not change the energy. There-
fore, many regularizations of the registration problem have been discussed in the literature
[Christensen et al., 1997; Davatzikos et al., 1996; Grenander and Miller, 1998; Maes et al.,
1997; Thirion, 1998]. The registration approach given above was introduced in [Clarenz et al.,
2002]. But the ideas are similar to the iterative Tikhonov regularization methods [Hanke and
Groetsch, 1998], fast multi-grid smoothers [Henn and Witsch, 2001] and multi-scale use for
large displacements [Alvarez et al., 2000] presented previously.

2.2 Discretization - Quantization

In this section we develop a common setting for the discretization and quantization of the
continuous models. The similar treatment offers advantages for the analysis of the discrete
algorithms and already pays attention to hardware issues by explicitely exposing the inherent
parallelism of the algorithms. The similar structure of the algorithms is also important for the
reuse of the same architecture for different image processing tasks.

Concerning the quantization we give a short overview of different number formats, their short-
comings with respect to accuracy in computations and attempts to remedy these problems.
Then we concentrate on methods which help to conserve the qualitative behavior of the con-
tinuous models even under quantization that is so coarse that it defeats the direct methods of
error enclosure or statistical control. Error analysis of this methods shows also the limitations
of this approach.

2.2.1 Discrete Operators

Although the introduced models for denoising, segmentation and registration are fairly differ-
ent they have the common form:

∂tu + F [Cp
σ[u], u] = 0 , in R+ × Ω ,

u(0) = u0 , on Ω ,
(2.10)

with an additional condition on R+×∂Ω for the generic diffusion model and the level-set equa-
tion which involve spatial derivatives of the unknown. Here, Cp

σ[u] and F [u, v] are operators

24

2.2 Discretization - Quantization

on the Banach space V . For the discussed problems they read:

problem equation Cp
σ[u] F [u, v]

denoising Eq. 2.1 on page 16 G(∇uσ) −div (u∇v)

segmentation Eq. 2.5 on page 19 fσ[u] u · v
registration Eq. 2.8 on page 23 A(σ)−1E ′[u] u

(2.11)

The non-linear operator Cp
σ[u] serves as a local classifier, i.e. the function u is locally classified

with respect to the desired evolution. The indices p and σ indicate that the classifier may
depend on additional input data p and regularization parameters σ, which control the data
sensitivity of the process. The result of the operator can be considered as a weight function,
which determines the magnitude of impact of the regions of u at the current time t on the
evolution of u. The operator F [u, v] performs the application of these weights. It may still
involve spatial derivatives, but has to be linear in u and either also linear in v or independent
of v.

The unified PDE scheme for the problems (Eq. 2.10 on the facing page) helps us to define a
common discretization approach.

2.2.1.1 Time Discretization

We use explicit and implicit schemes for time discretization. The simple explicit Euler gives:

un+1 = un − τn · F [Cp
σ[un], un].(2.12)

This schemes has the advantage of fast execution and allows good control of quantization
effects but is quite restricted in the time-step width τ n. The Courant-Friedrichs-Levy (CFL)
condition requires that

‖τn · F [Cp
σ[un], un]‖∞ < h ,(2.13)

if h is the element grid size in the spatial discretization, i.e. information is prohibited to cross
a whole grid cell in one time-step. We will use the explicit discretization for the level-set
method in the segmentation problem and the gradient descent in the registration problem.

The fully implicit Euler scheme

un+1 + τn · F [Cp
σ[un+1], un+1] = un ,(2.14)

would give us unconditional stability, but the implicit treatment of the non-linearities in C p
σ

would require very sophisticated and computationally intensive solvers. Instead, we take a
middle course by treating the linear terms implicitly and the non-linearities explicitely. This
semi-implicit scheme gives us good stability and leads to a linear instead of a non-linear equa-
tion system after spatial discretization:

un+1 + τn · F [Cp
σ[un], un+1] = un .

We will use this scheme for some of the diffusion models.

25

2 PDE Solvers in Quantized Image Processing

2.2.1.2 Space Discretization

An equidistant quad mesh underlies our spatial discretizations. The reason for this choice
lies in the tremendous parallelization and pipelining opportunities resulting from this simple
structure. Certainly, the missing adaptivity requires a finer overall grid size h, but the simply
structured algorithms can be mapped onto the hardware architectures so well, that the gained
performance almost always outweighs computing time associated with the additional degrees
of freedom. Moreover, input data in image processing naturally comes as rectangular images
without any geometry beneath. In case where input data comes from simulations on compli-
cated, possibly unstructured grids, one may consider a fast resampling in the hardware onto a
Cartesian grid before the processing [Westermann, 2001].

A hardware efficient approach to adaptivity is the division of the domain into blocks, where
each block contains an equidistant grid, or more generally a deformed tensor grid. The do-
main is then processed block by block such that each time the operations are performed on a
regular array of data and only boundary values must be appropriately exchanged. This tech-
nique provides a transition layer from fully adaptive meshes to hardware accelerated adaptive
computing and with the appropriate choice of parameters can be used for different hardware
architectures [H.Becker et al., 1999]. For parallel computers it has the additional advantage
that the regular form of the blocks facilitates domain decomposition and load balancing. In the
following we do not develop such a layer but rather concentrate on the optimal discretization
and quantization of the individual blocks.

The domain Ω = [0, 1]2 is discretized by a Nx ×Ny equidistant grid Ωh with grid size h. The
nodes of the grid are indexed by a 2-dimensional multi-index α = (αx, αy) ∈ (0, . . . , Nx −
1)× (0, . . . , Ny − 1). This grid is used as a basis of either Finite Difference or Finite Element
schemes. The bilinear discrete functions, e.g. U : Ω → R+

0 , are denoted by capital letters.
The images of size (Nx, Ny) are represented by the corresponding nodal vectors, e.g. (Ūα)α

with Ūα:= U(h · α). Figure 2.1 on the next page shows the indices of the grid, and the local
situation with local index offsets γ:= β−α and the neighboring elements Eγ

α for a given node
α.

2.2.2 Quantization

Quantization refers to the representation of a continuous quantity by a finite set of values.
The values are often equally distributed over the range of the continuous quantity. Certainly,
we commit an error in such a process. In digital systems quantization error arises from the
quantization of the input data, the quantization of the problem parameters and roundoff errors,
i.e. quantization of intermediate results. Because quantization is a necessity, both the data
[Gray and Neuhoff, 1998] and the arithmetic error [Bornemann et al., 2004; Higham, 2002]
have been studied intensely, and the references above cover a wide range of topics and point
to an extensive additional literature.

Although there are software packages which offer number formats of arbitrary precision or

26

2.2 Discretization - Quantization

Figure 2.1 On the left an equidistant Nx × Ny grid enumerated by a tuple, on the right the
neighboring elements of a node and the local offsets to neighboring nodes.

algebraic number representations one almost always opts for a compromise between accuracy
and performance, because time is often a critical factor in applications. In particular in image
processing performance often has highest priority and the quality of results depends on global
features rather than exact computations in detail. Because quantization of the analog signals
occurs during the acquisition process of images we will be mainly concerned with the round-
off error in the processing. Depending on the actual quantization the effects of the roundoff
as the cause of error in arithmetic operations and the interaction of these effects can be quite
different. In the following we will consider the most common quantizations with fixed pre-
cision, namely the floating point and the fixed point number formats, their shortcomings and
their contributions to numerical stability.

2.2.2.1 Floating Point Numbers

Floating point formats are the most common number representations in scientific computing.
Their great advantage is that the separate representation of an exponent allows to cover a large
number range with relatively few bits. A floating point number systemQFP(β, t, emin, emax) ⊂
Q is given by

QFP(β, t, emin, emax) := {±m · βe−t
∣
∣m ∈ [0, βt − 1] ∩ N, e ∈ [emin, emax] ∩ Z},(2.15)

where the variables have the following meaning:

• β, the base or radix.
It defines the base of the number system used for the floating point numbers, typically
β = 2.

• e, the exponent.
It describes the scale on which a number resides. The range of the exponent [emin, emax]

27

2 PDE Solvers in Quantized Image Processing

depends on the number of bits reserved for its representation and the number of special
cases, e.g. emin = −126, emax = 127 in the IEEE-754 single precision format. The
exponent is represented as an unsigned 8 bit ē ∈ [0, 255] biased by −127. The value
ē = 0 is reserved for denormalized numbers (see below), and ē = 255 for infinite or
undefined numbers.

• m, the significand or mantissa.
It represents the equidistantly spaced floating point numbers on a given scale,

• t, the precision.
It describes the fineness of the number spacing on a given scale.

To ensure a unique representation one requires that for non-zero numbers β t > m ≥ βt−1

holds, and speaks of a normalized representation. In case of base 2, the most significant bit
in m in the normalized representation is always one and thus needs not to be stored, one says
that the hidden bit is 1. Many floating point number systems support so called denormalized
numbers with a hidden bit 0 indicated by a special value of the exponent. Denormalized
numbers represent additional floating point numbers which lie between zero and the smallest
normalized number. We will not further elaborate on these special cases indicated by reserved
exponent values.

A typical example of a fixed precision floating point format is the IEEE-754 s23e8 single
precision format with 1 sign bit, 23 bits of mantissa and 8 bits for the exponent. The format
uses the base β = 2 and has the precision t = 24, which is one larger than the number of bits
reserved for the mantissa, because of the hidden bit.

We define the increment operator and the decrement operator on Q which define the succeed-
ing or preceeding number respectively:

incQ(x) := min{q ∈ Q
∣
∣q > x},

decQ(x) := max{q ∈ Q
∣
∣q < x} .

Then incQ(0) is the smallest representable positive non-zero number and incQ
(
incQ(0)

)
the

next one. Now the question arises how the distances between succeeding numbers vary and
the following definition gives the answer. The machine epsilon εQ is defined as the distance
from 1.0 to the next larger floating point number

εQ := incQ(1.0)− 1.0 ,(2.16)

and since 1.0 is represented as βt−1 · β1−t we have

εQ = β1−t .

This quantity describes the spacing of floating point numbers on a given scale, i.e. numbers
on the scale e lie in [βe−1, βe) and have the equidistant spacing εQ ·βe−1 = βe−t, e.g. numbers
on the scale 1 lie in [1.0, β) and have the spacing εQ.

28

2.2 Discretization - Quantization

The general question how good we can approximate real numbers with the floating point
number system Q across all scales is answered by the following quantity. The unit roundoff
is the minimal upper bound on the relative error in approximating a real number:

uQ := min

{

u ∈ R
∣
∣∀x ∈ WQ : ∃q ∈ Q :

|x− q|
|x| < u

}

,(2.17)

WQ := R ∩ [minQ, maxQ] \ [decQ(0), incQ(0)].

Since |x−q|
|x| is invariant to scaling, we can rescale an arbitrary x ∈WQ\Q by powers of β such

that x̃ ∈ (1.0, β), if x ∈ Q then the relative error is zero. The floating point numbers in [1.0, β)
are equidistantly spaced with εQ and therefore there is a q̃ ∈ Q such that |x̃− q̃| ≤ 1

2
εQ. The

inequality |x̃−q̃|
|x̃| < 1

2
εQ becomes strict, because x̃ ∈ (1.0, β). Thus we have

uQ =
1

2
εQ =

1

2
β1−t.(2.18)

It is important to realize that floating point numbers only control the relative error |x−q|
|x| very

well, but the absolute error |x − q| varies strongly from as little as 1
2
βemin−t to as much as

1
2
βemax−t. Most of the error analysis of floating point arithmetic therefore relies on the assump-

tion:

x } y = (x ◦ y)(1 + ε), ◦ ∈ {+,−, ·, /}, |ε| ≤ uQ ,

where } denotes the corresponding approximate operation in floating point numbers. This
means that the approximate result of the computation x } y has a relative error ε bounded in
the same way as if the result was exactly computed and then rounded to the nearest floating
point number.

There exists a considerable number of results deduced from this assumption and we refer to
[Higham, 2002] for an extensive discussion of them. Although computations in common float-
ing point units fulfill stronger assumption on the properties of floating point operations, these
additional properties are seldomly used to prove better error bounds [Priest, 1992]. But despite
the fact that the machine results are often more accurate than the rigorous estimates predict,
the finite precision arithmetic still bears some vicious roundoff effects. In the following we
sketch some of the problems in floating point roundoff.

We consider the function

f(x, y) := (333.75− x2)y6 + x2(11x2y2 − 121y4 − 2) + 5.5y8 + x/(2y)(2.19)

at x0 = 77617, y0 = 33096. This is a modified version [Loh and Walster, 2002] of Rump’s
function [Rump, 1988]. A straight-forward C++ program compiled with the GNU Compiler
2.95.3 on a Pentium 4 Linux system with the powers expanded to multiplications gives:

float s23e8 f(x0, y0) =Q 1.1726,

double s52e11 f(x0, y0) =Q 1.17260394005318,

29

2 PDE Solvers in Quantized Image Processing

long double s63e15 f(x0, y0) =Q 1.172603940053178631 ,

where ”=Q” denotes the evaluation under the respective quantization Q. We are inclined to
trust in the result, since increased precision only appends further decimal positions. But all
results are wrong and even the sign is wrong. A variable precision interval arithmetic tool
[Ely, 1990] encloses the result in the interval

[−0.827396059946821368141165095479816292005,

−0.827396059946821368141165095479816291986].

Because floating point numbers work very well most of the time, we do not expect such sudden
difficulties, even though the unavoidable rounding with roundoff errors as the actual cause of
such problems is clear to us. The erroneous results stem from the handicap of fixed precision
floating point format in which the exponent allows to represent numbers on many scales but
their interference leads to roundoff errors, which can be dramatically enlarged by cancellation,
e.g. for s24e8 floats we have:

additive roundoff a = 108 + 4 =Q 108,

multiplicative roundoff b = (104 + 2) · (104 − 2) =Q 108,

cancellation c ∈ {a, b} (c− 108) · 108 =Q 0 .

We see how cancellation easily promotes the absolutely (4) and relatively (4 · 10−8) small ad-
ditive and multiplicative errors to an absolute error of 4 · 108 and an infinite relative error. We
also notice that the order of operations may play an important role in computations. Although
in the above example changing the order to (108 − 108 + 4) · 108 easily solves the problem,
there is no general rule for avoiding the cancellation in concurrent additions [Higham, 1993].
However, despite the unavoidable roundoff one can still obtain reliable results with computer
arithmetic. So called enclosure methods can provide rigorous bounds for the result of an al-
gorithm, including all intermediate rounding errors. They often use directed rounding modes,
exact dot products and variable precision arithmetic to achieve this goal. An overview of the
literature on these verified numerical results can be found in [Bohlender, 1996]. In our case
of low precision implementations we would need unreasonably many computations to prevent
the interval bounds derived in such methods from expanding to the whole number range.

We will use floating point arithmetic in the registration problem, but not so much because of
the exponent but rather because of a lack of higher precision fixed point formats in graphics
hardware. Fixed point formats may be seen as a special case of floating point formats with zero
bits for the exponent. Then, all numbers are represented on the same scale and the problems
with roundoff errors become rather different.

2.2.2.2 Fixed Point Numbers

Fixed point computations require only integer arithmetic and are therefore extremely fast and
efficient in terms of hardware resource requirements. However, they represent numbers on a

30

2.2 Discretization - Quantization

single scale and therefore quickly suffer from over- or underflow. Similar to the floating point
number system we define the fixed point number system QFX(β, t, ε) ⊂ Q as

QFX(β, t, ε) := {m · ε
∣
∣m ∈ [−βt, βt − 1] ∩ Z},(2.20)

with β as the base, t the precision and ε the scale. The numbers discretize the interval [−β t ·
ε, (βt − 1) · ε] in equidistant steps of ε. In analogy to the floating point format (Eq. 2.16 on
page 28) we will call this quantity associated with the quantization Q the machine epsilon εQ

and we have two major choices:

• εQ = βe−t.
The exponent e < t gives the number of positions in the integral part, and t − e gives
the number of positions in the fractional part. The represented numbers have the form
m · βe−t and contain the floating point numbers with precision t on scale e, but each
lower scale e1 ∈ [e− t + 1, e− 1] is represented with the lower precision t− (e− e1).

The problem with this format is the missing representation of the integer βe. When we
want to cover the interval [−1, 1] (i.e. e = 0), this means that 1.0 cannot be represented.
In floating point formats, this is not a problem, because 1.0 is represented on the next
scale, but here we have only one scale and choosing e = 1 would mean that we reduce
the precision on scale 0 for the interval [−1, 1] by a factor of β.

• εQ = 1/(βt−e − 1).
This format intends to overcome the problem of non-representation of βe, especially in
the case β0 = 1.0, at the cost of a non-power of two machine epsilon. It has the dis-
advantage that very few fractions can be represented exactly (β t−e − 1 has usually few
factors) and rounding in multiplications is more complicated. This choice leads also
to a precision dependent over-representation outside of the integral interval [−β e, βe],
producing overflows at artificial values. But one can clamp the result to the above inter-
val, and moreover in the most common case e = 0 there is only one over-represented
number namely −βt/(βt − 1).

The great advantage of this format is definitely the exact representation of −βe, 0, βe,
in particular −1, 0, +1 in the special case e = 0. The representation of the neutral
elements of addition, multiplication and its inverse guarantees that in repeated additions
and multiplications certain areas of the computational domain can remain unchanged or
only change the sign, without having to specify a different operation on them.

In contrast to the small relative error of approximating real numbers by the floating point
number system (Eq. 2.18 on page 29), the unit roundoff uQ for a fixed point quantization is
quite irrelevant, because the choice x = 3

2
εQ in Eq. 2.17 on page 29 implies that

uQ >
1

3
.(2.21)

This means that fixed point formats have a very bad relative error |x−q|
|x| in the approximation

of real numbers and instead we should consider the absolute error |x− q|.

31

2 PDE Solvers in Quantized Image Processing

Obviously we can define a mapping roundQ
µ : R → Q called rounding function, such that for

all x ∈ R ∩ [minQ, maxQ] we have

|roundQ
µ (x)− x| < εQ .

The subscript µ ∈ d ∪ n indicates the different rounding modes. The directed rounding
modes d:= {0,∞,−∞, +∞} with rounding towards zero, rounding towards infinity, round-
ing towards minus infinity, rounding towards plus infinity, and the nearest rounding modes
n:= {n↑, n↓, n2} are defined by

− εQ < |roundQ
0 (x)| − |x| ≤ 0,(2.22)

εQ > |roundQ
∞(x)| − |x| ≥ 0,

−εQ < roundQ
−∞(x)− x ≤ 0,

εQ > roundQ
+∞(x)− x ≥ 0,

−εQ/2 ≤ |roundQ
n
(x)− x| ≤ εQ/2 .

The nearest modes are distinguished by the choice of rounding εQ/2 up or off. The usual
approach is either to constantly round up (n↑) or to round to even (n2), such that for uniformly
distributed numbers 50% of the εQ/2 cases would be rounded up and the other 50% rounded
off. Rounding to even has some advantages when considering consecutive rounding, because
it prevents the so called drift [Goldberg, 1991]. Constant off-rounding (n ↓), however, has
in some cases the great advantage that much fewer resources are needed for an associated
multiplication with rounding (Section 4.2.3.1 on page 161). For the general error analysis,
however, the choice of the tie breaking strategy has little effect and most of the time we will
refer to the nearest rounding modes simultaneously by the index n.

Even without a good global relative error bound (Eq. 2.21 on the preceding page), sometimes
it is advantageous to consider the relative error relation:

roundQ
µ (x) = xλµ(x) ,(2.23)

with λµ(x) ∈ R+
0 and the bounds

λ0(x) ∈ [0, 1],(2.24)
λ∞(x) ∈ [1,∞),

λn(x) ∈ [0, 2] .

The first two bounds are clear from the definition. In case of nearest rounding, roundQµ (x)

x
attains

a maximum for the smallest x which is rounded up, i.e: roundQµ (εQ/2)

εQ/2
= εQ

εQ/2
= 2. We obtain

the interval [0, 2) if we choose to round down εQ/2, but this is a negligible improvement. For
the rounding modes {−∞, +∞} there are no bounds.

The hardware efficiency of the fixed point computations has its price when it comes to roundoff
errors. We review three major problems on the basis of the QFX(2, 9, 2−9) quantization with
the (n↑) rounding mode:

32

2.2 Discretization - Quantization

• Underflow in multiplications 2−5 · 2−5 =Q 0.
This error occurs even though 2−5 = 1/32 = 0.03125 is fairly large in comparison to
εQ = 0.001953125. Such underflow in particular violates the distributive law:

∑

i

(a · bi) �Q a ·
∑

i

bi

for positive bi and sufficiently small a. As we have seen above this can happen very
easily and the length of the sum further amplifies this effect.

• Overflow or saturation in additions (−0.5) + (−0.7) =Q −1.
Here we have applied the saturation, which means that if the computed number would
exceed the represented number range the result clamps to the last representable number
with the same sign. This is especially critical in scalar products and matrix vector oper-
ations. To avoid overflow or saturation we may be forced to rescale sums

∑

i∈I bi by the
number of addends |I| and compute

∑

i∈I
bi

|I| instead, however this reproduces the first
problem.

• Aliasing in the evaluation of non-linear functions f(x):= 1
512x

, f({342
512

, . . . , 511
512
}) = 1

512
.

One third of the positive number range is mapped onto the same result. The information
carried by the different values is lost and their differences cannot have any impact on the
solution any more. Instead, the change from f(342

512
) = 1

512
to f(341

512
) = 2

512
artificially

obtains high relevance for the solution of the algorithm although the derivative of the
function at this point is very small f ′(341.5

512
) ≈ −0.0044.

Since these problems are inherent to the fixed point format, we will have to cope with them
in the algorithms. The primary and most effective strategy will be to reformulate the discrete
schemes such that the whole represented number range is used and small and large factors
equalize each other after factorization. On the implementational level we will also consider
changing the order of operations, fixed point sensitive approximations to non-linear functions
and if possible variable precision arithmetic in intermediate computations.

2.2.2.3 Numerical Stability

There are several ways of measuring a numerical error for a given quantization. Let us denote
by f : X → Y the exact algorithm which produces an exact result y ∈ Y for an exact input
x ∈ X and let fQ : X → Y denote the approximative algorithm working with some finite
precision Q. Then we may define the forward errors for x ∈ X as

absolute forward error |f(x)− fQ(x)|,
relative forward error |f(x)− fQ(x)|/|f(x)| .

With these errors we measure how much the approximate solution fQ(x) obtained with the
precision Q differs from the exact solution f(x).

33

2 PDE Solvers in Quantized Image Processing

The backward errors for x ∈ X are defined as

absolute backward error inf
{∆x∈X−x

∣
∣f(x+∆x)=fQ(x)}

|∆x|,

relative backward error inf
{∆x∈X−x

∣
∣f(x+∆x)=fQ(x)}

|∆x|/|x| .

With these errors we measure by which perturbation of the data x + ∆x we can explain the
approximate solution fQ(x) we have obtained.

One can also define mixed forward-backward errors requiring that there should exist abso-
lutely or relatively small ∆x, ∆y such that

f(x + ∆x) = fQ(x) + ∆y .

Then if |∆x|
|x| and |∆y|

|f(x)| are small in comparison to the number of operations necessary for the
evaluation of fQ we can call the implementation fQ numerically stable. Depending on the
problem one may want to vary the meaning of ”small”. A typical condition would require

|∆x|
|x| ≤ N fQ

uQ + o(uQ) ,

|∆y|
|f(x)| ≤ N fQ

Krel(f)uQ + o(uQ) ,

where N fQ is the number of elementary operations in fQ, uQ is the unit roundoff and Krel(f)
the relative condition of f defined by

Krel(f) := inf

{

K ∈ R
∣
∣∀x :

|f(x̃)− f(x)|
|f(x)| ≤ K

|x̃− x|
|x| + o

(|x̃− x|
|x|

)

for x̃→ x

}

.

The problem with these conditions is, that they are only useful for quantizations which satisfy
uQ � 1/N fQ , otherwise it is hardly sensible to talk of numerical stability although ∆x and x
are of approximately the same order. The common floating point formats satisfy this condition

IEEE single s23e8 uQ ≈ 6.0 · 10−8 ,

IEEE double s52e11 uQ ≈ 1.1 · 10−16 ,

IEEE extended s63e15 uQ ≈ 5.4 · 10−20 ,

although the single precision format may already run into problems since current micro-
processors execute elementary operations at several GHz = 109Hz.

In case of fixed point number formats used in graphics hardware and reconfigurable comput-
ing this definition of numerical stability makes no sense, since we have seen that uQ > 1

3

(Eq. 2.21 on page 31). The fixed point format rather controls the absolute error such that we
are better advised to require that

|∆x| ≤ N fQ

εQ + o(εQ) ,

34

2.2 Discretization - Quantization

|∆y| ≤ N fQ

Kabs(f)εQ + o(εQ) ,

where N fQ is again the number of operations in fQ, εQ is the machine epsilon and Kabs(f)
the absolute condition of f defined by

Kabs(f) := inf
{
K ∈ R

∣
∣∀x : |f(x̃)− f(x)| ≤ K|x̃− x|+ o (|x̃− x|) for x̃→ x

}
.

In this case the size of the machine epsilon of the number formats available for implementation
in comparison to the number of involved operations is crucial:

QFX(2, 8, 2−8) εQ ≈ 3.9 · 10−3 ,(2.25)
QFX(2, 12, 2−12) εQ ≈ 2.4 · 10−4 ,

QFX(2, 16, 2−16) εQ ≈ 1.5 · 10−5 ,

where QFX(β, t, ε) has been defined in Eq. 2.20 on page 31. For a typical image processing
application with tens of local operations and tens to hundreds of iterations we see that we are
at loss with the signed 9 bit format. The additional 8 bit in the signed 17 bit format can make
a big difference here, possibly bounding the overall error below few percent of the number
range. However, even these few percent would become visually disturbing, if they formed a
pattern. Therefore, in fixed point arithmetic a different approach is often chosen. Instead of
trying to control the individual errors one investigates the distribution of the roundoff error
and tries to show that under certain conditions, this distribution may be assumed uniform.
This assumption is referred to as the white-noise model [Jackson, 1970; Urabe, 1968; Welch,
1969]. Although one can formulate conditions for which the white-noise assumption is justi-
fied [Barnes et al., 1985; Wong, l99O], the same papers demonstrate that various distributions
of the input signal violate these conditions and that then the output error differs significantly
from the predictions of the white-noise model. Especially when the errors are examined for
digital filters and not single multiplications [Mulcahy, 1980; Wong, 1991], the error spectra
differ dramatically from those derived by the white-noise model. Moreover, the output errors
are also very sensitive to the characteristics of the input signal, such that it is very hard to give
any reasonable bounds on the error unless the distribution of the input signals hardly varies
and is known quite exactly in advance.

Recently a thorough justification of the white-noise model for fixed point roundoff errors in
digital systems under very general conditions on the input signal and the involved coefficients
has been given [Vladimirov and Diamond, 2002]. The result states that the joint probabilistic
distribution of the input and the error weakly converges to the joint distribution of the input
and a uniformly distributed vector as the step size of the quantization converges to zero. From
a general point of view this result is very satisfactory, since it shows that the deterministic
dependence of the error on the input signal breaks down in favor of a uniform distribution in
the limit. However, in our implementational cases where εQ is fairly large we cannot deduce
any bounds on the error from the asymptotic behavior.

This knotty situation, that in general neither good deterministic nor probabilistic error bounds
can be attained for low precision fixed point computations, has lead to the development of fixed

35

2 PDE Solvers in Quantized Image Processing

point error simulators and analysis tools which give the engineer the possibility to concentrate
on the concrete implementation and optimize it in terms of performance and accuracy [Bauer
and Leclerc, 1991; Coster et al., 1996; Kim et al., 1998; Sung and Kum, 1995; Wadekar and
Parker, 1998; Willems et al., 1997a]. In conjunction with these tools, floating point to fixed
point translators are used to minimize design time and to automatize number range scaling
and word-length optimizations [Cmar et al., 1999; Keding et al., 1998; Willems et al., 1997b].

We will also deal individually with the different applications, but our focus lies on the preser-
vation of global invariants and reproduction of the qualitative behavior known from the contin-
uous models rather than to optimize the accuracy of each individual operation. This approach
is most suitable for image processing applications since we are interested in certain charac-
teristics of the image evolution and not the individual values. In this way we will be able to
obtain satisfactory results despite the inability to control the component-wise deterministic or
probabilistic error in the long run.

2.2.3 Quantized Operators

Here we define the quantized operators which will be used throughout the rest of the work.
We analyze the possibilities of controlling global features of vector operands which undergo
quantized operations. The quantization model is tailored to the fixed point number system, but
the floating point number system also fulfills the same conditions, if we restrict the exponent
to one or just a few scales.

In Section 2.2.2.2 on page 30 we have seen that fixed point number formats can vary in a
number of parameters and in fact different hardware architectures use different formats. In
graphics hardware even incompatible number formats are used simultaneously. By introduc-
ing a formal set of quantized operators we want to abstract from the low level differences and
allow a common analysis of their properties.

2.2.3.1 Arithmetic Operations

Given a quantization Q we will generally assume:

• Zero element 0 ∈ Q.
This is reasonable since a missing neutral element of addition causes many problems,
but not all quantizations in practice fulfill this requirement. The first realization of neg-
ative numbers in graphics hardware used the unsigned set 0, . . . , 255 and interpreted the
numbers as signed numbers −1 = 2·(0)−255

255
, . . . , 2·(n)−255

255
, . . . , 2·(255)−255

255
= 1. Because

the numerator is always odd, there is no representation of 0 in this quantization.

• Symmetry −a ∈ Q if a ∈ Q, a > 0.
This guarantees that Q contains a symmetric set of positive and negative numbers
around zero. However, there may be more negative than positive numbers, such that
some negative numbers cannot be negated in Q.

36

2.2 Discretization - Quantization

IdeallyQ will cover the interval [−1, 1] with an exact representation of 0, 1,−1, but in general
we can only assume the above two properties.

Equivalent to the standard arithmetic operations ◦ ∈ {+,−, ·, /} we introduce quantized op-
erations } ∈ {⊕,	,�,�} on Q, the notation is borrowed from [Goldberg, 1991]. Un-
fortunately Q together with the quantized operations does not constitute any of the standard
algebraic objects, but some of the properties are preserved.

• Saturation clampQ(x):= min (max (x, minQ) , maxQ) , x ∈ R.
We will assume that all operations saturate rather than overflow. In low precision hard-
ware this functionality is often explicitly implemented, otherwise it costs little additional
resources. The advantage of saturation is its continuity and monotonicity, while an over-
flow violates both, e.g.:

saturation maxQ+ incQ(0) =Q maxQ 511
512

+ 1
512

=Q
511
512

,

overflow maxQ+ incQ(0) =Q minQ 511
512

+ 1
512

=Q −1 ,

where incQ(0) is the smallest positive non-zero number and a QFX(2, 9, 2−9) format is
used in the examples on the right.

• Addition a⊕ b, a, b ∈ Q.

a⊕ b = clampQ(a + b) .

This means that addition is exact as long as the result stays within the representable
range, otherwise a saturation occurs.

• Subtraction a	 b, a, b ∈ Q.

a	 b = clampQ(a− b) .

Here we have a similar restriction as for the addition. We may define negation as

	b := 0	 b ,

and then

a	 b = a⊕ (b)

holds true if −b ∈ Q.

• Multiplication a� b, a, b ∈ Q.

a� b = roundQ
µ (clampQ(a · b)) .

The rounding modes indicated by µ are defined in Eq. 2.22 on page 32. Since different
hardware architectures have different rounding modes and we are not always free to

37

2 PDE Solvers in Quantized Image Processing

choose among them, some results will depend on the modes. But independent of the
rounding mode we have the following properties:

1� b = b if 1 ∈ Q,

0� b = 0 if 0 ∈ Q,

	a� b = 	(a� b) if −a,−(a� b) ∈ Q .

• Division a� b, a, b ∈ Q.

a� b = roundQ
µ (clampQ(a/b)) .

We have included the division for the sake of completeness. In concrete implemen-
tations we avoid divisions by non-powers of 2, because either they are impossible to
implement in the architecture or their use would cost unreasonably many resources.
Where divisions are unavoidable and |b| is well bounded from below, a discrete inverse
function fQ(b):= roundQ

µ (1/b) can be used, otherwise a two-dimensional discrete func-
tion fQ(a, b):= roundQ

µ (a/b) implements the division. However, in the latter case we
must also avoid a large co-domain, which would lead to frequent saturation.

2.2.3.2 Composed Operations

Once we have defined the quantized arithmetic operations, quantized composed operations
such as a matrix vector product

(
A� V̄

)

i
:=
⊕

j Aij � V̄j

can be derived from the standard arithmetic operations in a natural way. As the formulas
may be more complicated than that and in most cases all operations will be replaced by the
quantized equivalents, we define a quantized evaluation operator recursively by

evalQ(A) := A, A ∈ Qm×n,

evalQ(term1 ◦ term2) := evalQ(term1) } evalQ(term2) ,

where ◦ ∈ {+,−, ·, /} is the exact and } ∈ {⊕,	,�,�} the corresponding quantized oper-
ation. Since the quantized operations are not associative in general, the result of the quantized
evaluation operator depends on the order of the term splitting. We assume an evaluation order
from left to right unless otherwise stated. The quantized matrix vector product now reads:

evalQ(A · V̄) = A� V̄ .

In all our implementations the matrix A will be a thin band matrix, such that each component
sum will have only few (e.g. 9) multiplications and additions. However, overflow in additions
and underflow in multiplications can occur very quickly in low precision fixed point arithmetic
(see examples on page 32 in Section 2.2.2.2). Moreover, we have also seen that the order of
operations may have a great impact on the result and because the matrix vector product is
a key ingredient of the discrete schemes we must at least control the error distribution in its
result even if the precision is too low to guarantee certain error bounds in the long run.

38

2.2 Discretization - Quantization

2.2.3.3 Matrix Vector Product

In concrete implementations one notices that despite elaborate algorithm adaption to the fixed
point number system, the restricted precision still causes a significant deviation from the con-
tinuous results. But in the presented PDE based applications in image processing we are not
interested in the exact continuous process, at least not practically, but in an image evolution
which is governed by the characteristics modeled through the PDE. This qualitative behavior
can be reconstructed with a quantized solver, if we are able to control global attributes despite
arbitrary large local errors due to a coarse quantization.

The sum of all elements of a vector V̄ , representing the overall mass in the problem, is such a
global attribute. The elements of V̄ are typically changed by the application of a matrix, say
A. Formally the mass is preserved if A has unit column sum, as

∑

i Aij = 1 for all j implies:
∑

i

(
AV̄
)

i
=
∑

i

∑

j

AijV̄j =
∑

j

V̄j

∑

i

Aij =
∑

j

V̄j.(2.26)

Considering the underflow in multiplications we have seen in the previous Section 2.2.2 on
page 26, it is clear that we cannot preserve the equality in this formulation. For arbitrary num-
bers even floating point calculations violate it. Special exact dot product operations, which
perform an exact computation of a scalar product of two vectors with a single final rounding
after the summation, have been proposed to reduce roundoff in such matrix vector multipli-
cations. Although in this way iterative applications of A can still accumulate errors, the error
is not larger than produced by a series of basic arithmetic operations. At least for standard
floating point number formats this usually means that the error becomes negligible, but mul-
tiple iterations remain an issue for low precision fixed point formats even with the exact dot
product. For more details on this and related variable precision techniques we refer to [Schulte
and Swartzlander, 1996]. We will use variable precision arithmetic in intermediate computa-
tions, when our hardware allows the required configuration (Section 4.2.2.2 on page 159). For
inexpensive standard hardware products (e.g. graphics hardware in Section 4.1 on page 110),
which have processing elements of fixed width, we must come up with a different solution.

If A is symmetric and has unit row sum we may rewrite the matrix vector product as

AV̄ = V̄ + (A− I)V̄(2.27)
(
(A− I)V̄

)

i
=

∑

j

AijV̄j − 1 · V̄i =
∑

j

AijV̄j −
∑

j

Aij · V̄i =
∑

j:j 6=i

Aij(V̄j − V̄i)

(
AV̄
)

i
= V̄i +

∑

j:j 6=i

Aij(V̄j − V̄i) .

In this way we have encoded the constraint of unit row sum implicitly in the formula, i.e. we
do not use Aii in the evaluation any more, but the formula implies that Aii = 1−∑j:j 6=i Aij .
The advantage we gain is the anti-symmetry of the addends Fij:= Aij(V̄j − V̄i), i.e. what
Fij contributes to

(
AV̄
)

i
, the negative −Fij contributes to

(
AV̄
)

j
. For the mass preservation

it therefore does not matter how inexact we have computed Fij . This pattern is well known

39

2 PDE Solvers in Quantized Image Processing

from Finite Volume discretizations, where one computes anti-symmetric fluxes across cell
boundaries and the addends Fij are fluxes in this sense, but here they are associated with
interactions between arbitrary nodes and not only cell neighbors. So the scheme can be applied
to any type of discretization as long as the resulting matrix is symmetric with unit row sum.

The formula in Eq. 2.27 on the preceding page actually applies to arbitrary symmetric matrices
with zero row sum like ZA:= (A− I), because ZA

ij = Aij for all i, j with j 6= i:
(
ZAV̄

)

i
=

∑

j:j 6=i

ZA
ij (V̄j − V̄i) .(2.28)

If we perform exact additions and subtractions it is guaranteed that the element sum of the
result vector ZAV̄ is zero. An arbitrary symmetric matrix A can be split uniquely

A = ZA + SA

into a symmetric zero row sum matrix ZA and a diagonal matrix SA. The decomposition is
unique because the elements of SA must contain the row sums of A to make ZA a zero row
sum matrix. We obtain

SA
ii =

∑

j

Aij,

ZA
ij = Aij, j 6= i,

ZA
ii = −

∑

j:j 6=i

Aij .

Then we can apply ZA to produce a zero mass result vector, while the product with SA will
assign the new mass to the result. We define this mass-exact matrix vector product in the
quantized setting:

(A � V̄)i := evalQ
(

SA
ii V̄i +

∑

j:j 6=i

Aij(V̄j − V̄i)

)

(2.29)

=
(
SA

ii � V̄i

)
⊕
⊕

j:j 6=i

Aij � (V̄j 	 V̄i) .

In future we will use the � subscript for the evalQ quantized evaluation operator to indicate
that the term evaluation makes use of this mass-exact matrix vector product, i.e:

evalQ
�
(AV̄) = (A � V̄) ,

evalQ(AV̄) = (A� V̄) .

If no saturation in the evaluation of A � V̄ occurs, then this matrix vector product has the
property

∑

i

(A � V̄)i =
∑

i

(SA � V̄)i ,

40

2.2 Discretization - Quantization

and in the special case of a unit row sum matrix A = ZA + I , the mass is preserved:
∑

i

(A � V̄)i =
∑

i

V̄i .(2.30)

2.2.3.4 Scaling

We notice that the use of the differences V̄j − V̄i in Eq. 2.29 on the preceding page may
easily lead to an underflow in the subsequent multiplication, because we will have Aij 6= 0
exclusively for small distances ‖i− j‖, i.e. for nodes lying closely together, and these tend to
have similar values. So especially in smooth image areas we should expect a high error. To
increase accuracy we can rescale the formula

(A �s V̄)i :=
(
SA

ii � V̄i

)
⊕ 1

si

�
⊕

j:j 6=i

Aij � si � (V̄j 	 V̄i) ,(2.31)

with some scaling factors si as long as no saturation occurs. For integer si and small (V̄j 	 V̄i)
the scaling si � (V̄j 	 V̄i) = si(V̄j − V̄i) is exact and will be performed first. The absolute
forward error then decreases:

∣
∣(A � V̄)i − (AV̄)i

∣
∣ ≤ εQ

1 + δµ∈n

(
1 + #{j

∣
∣Aij 6= 0}

)
,

∣
∣(A �s V̄)i − (AV̄)i

∣
∣ ≤ εQ

1 + δµ∈n

(

2 +
#{j

∣
∣Aij 6= 0}

si

)

,

where µ indicates the dependence on the rounding mode (see Eq. 2.22 on page 32). Certainly
this only makes sense if si > 1, i.e. the image in the area {j

∣
∣Aij 6= 0} is sufficiently smooth.

This should be the case in most parts of an image, however, in the vicinity of sharp edges si ≤
1 is almost inevitable. Ultimately the choice of si depends on the matrix elements {j

∣
∣Aij 6= 0},

since we must prevent individual addends and the whole sum
⊕

j:j 6=i Aij � si � (V̄j 	 V̄i)
from saturation. For large elements of Aij we would even have to apply the contrary strategy
and scale down the addends with an si < 1 before addition and scale up the result with
1
si

> 1 afterwards. In this case the scaling with si would be applied implicitly by including
the factor into the matrix assembly of the elements {j

∣
∣Aij 6= 0}, such that the multiplication

Aij � si = Aij · si would be exact.

The greatest disadvantage of the scaling is that in general we lose the property of the mass-
exact computation. Even if we chose ∀i : si:= s to be a global scaling factor, such that the
addends would remain antisymmetric, the multiplication of the sum with 1

s
would round-off

differently depending on the value of the sum. Only in the case of scaling down the addends to
prevent saturation we can retain the mass-exact computation by choosing si as the inverse of
an integer, such that 1

si
is an integer and the rescaling of the sum with this factor is exact. This

means that we can always prevent the sum in Eq. 2.29 on the preceding page from saturation
and thus preserve the mass-exact computation, but this may lead to an increase in the absolute

41

2 PDE Solvers in Quantized Image Processing

error. Otherwise, if we sacrifice the exact mass property we can substantially decrease the
error in smooth image areas.

We could also apply the scaling directly to the natural matrix vector product:

(
A�s V̄

)

i
:=

(
SA

ii � V̄i

)
⊕ 1

si

�
⊕

j

Aij � si � V̄j .(2.32)

There are two differences to the scaled version of the mass-exact matrix vector product as in
Eq. 2.31 on the preceding page. First, in Eq. 2.31 some of the roundoff errors will still be
compensated by the partial antisymmetry of the addends especially if we use a global scaling
factor ∀i : si:= s , such that the mass defect should turn out smaller than in Eq. 2.32. Second,
the scaling in Eq. 2.31 is independent of the absolute intensities and uses only their differences,
such that it will have the same impact on each level of intensities, while Eq. 2.32 will only
rescale small values. It is therefore not advisable to use a global scaling factor in this formula.

In practice, we will usually not need to scale down the addends to prevent a saturation be-
cause the Aij will be sufficiently small. Although this will increase the risk of underflow in
multiplications with small differences we will abstain from scaling up the addends because
the accurate processing of smooth areas is usually less important than the accurate treatment
of edges. Moreover, the global property of preserving the mass in case of unit row sum in A
produces higher quality results than uncorrelated high local accuracy.

2.2.3.5 Backward Error

Let us consider the effects of the roundoff errors in the mass-exact matrix vector product
as a perturbation of the matrix. If we express the roundoff error in multiplications in the
multiplicative form (Eq. 2.23 on page 32) and assume no overflow in additions then we have
for a symmetric matrix A

(A � V̄)i =
(
SA

ii � V̄i

)
⊕
⊕

j:j 6=i

Aij � (V̄j 	 V̄i)

= λii
µSA

ii V̄i +
∑

j:j 6=i

λij
µ Aij(V̄j − V̄i)

=

(

λii
µSA

ii −
∑

j:j 6=i

λij
µ Aij

)

V̄i +
∑

j:j 6=i

λij
µ AijV̄j ,

with the abbreviations λij
µ := λµ(Aij(V̄j − V̄i)) and λii

µ := λµ(SA
ii V̄i). The last formula line has

the form of a natural matrix vector product. This means that we have

A � V̄ = BA,V̄ · V̄(2.33)

with the matrix

(BA,V̄)ij := λij
µ Aij, j 6= i,(2.34)

42

2.3 Anisotropic Diffusion

(BA,V̄)ii := λii
µSA

ii −
∑

j:j 6=i

λij
µ Aij .

Thus we can interpret the roundoff error as a component-wise absolute backward error from
BA,V̄ to A:

|λij
µ Aij − Aij| ≤

εQ

1 + δµ∈n

· 1

|V̄j − V̄i|
, j 6= i,

∣
∣
∣
∣
∣
λii

µSA
ii −

∑

j:j 6=i

λij
µ Aij − Aii

∣
∣
∣
∣
∣
≤ εQ

1 + δµ∈n

1

|V̄i|
+
∑

j:j 6=i
Aij 6=0

1

|V̄j − V̄i|

 ,

where the term 1
|V̄i| disappears if A has integer row sum. We see again that the scheme pro-

duces large errors in areas where the data is smooth and is fairly precise in areas of high
gradients. The bound for the diagonal elements looks catastrophic because all errors from the
sub-diagonals are subtracted here and their interference is unknown. In practice is it highly
improbable that all roundoffs will point in the same direction, such that usually error com-
pensation will occur. But we cannot quantify this effect, since the errors are correlated and
the white-noise model fails here. In all iterative smoothing processes, however, we have a
self regulated accuracy, since any exceptionally high random errors in smooth areas lead to an
increase in differences and thus to a more precise smoothing of this area in the next step.

2.3 Anisotropic Diffusion

We recall the problem statement from Section 2.1.1 on page 15:

∂tu− div (G(∇uσ)∇u) = 0 , in R+ × Ω ,

u(0) = u0 , on Ω ,

G(∇uσ)∇u · ν = 0 , on R+ × ∂Ω .

The non-linear diffusion coefficient G(∇uσ) steers the diffusion process in such a way that
edges are preserved while noise in homogenous areas is smoothed.

2.3.1 FE Scheme

Finite Element (FE) methods are widely used to discretize this partial differential equation
and were for instance studied by Kačur and Mikula [Kačur and Mikula, 1995]. Weickert
[Weickert, 1998] proposed additive operator splitting techniques based on finite difference
schemes to accelerate the solution process. Multi-grid methods have also been considered
[Acton, 1998], which allow for a better convergence as long as the anisotropic behavior of the

43

2 PDE Solvers in Quantized Image Processing

diffusion process is not too strong. The use of adaptive FEs has been discussed in [Bänsch
and Mikula, 1997; Preußer and Rumpf, 2000]. Moreover parallel computing has also been
applied in e.g. [Weickert et al., 1997]. We will use a simple FE scheme which is well suited
for parallelization and minimizes underflow in multiplications by cancellation of large and
small factors.

2.3.1.1 Discrete Schemes

We use the discretization scheme described in Section 2.2.1 on page 24 with the operator
F [Cp

σ[u], u] = −div (Cp
σ[u]∇u) and the classifier Cp

σ[u] = G(∇uσ), and either the explicit
(Eq. 2.12 on page 25) or the semi-implicit (Eq. 2.14 on page 25) time-discretization. In space
we discretize the problem with bilinear Finite Elements (FEs) on a uniform quadrilateral grid
(Figure 2.1 on page 27). In variational formulation with respect to the FE space Vh we obtain
for the explicit time-discretization

(
Un+1, Θ

)

h
= (Un, Θ)h − τn (G(∇Un

σ)∇Un,∇Θ)

and for the semi-implicit time-discretization
(
Un+1, Θ

)

h
+ τn

(
G(∇Un

σ)∇Un+1,∇Θ
)

= (Un, Θ)h

for all Θ ∈ Vh, where capital letters indicate the discrete functions in Vh corresponding to
the continuous functions. Above (·, ·) denotes the L2 product on the domain Ω, (·, ·)h is the
lumped mass product [Thomée, 1984], which approximates the L2 product, and τn the current
time-step width. The discrete solution Un is expected to approximate u(

∑n−1
i=0 τ i).

Thus in the n-th time-step we have to solve either the explicit

MhŪn+1 =
(
Mh − τL[Ūn

σ]
)
Ūn

σ

or the implicit linear equation system
(
Mh + τL[Ūn

σ]
)
Ūn+1 = MhŪn ,

where (Ūn
α)α is the solution vector consisting of the nodal values at the grid nodes α ∈ [0, Nx−

1]× [0, Ny − 1] (Figure 2.1 on page 27). We have the lumped mass matrix

Mh
αβ := (Φα, Φβ)h = h211(2.35)

and the weighted stiffness matrix

L[Ūn
σ]αβ := (G(∇Ūn

σ)∇Φα,∇Φβ) ,(2.36)

where Φα are the multi-linear basis functions. Finally we obtain the explicit update formula

Ūn+1 = A−[Ūn
σ] · Ūn(2.37)

44

2.3 Anisotropic Diffusion

A−[Ūn
σ] := 11− τn

h2
L[Ūn

σ]

and the linear equation system for the implicit case

A+[Ūn
σ] · Ūn+1 = Ūn(2.38)

A+[Ūn
σ] := 11 +

τn

h2
L[Ūn

σ] .

The great advantage of the simple equidistant grid is the factorization of h2 from Mh in
Eq. 2.35 on the facing page, such that in the matrices A− and A+ the time-step τn can be
balanced against the grid size square h2, and most coefficients in L[Ūn

σ] are of the same order
and can be well represented by fixed point numbers.

The linear equation system is solved approximately by an iterative solver:

X̄0 = R̄ := Ūn

X̄ l+1 = F (X̄ l)

Ūn+1 = F (X̄ lmax) ,

for a fixed or adaptive number of iterations lmax ∈ N. Typical solvers are the Jacobi solver

F (X̄ l) = D−1(R̄− (A−D)X̄ l), D:= diag(A)(2.39)

and the conjugate gradient solver

F (X̄ l) = X̄ l +
r̄l · p̄l

Ap̄l · p̄l
p̄l, p̄l = r̄l +

r̄l · r̄l

r̄l−1 · r̄l−1
p̄l−1, r̄l = R̄− AX̄ l .(2.40)

In the following we will see that the matrix A+ fulfills the properties under which the above
schemes converge.

