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Abstract

We present a tool for real-time visualization of motion features in
2D image sequences. The motion is estimated through an eigen-
vector analysis of the spatiotemporal structure tensor at every pixel
location. This approach is computationally demanding but allows
reliable velocity estimates as well as quality indicators for the ob-
tained results. We use a 2D color map and a region of interest selec-
tor for the visualization of the velocities. On the selected velocities
we apply a hierarchical smoothing scheme which allows the choice
of the desired scale of the motion field. We demonstrate several
examples of test sequences in which some persons are moving with
different velocities than others. These persons are visually marked
in the real-time display of the image sequence. The tool is also ap-
plied to angiography sequences to emphasize the blood flow and its
distribution.

An efficient processing of the data streams is achieved by mapping
the operations onto the stream architecture of standard graphics
cards. The card receives the images and performs both the motion
estimation and visualization, taking advantage of the parallelism in
the graphics processor and the superior memory bandwidth. The
integration of data processing and visualization also saves on un-
necessary data transfers and thus allows the real-time analysis of
320x240 images. We expect that on the upcoming generation of
graphics hardware our tool will run in real time for the standard
VGA format.

CR Categories: I.4.8 [Image Processing and Computer Vision]:
Scene Analysis—Motion, Time-varying imagery; G.1.3 [Numeri-
cal Analysis]: Numerical Linear Algebra—Eigenvalues and eigen-
vectors; I.3.8 [Computer Graphics]: Applications;

Keywords: motion estimation, motion visualization, structure ten-
sor, eigenvector analysis, real-time processing, graphics hardware

1 Introduction

For the estimation of motion from digital image sequences a num-
ber of different techniques has been proposed [Barron, J. L. et al.
1994; Beauchemin, S. S. and Barron, J. L. 1995; Haußecker, H.
and Spies, H. 1999]. For real time applications, feature tracking

∗e-mail: strzodka@caesar.de
†e-mail: Christoph.Garbe@iwr.uni-heidelberg.de

algorithms are widely in use [Wu 1989; Camus 1997]. While these
approaches offer real time performance, estimated velocity fields
are sparse. Also, inherent to these techniques is a reduced accu-
racy [Liu, S.-Z. et al. 1998], not making them ideal candidates for
applications in which the precise estimation of motion is required.

Estimating motion patterns from gradient based optical flow tech-
niques offer a number of advantages. Generally, these techniques
are highly accurate [Barron, J. L. et al. 1994] and provide dense
estimates. Another important property is the computation of con-
fidence measures and type measures, indicating the quality of the
estimates and problematic regions. Both measures are given by
gradient based techniques with almost no additional computational
cost. Due to these advantages this type of estimator for optical flow
was chosen in the context of this work.

The computation of dense motion fields for an image sequence
requires high processing power. Parallel computers and different
hardware architectures have been considered to accelerate these
computations [Kohlberger et al. 2003; Zuloaga et al. 1998; Maya-
Rueda and Arias-Estrada 2003]. We meet the real-time require-
ments by exploiting the stream architecture of graphics cards.
Graphics cards are not a cure-all for performance critical applica-
tions. They have traditionally been optimized for high data through-
put and subscribe to a different computing paradigm than micro-
processors, resulting in an inherent advantage for operations on
large data streams. The concept they follow is not new, but equiva-
lent processing power has not been previously available in such rel-
atively inexpensive standard hardware products. Consequently, our
tool does not aim for the ultimate performance on the best suited
architecture but wants to demonstrate that a simple camera and a
PC with a powerful graphics card suffice for the real-time motion
estimation and visualization of image sequences.

Because of its outstanding price-performance ratio, graphics hard-
ware has already been considered for the implementation of various
general computing problems. We refer to [GPGPU ] for a compre-
hensive overview. We are the first to address motion estimation
on graphics cards, but individual parts of our algorithm are related
to other work in this area, such as filtering [Hopf and Ertl 1999;
Hadwiger et al. 2002; Colantoni et al. 2003], linear algebra opera-
tions [Goodnight et al. 2003; Bolz et al. 2003; Krueger and West-
ermann 2003], visualization [Colantoni et al. 2003; van Wijk 2002;
Weiskopf et al. 2003], adaptive hardware techniques [Lefohn et al.
2003; Strzodka and Telea 2004; Coombe et al. 2004].

