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Abstract—We present a parallel multigrid method for solving
variable-coefficient elliptic partial differential equations on arbi-
trary geometries using highly adapted meshes. Our method is
designed for meshes that are built from an unstructured hexa-
hedral macro mesh, in which each macro element is adaptively
refined as an octree. This forest-of-octrees approach enables us
to generate meshes for complex geometries with arbitrary levels
of local refinement. We use geometric multigrid (GMG) for each
of the octrees and algebraic multigrid (AMG) as the coarse grid
solver. We designed our GMG sweeps to entirely avoid collectives,
thus minimizing communication cost.

We present weak and strong scaling results for the 3D variable-
coefficient Poisson problem that demonstrate high parallel scal-
ability. As a highlight, the largest problem we solve is on a
non-uniform mesh with 100 billion unknowns on 262,144 cores
of NCCS’s Cray XK6 “Jaguar”; in this solve we sustain 272
TFlops/s.

I. INTRODUCTION

We focus on multigrid solvers for elliptic partial differential
operators. Roughly speaking, there are two main challenges
in numerically “inverting” elliptic operators, meshing and ill-
conditioning of the linear system that we obtain upon dis-
cretization. Various schemes that address these two issues exist
but they are fragile in that their effectiveness is very sensitive
to the domain geometry, boundary conditions, and highly
variable coefficients. The difficulties in designing solvers for
elliptic operators are amplified when we target extreme scale
parallelization since issues related to efficient data structures,
latency and communication, and overall efficient utilization of
resources come into play.

Multigrid is one of the most effective solvers for elliptic
operators. It is algorithmically optimal, robust when combined
with Krylov methods, and in the case of uniform grids, quite
easy to implement and parallelize. (However, getting good
per-core performance is harder.) Parallel scalability becomes
much more involved in the case of non-uniform grids, but
there are many success stories when the overall geometry is
regular (e.g., box, cylinders, periodic domains). For highly
unstructured grids, the performance of existing technologies
severely degrades for very large core counts.

The key challenges in the parallel scalability of multigrid
are the efficient construction of coarsening and prolongation
operators and the need for repartitioning and load balancing

103 104 105

10

20

30

40

50

cores→

tim
e(

se
c)
→

AMG strong
GMG strong

Fig. 1. Strong scalability comparison between algebraic and geometric
multigrid for a variable-coefficient Poisson solve on an spherical shell mesh
adaptively refined based on the gradient of the coefficient with overall 124M
elements. Reported is the total time to solution, i.e., the sum of setup and solve
times. The 256-fold increase in the number of cores reduces the number of
elements per core from 240K on 512 cores to just 946 on 131,072 cores.
Both methods show a similar scaling behavior up to 16K cores. For problems
larger than that, our matrix-free geometric multigrid implementation scales
significantly better than AMG. We used ML [1], which implements smoothed
aggregation algebraic multigrid. This comparison was performed on ORNL’s
Jaguar XK6 supercomputer.

the mesh all the way to the coarse grid while minimizing
communication. Furthermore, exa-scalability requires avoid-
ance of synchronizations—something that seems antagonistic
to the complex mesh management operations described above.

Contributions: We address these challenges and present a
parallel multigrid algorithm that uses the adaptive spatial data-
structure framework [2] developed in our group. There, we
used the notion of a “macro mesh”, a general unstructured
hexahedral mesh that is refined using one octree data-structure
per hexahedron (thus, the term “forest of octrees”). We trans-
late this two-tier representation of the mesh to a two-tier
algebraic and geometric multigrid solver. In a nutshell, the
major contributions of this work are:

• We present a parallel geometric multigrid method on

SC12, November 10-16, 2012, Salt Lake City, Utah, USA
978-1-4673-0806-9/12/$31.00 c©2012 IEEE



8 64 512 4096 32K 262K
0

20

40

60

cores→

tim
e(

se
c)
→

Smoother Transfer
Setup Coarse

100% 97% 90% 76% 65% 55%

Fig. 2. Weak scalability of a variable-coefficient Poisson solve on an spherical
shell mesh adaptively refined based on the gradient of the coefficient. Reported
are timings for 8 iterations of a geometric multigrid-preconditioned conjugate
gradient method, as well as the overall parallel efficiency in percentage. The
overall time is split into the setup time, the smoothing time, the time for
the coarse grid solve and for the parallel transfer between the meshes of the
hierarchy. A grain size of 215K elements per process is used, which amounts
to overall 56 billion elements for the largest problem. Note that we report
weak scaling results from 8 to 262,144 cores, which is a 32,768-fold increase
in problem size.

complex geometry-conforming adaptive meshes. We use
matrix-free element-by-element traversals for the appli-
cation of the system matrix on all multigrid levels except
the coarse one, where the matrix is assembled and we
employ algebraic multigrid for the coarse grid solve.
The combination of GMG and AMG results in excellent
scalability.