2.3.1.2 Weighted Stiffness Matrix

In the general case of anisotropic diffusion,
(
G(∇Un

σ)i,j

)

i,j∈{x,y} is a 2 by 2 matrix. The
integration in Eq. 2.36 on the preceding page is performed separately on each grid element by
applying the midpoint rule to the tensor components G(∇U n

σ)i,j:

L[Ūn
σ]αβ =

∑

E∈E(α)

∑

i,j∈{x,y}
(Gn

E)i,j(S
αβ
E)i,j(2.41)

Gn
E := G(∇Un

σ (mE)) ≈ G(∇Un
σ (x)) ∀x ∈ E

(Sαβ
E)i,j := (∂iΦα, ∂jΦβ)|E ,

where E(α) is defined as the set of the 4 elements around the node α and mE is the center of
the element E. The vector∇Un

σ (mE) is computed with finite differences from the neighboring
nodes of Un

σ . The result is then inserted into the transformation matrix

B(∇Un
σ (mE)):=

1

‖∇Un
σ (mE)‖

(

∂xU
n
σ (mE) ∂yU

n
σ (mE)

−∂yU
n
σ (mE) ∂xU

n
σ (mE)

)

,(2.42)

45

2 PDE Solvers in Quantized Image Processing

and the weight matrix (Eq. 2.4 on page 17)

g(‖∇Un
σ (mE)‖):=

(

g1(‖∇Un
σ (mE)‖) 0

0 g2(‖∇Un
σ (mE)‖)

)

.(2.43)

With these matrices all components of the diffusion tensor

G(∇Un
σ (mE)) = B(∇Un

σ (mE))> g(‖∇Un
σ (mE)‖) B(∇Un

σ (mE))(2.44)

=

(

gE
1 (bE

x)2 + gE
2 (bE

y)2 (gE
1 − gE

2)bE
x bE

y

(gE
1 − gE

2)bE
x bE

y gE
1 (bE

y)2 + gE
2 (bE

x)2

)

gE
1 := g1(‖∇Un

σ (mE)‖), gE
2 := g2(‖∇Un

σ (mE)‖)

bE
x :=

∂xU
n
σ (mE)

‖∇Un
σ (mE)‖ , bE

y :=
∂yU

n
σ (mE)

‖∇Un
σ (mE)‖

can be evaluated. The constants (Sαβ
E)i,j depend only on the offset γ:= β − α and the relative

position of E to α and can be precomputed analytically. We obtain formulas for the inner sum
in Eq. 2.41 on the page before

(2.45)

∑

i,j∈{x,y}
(Gn

E)i,j(S
αβ
E)i,j =

+
(

gE
1 +gE

2

3
− (gE

2 − gE
1)

bE
x bE

y

2

)

if α = β

−
(

gE
1 +gE

2

6
− (gE

2 − gE
1)

bE
x bE

y

2

)

if |α− β| = (1, 1)

−
(

gE
1 +gE

2

12
− (gE

2 − gE
1)

(bE
x)2−(bE

y)2

4

)

if |α− β| = (1, 0)

−
(

gE
1 +gE

2

12
+ (gE

2 − gE
1)

(bE
x)2−(bE

y)2

4

)

if |α− β| = (0, 1)

0 else

.

The anisotropic diffusion process consists of two components. The first addend in the above
formula performs an isotropic linear (gE

2) and non-linear (gE
1) diffusion, while the second is

responsible for the anisotropic behavior. The choice of the functions g1, g2 (Eq. 2.43) should
guarantee that for all off-diagonal elements (α 6= β) the results are non-positive, as this is
important for the analysis later on. In general we assume 1 ≥ g2 ≥ g1 ≥ 0, then we may
choose for example g1(x) = 1

2
+ 1

2
Pcg(x), g2(x) = 1 or g1(x) = 1

2
Pcg(x), g2(x) = Pcg(x). We

could also change the weights of the isotropic and anisotropic components or use a more so-
phisticated approximation for (G(∇Ūn

σ)∇Φα,∇Φβ)|E to achieve the uniform non-positivity.
Weickert proves that one can always find an appropriate approximation with finite differences
for a sufficiently large stencil [Weickert, 1998, p.88f].

For the non-linear diffusion model when G(∇Ūn
σ) = g̃(∇Ūn

σ) is a scalar we have the simpler
form of the weighted stiffness matrix

L′[Ūn
σ]αβ =

∑

E∈E(α)

G′n
E S ′αβ

E(2.46)

G′n
E := g̃(∇Un

σ (mE)) ≈ g̃(∇Un
σ (x)) ∀x ∈ E

46

2.3 Anisotropic Diffusion

S ′αβ
E := (∇Φα,∇Φβ)|E = (Sαβ

E)x,x + (Sαβ
E)y,y .

If we set ∀x : g1(x) = g2(x) = g̃(x) we have G′n
E S ′αβ

E =
∑

i,j∈{x,y}(G
n
E)i,j(S

αβ
E)i,j and

the formula in Eq. 2.45 on the preceding page remains valid. In particular the off-diagonal
elements are non-positive for all positive choices of g̃(x). Finally, in the simplest case of the
linear diffusion we would have g̃(x) = 1. The mollification Ūn

σ according to the parameter σ
is performed in this way.

Let us now collect the properties of the weighted stiffness matrix L[Ūn
σ]. We have seen that

L[Ūn
σ] has non-positive off-diagonal elements if either we choose g1, g2 appropriately or lessen

the effect of the anisotropic addend in Eq. 2.45 on the facing page. Moreover L[Ūn
σ] has zero

row sum:

∑

β

L[Ūn
σ]αβ =

∑

E∈E(α)

∑

i,j∈{x,y}
(Gn

E)i,j

(
∑

β

(Sαβ
E)i,j

)

= 0

as
∑

β

(Sαβ
E)i,j =

(

∂iΦα, ∂j

∑

β

Φβ

︸ ︷︷ ︸

=1

)∣
∣
∣
E

= 0 .

Obviously the same argument applies to L′[Ūn
σ] and S ′αβ

E (Eq. 2.46 on the preceding page).
Under the general assumption 1 ≥ g2 ≥ g1 ≥ 0 we can also uniformly bound the diagonal
elements from above using Eqs. 2.41 and 2.45 on the facing page:

|L[Ūn
σ]αα| ≤ 4 ·

∣
∣
∣
∣
∣

gE
1 + gE

2

3
− (gE

2 − gE
1)

bE
x bE

y

2

∣
∣
∣
∣
∣

(2.47)

≤ 4 ·
(

gE
1 + gE

2

3
+

gE
2 − gE

1

4

)

≤ 4 · 7g
E
2 + gE

1

12
≤ 8

3
.

The following properties for the matrices A±[Ūn
σ] = 11± τn

h2 L[Ūn
σ] follow

• The matrices A± are symmetric and have unit row sum.

• All off-diagonal elements of A− are non-negative and the diagonal is positive if τn

h2 <
1

maxα |Lαα| ≤
3
8
.

• All off-diagonal elements of A+ are non-positive, while the diagonal is positive.

• A+ is strictly diagonally dominant:

A+
αα = 1−

∑

β:β 6=α

A+
αβ >

∑

β:β 6=α

|A+
αβ| ,

where we used the fact that A+ has unit row sum and negative off-diagonal elements.
We gather that the iterative schemes Eqs. 2.39 and 2.40 on page 45 converge for A+.

47

2 PDE Solvers in Quantized Image Processing

2.3.2 Quantized Diffusion

By applying the mass-exact matrix vector product (Eq. 2.29 on page 40) to the discrete scheme
in Eq. 2.37 on page 44 we obtain a quantized explicit mass preserving scheme

Ūn+1 = evalQ
�

(
A−[Ūn

σ] · Ūn
)

(2.48)
= A−[Ūn

σ] � Ūn ,

= Ūn 	
(

τn

h2
L[Ūn

σ]

)

� Ūn ,

with the restriction τn

h2 < 3
8
. The factor τn

h2 must be included in the matrix assembly of L[Ūn
σ]

because in the scalar vector multiplication τn

h2�
(
L[Ūn

σ] � Ūn
)

it would be impossible to ensure
that the result has zero mass even though it would be true for the input L[Ūn

σ] � Ūn.

With the semi-implicit time-discretization we eliminate the problem of restricted time-step
since A+ is strictly diagonally dominant for all τ n, but we encounter the problem of mass
inexact scalar multiplications when evaluating the iterative solvers for the linear equation sys-
tem (Eq. 2.38 on page 45). Neither the scalar vector multiplications in the conjugate gradient
solver (Eq. 2.40 on page 45) nor the diagonal matrix vector multiplication in the Jacobi solver
(Eq. 2.39 on page 45) can be performed in a mass-exact fashion, because the local multiplica-
tive roundoff errors do not necessarily cancel out across all elements. In case of the Jacobi
solver we can minimize this effect by reformulating the scheme into a convex combination:

D−1(R̄− (A+ −D)X̄ l)

=

(

11 +
τn

h2
LD

)−1(

R̄− τn

h2
(L− LD)X̄ l

)

, LD:= diag(L)

= ΛR̄ + (11− Λ)
(
L−1

D (LD − L)
)
X̄ l, Λ:=

(

11 +
τn

h2
LD

)−1

(2.49)

= X̄ l + Λ
(
R̄− X̄ l

)
+ (11− Λ)

(
−L−1

D LX̄ l
)

.(2.50)

The second reformulation (Eq. 2.49) has the advantage that only positive coefficients are in-
volved and that the convex combination favors roundoff error cancellations. Ideally the ad-
dends are evaluated by a two dimensional lookup table. Otherwise it is usually better to ex-
plicitely factor out X̄ l to stabilize the iterations as in the last formula (Eq. 2.50). In both cases
the time-step can take arbitrary values, even those which cannot be represented, because the
coefficients of Λ will be evaluated by a lookup table or a linear approximation and the results
are always bounded by 1. In practice, however, the range for τ n is also restricted similar to the
explicit case, because too large τn will imply Λ = 11 in the quantized application. Therefore,
implicit methods cannot play out there full strength in low precision arithmetic and despite
their restrictions explicit methods are often preferable in such cases.

If we want to guarantee mass preservation for the semi-implicit scheme we must correct the
mass defect after the iterations. This can be done by computing the overall mass defect

md :=
∑

α

(
R̄α − F (X̄ lmax)α

)
,(2.51)

48

2.3 Anisotropic Diffusion

and dithering it back to the solution

Ūn+1 = F (X̄ lmax) + dither(md) ,(2.52)

where dither(md) is a vector in which the defect md has been uniformly distributed across all
components. Apart from keeping the mass balance, such additional dither favors the uniform
distribution of roundoff errors [Wong, l99O]. However, losing the deterministic nature of the
process may be undesirable, even if the random effects are marginal.

2.3.3 Quantized Scale-Space

In this section we will analyze the qualitative properties of the quantized diffusion processes in
detail. This analysis is not only of direct interest for the implementations of the anisotropic dif-
fusion methods, but also helps to understand the impact of roundoff error on other processes,
since diffusion is a very common ingredient in various models.

We recall the properties of the continuous scale-space (Section 2.1.1.2 on page 17) and try to
maintain them in the quantized setting. Similar to the continuous scale-space operator St we
now have a discrete quantized scale-space operator

SQ
n [Ū0] := Ūn ,

which, given an initial vector Ū0 which represents an image, delivers the quantized solution Ūn

after n time-steps by applying the quantized explicit mass preserving scheme in Eq. 2.48 on
the facing page. The following analysis transfers the results of the discrete anisotropic filtering
from [Weickert, 1998, Chapter 4] to the quantized setting. The subsequent properties hold true
for a vector V̄ , α ∈ Ωh and n,m ∈ N0:

• Semigroup property

SQ
0 = 11,

SQ
n+m = SQ

n ◦ SQ
m .

PROOF This is clear from the definition. 2

• Grey level shift invariance

SQ
n [0] = 0,

SQ
n [V̄ + c1̄] = SQ

n [V̄] + c1̄, c ∈ Q ,

1̄ := (1, . . . , 1)> .

PROOF In the case of a zero row sum matrix like L[Ūn
σ] in the quantized scheme

Eq. 2.48 on the preceding page the mass-exact matrix vector product (Eq. 2.28 on
page 40) depends only on the differences of elements of V̄ and the evaluation of L[Ūn

σ]

49

2 PDE Solvers in Quantized Image Processing

uses finite differences to approximate the gradient, such that the results are invariant
to shifts in grey level as long as the addition of c does not produce a saturation in the
number representation. 2

• Reverse contrast invariance

SQ
n [−V̄] = −SQ

n [V̄] .

PROOF Similar to the argument above, the differences in Eq. 2.28 on page 40 allow
a factorization of −1 and L[Ūn

σ] is invariant to sign changes (Eqs. 2.41 and 2.44 on
page 46). 2

• Average grey level invariance

M
[
SQ

n [V̄]
]

= M[V̄] ,

whereM : Q#Ωh → Q#Ωh is the averaging operator defined by

M[V̄] :=

(

1

#Ωh

∑

α∈Ωh

V̄α

)

1̄.

PROOF The preservation of this property was the reason for the introduction of the mass-
exact matrix vector product which preserves the overall sum of elements for symmetric
matrices with unit row sum (Eq. 2.30 on page 41). 2

• Translation invariance

(SQ
n ◦ τp)[V̄] = (τp ◦ SQ

n)[V̄] ,

for translations (τp[V̄])α:= V̄α+p with p ∈ hZ2 and supp τp[V̄], supp (τp◦SQ
n)[V̄] ⊆ Ωh.

PROOF We obtain this invariance, because the process does not depend explicitely on the
position of the nodes. But obviously, identical results are only obtained if we translate
with multiples of the element grid size h. 2

• Isometry invariance

(SQ
n ◦R)[V̄] = (R ◦ SQ

n)[V̄] ,

for orthogonal rotations R ∈ R2×2 by multiples of π/2 defined by (R[V̄])α:= V̄Rα with
supp R[V̄], supp (R ◦ SQ

n)[V̄] ⊆ Ωh.

PROOF As above, invariance is only valid if the nodes in Ωh map one-to-one under R.
2

50

2.3 Anisotropic Diffusion

• Extremum principle

min
β

V̄β ≤ SQ
n [V̄]α ≤ max

β
V̄β .(2.53)

PROOF It suffices to prove the inequalities for n = 1, because the semi-group property
allows us to set W̄ := SQ

n−1[V̄] and then SQ
n [V̄] = SQ

1 [W̄], such that the result for general
n follows by induction.

From the backward error analysis of the mass-exact matrix vector product we know that
the quantized product corresponds to a perturbation of the original matrix (Eq. 2.33 on
page 42). For our scheme (Eq. 2.48 on page 48) this means

SQ
1 [V̄] = A−[V̄] � V̄ = BA−,V̄ · V̄(2.54)

with the symmetric unit row sum matrix

(BA−,V̄)αβ := λαβ
µ A−

αβ, β 6= α,(2.55)

(BA−,V̄)αα := 1−
∑

β:β 6=α

λαβ
µ A−

αβ .

If all elements of BA−,V̄ are non-negative the inequalities follow

min
β

V̄β ·
∑

β

BA−,V̄
αβ

︸ ︷︷ ︸

=1

≤ SQ
1 [V̄]α =

∑

β

BA−,V̄
αβ V̄β ≤ max

β
V̄β ·

∑

β

BA−,V̄
αβ

︸ ︷︷ ︸

=1

,

because BA−,V̄ has unit row sum.

Now, we have to specify the condition under which all elements of BA−,V̄ are non-
negative. From the properties of the weighted stiffness matrix L[Ūn

σ] on page 47 we
know that all elements of A− are non-negative under the assumption τn

h2 < 1
maxα |Lαα| ≤

3
8
. The roundoff error factors λαβ

µ (Eq. 2.23 on page 32) are always non-negative, such
that the off-diagonal elements of BA−,V̄ are definitely non-negative. For the diagonal
elements we have the condition:

(BA−,V̄)αα ≥ 1− max
β:β 6=α

λαβ
µ ·

∑

β:β 6=α

A−
αβ = 1− max

β:β 6=α
λαβ

µ ·
τn

h2
Lαα

≥ 1− 8

3

τn

h2
max
β:β 6=α

λαβ
µ > 0 ,

where we use the bound on the diagonal elements Lαα from Eq. 2.47 on page 47. For
some rounding modes µ the correction factors λαβ

µ are bounded uniformly (Eq. 2.24 on
page 32). For the modes rounding to zero µ = 0 and nearest µ = n we thus obtain the
time-step condition

τn

h2
<

{
3
8

if µ = 0
3
16

if µ = n

.(2.56)

51

2 PDE Solvers in Quantized Image Processing

Under this condition the quantized scale-space satisfies the extremum principle. 2

• Lyapunov functionals
For V̄ ∈ Q#Ωh and a convex r ∈ C[minα V̄α, maxα V̄α], the functional

Φ[n, V̄] :=
∑

α

r
(
SQ

n [V̄]α
)

(2.57)

is a Lyapunov functional:

Φ[0,M[V̄]] ≤ Φ[n, V̄] ,(2.58)
Φ[n + 1, V̄] ≤ Φ[n, V̄] .(2.59)

If r is strictly convex on [minα V̄α, maxα V̄α] then Φ[n, V̄] is a strict Lyapunov func-
tional:

Φ[0,M[V̄]] = Φ[n, V̄] ⇐⇒ SQ
n [V̄] =M[V̄] ,(2.60)

Φ[n + 1, V̄] = Φ[n, V̄] ⇐⇒ SQ
n [V̄] =M[V̄] or BA−,SQ

n [V̄] = 11 .(2.61)

PROOF In the following we use the abbreviation V̄ n:= SQ
n [V̄]. The first inequality 2.58

is a consequence of the convexity of r:

Φ[0,M[V̄]] = Φ[0,M[V̄ n]] =
∑

α

r

(
∑

β

1

#Ωh

V̄ n
β

)

(2.62)

≤
∑

α

1

#Ωh
︸ ︷︷ ︸

=1

∑

β

r
(
V̄ n

β

)

= Φ[n, V̄] .

The second inequality 2.59 will be proved under the time-step condition from Eq. 2.56 on
the page before, as we require the equality A−[V̄] � V̄ = BA−,V̄ · V̄ (Eq. 2.54 on the
preceding page). The condition guarantees that all elements of BA−,V̄ (Eq. 2.55 on the
page before) are non-negative, such that the row elements, which have row sum one,
can be used as convex factors:

Φ[n + 1, V̄]− Φ[n, V̄] =
∑

α

r

(
∑

β

BA−,V̄
αβ V̄ n

β

)

−
∑

α

r
(
V̄ n

α

)
(2.63)

≤
∑

β

∑

α

BA−,V̄
αβ

︸ ︷︷ ︸

=1

r
(
V̄ n

β

)
−
∑

α

r
(
V̄ n

α

)

= 0 .

52

2.3 Anisotropic Diffusion

The first consequence of the strict convexity of r (Eq. 2.60 on the facing page) follows
immediately from the fact that equality in the convex estimate in the derivation 2.62 on
the preceding page holds true if and only if all addends in the sum are equal, i.e. V̄ n =
M[V̄].

Similar the second equivalence (Eq. 2.61 on the facing page) follows from the fact that
equality in the convex estimate in the derivation 2.63 on the preceding page holds true if
and only if all addends in the sum are equal, i.e. V̄ n =M[V̄], or there are no multiple
addends, i.e. BA−,V̄ = 11. 2

The alternative condition BA−,V̄ = 11 is the theoretic price we pay for the quantization.
The matrix A− itself has always several non-zero entries in a row, but depending on
the current solution V̄ n, all the multiplications with off-diagonal elements may round to
zero, such that effectively we apply a unit matrix.

• Convergence

∃N V̄ ∈ N0, C̄
V̄ ∈ Q#Ωh : ∀m ≥ N V̄ : SQ

m(V̄) = C̄ V̄(2.64)

lim
εQ→0

‖C̄ V̄ −M[V̄]‖ = 0 .(2.65)

PROOF The function r(x):= x2 is strictly convex. The sequence
(
Φ[n, V̄]

)

n
is then

positive, monotone decreasing (Eq. 2.59 on the facing page) and can take only finitely
many values (Q is finite), such that

∃N V̄ ∈ N0 : ∀m ≥ N V̄ : Φ[m, V̄] = Φ[N V̄ , V̄] .

If we set

C̄ V̄ := SQ
N V̄ [V̄]

then Eq. 2.61 on the preceding page implies C̄ V̄ =M[V̄] or BA−,C̄V̄
= 11. In both cases

the application of SQ
1 will not change C̄ V̄ any more, such that Eq. 2.64 follows.

To specify how much C̄ V̄ differs from M[V̄] we must closer examine the condition
BA−,C̄V̄

= 11. For the condition to hold we must have (Eq. 2.55 on page 51):

λαβ
µ = λµ

(

A−
αβ(C̄ V̄

α − C̄ V̄
β)
)

=
roundQ

µ

(
A−

αβ(C̄ V̄
α − C̄ V̄

β)
)

(
A−

αβ(C̄ V̄
α − C̄ V̄

β)
) = 0 .

This means that BA−,C̄V̄
= 11 is equivalent to

roundQ
µ

((
τn

h2
L[C̄ V̄

σ]

)

αβ

(C̄ V̄
α − C̄ V̄

β)

)

= 0(2.66)

for all α 6= β. This condition includes the case C̄ V̄ = M[C̄ V̄], because then all dif-
ferences C̄ V̄

α − C̄ V̄
β are zero. If g2 is bounded from below by some positive constant,

53

2 PDE Solvers in Quantized Image Processing

then the magnitude of two of the three weights of the diagonal (|α − β| = (1, 1)), the
horizontal (|α − β| = (0, 1)) or the vertical (|α − β| = (1, 0)) factors in each element
(cf. Eq. 2.45 on page 46) have a positive lower bound. The contributions of the element
weights to τn

h2 L[C̄ V̄
σ] do not cancel out in the summation (Eq. 2.41 on page 45), as they

are all required to be non-positive, resulting in some uniform lower bound c. Thus if all
multiplications in Eq. 2.66 on the preceding page underflow to zero, it means that all
|C̄ V̄

α − C̄ V̄
β | are smaller than 2

c
εQ within a grid element and smaller than 2

c·hεQ across the
whole image. Consequently, the elements in C̄ V̄ converge to the same value as εQ → 0
and because the mass is preserved this value must be the average. 2

The exact time-step N V̄ at which the process stops for a given εQ, depends on the
choice of the weight functions g1, g2. But in general we know that in areas with large
gradients we will have g2 � g1 and in smooth areas 1 ≈ g2 ≈ g1. In the first case the
diffusion will continue, since V̄α − V̄β will be fairly large and one of the off-diagonal
coefficients in L[V̄σ] will continue the diffusion process. In the second case we will
have almost a linear diffusion such that L[V̄σ]αβ ≈ −1

3
for all ‖α − β‖∞ = 1. Thus if

τn

h2 = 3
8(1+δµ∈n)

(Eq. 2.56 on page 51) the diffusion stops roughly if all the differences
V̄α − V̄β in a grid element become smaller than 8εQ, while the differences across the
image may still cover the whole number range, since the width or height of an image is
often larger than 1/(8εQ) (cf. Figure 4.11 on page 142). If all differences are small we
can compensate this effect by simply scaling up all discrete differences, because such an
operation corresponds to an implicitly enlarged time-step width in the explicit scheme.
However, this is only possible if all differences are small, otherwise we would violate
the CFL condition (Eq. 2.13 on page 25) and destabilize the process.

Therefore, image processing with low precision number systems is bad at transporting
information across large distances on a fine grid. A multi-grid strategy must be used
if this is required. But multi-grid solver are only successful if a certain precision εQ is
available, otherwise the operations of restriction and prolongation produce artefacts due
to roundoff errors. For the anisotropic diffusion the local smoothing properties are more
important, because in practice the process runs only as long as the edges in the image
are still well preserved. In the registration problem we will apply a multi-grid strategy,
because correlation between distant regions will have to be examined.

The fact that the quantized scheme allows us to define Lyapunov functionals similar to the
continuous setting guarantees that despite strong quantization we can maintain the qualitative
smoothing properties of the continuous model. The following special Lyapunov functionals
exemplify these properties:

• Vector norms ‖Ūn‖p for p ≥ 1.
All such vector norms are decreasing with n and especially the energy ‖Ūn‖2 is reduced.

• Even central moments 1
#Ωh

∑

α(Ūn
α −M[Ū]α)2p for p ∈ N.

The decrease in central moments characterizes the smoothing of deviations from the

54

2.4 Level-Set Segmentation

mean value. In particular the variance as the second central moment becomes consecu-
tively smaller with n.

• Entropy −∑α Ūn
α ln(Ūn

α) for minα Ū0
α > 0.

The entropy is constantly increasing with n and thus the quantized process subsequently
reduces the information in the image.

2.4 Level-Set Segmentation

For the analysis and the implementation we will consider the front propagation under external
forces f(t, x) = c(t, x)+g1(p(x))+g2(‖∇p(x)‖) exclusively (cf. Section 2.1.2.1 on page 19),
such that the level-set equation obtains the form:

∂tφ + f‖∇φ‖ = 0 , in R+ × Ω ,

φ(0) = φ0 , on Ω .

The choice of the functions g1, g2 depending on the image values p(x) and its derivatives
∇p(x) is determined by the users input and should steer the evolution such that the desired
segments are covered by the level-set function. The reason for the simple choice of the speed
function, lies in the very low prerequisites on the functionality of the hardware used for the
implementation of this problem.

2.4.1 Upwind Scheme

By introducing the Hamilton function H(u):= f‖u‖ we obtain a Hamilton-Jacobi equation

∂tφ + H(∇φ) = 0.

Using the explicit Euler time discretization (Eq. 2.12 on page 25) we have

φn+1 − φn

τn
= H(∇φn) ,

where τn is the current time-step width. The upwind methodology [Engquist and Osher,
1980; Osher and Sethian, 1988] used in schemes for hyperbolic conservation laws (Eq. 2.7 on
page 21) gives us a numerical flux function g : R2×2 → R which approximates H , i.e.
H(u(x)) ≈ g(u(x − ε), u(x + ε)). The flux g is constructed such that it uses values upwind
the direction of information propagation (see Eq. 2.70 on the next page). For our equidistant
grid (Figure 2.1 on page 27) we obtain the simple upwind level-set scheme:

Φ̄n+1
α = Φ̄n

α −
τn

h
ḡα(D−Φ̄n, D+Φ̄n)(2.67)

55

2 PDE Solvers in Quantized Image Processing

D+
α Φ̄n :=

(

Φ̄n
α+(0,1) − Φ̄n

α

Φ̄n
α+(1,0) − Φ̄n

α

)

(2.68)

D−
α Φ̄n :=

(

Φ̄n
α − Φ̄n

α−(0,1)

Φ̄n
α − Φ̄n

α−(1,0)

)

.(2.69)

The discrete solution Φn is expected to approximate φ(
∑n−1

j=0 τ j). We implement the mirror
boundary condition by copying for each n the border values Φ̄n

α into a layer of ghost nodes
surrounding the grid Ωh. In this way we can always evaluate D±

α Φ̄n for all α ∈ Ωh. It
is important to note that the equidistant grid allows us to factorize 1/h from the gradient
arguments to g, such that this large number can be compensated against τ n.

For convex H a simple choice for the numerical flux g is the Enquist-Osher flux [Engquist and
Osher, 1980]

ḡα(Ū , V̄) = F̄+
α

√

‖Ū+
α ‖2 + ‖V̄ −

α ‖2 + F̄−
α

√

‖Ū−
α ‖2 + ‖V̄ +

α ‖2(2.70)

X+ := max(X, 0), X− := min(X, 0).

Using the explicit scheme we ensure stability by satisfying the CFL condition (Eq. 2.13 on
page 25)

τn

h
max

α
|F̄α| < 1 .(2.71)

Because we are using only external forces to steer the front propagation, we can precompute
and normalize the velocities in advance, such that this condition directly restricts the size of
the time-step width.

2.4.2 Quantized Propagation

The main difficulty in applying the upwind scheme (Eq. 2.67 on the preceding page) lies in the
evaluation of the flux g (Eq. 2.70) under strong quantization. The involved Euclidean norm
√

‖U‖2 + ‖V ‖2 is a non-linear function of four values and thus very error-prone in fixed point
calculations due to the aliasing effect (see examples on page 32 in Section 2.2.2.2). In particu-
lar, many evaluations would return zero, because the square function on [0, 1] would underflow.
In the presence of a two dimensional lookup mechanism one finds a remedy by computing the
norm as a three step lookup, evaluating ‖U‖2 first, then ‖V ‖2 and finally

√

‖U‖2 + ‖V ‖2. But
if we rely on simple arithmetic operations then it is necessary to work with a piecewise linear
approximation:

‖X‖2 ≈ ‖X‖lin := c‖X‖1 + (1− c)‖X‖∞ ,(2.72)

with X ∈ Rn and c ∈ [0, 1]. The norms ‖.‖1 and ‖.‖∞ have the advantage that even with
the quantized operators they can be evaluated exactly within the represented number range.
Figure 2.2 on the facing page shows the unit spheres of the different norms.

56

2.4 Level-Set Segmentation

Figure 2.2 The unit spheres of different vector norms in 2D. From left to right we see the
Euclidean norm, 1-norm, infinity norm and the ‖.‖lin norm, which is a convex combination of
the previous two (Eq. 2.72 on the preceding page). It gives a good approximation and avoids
the underflow in multiplications incurred in the evaluation of the Euclidean norm. The unit
spheres are shown in 2D but the approximation takes place in 4D.

The convex combination guarantees that we have equality for the unit vectors X = ei. For
c we have various options. In an interpolative approach we choose c = 1√

n+1
, such that

we obtain equality in Eq. 2.72 on the facing page for the vectors (± 1√
n
)i=0,...,n−1. Another

option is to approximate the volume of the n dimensional sphere by the unit balls of the
norms ‖.‖1 and ‖.‖∞ by choosing c = (2n − 2πn/2

nΓ(n/2)
)/(2n − 2n

Γ(n)
). Finally, we can bound

the relative error directly for uniformly distributed arguments in V = [−1, 1]n by numerically
minimizing

∫

V

∣
∣
∣
‖X‖2−‖X‖lin

‖X‖2

∣
∣
∣ dX . Unfortunately, none of these choices can guarantee global

properties of the approximation, because the arguments are not equally distributed in [−1, 1]n

and the distribution can vary significantly in different parts of the image. However, any of this
approximations is good enough to be used in our low precision quantized computations, which
themselves produce strong deviations from the continuous expansion, such that the effect of
this approximation can only be seen in absolutely homogenous areas (Figure 4.3 on page 132).

With the new norm we obtain the quantized upwind scheme

Φ̄n+1
α = Φ̄n

α 	 ḡlin
α (D−Φ̄n, D+Φ̄n)(2.73)

glin
α (U, V) := (τn

h
F̄)+

α � ‖(Ū+
α , V̄ −

α)‖lin ⊕ (τn

h
F̄)−α � ‖(Ū−

α , V̄ +
α)‖lin

‖X‖lin := c� ‖X‖1 ⊕ (1− c)� ‖X‖∞ ,

where we avoid an additional multiplication with τn

h
by including the factor into the precom-

puted speed function and thus permanently satisfying the CFL condition (Eq. 2.71 on the
facing page). We also realize that for the implementation we do not need any negative num-
bers, because the flux ḡlin

α requires only the absolute value of the differences D−
α Φ̄n, D+

α Φ̄n,
such that it suffices to compute differences in [0, 1].

57

2 PDE Solvers in Quantized Image Processing

2.4.3 Asymptotic Behavior

As for the diffusion processes we cannot derive any bounds which relate the magnitude of the
quantized solution Φ̄ directly to the continuous solution φ, because after, say 100 iterations,
the roundoff errors in the multiplications in Eq. 2.73 on the page before for a typical machine
epsilon of εQ = 3.9 · 10−3 will easily corrupt any such result. But similar to the stopping
criterion (Eq. 2.61 on page 52), we can find a condition describing the steady state of the
evolution.

Obviously the evolution stops if ḡ lin
α (D−Φ̄n, D+Φ̄n) = 0 for every node α ∈ Ωh. This will

happen when all the multiplications (τn

h
F̄)±α�‖(Ū±

α , V̄ ∓
α)‖lin evaluate to zero. This is intended

when (τn

h
F̄)α is close to zero, since we have modeled the equation to behave in this way.

However, underflows due to small differences Ūα = D−
α Φ̄n, V̄α = D+

α Φ̄n are undesired. The
approximate norm (Eq. 2.72 on page 56) already helps to minimize this effect by processing
small arguments more accurately than a direct implementation of the Euclidean norm. But
where the precomputed velocities (τn

h
F̄)±α are small the multiplications will underflow even

for moderately small differences.

We can compensate this effect by rescaling Φ̄ such that the front steepens and the differences
become larger:

Φ̄′ := s1 · Φ̄, s1 ∈ N

D±Φ̄′n = s1 ·D±Φ̄n .

Applying such rescaling will saturate large positive and negative values, but this will have
little effect on the front propagation, as it will only happen in regions far away from the front.
Assuming exact computations the rescaling is equivalent to a scaling of the time-step width,
since glin is positive 1-homogenous:

ḡlin(D−Φ̄′n, D+Φ̄′n) = ḡlin(s1 ·D−Φ̄n, s1 ·D+Φ̄n) = s1 · ḡlin(D−Φ̄n, D+Φ̄n) .

Therefore, the scaling with s is a natural parameter adaption when the evolution of the front
threatens to stop. For the quantized scheme the multiplications in the evaluation of ‖.‖lin are
more accurate when the argument is scaled than when the result is scaled, because more digits
of c will have an impact on the result. This is desirable since we do not want to scale up
existing errors.

Additionally, we may also increase the time-step width directly by scaling up the factors
(τn

h
F̄)±α :

s2 ·
(

τn

h
F̄

)±

α

� ‖(Ū±
α , V̄ ∓

α)‖lin =

(
s2 · τn

h
F̄

)±

α

� ‖(Ū±
α , V̄ ∓

α)‖lin, s2 ∈ N

This may become necessary if all the differences D±
α Φ̄n along the front are fairly large, but

the velocities are very small.

Thus by choosing s1, s2 sufficiently large we can always prevent an ubiquitous underflow in
the multiplications (τn

h
F̄)±α � ‖(Ū±

α , V̄ ∓
α)‖lin. In this way we can ensure that similar to the

58

2.5 Gradient Flow Registration

continuous propagation the quantized front will finally stop only where the velocity equals
zero. However, we cannot exclude the case that the propagation will stop for some time in
some parts of the image, while it will continue in others, simply because the limited number
range can handle only a restricted number of different velocities, e.g. if the segmented region
expands with a high velocity to the left and it should simultaneously expand very slowly to
the right, then the movement to the right can stop altogether if the difference between the
velocities is too large, and it will resume as soon as the expansion velocity to the left has
sufficiently decreased. So the described technique makes the best use of the limited number
range by providing highest accuracy for the quickly moving parts of the interface and paying
less attention to the slower parts, such as to minimize the overall difference to the continuous
evolution.

2.5 Gradient Flow Registration

Our task in the registration problem is to minimize the energy between a template image T
and a reference image R (see Section 2.1.3 on page 22)

Eε[u] =
1

2

∫

Ω

|Tε ◦ (11 + u)−Rε|2 ,

E ′
ε[u] = (Tε ◦ (11 + u)−Rε)∇Tε ◦ (11 + u) ,

by a regularized gradient flow

∂tuεk
= −A(σ)−1E ′

εk
[uεk

] , in R+ × Ω

uεk
(0) = uεk+1

(tεk+1
) , on Ω

uεK
(0) = 0 , on Ω

(2.74)

A(σ) := 11− σ2

2
∆ ,(2.75)

which starts on a coarse scale εK and consecutively passes the results of the coarser scale εk+1

as the initialization to the next finer scale εk until the final result uε0(tε0) on the finest scale ε0

is obtained. The solution then describes the deformation under which the template correlates
with the reference image. The parameter σ ∈ R+ controls the regularization of the gradient
flow during the process.

2.5.1 Multi-Grid Discretization

To solve the gradient flow problem on a given scale ε we use the explicit Euler time discretiza-
tion (Eq. 2.12 on page 25) with the operator F [Cp

σ[u], v] = Cp
σ[u] = A(σ)−1E ′

ε[u]:

un+1
ε − un

ε

τn
ε

= −A(σ)−1E ′
ε[u

n] ,

59

2 PDE Solvers in Quantized Image Processing

where τn
ε is determined by Armijo’s rule [Kosmol, 1991]:

Eε[u
n
ε]− Eε[u

n+1
ε]

τn
ε 〈E ′

ε[u
n
ε], A(σ)−1E ′

ε[u
n
ε]〉 ≥ c ,(2.76)

for all c ∈ (0, 1
2
), where 〈., .〉 denotes the L2 scalar product. This allows an adaptive accelera-

tion of the gradient descent towards a minimum.

For the space discretization we use again an equidistant grid Ωh (Figure 2.1 on page 27) with
linear Finite Elements (FEs), but this time it serves as the bottom of a whole hierarchy of
equidistant grids (Ωhl

)l=0,...,L, where Ωh0 is the finest and ΩhL
the coarsest grid. The element

length in the grids doubles in each step hl = 2l−L. To transfer data within the pyramid we use
restriction ρl

l+1 : Ωhl
→ Ωhl+1

and prolongation πl+1
l : Ωhl+1

→ Ωhl
operators:

ρl
l+1(Ū)α :=

∑

β∈Ωhl

al
αβŪβ, α ∈ Ωhl+1

,(2.77)

πl+1
l (Ū)β :=

∑

α∈Ωhl+1

al
αβŪα, β ∈ Ωhl

,

where the factors al
αβ are defined through the representation of a coarse Θl+1

α by fine Θl
β basis

functions

Θl+1
α =

∑

β∈Ωhl

al
αβΘl

β, α ∈ Ωhl+1
.

The grid hierarchy is used for an efficient representation of the different image scales R̄ε, T̄ε, Ūε.
Images on the scale ε are represented on the coarsest grid Ωhl

for which

εk ≥ ch · hl(2.78)

for some ch ∈ [1
2
, 2] still holds true (cf. Figure 4.12 on page 144), i.e. we have a monotone

mapping l : ε → l(ε). Thus computations on coarse scales are performed on small grids and
only the last few scales represented on the finest grid Ωh0 consume the full processing power.
For very coarse scales the function l is bounded from above

∀ε : l(ε) ≤ L0 < L ,(2.79)

to avoid the computation of initial deformations on very small grids, e.g. ΩhL
is only a 2x2

grid. Typical choices for the initial grid are L−L0 ∈ {2, 3}. Naturally, the multi-grid V-cycle
(Eq. 2.82 on the facing page) is not affected by this bound and uses all grids in the hierarchy.

On scale ε we have to compute the update formula

Ūn+1
ε = Ūn

ε −
τn
ε

hl(ε)

Ahl(ε)
(σ)−1Ē ′

ε[Ū
n
ε] ,(2.80)

Ē ′
ε[Ū

n
ε] = (T̄ε ◦ (11 + Ūn

ε)− R̄ε) ·
(

hl(ε)∇hl(ε)
T̄ε ◦ (11 + Ūn

ε)
)

,

60

2.5 Gradient Flow Registration

where the matrix Ahl(ε)
(σ) is the discrete counterpart of the regularization operator A(σ)

(Eq. 2.75 on page 59) in the linear FE on Ωhl(ε)
and we have factorized 1/hl(ε) to make use of

the whole number range in the regularization of the gradient with Ahl(ε)
(σ)−1. We iterate this

formula Nε times until the update is sufficiently small
∥
∥
∥
∥

τn
ε

hl(ε)

Ahl(ε)
(σ)−1Ē ′

ε[Ū
Nε
ε]

∥
∥
∥
∥

2

2

≤ δ .(2.81)

Since multi-grid solvers are the most efficient tools in solving linear systems of equations,
the gradient smoothing Ahl(ε)

(σ)−1Ē ′
ε[Ū

n
ε] is performed as a multi-grid V-cycle with Jacobi

iterations (Eq. 2.39 on page 45) as smoother and the standard prolongation and restriction
operators (Eq. 2.77 on the preceding page). Indeed to ensure an appropriate regularization it
turns out to be sufficient to consider only a single multi-grid V-cycle

MGMl(ε)(σ) ≈ Ahl(ε)
(σ)−1 .(2.82)

The cycle starts on the grid Ωhl(ε)
and runs up to the coarsest grid ΩhL

and back. Thereby, only
very few Jacobi smoothing iterations are applied on each grid.

2.5.2 Quantized Registration

From the discrete update formula (Eq. 2.80 on the facing page) together with the multi-grid
smother (Eq. 2.82) we obtain the quantized scheme:

Ūn+1
εk

= Ūn
εk
	

τn
εk

hl(εk)

�MGMl(εk)(σ)Ē ′
εk

[Ūn
εk

], n = 0, . . . , Nεk
− 1 ,(2.83)

Ē ′
εk

[Ūn
εk

] = (T̄εk
} (11 + Ūn

εk
)	 R̄εk

)�
(

hl(ε)∇hl(εk)
T̄εk

} (11 + Ūn
εk

)
)

,

Ū0
εk

= π
l(εk+1)

l(εk)

(

Ū
Nεk+1
εk+1

)

, k = K − 1, . . . , 0 ,

Ū0
εK

= 0̄ .

We have three nested loops in this scheme. The outer loop with index k runs from the coarse
to the fine scale representations and uses the prolongation operator to transfer data onto finer
grids, whereby the prolongation π

l(εk+1)

l(εk) is the identity if the scales εk+1 and εk are represented
on the same grid. While the deformation vector Ūεk

is transported top to bottom, the image
scales R̄εk

, T̄εk
are generated bottom to top by applying the discrete filter operator

Shl(εk)
(εk) = MGMl(εk)(εk) ≈ Ahl(εk)

(εk)
−1(2.84)

to the original images R, T (Eq. 2.9 on page 23):

Tεk
:= Shl(εk)

(εk)T,

Rεk
:= Shl(εk)

(εk)R.

61

2 PDE Solvers in Quantized Image Processing

The middle loop with index n performs the gradient descent on a given scale until the change
in data becomes sufficiently small (Eq. 2.81 on the page before). There are two computa-
tionally intensive parts in this loop. The first computes the energy gradient Ē ′

εk
[Ūn

εk
], where

the operation of a quantized offset access to the images T̄εk
and ∇hl(εk)

T̄εk
denoted by ’}’ is

performed through a bilinear interpolation of the value from neighboring nodes. In the sec-
ond part the multi-grid cycle regularizes the gradient, where the formulas for the restriction,
prolongation (Eq. 2.77 on page 60) and the Jacobi smoother (Eq. 2.39 on page 45) are applied
on each grid. Since the regularization operator A(σ) = 11 − σ2

2
∆ corresponds to the linear

diffusion, the matrix A used in the Jacobi iterations has constant entries. Then the convex
reformulation (Eq. 2.49 on page 48) used for the non-linear diffusion is exceedingly efficient,
as the constant values of the matrix L−1

D (LD − L) are known in advance.

The inner loop has no explicit index, but determines for each update the maximal time-step
width τn

εk
which satisfies Armijo’s rule (Eq. 2.76 on page 60), i.e. we maximize τ in

Eεk
[Ūn

εk
]− Eεk

[

Ūn
εk
− τ

hl(εk)
MGMl(εk)(σ)Ē ′

εk
[Ūn

εk
]
]

(2.85)

≥ c τ
h2

l(εk)

〈
Ē ′

εk
[Ūn

εk
], MGMl(εk)(σ)Ē ′

εk
[Ūn

εk
]
〉

hl(εk)
.

In the above formula only the energy Eεk

[

Ūn
εk
− τ

hl(εk)
MGMl(εk)(σ)Ē ′

εk
[Ūn

εk
]
]

which depends
non-linearly on τ needs to be recomputed iteratively. The computation of the energy Eεk

[.] and
the lumped scalar product 〈., .〉hl(εk)

requires the summation of values across the whole image,
which may be difficult to realize in some hardware architectures. Applying a local addition
operator similar to the restriction operator ρl

l+1 until a 1-node domain remains, which can be
quickly retrieved, offers a resort to this problem.

2.5.3 Quantized Descent

Since the non-convex energy E[u] has many local minima in the energy landscape, we need a
two-fold regularization procedure, where the gradient regularization with A(σ)−1 guarantees
the existence of a unique solution of the gradient flow on a given scale (Eq. 2.8 on page 23) and
the descent through the scales imitates an annealing process. Because of this two-fold regular-
ization we are not interested in the exact solution on a given scale and use a fast approximation
with a multi-grid V-cycle (Eq. 2.82 on the page before) of the regularization operator A(σ)−1

and stop the iterations of the gradient flow (Eq. 2.80 on page 60) fairly quickly as soon as
the update changes fall under a certain bound (Eq. 2.81 on the page before). This crude ap-
proximations are legitimate, as only the regularization effect and not the exact solution of the
process is required. This means that the quantization of the procedures also does not change
any qualitative behavior, since, in the view of a backward error analysis, it corresponds to
a slightly different choice of the regularization operator, smoothing operator for the images
and stopping condition for the update formula. The effect of the quantization may become
problematic, only if the quantized version of the linear diffusion, which is used for both the

62

2.6 Data-Flow

regularization and the smoothing operator, does not perform the qualitative task of smoothing
any more.

The analysis of the properties of the quantized diffusion processes in Section 2.3.3 on page 49
reveals that by using a mass preserving scheme (Eq. 2.48 on page 48) we obtain Lyapunov
sequences of diffused images. This means that the process retains such qualitative proper-
ties as extremum principle, decreasing energy, decreasing even central moments or increasing
entropy despite the quantized computing. The major shortcoming is the disability of the quan-
tized process to equalize intensity differences across large distances on a single scale. But this
is not required since the use of the multi-grid V-cycle for the regularization and the multi-scale
strategy permit the exchange of information across large distances by transporting it through
the grid hierarchy.

2.6 Data-Flow

For the sake of a common discretization approach, Section 2.2.1 on page 24 has already
outlined the general formal structure of the discussed image processing PDEs (Eq. 2.10 on
page 24):

∂tu + F [Cp
σ[u], u] = 0 , in R+ × Ω ,

u(0) = u0 , on Ω ,

where the non-linear classifier Cp
σ[u] locally classifies u with respect to the desired evolution

and the linear operator F [u, v] performs the composition of the classification result with the
unknown (Eq. 2.11 on page 25).

In the following we want to analyze which data-flow is needed to implement the high level
structure of the iterative algorithms and the low level computations which evaluate the oper-
ators Cp

σ[u] and F [u, v]. The importance of a regular data-flow stems from the characteristics
of memory chips (Section 3.1 on page 71).

2.6.1 Explicit and Implicit Schemes

Similar time (Section 2.2.1.1 on page 25) and space (Section 2.2.1.2 on page 26) discretization
schemes applied to the common PDE model result in similar discrete iterative schemes:

problem equation scheme type

denoising Eq. 2.37 on page 44 Ūn+1 = A−[Ūn
σ] · Ūn explicit

denoising Eq. 2.38 on page 45 A+[Ūn
σ] · Ūn+1 = Ūn implicit

segmentation Eq. 2.67 on page 55 Φ̄n+1
α = Φ̄n

α − τn

h
g(D−

α Φ̄n, D+
α Φ̄n) explicit

registration Eq. 2.80 on page 60 Ūn+1
ε = Ūn

ε − τn
ε

hl(ε)
Ahl(ε)

(σ)−1Ē ′
ε[Ū

n
ε] implicit

63

2 PDE Solvers in Quantized Image Processing

Figure 2.3 High level data-flow of the PDE solvers for the explicit (left) and the implicit
(right) discrete schemes.

The schemes have been labeled as being of explicit or implicit data-flow type. In case of the
explicit iteration the new solution for the time point n+1 is directly computed from the current
solution at time point n, while the implicit iteration requires to solve a linear equation system
for each time-step to obtain the new solution. Notice that the scheme for the gradient flow
registration uses an explicit time discretization, but the iterative scheme is of implicit type,
because the regularization with Ahl(ε)

(σ)−1 corresponds to solving a linear equation system.

The explicit schemes are very attractive from the point of high level data-flow structure, be-
cause we need only one configuration to process the stream of data from Ūn to Ūn+1 (Fig-
ure 2.3, left). To implement the whole time step loop we need only to alternate the source and
destination memory addresses.

As we use iterative solvers for the solution of linear equation systems, practically, the implicit
type requires an additional loop inside the time step loop. This means that the high level data-
flow requires two different configurations of the PEs (Figure 2.3, right). Thinking of the usual
software frameworks, the implementation of nested loops with different operations within the
inner loop does not seem to impose any problems. But for the sake of efficiency we should
rather think of the problem in terms of chip design, i.e. if we have two configurations, either
the chip must be larger to hold both of them, or the functionality of the chip must allow some
reconfiguration to perform one task or the other. In the first case the costs lie in the greater size
of chip as compared to the explicit scheme, in the second the hardware must be more flexible
and time is spent on the reconfiguration of the chip. We will elaborate on this thoughts in the
next chapter.

We have seen that the type of the iterative schemes implies a different high level data-flow.
But once established, it can be reused for all problems of the same type, since only the individ-
ual PEs which evaluate the operators Cp

σ and F must be replaced. This means for a hardware
architecture that the general data-flow structure may be hard-coded and only the computa-
tional kernels require programmability. But even in fully reconfigurable architectures it has
the advantage that only a few parts must be reconfigured for a new task, which saves both

64

2.6 Data-Flow

reconfiguration time and complexity of the overall design.

2.6.2 Data Locality

The low level data-flow in the computation of the operators Cp
σ and F also bears similarities

between the problems as the access pattern to other nodes in the computation of a new node
value is always restricted to a small neighborhood whether it occurs in the application of
sparse band matrices, in the computation of spatial derivatives or as local offset accesses with
bilinear interpolation of the values. In each case a certain number of the values from a small
input neighborhood of a node is used to compute a single new value for the current node. This
data locality can be efficiently exploited in the implementation of the algorithms if mesh nodes
are stored closely together in memory and the access pattern to the input neighborhood is the
same for each node. On equidistant meshes, that we use, this can be easily achieved, but on
unstructured or adaptive meshes it is a difficult problem, and the effort to retain data locality
in memory sometimes outweighs the gains from the fast access to node neighbors.