Along with the increasing number of CCTV cameras literature on
video surveillance has grown rapidly [Chellappa(Ed.) 2000; IEE
2003; Kittler and Nixon 2003]. In contrast to most other contribu-
tions we concentrate on the real-time visual emphasis of the motion
field with standard hardware components, assuming a complex mo-
tion pattern in the scenes, which defeats simple tracking or classifi-
cation of individual activities. This is also orthogonal to [Daniel and
Chen 2003], where an efficient 3D visualization most suitable for
a compact summary of isolated motion events has been presented.
Concerning the angiography sequences research focuses mainly on
the segmentation of the vascular system [Kirbas and Quek 2002].
We operate in real-time directly on the images similar to [Brodsky
and Block 2003], whereas in a post-processing step a much more
detailed analysis can be obtained [Watanabe et al. 2002].



2 Motion Estimation

We quickly review the gradient based optical flow method we use
and describe on the algorithmic level the computations we perform.

2.1 Optical Flow

A very common assumption in computations of image velocity is
the brightness change constraint equation (BCCE) [Horn, B. K. P.
and Schunk, B. 1981]. It states that the image brightnessg(~x, t) at
the location~x = (x1,x2)> should change only due to motion, i.e.
the total derivative of its brightness has to vanish [Fennema, C. and
Thompson, W. 1979]:

dg
dt

=
∂g
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∂x
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+
∂g
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= gt +(~f~∇)g = d> · p = 0, (1)

with the optical flow~f = (dx/dt,dy/dt)> = (u,v)>, the spacial
gradient~∇g and the partial time derivativegt = ∂g/∂ t. The data
vector ~d is given by~d = [gx,gy,gt ]> and the parameter vector by
~p = [u,v,1]>.

Equation (1) poses an under-determined system of equations, as
there is only one constraint with the two unknowns of the opti-
cal flow vector~f . Assuming constant optical flow over a small
spatio-temporal neighborhood surrounding the location of interest
containingm pixels (for optical flow [Lucas, B. and Kanade, T.
1981] and [Campani, M. and Verri, A. 1990]), the problem consists
of m equations of the form of Equation (1). With the data matrix
~D = (~d1, . . . ,

~dm)> the total least squares problem can be reformu-
lated as the structure tensor [Knutsson 1989; Bigün, J. et al. 1991;
Haußecker, H. and Spies, H. 1999], that is

||~D~p||2 =
∫ ∞

−∞
w(~x−~x′, t− t ′)

(
~p>~D>~D~p

)
d~x′dt ′

= ~p>~J~p−→min (2)

~J :=
∫ ∞

−∞
w(~x−~x′, t− t ′) ~D>~D d~x′dt ′

with the boundary condition~p>~p = 1 to avoid the trivial solution
~p = 0. Herew(~x−~x′, t − t ′) represents a weighting function that
defines the spatio-temporal neighborhood for which the parameters
are to be estimated. On a discrete grid the integral is changed to a
summation and the weight functionw(~x−~x′, t−t ′) to the individual
weightswi . A binomial filter has been proven to be a good choice
for the weightswi as it is both symmetric and leads to a decreasing
influence of data terms with distance from the considered pixel. The
parameter vector~p was taken out of the integral as it is assumed to
be locally constant.

After incorporating the boundary condition in a Lagrangian multi-
plier calculus the minimization problem of Equation (2) is reduced
to an eigenvector problem of the symmetric matrix~J:

~J~p = λ~p. (3)

Consequently, the eigenvector~e3 to the smallest eigenvalueλ3 of
~J is the solution of the minimization problem. The velocities are
given after normalization

~p = [u,v,1]> =~e3/~e3,3 , (4)

where~e3,3 is the last element of the eigenvector~e3. The eigensys-

tem of the symmetric matrix~J can be computed with Jacobi rota-
tions as described by [Press, W. et al. 1992] or more elaborately by
the algorithm proposed in [Drmac 1997].