• We perform optimizations that enable us to achieve
good single-core performance. We test the solver us-
ing a second-order discretization and thus, the calcula-
tions are memory-bound. We employ vectorization using
Streaming SIMD Extensions (SSE) along with on-the-
fly computations of geometric factors (the Jacobian and
its determinant) resulting in improved performance. Our
geometric multigrid does not require global identifiers
for the communication, it is synchronization-free and
uses only point-to-point, non-blocking communication,
resulting in excellent strong and weak scaling.

• Finally, we conduct several experiments in which we test
our algorithm and implementation on different meshes
for constant and variable coefficient Poisson problems in
3D, and compare with state-of-the art algebraic multigrid
solvers. We report strong (Figure 1) and weak (Figure 2)
scaling results.

Related work: There is an extensive amount of work on
multigrid and its parallelization [3], [4], [5], [6], [7], [8].
Here, we restrict ourselves to recent work on parallel multigrid
methods for high-end distributed memory architectures. The
closest work to this paper is the work of two of the authors on
octree multigrid solvers [9], [10] in which excellent sclability

has been demonstrated to thousands of cores. However, that
approach suffers from two significant limitations, namely,
it involves significant use of collective MPI calls at each
multigrid cycle and does not handle complex geometries.

Multigrid on hierarchical hybrid grids (HHG) [11], [12] also
employs a geometry-conforming unstructured macro mesh. In
contrast to our approach, HHGs use uniform mesh refinement
in each cell of the macro mesh. This makes it possible to
implement extremely memory efficient coarsening and refine-
ment for problems with constant coefficients. By construction,
this approach only allows for limited, macro mesh-based
adaptivity, while we allow arbitrary localized refinement and
coarsening below the macro structure. HHGs were recently
used to obtain impressive weak scaling results on up to 300K
cores on Blue Gene/P in Jülich, with a maximal overall
problem size of 1012 unknowns [13].

Based on a new version of the unstructured grids (UG)
package [14], recent work [15] presents formidable weak
and strong scalability results for a Laplace equation on Blue
Gene/P in Jülich on up to 262K cores. These results are for
uniformly refined unit cubes, but, in principle, the frame-
work also supports non-uniform meshes and different element
types. Starting from a coarse mesh, it creates hierarchically
distributed grids for the multigrid sweeps through refinement.
To control the amount of communication, coarse grids are only
distributed across subsets of processors.

Multigrid within the Peano framework (which uses space
filling curves) is presented in [16], [17]. Adaptive grids on
cube-shaped domains are constructed by a recursive splitting
of each cell into three subcells in each coordinate direction. In
[18], weak scalability results for a solver involving geometric
multigrid on up to 900 cores are presented.

Geometric multigrid on a combination of globally unstruc-
tured and locally structured meshes is implemented in the
Finite Element Analysis and Solution Tools (FEAST) [19] and
has been scaled to 128 CPU cores. Here, the main target is on
implementations and methods that achieve good performance
on different architectures, including GPU-accelerated clusters.

An alternative to geometric multigrid are algebraic multigrid
(AMG) approaches, for which the setup of the hierarchy uses
graph-based algorithms rather than geometric mesh properties.
AMG requires a setup phase in which a grid hierarchy
and corresponding interpolation and restriction operators are
computed solely based on the fine grid system matrix, which
must be provided in assembled form. Parallel implementa-
tions of AMG require communication during the setup phase
to properly aggregate degrees of freedom across processor
boundaries. During this phase there is a trade-off between
the depth and effectiveness of the multigrid hierarchy, and
the memory and time used for the setup and for performing
multigrid cycles. Challenges for parallel AMG are surveyed
in [20].