Although, in the general case, the classifier Cp
σ[u] may globally and non-linearly depend on the

input data p or the current state u, this is almost never the case in practical applications, since
it increases the computational load by orders of magnitude. Instead, far less time consuming
evaluations of single global properties (e.g. norms) of functions on the whole domain are
used to control the processes. The computation of such properties may be implemented in a
way which does not violate the general assumption of data locality in computations (see the
implementations on pages 146 and 178). But even with the knowledge of local data access
in all computations, the question still arises which hardware architectures are appropriate for
such processing and which quantitative parameters of the algorithms influence the choice of
an optimal hardware platform.

2.6.3 Local Computations

Three important properties of the PDE algorithms are the size of the input neighborhood, the
computational intensity and the write-read delay.

If the size of the input neighborhood is large, i.e. many neighboring values are used in
the computation of a new node, then architectures with flexible caches and data routing are
advantageous, because they can store the entire neighborhood of a node internally and deliver
all values in parallel to the PEs. Ideally, each value is transferred only once to the cache,
but read multiple times from the cache. If the size of the input neighborhood is small then
less flexibility is needed and small automatic caches can reuse the data. In this case the raw
bandwidth of the memory system and the throughput of the PEs are more important. Our
algorithms usually work with a small neighborhood of 3 by 3.

If the computational intensity is high, i.e. complex, time consuming operations must be
performed on each node, then architectures with many internal registers and long pipelines

65

2 PDE Solvers in Quantized Image Processing

are advantageous, because the registers will hold intermediate results very close to the PEs,
and the long pipeline will constitute a kind of super computational unit, which can perform
many operations simultaneously. We speak of parallelism in depth. Ideally, the registers are
integrated into the pipeline which is so long, that it contains all the PEs necessary for the
computation of the new node value, such that a new value is output in every clock cycle. In
case of low computational intensity the bandwidth of the memory system becomes the limiting
factor and should be as high as possible. Most of the operations in the discrete solvers of our
applications have a moderate to low computational intensity.

If the write-read delay of node values is high, i.e. newly computed values are not immedi-
ately needed in the subsequent computations, then architectures with many PEs perform best,
because several node values can be processed in parallel. We speak of parallelism in breadth.
Ideally, each pixel in an image is assigned its own PE, but this is too costly in almost all cases.
For low write-read delays fast sequential processing with local caches for the reuse of newly
computed values are more advantageous. As we have chosen discrete schemes and linear
equation solvers which compute the components of the solution vector independently of each
other for each time step, the write-read delay is high. Together with the regular data-flow, the
parallelism in breadth is the key to the fast implementations of the solvers.

In practice, we usually cannot afford to set up a specific hardware which exactly meets the
requirements of our application. Instead we use hardware platforms which are available at
reasonable prices and serve our purpose best. Therefore, the next chapter will discuss the
performance characteristics of various hardware platforms and the following presents the im-
plementations on the chosen architectures.

66

2.7 Conclusions

2.7 Conclusions

We have examined PDE models for the image processing tasks of image denoising, segmenta-
tion and registration under the effects of roundoff errors in strongly quantized number systems.
In general, even high precision floating point formats such as long double s63e15 do not im-
munize our computations against disastrous effects of roundoff errors (Section 2.2.2.1). For
low precision fixed point computations the roundoff effects gain significant influence even
more easily (Section 2.2.2.2), such that it becomes impossible to guarantee numerical stability
for iterative schemes in neither deterministic nor probabilistic sense (Section 2.2.2.3). The
price for the high performance of the implementations seems to be a loss of any quantitative
bounds on the error resulting from the strong quantization.

However, control over the qualitative behavior of the low precision algorithms can be retained
if special care is put into the factorization and aggregation of numbers on different scales
(Sections 2.3.1, 2.4.1, 2.5.1), and the implementation of interactions between different node
values (Section 2.2.3.3). The former requires an underlying equidistant grid, which is good
for parallelization but inhibits adaptivity, although arrangements of equidistant sub-grids also
provide adaptive concepts to some extent (Section 2.2.1.2). The latter, the careful interaction
between node values, asks for special implementations of matrix vector products and prohibits
some local accuracy optimization (Section 2.2.3.4) in favor of global mass conservation. The
error analysis reveals that this scheme is well-suited for most image processing applications
as it exhibits the highest accuracy in the vicinity of edges (Section 2.2.3.5).

Especially the diffusion processes benefit from the mass-exact matrix vector product as almost
all of the properties of the continuous scale-space (Section 2.1.1.2) can be preserved in the
discrete-quantized setting (Section 2.3.3). Thus, without the knowledge of any error bounds
we can still be sure that the quantized algorithm behaves similar to the continuous model. In
case of the segmentation we can ensure, that the front propagation will not stop too early due to
multiplicative underflow, by adapting the time-step width appropriately (Section 2.4). Finally,
the registration (Section 2.5) is fairly insensitive to quantization errors because the process
aims at a hierarchically regularized descent in which the accuracy of each intermediate step is
not so relevant. The qualitative properties of the decent, on the other hand, are guaranteed by
the robust diffusion schemes used in the regularizations. Besides the pursuit of reliable results
we have also payed attention to the resulting data-flow of our schemes. Data locality and
different forms of parallelism (Section 2.6) can be exploited by various hardware architectures
(Chapter 3) and are crucial for the efficiency of the later implementations (Chapter 4).

Recapitulating, we have seen that one can control the qualitative behavior of certain PDE
processes without high local accuracy or global error bounds. Image processing applications
lend themselves to this kind of fast low precision algorithms, because usually there is no
a-priori ground truth for their results. The characteristics of the image evolution are more
important than the individual values. By concentrating the available precision on the treatment
of the characteristic image features in a given application one can therefore obtain satisfactory
results at very high performance.

67

2 PDE Solvers in Quantized Image Processing

68

3 Data Processing

Contents

3.1 Data Access . 71
3.1.1 Random Access Memory . 71

3.1.1.1 Latency . 72

3.1.1.2 Bandwidth . 76

3.1.2 Memory System . 79

3.1.3 Memory Hierarchy . 81

3.2 Computation . 84
3.2.1 Performance . 84

3.2.2 Parallelization . 87

3.2.3 Instruction-Stream-Based Computing 92

3.2.4 Data-Stream-Based Computing 93

3.2.5 Processor-in-Memory . 96

3.3 Hardware Architectures . 97
3.3.1 Status Quo . 97

3.3.1.1 Micro-Processors . 97

3.3.1.2 Parallel Computers . 98

3.3.1.3 DSP Processors . 99

3.3.1.4 Reconfigurable Logic 100

3.3.1.5 Reconfigurable Computing 102

3.3.2 No Exponential is Forever . 103

3.4 Conclusions . 105

Figures

3.1 Internal structure of a memory chip. 73

3.2 Timings in a SDRAM chip for different read accesses. 75

3.3 A seamless stream of data from an open row in the burst mode. 76

3.4 An example of throughput increase through pipelining. 86

69

3 Data Processing

Tables

3.1 Simplified memory access latencies. 74

3.2 Sources, execution units and platforms of ISB and DSB processors. 85

In this chapter we consider the general problem of data processing and recall some of the
corresponding concepts in hardware design. In particular, we discuss the characteristics of data
access such as latency and bandwidth, and the difference between instruction-stream-based
(ISB) and data-stream-based (DSB) computing. We also examine the options of parallelization
and how it can improve the different aspects of performance. Then, we consider the status quo
of various hardware architectures and conclude with some thoughts on the future of computing
architectures.

But first let us explain the general division between storing and computing silicon. The prob-
lem of data processing seems very simple: we have some data and want to apply a certain
operation to it. Then, we either continue to apply another operation, output or visualize the
result. We need some piece of hardware, some processing elements (PEs), which can perform
the desired operation and some memory which holds the data. Obviously, it would be fastest
to have the data already at the input of the PEs and activating them would deliver the result. In
fact, such solutions exist for small data amounts. However, for large data blocks (e.g. an im-
age with float values 10242 · 4B = 4MiB) the required memory size is very large. This means
that we cannot afford to have a processing path for each data component, i.e. the same PE
will have to work on different components consecutively, and due to the fabrication process
the memory for the data cannot be placed on the same device as the PEs, i.e. it must reside
in an external chip outside of the chip containing the PEs (Section 3.2.5 on page 96 discusses
exceptions).

Being forced into an arrangement where the PEs reside on one chip and the main memory on
an other we can separately analyze the performance characteristics of memory chips and the
different paradigms of performing the actual computations.

70

3.1 Data Access

3.1 Data Access

Moore’s prediction from 1965 of an exponential growth of transistor count on the same size
of silicon area, still holds true. This is usually referred to as Moore’s Law, although Moore
was more interested in transistor cost than pure count [Moore, 1965]. The exponential growth
did not take place at the same rate in the past either, with a 1 year transistor count doubling till
1974, a 2 year doubling since then and probably with a 3 years period in the following years
[SEMATECH, 2003]. But from the numbers of transistors alone, it is not yet clear how the
characteristics of the produced chips have changed.

For memory chips we have to consider three characteristics: memory size, the amount of
data that can be stored on the chip; bandwidth, the amount of data that can be transported
per second; latency, the delay from the data request to the data availability. Moore’s Law
merits have been mainly directed into size enlargement, which has experienced exponential
growth, but bandwidth and latency have improved only slowly. This is especially bad for the
latency which improves very slowly and has already become the main degrading factor in PC
performance. Special memory access modes and interleave strategies help to hide latency, but
they require a regular data-flow, an important aspect of our solvers described in Section 2.6 on
page 63. Although improvements around the memory core on the chip and the whole memory
system have realized an exponential growth of the system bandwidth, this is slower than the
growth in data bandwidth requirements of the PEs. So the gap between the available and
the required bandwidth is widening, making bandwidth a performance bottleneck even when
almost all latencies can be hidden. These memory problems are known as the memory gap
and many ways of attacking it have been thought of, but those which are cost efficient for the
mass production do not suffice to catch up with the development of the computing resources
[Wilkes, 2000].

The next sections explain the current technology behind the memory chips and the reason
for this important imbalance between the performance of the PEs and the memory system.
Naturally, this problem has been anticipated for some time and many different technologi-
cal improvements or even new memory concepts exist or are pending. Here, we can only
sketch the technological mainstream. For more details and alternative technology we refer to
[Alakarhu and Niittylahti, 2004; Davis et al., 2000a,b; Desikan et al., 2001; Keeth and Baker,
2000; Sharma, 2002a,b].

3.1.1 Random Access Memory

Random Access Memory (RAM) denotes a type of memory which allows access to the stored
data in a random order, unlike e.g. First In First Out (FIFO) memory, which prescribes the
order of the data access. As the access is random we must specify which part of the memory
we want to access, i.e. we must specify a memory address. Logically the address space is one
dimensional, but since we use two dimensional silicon wafers for chip production, memory
cells are arranged in a two dimensional memory array and the address is split into a column

71

3 Data Processing

address and a row address. A memory cell in the memory array is a circuit which stores a bit,
i.e. the binary 0 or 1. In Static RAM (SRAM) a memory cell consists of either 6 transistors
(robust, power efficient) or only 4 (compact, area efficient) and the bit is stored permanently,
until a write operation changes it or the power is switched off. A DRAM memory cell requires
only 1 transistor and 1 capacitor, but the charge must be refreshed every few milliseconds,
otherwise the information is lost. Despite the complication of the memory refresh, DRAM
is preferred by memory chip manufacturers, because it yields a much larger memory size for
the same number of transistors. Therefore, in a typical system DRAM is used for the large
main memory, while SRAM serves as embedded and low power memory (see Section 3.1.3 on
page 81). As SRAM is more architecture specific the designs differ stronger than the typical
DRAM design used for mass production.

Since from each address we usually read more than just one bit, several memory cells are
grouped together to a memory depth of 20, . . . , 26 bit. The value 8 is nowadays typical for
the main memory of a PC. More would be desirable, since the system accesses memory in
larger chunks anyway (see Section 3.1.2 on page 79), but higher depth also means more data
pins on the chip, which raises the costs. On the other hand, high density memory chips are
cost efficient, because one needs fewer chips for the same amount of memory. So instead of
having more than 8 bit memory depth, we have several memory banks on a chip, typically 4,
and need only 2 pins to choose among the banks (Figure 3.1 on the facing page). The reason
for having 4 banks rather than quadrupling the address space of the chip, which also requires
only 2 more pins, is lower power consumption (only one bank is active at a time) and shorter
strobes. Section 3.1.1.2 on page 76 describes another advantage related to the memory access.
The standard size notation b-bank gMi × d for a memory chip, says that the chip has g mebi
(= 220) memory cell groups with a depth of d bit arranged in b banks and thus holds g·d

8
MiB

or g·d
8·b MiB per bank, e.g. a 4-bank 32Mi × 8 chip holds 32MiB in 4 banks of 8MiB (see

Section 1.2.4 on page 7 for the definition of Mi, mebi, etc.).

3.1.1.1 Latency

The pins of a memory chip consist of address, data, and few control and power supply pins.
DRAM chips additionally save on address pins by receiving the column and row address
consecutively and not simultaneously as for typical SRAM. A read access at a certain address
is performed by opening a memory row (or rather memory page, see Section 3.1.2 on page 79
for the difference), i.e. measuring and amplifying the charge of the capacitors in the row with
so called sense amps. Then the data starting at the addressed column is selected from the sense
amps. Obviously, once a row is open one can quickly obtain other data from the same row by
only specifying a new column address and accessing it from the sense amps. This is important
since each of the operations in the process involves a delay and if there are less operations to
be performed there is less delay. If data from a different row is needed, the current row must
be closed, i.e. the content of the sense amps is transferred back to the row in the memory array
and a pre-charged must prepare the logic for the measuring of the charges in the new row. The
new row can then be opened.

72

3.1 Data Access

Figure 3.1 Internal structure of a memory chip. The left image shows a 4-bank 8 bit deep
chip. To the right we see the memory array with the rows containing the memory cells.

���������
���������
���������
���������
���������

���������
���������
���������
���������
���������

�����������
�����������
�����������
�����������
�����������

���������
���������
���������
���������
���������

�����������
�����������
�����������
�����������
�����������

�����������
�����������
�����������
�����������
�����������

�����������
�����������
�����������
�����������
�����������

���������
���������
���������
���������
���������

	�	�	�	�	
	�	�	�	�	
	�	�	�	�	
	�	�	�	�	
	�	�	�	�	

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�����������
�����������
�����������
�����������
�����������

�����������
�����������
�����������
�����������
�����������

����
����
����
����
����

���������
���������
���������
���������
���������

���������
���������
���������
���������
���������

���������
���������
���������
���������
���������

�����������
�����������
�����������
�����������
�����������

�����������
�����������
�����������
�����������
�����������

���������
���������
���������
���������
���������

���������
���������
���������
���������
���������

���������
���������
���������
���������
���������

���������
���������
���������
���������
���������

���������
���������
���������
���������
���������

���������
���������
���������
���������
���������

���������
���������
���������
���������
���������

���������
���������
���������
���������
���������

���������
���������
���������
���������
���������

���������
���������
���������
���������
���������

�����������
�����������
�����������
�����������
�����������

�����������
�����������
�����������
�����������
�����������

�����������
�����������
�����������
�����������
�����������

 � � � �
 � � � �
 � � � �
 � � � �
 � � � �

!�!�!�!�!
!�!�!�!�!
!�!�!�!�!
!�!�!�!�!
!�!�!�!�!

"�"�"�"�"
"�"�"�"�"
"�"�"�"�"
"�"�"�"�"
"�"�"�"�"

#�#�#�#�#�#
#�#�#�#�#�#
#�#�#�#�#�#
#�#�#�#�#�#
#�#�#�#�#�#

$�$�$�$�$
$�$�$�$�$
$�$�$�$�$
$�$�$�$�$
$�$�$�$�$

%�%�%�%�%�%
%�%�%�%�%�%
%�%�%�%�%�%
%�%�%�%�%�%
%�%�%�%�%�%

&�&�&�&�&�&
&�&�&�&�&�&
&�&�&�&�&�&
&�&�&�&�&�&
&�&�&�&�&�&

'�'�'�'�'�'
'�'�'�'�'�'
'�'�'�'�'�'
'�'�'�'�'�'
'�'�'�'�'�'

(�(�(�(�(
(�(�(�(�(
(�(�(�(�(
(�(�(�(�(
(�(�(�(�(

)�)�)�)�)
)�)�)�)�)
)�)�)�)�)
)�)�)�)�)
)�)�)�)�)

��*�*�*
��*�*�*
��*�*�*
��*�*�*
��*�*�*

+�+�+�+�+�+
+�+�+�+�+�+
+�+�+�+�+�+
+�+�+�+�+�+
+�+�+�+�+�+

,�,�,�,�,�,
,�,�,�,�,�,
,�,�,�,�,�,
,�,�,�,�,�,
,�,�,�,�,�,

-�-�-�-�-
-�-�-�-�-
-�-�-�-�-
-�-�-�-�-
-�-�-�-�-

.�.�.�.�.
.�.�.�.�.
.�.�.�.�.
.�.�.�.�.
.�.�.�.�.

/�/�/�/�/
/�/�/�/�/
/�/�/�/�/
/�/�/�/�/
/�/�/�/�/
/�/�/�/�/

0�0�0�0�0
0�0�0�0�0
0�0�0�0�0
0�0�0�0�0
0�0�0�0�0
0�0�0�0�0

1�1�1�1�1�1
1�1�1�1�1�1
1�1�1�1�1�1
1�1�1�1�1�1
1�1�1�1�1�1

2�2�2�2�2�2
2�2�2�2�2�2
2�2�2�2�2�2
2�2�2�2�2�2
2�2�2�2�2�2

3�3�3�3�3
3�3�3�3�3
3�3�3�3�3
3�3�3�3�3
3�3�3�3�3

4�4�4�4�4
4�4�4�4�4
4�4�4�4�4
4�4�4�4�4
4�4�4�4�4

5�5�5�5�5
5�5�5�5�5
5�5�5�5�5
5�5�5�5�5
5�5�5�5�5

6�6�6�6�6
6�6�6�6�6
6�6�6�6�6
6�6�6�6�6
6�6�6�6�6

7�7�7�7�7
7�7�7�7�7
7�7�7�7�7
7�7�7�7�7
7�7�7�7�7

8�8�8�8�8
8�8�8�8�8
8�8�8�8�8
8�8�8�8�8
8�8�8�8�8

9�9�9�9�9
9�9�9�9�9
9�9�9�9�9
9�9�9�9�9
9�9�9�9�9

:�:�:�:�:
:�:�:�:�:
:�:�:�:�:
:�:�:�:�:
:�:�:�:�:

;�;�;�;�;
;�;�;�;�;
;�;�;�;�;
;�;�;�;�;
;�;�;�;�;

<�<�<�<�<
<�<�<�<�<
<�<�<�<�<
<�<�<�<�<
<�<�<�<�<

=�=�=�=�=�=
=�=�=�=�=�=
=�=�=�=�=�=
=�=�=�=�=�=
=�=�=�=�=�=

>�>�>�>�>�>
>�>�>�>�>�>
>�>�>�>�>�>
>�>�>�>�>�>
>�>�>�>�>�>

?�?�?�?�?�?
?�?�?�?�?�?
?�?�?�?�?�?
?�?�?�?�?�?
?�?�?�?�?�?
?�?�?�?�?�?

@�@�@�@�@
@�@�@�@�@
@�@�@�@�@
@�@�@�@�@
@�@�@�@�@
@�@�@�@�@

bank 0 bank 1

bank 2 bank 3

memory row

memroy cell

There are two types of latencies in the above operations: access time, the time period necessary
to complete an operation, and cycle time, the smallest possible time period between two states
of the same signal. Table 3.1 on the next page lists important latencies and defines their
symbols. Because of the different combinations of these latencies, previously, a processor had
to switch into a wait state and expect the arrival of the requested data. Current Synchronous
DRAM (SDRAM) chips run synchronous to a common clock cycle such that latencies are
multiples thereof. Consequently, the overall latency depending on the access mode is known
as a number of clock cycles in advance, so that the processor can perform some other task and
knows when the requested data will be at its input. This again points out the efficiency of an
algorithm with a regular data-flow, where the input address can be issued in advance while
the processor is busy with previous data, so that the new data arrives on time to be processed.
Figure 3.2 on page 75 shows the timings of different read accesses and the devastating impact
of the latencies in case of random access reads. We distinguish three modes:

• row hit: we read data from an already open row,
latency: tCL ,

• row miss from closed: we open a row and read data,
latency: tRCD + tCL ,

• row miss from open: we close the current row, open a new row and read data,
latency: tRP + tRCD + tCL .

The standard chip timing notation SDRAM tCLK tCL–tRCD–tRP–tRAS gives four of the
latencies from Table 3.1 on the following page and the minimal clock cycle time (tCLK), or

73

3 Data Processing

Table 3.1 Simplified memory access latencies. In reality memory timings are more compli-
cated, because for every signal and transition from inactive to active there is a setup time
which allows the signal to stabilize and a hold time in which it can be accessed. See also
Figure 3.2 on the facing page for a schematic visualization of the latencies.

latency type definition

row to column delay (tRCD) access time time from row active to column active

column access latency (tCL) access time time from column active to data output

column active time (tCAS) cycle time minimal active time of the column signal

column precharge (tCP) cycle time minimal inactive time of the column signal

row active time (tRAS) cycle time minimal active time of the row signal

row precharge (tRP) cycle time minimal inactive time of the row signal

sometimes the maximal frequency (1/tCLK) instead, e.g. SDRAM 10ns 2-2-2-6 or SDRAM
100MHz 2-2-2-6. Notice that the latencies are usually given as multiples of the tCLK, but in
reality the latencies are sums of different internal delays, which round up to the next clock
cycle for a given frequency. So if the above chip could also be run at 133MHz the resulting
latencies might be very different e.g. 2-2-2-6, 3-2-2-7, 3-3-3-7, and we would need to consult
the data sheet of the chip to find out which applies. The first three numbers cannot exceed
3, however, because from the first notation we know that the latency times for the chip are
smaller than 2 · 10ns = 20ns and 3 · 7.5ns > 20ns, where 7.5ns corresponds to the 133MHz
frequency.

The delays tCAS and tCP do not show up in the timing notation, because in todays pipelined
memory chips they are hidden by the burst mode. Thereby, a certain number of columns
called burst length (BL), typically 4 or 8, starting from the supplied column address is output
one by one, without supplying a new address. A pipelined design can prepare the burst of the
next BL columns while the data from the current columns is output. If

tCAS + tCP ≤ BL · tCLK,(3.1)

then we can get a seamless stream of data from an open row after the initial tCL (Figure 3.3 on
page 76). The other cases yield the following latencies:

mode latency 1 packet 4 packets 8 packets

row hit tCL 60ns (17%) 60ns (67%) 100ns (80%)

row miss from closed tRCD+tCL 80ns (12.5%) 80ns (50%) 120ns (67%)

row miss from open tRP+tRCD+tCL 100ns (10%) 100ns (40%) 140ns (57%)

The example times are computed for SDRAM 10ns 2-2-2-6 with BL=4 and 1,4 or 8 consecu-
tive packets being read. The percentage numbers reflect the ratio of the sustained bandwidth,

74

3.1 Data Access

Figure 3.2 Timings in a SDRAM chip for different read accesses. Table 3.1 on the preceding
page defines the latencies. The Activate command activates a bank and opens a row by
specifying a row address on the address bus. The Read command reads data from the open
row at the specified column address. Commands and data related to the same row have a
common color.
In the beginning all rows are closed. The first Activate command opens a row and it
remains open during the cycles 0-6. The second Activate closes the current row and opens
a new one. Accordingly, the first Read is a row miss from closed, the second a row hit, the
third a row miss from open and the fourth a row hit again.

the bandwidth achieved in the respective mode, and the peak bandwidth, the maximal achiev-
able bandwidth assuming no latencies. Obviously, this ratio improves the more consecutive
packets from a given address are requested, whereby we assume that all packets lie in the same
row. Therefore, algorithms exerting a linear memory access pattern perform much better than
algorithms with random memory access. In the table above the performance factor between
the worst and best case is as much as 8, and it would further grow to almost 10 if we requested
more consecutive packets.

One could argue that if we want only one packet from each row then it would be more reason-
able to set BL to 1. But since each row must stay open for tRAS (=6 in this case), the row miss
from open would take tRP+tRAS time plus one tCLK for the packet transmission and thus

75

3 Data Processing

Figure 3.3 A seamless stream of data from an open row in the burst mode.

with 90ns only slightly less than the 100ns with BL=4. On the other hand, all transmissions of
consecutive packets would worsen significantly, since in most chips we could not produce a
seamless stream of data with BL=1, because Eq. 3.1 on page 74 would be violated. Therefore,
BL is usually 4, Eq. 3.1 on page 74 is fulfilled and moreover we have

tRAS ≤ tRCD + tCL + BL · tCLK,(3.2)

which means that a read access keeps a row open for at least tRCD + tCL + BL · tCLK time
and thus tRAS does not contribute to the latency calculations and is sometimes omitted from
the timing notation. In Eqs. 3.3 and 3.4 on page 78 we extend this reasoning to multiple data
rate memory chips like DDR, QDR.

3.1.1.2 Bandwidth

To improve the sustained bandwidth, we can stream a whole row without intermediate laten-
cies from a memory chip (Figure 3.3), although this may not be true for the memory systems
(see Section 3.1.2 on page 79). But if we want to stream a larger piece of memory which oc-
cupies several rows, then the time intensive row miss from open mode would occur. We could
avoid this by having several rows open simultaneously and some internal management would
schedule the opening and closing of rows such that no additional delays occurred. There are
memory chips which work in this way (Rambus [Crisp, 1997]) but because of costs and sim-
plicity the standard SDRAMs can have only one open row. Instead, the different internal banks
of the memory chip offer a cheaper solution to the problem called bank interleaving. Thereby,
only those row misses from open produce latencies, which open a new row in the same bank.
If a row in a different bank is requested, the latencies can be hidden by issuing sufficiently
early a bank activation and read commands on the new row. Depending on how good the
command pipeline in the memory chip can deal with the early commands the latency of row

76

3.1 Data Access

changing can be significantly reduced or even completely hidden. Then even large memory
blocks can be streamed with only one initial latency, thus approaching the peak bandwidth.

Reaching the peak bandwidth is prevented by the fact that the memory refresh for DRAMs re-
quires each row to be updated every few milli-seconds to prevent the information from dissolv-
ing. This intervenes with the normal read and write operations, because the memory refresh
uses the same logic, namely the sense amps. We have not discussed this in detail, because it is
done automatically and we have no influence on it. The average empirical bandwidth loss due
to refreshing is small (1-4%), but it can be crucial for real-time systems, since it is difficult to
pin down the exact delays for a given application [Atanassov and Puschner, 2001].

We have so far discussed the read operation. Writing is very similar since after opening a row,
we only need to write to the sense amps. When the row is closed the content will be written
back to the correct row. Writing is also less critical because in most cases the processing
elements (PEs) can issue several data packets for writing and do something else afterwards
not caring about when the data will actually be written. This is impossible if they wait for
the result of a read operation which will deliver currently required data for a computation.
So while writing itself is fairly trouble-free the changes between reading and writing exhibit
an additional latency, the turn around time. This time is necessary to make sure that the
operations do not interfere, i.e. that they complete before the other starts, so that it is clear
whether the data at the data pins should be read or written. Recapitulating, we can say that it
is impossible to reach the peak bandwidth even on the memory chip level, but we can come
very close to it, if all addresses are known well in advance and can be issued early, so that the
inevitable latencies of the data access can be hidden.

Now we turn our attention to some techniques which increase bandwidth in general, but un-
fortunately hardly improve latency. We have three options to accomplish this:

• Increasing the rate of data packets per clock cycle.
So far we have only talked about Single Data Rate (SDR) memory chips, i.e. chips
which can send or receive only one data packet per clock cycle. Double Data Rate
(DDR) chips which send two data packets per clock cycle are already widespread, a few
SRAM Quad Data Rate (QDR) chips also exist and eXtreme Data Rate (XDR) DRAM
with even higher transfer rates per clock cycle are being developed. We should empha-
size that in such designs only multiple data is sent per clock cycle, other information as
control signals and addresses are not compressed in such a way. Therefore, the latencies
of the chips remain the same, or even worsen due to the more complex designs, e.g.
DDR SDRAM 10ns 3-3-3-8.

The faster data transmission requires a modification of Eqs. 3.1 and 3.2 on the preceding
page. Eq. 3.1 now becomes

tCAS + tCP ≤ BL · tCLK/DR,(3.3)

where the Data Rate (DR) is 2 for DDR and 4 for QDR. So the burst length (BL) is
sometimes higher to allow more time for the compensation of tCAS and tCP. In a QDR
chip with BL=4, for example, the burst would need only one clock cycle, so that we

77

3 Data Processing

would have to be able to issue read commands on every clock cycle to avoid gaps in the
data transmission from an open row. This is seldomly possible, so that the gaps in the
stream would destroy the bandwidth advantage of the quadrupled data transport. Eq.
3.2 is also adapted to

tRAS ≤ tRCD + tCL + BL · tCLK/DR.(3.4)

Because of the shorter data transmission, the above inequality is sometimes violated
by multiple data rate chips. In a DDR 2-2-3-8 chip with BL=4, for example, a single
read operation will keep the row open for tRCD(2) + tCL(2) + BL(4) · tCLK/DR(2) =
7 tCLK, but the specification requires it to stay open for tRAS = 8 tCLK. So although
DDR doubles the bandwidth additional latencies may occur, decreasing performance in
codes with many random accesses.

The reason for pursuing the multiple data rate technology is its fairly easy and inex-
pensive fabrication from the SDR components. Because in a DDR all control signals
operate with the normal clock cycle, we can simply use the normal memory core from a
SDR chip and add a small buffer and additional circuits which multiplex two data pack-
ets, so that they are sent on the rising and falling edge of the clock signal. This means
that we need a prefetch size of 2, i.e we retrieve twice the number of bits from the
memory array per clock cycle. Since the general design of the memory array remains
the same and only a very small part of the chip must operate twice as fast, DDR chips
have become very popular in increasing bandwidth. In fact, the peak bandwidth really
doubles, but in everyday applications, frequent random accesses make the performance
gains far less significant. For our PDE solvers with a regular data-flow, however, the
economic DDR chips are first choice in hardware architectures, and graphics cards use
them and the optimized Graphics DDR (GDDR) variant almost exclusively.

• Widening the data bus of the memory chip.
As explained in the beginning a typical SDRAM memory chip has a depth of 8 bit.
Adding more pins is expensive, but to achieve high bandwidth for graphics cards, for
example, the expenses are incurred and 32 bit deep chips are used. A complementing
option is the widening of the data bus on the level of the memory system by lining up
several memory chips (Section 3.1.2 on the facing page).

• Decreasing the clock cycle time (tCLK) of the memory chip.
This seems to be the simplest and most efficient option. Unlike the multiple data rate
designs we make everything faster, so that also the latencies decrease. Unfortunately,
depending on the voltage and the density of the memory cell arrangement there are
physical limits to how fast the column and row address signals and the pre-charge can
be made and how long a row must stay open before it can be closed again. So while
the frequency has been increasing, the absolute latencies hardly improved, which means
that they worsened in multiples of clock cycles. Moreover, increasing the frequency of
the whole memory array is a problem in itself, because as with other integrated circuits,
higher frequencies mean higher power consumption and heat development. So instead,
one reverts to the increasing of the prefetch size as in the case of multiple data rate chips.

78

3.1 Data Access

The memory array of a DDR-400 memory chip operates at a 200MHz clock speed,
but data is output at 400MHz because of the prefetch size 2. As it is costly to further
increase the speed of the core, the DDR2-400 chip features a 100MHz memory array
with a prefetch size 4 and data output at 400MHz. The output logic operates at the
clock speed of 200MHz and multiplexes the four data packets onto two clock cycles,
such that the data output is again at 400MHz. The reason for introducing this Second
Generation DDR (DDR2) standard are mainly economic costs. The 100MHz memory
array is cheaper in production and increasing the frequency of the core to 200MHz
easily doubles the bandwidth again, while increasing the frequency from 200MHz to
400MHz in standard First Generation DDR (DDR1) is more costly. Nevertheless, for the
high-end segment both techniques are combined in ultra-fast Third Generation GDDR
(GDDR3) 1.25ns chips which have the memory core running at 400MHz delivering data
at 1600MHz or 1.6Gb per pin.

The difference between the DDR2 and the QDR technology is that a DDR2 chip outputs
the four prefetched packets on two clock cycles, while a QDR chip would do this in one.
So the handling of QDR signals requires more precisely timed logic, since two of the
data packets are not synchronous to the clock signal edges.

Recapitulating, we see that the exponential increase in bandwidth is based only in parts on
frequency increase. In 1990 both the i486 and the memory ran at 33MHz [Risley, 2001],
nowadays the Pentium 4 processor [Intel, 2004b] is at 3GHz while the memory array of a
standard DDR2-400 chip runs with 100MHz and the currently fastest GDDR cores operate
at 500MHz. So even with the DDR technology the growth of the bandwidth of the memory
chips lags behind. Additional arrangements on the system level, discussed in the following
section, help to close this gap to a certain extent. Latencies have improved only slowly from
around 100ns in 1990 to 50ns (25ns high-end) for a random access nowadays. In many places
of this section we have therefore emphasized how important a regular or at least predictable
data-flow is, which allows to hide these latencies.

3.1.2 Memory System

The processing elements (PEs) in most computer systems communicate with a memory con-
troller which handles the main memory over a data bus and an address bus. In most micro-
processors the bandwidth of the Front Side Bus (FSB) determines how fast the processor can
read or write data. The bandwidth of the memory system data bus does not have to equal the
bandwidth of the FSB, although this is desirable. Currently, the standard data bus width in PCs
is 64 or 128 bit, in graphics cards 128 or 256. During a read or write operation all lines of the
bus are used simultaneously and their content defines a bus word. Because a typical SDRAM
memory chip has a depth of only 8 bit, eight of them are arranged on a memory module to
provide the 64 bit of a word. Similar eight 32 bit deep GDDR chips sum up to the high-end
256 bit wide graphics card buses. For the PC memory modules this means that physically the
first byte of the address space lies in the first chip at (0,0) in the memory array, the second
byte in the second chip at (0,0), . . . , the ninth byte in the first chip at (0,1), etc. When we open

79

3 Data Processing

a row in a chip, we thus actually open the addressed row in all chips simultaneously, and the
union of these rows is called a memory page. Notice that for the data bus it does not matter
how the page is arranged, whether in eight 8 bit deep chips or sixteen 4 bit deep ones. In the
discussion about memory timings one therefore talks about an open or closed page, and page
hits and misses, rather than referring to the rows.

The options for increasing the bandwidth on the system level are similar to the ones available
for the memory chips:

• Increasing the rate of data packets per clock cycle.
Similar to the DDR design of memory chips there are also plans to multiplex data for the
same clock cycle on a memory module basis. Thereby, two memory modules are stick
together and are clocked with slightly displaced clock signals, such that their output can
be multiplexed delivering twice the number of data per clock cycle. The modules could
even themselves contain DDR chips, so that the output would be Quad Data Rate (QDR).

• Widening the data bus.
This has already happened several times in the past. Doubling of the data bus width
immediately doubles the peak bandwidth, but programs can only benefit from it if on
average most of the bytes contained in the transported word are really utilized. Other-
wise, a lot of memory is moved although only a very small part of it is really needed. So
for applications which have a regular access pattern to large memory blocks the gains
of a widened bus are enormous, and architectures such as graphics cards, which are
designed for the processing of large data chunks have a 2-4 times wider bus than the
common PC.

On the mainboards of PCs the data bus can also be widened to 128 bit by using two
different memory modules as accumulative 64 bit channels, instead of widening the
memory modules themselves. This has the advantage that one can still utilize the same
memory modules as for other single channel mainboards.

• Decreasing the clock cycle time (tCLK) of the data bus.
This puts requirements on the quality of the mainboard and the memory controller, just
as the production of equally fast memory chips requires special care. Therefore, high
clock cycle buses are more common to graphics cards where the interaction with the bus
is more restricted and bandwidth is often the bottleneck, than to PCs where also other
hardware components interact with the bus and latency is the bottleneck.

As the memory controller must handle memory requests from all hardware components, the
main PEs which should perform our computation do not always get full attention. If the access
rights on the bus are handled in a naive way, e.g. but rotating them among the devices, then
the sustained bandwidth for the PEs decreases even when no other requests are pending. Only
in newer PCs the processor can obtain an uninterrupted stream of data from the memory as
provided by the burst mode of the memory chips (Figure 3.3 on page 76).

In the previous section we have seen that the clock frequency of memory chips has grown
much slower than that of micro-processors. The reason why DDR2-400 chips with a 100MHz

80

3.1 Data Access

memory core and 8 bit depth can nonetheless provide enough bandwidth for the 6.4GB/s
demand of the Pentium 4 QDR FSB at 200MHz, are additional techniques which increase the
bandwidth, namely: the prefetch size 4 with multiplexed output, grouping of memory chips to
form 64 bit deep memory modules and using of two modules as separate channels resulting in
a 128 bit wide bus. Similar 32 bit deep DDR-950 lined up to a 256 bit wide bus offer currently
the highest peak bandwidth of 30.4GB/s to feed the GeForceFX 5950 Ultra [NVIDIA, 2004]
running at 475MHz.

By sending data from the processor to the memory controller and further to the memory mod-
ules additional latencies occur. Similar to the other latencies, this is not critical if a sequential
data stream is requested, because then the system latencies occur only once in the beginning,
but it makes random accesses even more devastating in terms of performance.

3.1.3 Memory Hierarchy

Bandwidth can be increased and latencies reduced substantially if memory resides closer to
the PEs, ideally on the same die, i.e. on the same piece of silicon on which the processor has
been fabricated. It is however very expensive to put large amounts of memory on the same
die as the PEs. Instead, small blocks of local memory store accessed data and intermediate
results for fast reuse. The local memory is named cache if it is transparent to the PEs, i.e. the
PEs still use global addresses and the cache determines on its own if it already contains the
requested data and delivers it instead of an access to the main memory.

Micro-processors tend to use caches, while reconfigurable hardware usually exposes the local
memory directly to the programmer. Depending on how close the memory lies to the PEs,
we speak of registers (L0) and L1, L2 or L3 memory/caches. In nowadays common micro-
processors registers come in numbers of tens to hundreds and sizes of 32 bit to 128 bit. Sizes
of L1 caches go up to hundreds of KiB, for L2 up to several MiB, and for L3 up to tens of
MiB. While the registers and the L1 cache are on-die with the processor, L2 is usually on-die
or at least in the processor package, while L3 is less common and may be placed similar to L2
or outside of the chip.

The main advantage of the close integration is the opportunity to run the caches at the high
processor clock rather than the much slower memory bus clock. Moreover, caches are built
from SRAM and exert far less latencies than the memory bus with DRAM. The L1 cache
has often only 2-3 clock cycle latency, the L2 cache 5-10, for the L3 cache it is usually more
than twice the L2 cache latency, but still less than the random access over the memory bus
which takes 100-200 clock cycles. Notice that here we talk about latencies as multiples of the
processor clock cycle and not the much slower memory bus clock cycle. Bandwidth also de-
creases away from the processor core, whereby there are again significant differences between
the theoretic peak bandwidth and the sustained bandwidth of different memory access modes.
The different speeds of the caches lead to memory access performance graphs staggered by the
size of the caches. Consult [Gavrichenkov, 2003] for an evaluation of such synthetic memory
benchmarks for the current high-end PC processors Pentium 4 [Intel, 2004b] and Athlon 64
[AMD, 2004].

81

3 Data Processing

Caches turned out to be a very effective way of reducing memory latencies and increasing the
bandwidth to the PEs. Empirical analysis for common PC applications shows that the cache
system has over 98% hit rate, i.e. in less than 2% of the cases data must be fetched from the
main memory. However, this fact suggests a too high performance gain. Recalling the general
arrangement of memory cells from Section 3.1.1 on page 71, we understand that it is easiest
to organize access to caches in whole lines. A typical L1 cache line is 64B wide, L2 64-128B.
This means that when we request one byte, we get 64 of them into the cache. This is done,
because we are likely to use some of the other bytes in the following. But if we do not, this
does not necessarily mean getting a bad hit rate. We could be repeatedly requesting several
of such isolated bytes each from its own cache line and getting a good hit rate, although we
never use any of the other bytes in the cache lines. For performance it is therefore important
how predictable the access to a new memory address is. Only if the address is known well in
advance than the fetching of a whole cache line does not incur performance, because it does
not stall the current computation which takes place simultaneous to the data transmission.

The latencies and hit rates given above depend on the cache associativity. In an N-associative
cache one has to check the tags of N cache lines to determine whether a given address in the
main memory is cached, where the tags specify the main memory line which is mapped to the
cache line. The smaller N is the less comparisons against the tags must be done, decreasing
the latency. But the larger N is the greater the number of cache lines which may be used for
the mirroring of a given address, increasing the probability of cache hits. The extreme cases
are a directly mapped cache (1 associativity), which associates each address with exactly one
cache line and thus needs only one tag comparison but has a lot of memory competing for the
same line, and the fully associative cache (all cache lines associativity), which can map any
main memory line to any of the cache lines and thus needs to check all tags but can always
involve all lines in the caching. The 4- or 8-associative caches are common and form a good
compromise between short latencies and high hit rate.

Let us summarize the data access handling by following the request from the processor for a
single bit which resides in the main memory. First, we have a latency incurred by the L1 cache
miss and the L1 cache requests 64B from the L2 cache line. The L2 cache also suffers a miss
and requests the 64B from the memory system. After additional memory system latencies the
memory controller opens the requested page. This takes some time as it means measuring
and amplifying the charge of the capacitors in the corresponding row. Then a series of read
commands providing the column addresses starts the transmission of the cache line in burst
mode. A few more cycles pass before data from the memory chips traveling through the
mainboard reaches the processor. The processor stores the incoming data in the caches, and
on arrival of the requested integer, passes it to the PEs for the one bit check. Certainly, this
is an extreme example, but it illustrates the complexity of a memory access. Moreover, even
when a stream of instructions is available to the processor a cache miss is still devastating and
the techniques to handle them while several instruction threads are executed in parallel are
clearly not trivial [Karkhanis and Smith, 2002].

To clarify the bandwidth mismatch between micro-processors requirements and the memory
system performance we continue the example from the previous section. For a Pentium 4

82

3.1 Data Access

with a FSB800 we have seen that the dual channel DDR2-400 modules can provide the 6.4GB
bandwidth for the Front Side Bus (FSB). But the processor itself running at 3GHz can pro-
cess four 32-bit floats in one clock cycle using the Streaming SIMD Extensions (SSE) and
would thus require 48GB input bandwidth per float, which is 7.5 times higher than the FSB
bandwidth. If we consider a single additions then two operands would have to be retrieved
and one result written in each clock cycle resulting in 22.5 fold mismatch. Factors like these
are typical for the disparity between the required peak processor and the peak memory sys-
tem bandwidth. Moreover, we have only considered the SSE unit, although a micro-processor
also contains several additional Arithmetic and Logic Units (ALUs) which can run in parallel.
Therefore, the L2 cache in the Pentium 4 3GHz provides 96GB peak bandwidth, so that it
makes a lot of sense to load all data which will be needed in later calculations into the cache
lines in advance, this is called a cache prefetch. Compilers should provide such hints to the
processor, however, in programs which use a lot of data, such that the L2 cache cannot hold
all of it, it is in general difficult to decide at compile time which data should be prefetched, in
particular, as this depends on the various memory timing parameters of the system. The pro-
cessor itself issues prefetch instructions at runtime by speculating which code will be executed
next and such optimization of the memory behavior can be fairly successful when performed
carefully [Hu et al., 2002]. But again, for optimal performance we are much better off with a
regular data-flow.

In contrast to micro-processors the bandwidth requirements of a GPU and the provided mem-
ory bandwidth on a graphics card used to be better balanced. The GeForceFX 5950 Ultra
running at 475MHz, for example, can process 8 texture values in one clock cycle and each
texture value may consist of up to four 32 bit deep colors. So if we want to keep all PEs busy
all the time, we have a memory bandwidth requirement of 475MHz · 8 · 4 · 32b = 60.8GB/s.
The memory provides half the bandwidth, so the mismatch is much smaller. But with the new
generation a change occurred, as the GeForce 6800 Ultra has 4 times as many PEs but only
slightly higher memory bandwidth, resulting in 5.8 bandwidth mismatch factor, more similar
to the micro-processors. This tendency is likely to continue because computer games now also
use configurations with higher computational intensity and the integration of additional PEs
into the GPUs is cheaper than the corresponding bandwidth increases. What is more important
in favor of GPUs is the processing of the data in data streams, which minimizes latencies and
maximizes throughput (Section 3.2.4 on page 93).

In the second part we will turn our attention to the computation itself. Once the data arrived
at the PEs, the question arises which organization of them will deliver the result fastest. After
having experienced the relevance of the data access pattern on the overall performance, the
computing architectures will also be examined with respect to latency and bandwidth efficient
memory usage.

83

3 Data Processing

3.2 Computation

In general we have talked about processing elements (PEs) so far, because the hardware el-
ements which perform the computation can be very different. However, sometimes we re-
ferred to micro-processors which serve as Central Processor Units (CPUs) in our PCs, because
this implicitly defined a computing paradigm known as von Neumann or instruction-stream-
based (ISB) computation. An ISB processor executes an instruction stream and reads and
writes data according to the instructions. This is the predominant computing model, not nec-
essarily because it is the best for all applications, but rather because of historic and economic
considerations. We have already seen for the memory chip design that economy has often a
stronger impact on the design of computers than performance. So only the ever growing size
of multimedia data together with the memory gap problem made way for the dichotomic anti
machine paradigm from an economic point of view. In the following we adopt the terminology
for the classification of the architectures from [Hartenstein, 2003].

The anti machine paradigm is based upon data-stream-based (DSB) computations, i.e. the
PEs in a DSB processor are configured to perform a certain computation triggered by the
arrival of data at their inputs. Obviously, the order of the data plays a crucial role in the
evaluation. The data streams are generated by a data sequencer programmed with flowware,
just as an instruction sequencer, which is usually a part of the ISB processor, generates an
instruction stream determined by software. Different operations are realized by reconfiguring
the PEs to a new state and streaming the data through them again. For this to happen the PEs
must be reconfigurable, in which case we speak of morphware, i.e. reconfigurable hardware,
in contrast to hardwired and non-configurable hardware. The code which is used to reconfigure
morphware is named configware, Table 3.2 on the facing page summarizes the relations in the
nomenclature.

However, the classification from the table suggests a false homogeneity within the classes. The
design within each class may vary significantly leading to optimal performance in different
application areas. We can only scratch the surface of the different computing paradigms and
refer to [Becker, 2002; Bell, 2000; Hartenstein, 2003; Herz et al., 2002] for further reading
and references on this topic. But before looking at the two computing paradigms in more
detail we must first examine how to measure performance and how the general concept of
parallelization can help to increase it.

3.2.1 Performance

Similar to the memory characteristics where we have considered the performance attributes of
latency and bandwidth (Section 3.1 on page 71), for the computation we also have a two-fold
measure of throughput, the amount of data that can be processed per second, and latency or
execution time, the delay from the computation’s beginning to its end. Both measures depend
on the problem, but allow a comparison of different architectures. Additionally, measuring
operations per second (OPS) may be useful to compare different solvers on the same machine

84

3.2 Computation

Table 3.2 Sources, execution units and platforms of instruction-stream-based (ISB) and data-
stream-based (DSB) processors. The ISB processor usually contains the instruction sequencer,
so that software defines an instruction stream which determines both the instruction scheduling
and the execution in the PEs. Similarly, a DSB processor may also contain the data sequencer,
so that a common configuration determines both the data scheduling and the execution in
the PEs. But the conceptual distinction between flowware and configware is kept up, as it is
reflected in the co-design of two different parts of the configuration.
Hybrid designs mixing the different execution units also exist. They may involve the co-design
of all software, flowware and configware.

source execution unit platform

software instruction sequencer hardware

software PEs in the ISB processor hardware

flowware data sequencer hardware/morphware

configware PEs in the DSB processor morphware

and against the maximal OPS performance of the architecture. However, OPS numbers are
less useful in comparing different processors, because the general term ’operation’ may imply
different amount of actual processing. The common measure FLOPS for example, ignores the
fact that the transistor count for a multiplier grows quadratically with the data width of the
operands, while the transistor count for an adder grows only linearly, thus 10 FLOPS (multi-
plications) is much more powerful than 10 FLOPS (additions) in reconfigurable hardware.

In general, we can say that latency is more important for the processing of small data packets,
while throughput is crucial for large data blocks. Latency is often significant for applications
like emergency signals, system surveillance, real time process control, financial orders, search
of data base entries, etc. Throughput is the decisive factor in our case of large images and in
many other scientific computations operating on huge data blocks.

In the design of hardware architectures or in reconfigurable systems throughput can be often
traded for latency performance by a technique named pipelining. Thereby, several PEs are
lined up to perform a complex operation (Figure 3.4 on the following page). Each of them
has the same latency, enabling a synchronized hand in hand execution. This has the advan-
tage that the first PE does not have to wait for the last PE to complete, before starting a new
computation. Instead, as long as the input is available all PEs keep on computing and pass
the intermediate result to the next one. If the pipeline is long, the overall latency may sum
up to a large value, but the throughput only depends on the common latency of the individual
PEs. Obviously, less complex PEs have smaller latencies, so that the pipeline grows but the
throughput increases. Longer pipelines also diminish the problem of hot spots, i.e. particu-
larly high power emergence on a small area of the die, and thus allow to further increase the
frequency of the design. Indeed, this is a rule of thumb: longer pipelines enable higher clock
frequencies.

85

3 Data Processing

Figure 3.4 An example of throughput increase through pipelining. Three different designs
show the implementation of a linear interpolation a + µ(b − a). The first uses an integrated
circuit for this operation. The second is a pipeline arranged of components with latency 2. The
overall latency worsens, but the throughput is doubled. The third design shows an optimized
pipeline with a quadrupled throughput in comparison to the initial design.