2.2 Computation

The structure tensor~J can be computed quite efficiently. First of all
the spatial-temporal gradientsDx, Dy andDt have to be estimated.
Here an isotropy optimized Sobel operator is used [Jähne, B. et al.
1999]. The elements of the structure tensor~J can then be computed
from

~J = B(Dx ·Dy),

with the smoothing operatorB and the differential operatorDq in
the direction of the coordinateq. We use a 3 or 5 tab optimized
Sobel operator and the integration is also performed on a 3 or 5 tab
with a binomial filter for smoothing. The computational cost can be
further reduced by exploiting the separability of the involved filters.

The estimation of the full optical flow field~f is only possible if
no aperture problem is present [Hildreth 1984]. This is equivalent
to requiring that the rankr of ~J be r = rank~J = 2. By analyzing
the eigenvalues of~J a coherence measurece can be computed, in-
dicating regions where full motion can be derived. This coherence
measure is given by

ce =
λ2−λ3

λ2 + λ3
, (5)

whereλ3 andλ2 are the smallest and second smallest eigenvalues,
respectively.

In natural image sequences large areas with negligible spatio-
temporal gradients may be present. Since the trace of a matrix is
invariant under rotation, trace~J presents a good measure for these
areas. By only computing the eigensystem of~J at locations where
the trace of the matrix is above a certain thresholdτ, unnecessary
computational cost is avoided. We refine this approach further by
treating the diagonal elements of spatial and temporal gradients sep-
arately, i.e. we require

~J11+ ~J22 > τs (6)

~J33 > τt . (7)

This condition is not fully rotationally invariant anymore, but al-
lows a much better detection of motion irrelevant regions.

In our application concerned with the real-time presentation of se-
lected motion features we can further reduce the computational load
without significant loss of accuracy. First, we reduce the spatial res-
olution of the images with a down-sampling step. This is legitimate
since in a real-time display the user is not able to draw any informa-
tion from a single pixel anyway, and we often even apply a smooth-
ing step for the visualization of the motion (Section 3.4). After the
computation the images are scaled up again for display. The down-
sampling is not critical as long as the texture information, which
is crucial for the diversification of the structure tensor elements, is
not lost. Typically we scale down the VGA format (640x480) to
320x240.

We also reduce the temporal resolution of the image sequence, if the
frequency is higher than 25Hz. By performing the eigenvalue anal-
ysis for every other image, execution speed increases significantly.
The problem of temporal aliasing can be counteracted by calculat-
ing the regularized gradients for all images of the sequence. Thus
we obtain motion estimates of exactly the same quality as before
but simply with a lower frequency, typically 25Hz.



3 Visualization

In this section we follow the visualization process from the raw
velocities to the display of motion features in the image sequence.
Figure 1 accompanies the explanation of the individual steps of this
process.

3.1 Coloring

From the motion estimation we obtain an image with the estimated
x and y velocities (Eq. 4). In Figure 1a we see the modulus of
the velocity as intensity. Visual representation of vector fields is an
extensive topic of its own. However, in real-time image sequences
there is little time for computation and the user has only a frac-
tion of a second to perceive and understand the images. A reliable
method for conveying a qualitative picture of the motion is to use
color, color is especially useful to catch the eye of the observer in
an otherwise gray image [Travis 1991].

We use a 2D color map to represent the motion field. Theoretically
each location in the color map is assigned a different color, such
that all directions can be unambiguously distinguished, but it is il-
lusionary to think that this information can correctly be interpreted
in real-time. It is more advisable to adapt the color map to the ap-
plication in mind. For the test sequences of walking people we use
a map which helps to distinguish the differences inx velocity, with
the y axis being poorly represented (Figure 2a). Figure 2b shows
a map which represents all directions equally well. However, this
color richness can be often more confusing than helpful and so for
the medical data sets we use either a rainbow encoding of the veloc-
ity modulus (Figure 2c) or even a single color and rely on the fading
explained below to better convey the motion. From the implemen-
tational point of view any texture with a color map could be used.
Figure 1b is an image of the test sequence after the first coloring
step.