One of the most powerful parallel implementation of alge-
braic multigrid is BoomerAMG from the Hypre linear solver
library [21]. Recently, a significant effort has been made
to prepare BoomerAMG for next-generation supercomputers



with millions of cores [22], [23]. This requires, for instance,
improved coarsening strategies to reduce the complexity in
the AMG grid hierarchy and thus maintain sparsity of the
system matrix and the interpolation and restriction operators
[24]. The latest implementation of BoomerAMG also supports
64 bit integers, and thus accommodates problems with more
than 2 × 109 unknowns. ML [1] from the Trilinos Project
[25] implements smoothed aggregation, a variant of AMG, and
has shown excellent robustness and scalability. Our geometric
multigrid method uses ML for the coarse grid solve. Other
parallel implementations of algebraic multigrid target fine-
scale parallelism as required on clusters of GPUs, where the
problem must be split into many independent threads to obtain
good performance [26], [27], [28].

Finally, we briefly contrast AMG and GMG approaches.
The advantages of AMG are that it can be used as a black-
box algorithm and does not require geometry or mesh in-
formation (except for the fine mesh). Its disadvantages are
the communication-intense setup and the increased memory
requirement compared to matrix-free geometric multigrid.
Advantages of GMG are that it can be used in a matrix-
free fashion and that it has low memory overhead. Moreover,
operators can easily be modified at different levels, which can
be necessary to accommodate certain boundary conditions.
The disadvantages of GMG are that it requires a hierarchy
of meshes and that it cannot be used in a black-box fashion.

Limitations: Our methodology enables the solution of prob-
lems that were earlier intractable. Nevertheless, it has several
limitations. First, it cannot handle a large number of jumps
of the coefficients efficiently since the restriction and pro-
longation operators do not use coefficient information. Large
anisotropies or re-entrant corners cause degradation of the
smoother efficiency. Although there is some work on the
load balancing quality using space-filling curves [18], these
results do not apply to the Morton ordering we use. Thus,
we were not able to derive guaranteed theoretical complexity
estimates. In practice however, we never observed any issues
with the quality of the parallel partition or load balance.
Finally, if the mesh does not conform to the idea of the
macro mesh, an octree forest cannot be used. Yet, our approach
can handle surprisingly complex geometries, as our examples
demonstrate.

Organization of the paper: In the following §II, we sum-
marize the multigrid method and the overall structure of our
forest-of-octrees-based meshing, coarsening and paralleliza-
tion approach. We discuss the main algorithmic innovations
and provide a complexity analysis of our scheme. In §III,
we present scalability and robustness tests for constant and
variable coefficient Poisson problems on a variety of meshes.
We conclude in §IV.

II. GEOMETRIC MULTIGRID

The multigrid method for solving the discretization

Ahuh = fh (1)

of an elliptic partial differential equation amounts to the
recursive application of the following two-grid method to
iteratively reduce the residual in (1):

Pre-smooth: uk ← Sk(uk, fk, Ak)
Compute Residual: rk ← fk −Akuk
Restrict: rk−1 ← Rkrk
Recurse: ek−1 ← A−1

k−1rk−1

Correct: uk ← uk + Pkek−1

Post-smooth: uk ← Sk(uk, fk, Ak)

Here, Sk is the smoother and k ≥ 0 denotes the multigrid level.
The solve at the coarsest level k = 0 is done using a direct
solver; in our case using algebraic multigrid. This scheme is
often referred to as a V-cycle.

Our target is a highly scalable, distributed-memory parallel,
matrix-free implementation of the geometric multigrid method
on adaptively refined grids and complex geometries. We focus
on non-conforming octree-based hexahedral discretizations
which allow a high level of adaptivity and parallel efficiency.
In the following sections, we first introduce our adaptive
octree-based meshing framework and the generation of the
multigrid hierarchy, followed by details of the various steps
of the V-cycle.