Let us elaborate on the pipelining example from Figure 3.4. An operation like linear inter-
polation a + µ(b − a) which takes say 4 cycles to complete in a certain integrated circuit,
could be split into two adders with 1 cycle latency each and a multiplier with 2 cycles latency,
doubling the throughput to 1 datum per 2 cycles. The pipeline requires more resources than
the integrated circuit, because it cannot reuse one of the adders for both operations and more
control logic is needed. But since the multiplier consumes most of the area, the percentage
increase in transistors would be moderate.

The optimization of the pipeline continues in the third design. The additions have a smaller
latency than the multiplication and are delayed in the pipeline to fit the common speed. But the
multiplier can also be a pipelined design with sub-circuits’ latencies matching the unit latency
of the adders. Since the new maximal latency of the components in the pipeline is 1, we have

86

3.2 Computation

doubled the throughput again to 1 datum per cycle.

We see that pipelines can be optimized in detail if we have the possibility of splitting and
merging of the functional units for an optimal timing. In this way morphware often allows to
multiply the throughput of the initial implementation. In the hardwired case only general and
not application specific optimizations can be applied.

3.2.2 Parallelization

If we have only one elementary PE there is not much to optimize concerning the computation
itself. Similar to the memory design we have the options of:

• Increasing the frequency.
this has been done very successfully over the years, but at some point there is always a
limit and too aggressive frequency settings may impede the use of the other optimiza-
tions.

• Widening the data path.
this has also been done to some extent, but computing everything in 64-bit is not really
a performance gain, if all numbers lie well within 32-bit. We might make use of the
other 32-bit by packing numbers together. This, however, will probably mass up the
code or even decrease performance due to frequent packing and unpacking operations.
Therefore, the hardware itself often offers to use wide ALUs as two parallel ALUs with
halved data width.

• Increasing the functionality of the PE.
We construct a PE which will process more complex commands, which otherwise would
have needed several simple commands and more time to execute, e.g. we could have
a multiply-accumulate (MAC) instruction performing a multiplication and addition in
one cycle. However, within such a PE there must be a multiplier and an adder, so why
not speak of two concatenated primitive PEs. The question is whether this separate
logic circuits can be used individually. Therefore, we restrict the use of the term PEs to
specify the smallest individually controllable processing elements. So we could realize
the MAC operation by two elementary PEs and this opens up the extensive topic of
parallelization, the idea of arranging several PEs to accelerate the computation.

The main reason for considering parallelization are economic costs. Of course, parallelization
is concerned with performance, programmability, reliability, power consumption and flexi-
bility, i.e. the efficiency in adapting to different application requirements, which includes
features like mobility, security, maintenability and scalability (the efficiency of increasing per-
formance by adding more computing units to the system). But ultimately this all boils down
to optimizing costs under the restrictions of the envisaged application area. We have to make
this point clear because from a scientific point of view it would be more agreeable to think of
a resource optimization under certain inherent constraints, but actually it is cost optimization

87

3 Data Processing

and we cannot exclude the impact of the external factors of the market, which sometimes ren-
der solutions with a poor utilization of resources cost efficient, e.g. due to cheap availability
of these resources through mass production.

Similar to the hierarchy of caches parallelization can take place at various levels and the closer
the parallel units lie together the better the connection between them and thus the less delay in
information exchange occurs. There are numerous levels of parallelization and for clarity we
order them into a strict hierarchy omitting minor branches:

• Logic circuits in a PE.
Even the smallest PE may exhibit parallelism either by pipelining or simply multiple
inputs and outputs. On this level the parallelism is usually not directly accessible to
the programmer, because independent control of the individual circuits requires a huge
instruction or configuration stream and a lot of interconnect.

• PEs in a core.
Most large scale hardware design projects do not start anew at the level of PEs. The
design itself is hierarchical and uses cores as predefined assemblies of PEs of various
complexity to arrange a more complex design. A major advantage is the availability of
Intellectual Property (IP)-cores with exactly specified functionality and behavior from
various vendors. The opportunities for parallelization in a core are numerous. At this
level the driving cost factor corresponds to a performance per transistor ratio. Thereby
both the absolute reduction of silicon and decreased power dissipation are the main
benefits.

• Cores on a die.
Some stand-alone processors on the market are also available as IP-cores, so that with
additional communication logic one can quickly integrate several processors on a die.
With modern fabrication process even embedded DRAM, analog circuits and opto-
electro-mechanical systems can be integrated in a System-on-a-Chip (SoC) on the same
die. Frequently reconfigurable hardware is also added to form a Configurable System-
on-a-Chip (CSoC).
The Simultaneous Multi-Threading (SMT) is a contemporary strategy for paralleliza-
tion, where a single core processor pretends that it contains two cores by distributing
the computations intelligently onto its parallel PEs.

• Dies in a chip package.
The reason for having several dies in a chip package rather than putting it all on one die,
lies partly in the silicium processing: memory and PEs have optimized processes of their
own and smaller dies are less often corrupted by fabrication errors. Also, the individual
dies may be produced in masses even though the concrete assemblies are needed in
much smaller numbers. Therefore, from here on overall area efficiency is not the main
cost criteria anymore, since mass production of standard components may render the
assembly of them cheaper than the design of a new, more area efficient problem specific
SoC.

88

3.2 Computation

• Chips on a card.
Several processor and memory chips may be closely interconnected on a card, although
in a common PC the chips are usually placed directly on the board. The assembly on a
card is similar to the assembly of dies in a chip package but on a higher level. It makes
sense mainly for Massively Parallel Processing (MPP) systems to introduce another
level of interconnect proximity, because the larger the distance between the processors
becomes the slower is their connection.

• Cards on a board.
Several cards are put on a board. Additionally it includes memory and hardware compo-
nents for interfaces to a network, mass storage devices, extension cards, etc. The typical
example is the mainboard in a PC.

• Boards/racks in a computer.
While a PC usually contains only one board, there is a whole hierarchy of board integra-
tion in High Performance Computing (HPC) ranging from multi-board arrangements to
meter high racks which in multitude form a supercomputer.

• Computers in a cluster.
Two to thousands of computers can be arranged in clusters, making use of the network
capabilities of the computers for the interconnect. Such clusters may be build up from
various categories of computers ranging from simple PCs to HPC machines. Usually
cheap standard PCs are used and only the interconnect is of higher quality, as it often is
the performance bottleneck in these inexpensive parallel computers.

In this context the term system node refers to the smallest common building block of
a computer system. In case of a cluster each of the computers forms a node, while for
dedicated parallel computers the individual boards are the nodes.

• Clusters in the world.
Distributed computing has become a major keyword in recent years. Indeed, the idea of
joining computing resources around the world is intriguing. Both fast fiber connections
between major HPC centers and slow networks between numerous PCs exist. Besides
performance gains from parallelization, distributed computing addresses the very im-
portant property of system stability in large computer systems.

At all these levels the question arises what is the best topology for the communication between
the computing units. Again, costs play an important role, but also the general assumption
on how much communication will be required between the units and of which structure the
data streams are. Common interconnect topologies are linear, bus, ring, star, tree, hypercube,
mesh, and fully connected. Hybrid topologies also exist. This classification applies basically
to the parallelization levels above the node level, because below we often do not need any
direct communication at all. Instead, information is exchanged indirectly by using shared
memory for the intermediate results. This shared memory may be single registers, register
files, embedded RAM or local caches. Depending on how close this memory resides to the
PEs different latencies will occur while exchanging the intermediate results between the PEs in

89

3 Data Processing

this way. On higher levels a direct communication may turn out faster, e.g. some processors
have an additional bus for the direct communication with other processors, which is much
faster than the access to the shared memory on the node. It is clear that the distribution of
memory and the choice of an appropriate interconnect topology play a crucial role for the
performance of the parallel system. We distinguish the following basic types:

• Shared Memory
All nodes share the same global memory space. The memory is accessed over a common
bus or a connection network. Caches embedded in todays micro-processors violate the
totality of the sharing to some extent. Usually the processors themselves ensure that the
contents of all caches is coherent. Non-cache-coherent architectures are easier to build
and save on implicit synchronization but are very difficult to program.

• Distributed Memory
Usually on the board and card level, memory is distributed over the whole system and
network requests to other boards must be issued if other than local data is required. The
speed of the network is often a crucial parameter in distributed memory systems. In a
Massively Parallel Processing (MPP) system, where several boards reside in a common
rack close together, high speed networks can be used. For inexpensive clusters which
connect standard PCs slower standard network components are more common.

• Non-Uniform Memory Access (NUMA) architecture
This is a system in which the speed of an access to the logically shared memory varies
with the actual physical location of the data. This is a common memory model for par-
allel arrangements with more than 8 nodes, because the costs of a symmetric access of
all nodes to the memory grow quickly with their number. But more nodes also increase
the complexity of the cache coherency problem. The logically shared memory space
need not be shared physically. But NUMA alone usually refers to shared memory ar-
chitectures or those with a fast hardware mechanism for retrieving data from different
physical memory locations.

In case of a truly distributed memory architecture which offers a logically shared mem-
ory space one speaks of Distributed Shared Memory (DSM). The sharing is achieved
either transparently by specific hardware components or an operating system, or handled
more explicitely by the user with an appropriate programming model. In either case the
aim is to distribute the data efficiently with minimal traffic across large distances. In
comparison to an explicit message passing between the nodes of a distributed memory
architecture, the DSM model is more convenient for the programmer but may fall short
of finding the optimal distribution and traffic of data among the nodes.

Since NUMA only states a non-uniformity the performance of these architectures dif-
fers significantly depending on the relation of the access times to the memory address
positions in the logically shared memory space. NUMA shared memory realized by
software has typically an order of magnitude higher latency than the much more expen-
sive hardware solutions.

90

3.2 Computation

On the low levels where PEs or blocks of them have to be connected we have the rough
rule that the transistor count equals costs, thus increasing the performance by a high number
of transistors only slightly, is not an option. By the speedup we define a problem dependent
function which for given p ∈ N equals the ratio of time spent on solving the problem using one
computational unit, to the time spent using p computational units. Ideally, we expect a linear
speedup, i.e. the computation time is reduced proportional to the number of computational
units. In rare cases super linear speedup is achievable due to factors related to the overall
architecture. If we dealt with only one problem then we could optimize the arrangement of
the PEs to obtain the best speedup. But for a wide range of applications it is more difficult to
determine how to organize multiple PEs for optimal average speedup. Let us examine some
cases:

• Simple computations on independent data entries.
This is a situation with low computational intensity where one or very few operations
are executed on each data entry. Then parallelism in breadth, i.e. the arrangement
of many PEs side by side, allows to process several data entries in parallel increasing
speedup almost linearly. Usually all PEs can contribute to the computation, but the
memory bandwidth requirement also grows linearly with each PE arranged in breadth
order. Graphics hardware utilizes mainly parallelism in breadth.

• Complex computations on independent data entries.
In this case many computations have to be performed on each data entry and we have
a high computational intensity. Parallelism in depth, i.e. the arrangement of PEs one
after another in a pipeline, allows each PE to work on a small piece of the problem
with the results of the preceeding PEs. The side by side arrangement would also allow
a processing in parallel, but a lot of intermediate results would have to be written and
read from memory for each step of the problem solver, thus unnecessarily increasing
the memory bandwidth requirement. The pipeline, on the other hand, is very memory
efficient, because ideally each datum has to be accessed only once. However, it is more
difficult to utilize all of the available PEs for a given problem when arranged in depth
order. If after building the pipeline some PEs are still available, but do not suffice
to build a second one or to lower the common latency, it is not obvious what to use
them for. If there are too few PEs to build the whole pipeline, then intermediate results
must be transported to memory, but less often than in the side by side arrangement.
Reconfigurable hardware often opts for the processing in deep pipelines.

• Computations on dependent data entries.
Here one tries to exploit either of the above strategies looking for opportunities to com-
pute some results independently of each other in a breadth arrangement and others in
a pipeline arrangement. But if the data dependencies are changing constantly, then
this approach requires a very fast dynamic interconnect between the PEs, otherwise the
overhead associated with finding and configuring the parallelism will outweigh the ad-
vantage of it. Also, some codes are so inherently serial, that there is nothing that can
be parallelized and thus no speedup can be gained from multiple PEs. Amdahl’s Law
specifies this observation: If s is the fraction of a calculation that is inherently serial,

91

3 Data Processing

and thus cannot be parallelized, and 1−s the fraction that is parallelizable then the max-

imum possible speedup on p PEs is
(

s + 1−s
p

)−1

and consequently limited by 1/s from
above. Because of the danger of poor utilization of multiple PEs in serial codes, general
purpose micro-processors contain only few parallel PEs. PE arrays with a fast dynamic
interconnect offer more opportunities for parallel execution if an appropriate fast logic
for the identification of the required parallelism exists [Mai et al., 2000; Sankaralingam
et al., 2003].

We see that ideally the interconnect between the PEs is programmable, so that depending on
the problem structure, the appropriate arrangement can be configured. In DSB processors
this reconfigurability is often available, but in ISB processors the different arrangements are
usually hardwired leading to a large variety of designs.

3.2.3 Instruction-Stream-Based Computing

Flynn’s taxonomy [Flynn, 1972] classifies ISB architectures based on the number of streams
of instructions and data:

• Single Instruction Single Data (SISD) - scalar
This is the classical design used in a simple processor with one instruction stream op-
erating on singular data packets. We also speak of a scalar processor. In todays super-
scalar processors the processor has several PEs and cares about the run-time schedul-
ing, i.e. the optimal distribution of the instructions onto the PEs for parallel execution
during run-time.

• Multiple Instruction Single Data (MISD)
A theoretic architecture, which would apply multiple instruction streams to a single
stream of data. This could be suitable for problems where each datum undergoes a lot
of computations.

• Single Instruction Multiple Data (SIMD) - vector, VLIW
This is a very common approach to accelerate computations when large data blocks
are processed, e.g. a vector processor applies operations to whole data vectors by a
row of PEs. But also some common micro-processors contain SIMD PEs to exploit
parallelism in breadth. The instructions in the stream can be either simple or fairly
complex consisting of Very Long Instruction Words (VLIWs). The VLIW contains
sub-instructions specifying different operation for the parallel PEs. In contrast to the
super-scalar processor VLIW machines have to figure out the parallelism of instructions
statically at compile-time and so we speak of compile-time scheduling. The VLIW
parallel execution is similar to the following MIMD model, but here we have still one
instruction stream and the sub-instructions cannot be issued individually.

• Multiple Instruction Multiple Data (MIMD)
Independent PEs can be programmed to perform different tasks on different data pack-

92

3.2 Computation

ets in parallel, if the computations are independent. The MIMD usually applies to the
processor level, where each processor executes its own instruction stream, rather than
individual PEs in one processor receiving the independent streams. Notice that the
individual processors often work with the SIMD model. Because there are several in-
struction streams the task execution must be synchronized. This requires a network
and message passing between the nodes. Within the node, which may contain several
processors, other more direct communication is established.

The last class encompasses a huge variety of designs which differ in the number of the nodes,
their complexity and the network topology. Also, additional distinctions about the relation of
the instruction streams apply, e.g. the most common programming mode on several processors
is Single Program Multiple Data (SPMD). Naturally, detailed classification of real systems is
even more complex and hybrid architectures also exist [Duncan, 1990]. Often the program-
ming interfaces rather than the details of hardware determine which sorts of parallelism can
be really exploited [Rolfe, 2002].

Virtually all ISB architectures suffer from a memory bottleneck. The problem lies in the
fact that the instruction stream prescribes both the consequent flow of instructions and the
flow of data operands required by the current instructions. If the instruction stream changes
unpredictably we get an unpredictable access pattern to the memory for the operands. But all
of Section 3.1 on page 71 has made very clear, that it is crucial for the memory system to know
the requested addresses in advance if high sustained bandwidth is desired. ISB processors fight
the uncertainty in data access with speculative processing and memory prefetch, improving
performance for inherently serial code, but not exploiting the full potential of highly parallel
code. This seems appropriate for general purpose processors which mainly process serial
code, but most processing time in scientific computations is spent in loops over large data
blocks performing the same operation over and over again, and here massively parallel data-
stream-based (DSB) execution is advantageous.

3.2.4 Data-Stream-Based Computing

DSB architectures are often classified with respect to the granularity, i.e. the size and operand
width of the smallest programmable units, the processing elements (PEs), and the arrangement
of them. We distinguish three major flavors:

• Reconfigurable Logic (RL) [Bondalapati and Prasanna, 2002]
FPGAs are the most important devices of the RL family and the only ones providing
high logic capacities. We refer to [Brown and Rose, 1996] for an overview of the other
RL devices. In the mid 1980s FPGAs began their success story, starting as small hard-
ware simulation devices and leading to universally applicable multi-million gate chips of
nowadays. The PEs of FPGAs are configurable n input 1 output lookup tables (LUTs),
with a typical value of n = 4. By filling the entries of the LUT with values the desired
logical function can be configured. Several LUTs are grouped together to Configurable
Logic Blocks (CLBs) which usually also contain a register to facilitate the synchroniza-

93

3 Data Processing

tion of the data-flow. The CLBs are organized in an array and the space between them is
used for the interconnect network, i.e. configurable switches between data lines which
allow the desired connection between the inputs and outputs of the CLBs. FPGAs are
fine granular because the routing and processing of individual bitlines can be config-
ured. Consequently, the configware for the FPGA consists of a large bit stream which
contains the values for the LUTs and the routing of the data lines.

The advantage of FPGAs, the free configurability on the bit level, becomes a disadvan-
tage when many standard ALUs are needed, which would consume far less transistors
if hardwired or configured on the arithmetic level. Therefore, for the most common
operations many FPGAs include hardwired units, ranging from multipliers for different
operand widths to whole processor cores. Additionally, more and more RAM is avail-
able on the chip for the caching of input values or intermediate results. As sometimes
even the largest FPGAs cannot hold the whole configuration for the problem solver, now
the chips usually offer run-time reconfigurability, i.e. intermediate results can be stored
in memory and after reconfiguration of the FPGA the new configuration continues the
computation. Some offer even partial reconfigurability, which allows to reconfigure
only parts of the FPGA, while others retain their configuration or even continue execu-
tion, which helps to hide the latency of the configuration process.

• Reconfigurable Computing (RC) [Hartenstein, 2001]
RC refers to coarse-grain architectures with data line widths of 4 to 32 bit. The gen-
eral arrangement is an array or line of tiles with an interconnect network similar to the
FPGAs or crossbar switches. Simple tiles contain an ALU as a PE and may also have
local registers and routing capabilities. In designs with complex tiles whole processors
with local memory and communication resources are arranged. Naturally, architectures
with simple tiles have many more of them and a more extensive network than the arrays
of few complex tiles. Therefore, besides the different functionality of the tiles, the inter-
connection network differs strongly between the designs. Usually there is some nearest
neighbor and some mid to long distance routing, but the number of the routing hier-
archies and their complexity varies. Also the distribution and access to local memory
is organized in different ways. Similar to FPGAs, RC architectures may contain local
memory blocks and special computational units.

In any case, the coarser structure in comparison to FPGAs needs far less configware,
so that not only concurrent partial reconfigurability but sometimes even dynamic re-
configurability in RC systems is available, i.e. individual PEs are reconfigured and
immediately start performing the new operation. In some architectures one can also
adaptively reduce power consumption by switching off inactive PEs.

If the predefined operations of the PEs are required by the problem solver, RC archi-
tectures have a better utilization of transistors than FPGAs, because the functionality
is hardwired in parts. But if irregular bit manipulations require many ALUs or some
unforseen other functionality must be awkwardly simulated, then the more flexible RL
architectures have an advantage. But while RL architectures have become a mass mar-

94

3.2 Computation

ket and apart from special purpose FPGAs their structure has strongly standardized, RC
architectures still come in large variety of designs. So, often the development tools for
RC systems lag behind. Moreover, there are a lot of hybrid architectures also including
hardwired parts or even whole processors which require the integration of different pro-
gramming models. Not seldom everything is even on the same die and we speak of a
Configurable System-on-a-Chip (CSoC) [Becker, 2002].

• Stream processors [Rixner, 2002]
Stream processors use multiple SIMD PEs to quickly operate on data streams. Internally
the computations are not necessarily data driven but use for example VLIWs to trigger
the operations. Nevertheless, the whole system is data-stream-based (DSB), because all
components are focused on the generation and processing of data streams. A data se-
quencer, which may also be an ISB processor, generates the data streams which are fed
to the PEs. In the Imagine stream processor [Kapasi et al., 2002, 2003] the instructions
to the PEs are issued only once at the beginning of the stream processing, like a config-
uration, and than repeated from a local instruction cache. Other approaches propose to
have an instruction stream corresponding to the data streams [Ulmann and Hoffmann,
2002].

The Imagine project also balances the ratio of the different components, mainly memory
and PEs, against their costs and power consumption [Khailany et al., 2003], avoiding
the unbalanced situation in micro-processors where almost 50% of the die is consumed
by caches. This leads to an architecture with a very high local throughput compared
to the global bandwidth, most suitable for problems with high computational intensity.
A memory hierarchy which allows the data reuse at different scales and programming
models which encourage the programmer to expose these opportunities seek to reduce
the demand for the narrow global bandwidth in data intensive applications. Also, the
balanced power consumption of the system lends itself to scaling of such stream pro-
cessing up to the level of supercomputers [Dally et al., 2003].

Just like RC devices are basically specialized FPGAs, stream processor are in some
sense specialized RC machines. A similar or even identical stream processing model
is namely often used in various RC devices [Mai et al., 2000; Sankaralingam et al.,
2003; Taylor et al., 2002]. By reducing the reconfigurability and focusing on the stream
processing model alone, stream processors save in particular on the interconnect. Sop
for the price of reduced flexibility they offer higher transistor efficiency for appropriate
DSB applications.

DSB devices usually do not have problems with latencies because the data sequencer receives
the requested memory addresses ahead of time and thus has enough time to retrieve the in-
formation and generate a continuous data stream. As DSB architectures often exploit the
memory efficient parallelism in depth, their overall demand for data bandwidth is not neces-
sarily higher than that of ISB processors. But the bandwidth may be too small if the memory
hungry parallelism in breadth is required. For RL and RC chips this problem is usually solved
by providing a lot of Input/Output (IO) pins, which allow the access to several memory chips

95

3 Data Processing

simultaneously. The maximal bandwidth to external memory on large DSB devices can thus
be raised to several GB per second. In practice, however, the problem is still present, because
wide buses between the memory and the chip are expensive, so that the full potential band-
width is often not provided on the boards. Luckily, internal RAM blocks can often be used
as caches tailored exactly to the needs of the application, such that the external bandwidth
requirements are further reduced. In stream processors the local memory cannot be used with
absolute flexibility but the hierarchical memory structure is already arranged in such a way as
to maximize data reuse on different levels.

3.2.5 Processor-in-Memory

We have repeatedly stressed the fact that overall system performance is hampered by the mem-
ory gap, the inability to transport the data from the memory to the PEs sufficiently fast. A
radical solution to this problem is to bring the PEs directly to the memory array. This close
combination of DRAM with PEs in the semiconductor fabrication has become possible only
recently on a large scale.

While reconfigurable architectures and micro-processors have also embedded RAM, it is still
clearly separated from the PEs. In Processor-in-Memory (PIM) architectures the coupling of
the memory array with the PEs is much closer. Often a whole memory row can be processed in
parallel by a collection of simple PEs similar to the reading or writing of a memory row. The
gains in bandwidth and latency performance are tremendous and several ambitious projects
focus on the development of the architectures and appropriate language tools to use them
[Draper et al., 2002; Fraguela et al., 2003; Murphy and Kogge, 2000; Sterling and Zima,
2002]. The projects differ in the homogeneity of the systems, i.e. does a large number of
PIM elements represent all computational resources or does it only accelerate typical parallel
task beside a host processor; and in architectural innovation, i.e. is the conventional DRAM
array augmented with processing capabilities for inexpensive and gradual introduction of the
technology or is a completely new architecture with fine-grained interplay of PEs and memory
blocks envisaged.

The design of completely new architectures offers so much freedom, that the question whether
an ISB or DSB methodology should be used for the PIM elements is not that clear. The ma-
jor problems of insufficient memory bandwidth and high latencies are solved by construc-
tion, and the challenges lie in an efficient communication between the fine-grained processing
structures. Therefore, many of the PIM projects introduce new, memory friendly concepts of
communication between the PEs, which use their own buses and run in parallel to the usual
addressing of memory. But despite all the innovations, PIM architectures cannot make an ir-
regular data-flow algorithm run fast. They rather push the idea of exploiting data coherency
on the lowest level to the extreme, and algorithms which expose this parallelism to the archi-
tecture can be enormously accelerated. Although the utilization of the PIM concepts is fairly
new and many question about the optimal arrangement and communication of memory and
PEs are still open, the sample implementations and performance gains are very promising and
commercial products will hopefully be soon available.

96

3.3 Hardware Architectures

3.3 Hardware Architectures

In the previous sections we have discussed the concepts behind memory design and different
computing approaches. Now we turn to some concrete architectures and examine how they
relate to these concepts in general, and their efficiency for image processing applications in
particular. At the end we dare to peek into the large scale future of hardware architectures and
data processing.

3.3.1 Status Quo

Since mass production greatly reduces unit prices and significant initial investments are needed
to benefit from latest semiconductor fabrication technology, one could expect the hardware
market to be dominated by very few architectures. But on the contrary, it is quite diverse. The
diversity stems from the applications’ requirements. Even the best price-performance ratio
becomes irrelevant if the corresponding device is not suitable for the envisaged application.
Performance is of course an important factor, but flexibility, reliability and in recent years
most notably power consumption often tip the scales. In practice the hardware must comply
with all requirements to some extent, such that several distinct markets dedicated to specific
weightings of the requirements can thrive simultaneously. So far we have always discussed
hardware with a focus on large scale image processing, a task unattainable to mobile devices.
Although we will keep this focus on PC based solutions, the reasoning about a regular data-
flow with exploitation of data coherency serves also the purpose of power reduction, a key
feature of embedded processors.

3.3.1.1 Micro-Processors

Micro-processors are ubiquitous as CPUs in our PCs. The performance of a single micro-
processors, which has been increasing rather through higher frequency than per clock cycle
functionality, is cheap in comparison to HPC machines. The exponential frequency increase
requires ever longer pipelines in the processors to avoid dangerous hot spots. But the long
pipelines together with the von Neumann computing paradigm have lead to the problem of
performance destructive jumps in the instruction stream. The processor’s effort to optimize
and parallelize the execution of the instruction stream using multiple PEs thus requires a pre-
diction mechanism for the conditional jumps.

The micro-processors have also dashed forward with their peak performance, such that the
memory system cannot supply the required bandwidth for all the PEs and the latency for a
random memory access in terms of processor clock cycles grows rapidly. Large caches and
data prefetch strategies alleviate the problems but a considerable memory performance gap
remains. The ISB computation worsens the problem in so far, as conditional execution of the
instruction stream prohibits the early availability of later required memory addresses. So the
prefetching depends strongly on a successful jump prediction.

97

3 Data Processing

The optimization techniques mentioned above are performed automatically by the micro-
processors. Software may only provide hints for their application. This makes the program-
ming model fairly care-free, but also wastes potential in cases where an optimal control of
the task and data distribution could be prescribed explicitly. Two other processor extensions
accommodate the programmer with more explicit control. Firstly, SSE PEs allow the use
SIMD techniques to accelerate homogenous processing of data streams. Secondly, Simultane-
ous Multi-Threading (SMT) allows to hide a lot of the memory determined latencies and wait
states through the interleaving execution of different instruction threads. The former technique
offers an almost explicit access to the benefits of parallel computing, but depending on other
pending commands some parts of the processing pipeline may be stalled screwing up the ex-
pected one clock cycle execution. In case of the SMT the actual interleaving strategy is totally
up to the processor, which is probably right, because static analysis for multi-threading at the
compiler level is very restricted.

In general, one may say that micro-processors offer a lot of performance for their price, though
their resource utilization is fairly bad as compared to other architectures. The main advantage
is the general purpose applicability paired with an easy programming model. The downside
of this easiness is the very restricted influence on the efficient utilization of the processor’s
resources. The available optimization mechanisms require good knowledge of the internal
processor structure and a lot of patience to be effective, because the actual internal process-
ing model is very complex and not totally transparent to the programmer. This leads to the
unfortunate situation that the ineffectiveness of some optimization attempts cannot be traced
back. Moreover, very different optimizations may be required by different micro-processors
depending on their complex inner arrangement.

Despite the problems in the optimization of instruction streams for the micro-processor men-
tioned above, there are some very successful demonstrations of the potential power of the
processors. In particular the media and image processing applications we are interested allow
on average speedup factors of 1.5 to 5 against unoptimized code [Abel et al., 1999; Franchetti
and Püschel, 2003; Ranganathan et al., 1999]. The performance gains are mainly based on
the exploitation of SIMD capabilities and the implicit parallel use of other PEs. The design of
the Itanium(2) [Intel, 2004a] processor follows this observation and exposes more explicitely
several parallel PEs to the programmer. In many cases, the compiler can parallelize the code
accordingly on its own. But there is a need for appropriate HLLs and a hardware awareness
to exploit such parallelism more thoroughly, and if this is not achieved by the highly paral-
lel reconfigurable systems then hopefully the growing number of PEs in micro-processor will
promote these languages to common use.

3.3.1.2 Parallel Computers

With parallel computers we refer here to systems which utilize a number of micro-processors
for parallelization. Micro-processors alone are already difficult to optimize, but for parallel
architectures the problem becomes really hard. From Section 3.2.3 on page 92 we known
that parallel arrangement of computing units can occur at many levels. Together with the

98

3.3 Hardware Architectures

variety of the individual processors, interconnects and memory distributions there is huge
number of different parallel systems. It is not possible to compile a single program to an
efficient code on all of them. In the Message Passing Interface (MPI) [MPI committee, 2004]
standard, for example, the programmer has still to consider the performance of the individual
nodes, memory bandwidths at various levels, and the topology of the network to gain optimal
performance. So the performance of parallel algorithms depends more severely than in the
case of single micro-processors on the programmers knowledge about the specific system and
the different parallel programming models [Leopold, 2000].

Nevertheless, parallel computers can have a good price performance ratio if the programmers
take into account the features of the system. Especially clusters made up of standard PCs have
gained high popularity in recent years [Baker/Ed., 2000]. They already occupy 7 of the top
10 places and more than 40% of the current (Nov. 2003) TOP 500 list of the fastest comput-
ers [TOP500 committee]. However, the LIN-PACK benchmark used for the ranking in the
list reflects the performance for only one application scenario. Actually, it favors distributed
memory systems, because the required communication is moderate. For some application
classes clusters tend to be communication rather than computation bound. The site [TOP500
committee] lists also initiatives for a more application oriented benchmarking of HPC.

Most image processing tasks pose only moderate requirements on the communication between
the PEs and have therefore been the target of many successful parallel implementations since
the early days of parallel computing. Michael Duff gives a thorough overview on ’Thirty Years
of Parallel Image Processing’ [Duff, 2000]. Although more and more previously unattainable
tasks can be handled with a PC, there are always more demanding image analysis and visual-
ization tools and ever larger data sets. The implementations in the next chapter demonstrate
that many data intensive applications can be solved in reasonable time with a PC and an ap-
propriate Peripheral Component Interconnect (PCI) card, but there is a limit to this single
component solution, which cannot render parallel systems obsolete. One can naturally think
of parallel systems made up of graphics cards [Sud et al., 2002] or reconfigurable hardware
[Nallatech; Star Bridge Systems Inc] rather than micro-processors. This architectures are
evolving, but the challenge lies not only in the design of a high performance architecture, but
also in the development of a programming model, which makes the whole processing power
accessible.

3.3.1.3 DSP Processors

Digital Signal Processing (DSP) covers a wide range of audio/speech, image/video and sen-
sor/control applications. Because of this diversity there has always been a number of Ap-
plication Specific Standard Products (ASSPs) and dedicated Application Specific Integrated
Circuits (ASICs) to serve the particular needs of applications. On the other hand, many DSP
tasks have a lot in common even though the signals stem from different sources. On the low
level even more similarities appear, like certain memory access patterns and arithmetic oper-
ations: multiply-accumulate, dot-product, scaling, biasing, saturation. DSP processors offer
these capabilities together with SIMD PEs and an instruction set which has enough flexibility

99

3 Data Processing

to implement different applications. Naturally, different combinations of the features result in
different application stress and the number of available chips is enormous [Cravotta, 2003]. So
even within a specific application area a choice among many DSP processors must be made.
However, measuring performance among different chips is a challenge [Su et al., 2004]. In
contrast to computing with a PC, embedded computing puts more emphasis on component in-
tegration, power consumption, reliability, predictable system behavior, programmability and
costs rather than pure computing power.

The high-end general purpose micro-processors used to be faster than the strongest DSP pro-
cessors [Bier, 2002], but they are fairly unsuitable for most embedded applications, because
of high power consumption, difficulties in integration, unpredictable dynamic behavior (spec-
ulation, caches) and last but not least costs. Moreover, latest benchmarks on current DSP
processor families [Su et al., 2004; Williston et al., 2004] show that for many applications the
highly parallel architecture of DSP processors can now deliver comparable performance to the
much larger micro-processors. The disadvantage of DSP processors is their lesser suitability
for the implementation of the user interface and general operating system duties. Therefore,
often both a micro-processor and a DSP processor are used together. If the processing require-
ments are still higher, then even more additional chips in form of coprocessors are needed.
These may include reconfigurable hardware, ASSPs or ASICs. So DSP boards nowadays
hold a variety of different chips and where the tools for the individual components leave room
for improvement, a tool for the simultaneous co-design of hardware and software in such a
polymorphous situation is still a challenge.

Concerning image processing we can say that in many embedded systems DSP processors
still dominate, but the superior performance of highly parallel reconfigurable arrays has been
widely recognized and put into practice [Tessier and Burleson, 2001]. A lot of commercial
boards now offer a combination of DSP processors and FPGAs [Bondalapati and Prasanna,
2002], while first products with RC chips also exist [Becker et al., 2003]. While some Recon-
figurable Logic (RL) and Reconfigurable Computing (RC) architectures claim to replace DSP
processors altogether, which seems likely in the long run concerning the performance/power
consumption ratio, the large DSP processor market is unlikely to disappear at once, also be-
cause the reconfigurable hardware requires a different programming approach, which still
receives little attention by the computer science curricula [Hartenstein, 2003].

3.3.1.4 Reconfigurable Logic

We can characterize the computing models of ISB processors as temporal computing and
of morphware as spatial computing. In the first case the scheduling of the time ordered in-
structions onto the PEs is important, in the second the spatial arrangement and connection of
them. Obviously the spatial model offers more room for parallelization [DeHon, 2002]. In
an instruction stream we can use consecutive independent instructions for parallel execution,
but this can be economically done only on a small scale. In a PE array only the amount of
required communication between the PEs and the data bandwidth limit the parallelization.
Massively parallel MIMD architectures form a kind of transition from one model to another.

100

3.3 Hardware Architectures

Although the individual instruction streams still enforce temporal computing, the distribution
of the tasks already requires spatial considerations. But in RL the spatial considerations go
much further. Concerning a processor’s performance we do not care how many transistors
have been spent on an adder or multiplier. If we have several PEs in the processor than eval-
uating ab − bc + d might be even faster than (a − c)b + d. But for RL the latter would be
definitely the better choice because it involves only one multiplication and thus less resources.
The free resources can then be used to implement another version of this computation, pro-
vided we need to process a lot of data in this way. This means that area efficiency translates
directly into parallelism and further into performance gains in RL.

FPGAs are the dominant devices in the RL domain [Brown and Rose, 1996]. They have ex-
perienced a rapid growth both in size and volume. The mass production has also standardized
the products so that now there are many commercially available boards and development tools
[Compton and Hauck, 2002]. Different needs are covered with single FPGAs, multi-chip
boards and hybrid architectures. Usually some processor performs the configuration of the
FPGA, which is responsible for the fast highly parallel data processing. FPGAs have gained
so much popularity because the development tools provided with the morphware have also
matured. Compilation from High Level Languages (HLLs) like C and its hardware specific
variants to a loadable configuration can now be done automatically. Even the programming
of multi-chip boards is automated by introducing virtualized morphware resources [Enzler
et al., 2003]. However, for optimal performance one often has to interfere with the automatic
processes and hand-code at least some parts of the design in a HDL.

In image processing and other DSP applications FPGAs regularly outperform DSP- and micro-
processors by an order of magnitude or even more, and this despite a lower clock frequency
[Cerro-Prada and James-Roxby, 1998; Hammes et al., 2001]. The low clock frequency has
even the advantage that less power is consumed. An analysis shows that FPGAs benefit mainly
from the dense spatial parallelism [DeHon, 2000]. More beneficial factors are related to the
DSB computing paradigm: efficient use of available IO by data streaming, application tailored
data reuse, the flexibility of parallelism in depth or in breadth depending on the available data
bandwidth [Guo et al., 2004]. Despite the efficient use of IO bandwidth, the increased number
of parallel PEs as compared to an ISB processors may also lead to a memory bottleneck in
FPGAs. For high speedups in RL, it is therefore crucial to have sufficient memory bandwidth
and many problems scale directly proportional to this parameter [Benitez, 2003].

Beside the merits, there are also drawbacks to FPGAs. To allow the fine-grained configu-
ration a lot of transistors are used as opposed to a hardwired design. If most of the Config-
urable Logic Blocks (CLBs) are used for the implementation of standard Arithmetic and Logic
Units (ALUs) then this constitutes a wastage, and we would have been better off having the
ALUs hardwired with programmability only at the function level. Especially the area con-
suming multipliers are therefore integrated as hardwired resources into new FPGAs, which
partly alleviates this problem. The fine-grained architecture also requires a very fine inter-
connect on the chip, which consumes more area than the CLBs. If we assume that data is
in general changed in bytes rather than bits, then a lot of logic for the interconnect can be
saved. Additionally, the high level of programmability implies a large configuration file, and

101

3 Data Processing

thus a comparably long configuration process. Introducing caches and compressed configura-
tions cannot eliminate this problem in principle. The large configurations make FPGAs less
suitable for dynamic reconfigurability. Finally, despite cycle accurate simulation tools, debug-
ging of FPGAs configurations can be a real hassle given the enormous amount of configured
lookup tables (LUTs). By sacrificing the bit-level configurability we can diminish the scope
of these problems, but still retain the advantageous massive parallelism and memory friendly
DSB processing. This brings us to the Reconfigurable Computing.

3.3.1.5 Reconfigurable Computing

In our rough distinction of RL and RC architectures we let RC start with a word length of 4
bit. Here, word refers to the smallest data packet which can be processed individually. Based
on an empirical rule, one can derive that logic density, i.e. the fraction of area used for the
PEs, is maximal for word lengths of 4-5 bit [Stansfield, 2002]. DSP applications have often
even wider words and therefore many RC architectures use words of 16 or even 32 bit. If the
architectural and the application word lengths are similar then unnecessary routing is mini-
mized. But the word length is only one parameter to chose when designing RC machines.
Many more options like complexity of the PEs, homogenous or heterogenous PEs, structure
of the interconnect (local, global, hierarchical), positioning of local RAM elements produce a
large variety of designs. An overview of academic RC architectures can be found in [Harten-
stein, 2001], while commercial vendors are among others [Elixent; IPflex; PACT; picoChip;
QuickSilver]. Computing machines based on fine grain RL are covered in [Bondalapati and
Prasanna, 2002; Compton and Hauck, 2002].

For image processing where bit level operations are seldom required, but also for many DSP
applications RC machines tend to be more suitable than the RL devices [Sueyoshi and Iida,
2002]. They form a happy middle between the fine grain configurability of RL and the high
level programmability of DSP processors. The difficulties concerning RC are associated less
with the hardware but rather with the unfamiliarity of many DSP developers with the DSB pro-
gramming in form of configware and flowware, and the immature status of development tools.
The situation is not totally comparable to the early days of FPGAs, because they could build
upon the design tools used for ASICs. Those use Hardware Description Languages (HDLs)
to describe the configuration, which are also little accessible to DSP developers, but mean-
while both the low level and the high level design tools have seen a tremendous development
allowing access from HLLs to the processing power of FPGAs. This was surely a crucial step
in the migration process of many DSP applications onto FPGAs. However, even these tools
do not match the maturity of development suits on DSP processors, and therefore co-design
with either hardware components are very common. Similarly RC devices are intended for
use as coprocessors aside a DSP processor either on a common board or in a Configurable
System-on-a-Chip (CSoC) and the availability of advanced programming tools for such com-
positions will be crucial to the success of the new devices. The implementations of RC in the
next chapter makes use of the preliminary simulation and visualization tool of PACT [PACT].
Programming on RC architectures has the tremendous advantage over RL that after placing

102

3.3 Hardware Architectures

and routing of the algorithm, one can still identify the individual components in the configu-
ration, such that debugging is a lot easier. With a visualization tool one can watch the cycle
exact simulation and find the clock cycle and ALU where the computation goes wrong.

What has been said about the possible memory bottleneck in RL machines applies equally to
RC. The RC devices can make very efficient use of the available bandwidth by data reuse and a
stream computing model, but the chip should have several IO channels connected to memory
banks to provide sufficient base bandwidth for the massive parallelism. We recall that an
ambitious solution to the memory gap problem is the integration of both the memory and the
PEs closely coupled on the same die (Section 3.2.5 on page 96). Also the stream processors
offer another way to reduce memory workload (Section 3.2.4 on page 93). Although RC
devices, stream processors and PIM chips are all still targets of ongoing intensive research,
the question arises how do they compare in terms of performance on different applications. In
[Suh et al., 2003] we find a performance analysis of three representatives on memory intensive
DSP kernels. Not surprisingly PIM performs well on particularly memory intensive kernels
when the large internal memory bandwidth comes into play. The tested stream processor has
an architectural preference towards more computationally intensive tasks where it gains the
best score, but also memory use in the other tests could be optimized as compared to a micro-
processor. The RC array of PEs, which consists of small processors with local cache in this
case, performs best on average. These results stem from the high flexibility which allows to
choose the appropriate programming and communication model for each application. The
high flexibility of RC arrays has been also demonstrated by simulating a dedicated stream
processor and a speculative multi-processor on the Smart Memory architecture [Mai et al.,
2000], where the incurred performance loss could be mainly attributed to a greater number of
local PEs or faster memory in the original architectures.

3.3.2 No Exponential is Forever

’No Exponential is Forever ... but We Can Delay ”Forever”’ was the accurate title of the
opening keynote on the past, present and future of integrated circuits by Gordon Moore at
the 50th International Solid State Circuits Conference 2003 [Moore, 2003]. Predictions in an
exponentially developing environment are very difficult and many technological visions of the
future have proven wrong. Accordingly, Moore’s Law had been announced dead several times
already and Gordon Moore himself admits that some of his extrapolations into the future did
not come true. But the general exponential process has continued, fed by an unending stream
of new ideas which over and over again have overcome technological barriers standing in the
way of the ongoing progress.

On the other hand, there is definitely an end to transistor miniaturization at the latest on the
atom level. We may come to a stop well before that because of also exponentially growing
fabrication costs and the power leakage problem. Currently, the train is still on track and the
International Technology Roadmap for Semiconductors (ITRS) 2003 [SEMATECH, 2003]
indicates that though the rate of the exponential growth may have slowed down to a 3 years
transistor count doubling, the exponential growth will most likely continue to at least the end

103

3 Data Processing

of this decade. Beyond that, major innovations in the design and fabrication of electronic
integrated circuits will be required to uphold Moore’s Law, and this innovations have not only
to be technically feasible but also economic. The world wide initiatives for the Extreme Ultra-
Violet (EUV) lithography [Gwyn and Silverman, 2003] paving the way for 40nm feature sizes
and below, give an idea of the immense expenses associated with the intended adherence to
the exponential growth.

Finally, around 2020 we will probably be so close to the fundamental limit of a charge-based
architecture, that other state variable representations will have to be considered. In contrast
to previous ITRS reports the variety of new, not charge-based concepts has increased, but this
makes it even harder to look into their future and to judge which or whether any of them have
the potential to delay the end of the exponential for some more years. To a small extent we
have already touched future design concepts with the array of PEs and local interconnects in
reconfigurable architectures, since in nano-scale devices (1012 elements/cm2) a regular and
homogenous array arrangement will probably be the only one accessible to economic fab-
rication. Insofar nano-scale devices would also favor image processing applications which
exhibit local neighbor communication and a regular data-flow (Section 2.6 on page 63). How-
ever, other large scale, defect- and fault-tolerant programming models will be needed than
the demanding but comparably simple top-down mappings used for the implementations on
reconfigurable hardware in the next chapter.

104

3.4 Conclusions

3.4 Conclusions

The memory gap has become the main obstacle to fast data processing of large data amounts.
Almost all innovations in hardware architectures seek to overcome or at least alleviate the
effects of insufficient memory performance. The high latencies of the memory chips can be
traced back to the memory core structure (Section 3.1.1.1), which is unlikely to change in
the near future. Instead, techniques from the memory chip over the memory system to the
processor design level have been developed, which help to hide the latencies. Ideally, one
obtains a seamless stream of data after an initial latency, and thus a maximal sustained band-
width (Section 3.1.1.2). But the latencies can be hidden only when the requested addresses
are known long before the need for the data. So the algorithm must exert either a regular or a
highly predictable data-flow. Even when latencies are hidden, the bandwidth of memory chips
cannot keep pace with the throughput of the processing elements (PEs). Only at the system
level one could achieve an exponential increase of bandwidth (Section 3.1.2), but this still
does not satisfy the requirement of the processing elements (PEs), and thus a whole hierarchy
of differently fast memories aimed at frequent data reuse emerged (Section 3.1.3).

The instruction-stream-based (ISB) computing paradigm does not attach sufficient importance
to the mismatch of computing and memory performance. Large caches and multiple data pro-
cessing improve the situation, but only scratch the potential of parallelization (Section 3.2.3).
Distributed memory systems do a better job in this respect, as they achieve a higher level
of parallelism in the spatial domain (Section 3.2.2). Architectures based on data-stream-
based (DSB) processing go even further by exploiting parallelization in breadth and depth
already at the finest level (Section 3.2.4). High numbers of independent PEs provide an enor-
mous throughput amplified by flexible use of pipelining (Section 3.2.1). The direct coupling
of PEs and memory cells in the Processor-in-Memory (PIM) designs seeks to overcome the
bandwidth shortage in principle (Section 3.2.5).

Considering contemporary architectures, micro- and DSP-processors still hold a dominant
position, but the superior performance of DSB architectures in data intensive applications
gains increasingly more attention (Sections 3.3.1). But the acceptance of a technology de-
pends strongly on the availability of comfortable tools to use it. Field Programmable Gate
Arrays (FPGAs) have matured farthest in this respect. The demand for performance also
drives the research on development tools for Reconfigurable Computing (RC), PIM and stream
processors. The adaption of these new technologies is still slow, since the immense par-
allelism they offer, asks for different programming models and ultimately new High Level
Languages (HLLs). But in the long term this is a small price to pay for their ability to fight the
memory gap despite high scalability. They even hint at the future processing on nano-scale
devices, where massive parallelism will be the predominant feature (Sections 3.3.2). So the
architectures used for the image processing problems in the next chapter assign exclusively to
the DSB model.

105

3 Data Processing

106

4 Hardware Efficient Implementations

Contents

4.1 Graphics Hardware . 110

4.1.1 Technology . 110

4.1.1.1 Development . 110

4.1.1.2 Graphics Pipeline . 112

4.1.1.3 Classification . 116

4.1.2 Computations . 119

4.1.2.1 Data-Flow . 119

4.1.2.2 Number Formats . 121

4.1.2.3 Operations . 124

4.1.3 Level-Set Segmentation . 127

4.1.3.1 Implementation . 128

4.1.3.2 Results . 130

4.1.4 Anisotropic Diffusion . 132

4.1.4.1 Implementation . 133

4.1.4.2 Results . 136

4.1.5 Gradient Flow Registration . 143

4.1.5.1 Implementation . 143

4.1.5.2 Results . 147

4.2 Reconfigurable Logic . 156

4.2.1 FPGA Card . 156

4.2.1.1 Technology . 156

4.2.1.2 Programming . 158

4.2.2 Computations . 159

4.2.2.1 Data-Flow . 159

4.2.2.2 Operations . 159

4.2.3 Level-Set Segmentation . 161

4.2.3.1 Implementation . 161

4.2.3.2 Results . 163

107

4 Hardware Efficient Implementations

4.3 Reconfigurable Computing . 165

4.3.1 eXtreme Processing Platform . 166

4.3.1.1 Technology . 166

4.3.1.2 Programming . 170

4.3.2 Computations . 172

4.3.2.1 Data-Flow . 173

4.3.2.2 Operations . 175

4.3.3 Non-Linear Diffusion . 175

4.3.3.1 Implementation . 176

4.3.3.2 Results . 178

4.4 Comparison of Architectures . 180

4.4.1 Instruction- and Data-Stream-Based Architectures 180

4.4.2 Graphics Hardware and Reconfigurable Hardware 181

4.4.3 Efficiency and Abstraction . 184

Figures

4.1 A simplified diagram of the graphics pipeline. 112

4.2 Segmentation of a human brain computed in DX7 graphics hardware. . . . 131

4.3 The visible effect of the Euclidean norm approximation during segmentation. 132

4.4 Parallel segmentation of fence pickets in DX6 graphics hardware. 133

4.5 Approximation of the Perona-Malik function by linear functions. 136

4.6 Linear and non-linear diffusion on a graphics workstation. 138

4.7 Non-linear diffusion solvers in graphics hardware and software. 139

4.8 Mass defect and mass exact non-linear diffusion in graphics hardware. . . . 140

4.9 Anisotropic diffusion models in DX7 and DX8 graphics hardware. 141

4.10 Anisotropic diffusion with the virtual signed 16 bit format. 141

4.11 Comparison of the diffusion schemes in 8 bit and 16 bit. 142

4.12 The multi-grid hierarchy encoded in textures of different spatial resolution. 144

4.13 Elimination of low frequency distortions. 149

4.14 Elimination of high frequency distortions. 150

4.15 Registration of a rotated image. 151

4.16 Energy decrease in registering the images from Figure 4.15. 152

4.17 Registration of a large scale rigid deformation. 152

4.18 Elimination of a possible acquisition artefact for a medical image. 153

108

4.19 Registration of two brain slices of the same patient taken at different times. 154

4.20 The enlarged central part of the error images from Figure 4.19. 155

4.21 Energy decrease in registering the images from Figure 4.19. 155

4.22 Layout of a FPGA architecture (Xilinx). 157

4.23 A schematic view of our FPGA card and its system partitioning. 157

4.24 The caching strategy for the level-set solver in Reconfigurable Logic. . . . 162

4.25 The pipeline arrangement for the level-set solver in Reconfigurable Logic. . 162

4.26 Final layout of the level-set solver in the FPGA. 164

4.27 Segmentation result computed in a FPGA. 164

4.28 Segmentation of tumors computed in a FPGA. 165

4.29 Diagram of the XPP architecture. 167

4.30 Processing Array Elements of the XPP. 167

4.31 Visual representation of the XPP configuration from Listing 4.3. 170

4.32 Implementation of a general 3x3 filter in the XPP. 174

4.33 Configurations for the non-linear diffusion solver in the XPP architecture. . 177

4.34 Results of the non-linear diffusion as configured on the XPP architecture. . 179

Tables
4.1 Comparison of fixed point number formats in graphics hardware. 122

4.2 Operations on encoded values for an affine mapping of number ranges. . . . 123

4.3 Setup and precision of floating point formats supported in graphics hardware. 124

4.4 Area consumption and latency of some operations in Reconfigurable Logic. 160

This chapter presents efficient implementations of quantized PDE based image processing
tasks on data-stream-based (DSB) hardware architectures. The implementations exert hard-
ware efficiency by exploiting the performance characteristics and respecting the functional
restrictions of the hardware platforms.