3.2 Blending

The motion estimator works adaptively only on these regions which
yield a sufficiently pronounced structure tensor (Eqs. 6,7). This
saves a lot of computation time in typical sequences as can be seen
in Figure 1c, where the uncomputed area is displayed in black. De-
spite the air irritations visible in 1b, most of the background is omit-
ted upon Equation 7, while the homogeneous black in the trousers
violates Equation 6. Areas with a strong aperture problem are also
masked out (Eq. 5). For visualization purposes this empty area can
be used to blend in the original image sequence (Figure 1d).

3.3 Region of Interest

In general the motion field contains velocities of various scales and
in a given application we are usually only interested in a small sub-
set of them. Also at spatial and temporal (very fast motion) dis-
continuities we can still obtain erroneous results despite the culling
based on the quality measure (Eq. 5). Therefore, we allow to spec-
ify the region of interest on the velocity modulus or an axis through
the center of the color map to select velocities upon the intensity
in a certain direction, e.g. thex direction in the test sequence. In
Figure 1e we have tried to pronounce the faster moving person in
this way. But we see that the arms and legs of the others are moving
at an even higher velocity. We need additional post-processing to
distinguish among the velocity regions.

a
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g

Figure 1: The steps of the visualization pipeline described in Sec-
tion 3. Every fifth frame of the sequence is shown.
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Figure 2: Color maps used for the coloring of the velocities

3.4 Smoothing

The previous selector determines the visible value range of the ve-
locities. This produces regions of similar velocity but different size.
We can use their size and form as a criteria to differentiate between
them. For this purpose we apply a hierarchical smoothing scheme
which on each level smooths the characteristic function of the se-
lected regions. By thresholding the obtained values we can select
the spatial scale of motion regions. The preference of this process
for regions expanded in a certain direction can be influenced by
changing the weights of the smoothing mask. The scheme applies
the smoothing also to the velocities themselves to obtain a nicer
visual representation. Figures 1f andg show the results after the
application of 3 and 5 smoothing steps in the hierarchy respectively.

In the sequence from which Figure 1g has been extracted only the
faster moving person is marked by the display of the motion region.
All other motion regions, though similar or even higher in velocity,
are masked out. This masking is very general and does not require
any knowledge about the objects or type of motion. However, if
this knowledge is present it could help to provide even finer feature
distinctions. In future, we will therefore consider the integration of
one of the many motion segmentation techniques which can incor-
porate such a-priori information.

3.5 Fading

In some cases we are not only interested in the display of the current
motion field, but want also to visualize the regions already effected
by previous motion. In angiography, for example, the flow of blood
marked by a contrast agent is of great interest to the physician. But
the motion estimator can only compute velocities at the front of the
in- or outflowing agent. Without further processing the visualiza-
tion of these velocities results in a confusingly fast rush of colors
through the image sequence. Such sequences have also a lower
temporal resolution, so that the motion estimates at any individual
time point are not as reliable as their weighted integration.

During the streaming of the sequence we record for the each pixel
location the point in time at which it represented a non zero velocity.
This information is used to display a fading of the recorded motion.
Figure 8 shows the benefit of this visualization method.

4 Hardware Implementation

Graphics cards are neither the most flexible nor powerful archi-
tectures for our application. But they perform better than typical
micro-processors on such problems, because they use a different
computing paradigm which is more suitable for the throughput of
large data volumes. This means that they are the platform of choice
for an inexpensive image sequence processing tool. To point out
the architectural benefits of graphics cards we sketch their relation
to the general idea of data-stream-based processing.

4.1 Data-Stream-Based Processing

In data-stream-based architectures the data streams rather than the
instruction streams trigger the execution of operations. This com-
puting paradigm deals much better with the memory gap [Wilkes
2000], the mismatch of memory and processor performance. In
contrast to software for instruction-stream-based architectures, e.g.
micro-processors, it requires two programming sources:flowware,
which determines the assembly and direction of data streams, and
configware, which contains the configuration of the processing el-
ements. In FPGAs and some reconfigurable computing machines
both sources can be executed on the same elements, but conceptu-
ally they are still different. Processor-in-Memory or stream archi-
tectures usually require two different sources explicitly.