A. Octree-refined Unstructured Meshes

Octrees are axis-aligned binary space partitions in 3D.
Given the axis-aligned nature of the partitions, the root of
an octree can be associated with a topologically equivalent
3D domain that can be mapped smoothly to a cube. Recursive
subdivision of the tree to generate octants corresponds to a
subdivision of the mapped domain and thus generates a mesh
that can be used for the discretization and numerical solution
of a partial differential equation. A forest is a collection
of octrees, which are connected conformingly through faces,
edges and corners [2]. Such a forest of octrees allows for
a two-tier decomposition of geometric domains, where the
first tier, called the macro mesh, is an unstructured mesh of
conforming subvolumes, each mapped from a reference cube
by a smooth transformation. Recursive octree subdivision then
allows for efficient octree-based adaptivity of the mesh in
the geometric domain. Localized subdivision generally creates
non-conforming meshes, which can still be used to represent
continuous finite element solutions by incorporating algebraic
constraints at the element level. The first-tier macro mesh can
be specified by hand for simple domain shapes, or generated
by hexahedral mesh generators to conform to more general
shapes. The second-tier adaptivity allows for dynamic refine-
ment and coarsening and can be driven through error indicators
or problem-specific parameters such as material properties.
The adaptive octree structure can naturally be interpreted to
define a recursive space filling curve that traverses all octants
in all trees in the so-called Morton- or z-order. This curve
provides the basis for sorted numbering and fast repartitioning
of octants between processes, a fact that we exploit in the
creation of the multigrid hierarchy.



Completely unstructured meshes naturally provide the
largest geometrical flexibility. However, their adaptation and
the construction of mesh hierarchies and intergrid operators
needed in geometric multigrid methods can be technical and
computationally expensive, in particular in parallel. Compared
to that, meshes based on single octrees provide high levels of
adaptivity, allow efficient parallel mesh adaptation [29], [30],
and are well suited for matrix-free parallel multigrid [9], [10].
However, their applicability is limited either to domains that
can be mapped to a cube or to problems with simple boundary
conditions, which can be approximated reasonably well for
an embedding of the computational domain within a cube.
Unfortunately, many important problems require geometric
domains that are topologically distinct from a cube and have
complicated boundary conditions. The Earth’s mantle and the
Antarctic ice sheet—both used in this paper—are just two of
many examples.

A two-tier approach combing an unstructured macro mesh
with octree refinement for each macro element combines the
flexibility of unstructured meshes with the efficiency and high
levels of adaptation of a single octree approach, and thus
provides a suitable starting point for highly scalable geometric
multigrid. In the next section, we describe the setup of the
multigrid mesh hierarchy in this context.

B. Setting up the Multigrid Hierarchy

Multigrid requires the construction of a hierarchy of meshes
such that every octant at level k is either present at the finer
level k+1 or is replaced by its eight children. This construction
constitutes the setup phase of GMG and needs to be done only
once as long as the fine mesh does not evolve in time. The
main steps in building a grid hierarchy, such as displayed in
Figure 3, are the following:

1) Coarsen: Coarsen the fine mesh by one level by travers-
ing the forest in order. Since we use a Morton-ordered linear
representation of the octree, a family of eight sibling octants,
where present, will be contiguous in memory. The coarsen
operation replaces these with their parent to produce the coarse
octree. To make coarsening a processor-local operation, we
partition in such a way that every family of eight sibling
octants that is a candidate for coarsening is placed on the same
process; see §II-F. In the context of a forest of octrees it is
important to note that we cannot coarsen beyond the first-tier
macro mesh. More details on the coarsening algorithm can be
found in [2], [9].

2) 2:1-Balance: We require that the sizes of adjacent
octants can at most differ by a factor of two. This is known as
the 2:1-balance constraint. Details on enforcing this constraint
in parallel can be found in [30] and [31]. We call this routine
after coarsening, which effectively refines locally wherever
the coarsening operation is found to be invalid. While it is
thinkable to combine Coarsen and Balance, we prefer to keep
them separate since both are useful modular operations on
their own.

3) Partition: Coarsening and the subsequent 2:1-balancing
of the octree can result in a non-uniform distribution of coarse

octants across the processes, leading to load imbalance. The
Morton ordering enables us to equipartition the octants by
performing a parallel scan on the number of octants on each
process followed by point-to-point communication to redis-
tribute the octants. Additional issues related to load balancing
are discussed in §II-E.

4) Extract Mesh: By meshing we refer to the construction
of the (numerical) data required for finite element computa-
tions from the (topological) octree data. In addition to the mesh
extracted on the fine grid that is relevant for the simulation
as a whole, we extract two meshes per multigrid level; see
Figure 4. First, we extract a surrogate mesh after coarsening
and 2:1-balance of the forest. It is used to provide information
required for the restriction of the residual, namely the depth
of the elements. Second, we extract the true mesh for this
level after repartitioning the forest. This way we separate the
processor-local numerical restriction from the parallel partition
that does not perform any numerical computation. The true
meshes always contain all information for applying the elliptic
operator Ak in addition to the encoding of the partition. We
have successfully used this two-stage cycle for time-dependent
dynamic AMR simulations in the past [32]. The use of the
surrogate meshes for intergrid transfers is further detailed in
§II-C.