For three different platforms, the utilization for PDE solvers is described and efficient imple-
mentations are presented. The focus lies on image processing with graphics hardware, cov-
ering the whole range from simple standard OpenGL functionality back in 1999 to the high
level shader programs from 2003, which eliminated many of the technical constraints present
in previous years. The implementations in fine and coarse grain reconfigurable hardware re-
side even closer to the direct hardware programming level using either a Hardware Description
Language (HDL) or a Native Mapping Language (NML) to configure the appropriate hard-
ware state. This approach offers additional optimization opportunities which result in utmost
performance of the algorithms, and the range of the applications is only restricted by the size
of the available hardware devices. At the end we compare the pros and cons of the different
implementations where not only performance but also the flexibility and programmability of
the architectures play an important role.

109

4 Hardware Efficient Implementations

4.1 Graphics Hardware

Graphics hardware has undergone a rapid development over the last 10 years. Starting as a
primitive drawing device it is now a major computing resource. Together with the increasing
functionality more and more general problems have been mapped to the graphics architecture,
see [GPGPU] for an elaborate overview. We discuss the implementations of the PDE based
image processing models from Chapter 2. But first we outline the technological development
and logic layout of graphics hardware, and its usage for scientific computations. Parts of this
exposition have been published in [Rumpf and Strzodka, 2005].

4.1.1 Technology

The rapid development of graphics hardware introduced a lot of features and key words. The
following sections sketch the evolution. Omitting some details we outline the common struc-
tures and the key innovations of the different generations.

4.1.1.1 Development

Up to the early 1990s standard graphics cards were fairly unimpressing devices from a com-
putational point of view, although having 16 colors in a 640x350 display (EGA) as opposed
to 4 colors in a 320x200 display (CGA) did make a big difference. Initially the cards were
only responsible for the display of a pixel array prepared by the CPU of the computer. The
first available effects included the fast changing of color tables, which enabled color anima-
tions and the apparent blending of images. Then the cards started to understand 2D drawing
commands and some offered additional features like video frame grabbing or multi-display
support.

The revolutionary performance increase of graphics cards started in the mid 1990s with the
availability of graphics accelerators for 3D geometry processing. The already well established
game market, welcomed this additional processing power with open arms and soon no graph-
ics card would sell without 3D acceleration features. Since then the GPU has taken over more
and more computational tasks from the CPU. The performance of GPUs has grown much
faster than that of micro-processors, doubling performance approximately every 9 months,
which can be referred to as Moore’s Law squared.

During the late 1990s the number of GPU manufacturers boiled down to very few, at least
for PC graphics cards. Although other companies try to gain or regain ground in the market,
NVIDIA and ATI have been clearly dominating it both in performance and market shares for
several years now. In the following discussions we therefore primarily cite their products.
Concerning the market, we should mention that actually Intel is the largest producer of graph-
ics chips in form of integrated chip-sets. But these are inexpensive products and rank low

110

4.1 Graphics Hardware

on the performance scale. Consequently, we will deal only with GPUs on dedicated graphics
cards.

Together with the reduction of GPU designers, the number of different Application Program-
ming Interfaces (APIs) to access their functionality also decreased. The OpenGL API [Ope]
and the DirectX API [Mic] are the survivors. The API guarantees that despite the different
hardware internals of GPUs from different companies, the programmer can access a com-
mon set of operations through the same software interface, namely the API. The proprietary
graphics driver is responsible for translating the API calls into the proprietary commands un-
derstood by the specific GPU. In this respect the API is similar to an operating system which
also abstracts the underlying hardware for the programmer and offers standardized access to
its functionality, although an operating system does more than that.

If the hardware offers new features and is downward compatible, the old API still functions,
but it lacks the new functionality. The use of the new features in the new API, however,
results in an incompatibility with older hardware. Therefore, programmers are reluctant to
use new features as long as they expect a significant demand for their applications on older
hardware. The hardware vendor can promote the use of the new API by emulating the new
hardware features in software on older systems. But this may turn out very demanding or
impractical if the software emulation is too slow. So in practice programmers stick voluntarily
to very low requirements for the hardware and do not bother about incompatibility issues.
Only the time critical parts of the code are sometimes implemented for each hardware standard
separately and chosen dynamically upon hardware identification. The above applies both
to programs for different versions of an operating system and programs (mainly games) for
different versions of graphics APIs. However, graphics hardware has evolved much quicker
and game performance is often a critical factor, such that the changes of API versions and the
lowest common requirements are moving faster than in the micro-processor market.

OpenGL and DirectX have been incorporating the quickly evolving feature set of GPUs dif-
ferently. OpenGL uses a very flexible extension system. Each vendor can expose the whole
functionality of its hardware product by proprietary extensions to the API. The OpenGL Ar-
chitectural Review Board (ARB) [Ope] which includes the main players in the graphics field
helps in the standardization of these extensions to prevent the undermining of the common
interface idea through too many incompatible proprietary extensions. In practice, first the pro-
prietary extensions appear and then the standard access points evolve over time. The different
versions of DirectX on the other hand, are prescribed by Microsoft and thus simply define a
fixed set of requirements. Naturally, these requirements are discussed with the GPU designers
beforehand. If the hardware supercedes them quantitatively, then DirectX often allows the
use of these additional resources, but qualitatively new features have to wait for the next API
generation. So the DirectX API changes more or less step in step with the new graphics hard-
ware generations, while OpenGL evolves continuously, first on proprietary and subsequently
on ARB paths. Currently (2004), OpenGL also undergoes the first major revision since 1992
from the 1.x versions to version 2.0 [Ope] in an attempt to include many of the already well
established extensions into the core and prepare the API for future developments.

111

4 Hardware Efficient Implementations

Figure 4.1 A simplified diagram of the graphics pipeline. Light gray represents data con-
tainers, dark gray processing units. The emphasized Vertex Processor (VP) and Fragment
Processor (FP) are the units which evolved most in the graphics pipeline over the years, up to
the stage where they accept freely programmable shader programs as configurations.
Since the widespread support for one pass multi-texturing (1998), the thick arrow from the
textures to the FP represents the largest data streams in the pipeline. Accordingly, the FP
consumes the majority of resources in a GPU. The access to textures from the VP is a recent
feature (2004) as well as the upcoming full interchangeability of the data containers in the
pipeline, i.e. a 2D data array can serve as an array of vertex data, a texture, or a destination
buffer within the frame-buffer.

textures Rasterizer

vertex
data

vertex
data

vertex
data

ABABABABABA
ABABABABABA
ABABABABABA
ABABABABABA

CBCBCBCBCBC
CBCBCBCBCBC
CBCBCBCBCBC
CBCBCBCBCBC

DBDBDBDBDBD
DBDBDBDBDBD
DBDBDBDBDBD
DBDBDBDBDBD

EBEBEBEBEBE
EBEBEBEBEBE
EBEBEBEBEBE
EBEBEBEBEBE

Vertex
Tests

Blending
Fragment Fragment

Tests

Primitive
Assemblydata

buffer

vertex

frame

values

Vertex
Processor

Processor
Fragment

fragments

primitives

fragmentsfragments fragments

values

4.1.1.2 Graphics Pipeline

The Graphics Processor Unit (GPU), the central computational chip on a graphics card, may
be seen as a restricted form of a stream processor (cf. Section 3.2.4 on page 93). With a
number of commands one configures a state of the graphics pipeline in the GPU and then
sends data streams through that pipeline. The output stream is visualized on the screen or sent
again through the pipeline after a possible reconfiguration. Although graphics cards have not
been seen in this context from the beginning, the current developments show a clear tendency
towards a general stream processor. Therefore, we want to uphold this view when discussing
the different GPU generations in the next section and subsequently.

A schematic view of the graphics pipeline is presented in Figure 4.1. The abstraction omits
some details but encompasses the whole evolution of the pipeline in a common diagram. The

112

4.1 Graphics Hardware

changes from one graphics hardware generation to another can be identified by describing the
increased flexibility and functionality of the components in the pipeline. For the sake of a
consistent presentation, we use the current terminology for the components, even if it has not
been used for the older pipeline generation back then. First let us describe the operational task
of the individual components:

• vertex data
We need an array which defines the geometry of the objects to be rendered. Beside the
vertex coordinates the vertex data may also contain color, normal and texture coordinate
information (and a few more parameters). Although the data may be specified with 1
to 4 components, both coordinates (XYZW) and colors (RGBA) are internally always
processed as 4-vectors. During the graphics hardware evolution mainly the choices
for the places where the vertex data can be stored (cacheable, AGP or video memory)
and the efficiency of handling that data increased. The modern Vertex Buffer Objects
(VBOs) allow to specify the intended use and let the graphics driver decide which type
of memory is ideally suited for the given purpose.

• Vertex Processor (VP)
The VP manipulates the data associated with each vertex individually. Over the years the
number of possible operations increased dramatically. In the beginning only multipli-
cations with predefined matrices could be performed. Nowadays, the VP runs assembly
programs on the vertex data and the new generation (May 2004) has already a restricted
texture access from the VP. But each vertex is still processed individually without any
implicit knowledge about the preceeding or succeeding vertices, although this may also
change in the future.

• vertex tests
Vertex tests determine the further processing of geometric primitives on the vertex level.
They include mainly the back-face culling, which eliminates polygons facing backwards
(if the object is opaque one cannot see its back) and clipping, which determines the vis-
ible 3D space with an intersection of several 3D half spaces, defined by clipping planes.
The vertex tests are still controlled by parameters and experienced only quantitative
improvements in the number of clipping planes over time.

• primitive assembly, rasterizer
The geometric primitives which can be rendered are points, line segments, triangles,
quads and polygons. Each vertex is processed individually and the clipping of prim-
itives may introduce new vertices such that primitives have to be reassembled before
rasterization. Also, for simplicity the rasterizer operates in many graphics architectures
exclusively on triangles, so other primitives must be converted into a set of triangles be-
fore processing. Given a triangle and the vertex data associated with each of its vertices,
the rasterizer interpolates the data for all the pixels inside the triangle. The resulting
data associated with a pixel position is called a fragment. From the beginning the ras-
terization could be controlled with parameters, for example defining patterns for lines
and the interior.

113

4 Hardware Efficient Implementations

• textures
Textures are user defined 1D to 4D (typically 2D) data arrangements stored in video
memory of the graphics card. Their elements which can have up to four components
(RGBA) are called texels. In general the dimensions of all textures must be powers of
2, with the exception of rectangular textures in 2D since 2001. Only recently (2004) a
general extension for non-power of 2 textures has been introduced.

Input images of a problem are usually represented as textures on the graphics card and
their values are processed by the FP and fragment blending. Over the years quantitative
improvements of textures included their maximal number, their maximal size and the
precision of the used fixed point number format. Qualitative improvements are the sup-
port of various dimensionalities, the different access modes, the floating point number
format, and the flexibility in the creation and reuse of texture data in different contexts.
From the modern point of view textures represent just a special use of data arrays which
can serve as input to the FP (texture mode), as the destination for the output stream of
the graphics pipeline (output mode), or even as an array defining vertex data (vertex
mode).

• Fragment Processor (FP)
The FP manipulates the individual fragments. Similar to the vertices, each fragment is
processed independently of the others in the same data stream. With the interpolated
texture coordinates, the FP can access additional data from textures. The functionality
of the FP has improved enormously over the years. In a qualitative sense the range
of available access modes of texture data and operations on these values in the FP has
grown rapidly culminating in a FP controlled by assembly or high level code with access
to arbitrary texture positions and a rich set of mathematical and control operations. In
a quantitative sense the number of accessible textures and the number of admissible
fragment operations has increased significantly.

• frame-buffer
The frame-buffer is the 2D destination of the output data stream. It contains different
buffers of the same dimensions for the color, depth and stencil (and accumulation) val-
ues. Not all buffers need to be present at once. Also, each buffer allows certain data
formats but some combinations may not be available. There exists at least one color
buffer, but typically we have a front buffer, which contains the scene displayed on the
screen and a back buffer where the scene is built up. Over the years mainly the maximal
size, the number and the precision of the buffers increased. The recent development
(2004), already sketched in the texture item, regards the frame-buffer as an abstract
frame for a collection of equally sized 2D data arrays. After the rendering the same 2D
data arrays may be used as textures or vertex data.

• fragment tests
Equivalent to the vertex tests for vertices, the fragment tests determine whether the
current fragment should be processed further or discarded. But the fragment tests are
more numerous, powerful and some of them allow a comparison against the values

114

4.1 Graphics Hardware

stored at the associated pixel position of the fragment in the depth or stencil buffer, and
also a restricted manipulation of these values depending on the outcome of the tests.
This direct manipulation is a particular benefit, as the FP does not offer it.

• fragment blending
Before the FP became a powerful computational resource, computations were mainly
performed by different blending modes. The blending operation combines the color
value of the fragment with the color value in the color-buffer controlled by weighting
factors and the blending mode, e.g. convex combination of the values with a certain
weight. Blending became less popular in the last years because on most GPUs it did
not support the higher precision number formats as the much more powerful FP did.
But currently the higher precision blending support is increasing again. The advantage
of blending is the direct access to the destination value in the frame-buffer, which is
officially not supported for the FP.

The blending modes are continuous functions of the input values, additionally logical
operations can be performed at the end of the pipeline, but these are very seldomly used,
as they have received no hardware support from the GPUs builders.

Figure 4.1 on page 112 visualizes the streaming nature of GPUs and the parallelism in depth
innate to the pipelining concept . Because of the independent processing of data elements in a
data stream, GPUs also exercise parallelism in breadth (Section 3.2.2 on page 87). The dual
programming model of data-stream-based (DSB) architectures (Table 3.2 on page 85) applies.
The configware consists of a large number of parameters which define the behavior of the
various stages of the pipeline, and newly also assembly or even High Level Language (HLL)
programs which configure the VP and FP. The flowware is given by function calls to the
graphics API, which are embedded in a software program for the CPU of the PC in which the
graphics card resides.

For the efficiency of this approach it is crucial that the same configuration is applied to large
data streams. Then the addresses of the required data from the textures form a regular pat-
tern and by using catenated burst mode reads a seamless stream of data hiding all interme-
diate memory access latencies (Table 3.1 on page 74 without tCL) can be obtained (Fig-
ure 3.3 on page 76). Graphics cards also quickly adopted the bandwidth doubling Double Data
Rate (DDR) memory and the efficient bank interleaving access for maximal sustained band-
width (Section 3.1.1.2 on page 76). For the same purpose they use memory chips of high (cur-
rently 32 bit) memory depth (Section 3.1.1 on page 71) which line up to very wide (currently
256 bit) data buses (Section 3.1.2 on page 79). But for the overall performance not only the
bandwidth of the memory but also the throughput of the processing elements (PEs) is decisive
(Section 3.2.1 on page 84). In contrast to cache equipped instruction-stream-based (ISB) ar-
chitectures, GPUs used to have an almost equally balanced bandwidth and throughput, which
is most suitable for problems with low computational intensity. The latest (2004) hardware
generation has an overbalance on the computational side, because the higher programmability
of the pipeline is increasingly used to solve more computationally intensive tasks.

For regular access patterns to the textures the efficiency and synchronization of the graphics

115

4 Hardware Efficient Implementations

pipeline is so high, that the achievable performance for a simple pipeline configuration almost
matches the theoretic peak bandwidth of the memory system. Since 2001 dependent and offset
texture reads destroy the static nature of texture reads. But despite dynamically computed
addresses for texture access the efficiency of DSB paradigm does not break down. Especially
if the computed addresses as a whole represent a smooth deformation of the texture source,
e.g. translation, shear, magnification, then small caches suffice to hide the additional latencies.

4.1.1.3 Classification

Because of the almost synchronous evolution of the DirectX (DX) API and the generations
of graphics hardware in recent years, it is easiest to classify GPUs according to the highest
DX version which they support. Actually we are only concerned with the Direct3D API, but
Microsoft releases the different APIs in a bundle, so one usually refers to the version of the
whole release. From DX8 on, one can further differentiate by the functionality of the Ver-
tex Shaders (VSs), which configure the VP, and the Pixel Shaders (PSs), which configure the
FP. This DX,VS,PS classification is very common and we will refer to it, although all our
implementations use the OpenGL API. Therefore, the new features of each hardware genera-
tion are accompanied by the corresponding OpenGL names for the extentions. This has also
the advantage of a precise identification of certain extensions in specific GPUs, whereas the
fractional numbers for VSs and PSs give only a hint at the increased functionality. The evolu-
tion of the functionality of the FP is also outlined in mathematical terms in Section 4.1.2.3 on
page 124.

We have tried to list the main GPU lines in each generation by studying the technical specifi-
cations and various benchmark results. The most important factor for scientific computing on
GPUs is usually the raw fragment performance. Benchmarks, however, are strongly influenced
by the choice of tested functionality (many testers use games as benchmarks), the quality of
the available API implementations at this time and the properties of the test computer system.
As a consequence we excluded tile based renderers, notably the Kyro series from PowerVR
Technologies, which perform very well in typical games as compared to their raw processing
power, but this raw power is decisive for scientific computing. Also, it is quite unfair to di-
rectly compare the products released at the beginning and end of a year, since one year has
meant a lot in the development of graphics hardware. So the dates and examples GPUs give
a good orientation, but are not suitable for a definitive ranking of the GPUs. The overview is
partially based on [Fernando and Kilgard, 2003].

• Proprietary graphics systems,
e.g. Evans & Sutherland (E&S) [Evans & Sutherland, 2004], Silicon Graphics Inc. (SGI)
[Lenerz, 2004]
As soon as computers were used for simulation or analysis of data sets, there was a
need to visualize the results. Without a standard at hand, application specific solu-
tions dominated in the early days of graphics. Nowadays, standard GPUs have become
very powerful and easily outperform specialized graphics workstations from years ago,
but the segments of professional graphics accelerators and proprietary graphics systems

116

4.1 Graphics Hardware

still exist. Some professional cards now use (almost) the same GPUs as their gaming
equivalents, but their focus goes much further in the direction of reliable and qualita-
tive imaging, which concentrates more work on the graphics driver development than
the pure hardware performance. Proprietary graphics systems are neither obsolete, as
the standard GPUs are not designed for collaborative work on huge data sets. But even
when standard hardware components are used for large scale visualization, similar to
the parallel computing, the proper distribution and processing of data is by no means
trivial.

• First accelerators for OpenGL, 1992-1997,
e.g. AccelGraphics AG300, DEC workstations with ZLX graphics, IBM Freedom Series /6000,
Intergraph TD Series with GLZ graphics, HP Freedom Series, SGI Indy/Indigo/Onyx, 3DLabs
GLINT 300SX.
In 1992 SGI introduced the OpenGL API. This turned out to be a significant step in the
evolution of graphics software and hardware. Within a few years most major players
in the graphics field, often with the support of E&S, offered OpenGL implementations
for their proprietary graphics accelerators. In this way graphics applications became
system and platform independent and the success of OpenGL up to now highlights the
importance of this change. OpenGL 1.0 already defined the graphics pipeline and its
basic functionality as described in the previous section, although many features were
not supported in hardware at first.

• First accelerators for DirectX, 1996-1997,
e.g. 3dfx Voodoo, 3DLabs Permedia2, NVIDIA Riva 128, ATI Rage Pro.
In 1995 Microsoft released the first version of DirectX and from 1996 on it contained
the access points to 3D acceleration. Although there were quite a few games around
at this time already, the first 3D accelerator Voodoo by 3dfx boosted both the game
and graphics hardware market. All companies were eager to promote their GPUs with
the 3D label even if little actual 3D acceleration was present. Different APIs were
used at this time (e.g. OpenGL, DirectX, Glide, Metal, MGA) and support for the
increasingly popular DirectX was often realized by a translation layer. Naturally, the
first DirectX versions lagged behind the already matured OpenGL API. DX5 shipped
with Window98 and after another major overhaul in DX6 the development started to
synchronize well with the graphics hardware generations.

• DX6 GPUs, 1998-1999,
e.g. 3dfx Voodoo2/Voodoo3, Matrox Millenium G400 /MAX, NVIDIA Riva TNT/TNT2, ATI
Rage Fury 128/MAXX.
These GPUs offered multi-texturing (dual) in one pass (GL ARB multitexture)
and the RGBA8 format for textures and frame-buffers resolving each of the four color
channels in 8 bit had been adopted. At this time also hardware support for the stencil
and depth buffers and different blending modes (GL EXT blend color, GL EXT -
blend minmax, GL EXT blend subtract) increased.

117

4 Hardware Efficient Implementations

• DX7 GPUs, 1999-2000,
e.g. 3dfx VSA-100 Voodoo4/Voodoo5, S3 Savage 2000 /+, NVIDIA GeForce256/GeForce2,
ATI Radeon.
Transform&Lighting was the key hardware feature of this period, which basically meant
the introduction of a parameter controlled VP. From the computational point of view,
however, the increased functionality of the FP was more important (GL EXT tex-
ture env combine). It allowed more arithmetic operations in the texture environ-
ments and was further enhanced by the prominent feature of bump mapping (GL EXT -
texture env dot3). Conditional assignments in the FP appeared (GL NV regis-
ter combiners). Support for 3D textures (GL EXT texture3D) and environment
mapping (GL EXT texture cube map) also evolved.

• DX8 (VS1, PS1) GPUs, 2001-2002,
e.g. 3DLabs Wildcat VP, Matrox Parhelia 512 (VS2, PS1), NVIDIA GeForce 3/4, ATI Radeon
8500.
These GPUs introduced the assembly programs for the VP (GL EXT vertex shader,
GL NV vertex program, GL ARB vertex program) and highly restricted pro-
grammability for the FP (GL ATI fragment shader, GL NV texture shader,
GL NV register combiners). Certain textures allowed non-power of 2 dimen-
sions (GL NV texture rectangle). System dependent extensions enabled render-
ing to pbuffers which can be bound as textures (WGL ARB pbuffer, WGL ARB -
render texture).

• DX9 (VS2, PS2) GPUs, 2002-2004,
e.g. S3 DeltaChrome S8, XGI Volari Duo V8, NVIDIA GeForceFX 5800/5900, ATI Radeon
9700/9800.
The programmability of the VP (GL ARB vertex shader, GL NV vertex pro-
gram2) gained function calls, dynamic branching and looping. But the PS2 model
for the FP was an even larger leap forward, now allowing freely programmable as-
sembly code operating on up to 16 textures (GL ARB fragment program, GL -
NV fragment program). High level languages (Cg [NVIDIA, 2002], DX9 HLSL
[Mic, 2003], GLSL [Ope, 2004]) allow easier programming of the VP and FP. Floating
point formats for textures and pbuffers appeared (GL ATI texture float, GL -
NV float buffer). Vertex Buffer Objects (VBOs) allow the efficient transfer and
reuse of vertex data (GL ARB vertex buffer object). Rendering to several pbu-
ffers is possible (GL ATI draw buffers).

• DX9+ (VS2-VS3, PS2-PS3) GPUs, 2004,
e.g. 3DLabs Wildcat Realizm (VS2, PS3), NVIDIA GeForce 6800 (VS3, PS3), ATI Radeon
X800 (VS2, PS2).
In the VS3 model, the VP gains additional functionality in form of a restricted texture
access and more functionality for register indexing (GL NV vertex program3). The
PS3 FP now also supports the features of function calls and restricted forms of dynamic
branching, looping and variable indexing of texture coordinates (GL NV fragment -

118

4.1 Graphics Hardware

program2). Pixel Buffer Objects (PBOs) allow the use of textures as vertex data
(GL EXT pixel buffer object).

• WGF 1.0, 2006?
The next Windows generation (Longhorn [Microsoft]) will contain a radically new
graphics interface labeled Windows Graphics Foundation (WGF). The main expected
features are a unified shader model, resource virtualization, better handling of state
changes and a general IO model for data streams. Future GPU generations will probably
support all these features in hardware.

Our implementations cover the different functionality levels from DX6 to DX9. The used
graphics hardware includes SGI Onyx2, NVIDIA GeForce 2/3/FX5800 and ATI Radeon 9800.

4.1.2 Computations

After getting to know the development and internal structure of GPUs we must describe how
the actual processing takes place. This includes the description of the general data-flow on the
card, the available number formats for data representation and the evolution of the PEs in the
pipeline.

4.1.2.1 Data-Flow

The general data-flow in a GPU is prescribed by the graphics pipeline (Figure 4.1 on page 112).
The standard data path from the main memory and the textures to the frame-buffer has been fast
since the beginning. But in iterative PDE solvers we need more than one pass and intermediate
results must be reused for subsequent computations. This means that the content of the frame-
buffer must be resent through the graphics pipeline again and again. The efficiency of this
non-standard data-flow has improved only slowly and a fully satisfactory implementation is
still in development. There are four possibilities to further process the results from the frame-
buffer:

• Read-back (glReadPixels).
We can read the selected content of the frame-buffer back to the main memory. This is
a slow operation, because data transfer has always been optimized in the direction from
main memory to the graphics card. With the PCI Express (PCIe) bus with a symmetric
bandwidth in both direction this has finally change in 2004. But even then the available
bandwidth on-card is higher than over the bus, so transferring data to the main memory
and back onto the card is inefficient. Data should be read-back only if it requires analysis
by the CPU.

• Copy-to-texture (glCopyTexSubImage1D/2D/3D).
The frame-buffer content can be used to define parts of a texture. This also requires
copying of data but the high data bandwidth on-card makes this operation much faster

119

4 Hardware Efficient Implementations

than the read-back. Unfortunately, the graphics drivers did not support the fast texture
redefinition well until late 2000.

• Copy-to-frame-buffer (glCopyPixels).
It is possible to copy data from the frame-buffer onto itself. Because the copied data
enters into the pipeline at the height of the FP and many of the per-fragment operations
can be applied to the data stream, it is actually not raw copying but re-rendering of the
data. Not all functionality of the FP can be used, however, since texel operations asso-
ciated with the texture environment (glTexEnv) are not executed. Therefore, also the
new programmable FP programs cannot applied to the data. Copying can be performed
between different color buffers and later (2001) partial support for the depth buffer ap-
peared. Similar to the copy-to-texture, at this time also the Copy-to-frame-buffer greatly
improved in terms of speed in the general case, when the fragment pipeline is configured
with different operations. Before only the raw copying was fast.

Considering the necessary data movements this functionality is superior to the previous
ones, as the re-rendering directly applies the new operations to the data instead of copy-
ing it to some other place first. The following option also avoids the copying, but allows
to use the entire pipeline for the re-processing.

• Render-to-texture (WGL ARB pbuffer, WGL ARB render texture).
One can allocate a pbuffer, i.e. an additional non-visible rendering buffer like the frame-
buffer, which serves as the destination for the output data stream. As soon as the pbuffer
is not a render target any more, it can be used as a texture, which ultimately means that
one renders directly to a texture. The only problem with pbuffers is that they carry a
lot of static information which causes a performance penalty for every switch between
their use as a data source (texture) or data destination (frame-buffer).

• ARB superbuffers.
Current graphics driver development addresses the problem of slow pbuffer switches
by introducing a new, light-weight mechanism for using raw data arrays as source or
destination at various points in the graphics pipeline. The idea is to define a memory
array together with some properties which describe the intended usage. The graphics
driver will then decide where to allocate the memory (cacheable, AGP or video memory)
depending on these properties. To some extent the functionality is already available
with the Vertex Buffer Object (VBO) and Pixel Buffer Object (PBO) extensions, but the
OpenGL ARB superbuffer group works on a more general and fully flexible solution.

For all early implementations the access to the frame-buffer was a major bottleneck, as the
performance factor between drawing a texture into the frame-buffer and reading it back to
the texture was more than 50. Our early implementations use the copy-to-frame-buffer, later
the copy-to-texture, and the newer ones the render-to-texture mechanism. If few pixel values
have to be retrieved the read-back is used, but computations on the entire images are always
performed on the card, so that images never have to be read back to main memory.

120

4.1 Graphics Hardware

4.1.2.2 Number Formats

For a long time the R5G6B5 format requiring 16 bit for the colors red, green and blue has
been used for gaming. Even today this can be still done, if the game is bandwidth bound.
But the processing elements (PEs) in the available GPUs do not gain any performance from
the low precision format anymore. Already the first DX6 GPUs offered the RGBA8 unsigned
fixed point format in 1998, and this has remained a standard till nowadays. Soon after, a
sign has been added for the internal computations, but negative results could not be stored
as such. Little has changed until 2001, when DX8 GPUs introduced some proprietary higher
precision formats, in particular several signed ones, but these were not supported throughout
the pipeline and thus of little help in iterative computations. Over a year later the DX9 GPUs
offered floating point precision throughout the pipeline and added new fixed point formats
again. Graphics workstations, e.g. SGI Onyx, supported 12 and 16 bit unsigned fixed point
formats since the mid 1990s. The result of these developments is a confusing number of
incompatible fixed point formats nowadays (Table 4.1 on the following page).

Nearly all introduced fixed point formats represent numbers in [−1, 1], and initially the un-
signed formats dominated, covering the range [0, 1]. But they all, even those with 16 bit
precision, suffer from insufficiencies in the exact representation of certain values:

• The values represented by the RGBA8 format.
The RGBA8 format is still the most widely used format, as it offers a good compro-
mise between precision and memory consumption. Inaccurate conversions must be per-
formed to represent its values in most of the new formats, including the floating point
formats.

• The values -1,0,1.
These are the neutral elements of addition, multiplication and its negative. Failure to
represent them exactly, makes it impossible to preserve the values of certain regions in
iterative computations without the introduction of performance deteriorating exceptions.

• The values ±2−1,±2−2, . . . ,±2−7.
Most number formats based on the binary system can only represent fractions with a
power of 2 denominator exactly. This may not be much, but it is a very desirable prop-
erty to be able to invert the power of 2 multiplications exactly. This applies especially
to 1

2
and 1

4
which appear naturally in many formulas.

The apparent incompatibility of these conditions is a general problem of fixed point number
systems and has to do with the choice of the machine epsilon (see Section 2.2.2.2 on page 30).
It can be solved by choosing a machine epsilon whose denominator contains the appropriate
factors. A virtual signed 16 bit format which fulfills the above conditions and serves as a
superset of all 8-9 bit formats has been introduced in [Strzodka, 2002]. No native hardware
implementation of this format exists. In this paper an unsigned RGBA8 format is used to
represent the two virtual signed 16 bit numbers. With sufficient processing capabilities of the
FP (DX8 GPUs) the usual arithmetic operations of addition, subtraction, multiplication and
arbitrary function evaluation can be performed in one rendering pass. In DX9 floating point

121

4 Hardware Efficient Implementations

Table 4.1 Comparison of fixed point number formats in graphics hardware. The formats are
grouped in pairs with a subset relation within each pair. The main point of the table is to show
that the numbers represented by one pair of formats in general cannot be represented by the
other pairs. Therefore we have so many ’-’ signs below.
The unsigned 8 bit format is still the most common choice among the fixed point formats.
Some machines offer also a 12 bit format build up correspondingly to the other unsigned
formats. The signed 9 bit format is only an internal format used for computations, but it is
the only one with an exact representation of -1,0,1, although it fails on 0.5 and other negative
powers of 2. It was superceded by an internal 12 bit format which worked in the same way
but covered the interval [−8, 8]. Into the middle of the last pair one could also amend another
internal signed 12 bit format with the formula a/210 and the codomain [−2, 2− 1

1024
]. It suffers

from the same problems as the other two, i.e. no representation of the upper bound integer and
not a superset of the standard unsigned 8 bit format.

unsigned
8 bit

unsigned
16 bit

expanded
8 bit

signed
9 bit

signed
8 bit

signed
16 bit

formula a
28−1

a
216−1

2a−1
28−1

a
28−1

a
27

a
215

range of a [0,255] [0,65535] [0,255] [−256,255] [−128,127] [−32768,32767]

codomain [0,1] [0,1] [−1,1] [−1− 1
255

,1] [−1,1− 1
128

] [−1,1− 1
32768

]

machine
epsilon εQ

3.9·10−4 1.5·10−5 7.8·10−4 3.9·10−4 7.8·10−4 3.1·10−5

represented
number

Value of a or non-representability (’–’).

+1.0 255 255 · 257 255 255 – –

+0.99998.. – 255·257−1 – – – –

+0.99996.. – – – – – 128 · 256− 1

+0.99607.. 254 254 · 257 – 254 – –

+0.99218.. – – – – 127 127 · 256
+0.99215.. 253 253 · 257 253 253 – –

+0.5 – – – – 64 64 · 256
0.0 0 0 – 0 0 0

−0.5 – – – – −64 −64 · 256
−0.99215.. – – −253 −253 – –

−0.99218.. – – – – −127 −127 · 256
−0.99607.. – – – −254 – –

−0.99996.. – – – – – −128·256+1

−0.99998.. – – – – – –

−1.0 – – −255 −255 −128 −128 · 256

122

4.1 Graphics Hardware

Table 4.2 Operations on encoded values for an affine mapping of number ranges. Because for
a long time only the [0, 1] codomain was supported by the graphics number formats, one had
to use an affine mapping onto this range to represent a larger interval [−ρ, ρ]. The table lists
the operations which must be performed on the encoded values to obtain the correct results.

operations operations on encoded values

−→ r : x→ 1
2ρ

(x + ρ) −→
a, b ∈ [−ρ, ρ] r(a), r(b) ∈ [0, 1]

a + b r(a) + r(b)− 1
2

ab 1+ρ
2
− ρ (r(a)(1− r(b)) + r(b)(1− r(a)))

αa + β αr(a) + (β
2ρ

+ 1−α
2

)

max(a, b) max(r(a), r(b))

f(a0, . . . , an) (r ◦ f ◦ r−1)(r(a0), . . . , r(an))
∑

α αaα

∑

α αr(aα) + 1
2
(1−∑α α)

←− r−1 : ρ(2y − 1)← y ←−

formats with at least 16 bit mantissa were introduced, so on DX8 hardware and beyond we
can obtain at least 16 bit precision, but before that more care had to be taken.

The error analysis of the quantized solvers in Chapter 2 on page 13 uses the general assumption
that the quantized number system Q contains the zero and that its positive numbers can be
negated in the system (Section 2.2.3.1 on page 36). The introduced notation (Eq. 2.20 on
page 31) covers only fixed point number systems which fulfill these conditions. In Table 4.1 on
the preceding page only the relatively new signed formats comply with this. The signed 9 bit
format was already made available in 1999, but it is only an internal format which did not
fit into the 8 bit precision available at this time and it was supported only in the GL NV -
register combiners extension. The other signed formats were also first proprietary and
not supported throughout the pipeline, because the frame-buffer had still to use an unsigned 8
bit format.

So the question is how to provide a signed format including a zero encoded in the unsigned 8
bit format. If it is possible to separate the positive and negative numbers then one can use two
textures and thus implicitly obtain a signed 9 bit format. Whenever the negative components
are involved in the computations, a subtraction instead of an addition must be performed, but
subtractive blending (GL EXT blend subtract) has been supported since the DX6 GPUs.
Another option is to implicitly shift the unsigned 8 bit format by 1

2
(this cannot be represented

exactly but corresponds to 128) and thus obtain the signed 8 bit format, but with an awkward
scaling factor 255

128
. The scaling is irrelevant for addition and for multiplications with con-

stants, but one must apply correcting factors when multiplying two general values encoded in
this way. The appropriate shifts could be performed in the fragment pipeline with the pixel

123

4 Hardware Efficient Implementations

Table 4.3 Setup and precision of floating point formats supported in graphics hardware. These
formats were introduced with DX9, which required the graphics hardware to have a format
with at least the FP24 precision. The unit roundoff, i.e. the upper bound on the relative error
in approximating a real number, is 1

2
εQ (Eq. 2.18 on page 29).

FP16 FP24 FP32

setup: sign, mantissa, exponent s10e5 s16e7 s23e8

machine epsilon εQ 9.8 · 10−4 1.5 · 10−5 1.2 · 10−7

transfer modes (glPixelTransfer) enabled during a copy-to-frame-buffer operation, the
extended texture environment (GL EXT texture env combine) or the register combin-
ers (GL NV register combiners), whatever was available and supported in hardware.
Table 4.2 on the preceding page lists the necessary operations in the general case when we
encode the range [−ρ, ρ] in [0, 1] by an affine transformation.

Three different floating point formats have been introduced with the DX9 GPUs (Table 4.3).
The DX9+ chips have PEs working with a subset of the standard IEEE s23e8 format (without
denormalized numbers) throughout the pipeline, such that the lower precision format are only
advisable if memory bandwidth or availability is critical. Image processing application usually
do not operate on very different number scales, so that higher precision fixed point formats
are sufficient if one designs the numerical schemes appropriately. However, in other scientific
computing problems, especially when using adaptive grids which resolve certain areas with
high spatial accuracy, the number format must also be adaptive. So the introduction of floating
point textures and pbuffers was a huge step forward for GPUs in the direction of a general
stream processor. Equipped with higher precision, many of the meticulous reformulations of
numerical schemes for low precision fixed point numbers can be omitted. However, we should
not forget that the handling of numbers on very different scales can introduce unexpectedly
large roundoff errors when used without care (Section 2.2.2.1 on page 27).

4.1.2.3 Operations

In the preceeding two sections we have listed the different options for data-flow management
and number representations. Now we turn our attention to the available operations depending
on the GPU generation. Again, we will refer to the OpenGL extensions, but use the common
DX classification from Section 4.1.1.3 on page 116.

Because the presentation concentrates on PC graphics cards we should mention that many of
the innovations have been anticipated by vendors of graphics workstations, most notably SGI.
Our first implementations of general purpose computations on graphics hardware in 1999 were
based on the InfiniteReality2 graphics engine of the SGI Onyx2. It supported many different
blending and texture environment modes, 3D textures, multi-texturing, 12 bit number formats,
and other special features like convolution filters, color table, color matrix, or histogram ex-

124

4.1 Graphics Hardware

traction, although not all features delivered the appropriate performance or full functionality.
Only around 2000 the rapid development in the PC GPUs market became so dominant, that
these GPUs had to be seen as the innovative motor of the quickly evolving new functionality.
However, for some time many of the new extensions were still adapted or extended versions
of previously supported features by graphics workstations.

As we use a uniform grid for the data representation (Figure 2.1 on page 27) we can easily es-
tablish a one-to-one correspondence between the node values and the texel values in a texture.
For this data representation we use the vector notation V̄α with a 2-dimensional multi-index
α = (αx, αy) ∈ (0, . . . , Nx−1)×(0, . . . , Ny−1) (cf. Section 2.2.1.2 on page 26). As the texel
values are usually 4-vectors themselves, where appropriate we will indicate the components
by V̄α.Ξ, where Ξ can be any subset of {x, y, z, w}, e.g. V̄α.xyzw = vVα is the full 4-vector,
V̄α.y is the y-component of V̄α and V̄α.xyz is a three component sub-vector of V̄α.

In the following list we refer only to the fragment pipeline functionality because this is the part
of the graphics pipeline with which we perform the image processing. The list is accumulative,
i.e. GPUs with a higher DX version also support the features of previous DX generations.

• DX6 GPUs, 1998-1999.
V̄α · W̄α (glTexEnv or glBlendFunc)

lerp(V̄α, W̄α, a):= (1− a)V̄α + aW̄α (glTexEnv or glBlendFunc)

V̄α ± W̄α (glBlendEquation)

min(V̄α, W̄α), max(V̄α, W̄α) (glBlendEquation)
(
fx(V̄α.x), fy(V̄α.y), fz(V̄α.z), fw(V̄α.w)

)
(glColorTable)

‖V̄ ‖k=1,...,∞ (glHistogram)

At this time all results were clamped to [0, 1], which was particularly annoying for the
addition (values would saturate at 1) and subtraction (negative results evaluated to 0).
The powerful glColorTable and glHistogram operations were unfortunately not
well supported in graphics hardware. The computation of vector norms from a his-
togram H : {0, . . . , 2m − 1} → N, which assigns the number of appearances in V̄ to
every value of the number format, can be performed as

‖V̄ ‖k =

(
2m−1∑

y=0

(
r−1(y)

)k ·H(y)

) 1
k

,(4.1)

for k = 1, 2, For k = ∞ we simply pick up the largest |r−1(y)| with H(y) > 0,
where r−1 is the inverse transformation from the encoded values to the represented
numbers (cf. Table 4.2 on page 123).

125

4 Hardware Efficient Implementations

• DX7 GPUs, 1999-2000.
V̄α + W̄α (GL EXT texture env combine)

V̄α + W̄α − 1
2

(GL EXT texture env combine)

4 · dot3(V̄α.xyz − 1
2
, W̄α.xyz − 1

2
) (GL EXT texture env dot3)

(Ūα < 1
2
)?V̄α : W̄α (GL NV register combiners)

Here dot3(., .) denotes a dot product of 3-vectors. While DX6 GPUs offered support
for two textures, DX7 GPUs extended this to four, each with an individual texture
environment which was able to perform many consecutive operations (GL EXT tex-
ture env combine). The GL NV register combiners extension offered sim-
ilar arithmetic operations, a conditional statement and additional input and output map-
pings. It introduced the signed 9 bit format, but only internally.

• DX8 (VS1, PS1) GPUs, 2001-2002.
f(V̄α.x, V̄α.y), f(αx + V̄α.x, αy + V̄α.y) (GL NV texture shader,

+,−, ·, mul-add, lerp, dot3/4, GL NV register combiners,

(. < 1
2
)?, (. >= 0)? GL ATI fragment shader)

The GL ATI fragment shader extension offers up to 16 instructions for computa-
tion and texture access. The GL NV register combiners extension executes up to
8 instructions and GL NV texture shader up to 4 different texture access modes,
some of which perform implicit computations as well. So the extensions are similar
in functionality. The GL ATI fragment shader has more flexibility in dependent
texture accesses and a larger number range [−8, 8], while specific access modes of GL -
NV texture shader can save on computations and the combiners have a more gen-
eral computing model (Āα · B̄α + C̄α · Dα), though only in [−1, 1]. The number of
textures units increased to 8.

• DX9 (VS2, PS2) GPUs, 2002-2004.
assembly language: (GL ARB fragment program)

arithmetic, reciprocal, trigonometric functions, conditional assigments

The PS2 model together with the introduction of floating point number formats has
moved GPU processing to a very general programming level. The limits are now set by
the control features of the assembly language rather than the insufficiency in mathemat-
ical operations. Moreover, graphics HLLs (Cg [NVIDIA, 2002], GLSL [Ope, 2004])
give also a much easier access to the functionality. The number of textures units is set
to 16.

• DX9+ (VS2-VS3, PS2-PS3) GPUs, 2004.
extended assembly language: (GL NV fragment program2)

sub-routines and restricted forms of dynamic branching, looping, variable indexing

With the DX9 GPUs the desire for arithmetic functionality has been basically fulfilled.

126

4.1 Graphics Hardware

The new generation improves on the length of the programs and removes restrictions of
multiple dependent texture accesses. But the development focus has changed towards
evolution of flow control in the assembly programs and more flexibility in the large scale
data-flow within the graphics pipeline.

Before turning to the concrete implementations we should emphasize some developments
which may not be so clear from the above presentation and the previous discussions.

• The FP has quickly prevailed over fragment blending.
Already the DX6 GPUs offered the combination of two textures in one pass. In the be-
ginning the number of operations which could be applied at this stage was smaller than
the number of blending modes, but the texture environments were evolving quickly.
With the DX7 GPUs there were already four texture environments and thus more com-
putational power than in the blending. Also more different values could be combined
at once, e.g. the four neighboring node values. Last but not least, many architectures
have a higher texture than pixel fill rate, because each pixel pipeline has several texture
mapping units (TMUs).

• Before DX8 GPU the use of non-linear functions was usually slow.
The fast dependent texture access was a major breakthrough for the evaluation of non-
linear functions. The previous alternatives (glPixelMap, glColorTable, GL -
SGI texture color table, GL SGIS pixel texture) were either slow or
not supported on PC GPUs.

• In DX9 GPUs the fixed pipeline is sometimes faster than the programmable.
If the functionality required is available in the fixed, parameter controlled pipeline than
the chances are good that it executes faster than the an equivalent assembly program
for the programmable FP. This is the case if the chip contains pipelined hardwired
functionality to perform the task, which is usually faster than the instruction execution
in the FP. This may change in future, since the PEs of the FP are growing both in
breadth and depth. Also, more and more code for the hardwired parts is translated by the
graphics driver into the assembly language of the programmable PEs. Thus, transistors
are saved and the percentage of programmable PEs in GPUs increases.

4.1.3 Level-Set Segmentation

We present the implementation of a solver for the level-set equation used for image segmenta-
tion. The continuous model is discussed in Section 2.1.2 on page 19, the discrete and quantized
model in Section 2.4 on page 55. This implementation poses very weak requirements on the
graphics hardware (a subset of DX6) and thus would run on almost any GPU. The following
discussion is based on the publication [Rumpf and Strzodka, 2001a].

As discussed in Section 2.4 on page 55 we implement the level set equation with external
forces exclusively. This work was later extended by other researchers [Lefohn et al., 2003,

127

4 Hardware Efficient Implementations

2004] to include curvature terms (cf. Section 2.1.2 on page 19) and an adaptive computing
scheme on newer graphics hardware.

4.1.3.1 Implementation

We recall the quantized upwind scheme for the level-set equation, which needs to be imple-
mented (Eq. 2.73 on page 57):

Φ̄n+1
α = Φ̄n

α 	 ḡlin
α (D−Φ̄n, D+Φ̄n)(4.2)

glin
α (U, V) := (τn

h
F̄)+

α � ‖(Ū+
α , V̄ −

α)‖lin ⊕ (τn

h
F̄)−α � ‖(Ū−

α , V̄ +
α)‖lin

‖X‖lin := c� ‖X‖1 ⊕ (1− c)� ‖X‖∞

D+
α Φ̄n :=

(

Φ̄n
α+(0,1) 	 Φ̄n

α

Φ̄n
α+(1,0) 	 Φ̄n

α

)

D−
α Φ̄n :=

(

Φ̄n
α 	 Φ̄n

α−(0,1)

Φ̄n
α 	 Φ̄n

α−(1,0)

)

,

with the quantized operations {⊕,	,�} corresponding to their natural analogs {+,−, ·} (Sec-
tion 2.2.3.1 on page 36).

The speed function F̄ is the discretization of

f(x) = c(x) + g1(p(x)) + g2(‖∇p(x)‖) ,(4.3)

which depends on the image intensities p(x) and its gradient modulus ‖∇p(x)‖. The functions
c, g1, g2 and their parameters are set by the user (cf. Section 2.1.2.1 on page 19). The initial
level-set Φ̄0 function is interactively generated by the user by specifying some points in the
image as the starting points of the level-set evolution (cf. Figure 4.4 on page 133).

The scheme has been designed such that small and large factors compensate and the number
range [0, 1] can be fully utilized by all involved variables. Moreover, we can exploit all the
available precision because all results can be expressed by storing the positive and negative
results separately without the need for a signed number format, e.g. for the precomputed ve-
locities we reserve two textures (τn

h
F̄)+

α and (τn

h
F̄)−α . In particular, the differences D±Φ̄n

are only needed either as the positive
(
D±Φ̄n

)+ or negative
(
D±Φ̄n

)− part, which corre-
sponds directly to the subtraction with the implicit clamping to [0, 1] in the fragment blending
functionality (Section 4.1.2.3 on page 124). So the required operations needed to implement
Eq. 4.2 are:

128

4.1 Graphics Hardware

operation formula fragment blending

multiplication V̄α · W̄α glBlendFunc

scalar factor aV̄α glBlendFunc

addition V̄α + W̄α glBlendFunc

subtraction (V̄α − W̄α)+ glBlendEquation

maximum max(V̄α, W̄α) glBlendEquation

index shift V̄α+γ glVertex

The last operation, the index-shift, needed for the differences, is simply achieved by the change
of the drawing position for the desired image. The binary operations with fragment blend-
ing are performed in the following way. The first operand is displayed into the color buffer
(cf. Section 4.1.1.2 on page 112). Then the setting of source and destination factors and the
blending equation determine in which manner the following image will be combined with the
source. Rendering the second operand into the buffer thus performs the desired operation. The
result can be further processed by another operation by copying withing the color buffer or af-
ter reading it to a texture. We implemented both types of data-flow, i.e. copy-to-frame-buffer
and copy-to-texture (Section 4.1.2.1 on page 119). Algorithm 4.1 outlines the overall program
execution in pseudo code notation.