The dual programming model has the great advantage that the in-
dividual elements of the data streams are assembled from mem-
ory before the actual processing. This allows the optimization of
the memory access patterns, minimizing latencies and maximizing
the sustained bandwidth. Unimodal software programs used for
instruction-stream-based architectures allow only a limited prefetch
of the input data, based on predictions of conditional jumps in the
instruction stream. We recommend [Hartenstein 2003] as a starting
point for further reading on this subject.

Graphics processors are a subclass of stream processors. Beside
their unrivaled price-performance ratio, they have the great advan-
tage that there exist widespread platform (DirectX API) and system
(OpenGL API) independent Application Program Interfaces (APIs)
for access to their functionality. The APIs are used both for the
specification of flowware and configware, but the commands are
clearly distinguished. In the following we describe first the con-
trol of the data-flow (flowware) and then the configuration of the
processing elements in the graphics pipeline (configware) for our
application.

4.2 Data-flow

First we assume that the individual images of the image sequence
lie in main memory. The images are transported one by one to
the graphics card with an asynchronous mechanism, which allows
the card to continue the current computation during the transfer.
For this we use several circular buffers on the card, and the image
loads to a buffer position which is not needed in the concurrent
computation. Each image is read only once, so that the AGP bus
provides sufficient bandwidth in comparison to the number of on-
card operations as not to decrease the overall performance. Because
all steps of the algorithm are performed on the card, no additional
memory transfers are needed. The final result is displayed directly
from the graphics memory onto the screen.

On the graphics card the images are represented as pbuffers. These
buffers can serve either as a source (texture) or a destination of
data streams (see Figure 3). The operations of the algorithm are
performed by streaming the texture operands through the appropri-
ately configured graphics pipeline (Section 4.3) to a target pbuffer.
The target pbuffer can then be used as a texture operand in the suc-
ceeding operation. Because several such passes are required by the
algorithm, we use mainly floating point pbuffers to retain sufficient
precision in intermediate computations.

As long as the same operation is applied to all image pixels, the
entire images form the data streams, as the efficiency of the pipeline
grows with the size of the streams. The handling of the adaptive
exclusion of certain regions from computation, which requires the
use of smaller streams, is described in Section 4.4.
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Figure 3: A simple diagram of the DX9 graphics pipeline. Light
gray represents data containers, dark gray processing units. In each
pass a different texture can serve as the target pbuffer for the output
data stream.

Currently we assume that the image sequence is stored in the main
memory. Since we need to read each image only once, the algo-
rithm would work just the same if the images arrived from an ex-
ternal source at a certain memory address one by one. In fact, in a
future version we plan to decode a video stream in real-time on the
CPU, while the graphics processor works on the motion estimation
and visualization.

4.3 Graphics Pipeline

The DX9 graphics pipeline contains two freely programmable
parts, the vertex and the fragment processor (Figure 3). The ver-
tex processor mainly manipulates the input vertex and texture co-
ordinates and vertex color. The hard-wired rasterizer interpolates
these values for each pixel in the primitive which is currently be-
ing drawn, e.g. a triangle. The interpolated values associated with
one pixel location are called a fragment. They are manipulated by
the fragment processor. The fragment processor combines the frag-
ment data with possibly additional values from up to 16 textures to
determine the output value for the current pixel.

Each vertex and each fragment is processed independently of the
others in the same data stream. Therefore, they can be processed
in parallel very quickly. The processing of streams achieves high-
est performance if the data streams are large and the texture ac-
cess in the fragment processor uses only neighboring texture val-
ues, such that internally bandwidth-efficient memory burst-modes
can be used and latency can be hidden with small caches.

The application’s configware for the graphics pipeline consists
mainly of short assembly programs for the vertex and fragment pro-
cessor. Beyond, there are only minor parameter configurations of
the fixed parts of the pipeline, e.g. the per-fragment tests which are
executed after the fragment processor has completed. For the de-
sign of the configurations we use Cg [NVIDIA 2002], a C-like high
level graphics programming language. A compiler generates from
Cg the assembly code understood by the API.