5) Recurse: To build the next multigrid level in the hi-
erarchy, repeat steps 1–4 using the coarsened true mesh as
the new fine mesh. The recursion is stopped when either the
required number of multigrid levels has been created or when
no further coarsening of the mesh is possible, that is, each
octree has been reduced to its root element.

C. Restriction & Prolongation

We implement the restriction and prolongation operators in a
matrix-free manner, using matrix-vector product computations
(MatVecs) that do not require assembly of the matrix entries.
Similar to matrix-free applications of the system matrix, all
operations required for the intergrid operations are done at
the element level. As in [10], the restriction operator is the
transpose of the prolongation operator. Since we use Morton-
ordered linear octrees, these operators can be applied via
a single simultaneous traversal over both the fine and the
coarsened forest. Furthermore, since both octrees are complete
in the sense that they contain a contiguous subset of the
space-filling curve, we only need information on the depth of
the octants within the octree to perform the restriction and
prolongation. It is important to note that one of the main
advantages of implementing geometric multigrid on complete
linear octrees is that no intergrid element searches or look-up
tables are needed. As we traverse both forests simultaneously,
only two possibilities exist1:

• Both the fine and coarse octants are the same,
• The fine octants (eight of them) are children of the coarse

octant.

1This is only true when the forests are at most 1 level apart, as is the case
in our multigrid hierarchy.



(a) 406K elements, h = 1/27 (b) 61K elements, h = 1/26 (c) 11K elements, h = 1/25 (d) 2.4K elements, h = 1/24

Fig. 3. Example for multigrid hierarchy for the spherical shell. Four grids are shown starting from (a) the finest to (d) the coarsest. As can be seen, the factor
by which the total number of elements reduces between grids in the hierarchy can vary, which is due to adaptive nature of our meshes. The color represents
the coefficient field µ, which was used to create the fine mesh (a). Please zoom in on the electronic version to see additional detail.

In the first case, we simply copy the finite-element values as-
sociated with this octant, while in the second case we identify
all independent fine grid nodes that lie within the support of
each coarse grid shape function. Our multigrid implementation
builds on a framework for the discretization of partial differ-
ential equation using continuous and discontinuous Galerkin
finite element methods [33]. Using the transformations from
the continuous to the discontinuous shape functions, we can
implement the restriction and prolongation MatVecs on the
discontinuous element without having to keep track of the
local arrangement of hanging nodes using complex masks as
in [10]. The elemental prolongation is done by evaluating the
local discontinuous shape functions at the locations of the
child nodes. When mapping back from the discontinuous to the
continuous representation, multiple elements will contribute to
the same continuous node. The number of contributions will
depend on the local arrangement of hanging nodes, and so we
keep a count of the number of replications for each continuous
node and average out the values during the transformation.
The computational cost for this step is O(N/p) requiring
an update of ghost values. We interleave computation and
communication to hide the communication costs associated
with this step.

In order to be able to coarsen and prolongate in parallel,
at each grid level, except the finest, we maintain a surrogate
mesh in addition to the true mesh. The surrogate mesh is
needed to represent the intermediate stage of the forest after
coarsening/2:1-balance and before repartitioning. We denote
the redistribution of finite-element values between the pre-
partition and post-partition coarse meshes as Transfer. The
surrogate mesh only stores information needed for the restric-
tion, prolongation and transfer operations (as opposed to an
application of the elliptic operator Ak) and consequently the
memory overhead is low. In summary, we proceed by first
restricting the residual from the fine mesh onto the coarse
surrogate mesh followed by a transfer to the coarse true mesh.
For prolongation, we first transfer the defect correction from
the coarse true mesh onto the coarse surrogate mesh followed
by a prolongation from the surrogate onto the fine mesh.
The multigrid recursion turns this sequence into a V-cycle as