Algorithm 4.1 Algorithm for the level-set segmentation in graphics hardware (Eq. 4.2 on the
preceding page). The involved operations use only very basic graphics hardware functionality
(a subset of DX6) and could be run on almost any GPU.

level set segmentation {
load the original image P̄ ;
compute the initial function Φ̄0 from the user defined seed points;
compute the velocities τn

h F̄+ and τn

h F̄− from P̄ , ‖∇P̄‖ and user specified parameters;
initialize the graphics hardware with τn

h F̄+, τn

h F̄− and Φ̄0;
for each time-step n {

calculate the differences Ū+ = (D−Φ̄n)+ and V̄ − = (D+Φ̄n)−;
approximate the Euclidean norm by ‖(Ū+, V̄ −)‖lin;
compose the first flux addend (τn

h F̄)+ · ‖(Ū+, V̄ −)‖lin;
calculate the differences Ū− = (D−Φ̄n)− and V̄ + = (D+Φ̄n)+;
approximate the Euclidean norm by ‖(Ū−, V̄ +)‖lin;
compose the second flux addend (τn

h F̄)− · ‖(Ū−, V̄ +)‖lin;
sum the flux addendens to the full flux ḡlin(D−Φ̄n, D+Φ̄n);
update the level-set function Φ̄n+1 = Φ̄n − ḡlin(D−Φ̄n, D+Φ̄n);
}
}

129

4 Hardware Efficient Implementations

If the flux ḡlin(D−Φ̄n, D+Φ̄n) becomes very small or vanishes altogether, which can be che-
cked by computing a norm of this vector (Eq. 4.1 on page 125), then a simple rescaling of
Φ̄n and/or the flux addends will continue the evolution until the velocities are really zero
(Section 2.4.3 on page 58). In practice, however, the glHistogram functionality used for
the evaluation of the vector norms performed poorly. So at this time it was unavoidable that
the user himself would envoke the scaling if he wanted the curve evolution to continue. This
is was not a huge disadvantage, since interactivity with the user, who had to set the starting
points and the velocity parameters was assumed from the beginning.

4.1.3.2 Results

The computations had been performed on the InfiniteReality2 graphics system of the SGI
Onyx2 4x195MHz R10000 and a PC graphics card powered by NVIDIA’s GeForce2 Ultra
250MHz(4x2) / 230MHz(128 bit DDR) chip with a precision of 12 and 8 bit respectively.
Apart from the pre-calculation of the user controlled speed function τn

h
F̄ and the initial level-

set function Φ̄0, all computations took place in the graphics system. In the definition of F̄
(Eq. 4.3 on page 128), we had usually used no constant velocity (c(x) = 0), a parameter
controlled polynomial for g1(x) and a Perona-Malik function for g2(x).

Figure 4.2 on the next page shows the segmentation on a slice through the human brain. The
images closely resemble software results. Moreover, the first two images of the sequence
demonstrate that the allowance of negative values in the speed function enables the initially
too large contours to withdraw from regions with unfitting intensities. This property requires
the level-set formulation and cannot be implemented with the fast marching method [Sethian,
1999]. We also notice that the applied approximation of the Euclidean norm is not visible
in real world applications. Only if we observe a curve evolution with a constant velocity the
approximative structure comes into sight (Figure 4.3 on page 132).

In Figure 4.4 on page 133 several differently colored seed points evolve independently to
segment the pickets of a barbed wired fence. In this example all active contours use the
same velocities, but in general the color components may evolve independently along different
velocities while still being encoded in a single image, because the graphics hardware operates
internally on 4-vectors (RGBA) anyway.

Iintially we implemented the copy-to-frame-buffer data-flow (cf. Section 4.1.2.1 on page 119),
as it avoids unneccessary data copying when working with the fragment blending operations
exclusively. However, copying turned out to be fairly slow on the SGI Onyx2 with enabled
blending modes. In late 2000 the same applied to the GeForce2. But the graphics drivers for
the GeForce2 started to offer a fast copy-to-texture at this time. Although the copy-to-texture
involves additional unnecessary data movement as opposed to copy-to-frame-buffer and it
required the textures to be at least (RGB) as the color buffer, it turned out to be still much
faster. The execution time for one time-step dropped by more than an order of magnitude
from 30ms to 2ms for a 1282 image, which corresponds approximately to 65% (1282 pixel * 80
data transfers / 2ms = 655 Mpixel/s) of the theoretic maximal throughput of 1000 Mpixel/s (4

130

4.1 Graphics Hardware

Figure 4.2 Segmentation of a human brain computed in DX7 graphics hardware on a 1282

image resolved by 8 bit. Besides the original image, the timesteps 0, 10, 50, 150 and 350 are
depicted. The computation of one timestep took 2ms.

pipelines * 250MHz). The overhead is caused by the frequent implicit flushing of the graphics
pipeline, happening each time before the content of the frame-buffer can be copied back to
a texture. In view of this complications, the 65% of the unreachable peak perfromance were
a very efficient utilization of hardware resource. One should note that this implementation
was designed for the fragment blending capabilities, at a time when subtraction in the FP was
unavailable. The recourse to the copy-to-texture in the GeForce2 was a late remedy for the
continued lack of a fast copy-to-frame-buffer functionality. The extension of this work by
Lefohn et al. is centered around the more powerful DX8 Fragment Processor (FP) [Lefohn
et al., 2003] and thus relates performance to the texture fill rate rather than the pixel fill rate.

Since the fast copy-to-texture enforced the use of RGB or RGBA textures one could also make
use of the extra colors. The parallel evolution of several level-sets could thus be performed at
almost (< 3%) no extra cost (Figure 4.4 on page 133), as along as sufficient bandwidth was
available, which was the case for the GeForce2 Ultra.

131

4 Hardware Efficient Implementations

Figure 4.3 The visible effect of the Euclidean norm approximation during segmentation in
totally homogenous areas. The circle with the little hole on the upper left is the region to be
segmented. The subsequent images show the expansion of a small circle under the approxi-
mate norm ‖.‖lin. As expected from the form of the unit sphere of the norm (Figure 2.2 on
page 57) the circle evolves into a octagon. This effect is only visible in totally homogenous
areas, where the entire front expands with the same velocity.

4.1.4 Anisotropic Diffusion

We discuss the implementation of explicit and implicit solvers for the anisotropic diffusion
model for image denoising. This includes the isotropic non-linear diffusion model as a special
case. The continuous model is discussed in Section 2.1.1 on page 15, the discrete, quantized
model in Section 2.3 on page 43. The graphics hardware implementation of the diffusion
models has been previously presented in the publications [Diewald et al., 2001; Rumpf and
Strzodka, 2001b,c].

Ancestor to this work was the implementation of Gaussian filtering in [Hopf and Ertl, 1999],
which corresponds to the solution of the linear diffusion problem. Hopf and Ertl also pio-
neered other hardware accelerated filter applications, such as wavelet transformations [Hopf
and Ertl, 2000b] and morphological analysis [Hopf and Ertl, 2000a]. Because diffusion is a
key ingredient in many physical processes, many successors considered its implementation as

132

4.1 Graphics Hardware

Figure 4.4 Parallel segmentation of fence pickets in DX6 graphics hardware.

part of their solvers, e.g. [Harris et al., 2002; Kim and Lin, 2003]. In [Colantoni et al., 2003]
anisotropic diffusion has been addressed explicitly again. Linear algebra with sparse matrices
and implicit solvers in general have later also been discussed in [Bolz et al., 2003; Goodnight
et al., 2003; Harris et al., 2003; Krueger and Westermann, 2003].

The succeeding papers differ from the following presentation in that they assume newer graph-
ics hardware with floating point number formats (DX9). Only [Harris, 2002] examines the
effects of roundoff error in fixed point diffusion under a local white-noise model assumption.
But neither floating point numbers nor good local error bounds (which are unattainable for 8
bit anyway) are necessary for the preservation of the qualitative behavior of the continuous dif-
fusion models over a long time, as demonstrated by the quantized scale space (Section 2.3.3 on
page 49) generated by our schemes.

4.1.4.1 Implementation

The quantized explicit mass preserving scheme (Eq. 2.48 on page 48) to be implemented reads

Ūn+1 = A−[Ūn
σ] � Ūn(4.4)

133

4 Hardware Efficient Implementations

= Ūn 	
(

τn

h2
L[Ūn

σ]

)

� Ūn ,

with the quantized operations {⊕,	,�} from Section 2.2.3.1 on page 36, and the quantized
mass-exact matrix vector product denoted by � (Eq. 2.29 on page 40). In case of the semi-
implicit scheme we have to solve

A+[Ūn
σ] · Ūn+1 = Ūn(4.5)

A+[Ūn
σ] := 11 +

τn

h2
L[Ūn

σ] ,

with a quantized version of the iterative solvers (Eqs. 2.39, 2.40 on page 45).

The components of the stiffness matrix L[Ūn
σ]αβ are given as a weighted sum of integrations

over the elements adjacent to the α node (cf. Figure 2.1 on page 27):

L[Ūn
σ]αβ =

∑

E∈E(α)

∑

i,j∈{x,y}
(Gn

E)i,j(S
αβ
E)i,j(4.6)

Gn
E := G(∇Un

σ (mE))

(Sαβ
E)i,j := (∂iΦα, ∂jΦβ)|E ,

where (Gn
E)i,j are the components of the diffusion tensor (Eq. 2.44 on page 46) and (Sαβ

E)i,j

pre-integrated constants depending on the Finite Element (FE) basis functions. On an equidis-
tant mesh with linear FEs we have an explicit formula for the inner sum which is used for the
computation (Eq. 2.45 on page 46). In case of the isotropic non-linear diffusion model, where
the weight function g̃ is scalar, the local formula is much simpler:

L′[Ūn
σ]αβ =

∑

E∈E(α)

G′n
E S ′αβ

E(4.7)

G′n
E := g̃(∇Un

σ (mE))

S ′αβ
E := (∇Φα,∇Φβ)|E .

Because the formulas mix positive and negative numbers at various stages the separate treat-
ment of them would have caused a large overhead. Instead, we emulate a signed format in the
unsigned 8 bit format. Our first approach was to reserve the range [−2, 2] for computations and
apply the formulas in Table 4.2 on page 123 to obtain the correct results. With the availability
of register combiners which support a signed 9 bit format internally, we could easily map [0, 1]
to [−1

2
, 1

2
) before each computation and work with the signed numbers (see Section 4.1.2.2 on

page 121 for details). We remind that the quantized solution satisfies a extremum principle
(Eq. 2.53 on page 51), so that we only have to avoid a saturation in intermediate computations.

The matrix vector product with the stiffness matrix
∑

β L[Ūn
σ]αβ · X̄β is the computationally

most demanding part for both the explicit (Eq. 4.4 on the preceding page) and implicit scheme
(Eq. 4.5), since the iterative linear equation system solvers (Eqs. 2.39, 2.40 on page 45) also

134

4.1 Graphics Hardware

contain the matrix vector product as their main component. Even the scalar product encoun-
tered in the conjugate gradient solver (Eq. 2.40 on page 45) is just a component-wise multi-
plication followed by the computation of the ‖.‖1 norm as described in Eq. 4.1 on page 125.

So these more elaborate schemes are just a quantative increase in requirements compared to
the solution of the level-set equation in the previous section. From the computational point of
view the same arithmetic operations are involved: addition, subtraction, multiplication, vector
norms. There is, however, one exception, namely the non-linear dependence of the weights
(Gn

E)i,j on the gradient ∇Un
σ (mE). For the level-set equation we had also to deal with the

non-linear Euclidean norm of a 4-vector and used a linear approximation for it (Eq. 2.72 on
page 56). For the reciprocal of diagonal matrix elements in the Jacobi solver (Eq. 2.49 on
page 48) and the scalar weight function g̃(‖∇uσ‖) in the non-linear diffusion model, typically
given by the Perona-Malik function (Eq. 2.3 on page 16), also a simple linear approximation
can be used (Figure 4.5 on the following page). This is, however, much more demanding in
the anisotropic model for the normalized gradient components (cf. Eq. 2.44 on page 46)

bE
x :=

∂xU
n
σ (mE)

‖∇Un
σ (mE)‖ , bE

y :=
∂yU

n
σ (mE)

‖∇Un
σ (mE)‖ ,(4.8)

which are two-dimensional non-linear functions:

f(x, y) :=
x

√

x2 + y2
=

1
√

1 + (y/x)2
.

We should recall that there is no division operation in graphics hardware. Even the DX9+
GPUs compute a reciprocal and multiply with the numerator. This is feasible with float-
ing point numbers, but in fixed point, the reciprocal cannot be expressed appropriately, so
that even with a one dimensional lookup table the function would be difficult to evaluate,
because only a small part of the codomain of 1√

x2+y2
or 1

x
could be represented. Only

a lengthy logarithmic representation could capture a larger codomain: f(x, y) = sgn(x) ·
exp

(
ln |x| − 1

2
ln(x2 + y2)

)
. But this would be the wrong strategy for fixed point numbers,

which represent smaller values with increasingly less binary positions and thus precision. If
one has to use an approximation the best option is to resolve the larger values as good as
possible say the range [1

4
, 1] and disregard everything below. For very small differences (al-

most homogenous areas) it is not so important to evaluate the anisotropic term in Eq. 2.45 on
page 46, since the non-linear diffusion term will diffuse the area anyway.

The dependent texture access introduced with DX8 GPUs solved the above problems in gen-
eral. One can encode the values of the non-linear function in a 2D texture and use the function
variables as coordinates into that texture, thus implementing any two dimensional function (cf.
Section 4.1.2.3 on page 124).

The data-flow for the diffusion models uses the copy-to-texture method (Section 4.1.2.1 on
page 119), because the multiple texture environments in the FP allow to compute many more
results in a single pass. Especially the summations in the frequent matrix vector products with
the stiffness matrix (Eqs. 4.6, 4.7 on the preceding page) lend themselves to the processing

135

4 Hardware Efficient Implementations

Figure 4.5 Approximation of the Perona-Malik function by linear functions. If the evalutation
of non-linear functions in the hardware architecture is not available, they can be approximated
by linear ones. Computing the maximum of the above linear functions gives a good approx-
imation without the need of explicit conditional statements. Clearly, general non-linearities
can be very complicated and require many linear segments for a reasonable approximation.

in the FP. There were also no fast alternatives as long as pbuffers were not available. Algo-
rithms 4.2 on the facing page and 4.3 on the next page present the pseudo-code for the explicit
and implicit solver respectively.

4.1.4.2 Results

Different versions of the solvers were run on the SGI Onyx2 4x195MHz R10000 with In-
finiteReality2 graphics, NVIDIA GeForce2 Ultra 250MHz(4x2) / 230MHz(128 bit DDR) and
GeForce3 200MHz(4x2) / 230MHz(128 bit DDR). The Onyx2 offered 12 bit precision the
GeForce chips 8 bit. In the non-linear case we used the Perona-Malik function for the weight
function g̃, in the anisotropic case a constant for g1 and a combination of a constant and
Perona-Malik function for g2. In the explicit case the time-step width has to comply with
τn

h2 < 3
16

(Eq. 2.56 on page 51) to secure the properties of the quantized scale-space. For
the semi-implicit model the time-step width is theoretically not restricted, but concerning the
menacing underflow in the iterative schemes (cf. Eq. 2.50 on page 48) we kept τn

h2 below 8.

136

4.1 Graphics Hardware

Algorithm 4.2 Explicit scheme for image denoising by anisotropic diffusion implemented
in graphics hardware (Eq. 4.4 on page 133). The mass-exact matrix vector product guaran-
tees that the overall mass stays the same, i.e.

∑

α Ūn+1
α =

∑

α Ūn
α , despite quantization and

roundoff errors. The scheme generates a quantized scale-space with qualitative properties very
similar to the continuous scale-space (Section 2.3.3 on page 49).

anisotropic diffusion {
load the original image Ū0;
initialize the graphics hardware with Ū0;
for each timestep n {

mollify the gradient ∇Un
σ with a Gaussian kernel;

calculate/approximate the weights gE
1 , gE

2 and the directions bE
x , bE

y (Eq. 2.44 on page 46);
assemble the stiffness matrix L[Ūn

σ];
compute the mass-exact matrix vector product

(
τn

h2 L[Ūn
σ]
)

� Ūn;
update the solution Ūn+1 = Ūn 	

(
τn

h2 L[Ūn
σ]
)

� Ūn;
}
}

Algorithm 4.3 Semi-implicit scheme for image denoising by anisotropic diffusion imple-
mented in graphics hardware (Eq. 4.5 on page 134). Each step of the iterative linear equation
solver involves at least one matrix vector multiplication and several other operations (Eqs.
2.39, 2.40 on page 45). The iterative solver cannot exactly preserve the mass of the vector, but
an additional step can correct the mass defect (Eq. 2.52 on page 49).

anisotropic diffusion {
load the original image Ū0;
initialize the graphics hardware with Ū0;
for each timestep n {

mollify the gradient ∇Un
σ with a Gaussian kernel;

calculate/approximate the weights gE
1 , gE

2 and the directions bE
x , bE

y (Eq. 2.44 on page 46);
assemble the stiffness matrix L[Ūn

σ];
initialize the iterative solver R̄n = Ūn, X̄0 = R̄n;
for each iteration l {

calculate a step of the iterative solver X̄ l+1 = F (X̄ l) with A+[Ūn
σ] = 11 + τn

h2 L[Ūn
σ];

update the solution Ūn+1 = X̄ lmax

}
}

137

4 Hardware Efficient Implementations

Figure 4.6 Linear (upper row) and non-linear (lower row) diffusion on a graphics worksta-
tion. These earlier results from 2000 demonstrated the potential for PDE solvers on graphics
hardware and inspired our further research in this direction.

Convolution with a Gaussian kernel, which is equivalent to the application of a linear dif-
fusion model is compared to the results from the non-linear model in Figure 4.6. This test
strongly underlines the edge conservation of the non-linear diffusion model and the quantized
computation can preserve this property known from the continuous model.

Figure 4.7 on the facing page shows computations with the SGI Onyx2 using the Jacobi and the
conjugate gradient solver and compares them to software results. The 12 bit precision sufficies
for the task of denoising pictures by non-linear diffusion. But the lack of negative numbers
required constant scaling and biasing (see Table 4.2 on page 123). The first implementation did
not take explicit care of the resulting roundoff behavior and therefore there is a fine roundoff
pattern on the least significant bits in the sequence produced by the Jacobi solver (visible only
in the electronic version). The same applies to Figure 4.6 and the upper row in Figure 4.8 on
page 140. The subsequent schemes resolved this problem.

At that time many of the involved operations in the graphics pipeline were not supported well
in hardware. On average, an iteration of the Jacobi, conjugate gradient solver on 2562 im-
ages took approximately 170ms and 420ms respectively, which was slower than the software
solution. The reason for this surprisingly weak performance was easily identified in the un-
balanced performance of data transfer between the frame-buffer and video memory. We have
already mentioned that the copy-to-texture machanism (Section 4.1.2.1 on page 119) was not
well supported until late 2000. But because after each operation the result had to be copied
back to a texture, the access times to the frame-buffer were highly relevant for the overall per-
formance. The discrepancy in performance between writing an image from the video memory

138

4.1 Graphics Hardware

Figure 4.7 Non-linear diffusion solvers in graphics hardware and software; first row: adaptive
software pre-conditioned conjugate gradient; second row: Jacobi sover in graphics hardware;
third row: conjugate gradient solver in graphics hardware. The black borders are due to
restrictions in handling of the boundary conditions in graphics hardware. The fine roundoff
pattern in the images (electronic version only) is explained in the text (Section 4.1.4.2 on
page 136).

to the frame-buffer and reading it back was as large as 60. The histogram extension used
for the computation of the scalar products in the conjugate gradient solver was even worse,
explaining the extremely long execution time of the conjugate gradient solver.

Soon after the results from Figure 4.7 were generated [Rumpf and Strzodka, 2001b], the first
optimized drivers with a fast copy-to-texture operation for the GeForce series appeared (late
2000). The execution time of the Jacobi solver on the GeForce2 Ultra dropped by more than
a factor of 10. This was, however, still less than expected because the lack of a fast dependent
texture access as needed for the evaluation of non-linear functions then became the bottelneck.
Another problem was the reduced precision of 8 bit on the PC GPUs as opposed to the 12 bit
on the graphics workstation. In bright images and for fairly low time-step numbers the mass
defect caused by the implicit schemes was hardly visible and could also be counteracted with

139

4 Hardware Efficient Implementations

Figure 4.8 Mass defect (upper row) and mass exact (lower row) non-linear diffusion in graph-
ics hardware. The used precision is 8 bit. The upper row uses a naive implicit diffusion scheme
which causes a mass defect due to many underflows for very small numbers (black areas). The
mass-exact matrix vector product (Eq. 2.29 on page 40) preserves the overall mass despite low
quantization. If the results of the mass defect scheme seem more pleasing, then only because
we expect the moon and the stars on a black sky.

scaling strategies (Eq. 2.32 on page 42), though one can notice the effect in Figure 4.7 on the
preceding page already. But for badly resolved very low fixed point numbers and many iter-
ations the multiplicative underflows produced a significant mass defect. Figure 4.8 compares
this problematic effects with the remedy of the quantized explicit mass preserving scheme
(Eq. 4.4 on page 133).

As explained in the previous section, the implementation of the anisotropic model without
the availability of two dimensional lookup mechanism for non-linear function evaluation in
graphics hardware is very difficult. In 2001 the DX8 GPUs introduced fast dependent texture
lookups, which also replaced the rather slow options for one dimensional non-linear functions
(cf. end of Section 4.1.2.3 on page 124). Figure 4.9 on the next page compares the first
anisotropic diffusion implementation working with linear interpolations with the later one
based on dependend texture access. The former had a tendency to further darken dark colors
and further brighten bright colors. The reason was the [− 1

2
, 1

2
) → [0, 1] encoding which

mapped 0 to 128
255

, and the inaccuracy of the approximations for numbers close to 0. This
implicit contrast enhancement may seem desirable, but it violates the scale-space approach and
destabalizes the evolution in the long run. The DX8 implementation had no such problems.
The approximate DX7 version performed at about 20ms on the GeForce2 Ultra, the DX8
version at 8ms on the GeForce3 for one explicit time-step on 2562 images.

140

4.1 Graphics Hardware

Figure 4.9 Anisotropic diffusion models implemented in DX7 (middle) and DX8 (right)
graphics hardware. The images show results after 10 time-steps in the explicit scheme on
1282 images. The DX7 version had to use linear interpolations and thus produced stable re-
sults only for relatively few time-steps. With non-linear two dimensional functions in DX8
these restrictions were eliminated.

Figure 4.10 Anisotropic diffusion with the virtual signed 16 bit format in DX8 graphics hard-
ware on 2562 images.

The 16 bit formats introduced with DX8 GPUs were only applicable in special situations and
there was still no 16 bit frame-buffer format, so that the precision could not be maintained
throughout the pipeline. But these GPUs had enough computing resources to emulate a vir-
tual signed 16 bit format [Strzodka, 2002] in the 8 bit color channels of RGBA8 textures.
Figure 4.10 presents anisotropic diffusion results obtained with this format.

The advantage of the additional bits can be best seen in Figure 4.11 on the next page where
we apply the 8 and 16 bit schemes as linear diffusion for a long time. Analysis of the quna-
tized stop criteria (Eq. 2.66 on page 53) shows that the diffusion process stops roughly when

141

4 Hardware Efficient Implementations

Figure 4.11 Comparison of the diffusion schemes in 8 bit (upper row) and 16 bit (lower
row). A simple linear diffusion is computed with the mass preserving anisotropic scheme to
empirically verify its quantized stop criteria (Eq. 2.66 on page 53). The 8 bit diffusion stops
quickly due to insufficient precision in intermediate computations. The 16 bit results clearly
demonstrate the huge advantage of the additional 8 bit in the virtual signed 16 bit format
(Section 4.1.2.2 on page 121).

differences between neighbouring values in a grid element become smaller than 8εQ, where
8εQ = 2−5 for 8 bit and 8εQ = 2−13 for 16 bit (cf. Eq. 2.25 on page 35). In other words a
smooth ramp from 0 to 1 of 25 = 32 or 213 = 8192 pixels cannot be further diffused in 8 or 16
bit respectively.

A specific linear diffusion scheme can diffuse larger areas. The above numbers apply to
the full anisotropic scheme with the guaranteed mass preservation and no scaling strategies
(Section 2.2.3.4 on page 41) applied. They clearly emphasize the importance to have more
significant bits in the number representation than in the initial data. They also explain why
research on general purpose computations [GPGPU] increased significantly with the introduc-
tion of high precision floating point formats in DX9. In many applications not the exponent
properties of the floating point formats were decisive but a mantissa with at least 16 bit (cf.
Table 4.3 on page 124). The schemes presented in this and the previous section function on 8
bit only because of a very careful design. With a 16 bit fixed point number format many more
applications could have been covered. But since 2003 the floating point number formats dom-
inate the further development of GPUs, so the next section explores the use of this additional
precision in a much more demanding context.

142

4.1 Graphics Hardware

4.1.5 Gradient Flow Registration

This section deals with the image registration performed by a gradient flow PDE. The con-
tinuous model is discussed in Section 2.1.3 on page 22, the discrete, quantized model in Sec-
tion 2.5 on page 59. Results on the graphics hardware implementation of this method appeared
previously in [Strzodka et al., 2003, 2004].

Because with DX9 graphics hardware many of the previous restrictions disappeared, a lot of
research on general use of GPUs evolved since then. We refer to [GPGPU] for a comprehen-
sive overview. The most related work is that on multi-grid solvers on GPUs also discussed in
[Bolz et al., 2003; Goodnight et al., 2003] where they have been applied to fluid dynamics.
Here, we use the multi-grid hierarchy for a fast linear equation solver and additionally as an
efficient representation of a multi-scale hierarchy, which we use for a robust problem regu-
larization. We also present the implementation of an adaptive time-step control governed by
Armijo’s rule.

4.1.5.1 Implementation

We recall that the discrete, quantized scheme for the image registration consists of three nested
loops (Eq. 2.83 on page 61):

Ūn+1
εk

= Ūn
εk
	

τn
εk

hl(εk)

�MGMl(εk)(σ)Ē ′
εk

[Ūn
εk

], n = 0, . . . , Nεk
− 1 ,(4.9)

Ē ′
εk

[Ūn
εk

] = (T̄εk
} (11 + Ūn

εk
)	 R̄εk

)�
(

hl(ε)∇hl(εk)
T̄εk

} (11 + Ūn
εk

)
)

,

Ū0
εk

= π
l(εk+1)

l(εk)

(

Ū
Nεk+1
εk+1

)

, k = K − 1, . . . , 0 ,

Ū0
εK

= 0̄ .

The outer loop with index k runs from the coarse (εK) to the fine (ε0) scale representations
and uses the prolongation operator (πl(εk+1)

l(εk)) to transfer data onto finer grids. The middle loop
with index n performs the gradient descent on a given scale until the last index Nεk

for which
the change in data is sufficiently small (Eq. 2.81 on page 61). The inner loop determines for
each update (first formula line) the maximal time-step width τ n

εk
which satisfies Armijo’s rule

(Eq. 2.76 on page 60) by maximizing the time-step width τ in Eq. 2.85 on page 62. Naturally,
the multi-grid V-cycle (Eq. 2.82 on page 61) performs also an inner loop from the current grid
Ωhl(ε)

up to the coarsest grid ΩhL
and back, where Eq. 2.78 on page 60 describes the relation

between the grid levels and the scales.

The DX9 graphics hardware allows a high level approach to the graphics functionality. First
of all the availability of a floating point format of at least s16e7 precision (cf. Table 4.3 on
page 124) eliminates most of the low level implementational concerns about exceeded num-
ber ranges in intermediate computations. However, with floating point numbers we must be

143

4 Hardware Efficient Implementations

Figure 4.12 The multi-grid hierarchy encoded in textures of different spatial resolution. Each
grid level Ωhl

serves for the representation of several scales εk of the multi-scale hierarchy.
In contrast to the multi-scale hierarchy, which is a regularization concept of the registration
model, the multi-grid hierarchy is an implementational construct for the reduction of compu-
tations.

aware of the dramatic errors resulting from interferences of numbers on different scales (Sec-
tion 2.2.2.1 on page 27). Our quantized scheme does not run into these problems, since we
make hardly use of the exponent and rather benefit from the large mantissa.

An even greater impact on implementations for DX9 graphics hardware has the hardly re-
stricted programmability of the Vertex Processor (VP) and the Fragment Processor (FP). These
parts have become so powerful that the other processing elements in the graphics pipeline
are hardly used for scientific computations anymore (cf. Figure 4.1 on page 112). The in-
creased functionality is also available at a higher abstraction level with graphics High Level
Languages (HLLs) included in the APIs OpenGL and DirectX for the configuration of the VP
and FP. We have used Cg [NVIDIA, 2002] for the programming of the configurations. Cg
is another graphics HLL with the advantage that it can compile the same code for different
APIs and profiles, which express the functionality level of the VP and FP. Thus the following
description of the implementation will focus less on the involved arithmetic operations, but
more on the higher level of required kernels, i.e. configurations of the programmable VP and
FP.

The two dimensional input images T and R are represented as 2D textures on the finest grid
Ωh0 . The multi-grid hierarchy (Ωhl

)l=0,...,L corresponds to textures of successively smaller
size (Figure 4.12). Several such hierarchies are reserved in graphics memory to store any
intermediate results. All textures are implemented as floating point pbuffers and we use the
render-to-texture machanism (Section 4.1.2.1 on page 119), which avoids unnecessary data
transfers. Computations are performed by loading a computational kernel to the FP, e.g.

144

4.1 Graphics Hardware

a prolongation kernel, and streaming the texture operands through that kernel into a target
pbuffer. Thereby the vertex processor is used to generate the texture coordinates for the access
to neighboring nodes in the operand textures. The target pbuffer can then be used as a texture
operand in the succeeding operation (cf. Figure 4.1 on page 112).

Algorithm 4.4 Algorithm for image registration in graphics hardware (Eq. 4.9 on page 143).
Because of the involved numerical computations, an implementation is only feasible in DX9
or higher functionality graphics hardware.

image registration {
intitialize the graphics hardware with T̄ , R̄;
reset the displacement on the coarsest scale Ū0

εK
= 0̄;

perform gradient flow at scale εK ;
for each scale εk, k = K − 1, . . . , 0 {

initialize the displacement with the previous scale solution performing

a prolongation if the grid level also changes Ū0
εk

= π
l(εk+1)
l(εk)

(

Ū
Nεk+1
εk+1

)

;

perform gradient flow at scale εk;
}
}

gradient flow at scale εk {
compute new image scales T̄ε = MGMl(εk)(εk)T̄ , R̄ε = MGMl(εk)(εk)R̄;
for each n {

evaluate the gradient Ē′
εk

[Ūn
εk

] = (T̄εk
} (11 + Ūn

εk
)	 R̄εk

)�
(

hl(ε)∇hl(εk)
T̄εk

} (11 + Ūn
εk

)
)

;

perform smoothing multi-grid V-cycle MGMl(εk)(σ)Ē′
εk

[Ūn
εk

];
maximize τn

εk
by Armijo’s rule (Eq. 2.85);

update solution Ūn+1
εk

= Ūn
εk
	 τn

εk
hl(εk)

�MGMl(εk)(σ)Ē′
εk

[Ūn
εk

];

break loop if ‖ τn
εk

hl(εk)
�MGMl(εk)(σ)Ē′

εk
[Ūn

εk
]‖22 < δ;

}
}

Algorithm 4.4 outlines the implementation of the image registration scheme (Eq. 4.9 on page 143)
in pseudo-code notation. Each line corresponds to the configuration of the fragment proces-
sor with the corresponding kernels and the streaming of the texture operands through the so
configured graphics pipeline. Some operations require several passes with slightly different
configurations. The involved kernels are listed below.

145

4 Hardware Efficient Implementations

• Smoothing with the multi-grid V-cycle MGMl(εk)(σ):
– Restriction operator ρl

l+1.
– Prolongation operator πl+1

l .
– Jacobi iterations with Ahl(εk)

.
– Residuum computation Ūn

εk
− Ahl(εk)

X̄εk
.

• Energy functional:
– Error computation T̄εk

◦ (11 + Ūn
εk

)− R̄εk
.

– Evalutation of the energy gradient Ē ′
εk

[Ūn
εk

].
• Utilities:

– Multiply and accumulate Ā · B̄ + C̄.
– Bilinear interpolation

∑

ix,iy∈{0,1} |ix − µx| · |iy − µy| · Āα+(1−ix,1−iy).
– Evaluation of the lumped L2 scalar product 〈., .〉h.

These kernels are executed by the Fragment Processor (FP), as an example Listing 4.1 on
the next page shows the implementation of the Jacobi kernel in Cg. A different program in
the Vertex Processor (VP) generates the texture coordinates in the structure Frag2dIn IN
for the access to the neighboring nodes. The other parameters of jacobiFP are set in the
application during the configuration process of the graphics pipeline (Figure 4.1 on page 112).
Listing 4.2 on page 148 shows the pipeline configuration in a C++ program for the execution
of one iteration of the Jacobi solver.

Because the FP accepts long configurations the kernels perform their task in one pass except
for the lumped discrete L2 scalar product. This can be evaluated with the glHistorgram
function (Eq. 4.1 on page 125), but we discontinued the use of this function already for the
diffusion processes because it is very slow. An alternative is to evaluate the scalar product by
a component-wise multiplication and an iterative addition of local texels. Such a procedure
involves a global access to all texels of a texture and would need a global register for accumu-
lation, which is not supported in DX9 graphics hardware. Hence, we consider a hierarchical
implementation with several passes. After the component-wise multiplication we consecu-
tively halve the size of the resulting texture by applying local filters which sum up the local
texel values. This step is repeated from the finest up to the coarsest grid level such that the
final result of this hierarchical summation can be retrieved from the coarsest level as a single
value for further processing by the CPU.

The energy computation Eεk

[

Ūn
εk
− τ

hl(εk)
MGMl(εk)(σ)Ē ′

εk
[Ūn

εk
]
]

required in the evaluation of

Armijo’s rule (Eq. 2.85 on page 62) requires such a lumped discrete L2 scalar product. Thus
we compute

V̄τ := Ūn
εk
− τ

hl(εk)

MGMl(εk)(σ)Ē ′
εk

[Ūn
εk

] ,

Eεk

[
V̄τ

]
=

1

2
〈V̄τ , V̄τ 〉hl(εk)

,

where the scalar product is implemented as the hierarchical summation described above.

146

4.1 Graphics Hardware

Listing 4.1 Implementation of the kernel of the Jacobi solver for Ah X = B in the graphics
language Cg. Bold keywords belong to the language specification, italic ones are predefined
types and functions of a self-made library which facilitates the access to neighboring nodes
in a texture. Lines 9,10 assign local variables to data elements of the input data streams
(given by the textures Tex B,Tex X), and the following lines define the actual processing
of the data elements with the computation of the convolution and the linear interpolation:
lerp(a,b,c):=(1-c)a+cb.

1 FragOut
2 j a c o b i F P (Frag2dIn IN ,
3 uniform sampler2d Tex B : t e x u n i t 0 ,
4 uniform sampler2d Tex X : t e x u n i t 1 ,
5 uniform f l o a t s c a l e)
6 {
7 FragOut OUT;
8
9 f l o a t 2 t ex B = f2texRECT (Tex B , IN . cCoord . xy) ;

1 0 S t e n c i l 3 x 3 r 2 t ex X ; t e x S t a r 8 (tex X , IN , Tex X) ;
11
1 2 f l o a t 2 LN = (+ tex X . mp + tex X . cp + tex X . pp
1 3 + tex X . mc + + tex X . pc
1 4 + tex X .mm + tex X . cm + tex X . pm) ∗ (1 / 8 .) ;
1 5 OUT. c o l = l e r p (LN , tex B , s c a l e) ;
16
1 7 re turn OUT;
1 8 }

4.1.5.2 Results

The implementation runs on a NVIDIA GeForceFX 5800 Ultra 500MHz(4x2) / 500MHz(128
bit DDR). For DX9 GPUs it is, however, not possible to estimate the raw processing power
from the clock frequencies, number of parallel pipes and memory bandwidth alone. The num-
ber of arithmetic processing elements (PEs), texture mapping units (TMUs) and their flexibil-
ity is very important, and GPU manufacturers have put different focus on these parameters,
making a simple comparison impossible. It should suffice to say that the FX5800 is a fairly
weak DX9 architecture, both NVIDIA GeForceFX 5900 and ATI Radeon 9800 have twice the
processing power on computationally intensive problems.

The examples are composed of three different data sets: low and high frequency distortions
(Figures 4.13 on page 149, 4.14 on page 150), large rigid deformations (Figures 4.17 on
page 152, 4.15 on page 151) and medical data sets (Figures 4.18 on page 153, 4.19 on
page 154). The corresponding figures show six different tiles, which are are arranged in the

147

4 Hardware Efficient Implementations

Listing 4.2 Configuration of the graphics pipeline and data streams for the execution of the
Jacobi kernel in Listing 4.1. Bold keywords are functions of the Cg API, italic once are
predefined arrays pointing to texture objects, vertex and fragment programs and their variables.
The first line sets the target pbuffer for the output data stream. At the end (line 16) we release
the pbuffer, such that it can be used as a texture operand in the next pass. Lines 6,7 configure
the VP and FP with the kernel programs. Line 5 sets the scale parameter, lines 9,10 bind
the textures TEX B,TEX X as input data streams for jacobiFP (Listing 4.1). Finally, line
12 sends the geometry of the current multi-grid level (MGlev) to the VP and thus initiates the
execution of the Jacobi iteration in the graphics pipeline (Figure 4.1 on page 112).

1 t e x [TEX N] . t o T e x t u r e (MGlev) ;
2
3 cgGLSetStateMatrixParameter (verVar [VP NEIGH2D] [VV MVP] ,
4 CG GL MODELVIEW PROJECTION MATRIX , CG GL MATRIX IDENTITY) ;
5 cgGLSetParameter4fv (f r a g V a r [FP JACOBI] [FV SCALE] , s c a l e) ;
6 cgGLBindProgram (verProg [VP NEIGH2D]) ;
7 cgGLBindProgram (f r a g P r o g [FP JACOBI]) ;
8
9 t e x [TEX B] . b ind (MGlev , GL TEXTURE0 ARB) ;

1 0 t e x [TEX X] . b ind (MGlev , GL TEXTURE1 ARB) ;
11
1 2 drawTex (t e x [TEX N] . pos [MGlev] , t e x [TEX N] . s i z e [MGlev] ,
1 3 t e x [TEX B] . pos [MGlev] , t e x [TEX B] . s i z e [MGlev] ,
1 4 t e x [TEX X] . pos [MGlev] , t e x [TEX X] . s i z e [MGlev]) ;
15
1 6 t e x [TEX N] . f r o m T e x t u r e (MGlev) ;

following way: on the upper left we see the template T̄ which should be deformed to fit the ref-
erence image R̄ to the right of it; on the lower left we see the computed deformation Ū applied
to a uniform grid and to the right the registration result, i.e. the template after the deformation
T̄ ◦ (11 + Ū). The rightmost column shows the quadratic difference between the template and
the reference image before ‖T̄α− R̄α‖22 (upper row) and after ‖

(
T̄ ◦ (11 + Ū)

)

α
− R̄α‖22 (lower

row) the registration. With one exception (Figure 4.19 on page 154) the differences are scaled
with a factor 10 and grey values are clamped at black and white, otherwise one would hardly
see anything on the error images after registration.

Figures 4.16 on page 152 and 4.21 on page 155 show the decrease of the energy against the
overall number of update iterations in the process of registering the examples 4.15 on page 151
and 4.19 on page 154 respectively. Each point in the graph stands for a gradient descent step
(first line in Eq. 4.9 on page 143), which includes the computation of the energy gradient,
the smoothing with the multi-grid V-cycle, evaluation of Armijo’s rule and the update of the
solution (cf. Algorithm 4.4 on page 145). The graph discontinuities indicate scale changes

148

4.1 Graphics Hardware

Figure 4.13 Elimination of low frequency distortions on 5132 images in 9.8sec. We see that
apart from the image boundary where sufficient information is missing, the deformation can
be completely eliminated.

(εk → εk−1), while the X’s on the x-axis represent changes of the grid level in the multi-grid
hierarchy (Ωhl

→ Ωhl−1
). The number of the X’s depends on the choice of the grid used for

the computation of the initial deformation (Eq. 2.79 on page 60).

Usually each scale change increases the energy, because less smooth data is used in the com-
putation of the local error. This effect can be sometimes particularly large for the last scale
change, because on scale ε0 = 0 no smoothing of the images takes place. Introducing more
scales, especially for the finest grid can lessen this effect, such that the energy graph looks
nicer, but since the overall energy is hardly reduced in this way, we have not included these
additional costly iterations on the finest grid in the standard parameter set. Sometimes we
also observe energy decreases at the time we change the grid level in the multi-grid hierar-
chy (Figure 4.21 on page 155). This effect is due to the additional smoothing caused by the
prolongation operator, which decreases the local error in areas of smooth deformations.

The computations were performed either in the s23e8 full float or the graphics specific s10e5
half float format (cf. Table 4.3 on page 124). The results for both formats are very similar
which is an indicator for the stability of the algorithm. The performance varies only slightly in
favor of the smaller format as there exists a sufficient bandwidth in comparison to the number

149

4 Hardware Efficient Implementations

Figure 4.14 Elimination of high frequency distortions on 5132 images in 9.5sec. The algo-
rithm performs well for high frequencies. Only some ambiguous situations around the strongly
deformed small dark squares can not be resolved.

of operations in the kernels to transport the full float values. The standard parameter set uses
15 scales, up to 10 iterations of the update loop and up to 10 iterations of the energy loop. We
say ’up to’ because the loops are aborted if the update is too small. The smoothing multi-grid
V-cycle uses 3 Jacobi iterations on each grid both up and down the V-cycle.

The duration of the registration depends on the size of the images and the number of actual
passes, since several loops allow adaptive loop abortion. In general, the registration of 2572

images takes approx. 3sec and up to 10sec are needed for fully distorted 5132 images. But for
even larger (513×769) medical data, often less time is required (8.5sec) because for such data
the deformations are usually not so severe (Figure 4.19 on page 154). An estimated software
performance for this data set based on the highly optimized implementation in [Clarenz et al.,
2002], which actually deals with 3D data, would amount to approx. 34sec and thus 4 times
more time than the graphics implementation requires. As explained in the beginning of this
section, this factor would be twice as large for the current DX9 GPUs and presumably four
times for DX9+ GPUs.

Beside the increasing hardware performance, we also expect efficient improvements in the
APIs. The render-to-texture mechanism with pbuffers (Section 4.1.2.1 on page 119) made

150

4.1 Graphics Hardware

Figure 4.15 Registration of a rotated 2572 image in 5.9sec. This is a very hard test for the non-
rigid registration, which takes exceptionally long to finish for this image size, since without
any a priori knowledge about the underlying rotation there are many possibilities to match the
similar grey levels against each other. Obviously in the area of the body the inverse rotation
could be identified by the algorithm, whereas the background is rather poorly registered. This
outlines that even without the guidance of a concrete deformation model the method performs
well for large deformation if the structures to be matched are sufficiently pronounced.

unnecessary data movement obsolete, but the switches between pbuffers are still fairly heavy
weight. Since these switches occur extremely often, after each operation, the developping
mechanism for light weight pbuffer switches will optimize the global data-flow on GPUs.

151

4 Hardware Efficient Implementations

Figure 4.16 Energy decrease in registering the images from Figure 4.15 on the page before.
The structure of the graph is explained on page 148.

Figure 4.17 Registration of a large scale rigid deformation on 2572 images in 3sec. The multi-
scale approach allows to reconstruct even large deformations. However, without assumptions
on the deformation model, the computed deformation might differ from our expectations.

152

4.1 Graphics Hardware

Figure 4.18 Elimination of a possible acquisition artefact for a medical 2572 image in 2.2sec.
Here we have an example were some areas must expand while others must shrink to fit the ref-
erence image. The matching works well apart from the small fluctuation in the lower left part.
Such deviations are striking to our perception but have little effect on the overall energy, be-
cause they reflect mismatches of the morphology rather than grey level deviations. Therefore
additional morphological energy components will be considered in the future.

153

4 Hardware Efficient Implementations

Figure 4.19 Registration of two brain slices of the same patient taken at different times on
513 × 769 images in 8.5sec. As the slices were extracted from 3D volumes some anatomical
structures are not present in both images and lead necessarily to an error in the registration
result, especially in the upper right parts of the images. Also in contrast to the other examples
the grey values of the corresponding structures have not exactly the same value such that a
small error is present even in the case of perfect fit of image edges (left scull). For this reason,
here the error images on the right are not scaled.
The algorithm, however, is not distracted by the different grey levels and complements missing
data fairly smoothly. In particular the edges are matched nicely. Figure 4.20 on the facing page
shows the scaled error in the interior of the images.

154

4.1 Graphics Hardware

Figure 4.20 The enlarged central part of the error images from Figure 4.19 on the preced-
ing page. Here the error has been multiplied by 10 again. The images demonstrate that the
algorithm does also a good job in matching the central areas.

Figure 4.21 Energy decrease in registering the images from Figure 4.19 on the facing page.
The structure of the graph is explained on page 148.

155

4 Hardware Efficient Implementations

4.2 Reconfigurable Logic

Field Programmable Gate Arrays (FPGAs) evolved since the mid 1980s from small rapid-
prototyping devices to multi-million gate chips with large blocks of integrated memory, multi-
pliers and special circuits or even embedded processors. Sections 3.2.4 on page 93, 3.3.1.4 on
page 100 introduce into the subject, while [Bondalapati and Prasanna, 2002; Brown and Rose,
1996; Compton and Hauck, 2002] explain also other RL architectures and present an overview
of many systems. Our implementation does not use a very sophisticated device, but the main
considerations about efficient spatial computing come here into play just the same [DeHon,
2002]. The work has been done in collaboration with Steffen Klupsch and Markus Ernst from
the institute for Integrated Circuits and Systems Lab of the Technical University Darmstadt
headed by Prof. Sorin Huss, it appeared in [Klupsch et al., 2002]. This section is based on the
publication and associated material from presentations. First we present the hardware platform
and the design flow, and then the concrete implementation.

4.2.1 FPGA Card

Here we describe the functionality and programming model for the simple FPGA card we have
used. In principle the same aspects apply to FPGA systems in general, but often FPGA cards
contain more components, both multi-FPGA arrangements and hybrid hardware-morphware
combinations, so that the interaction patterns are more complicated.

4.2.1.1 Technology

We use a PCI accelerator card [Silicon Software, 1999], equipped with a XC4085XLA FPGA
from Xilinx [Xilinx Inc.] for the implementation. The chip contains a 56x56 Configurable
Logic Block (CLB) array (Figure 4.22 on the next page on the left). Each CLB contains
several lookup tables (LUTs) which are configured to perform logic operations on the input
lines (Figure 4.22 on the facing page on the right). The overall capacity of the XC4085XLA
equivalents approx. 180k system gates, i.e. primitive logic operations in an ASIC. This
is very little compared to mulit-million gate chips nowadays, which also contain embedded
hardwired special circuits and a lot of memory. In particular the lack of dedicated local RAM
in the chip, means that many LUTs must be consumed to define local memory rather than
serve as computational resources.

The card has a programmable clock generator and 2MiB SRAM accessible directly from the
FPGA. A schematic overview of the card with the bandwidth of the different buses is shown
in Figure 4.23 on the next page on the left. The card itself has no sophisticated host processor
and needs external control for the configuration process. We connected it via the PCI interface
to a PC. In this respect the technology is very similar to graphics cards which also use a host
for the general control functionality.

156

4.2 Reconfigurable Logic

Figure 4.22 Layout of a FPGA architecture (Xilinx [Xilinx Inc.]). On the left we see the
general arrangement of the Configurable Logic Blocks (CLBs) in an array. Between the CLBs
there are also configurable routing channels. On the right the layout of a CLB with lookup
tables (LUTs) as main computational resources is displayed.

Figure 4.23 A schematic view of our FPGA card and its system partitioning. The 66MHz ac-
cess to the SRAM is a maximal value and can only be achieved with hand optimized pipelined
access, but then the full bandwidth is available. The peak bandwidth of the PCI bus on the
other hand cannot be reached as the bus must share resources with other components in the
PC.

157

4 Hardware Efficient Implementations

4.2.1.2 Programming

A generic concept for the system partitioning based on the PCI conncection is shown in Fig-
ure 4.23 on the preceding page on the right. The connection is centered around the fixed
PCI interface with reusable, but application specific, low level IO access functions. The al-
gorithmic functionality is divided into a software part running on the CPU, and a flowware
and configware (Table 3.2 on page 85) part configured in the FPGA. The software part holds
the general control of the process and has been coded in C. The design of the sources for the
execution on the FPGA is more sophisticated.

Nowadays, the design entry for most digital circuits is based on behavioral models in Hard-
ware Description Languages (HDLs) such as Verilog, or VHDL which we used. These de-
scriptions are processed by synthesis tools to derive a netlist of basic logic elements, which
can be fed into place&route tools. The result is a bitstream used for the configuration of the
FPGA. Unlike the changing of code in a High Level Language (HLL) and a subsequent quick
re-compilation to a micro-processor’s assembly language, the transition from a changed Hard-
ware Description Languages (HDLs) model to the bitstream is not an interactive process. It
takes tens of minutes to hours for even relatively small projects like ours. For large FPGA
these times can easily grow to days, depending, of course, on the architecture on which the
tools run. There is also a trade-off between the execution time and the target requirements
(mainly clock cycle) of for the synthesis process.

Because the tools use heuristics to fullfil the requirements a little change in the model or
slightly different target clock cycle can result in a completely different bitstream after the
change. This makes debugging very hard, since errors may produce different effects depend-
ing on the actual bitstream. To avoid the place&route step after each change, there also exist
simulators for the models. But clearly the clock accurate similuation takes its time and some
errors are so delicate that they only show up in the on-chip execution and not in the simula-
tor. Recapitulating we can say that despite many tools the configuration design for fine grain
architectures is still very demanding and an art of its own.