In image based problems like ours the fragment processor bears
most of the computational burden. We use the vertex processor
only for the generation of texture coordinates to the neighboring
values in a texture, whereas each step in the algorithm (Figure 4)
requires a different configuration of the fragment processor.

The eigenvector analysis of the tensor is by far the longest and thus
most demanding fragment program with almost 300 assembly oper-
ations for the 3 sweeps of the Jacobi method for matrix diagonaliza-
tion. The main visualization program (coloring, blending, fading) is
the next larger with approx. 50 operations, but most configurations
have less than 10. Therefore, it makes sense to design an adaptive
scheme which skips the eigenvector analysis for irrelevant data.

motion estimation {
start loading of image for next iteration
sample down current image
compute optimized gradient with Sobel masks
assemble the weighted structure tensor
classify irrelevant regions for culling
compute motion estimates through

an eigenvector analysis of the tensor
}
visualization {

select a range of velocities
smooth the selected motion regions hierarchically
record the selected motion areas
visualize the result: coloring, blending, fading
display the result
}

Figure 4: Overview of one iteration of the main algorithm. Apart
from the loading, each line corresponds to the configuration of
the fragment processor with the corresponding program and the
streaming of the texture operands through the so configured graph-
ics pipeline (see Figure 3). Some operations require several passes
with slightly different configurations, e.g. smoothing inx and y
direction.

4.4 Adaptivity

By analyzing the structure tensor (Eq. 2) we can save on the com-
putation of the eigenvectors in areas which do not contribute sig-
nificantly to the motion field (Eqs. 6,7). However, the introduction
of efficient dynamic adaptive processing in graphics hardware is
not straight forward. There exist per-fragment tests in the graph-
ics pipeline which skip further processing depending on predefined
masks and values of the fragments, but these are not very efficient,
because they cannot exclude larger areas from processing at once.
The fragment processor can also discard fragments, but in such a
case the whole fragment program is still executed and only the fi-
nal result is discarded. Significant speedup can currently be only
obtained by culling areas on the vertex level.

The image is divided into tiles, each of which generates a data
stream much smaller than the whole image. Smaller streams re-
duce the efficiency of the pipeline, but this effect is compensated to
some extent by the graphics driver, which can efficiently catenate
the individual data streams if their defining geometry is given in
advance, ideally in a server sided vertex buffer object. A classifi-
cation step determines which tiles need to be processed further and
which can be skipped in the following. The classification step can
be performed by combining the data of each tile to a single value
and retrieving the values of all tiles with a single read-back to the
main memory as in [Lefohn et al. 2003], where this technique has
been introduced.

We use a different classification step which avoids the read-back by
exploiting the occlusion test functionality. The test counts the num-
ber of passed fragments at a late stage in the graphics pipeline. The
counters can asynchronously be retrieved from the graphics driver,
i.e. they do not stall the ongoing computation. By discarding frag-
ments upon the conditions in Equations 6,7, we thus easily obtain
the number of motion relevant pixels in each tile, and can skip its
subsequent processing if the number is below say 5%. The transi-
tion from Figure 1b to c demonstrates the savings. The tile structure
becomes visible if one skips tiles with too many relevant pixels, e.g.
90% in Figure 5. For entire images the efficiency of the occlusion
test has already been demonstrated in [Goodnight et al. 2003]. See
also [Coombe et al. 2004] for a similar tile based testing.



Figure 5: The visible tiling in the adaptive scheme for much too
aggressive culling. In Figure 1c the standard setting is used.

a

b

Figure 6: Visual emphasis of faster moving persons. In the upper
row only the slightly brighter green conveys the qualitative velocity
difference. Below the visual mark makes it much clearer.

5 Results

We use two types of image sequences as examples: test sequences
of walking people to demonstrate the tool’s ability to distinguish
similar motion features, and angiography sequences for the en-
hancement of blood flow.

5.1 Motion Features

The sequences with walking people were recorded in VGA format
at 100Hz. The computation takes place on 320x240 images. The
eigenvector analysis runs on every fourth image resulting in a real-
time requirement of 25Hz output frequency. Section 5.3 discusses
the performance results.