grid 0

grid 1

grid 2

D

True Mesh Surrogate Mesh

T T

T T
R P

R P

Fig. 4. The concept of surrogate meshes to aid in restriction and prolongation
and to ensure proper load balance at all multigrid levels. The downward
arrows refer to the creation of a surrogate mesh by coarsening and 2:1-
balance. It shares the same parallel partition boundaries with the true mesh it
is derived from. Correspondingly, the associated restriction R of the residual is
an operation on the processor-local degrees of freedom. The horizontal arrows
in the left half refer to the creation of the true mesh from the surrogate mesh
by repartitioning, keeping the refinement structure of the mesh unchanged.
Correspondingly, the transfer operation T communicates degrees of freedom
between the old and new owner process of each cell in a point-to-point fashion.
D denotes the direct solve on the coarsest grid and P the prolongation of
the defect correction, which is again a processor-local operation. Note that all
meshes at a particular grid level have the same number of global octants. The
surrogate and true meshes on coarser levels are created only once during the
setup phase, but visited twice during each V-cycle.

illustrated in Fig. 4.

D. Smoothing & Coarse Grid Operator

We use damped Jacobi smoothing with ω = 2
3 for all

runs reported in this paper. As the coarse grid solver, we use
the Smoothed Aggregation Algebraic Multigrid (AMG) imple-
mentation ML, which is part of the Trilinos project [1]. This
combined GMG-AMG approach is particularly suitable for our
two-tier geometric decomposition of the domain, since we are
unable to coarsen the mesh beyond the unstructured macro
mesh. In the mesh coarsening process, we can switch from
the octree-based geometric coarsening to algebraic coarsening
at any multigrid level. A direct solver is used on the coarsest
grid of the AMG hierarchy.

The discrete operators on all grids are based on a stan-
dard FEM discretization of the PDE operator with trilinear
finite element basis functions. It can be shown that this is
equivalent to the projection of the coarse grid operators using



the restriction, provided the same bilinear form is used on all
grids [10]. Dirichlet boundary conditions are enforced through
a modification of the MatVec and the right hand side. For
Dirichlet nodes, the off-diagonal elements in the corresponding
column and row are removed from the system matrix, and the
right hand side is modified to enforce the Dirichlet value. This
operation is performed in the MatVec elemental loop.

One could argue that AMG could directly be used as a
solver instead of the proposed two-tier approach. However,
obtaining good parallel scalability for the AMG setup phase
at very high process counts is challenging [20], [22], [23],
as we also demonstrate in our experiments. Additionally, the
octree-based coarsening and repartitioning algorithms have
been shown to be fast and require little memory; see also
the timing for Setup in Figure 2. The combination of GMG
with AMG allows both algorithms to play to their strengths,
keeping the overall solve and setup time low and yielding
excellent strong and weak scaling.

E. Partitioning & Load Balancing

The reduction in the problem size at successive grids creates
some problems from the perspective of load balancing and care
has to be taken to ensure that the communication costs do not
dominate over the computation.

As explained in §II-B we partition each grid separately to
ensure that all processes have an equal number of elements.
However, keeping all processes active at all grids is not
efficient and therefore, while partitioning the surrogate mesh,
we dynamically reduce the number of processes that are active
at the coarser grid in order to ensure that communication
does not dominate the computation. This can occur when the
number of elements at interprocess boundaries, and therefore
the associated communication cost, becomes larger than the
number of internal elements. For this purpose we define a
minimal grain size, i.e., the minimum number of elements
per process below which the communication costs start to
dominate. The grain size can be computed either analytically
for predictably partitioned meshes or empirically by perform-
ing experiments on the target architecture2. We use the same
MPI_Comm at all levels and only the number of processes
with zero elements is increased progressively. Note that our
implementation only uses non-blocking point-to-point com-
munication in the V-cycle, and in particular does not use any
barriers—consequently idle processes do not cause significant
overhead. The only barrier in our multigrid implementation is
due to the reduction needed for the computation of the norm at
the end of the V-cycle (and this is an optional computation), or
when multigrid is used as preconditioner for the CG method.

We observed suboptimal scalability for the ML setup using
the fullsize MPI_Comm with zero-element processes (even
though they work just fine in our GMG setup and transfer).
Therefore, in the setup of the AMG hierarchy we create a new
MPI_Comm comprising of only the processes with non-zero
elements to be used for the coarse grid solve.

2We used a minimal grain size of 1000 elements for all experiments.

F. Partition Correction for Coarsening

In defining the V-cycle we require that the coarsening oper-
ation remains communication-free. Furthermore, we require
that the topology of the coarsened mesh remains invariant
under variable process counts and partitions. Thus the dis-
tribution of octants has to be such that a complete set of eight
sibling octants is never divided between multiple processes.
We accomplish this parallel invariance by introducing a correc-
tion to the octant-to-processor assignment in every partitioning
step.