The main option to accelerate the design and reduce the error-prone redevelopment of logic
circuits is the incorporation of higher abstraction levels into synthesis tools, which we also
exploited for our design. By using parametrised high level descriptions, we gain the possi-
bility to do detailed design space explorations. The design complexity is reduced by using
small abstract behavioral descriptions. By extensive hardware/software co-evaluation we add
validation of the synthesis results without leaving the abstraction level [Klupsch, 2001]. The
time saved is then used for selective optimization of critical design subcircuits.

We should mention that there exist compilers which translate C or certain dialects of it to
a HDL model [Frigo et al., 2001; Hammes et al., 1999]. The idea is to further increase the
abstraction level and this is particularly important for large designs. But these approaches must
necessarily omit some of the low level optimization options. Therefore, a two stage approach
is sometimes take, where the overall design is done in C but individual parts are modelled in
a HDL. This is similar to the inclusion of assembler code in HLL for a micro-processor. In

158

4.2 Reconfigurable Logic

our implementation we have not made use of this strategy, because the small FPGA forced
us rather in the opposite direction, coding the overall design in HDL and hand optimizing the
netlists and their placement for critical parts of the configuration.

4.2.2 Computations

The low level reconfigurability allows very high flexibility. Both in the design of an efficient
data-flow and computations the available resources can be used economically with the exact
amount needed.

4.2.2.1 Data-Flow

The global data on the cards is as follows. The software part uses the PCI bus to configure the
FPGA, load the input images to the SRAM of the card and retrieve the results after execution.
The flowware on the FPGA consist of the SRAM controller which generates and stores data
streams from the SRAM processed by the computational units. The configware defines the
configuration of these units.

Although we use a fairly small FPGA, there is still more parallelism available than could
be served by the SRAM bus. For problems with high computational intensity this is not
crucial, but image processing problems are rather memory intensive. So the guiding idea is
to efficiently utilize the available memory bandwidth by reading each pixel of an image only
once, and caching it on the chip for reuse [Benitez, 2003; Hammes et al., 2001]. If a 3 by
3 neighborhood is needed in a formula for example, one has to cache two lines on the chip
to avoid rereading of values from external memory. On newer FPGA dedicated RAM blocks
embedded in the chip can be used for this purpose. In our case where no RAM blocks are
available, we had to use some of the CLBs for local memory. By rule of thumb a CLB can be
used for storing of 32 bit. So the entire chip (3136 CLBs) can hold 100kb, but then we would
have no resources for the computations.

4.2.2.2 Operations

Since FPGA can be configured to execute any combination of boolean function it is clear
that they can implement any functionality. After all, micro-processors and other ASICs are
also implemented in this way and FPGAs are still used to simulate these designs. But for a
given application it would be a waste of resources to implement a standard processor design
and then solve the problem with this configured processor. The advantage of the low level
programmability of FPGA is namely the possibility to adapt the problem solver exactly to the
needs of the application. This includes the use of non-standard number formats, application
specific operations and pipelines.

159

4 Hardware Efficient Implementations

Table 4.4 Area consumption and latency of some operations in Reconfigurable Logic. The
variable Ba refers to the bitlength of the arguments, Bc to the bitlength of the results.

operation area latency

c0 = min/max(a0, a1) Ba + 1 2

c0 = a0 ± a1 2Ba Ba

c0 ± c1 = a0 ± a1 ± a2 2Ba 1

c0 = a0 · a1 ≈ Ba(Ba − 1) ≈ Ba log2 Ba

c0 =
√

a0 ≈ 2Bc(Bc − 5) ≈ Bc(Bc + 3)

An application specific number format can save a lot of resources. Table 4.4 lists the resources
and latencies of several operations. So a 16 bit multiplier consumes almost twice (1.87) the
number of resources as a 12 bit multiplier. But in spatial computing (Section 3.3.1.4 on
page 100) resource gains translate directly into performance, since two parallel 12 bit multi-
pliers could be implemented in almost the same area. Moreover, smaller number formats do
not imply losing precision in intermediate computations, since we can use variable precision
arithmetic. This means that intermediate results are resolved with as many bits as necessary
for the desired accuracy, e.g. in an addition c = a + b of numbers resolved in Ba, Bb bits the
result c should have Bc = max(Ba, Bb) + 1 bits to retain full precision. In a multiplication
c = a · b we would need Bc = Ba + Bb for full precision, but we can represent c with less bits
if this suffices for the envisioned accuracy in our application. In an iterative scheme it would
be unreasonable to increase the format size with each iteration, but we can maintain an error
free calculation throughout the pipeline and apply one of the rounding modes (Eq. 2.22 on
page 32) only at the very end.

There are many options for application specific commands with configurability at the bit level.
Something we usually do not encounter in software programs are redundant number represen-
tations. If many operations of the same kind have to take place, e.g.

∑N
i=1 ai, then computing

not uniquely defined ci such that
∑N

i=1 ai =
∑N−1

i=1 ci can be performed much faster than
c = aN + aN−1 (cf. Table 4.4). So for the whole sum the speedup is enourmous.

Finally, options for parallelism both in depth and in breadth (Section 3.2.2 on page 87) are
multitude on FPGAs. In pipelining, for example, one can introduce many pipeline stages
for even small computing units, because the atomic units (LUTs) are very fine. As a rule
of thumb, longer pipelines enable higher clock frequencies and thus more throughput (cf.
Section 3.2.1 on page 84). In the example of Figure 3.4 on page 86 one could divide the
adders and the multiplier in even faster clocking stages.

160

4.2 Reconfigurable Logic

4.2.3 Level-Set Segmentation

We implemented a solver for the level-set equation used for image segmentation on the FPGA
card described in Section 4.2.1.1 on page 156. The implemented model is exactly the same as
in Section 4.1.3 on page 127, where a graphics hardware implementation has been presented.
In particular, we encorporate only external forces for the movement of the interface.

Because image processing algorithms are so well suited for parallization and FPGAs have
become a mass market, literature on implementations in RL is extensive. For a comprehen-
sive overview of FPGAs based DSP applications including image and video processing we
refer to [Tessier and Burleson, 2001]. Related work on image segementation can be found in
[Demigny et al., 2000; Tian et al., 2003; Waldemark et al., 2000].

4.2.3.1 Implementation

The quantized upwind scheme for the level-set equation (Eq. 2.73 on page 57) reads:

Φ̄n+1
α = Φ̄n

α 	 ḡlin
α (D−Φ̄n, D+Φ̄n)(4.10)

glin
α (U, V) := (τn

h
F̄)+

α � ‖(Ū+
α , V̄ −

α)‖lin ⊕ (τn

h
F̄)−α � ‖(Ū−

α , V̄ +
α)‖lin

‖X‖lin := c� ‖X‖1 ⊕ (1− c)� ‖X‖∞

D+
α Φ̄n :=

(

Φ̄n
α+(0,1) 	 Φ̄n

α

Φ̄n
α+(1,0) 	 Φ̄n

α

)

D−
α Φ̄n :=

(

Φ̄n
α 	 Φ̄n

α−(0,1)

Φ̄n
α 	 Φ̄n

α−(1,0)

)

,

with the quantized operations {⊕,	,�} corresponding to their natural analogs {+,−, ·} (Sec-
tion 2.2.3.1 on page 36). The speed function F̄ is the discretization of

f(x) = c(x) + g1(p(x)) + g2(‖∇p(x)‖) ,(4.11)

which depends on the image intensities p(x) and its gradient modulus ‖∇p(x)‖. The functions
c, g1, g2 and their parameters are set by the user (cf. Section 2.1.2.1 on page 19). The initial
level-set Φ̄0 function is interactively generated by the user by specifying some points in the
image as the starting points of the level-set evolution (cf. Figure 4.4 on page 133).

In case of graphics hardware (Section 4.1.3.1 on page 128) we used the approximation of the
Euclidean norm, because there was no way of accurately evaluating this two dimensional non-
linear function in the GPU at that time. As discussed in Section 4.2.2.2 on page 159, in a FPGA
any function up to a given precision can be evaluated. Here, we apply the approximation
because of the comparably high resource demand of the Euclidean norm (cf. Table 4.4 on the
preceding page). The multiplications in the approximation on the other hand are very cheap if
we choose c = a

2n with a small nominator a. Since we deal with an approximation anyway, c
does not have to equal exactly one of the suggested choices (cf. Eq. 2.72 on page 56).

161

4 Hardware Efficient Implementations

Figure 4.24 The caching strategy for the level-set solver in Reconfigurable Logic. On the left
we see the required input data for an update unit which evaluates the scheme from Eq. 4.10 on
the page before and how caching of 2 image lines reduces the amount of input pixels to two
per clock cycle. On the right two update units work in parallel, which leaves the size of the
caches equal, but doubles the required input pixels to 4 and output pixels to 2.

Figure 4.25 The pipeline arrangement for the level-set solver in Reconfigurable Logic. On the
left the number of update units which evaluates the scheme from Eq. 4.10 on the preceding
page has been increased so far as to meet exactly the available bandwidth to the SRAM. More
parallelism can only be reached in depth which requires the duplication of both the caches and
the pixel update as can be seen on the right.

A good compromise between accuracy and performance was to use a 12 bit signed fixed point
number format for the data representations. In intermediate calculations variable precision
arithmetic ensures exact computation until the final result when Ūn+1

α is rounded and clamped
to the 12 bit format again. Because of this format reduction the synthesis tool even eliminates
some computations which influence bits which are irrelevant after the rounding. For this
to happen the correct tie breaking strategy among the nearest rounding modes (Eq. 2.22 on
page 32) must be chosen. The update unit, which executes the entire formula (Eq. 4.10 on
the preceding page), was automatically divided into several pipeline stages to find a good
compromise between area count and maximal attainable clock frequency.

In contrast to the DX7 GPUs (Section 4.1.3.1 on page 128), the FPGA offers so much paral-
lelism, that we must now focus on minimal data movement (Section 4.2.2.1 on page 159) to
ensure that several pixels can be processed in parallel. At each node α five Ūn values and one
(τn

h
F̄) value is needed for the computation of Ūn+1

α . If we cache two lines of the image than

162

4.2 Reconfigurable Logic

only one Ūn and one (τn

h
F̄) value are needed in each clock cycle. The other values can be

retrieved from the internal caches (see Figure 4.24 on the preceding page on the left). Because
the entire lines are cached, it suffices to read one more Ūn and (τn

h
F̄) value in the same clock

cyle to be able to feed all necessary values to a second update unit (Figure 4.24 on the facing
page on the right). This increases the IO demand to 4 pixels input and 2 output. But the 36 bit
SRAM bus can transport only three 12 bit values per clock cycle. The solution is to run two
different clock frequencies on the FPGA. The SRAM controller which performs the reads and
writes to the external SRAM memory has a unit which operates at 66MHz, and thus can fulfill
the IO demand of 6 pixels for the two update units running at 33MHz. The double clocked
logic operates extremely close to the theoretic limit of the SRAM bus and had to be placed
manually to ensure short paths which allow this high clock frequency.

More parallelism in breadth was not possible since it would further increase the IO demand,
which already operated at its very limit. But after the implementation of the two update units
and the cache we had a pipeline (Figure 4.25 on the preceding page on the left) which left many
CLBs unused. In such cases when the bandwidth is restricted but computational resources are
still available, parallelism in depth can be applied. In our case this meant duplicating the cache
and update unit logic and using it for a second iteration (Figure 4.25 on the facing page on the
right). This filled the FPGA to over 80% and it exhausted the routing capabilities so no futher
parallelization was possible (Figure 4.26 on the next page). For a larger FPGA this process of
appending dublicated logic could be continued much longer, which nicely demonstrates how
the spatial computing approach directly gains performance from a larger spatial computing
domain.

4.2.3.2 Results

Figures 4.27 and 4.28 on page 165 present example segmentations computed with the FPGA.
With the two update units delivering an output pixel in each clock cycle in parallel at 33Mhz
we have a throughput of 66Mpixel/s. Because we compute two iterations in one go this equiv-
alents a throughput of 132Mpixel/s per iteration. Thus we can perform approximately 2000
iterations per second on a 2562 image, or equivalently one iteration takes 0.5ms. This is eight
times faster than the fragment blending based implementation in graphics hardware, although
the throughput of the graphics pipeline for an individual operation was 1000 Mpixel/s (Sec-
tion 4.1.3.2 on page 130).

The advantage of the FPGA pipeline is, that it does much more work, namely obtain two
solution pixels, in each clock cycle. The GPU used only one operation per pass and moreover
it had to read back the result before processing it again. On DX9 GPU one could also encode
the whole update formula in a single configuration for the FP. But the FP is a hardwired
unit, so that the advantage of the long pipeline could still not be realized. Instead, the several
pipelines would attack the problem in breadth. But on modern FPGA there would be also
much more space for parallelization, so that the performance crown would most likely be still
with the Reconfigurable Logic (RL) implementation.

163

4 Hardware Efficient Implementations

Figure 4.26 Final layout of the level-set solver in the FPGA. The term ’Pixel Engine’ in the
legend refers to the composition of 2 pixel update units and 2 cache lines for the Φ̄ values (cf.
Figure 4.25 on page 162). We see that after the heuristic place&route step there is only little
spatial coherency left in the functional units. On the small scale no correspondence between
individual operations of the algorithm like additions and mulitplications and the CLBs can
be found, because these operations may spread and mix arbitrarly across the lookup table
functionality of several CLBs. Debugging at this level is almost impossible and must take
place in the simulator or through the output of control values.

Figure 4.27 Segmentation result computed in a FPGA.

164

4.3 Reconfigurable Computing

Figure 4.28 Segmentation of tumors computed in a FPGA.

4.3 Reconfigurable Computing

Reconfigurable Computing (RC) concepts and architectures have experienced a rapid evolu-
tion since the mid 1990s. While [Hartenstein, 2001] offers an excellent survey of this develop-
ment, we refer back to Sections 3.2.4 on page 93, 3.3.1.5 on page 102 for a short introduction.
But while GPUs and FPGAs have become a mass market, RC machines are still at the be-
ginning of the exponential grow. Typical for this stage of development is the huge variety of
competing designs with little standardization among them. Companies working in this field

165

4 Hardware Efficient Implementations

are often only several year old start-ups which evolved directly from research activities at
universities, e.g. [Elixent; IPflex; PACT; picoChip; QuickSilver]. These companies basically
do not produce chips themselves but offer to synthesize a chip design for fabrication, or li-
cence IP-cores. To evaluate the chip’s properties before fabrication one uses clock cycle exact
chip simulators. We thank PACT [PACT] for providing a 3 months free research license for
a simulator of their XPP architecture in 2002. In the following we describe the architecture
and its utilization for the implementation of basic image processing building blocks and the
non-linear diffusion scheme.

4.3.1 eXtreme Processing Platform

The eXtreme Processing Platform (XPP) has been presented in [Baumgarte et al., 2001] as a
hardware prototoype and was acknowledged as the fastest 32 bit integer processor at this time.
Meanwhile a slightly different internal structure is preferred, but the key features remained the
same. We sketch the layout of the device, its programming model and tools. The presentation
of the architecture in this section is based on the documentation of XPP provided by PACT.
For further details we refer to the company’s web site [PACT].

4.3.1.1 Technology

Figure 4.29 on the next page shows a diagram of the XPP architecture. It is a regular array
made up of IO elements and a Configuration Manager (CM) and PAEs, i.e. Arithmetic and
Logic Units (ALUs) and RAM elements. Between rows of PAEs there are horizontal data
and event lines which can be configured to conect to the PAEs in the row below and above.
Vertical connections are peformed by FREGs and BREGs. Each PAE consists namely of three
parts: a FREG, a BREG, and a main part which is an Arithmetic and Logic Unit (ALU) or a
Random Access Memory (RAM) block (Figure 4.30 on the facing page). Data lines have a
typical word width of several bytes, while event lines carry just a few bits.

So the internal structure is similar to a FPGA (cf. Section 3.2.4 on page 93), but the recon-
figurability resides on a coarser level. It has the advantage that the hardwired ALUs operate
on data words more efficiently, that configurations are much smaller allowing fast dynamic
reconfigurability, and that the overall design and debugging are more transparent and less
complicated. On the other hand the coarse grain functionality loses the low level flexibility of
the available resources: the data width is fixed wasting resources for smaller number formats,
pipelining (cf. Section 3.2.1 on page 84) must be performed on coarser elements, computa-
tional resources cannot serve as memory, applications specific commands are not available
and we have the same design clock for the whole chip. But the great efficiency of massive
parallelism in depth and in breadth (Section 3.2.2 on page 87) and the flexibility to exchange
resources between these different types of parallelism remains.

In the simulator one can change the arrangement of the array and the different parameters like
number and functionality of ALUs, RAMs, IOs or number and width of data and event lines.

166

4.3 Reconfigurable Computing

Figure 4.29 Diagram of the XPP architecture, courtesy of PACT [PACT]. We see one possible
arrangement with two types of Processing Array Elements (PAEs): Arithmetic and Logic
Units (ALUs) and RAM blocks.

Figure 4.30 Processing Array Elements of the XPP, courtesy of PACT [PACT]. Both types
have a Forward Register (FREG) and a Backward Register (BREG) which are used for ver-
tical routing and minor computations. The central parts offer either arithmetic and boolean
functions (ALU) or a block of memory (RAM).

167

4 Hardware Efficient Implementations

In a fabricated chip this is not possible, so we worked with a fixed layout in the simulator,
which has later been made available in a chip XPP64-A1 [PACT]. The layout consists of an
8x8 array of ALU PAEs with 8 RAM PAEs and two IO elements on the left and right. The
data width is 24 bit, event lines carry 1 bit. The routing capacities are set to 8 horizontal data
and 6 event lines in each direction and 4 vertical data and event register routings in each FREG
and BREG.

The size of the RAM blocks is 29 words. The RAM and ALU PAEs occupy the same area,
so the relatively small memory size examplifies how cheap computational resources are in
comparison to internal memory. The design of stream processors (Section 3.2.4 on page 93)
also relies on this fact [Khailany et al., 2003]. We obtain an architecture with a lot of com-
putational power, but because of its multiple IO elements, the XPP can also deal well with
memory intensive problems of smaller computational intensity.

Now, we look at the individual components in more detail.

• Processing Array Element (PAE) (Figure 4.30 on the page before)

– ALU
The ALU can perform arithmetic and boolean operations like addition, multipli-
cation, shifts, boolean AND/OR, comparisons, max/min. The operations come
in at least two versions, assuming either signed or unsigned integers as operands.
This means that there is no explicit number format, one rather decides for each
configuration how to interpret the data lines.

– RAM
The memory can be read and written to by specifying an address and the input
word. Additionaly a First In First Out (FIFO) mode is available, which is particu-
larly useful for caching and delaying of a data stream.

– FREG
Besides vertical routing capabilities, FREGs can also execute conditional counters,
assignments or discards triggered by event signals. This is very important for
generating, merging and eliminating of data elements in streams.

– BREG
BREGs provide vertical routing channels and can also be used for data addition,
shifts and a lookup table for events.

Each of the above operations performs in one clock cycle, only the BREGs can operate
and route data through without a logic delay. It should be noted that the functionality of
an ALU PAE is very similar to the functionality of the PEs in the Fragment Processor
(FP) of DX9 GPUs (Section 4.1.2.3 on page 124). Here, we only miss the special units
which perform the reciprocal and trigonometric computations which make more sense
for the floating point format in GPUs. With 128 floating point operations per clock
cycle in the FP in the newest GPUs(DX9+), they have also reached a similar level of
parallelism. The maximum number of operations in a 8x8 ALU arrangement of the

168

4.3 Reconfigurable Computing

XPP is namely 64 multiplications (ALUs) and 64 additions (BREGs). The XPP has
the advantage of programmble routing between the PE, but this in turn complicates the
programming model.

• Input/Output (IO)
Similar to the internal RAM, the IO elements, which communicate with the external
memory, can be either used in a random access mode by providing a memory addresses
or a streaming mode with continuous in- or out-flow of data. From our detailed dis-
cussion of memory access (Section 3.1 on page 71) and the many delays associated
with it, it is clear that these operation do not have a latency of one clock cycle. But in
the streaming mode we can obtain a very high sustained bandwidth (Section 3.1.1.2 on
page 76), ideally producing only one initial latency. For the random access mode this
is more difficult, but the DSB computing paradigm allows for more flexibility in hiding
the incurred latencies. Although the memory will be accessed with random addresses,
they usually can be generated well in advance of the actual processing of the data, so
that the latency is hidden by the ongoing computation.

• Configuration Manager (CM)
The CM can be triggered by event lines to select and load a new configuration for the
array, i.e. the array is capable of self-reconfiguration, but the configurations themselves
are static and must have been specified in advance. One of the great advantages of the
XPP architecture is its dynamic reconfigurability, i.e. the ability to use each PAE im-
mediately after its configuration. This means that during the configuration of a problem
solver, the PAEs already work on the solution, although the configuration is not finished
yet. In particular when changing configurations this feature hides most of the latencies
incurred by the configuration process. The XPP supports even differential reconfigura-
bility, i.e. to achieve a faster reconfiguration only the difference to the current state must
be specified, e.g. the constant coefficient of a filter.

The reason why the dynamic reconfigurability works without losing any data, e.g. when the
data stream reaches a PAE which has not been configured yet, is the automatic packet handling
with self-synchronizing PAEs. Data words and event signals are sent as one packet per clock
cycle and internal protocols ensure that no packets are lost. A self-synchronizing PAE executes
its configured operation only if all input data and event packets required for that operation are
available, otherwise it waits for the necessary packets to arrive. This makes programming
and debugging of configurations much easier since data is never lost unintentianally and the
morphware never executes on undefined data. Overall, we identify the following main virtues
of the XPP architecture:

• Massive parallelism.
• Dynamic self-reconfigurability.
• Self-synchronization of data packets

We use only one array for our implementations. But the architecture also scales well and
designs with several processing arrays controlled by a hierarchy of CMs are possible. In fact,
the first presented prototype [Baumgarte et al., 2001] was an arrangement of two 8x8 arrays.

169

4 Hardware Efficient Implementations

Figure 4.31 Visual representation of the XPP configuration from Listing 4.3 on the facing
page by a screenshot of the xmap tool. The left column contains the IO elements, the midlle
the RAM PAE and the right the ALU PAE. For this example a tiny XPP array has been defined,
usually 6 rows lie between the upper left and the lower left IO element.
The configuration implements a linear interpolation a + µ(b − a). For this purpose the input
slots of the IO elements (a in, b in, mu in) are appropriately connected to the slots of
the subtracter (l.sub), multiplier (l.mul) and adder (l.add). Finally, the output slot of
the adder is attached to the output slot of an IO element (r out).

4.3.1.2 Programming

The NML, a type of structural Hardware Description Language (HDL), is used to write config-
urations for the XPP. It specifies the configware (Table 3.2 on page 85) and may also specify
the flowware for the problem, depending on the mode in which the IO elements are used. In
the stream mode the data stream assembly and storing must be performed by a data sequencer
outside of the chip. In the random access mode, one has to configure several PAEs as address
generators within the array to perform the task of the data sequencer.

A configuration of a PAE in NML is given by the operations to be executed and the connections
of the inputs and outputs to constants, other PAEs or the IO elements (see Figure 4.31 and
Listing 4.3 on the next page). Because of the lossless packet handling, a set of correctly
connected and configured PAEs will deliver the correct result for the overall computation
irrelevant of the actual timings of the operations. So a formula needs only to be split into
operations which can be executed on the PAEs, e.g. a + µ(b − a) needs two BREGs (SUB,
ADD) and one ALU (MUL) connected as ADD(a, MUL(µ, SUB(b,a))). The first operand
a arrives very quickly at the input of the ADD BREG, but the self-synchronization gurantees
that it does not execute the addition before the result from the multiplication arrives. In a un-
synchronized circuit the addition would execute in each clock cycle and thus combine a with

170

4.3 Reconfigurable Computing

Listing 4.3 Example configuration of the XPP in the Native Mapping Language (NML). The
configuration implements a linear interpolation a + µ(b − a), see Figure 4.31 on the preced-
ing page for a visualization of this configuration. NML keywords are printed in bold, italic
emphasizes the predefined names of the input and output slots, e.g. line 11 connects the first
input slot of the multiplier (A) to the first result slot of the subtracter (X).
Lines 1-19 only define the LERP module, the actual object instances and their placement
(@$x,$y) is given in the module main. Lines 23-28 set the names of input and output lines to
the IO elements, lines 30-34 connect these to the slots of an instance of the LERP module. Be-
cause only object functionality, connections and placement are specified, this is not a temporal
but a spatial programming model, where the order of the statements bears no meaning.

1 MODULE LERP(DIN a , b , mu , DOUT X) / / l i n e a r i n t e r p o l a t i o n
2 {
3 X= add . X / / module o u t p u t
4
5 OBJ sub : BREG SUB @ 0 , 0 { / / s u b t r a c t e r b−a
6 A= b
7 B= a
8 }
9

1 0 OBJ mul : MUL @ 1 , 0 { / / m u l t i p l i e r mu(b−a)
1 1 A= sub . X
1 2 B= mu
1 3 }
14
1 5 OBJ add : BREG ADD @ 1 , 0 { / / a d d e r a+mu(b−a)
1 6 A= mul . Y
1 7 B= a
1 8 }
1 9 }
20
2 1 MODULE main
2 2 {
2 3 OBJ a i n : DIN0 @ $0 , $1 / / a s t r e a m i n
2 4 OBJ b i n : DIN1 @ $0 , $1 / / b s t r e a m i n
2 5 OBJ mu in : DIN0 @ $0 , $0 / / mu s t r e a m i n
2 6 OBJ r o u t : DOUT1 @ $0 , $0 { / / r s t r e a m o u t
2 7 IN = l . X
2 8 }
29
3 0 OBJ l : LERP @ $1 , $1 { / / module i n s t a n c e
3 1 a = a i n .OUT
3 2 b = b i n .OUT
3 3 mu= mu in . OUT
3 4 }
3 5 }

171

4 Hardware Efficient Implementations

some undefined value and later the multiplication result with some other undefined value. In
un-synchronized circuits the timings of the operations are therefore crucial to its functionality
and only a careful placement of delays delivers the correct result (cf. Figure 3.4 on page 86).
For the XPP this is not necessary, but an automatic or hand-made data path balancing with
delays should also be applied in a second step to maximize the throughput of the design.

If different configurations have been specified, we need one additional source file which tells
the CM which of them should be configured at start up, which will follow or may be selected
by event signals from within the array.

Although far less details have to be specified in NML than in a typical HDL for FPGAs, it
is still a very low level language. PACT envisions a development environment in which a
standard HLL like C is splitted automatically into sequences of well vectorizable code which
are translated into XPP configurations and inherently sequential code. In a CSoC both the
processing array and a ISB processor reside. The processor executes the sequential code and
selects the configurations for the array, which perfroms the computationally demanding parts
of the code. First steps in this directions have been undertaken [Becker et al., 2003; Cardoso
and Weinhardt, 2002]. There is a growing demand for such flexibe CSoCs [Becker, 2002], but
it is known from similar approaches in Reconfigurable Logic (RL) that an automatic extraction
and parallization of code from a sequential language is very difficult and a naive approach
often results in bad resource utilization. Our implementations were coded directly in NML to
exploit the full processing power of the relatively few PAEs.

The NML programmer is supported by the XPP development suite (XDS), which consists
of three programs: xmap, xsim, xvis. The first maps NML onto the array, i.e. places
the PAE configurations and routes the inputs and outputs. The second simulates the entire
execution in a clock accurate manner. The third visualizes the computation process. Unlike
a FPGA, where finding an error by observing the computation on thousands of lookup tables
(LUTs) is quite impossible, here the visual presentation allows to trace individual data packets
through the array and thus hopefully identify the error. Also the development cycle which
runs through these three steps is much shorter than for FPGAs, where the place&route step
easily consumes hours after each modification. The only problem when working with XDS,
which also applies to other hardware simulation tools, is that the simulator requires a lot of
time for the clock cycle exact modifications of all states in the XPP. So tests could only be
run on very small data sets and not entire images. The simulation also does not cover all
aspects of an implementation, since the processing with the XPP usually depends on external
memory access. But the now available PCI board including the XPP64-A1, SRAM memory
and a micro-controller offers a fully realistic development environment.

4.3.2 Computations

We discuss the data-flow for image processing and some computational aspects of the archi-
tecture. The coarse grain architecture offers many advantages but also some restriction in
comparison to fine grain FPGAs (Section 4.2.2 on page 159).

172

4.3 Reconfigurable Computing

4.3.2.1 Data-Flow

In general the data-flow is very similar to the FPGA setting in Section 4.2.2.1 on page 159.
But unlike the FPGA case where we can also trade computational resources for local memory,
here we must deal with a predefined ratio of ALUs to RAMs. The guiding idea is again to
efficiently utilize the available memory bandwidth and all computing resources of the device,
since bandwidth shortage is often the bottleneck (cf. Section 3.1 on page 71) and spatial
computing translates for reconfigurable architectures directly into performance gains (Sec-
tion 3.3.1.4 on page 100).

Because of the two dimensional arrangement of the PAEs with the RAMs in the side columns
we can have a quadratic stencil of PAEs operate on a corrsponding quad in the image. Fig-
ure 4.32 on the next page shows a 3x3 filter arranged in this way. The simple example gives
a very good idea of how the local data-flow in image processing is usually set up. The spatial
arrangement of the ALUs corresponds to a local neighborhood in the image and the RAM el-
ements serve as line caches for maximal data reuse. More complex schemes operate similarly
adding the simultaneous proceessing of several streams and their interference.

These local data-flow structures are simpler to achieve on the XPP as on FPGAs, because
the configuration of the RAM block requires only a few lines to use it as a FIFO with a
specified delay. Also, there is a clear correspondence between the arithemtic operations and
their functional units on the chip. Moreover, the configuration is more flexible, because with
differential reconfigurability one can, for example, quickly change the constant weights for
the multipliers. For a fully adaptive filter the weights have to change constantly, which can be
achieved by defining the coefficients of the multipliers with previous computation results (see
Section 4.3.3.1 on page 176).

The global data-flow is governed by the data sequencer which assembles and writes the data
streams from and to external memory. From the description of the local data-flow in gather
operations above, it is clear that the larger the image and the stencil on which we operate,
the more local memory is needed for the caching. If the local memory suffices then we may
stream the entire image at once and no explicit address generation is required. But if the
local memory is too small we must split the image into smaller tiles and process these tiles
individually. Unless a host processor organizes the data stream in a tile order, we need to
invest some of the PAEs for the generation of the appropriate addresses in the array. These
address generators are mainly counters which have to resolve different cases concerning the
interior borders between tiles and the exterior border of the entire image. Because boundary
conditions for the image domain can be realized by duplicating border pixels, it is often more
convenient to generate these ghost cells with the address generator than to disturb the regular
structure of the parallel computation with conditional statements. However, internal address
generators should only be applied if memory bandwidth is not the limiting factor, because
the IO elements have a doubled bandwidth in the stream mode in comparison to the random
access mode.

173

4 Hardware Efficient Implementations

Figure 4.32 Implementation of a general 3x3 filter in the XPP. A screenshot of the xmap
tool after routing and placement with added information is shown. The filter is applied by
processing an image as a stream of pixels in row order. The pixel stream enters with the upper
line from right. The bold numbers give the order in which the stream traverses the functional
units. The multipliers MUL which apply the weights to the pixels are arranged in the same
way as the 3x3 quad in the image they operate on. The light italic numbers give the order by
which the result stream as the sum of the multiplications is generated. It is ouput by the lower
line to the right. Because of the fully pipelined arrangement with local FIFOs caches, in each
clock cycle one input pixel enters and one result pixel leaves this configuration.
The pixel values are shifted in the begining (SHIFT 0), such that the integer multiplications
correspond to the desired fixed point number format. Subsequently the pixels traverse the
multipliers of the first row (MUL 1-3) and then are cached in the FIFO (4). The delay in
the cache is such that, when the pixel leaves the cache and is processed by MUL (5), the
result of the multiplication is added by ADD (3) to the partial sum (coming from ADD 2)
of the corresponding weighted pixels from the image line above. After passing the second
row of multipliers (MUL 5-7) the pixel stream is delayed again in the same manner. So for
any multiplier and adjecent adder the pixel and result streams are synchronized, so that the
weighted sum of the 3x3 neighborhood is accumulated one by one. Before being output, the
final result is shifted back to the original format (SHIFT 9).
The extension to larger filters operating in the same fashion is obvious. Here in each clock
cycle 9 multiplications and additions are performed, but only one pixel is read, minimizing
the required memory bandwidth. The numbers apply to a general filter, a seperable filter
performs the horizontal and vertical calculation separately, requiring only 6 multiplications
and 4 additions.

174

4.3 Reconfigurable Computing

4.3.2.2 Operations

The available operations in the individual components of the XPP have already been discussed
in Section 4.3.1.1 on page 166. All operations compute on intergers of a fixed width. The ALU
PAE has two inputs and outputs. The two ouputs allow to deliver the exact result of a multi-
plication, i.e. a high and a low word, and together with inclusion of carry over functionality in
the addition it could also be used to support wider data formats.

To obtain a fixed point number format from the integers, we have to shift the numbers appro-
priately. For linear computations this is ideally done at the entrance of the data stream only
once for each element (cf. Figure 4.32 on the facing page). Whether the operands in opera-
tions are treated as signed or unsigned integers is determined by the choice of the operation at
the ALU. So with the 24 bit integer format we have a signed fixed point format of the same
size as the mantissa plus sign of the s23e8 floating point format used in DX9 /+ graphics hard-
ware. In general the missing exponent is not crucial becomes we have designed the numerical
schemes to operate on similar number scales.

But without floating point numbers ALUs non-linear functions cannot be represented accu-
rately on the XPP. The RAM blocks can be used as very quick LUTs, but they allow only 9
address bits. A masking mechanism can be used to catenate several RAM blocks to a comon
LUTs, but even all of them would result in just 13 bit precision. GPUs do not offer 24 bit wide
LUTs either, but their predefined non-linear functions like reciprocal, power and trigonomet-
ric functions can represent the results accurately in the floating point format. The 8 bit precise
addressing of a LUT in the XPP is not that bad for one dimensional non-linear functions, since
one can improve the accuracy by linear interpolation, but for two and more dimensional func-
tions, e.g. for vector normalization (cf. Eq. 4.8 on page 135), one would have to use a LUT
in external memory. After all GPUs do exactly this in dependent texture accesses. In a FPGA
one could encode a LUT of exactly the required minimal precision, but for two and more di-
mensions this would still consume too many resources and again external memory would have
to be used.

So if floating point operations are important for the envisioned application area, it makes sense
it include corresponding hardwired ALUs into the chip. In case of the XPP one could simply
replace the fixed point PAEs by floating point PAEs. But such a decision would have to be
made before chip fabrication.

4.3.3 Non-Linear Diffusion

We configured the XPP with a semi-implicit solver for the non-linear diffusion model for
image denoising. The model is the same as in Section 4.1.4 on page 132, where a graphics
hardware implementation has been presented, but here we restrict ourselves to the isotropic
non-linear diffusion case.

The company site [PACT] presents some examples of basic signal and image filters, but be-
cause the architecture is fairly new and has been made available in hardware only recently

175

4 Hardware Efficient Implementations

implemenations for it are still sparse. An overview of other Reconfigurable Computing (RC)
devices used for Digital Signal Processing (DSP) and in particular image processing can be
found in [Sueyoshi and Iida, 2002].

4.3.3.1 Implementation

We use the semi-implicit scheme

A′+(Ūn
σ) · Ūn+1 = Ūn(4.12)

A′+(Ūn
σ) := 11 +

τn

h2
L′[Ūn

σ] ,

and apply a quantized version of the Jacobi solver (Eq. 2.39 on page 45) to solve the linear
equation system

F (X̄ l) = D′−1(R̄− (A′+ −D′)X̄ l), D′:= diag(A′+)

=
(
11 + τn

h2 L′
D

)−1 (
R̄− τn

h2 (L′ − L′
D)X̄ l

)
, L′

D:= diag(L′) .
(4.13)

The prime indicates that we deal with the isotropic non-linear diffusion in contrast to the
anisotropic diffusion model (see Eq. 2.1 on page 16). The matrix assembly is simpler in
this case. The components of the stiffness matrix L′[Ūn

σ]αβ are given as a weighted sum of
integrations over the elements adjecent to the current node (cf. Figure 2.1 on page 27):

L′[Ūn
σ]αβ =

∑

E∈E(α)

G′n
E S ′αβ

E(4.14)

G′n
E := g̃(∇Un

σ (mE))

S ′αβ
E := (∇Φα,∇Φβ)|E .

where G′n
E are the element weights and S ′αβ

E pre-integrated constants depending on the Finite
Element (FE) basis functions, they evaluate to

S ′αβ
E =

+2
3

if α = β

−1
3

if |α− β| = (1, 1)

−1
6

if |α− β| = (1, 0)

−1
6

if |α− β| = (0, 1)

0 else

.

Obviously, this gives a simpler matrix assembly than the general explicit formula in the
anisotropic case (Eq. 2.45 on page 46).

The XPP makes it feasible to run an implicit solver, which avoids the time-step restrictions
of the explicit schemes, because we have a higher internal precision (24 bit) and dynamic
reconfigurability. Fast reconfigurability is important, because the implicit scheme requires

176

4.3 Reconfigurable Computing

Figure 4.33 Configurations for the non-linear diffusion solver in the XPP architecture. On
the left we see the pre-calculation of weights, on the right the linear equation solver for the
implicit scheme. The second configuration can execute several times by exchanging the role
of input and output elements on the right side of the XPP. Partial reconfigurability allows both
configurations to share the large Jacobi solver arrangement and thus reduce the configuration
overhead.

two different configurations (see Figure 2.3 on page 64 and Algorithm 4.3 on page 137). The
first configuration performs the mollification of the gradient ∇U n

σ with a linear diffusion and
then computes the weights G′n

E for each element. The second configuration executes several
iterations of the Jacobi solver (Eq. 4.13 on the preceding page). To minimize the switching
between the configuration the Jacobi solver block can be used for both the main linear equation
solver and the mollification. Only the connection to the appropriate weights must be changed
(Figure 4.33).

The first configuration takes Ū as input and computes G′n
E := g̃(∇Un

σ (mE)) as output. The
mollification uses the Jacobi solver with equal weights for each element. The non-linear func-
tion g̃ is evaluated with a lookup table implemented in a RAM PAE. The RAM elements can
hold 29 different values, so that the evaluation of g̃ cannot take place with full precision. To
reduce the resource requirements in the second configuration, we also precompute the inverse
factors

(
11 + τn

h2 L′
D

)−1

α
with a lookup table and store them together with the weights in one

word, i.e. with a resolution of 12 bit each. The values have to share one word, because there
are not enough RAM elements for the necessary caching in the following configuration.

In the second step, the configuration of the Jacobi solver remains the same, only the weights
are not constant any more, but based on the results from the previous configuration. In the
implementation we connect the coefficients of the general 3 by 3 filter from Figure 4.32 on
page 174 to the matrix components resulting from Eq. 4.14 on the facing page. The available
computing resources are exploited by a parallelism in depth approach, i.e. each configurations
performs 4 Jacobi steps in a pipelined fashion by utilizing the RAM PAEs for the caching
of the resulting intermediate image lines. As the diffusion process on linear FEs involves
three lines for the local computation (see Figure 2.1 on page 27) two lines must be cached in
each iteration step. The 8 RAM PAEs on the right side of the array serve this purpose (cf.
Figure 4.29 on page 167). Besides the caching of the intermediate iteration vectors X̄ l we

177

4 Hardware Efficient Implementations

must also cache Ū , which serves as the right hand side in the equation, and the weigth factors.
This is done by the RAM elements on the left side of the array. Because of the restricted
number of these elements, for a high number of pipelined iterations, we must pack the weight
and inverse factors into one word.

The second configuration is run several times until the residual error becomes sufficiently
small. In contrast to graphics hardware which mainly applies hardwired parallelism in breadth
on separate pipelines and thus cannot easily incorparate a global associative operation on all
values of an image into the hardware, a single PAE suffices here to compute the 2-norm of
the residual. A similar PAE could also be used to compute the mass defect after the iterations
and dither this defect uniformly back into the solution (Eq. 2.52 on page 49) to preserve the
overall mass exactly. This would require a long precomputed random list of positions for the
image and some more ALU resources for the application of the dither. From a practical point
of view this is not really necessary since the higher internal precision (24 bit) keeps the mass
defect low.

The implicit scheme now allows to specify larger time-steps, but this choice also effects the
accuracy of the computation. If we increase τn

h2 in Eq. 4.13 on page 176 significantly, then
our fixed-point number format must have many positions before the comma, and we will lose
many significant digits in the representation of R̄. This is not a problem of the fixed-point
format, but a general problem of fixed precision number formats. A floating point format
could retain the precision in the representation of both addends, but during the addition the
same digits would be lost. So a larger time-step width simply requires a larger number format
if we do not want to lose significant information in the process. In practice, this means that the
time-step width in implicit schemes becomes restricted by the size of the used number format.
For low precison number formats the restrictions for the implicit schemes are almost as severe
as for the explicit ones and thus the implict formulation becomes less useful. Therefore, we
have favored the explicit schemes for the 8 bit formats in graphics hardware, but here the use
of the implicit schemes makes sense.

4.3.3.2 Results

Since the clock cycle exact hardware simulation consumes too much time we could not gener-
ate results on entire images with the XPP development suite, but only check the functionality
of individual compentents with small data sets. Instead, we present results computed with a
self-made C-simulation, which performs the individual steps of the algorithm with exactly the
same precision as in the XPP. Figure 4.34 on the next page presents some results.

The advantage of the clock cycle exact simulation is a reliable estimate on the throughput of
the whole design. The four iterations of the Jacobi solver operate in a fully pipelined fashion,
so that after an initial latency we obtain one result pixel in each clock cycle. Assuming a
clock frequency of 40MHz (the frequency of the now available hardware development board
from PACT) this amounts to more than 2400 Jacobi iterations per second on a 2562 image or
equivalently one iteration takes approx. 0.41ms.

178

4.3 Reconfigurable Computing

Figure 4.34 Non-linear diffusion as configured on the XPP architecture. The actual compu-
tation was performed by a simulator. The result of the second, fourth and fifth time-step is
shown. The mollification performed 4 and the implicit solver 8 iterations for each time-step.

It is worth to note that these values are very similar to the performance of the level-set solver
on the FPGA (Section 4.2.3.2 on page 163). The difference stems only from the slightly
different clock frequency, since both designs apply a similarly pipelined arrangement with a
four-fold parallelization of the computation. Although the XPP has approx. 3 times more
transistors, the coarse grain appoach is more efficient, since the Jacobi solver requires more
operations in each step than the level-set scheme and the XPP computes everything in a twice
as wide number format. In comparison to the GeForce3 GPU (8ms for an explicit anisotropic
time-step see Section 4.1.4.2 on page 136), which has approximately the same number of
transistors but a much higher clock frequency, the XPP does very well, because in each step it
can devote almost all of its computing resource to the current task in parallel, while only some
of the hardwired PEs could be utilized on the GPU in each intermediate step. This handicap
has been greatly reduced in the current DX9 graphics hardware.

A configuration of the XPP with 4 steps for the mollification and 8 steps for the weighted
solver could run 5 time-steps (as in Figure 4.34) in real-time (40Hz) on 2562 images. Certainly,
we need to substract the times for the changing of the configurations and the intial latencies
in the begining of each iteration, but these times range in the order of 103 − 104 cycles and
thus would account for at most 10% slowdown. Moreover, the frequency of 40MHz on the
hardware development board is fairly low and dedicated image processing solutions based on
the XPP could be clocked much higher.

179

4 Hardware Efficient Implementations

4.4 Comparison of Architectures

There are many competing aspects associated with a choice of hardware architecture, e.g.
performance, flexibility, design effort, power consumption, costs. For each of theses aspects
there are ideal architectures and the optimization between any two of them can still be handled
to a certain extent, but in practice we always want more of them at once. In Section 3.3 on
page 97 we have discussed several architectures on a high level with a focus on DSP and in
particular image processing. We now continue the discussion refering to the experience with
the different implementations.

4.4.1 Instruction- and Data-Stream-Based Architectures

For the implementations we have used data-stream-based (DSB) architectures exclusively.
Chapter 3 motivates this choice in detail. It elaborates on the memory gap problem, which
hits instruction-stream-based (ISB) architectures stronger (Section 3.2.3 on page 92), and
discusses the advantages of spatial computing over temporal computing (Section 3.3.1.4 on
page 100). It is legitimate to ask what is the price for the increased performance.

One of key points of DSB architectures is that they require us to disclose more information
about the internal structure of the problem. A software program for a ISB processor contains
actually very little information about the nature of the problem. From the viewpoint of the
processor it is a long inflowing stream of instructions of which it sees only very little ahead.
Jump commands can make the stream change rapidly, but despite the short visibility of these
events we expect the processor to keep up the pace. The only chance to do this is to speculate
on the jump destination and continue the computation in this direction. It is a bit like driving
on a densly befogged road and trying to guess which bend comes next. If the guess is wrong
one has to brake harshly and re-accelerate again. Naturally, one could go much faster if one
saw more of the road ahead. The very fact that the processor has to make guesses about our
code reveals how little information we have provided to support a fast execution.

DSB architectures already require us to divulge separate information about the assembly of
data streams in form of flowware (the road ahead) and the configuration of the processing
elements (PEs) in form of configware (the engine setup). This distinction is inherent to
DSB processing even if the different sources execute on the same device (Sections 4.2.1.2 on
page 158 and 4.3.1.2 on page 170), because the inability to provide timely insight into the
assembly of data streams (bad road visability) and insufficient computing power of the PEs
(weak engine) are independent limiters of performance. Being forced into a dual programming
model, one is constantly aware of the importance of balancing the different demands. This fur-
ther structuring of the problem solver requires an additional design effort by the programmer.
But it is reasonable to expect that the programmer has a better overview of the program and
the required structuring than the PEs which are concerned with the low-level execution.

There is a continuous trade-off between the grade of problem structuring and obtained perfor-
mance. The concept of spatial computing marks another major step on this scale. The GPU

180

4.4 Comparison of Architectures

which still applies temporal computing differs from the FPGA and XPP in this respect (see
Section 4.4.2). By defining the execution in the spatial domain one reveals much more about
the number of required resources, their communication and the frequency of configuration
changes. The reward is a highly flexible parallelism and a higher resource utilization, but the
design effort also increments.

Going further down into smaller PE structures and the explicit synchronization and pipelining
of elements, one can further increase performance. But the general concepts of efficient data
stream generation and spatial computing already gain the principle advantages. In terms of
code reuse and flexiblity it is also not advisable to resolve each problem into low-level struc-
tures explicitely. This can be done to some extent by compilers. In fact, the lack of tools which
could translate code from a high abstraction level, adhering only to the main DSB concepts
of efficient configurations, hinders the faster spreading of DSB architectures. The abstraction
entry point seems still to low for many developers. On the other hand, the entry point of
standard software High Level Languages (HLLs) is so high and conveys so little information
about the problem structure in explicit terms, that attempts to use it as a source for efficient
configuration of DSB architectures depend on auxiliary directives in the HLLs. New, DSB
oriented HLLs will hopefully fill in this gap in the long run.

4.4.2 Graphics Hardware and Reconfigurable Hardware

All three architectures (Graphics Processor Unit (GPU), Reconfigurable Logic (RL), Recon-
figurable Computing (RC)) evolved dramatically in the last 10 years. The RL has a slightly
longer success story, but 10 years ago FPGAs were small devices not meant for competing
with DSP- or micro-processors. For GPUs the general computing capabilities came up even
more surprisingly, and although the functionality demands still stem from the computer game
industry, GPU manufacturers now pay attention to the scientific computing possibilities of
their products. Finally, RC machines are probably the least present architectures in the mar-
ket, but a number of ambitious start-ups promotes their advantages and several prototypes and
first commercial products are available.

Performance analysis of RL over micro-processors for DSP applications has been thoroughly
examined, see for example [Benitez, 2003; Guo et al., 2004; Tessier and Burleson, 2001].
Performance of RC machines on DSP kernels can be found in [Sueyoshi and Iida, 2002; Suh
et al., 2003]. For GPUs an overview of image processing implementations is not known to us.
The site [GPGPU] contains a thematic collection of abstracts and links to general computing
papers on GPUs. In the following we compare the architectures based on the previous sections.

• Graphics Processor Unit (GPU)
GPUs have improved a lot not only in terms of performance but also in terms of pro-
grammability (Section 4.1.1.3). The first implementations (Sections 4.1.3, 4.1.4) had to
use a complicated translation from the world of numeric computations to the function-
ality of the fixed graphics pipeline (Figure 4.1). In particular, the severe restrictions of
the number formats required many workarounds (Section 4.1.2.2). First with the pro-

181

4 Hardware Efficient Implementations

grammability of the Fragment Processor (FP) and the floating point formats in DX9,
GPUs gained more attention as solvers of scientific problems. This flexibility allows
many more numerical concepts to be implemented (Section 4.1.5 on page 143). The
implementation of the registration problem from Section 4.1.5 on page 143 in either RL
or RC would presumably deliver higher performance but the design effort would also be
much higher.

The flexibility of GPUs grew mainly in the processing elements (PEs), which now offer
functions not even supported directly by the ALUs in RC arrays (Section 4.1.2.3). The
free programability of the PEs also allows a better resource utilization than the hard-
wired, parameter controlled PEs did. In the direct performance comparison of the level-
set (Section 4.2.3.1 on page 161) and the non-linear diffusion solver (Section 4.3.3.1 on
page 176) the FPGA and XPP win against the older GPUs exactly due to better resource
utilization.