Figure 1, discussed in Section 3, shows the individual steps which
made it possible to visually extract the feature of the slightly faster
moving person despite smaller regions (arms, legs) of higher veloc-
ity. Figure 6 shows another sequence of the same kind. In the above
examples the parameters must be set carefully to obtain the visual
distinction with such clarity. But it is obvious that a higher velocity
difference requires only a rough selection of the visualization pa-
rameters. For example, for the task of marking persons who move
in the wrong direction only the sign of admissiblex velocities must
be set correctly (Figure 7).

a

b

c

Figure 7: Marking of people who move in the wrong direction.
Despite the occlusion the visual emphasis is very accurate.

a

b

c

Figure 8: High velocities detected in the blood flow emphasized by
a color fading. At the time point of frameb no velocities can be
detected, such that without the fading the frame would not show
any color at all.



Figure 9: Detected regions of wide-stretched motion in the vascular
system. Color indicates the modulus of velocity.

5.2 Flow Enhancement

The angiography sequences have a resolution of 1024x1024 at
20Hz. The computation takes place on 256x256 images, without
a reduction of the temporal axis.

The first example shows the blood flow in a kidney (Figure 8). We
see how the fading of the color helps to understand the distribution
of the motion. In the second example we record the motion regions
extending over a certain spatial scale to help in finding turbulent
areas in the vascular system (Figure 9).

5.3 Performance

All results were computed with a GeForceFX 5800 Ultra 500MHz
graphics processor. For comparison we have run a cache and SSE
optimized version of the motion estimator on a Pentium 4 2GHz-
FSB400 machine. Nowadays, the comparison is still in favor of
the micro-processor, since the FX5800 is an old DX9 chip and the
performance difference to the current graphics processors is larger
than between the older and more recent Pentium 4 systems.

Sequence Loops P4 FX5800 Speedup Est.+Vis.
Figure 1 403 22.4 5.0 4.5 6.0
Figure 6 353 19.8 4.3 4.6 5.2
Figure 7 303 17.7 3.8 4.7 4.6

The last column shows the graphics hardware timings for the whole
process, i.e. motion estimation and visualization. We achieve a
4.5 speedup factor, which is a good value for this computationally
intensive problem, in which the micro-processor benefits from its
higher internal clock. Because of the long assembly program for
the eigenvector analysis, our algorithm is bound by the fragment
processor performance. In a software program the choice of sub-
diagonal elements within a Jacobi sweep and the overall number of
sweeps can be reduced dynamically depending on a user given tol-
erance. Similar our algorithm would also benefit from the proposed
feature of dynamic branching in graphics hardware. However, we
soon (May 2004) expect a quadrupled speedup simply from the fact
that the upcoming generation of graphics cards presumably has four
times the number of arithmetic units as the FX5800. In practice this
would mean operating in real-time on full VGA image sequences.

6 Conclusions

We have presented a tool for the real-time motion estimation and
visualization of image sequences. The precise, dense motion
estimation allows to visually distinguish even very similar fea-
tures through appropriate post-processing steps. The visualization
pipeline contains several stages which can be easily controlled to

serve the needs of different applications. Other hardware systems
perform even more time consuming motion analysis in real-time but
at a much higher price. For our tool a simple camera and a standard
PC with a DX9 graphics card suffice, because we make efficient use
of its data-stream-processing capabilities.

The current version implements the basic motion estimation based
on the BCCE. This implies that gray values are modeled to remain
constant on their trajectory. We want to incorporate further exten-
sions which allow a gray value change as described by an appro-
priate partial differential equation [Haußecker, H. and Fleet, D. J.
2000]. In real world sequences another problem often encountered
is multiple or transparent motion. The framework presented in this
paper could also be extended to incorporate this type of motion
[Mota, C. et al. 2001].

The unambiguous marking of objects with a certain motion feature
suggests some sort of artificial intelligence in the algorithm. But
currently the visual marks are based solely on the motion values.
The inclusion of a-priori knowledge about the objects in the images
could help to resolve even more difficult situations than those in the
presented examples. From the implementational point of view we
want to involve the CPU in the processing by decoding a camera’s
video stream and reusing its coarse motion estimators in real-time,
while the graphics processor executes the precise motion estimation
and visualization.
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