The partitioning algorithm for octree meshes begins by
computing an optimally load-balanced distribution of octants,
which is possible in O(1) time by exploiting the properties of
the space-filling curve. At this point, the goal is to determine
whether this hypothetical new partition would separate com-
plete sets of octant siblings and, wherever that is the case, to
correct it by assigning all siblings to the same process.

The correction is made by having each process determine
independently what changes to the new partition have to be
made for its own subset of octants. To this end, processes
exchange octants that are in critical neighborhoods about their
respective first assigned local octants of the new partition
via point-to-point communication. Since any given critical
octant neighborhood has 14 or less elements, the associated
communication usually involves only a few processes with
consecutive ranks. Finally, the locally computed corrections—
one integer per process—are shared with all other processes
by a call to MPI_Allgather, which is sufficient to compute
the global correction simultaneously on all processors.

We have designed this algorithm in a way that in the case
of a split octant family, the process with the most siblings
will receive all other siblings. This interferes with the load
balance as little as possible. Furthermore, the correction will
never assign octants to empty processors. The latter property
is crucial to maintain proper clustering of octants when the
mesh becomes very coarse.

G. Single Core Optimizations

We use Streaming SIMD Extensions (SSE) technology,
available in most modern CPUs, to speed up the floating point
computations. We use SSE to accelerate the elemental MatVec
as well as the restriction and prolongation operators. Finally,
we perform the elemental MatVecs without precomputing the
geometric factors (the Jacobian and its determinant) associated
with the element to improve float-to-memory access ratios and
improved overall performance.

H. Complexity

Let the total number of elements in the fine mesh be N
and p the total number of processes. The time complexity of
forest construction and coarsening is O(N/p), and the time
complexity of enforcing 2:1-balance is O(N/p logN/p) [2].
The cost of a MatVec is O(N/p). Assuming a regular grid, we
can estimate the communication costs as well: Each coarsen,
2:1-balance, and partition-correction call requires additional
O(log p) time to MPI_Allgather the local octant count



Fig. 5. Spherical shell consisting of 24 octrees (left), slice through the mesh (right) and zoom showing adaptively refined mesh (middle). The color depicts
the logarithm of the coefficient field coming from the simulation of global mantle flow, where the narrow red zones with lowest viscosity correspond to
tectonic plate boundaries. The 6 order of magnitude variation in the coefficient is resolved on the mesh with 23B finite elements corresponding to octree
levels between 9 and 19 on 64K processes.

(one long integer). For partition and transfer all elements
of a process can potentially be communicated, therefore the
communication complexity per process is O(N/p).

III. RESULTS

Here, we report results for a highly-varying coefficient
Poisson problem for examples with forests constructed from
an increasing number of octrees, namely a cube (one octree),
a spherical shell (24 octrees) and a mesh for the Antarctic
ice sheet (45,449 octrees). We study the overall strong and
weak scalability of our geometric multigrid implementation
and the scalability of its individual components. We compare
the parallel performance of combined geometric and algebraic
multigrid with the performance of algebraic multigrid, using
the ML implementation. We also illustrate the limitations of
geometric multigrid methods for problems with strong mesh
anisotropy or discontinuous coefficients.

We solve a three-dimensional Poisson problem with Dirich-
let boundary conditions on a domain Ω and an isotropic,
spatially varying coefficient µ,

−div(µ(x)∇u(x)) = f(x) ∀x ∈ Ω, u(x) = 0 on ∂Ω.
(2)

All experiments were carried out on Jaguar, the ORNL Cray
XK6 system that has a total number of 299,008 cores. The
largest runs reported in this work used a total of 262,144 cores.

A. Meshes

We used two kinds of meshes for the experiments. The first
corresponds to a spherical shell domain. The shell has a radius
of 1 and a thickness of 0.45, and is constructed of 24 warped
cubes. It is topologically different from a cube, which is why
a single octree cannot be used as underlying data structure
for a shell geometry—several properly connected cubes, each
represented by an octree, must be used. For the scalability
experiments on this shell, we consider two coefficient fields.
First, we define µ as the sum of unity and two Gaussians,
which are scaled by a factor of 106. One Gaussian is centered

at (0.5, 0.5, 0.5) and has variance σ2 = 0.2, the other one
is centered at (−0.5,−0.5,−0.5) and uses σ2 = 0.4. The
underlying mesh was refined based on the gradient of µ. A
hierarchy of meshes produced by repeated coarsenings of this
mesh are shown in Fig. 3.