GPUs apply a fixed parallelism in breadth given by the number of available pipelines.
Parallelism in depth takes place in the different stages of the pipleine and the individual
PEs. The pipeline iteself is deep but the PEs have few internal stages. The parallel use
of these internal stages is hidden from the programmer and depends on the compiler op-
timizations in the temporal domain. Because of these restrictions the design of configu-
rations has become fairly easy in comparison to Hardware Description Language (HDL)
models for reconfigurable hardware. But the implicit command scheduling and caching
of data for reuse requires more control resources not used for the actual computation.
Graphics hardware is partly also burdend with compatibility issues which require the
realization of the whole graphics pipeline, although the programmable parts could in-
herit almost all of this functionality. However, in comparison to micro-processors were
the L2 cache consume most of the transistors, GPUs devote by far the majority of its
resources to computation.

It is a difficult question how the fixed graphics pipeline could be released in favor of
more configurable data-flows (Section 4.1.2.1) without sacrificing the simpler program-
ming model. Where RL and RC architectures save on bandwidth requirements by ap-
plication specific caches and extra long pipelines, GPUs are very bandwidth hungry and
access external memory very often. This made them very suitable for problems with
low computational intensity, but also depent on this expensive fast external memory
connection. With DX9+ GPUs the trend of balancing memory bandwidth and PE re-
quirements started to shift towards a higher number of PEs. Figure 4.25 illustrates how
in this case parallelism in depth must be used to increase performance. GPUs will prob-
ably not adapt to the spatial computing for this, but the hierarchical stream caches of
stream processors (see Section 3.2.4 on page 93) could be an option.

Recapitulating, we can say that GPUs are currently the easiest accessible DSB architec-
ture. They lack programmable parallelism in depth and data-flow flexibility but com-
pensate this with fixed parallelism in breadth and wide memory buses at high clock
frequencies. The high clock frequencies still cannot compete with the utter parallelism
in large RL or RC devices and they render low power applications unattainable. But

182

4.4 Comparison of Architectures

the mass market implies a fantanstic price-performance ratio and standard APIs ensure
compatibility.

• Reconfigurable Logic (RL)
RL concentrated for a long time on fully homogenous fine grain arrays (Figure 4.22).
This approach guarantees utmost flexibility in the design of the circuits. Arbitrary op-
erations on application specific number formats with variable precision arithmetic can
be realized (Section 4.2.2.2). There is even no clear distinction between PEs and mem-
ory since the Configurable Logic Blocks (CLBs) can server as both (Section 4.2.2.1).
So all parallelization options can be fully exploited. The performance advantage of
the FPGA (Section 4.2.3.2) against the GPU implementation (Section 4.1.3.2) for the
level-set equation grew out of the multiple parallelization options.

The price for the universitality is the overhead associated with the configuration logic.
The same design in an ASIC consumes four to six times less transistors, which, beside
the costs and performance, is often crucial in terms of power consumption. So RL de-
pend on a efficient use of their resources. The approximations applied in Section 4.2.3.1
had the aim to replace resource hungry operations (Table 4.4) by simpler ones. But our
use of CLBs as memory, for example, consumes much more transistors than a dedicated
memory block. Because these situations appeared in many implementations, modern
FPGAs have many hardwired multipliers of a certain width and dedicated RAM blocks.
Some FPGAs embed even entire processor cores. So one sacrifies the full reconfigura-
bility but gains performance and lower power consumption for all applications which
would otherwise implement the hardwired functionality in the CLBs. By further mixing
reconfigurable logic, DSP-processors and specialized hardware components on a Con-
figurable System-on-a-Chip (CSoC), one obtains a continuous space expanding from
fully general to very specific solutions.

Naturally, this heterogenounes environement makes the design of configuration even
more demanding than before (Section 4.2.1.2). But the design tools have matured and
synthesis of configurations from dialects of common HLLs now delivers respectable
results. Hardwired blocks also reduce the inherent problem with fine grain architectures
of large configuration bitstreams. The large bitstreams make it difficult to change the
functionality in the FPGA quickly. This is not crucial if the entire application fits into
the FPGA as in Section 4.2.3.1, but for large projects divided into several parts, or
different applications requiring fast transitions it means a performance penalty. Partial
reconfigurability helps to hide latencies in these cases and the hardwired parts need far
less configuration data.

FPGAs are still the most flexible DSB architectures. The parts with fixed functionality
are usually so general (multipliers, RAM blocks), that most configurations benefit from
them. Performance in comparison to other architectures depends strongly on the appli-
cation, i.e. if its components can be easily implemented by the predefined PEs in GPUs
or RC arrays or not. Power consumption per transistor is high, but the high flexibility
allows the use of smaller devices and reconfigure them repeatedly as needed. Compati-

183

4 Hardware Efficient Implementations

bility among different systems is hardly an issue, but sufficiently abstract HDL code can
be synthesized on different devices. Finally, a mass production secures moderate costs
of FPGAs and a continuous evolution of design tools.

• Reconfigurable Computing (RC)
RC architectures give a different answer than the inhomogenous CSoCs based on FPGAs
to the overhead associated with bit-level reconfigurability. They homogenously special-
ize the data paths to fixed widths and lift the operational configurability to the arithmetic
level (Section 4.3.1.1). This immensely reduces the configuration stream, which allows
dynamic reconfigurability and greatly simplifies the configuration design and debugging
(Section 4.3.1.2). However, current design tools for RC lag behind the RL development,
such that in practice the design effort is not necessarily smaller.

While RC systems retain the numerous opportunities for parallization, the fixed data
path width and operation set miss some of the application specific optimizations (Section
4.3.2.2). It can even render an implementation totally unfeasible if the simulation of a
special operation would consume too many resources in the RC chip. In this respect
RC systems are similar to the GPUs or DSP-processors which must be defined with
a operation set suitable for the envisioned application area before fabrication. But if
the set fits the application then very high performance and low power consumption
similar to an ASIC can be achieved with RC. The superior performance of the slowly
clocked XPP in case of the non-linear diffusion solver (Section 4.3.3.2) against the GPU
implementation (Section 4.1.4.2) examplifies the parallelization advantage.

RC machines offer a very good compromise between high performance, low power
consumption and flexibility. If the internal PEs contain the required functionality for a
certain application area, then they can provide the best resorce utilization in this area.
But because fabrication of commercial products started only few years ago, there are
still several drawbacks. The available devices are relatively small and expensive. There
are several competing RC systems with different interal structures on the market, so
compatibility will not be an issue for a long time either. Also, the development suits
are not as comfortable and powerful as for other devices, resulting practically in high
design efforts. But these shortcomings seem to be of temporary nature.

4.4.3 Efficiency and Abstraction

The presented hardware architectures are very fast developping technologies. They approach
the market of scientific computing from such different fields as computer games, rapid-proto-
typing, telecommunication. They are drawing nearer to each other by adopting similar con-
cepts. GPUs introduce more configurability into the graphics pipeline, FPGAs partly coarsen
their structure similar to RC machines. One even observes a weak convergence of architec-
tures on a larger scale. Micro-processors include more parallel processing elements (PEs)
and some DSP processors contain reconfigurable islands. Different hybrids made up of DSP-,
micro-processors and reconfigurable hardware evolve as CSoCs.

184

4.4 Comparison of Architectures

This convergence will certainly not lead to one ideal architecture. The requirements of appli-
cations are too different for this to happen. But market forces will prefer the consolidation
to few designs suitable for mass production. Since PEs are always arranged in the spatial
domain, an important question is whether High Level Languages (HLLs) can be developped
which efficiently exploit this spatial parallelism on the raw PEs. Current Hardware Description
Languages (HDLs) are still quite inaccessible to high level programmers. But more abstract
approaches require additional control logic around the PEs, which reduces the efficiency.

Our results in the field of image processing suggest that RC arrays offer the most convincing
combination of performance and flexibility. But the development tools lag behind the FPGA
design suits, therefore FPGAs have already occupied many areas of the DSP market. Because
the market is often ready to sacrifice even more hardware performance for ease of program-
ming, graphics hardware with its easy access to the data-stream-based (DSB) processing could
finally win the race. It does not have a perfect resource utilization, but many may be willing to
pay this price to avoid dealing with an unfamiliar spatial programming model. It is clear that
the more we uncover the structure of an algorithm to the hardware, the faster we can run an
implementation. Most current software reveals so little about the structure of the implemented
algorithms that its performance is very poor. We cannot continue in this way. But the extreme
of always operating on the lowest implementational level is not an option either. We are really
in need of HLLs which will account for the main hardware characteristics without sacrific-
ing system compatibility and algorithmic abstraction. This ideal balance between hardware
efficiency and program abstraction is yet to be found.

185

4 Hardware Efficient Implementations

186

Bibliography

J. Abel, K. Balasubramanian, M. Bargeron, T. Craver, and M. Phlipot. Applications tuning for
streaming SIMD extensions. Intel Technology Journal Q2, 1999. 98

S. T. Acton. Multigrid anisotropic diffusion. IEEE Transactions on Image Processing, 7:
280–291, 1998. 43

J. Alakarhu and J. Niittylahti. DRAM performance as a function of its structure and memory
stream locality. Microprocessors and Microsystems, 28(2):57–68, Mar 2004. 71

L. Alvarez, F. Guichard, P. L. Lions, and J. M. Morel. Axioms and fundamental equations of
image processing. Arch. Ration. Mech. Anal., 123(3):199–257, 1993. 19

L. Alvarez, J. Weickert, and J. Sánchez. Reliable estimation of dense optical flow fields with
large displacements. International Journal of Computer Vision, 39:41–56, 2000. 24

AMD. AMD Athlon 64 Processor. http://www.amd.com/athlon64/, 2004. 81

P. Atanassov and P. Puschner. Impact of DRAM refresh on the execution time of real-time
tasks. In Proc. IEEE International Workshop on Application of Reliable Computing and
Communication, pages 29–34, Dec. 2001. 77

M. Baker/Ed. Cluster computing white paper. Technical report, IEEE Computer Society’s
Task Force on Cluster Computing (TFCC), Dec. 2000. 99

E. Bänsch and K. Mikula. A coarsening finite element strategy in image selective smoothing.
Computing and Visualization in Science, 1:53–63, 1997. 44

C. W. Barnes, B. N. Tran, and S. H. Leung. On the statistics of fixed-point roundoff error.
IEEE Trans. Acoustics, Speech and Signal Processing, ASSP-33(3):595, 1985. 35

P. H. Bauer and L.-J. Leclerc. A computer-aided test for the absence of limit cycles in fixed-
point digital filters. IEEE Transactions on Signal Processing, 39(11), 1991. 36

V. Baumgarte, F. May, A. Nckel, M. Vorbach, and M. Weinhardt. PACT XPP - a self-
reconfigurable data processing architecture. In Proceedings of the International Conference
on Engineering of Reconfigurable Systems and Algorithms (ERSA’2001), Las Vegas, USA,
2001. 166, 169

187

Bibliography

J. Becker. Configurable systems-on-chip: Commercial and academic approaches. In 9th IEEE
International Conference on Electronics, Circuits and Systems - ICECS 2002, Dubrovnik,
Croatia, Sep. 2002. 84, 95, 172

J. Becker, A. Thomas, M. Vorbach, and V. Baumgarten. An industrial/academic configurable
system-on-chip project (CSoC): Coarse-grain XXP/Leon-based architecture integration. In
Design, Automation and Test in Europe Conference and Exposition (DATE), pages 11120–
11121, 2003. 100, 172

G. Bell. All the chips outside: The architecture challenge. In International Symposium on
Computer Architecture (ISCA) 2000, 2000. 84

D. Benitez. Performance of reconfigurable architectures for image-processing applications.
Journal of Systems Architecture, 49(4-6):193–210, 2003. 101, 159, 181

J. Bier. Processors with DSP capabilities: Which is best? In Proceedings Embedded Systems
Conference (ESC) 2002, 2002. 100

G. Bohlender. Literature on enclosure methods and related topics. Technical report, Univer-
sität Karlsruhe, 1996. 30

J. Bolz, I. Farmer, E. Grinspun, and P. Schröder. Sparse matrix solvers on the GPU: Conjugate
gradients and multigrid. In Proceedings of SIGGRAPH 2003, 2003. 133, 143

K. Bondalapati and V. K. Prasanna. Reconfigurable computing systems. In Proceedings of the
IEEE, July 2002. 93, 100, 102, 156

F. Bornemann, D. Laurie, S. Wagon, and J. Waldvogel. The SIAM 100-Digit Challenge: A
Study in High-Accuracy Numerical Computing. Society of Industrial Applied Mathematics
(SIAM), Philadelphia, 2004. 26

S. Brown and J. Rose. Architecture of FPGAs and CPLDs: A tutorial. IEEE Design and Test
of Computers, 13(2):42–57, 1996. 93, 101, 156

J. M. P. Cardoso and M. Weinhardt. XPP-VC: A C compiler with temporal partitioning for
the PACT-XPP architecture. Lecture Notes in Computer Science, 2438:864–??, 2002. ISSN
0302-9743. 172

V. Caselles, F. Catté, T. Coll, and F. Dibos. A geometric model for active contours in image
processing. Numer. Math., 66, 1993. 21

F. Catté, P.-L. Lions, J.-M. Morel, and T. Coll. Image selective smoothing and edge detection
by nonlinear diffusion. SIAM J. Numer. Anal., 29(1):182–193, 1992. 19

E. Cerro-Prada and P. B. James-Roxby. High speed low level image processing on FP-
GAs using distributed arithmetic. In R. W. Hartenstein and A. Keevallik, editors, Field-
Programmable Logic: From FPGAs to Computing Paradigm, Proceedings FPL 1998, pages
436–440. Springer-Verlag, Berlin, Aug/Sep 1998. 101

G. E. Christensen, S. C. Joshi, and M. I. Miller. Volumetric transformations of brain anatomy.
IEEE Trans. Medical Imaging, 16, no. 6:864–877, 1997. 24

188

Bibliography

U. Clarenz, M. Droske, and M. Rumpf. Towards fast non-rigid registration. In Z. Nashed and
O. Scherzer, editors, Contemporary Mathematics, Special Issue on Inverse Problems and
Image Analysis. AMS, 2002. 23, 24, 150

R. Cmar, L. Rijnders, P. Schaumont, S. Vernalde, and I. Bolsens. A methodology and design
environment for DSP ASIC fixed point refinement. In Proceedings of the Design Automa-
tion and Test in Europe 1999, pages 271–276, 1999. 36

P. Colantoni, N. Boukala, and J. da Rugna. Fast and accurate color image processing using 3d
graphics cards. In Proceedings Vision, Modeling and Visualization 2003, 2003. 133

K. Compton and S. Hauck. Reconfigurable computing: A survey of systems and software.
ACM Computing Surveys, 34(2), 2002. 101, 102, 156

L. Corrias, M. Falcone, and R. Natalini. Numerical schemes for conservation laws via
Hamilton-Jacobi equations. Mathematics of Computation, 64:555–580, 1995. 21

L. D. Coster, M. Engels, R. Lauwereins, and J. Peperstraete. Global approach for compiled
bit-true simulation of DSP-applications. In Proceedings of Euro-Par’96, volume 2, pages
236–239, 1996. 36

R. Cravotta. DSP directory 2003. http://www.reed-electronics.com/ednmag/contents/images/-
286246.pdf, 2003. 100

R. Crisp. Direct Rambus technology: The next main memory standard. IEEE Micro, 17(6):
18–28, Nov./Dec. 1997. ISSN 0272-1732. 76

W. J. Dally, P. Hanrahan, M. Erez, T. J. Knight, F. Labont, J.-H. Ahn, N. Jayasena, U. J.
Kapasi, A. Das, J. Gummaraju, and I. Buck. Merrimac: Supercomputing with streams. In
Supercomputing Conference 2003, Nov. 2003. 95

C. A. Davatzikos, R. N. Bryan, and J. L. Prince. Image registration based on boundary map-
ping. IEEE Trans. Medical Imaging, 15, no. 1:112–115, 1996. 24

B. Davis, B. Jacob, and T. Mudge. The new DRAM interfaces: SDRAM, RDRAM and
variants. Lecture Notes in Computer Science, 1940, 2000a. ISSN 0302-9743. 71

B. Davis, T. Mudge, B. Jacob, and V. Cuppu. DDR2 and low latency variants. In Solving the
Memory Wall Problem Workshop, 2000b. 71

A. DeHon. The density advantage of configurable computing. Computer, 33(4):41–49, Apr.
2000. ISSN 0018-9162. 101

A. DeHon. Very large scale spatial computing. Lecture Notes in Computer Science, 2509,
2002. ISSN 0302-9743. 100, 156

D. Demigny, L. Kessal, R. Bourguiba, and N. Boudouani. How to use high speed reconfig-
urable FPGA for real time image processing? In Fifth IEEE International Workshop on
Computer Architectures for Machine Perception (CAMP’00), page 240, 2000. 161

189

Bibliography

R. Desikan, S. W. Keckler, D. Burger, and T. Austin. Assessment of MRAM technology
characteristics and architectures. Technical Report CS-TR-01-36, The University of Texas
at Austin, Department of Computer Sciences, Apr 2001. 71

U. Diewald, T. Preusser, M. Rumpf, and R. Strzodka. Diffusion models and their acceler-
ated solution in computer vision applications. Acta Mathematica Universitatis Comenianae
(AMUC), 70(1):15–31, 2001. 132

J. Draper, J. Chame, M. Hall, C. Steele, T. Barrett, J. LaCoss, J. Granacki, J. Shin, C. Chen,
C. W. Kang, I. Kim, and G. Daglikoca. The architecture of the diva processing-in-memory
chip. In Proceedings of the International Conference on Supercomputing, June 2002. 96

M. J. B. Duff. Thirty years of parallel image processing. In Vector and Parallel Processing -
VECPAR 2000, volume 1981 / 2001, pages 419–438, 2000. 99

R. Duncan. A survey of parallel computer architectures. Computer, 23(2):5–16, 1990. ISSN
0018-9162. 93

Elixent. http://www.elixent.com/. 102, 166

J. Ely. Prospects for Using Variable Precision Interval Sotware in C++ for Solving Some
Contemporary Scientific Problems. PhD thesis, The Ohio State University, 1990. 30

B. Engquist and S. Osher. Stable and entropy-satisfying approximations for transonic flow
calculations. Math. Comp., 34(149):45–75, 1980. 55, 56

R. Enzler, C. Plessl, and M. Platzner. Virtualizing hardware with multi-context reconfigurable
arrays. In Field Programmable Logic and Application, 13th International Conference, FPL
2003, pages 151–160, 2003. 101

Evans & Sutherland. Company’s history. http://www.es.com/about eands/history/index.asp,
2004. 116

R. Fernando and M. L. Kilgard. The Cg Tutorial: The Definitive Guide To Programmable
Real-Time Graphics. Addison-Wesley, 2003. 116

M. J. Flynn. Some computer organizations and their effectiveness. IEEE Transactions on
Computing, C-21(9):948–960, 1972. 92

B. Fraguela, P. Feautrier, J. Renau, D. Padua, and J. Torrellas. Programming the FlexRAM
parallel intelligent memory system. In International Symposium on Principles and Practice
of Parallel Programming (PPoPP), Jun. 2003. 96

F. Franchetti and M. Püschel. Short vector code generation and adaptation for DSP algo-
rithms. In Proceedings of the International Conference on Acoustics, Speech, and Signal
Processing; Conference Proceedings (ICASSP ’03), 2003. 98

J. Frigo, M. Gokhale, and D. Lavenier. Evaluation of the Streams-C C-to-FPGA compiler:
An applications perspective. In 9th ACM International Symposium on Field-Programmable
Gate Arrays, Feb. 2001. 158

190

Bibliography

I. Gavrichenkov. AMD Athlon 64 FX-51 vs. Intel Pentium 4 Extreme Edition 3.2GHz: clash of
strong wills. http://www.xbitlabs.com/articles/cpu/display/athlon64-fx51 [8,9].html, 2003.
81

D. Geman, S. Geman, C. Graffigne, and P. Dong. Boundary detection by constrained opti-
mization. IEEE Transactions on Pattern Analysis and Machine Intelligence, pages 609–628,
1990. 21

D. Goldberg. What every computer scientist should know about floating-point arithmetic.
ACM Computing Surveys, 23(1):5–48, Mar. 1991. ISSN 0360-0300. 32, 37

N. Goodnight, C. Woolley, G. Lewin, D. Luebke, and G. Humphreys. A multigrid solver for
boundary-value problems using programmable graphics hardware. In Eurographics/SIG-
GRAPH Workshop on Graphics Hardware, 2003. 133, 143

GPGPU. GPGPU - general purpose computation using graphics hardware. http://-
www.gpgpu.org/. Mark J. Harris/Ed. 110, 142, 143, 181

Gray and Neuhoff. Quantization. IEEETIT: IEEE Transactions on Information Theory, 44(6):
2325–2383, 1998. 26

U. Grenander and M. I. Miller. Computational anatomy: An emerging discipline. Quarterly
Appl. Math., LVI, no. 4:617–694, 1998. 24

Z. Guo, W. Najjar, F. Vahid, and K. Vissers. A quantitative analysis of the speedup factors of
FPGAs over processors. In Symp. on Field-Programmable gate Arrays (FPGA), Feb. 2004.
101, 181

C. Gwyn and P. Silverman. EUVL transition from research to commercialization. In Pho-
tomask and Next-Generation Lithography Mask Technology X, volume 5130, Apr. 2003.
104

J. Hammes, A. Bohm, C. Ross, M. Chawathe, B. Draper, and W. Najjar. High performance
image processing on FPGAs. In Los Alamos Computer Science Institute Symposium, Oct.
2001. 101, 159

J. Hammes, R. Rinker, W. Böhm, and W. Najjar. Cameron: High level language compilation
for reconfigurable systems. In PACT 99,, Okt. 1999. 158

M. Hanke and C. Groetsch. Nonstationary iterated Tikhonov regularization. J. Optim. Theory
and Applications, 98:37–53, 1998. 24

M. J. Harris. Analysis of error in a CML diffusion operation. Technical report, UNC, 2002.
133

M. J. Harris, G. Coombe, T. Scheuermann, and A. Lastra. Physically-based visual simulation
on graphics hardware. In Proceedings of Graphics Hardware 2002, pages 109–118, 2002.
133

M. J. Harris, W. V. B. III, T. Scheuermann, and A. Lastra. Simulation of cloud dynamics on
graphics hardware. In Proceedings of Graphics Hardware 2003, 2003. 133

191

Bibliography

R. Hartenstein. A decade of reconfigurable computing: A visionary retrospective. In Design,
Automation and Test in Europe - DATE 2001, Mar. 2001. 94, 102, 165

R. Hartenstein. Data-stream-based computing: Models and architectural resources. In In-
ternational Conference on Microelectronics, Devices and Materials (MIDEM 2003), Ptuj,
Slovenia, Oct. 2003. 84, 100

H.Becker, S.Kilian, and S.Turek. Some concepts of the software package feast. In J. et al.,
editor, Proc: Vector and Parallel Processing - VECPAR98, pages 271–284, 1999. 26

S. Henn and K. Witsch. Iterative multigrid regularization techniques for image matching.
SIAM J. Sci. Comput. (SISC), Vol. 23 no. 4:pp. 1077–1093, 2001. 24

M. Herz, R. Hartenstein, M. Miranda, E. Brockmeyer, and F. Catthoor. Memory organisa-
tion for stream-based reconfigurable computing. In 9th IEEE International Conference on
Electronics, Circuits and Systems - ICECS 2002, Dubrovnik, Croatia, Sep. 2002. 84

G. A. Hewer, C. Kenney, and B. S. Manjunathg. Variational image segmentation using bound-
ary functions. IEEE Transactions on Image Processing, 7(9), 1998. 21

N. J. Higham. The accuracy of floating point summation. SIAM Journal on Scientific Com-
puting, 14(4):783–799, 1993. 30

N. J. Higham. Accuracy and stability of numerical algorithms. Society for Industrial and
Applied Mathematics, Philadelphia, PA, USA, second edition, 2002. ISBN 0-89871-521-0.
26, 29

M. Hopf and T. Ertl. Accelerating 3D convolution using graphics hardware. In Proc. Visual-
ization ’99, pages 471–474. IEEE, 1999. 132

M. Hopf and T. Ertl. Accelerating Morphological Analysis with Graphics Hardware. In
Workshop on Vision, Modelling, and Visualization VMV ’00, pages 337–345, 2000a. 132

M. Hopf and T. Ertl. Hardware Accelerated Wavelet Transformations. In Proceedings of
EG/IEEE TCVG Symposium on Visualization VisSym ’00, pages 93–103, 2000b. 132

Z. Hu, S. Kaxiras, and M. Martonosi. Timekeeping in the memory system: An efficient
approach to predicting and optimizing memory behavior. In International Symposium on
Computer Architecture (ISCA) 2002, 2002. 83

IEC. Letter symbols to be used in electrical technology - Part 2: Telecommunications and
electronics, second edition edition, Nov. 2000. 7

Intel. Intel Itanium 2 Processor. http://www.intel.com/products/server/processors/server/-
itanium2/, 2004a. 98

Intel. Intel Pentium 4 Processor. http://www.intel.com/products/desktop/processors/-
pentium4/, 2004b. 79, 81

IPflex. http://www.ipflex.com/english/. 102, 166

192

Bibliography

L. Jackson. Roundoff noise analysis for fixed-point digital filters realized in cascaded or
parallel form. IEEE Trans. Audio Electroacoust., AU-18:107–122, 1970. 35

U. J. Kapasi, W. J. Dally, B. Khailany, J. D. Owens, and S. Rixner. The Imagine stream
processor. In Proceedings of the IEEE International Conference on Computer Design, pages
282–288, Sep. 2002. 95

U. J. Kapasi, S. Rixner, W. J. Dally, B. Khailany, J. H. Ahn, P. Mattson, and J. D. Owens.
Programmable stream processors. IEEE Computer, pages 54–62, Aug. 2003. 95

T. Kapur, W. Grimsol, W. WellsIII, and R. Kikinis. Segmentation of brain tissue from magnetic
resonance image. Medical Image Analysis, 1(2), 1997.

T. Karkhanis and J. Smith. A day in the life of a cache miss. In International Symposium on
Computer Architecture (ISCA) 2002, 2002. 82

J. Kačur and K. Mikula. Solution of nonlinear diffusion appearing in image smoothing and
edge detection. Appl. Numer. Math., 17 (1):47–59, 1995. 43

B. Kawohl and N. Kutev. Maximum and comparison principle for one-dimensional anisotropic
diffusion. Math. Ann., 311 (1):107–123, 1998. 19

H. Keding, F. Hürtgen, M. Willems, and M. Coors. Transformation of floating-point into
fixed-point algorithms by interpolation applying a statistical approach. In International
Conference on Signal Processing Applications & Technology 1998 (ICSPAT-98), 1998. 36

B. Keeth and R. J. Baker. DRAM Circuit Design : A Tutorial. Wiley-IEEE Press, Nov 2000.
71

B. Khailany, W. Dally, S. Rixner, U. Kapasi, J. Owens, and B. Towles. Exploring the VLSI
scalability of stream processors. In International Conference on High Performance Com-
puter Architecture (HPCA-2003), 2003. 95, 168

S. Kichenassamy. The perona-malik paradox. SIAM J. Appl. Math., 57:1343–1372, 1997. 19

S. Kim, K.-I. Kum, and W. Sung. Fixed-point optimization utility for C and C++ based digital
signal processing programs. IEEE Transactions on Circuits and Systems, 45(11), 1998. 36

T. Kim and M. Lin. Visual simulation of ice crystal growth. In Proc. ACM SIGGRAPH /
Eurographics Symposium on Computer Animation, 2003. 133

S. Klupsch. Design, integration and validation of heterogeneous systems. In 2nd IEEE Inter-
national Symposium on Quality Electronic Design (ISQED 2001), Mar. 2001. 158

S. Klupsch, M. Ernst, S. A. Huss, M. Rumpf, and R. Strzodka. Real time image process-
ing based on reconfigurable hardware acceleration. In Proc. Heterogeneous reconfigurable
Systems on Chip, 2002. 156

P. Kosmol. Optimierung und Approximation. de Gruyter Lehrbuch, 1991. 60

193

Bibliography

J. Krueger and R. Westermann. Linear algebra operators for GPU implementation of nu-
merical algorithms. ACM Transactions on Graphics (TOG), 22(3):908–916, 2003. ISSN
0730-0301. 133

A. Lefohn, J. Kniss, C. Handen, and R. Whitaker. Interactive visualization and deformation of
level set surfaces using graphics hardware. In Proc. Visualization, pages 73–82. IEEE CS
Press, 2003. 127, 131

A. E. Lefohn, J. M. Kniss, C. D. Hansen, and R. T. Whitaker. A streaming narrow-band
algorithm: Interactive deformation and visualization of level sets. IEEE Transactions on
Visualization and Computer Graphics, 2004. 128

G. Lenerz. Silicon Graphics history. http://sgistuff.g-lenerz.de/hardware/timeline.html, 2004.
116

C. Leopold. Parallel and Distributed Computing: A Survey of Models, Paradigms and Ap-
proaches. Wiley, 2000. 99

E. Loh and G. W. Walster. Rump’s example revisited. Reliab. Comput., 8(3):245–248, 2002.
ISSN 1385-3139. 29

F. Maes, A. Collignon, D. Vandermeulen, G. Marchal, and P. Suetens. Multi–modal volume
registration by maximization of mutual information. IEEE Trans. Medical Imaging, 16, no.
7:187–198, 1997. 24

K. Mai, T. Paaske, N. Jayasena, R. Ho, W. J. Dally, and M. Horowitz. Smart memories: A
modular reconfigurable architecture. In 27th Annual International Symposium on Computer
Architecture (27th ISCA-2000) Computer Architecture News, Vancouver, British Columbia,
Canada, June 2000. ACM SIGARCH / IEEE. 92, 95, 103

R. Malladi, J. A. Sethian, and B. C. Vemuri. Shape modelling with front propagation. IEEE
Trans. Pattern Anal. Machine Intell., 17, 1995. 21

DirectX: multimedia application programming interfaces. Microsoft, http://-
www.microsoft.com/windows/directx/default.aspx. 111

Microsoft. Longhorn Developer Center. http://msdn.microsoft.com/longhorn. 119

DirectX9 Programmable HLSL Shaders. Microsoft, http://msdn.microsoft.com/library/-
default.asp?url=/nhp/default.asp?contentid=28000410, 2003. 118

G. Moore. No exponential is forever ... but we can delay ”forever”. http://www.intel.com/-
research/silicon/mooreslaw.htm, Feb. 2003. Event: International Solid State Circuits Con-
ference (ISSCC). 103

G. E. Moore. Cramming more components onto integrated circuits. Electronics, 38(8), 1965.
71

MPI committee. The message passing interface (MPI) standard. http://www-
unix.mcs.anl.gov/mpi/, 2004. 99

194

Bibliography

L. P. Mulcahy. Two’s-complement fixed-point multiplications errors. Technical Report AD-
A086826, Naval Ocean System Center, San Diego, CA, 1980. 35

D. Mumford and J. Shah. Boundary detection by minimizing functionals. In Proceedings,
CVPR ’85 (IEEE Computer Society Conference on Computer Vision and Pattern Recogni-
tion), IEEE Publ. 85CH2145-1., pages 22–26, 1985. 21

R. Murphy and P. M. Kogge. The characterization of data intensive memory workloads on
distributed PIM systems. In Intelligent Memory Systems Workshop, Boston, MA, Nov.
2000. 96

Nallatech. http://www.nallatech.com/. 99

NVIDIA. Cg programming language. http://developer.nvidia.com/page/cg main, 2002. 118,
126, 144

NVIDIA. GeForce FX. http://www.nvidia.com/page/fx desktop.html, 2004. 81

OpenGL: graphics application programming interface. OpenGL Architectural Review Board
(ARB), http://www.opengl.org/. 111

GLSL - OpenGL Shading Language. OpenGL Architectural Review Board (ARB), http://-
www.opengl.org/documentation/oglsl.html, 2004. 118, 126

S. J. Osher and J. A. Sethian. Fronts propagating with curvature dependent speed: Algorithms
based on Hamilton–Jacobi formulations. J. of Comp. Physics, 79:12–49, 1988. 21, 55

PACT. http://www.pactcorp.com/. 102, 166, 167, 168, 175

P. Perona and J. Malik. Scale space and edge detection using anisotropic diffusion. IEEE
Trans. Pattern Anal. Mach. Intell., 12:629–639, 1990. 19

picoChip. http://www.picochip.com/. 102, 166

T. Preußer and M. Rumpf. An adaptive finite element method for large scale image processing.
Journal of Visual Comm. and Image Repres., 11:183–195, 2000. 44

D. M. Priest. On Properties of Floating Point Arithmetics: Numerical Stability and the Cost
of Accurate Computations. PhD thesis, University of California, Berkeley, CA, USA, 1992.
29

QuickSilver. http://www.quicksilvertech.com/. 102, 166

P. Ranganathan, S. V. Adve, and N. P. Jouppi. Performance of image and video processing
with general-purpose processors and media ISA extensions. In ISCA, pages 124–135, 1999.
98

D. Risley. A CPU history. http://www.pcmech.com/show/processors/35/, 2001. 79

S. Rixner. Stream Processor Architecture. Kluwer Academic Publishers, 2002. 95

T. Rolfe. Distributed multiprocessor environments. J. Comput. Small Coll., 18(2):95–104,
2002. 93

195

Bibliography

S. M. Rump. Algorithms for verified inclusions in theory and practice, pages 109–126. Aca-
demic Press Professional, Inc., 1988. ISBN 0-12-505630-3. 29

M. Rumpf and R. Strzodka. Level set segmentation in graphics hardware. In Proceedings
ICIP’01, volume 3, pages 1103–1106, 2001a. 127

M. Rumpf and R. Strzodka. Nonlinear diffusion in graphics hardware. In Proceedings of
EG/IEEE TCVG Symposium on Visualization VisSym ’01, pages 75–84. Springer, 2001b.
132, 139

M. Rumpf and R. Strzodka. Using graphics cards for quantized FEM computations. In Pro-
ceedings VIIP’01, pages 193–202, 2001c. 132

M. Rumpf and R. Strzodka. Numerical Solution of Partial Differential Equations on Paral-
lel Computers, chapter Graphics Processor Units: New Prospects for Parallel Computing.
Springer, 2005. 110

K. Sankaralingam, R. Nagarajan, H. Liu, C. Kim, J. Huh, D. Burger, S. W. Keckler, and C. R.
Moore. Exploiting ILP, TLP, and DLP with the polymorphous TRIPS architecture. In ISCA
2003, pages 422–433, 2003. 92, 95

Y. Sato, S. Nakajima, N. Shiraga, H. Atsumi, S. Yoshida, T. Koller, G. Gerig, and R. Kikinis.
Three-dimensional multi-scale line filter for segmentation and visualization of curvilinear
structures in medical images. Medical Image Analysis, 2(2), 1998.

M. J. Schulte and E. E. Swartzlander. Software and hardware techniques for accurate, self-
validating arithmetic. In R. B. Kearfott and V. Kreinovich, editors, Applications of interval
computations: Papers presented at an international workshop in El Paso, Texas, February
23–25, 1995, volume 3 of Applied optimization, pages 381–404, Norwell, MA, USA, and
Dordrecht, The Netherlands, 1996. Kluwer Academic Publishers Group. ISBN 0-7923-
3847-2. 39

SEMATECH. International technology roadmap for semiconductors (ITRS). http://-
public.itrs.net/Files/2003ITRS/Home2003.htm, 2003. 71, 103

J. A. Sethian. Level Set Methods and Fast Marching Methods. Cambridge University Press,
1999. 20, 21, 130

A. K. Sharma. Advanced Semiconductor Memories : Architectures, Designs, and Applica-
tions. Wiley-IEEE Press, Oct 2002a. 71

A. K. Sharma. Semiconductor Memories : Technology, Testing, and Reliability. Wiley-IEEE
Press, Aug 2002b. 71

K. Siddiqi, Y. B. Lauzière, A. Tannenbaum, and S. W. Zucker. Area and length minimizing
flows for shape segmentation. IEEE Transactions on Image Processing, 7(3), 1998.

Silicon Software. microEnable Users Guide, 1999. 156

T. Stansfield. Wordlength as an architectural parameter for reconfigurable computing devices.

196

Bibliography

Field-Programmable Logic and Applications, Proceedings Lecture Notes in Computer Sci-
ence, 2438:667–676, 2002. 102

Star Bridge Systems Inc. http://www.starbridgesystems.com/. 99

T. L. Sterling and H. P. Zima. Gilgamesh: A multithreaded processor-in-memory architec-
ture for petaflops computing. In SC’2002 Conference CD, Baltimore, MD, Nov. 2002.
IEEE/ACM SIGARCH. pap105. 96

R. Strzodka. Virtual 16 bit precise operations on RGBA8 textures. In Proceedings VMV’02,
pages 171–178, 2002. 121, 141

R. Strzodka, M. Droske, and M. Rumpf. Fast image registration in DX9 graphics hardware.
Journal of Medical Informatics and Technologies, 6:43–49, Nov 2003. 143

R. Strzodka, M. Droske, and M. Rumpf. Image registration by a regularized gradient flow - a
streaming implementation in DX9 graphics hardware. Computing, 2004. to appear. 143

B. Su, E.-W. Hu, J. Manzano, S. Regula, J. Wang, and L. W. Leung. A new source-level
benchmarking for DSP processors. In Proceedings of Global Signal Processing Expo &
Conference (GSPx) 2004, 2004. 100

A. Sud, D. Manocha, N. K. Govindaraju, and S. eui Yoon. Parallel occlusion culling for
interactive walkthroughs using multiple GPUs. Technical report, UNC Computer Science,
2002. 99

T. Sueyoshi and M. Iida. Configurable and reconfigurable computing for digital signal process-
ing. IEICE Transactions on Fundamentals of Electronics Communications and Computer
Sciences, E85A(3):591–599, 2002. 102, 176, 181

J. Suh, E.-G. Kim, S. P. Crago, L. Srinivasan, and M. C. French. A performance analysis
of PIM, stream processing, and tiled processing on memory-intensive signal processing
kernels. In D. DeGroot, editor, Proceedings of the 30th Annual International Symposium
on Computer Architecture (ISCA-03), volume 31, 2 of Computer Architecture News, pages
410–421, New York, June 9–11 2003. ACM Press. 103, 181

W. Sung and K. Kum. Simulation-based word-length optimization method for fixed-point
digital signal processing systems. IEEE Transactions on Signal Processing, 43(12), 1995.
36

M. B. Taylor, J. S. Kim, J. Miller, D. Wentzlaff, F. Ghodrat, B. Greenwald, H. Hoffman,
P. Johnson, J.-W. Lee, W. Lee, A. Ma, A. Saraf, M. Seneski, N. Shnidman, V. Strumpen,
M. Frank, S. P. Amarasinghe, and A. Agarwal. The raw microprocessor: A computational
fabric for software circuits and general purpose programs. IEEE Micro, 22(2):25–35, 2002.
95

R. Tessier and W. Burleson. Reconfigurable computing for digital signal processing: A survey.
Journal of VLSI Signal Processing, 28(1):7–27, June 2001. 100, 161, 181

197

Bibliography

J. P. Thirion. Image matching as a diffusion process: An analogy with Maxwell’s demon.
Medical Imag. Analysis, 2:243–260, 1998. 24

V. Thomée. Galerkin - Finite Element Methods for Parabolic Problems. Springer, 1984. 44

H. Tian, S. Lam, and T. Srikanthan. Area-time efficient between-class variance module for
adaptive segmentation process. IEEE Proceedings: Vision, Image and Signal Processing,
150(4):263–269, 2003. 161

TOP500 committee. TOP500 supercomputer sites. http://www.top500.org/. 99

B. Ulmann and R. Hoffmann. Instruction stream processing beyond vector computing. In
Proceedings of the 2002 conference on Massively-Parallel Computing Systems, pages 118–
123, 2002. 95

M. Urabe. Roundoff Error Distribution in Fixed-Point Multiplication and A Remark About
the Rounding Rule. SIAM Journal of Numerical Analysis, 5(2):202–210, June 1968. 35

I. Vladimirov and P. Diamond. A uniform white-noise model for fixed-point roundoff error in
digital systems. Automation and Remote Control, 63(5):753–765, 2002. 35

S. A. Wadekar and A. C. Parker. Accuracy sensitive word-length selection for algorithm
optimization. In International Conference on Computer Design (ICCAD’98), pages 54–61,
1998. 36

J. Waldemark, M. Millberg, T. Lindblad, and K. Waldemark. Image analysis for airborne
reconnaissance and missile applications. Pattern Recognition Letters, 21(3):239–251, Mar.
2000. 161

J. Weickert. Anisotropic diffusion in image processing. Teubner, 1998. 17, 19, 43, 46, 49

J. Weickert, K. Zuiderveld, B. ter Haar Romeny, and W. Niessen. Parallel implementations of
AOS schemes: A fast way of nonlinear diffusion filtering. In Proc. Fourth IEEE Interna-
tional Conference on Image Processing, volume 3, pages 396–399, Santa Barbara, CA, Oct
1997. 44

P. Welch. A fixed-point fast Fourier transform error analysis. IEEE Trans. Audio Electroa-
coust., AU-17:151–157, 1969. 35

R. Westermann. The rendering of unstructured grids revisited. In Proceedings of EG/IEEE
TCVG Symposium on Visualization VisSym ’01. Springer, 2001. 26

M. Wilkes. The memory gap (keynote). In Solving the Memory Wall Problem Workshop,
2000. http://www.ece.neu.edu/conf/wall2k/wilkes1.pdf. 71

M. Willems, V. Bürsgens, H. Keding, T. Grötker, and H. Meyr. System level fixed-point
design based on an interpolative approach. In Design Automation Conference 1997 (DAC-
97), 1997a. 36

M. Willems, V. Bürsgens, and H. Meyr. Fridge: Floating-point programming of fixed-point

198

Bibliography

digital signal processors. In Int. Conf. On Signal Processing Applications & Technology
1997 (ICSPAT-97), 1997b. 36

K. Williston, M. Tsai, and J. Bier. DSP benchmark results for the latest processors. In Pro-
ceedings of Global Signal Processing Expo & Conference (GSPx) 2004, 2004. 100

P. W. Wong. Quantization and roundoff noises in fixed-point FIR digital filters. IEEE Trans-
actions on Signal Processing, 39(7):1552–1563, 1991. 35

P. W. Wong. Quantization noise, fixed-point multiplicative roundoff noise, and dithering. IEEE
Transactions on Acoustics, Speech, and Signal Processing, 38(2):286–300, l99O. 35, 49

Xilinx Inc. http://www.xilinx.com. 156, 157

C. Xu and J. L. Prince. Snakes, shapes, and gradient vector flow. IEEE Transactions on Image
Processing, 7(3), 1998. 21

Y.-L. You, W. Xu, A. Tannenbaum, and M. Kaveh. Behavoiral analysis of anisotropic diffusion
in image processing. IEEE Trans. Image Proc., 5:1539–1553, 1996. 19

199

Bibliography

200

Acronyms

AGP Accelerated Graphics Port

ALU Arithmetic and Logic Unit

ANSI American National Standards Institute

API Application Programming Interface

ARB Architectural Review Board

ASIC Application Specific Integrated Circuit

ASSP Application Specific Standard Product

BREG Backward Register

BL burst length

CFL Courant-Friedrichs-Levy condition

CLB Configurable Logic Block

CM Configuration Manager

CPU Central Processor Unit

CSoC Configurable System-on-a-Chip

DDR Double Data Rate (memory)

DDR1 First Generation DDR memory

DDR2 Second Generation DDR memory

DR Data Rate

DSB data-stream-based

DSM Distributed Shared Memory

DSP Digital Signal Processing

DRAM Dynamic RAM

EUV Extreme Ultra-Violet

FE Finite Element

201

Acronyms

FIFO First In First Out

FLOPS floating point OPS

FP Fragment Processor

FPGA Field Programmable Gate Array

FPU Floating Point Unit

FREG Forward Register

FSB Front Side Bus

GDDR Graphics DDR memory

GDDR3 Third Generation GDDR memory

GPU Graphics Processor Unit

HDL Hardware Description Language

HLL High Level Language

HPC High Performance Computing

IEEE Institute of Electrical and Electronics Engineers

IEC International Electrotechnical Commission

IO Input/Output

IP Intellectual Property

ITRS International Technology Roadmap for Semiconductors

ISB instruction-stream-based

LUT lookup table

MAC multiply-accumulate instruction

MIMD Multiple Instruction Multiple Data

MISD Multiple Instruction Single Data

MPI Message Passing Interface

MPP Massively Parallel Processing

NML Native Mapping Language

NUMA Non-Uniform Memory Access

OPS operations per second

PAE Processing Array Element

202

PBO Pixel Buffer Object

PC Personal Computer

PCI Peripheral Component Interconnect

PCIe PCI Express

PDE partial differential equation

PE processing element

PIM Processor-in-Memory

PS Pixel Shader

QDR Quad Data Rate (memory)

RAM Random Access Memory

RC Reconfigurable Computing

RL Reconfigurable Logic

SDR Single Data Rate (memory)

SDRAM Synchronous DRAM

SI Système International d’Unités

SIMD Single Instruction Multiple Data

SISD Single Instruction Single Data

SMT Simultaneous Multi-Threading

SoC System-on-a-Chip

SPMD Single Program Multiple Data

SRAM Static RAM

SSE Streaming SIMD Extensions

tCLK clock cycle time

tCL column access latency

tCAS column active time

tCP column precharge time

TMU texture mapping unit

tRAS row active time

tRCD row to column delay

203

Acronyms

tRP row precharge time

VLIW Very Long Instruction Word

VBO Vertex Buffer Object

VP Vertex Processor

VS Vertex Shader

WGF Windows Graphics Foundation

XDR eXtreme Data Rate (memory)

XPP eXtreme Processing Platform

204

Index

access time, 73
Amdahl’s Law, 91
anti machine, 84

bandwidth, 2, 8, 10, 65, 66, 71, 115, 162
peak, 75, 116
sustained, 74, 115, 169

bank interleaving, 76, 115
burst mode, 74, 115

cache, 65, 81
associativity, 82
prefetch, 83

CFL - Courant-Friedrichs-Levy, 25, 54, 56
classifier, 25, 63
computational intensity, 65, 83, 91, 95, 115,

158, 168, 183
computing

spatial, 100, 155, 159, 162, 173, 181
temporal, 100, 181, 182

configware, 84, 93, 115, 157, 170, 181
cycle time, 73

data sequencer, 84, 170
denormalized number, 28
die, 81
diffusion

anisotropic, 9, 17, 45, 133, 176
generic, 16, 24
linear, 16, 47, 62, 133, 177
non-linear, 16, 46, 133, 134, 176
tensor, 16, 46, 134

DSB - data-stream-based, 84, 93–95

enclosure methods, 30

error
backward, 34
forward, 33
mixed forward-backward, 34

evaluation operator, 38
exact dot product, 30, 39
exponent, 27, 141, 143, 175

fixed point number, 31, 30–36, 39, 45, 114,
121–124, 135, 141, 161, 175

floating point number, 27, 27–30, 34, 36,
39, 114, 124, 135, 141, 175

flowware, 84, 115, 157, 170, 181
FP - Fragment Processor, 114
fragment, 113

blending, 115, 128
frame-buffer, 114, 119, 138, 140

Gaussian function, 16, 20
GPU - Graphics Processor Unit, 112
granularity, 93

hidden bit, 28
hot spot, 85, 97

input neighborhood, 65
instruction sequencer, 84
ISB - instruction-stream-based, 84, 92–93

kernel, 143

latency, 2, 10, 71, 85, 169
level-set equation, 9, 19, 24, 55, 127, 128,

134, 160
Lyapunov functional, 18, 52

205

Index

machine epsilon, 28, 31, 121
mantissa, 28, 123, 141, 143
mass-exact matrix vector product, 9, 40, 48,

133, 140
memory

address, 71
array, 71
bank, 72, 76
cell, 72
depth, 72, 115
distributed, 90
gap, 5, 10, 71, 84, 96, 105, 181
module, 79
page, 72, 79
refresh, 72, 77
shared, 89
size, 71
video, 113, 120, 138

Moore’s Law, 71, 103
squared, 110

morphware, 84

normalized representation, 28
numerically stable, 34

parallelism, 10
in breadth, 66, 91, 92, 95, 101, 115,

159, 162, 168, 178
in depth, 65, 91, 95, 101, 115, 159,

162, 168, 177
pbuffer, 118, 120, 144, 155
PE - processing element, 70, 87
Perona-Malik function, 16, 20, 130, 135,

137
pipelining, 85, 88, 115, 159, 168
precision, 28
prefetch size, 78
processor

scalar, 92
super-scalar, 92
vector, 92

quantization, 26, 36
quantized operations, 37

reconfigurability
differential, 169, 173
dynamic, 94, 101, 166, 169, 177, 185
partial, 94, 184
run-time, 94

register, 81
rounding modes, 32, 37, 159

directed, 30, 32
nearest, 32, 161

saturation, 37, 134
scale-space, 17, 49
scheduling

compile-time, 92
run-time, 92

sense amps, 72, 77
speedup, 90
system node, 89

texel, 114, 146
texture, 114
throughput, 8, 65, 85, 115, 159, 172, 178
turn around time, 77

unit roundoff, 29, 31, 124

variable precision arithmetic, 11, 30, 33,
39, 159, 161, 184

virtual signed 16 bit format, 11, 121, 140,
142

von Neumann, 84, 97
VP - Vertex Processor, 113

white-noise model, 35, 133
write-read delay, 66

206

	Abstract
	Introduction
	Motivation
	Thesis Guide
	Summary
	Acknowledgments

	PDE Solvers in Quantized Image Processing
	Continuous PDE Based Image Processing
	Discretization - Quantization
	Anisotropic Diffusion
	Level-Set Segmentation
	Gradient Flow Registration
	Data-Flow
	Conclusions

	Data Processing
	Data Access
	Computation
	Hardware Architectures
	Conclusions

	Hardware Efficient Implementations
	Graphics Hardware
	Reconfigurable Logic
	Reconfigurable Computing
	Comparison of Architectures

	Bibliography
	Acronyms
	Index