We also performed simulation on the shell using coefficients
µ that arise in the simulation of global mantle flow with
plate tectonics, [34], [35]. Here, Stokes flow problems with
highly varying viscosities on adaptively refined meshes that
resolve these variations have to be solved. Plate boundaries
are modeled as very narrow (a few kilometers wide) zones
with up to 6 orders of magnitude smaller viscosity than the
surrounding plates as shown in Fig. 5. For the iterative solution
of such large-scale, varying-coefficient Stokes problems, effi-
cient preconditioners for elliptic, positive-definite subproblems
such as (2) or its vector versions are the critical ingredient. To
study the scalability of our multigrid solver for application
problems with highly adapted mesh and large gradients in the
coefficient we solve (2) on adaptive refinements of the mesh
shown in Fig. 5.

We also ran scalability experiments on a mesh of Antarctica
as a demonstration of the scalability of our method for large
forests. The Antarctica macro mesh is based on a data set from
[36] and consists of 45K octrees, each of which is refined
to maintain a distribution of 400K elements per process in
our weak scaling experiments. Unlike the mantle mesh, there
is large variability in the size of elements in the Antarctica
macro mesh as can be seen in Fig 6. This mesh illustrates the
ability of our two-tier mesh in being able to capture complex
geometries. The resulting elements are strongly anisotropic
since the Antarctic ice sheet has a thickness of only up to 4 km,
while spanning several 1000 km in the lateral directions. For
our scalability tests, we adjusted the thickness of the elements
to keep the anisotropy in each element within a factor of
10. The experiments on the Antarctica mesh were run with
constant coefficient µ = 1. The largest run on 262,144 cores
had more than 100B unknowns.



Fig. 6. Antarctica mesh with 45K octrees showing the complexity of the forest. The area under the red box is shown enlarged on the left to highlight the
complexity of the mesh. Each element of this mesh is further refined as an octree, resulting in meshes with more than 100B elements. Please zoom in on the
electronic version to see further detail.

B. Parallel Scalability

To study the parallel performance of our implementation, we
performed strong (fixed-size) and weak (isogranular) scalabil-
ity experiments. In all cases, the reported time is the maximum
for that stage across all processes. All scalability experiments
were performed using multigrid as a preconditioner for the
conjugate gradient (CG) method [37]. We evaluated the scala-
bility of our GMG implementation against using AMG directly
on the fine mesh. When using AMG as a coarse-grid direct
solver for GMG, the number of GMG levels were selected to
obtain a coarsest grid (the AMG fine grid) of 32K elements
on the shell mesh and to 128K on the Antarctica mesh. These
coarse grid problems were solved on a subset of the total
processes, p, with p < 32 for the shell and p < 128 for the
Antarctica mesh. We report times for the following stages.

• Setup: The setup time accounts for the construction of the
mesh and the multigrid hierarchy, including the surrogate
meshes. It also includes creating auxiliary vectors that
hold the material properties at every level and the diago-
nal of the system matrix required by the Jacobi smoother.

• Transfer: This includes all computation and communi-
cation related to intergrid transfers of residuals, such as
the restriction and prolongation as well as the transfer to
and from the surrogate meshes.

• Smoother: Time spent in applying the damped Jacobi
smoother. This is largely dominated by the MatVec with
the system matrix.

• Coarse Setup: Time spent in setting up the coarse grid
solver, AMG in our case.

• Coarse Solve: Time spent in performing the coarse grid
solves.

All reported times are in seconds and correspond to a drop of
the relative tolerance by a factor of 1010.

1) Strong Scalability: Strong scalability tests were per-
formed with the shell mesh having 124M elements for the
variable-coefficient Poisson problem, starting with 512 pro-

cesses and progressively doubling the number of processes up
to 131,076 (a 256-fold increase). A total of 5 GMG levels were
used in the experiment. We repeat the same experiments using
AMG instead of GMG. The results are tabulated in Table I.
The total times for both cases are also plotted in Fig. 1. Similar
speedups are observed for both approaches up to 8K processes,
but AMG starts to deteriorate at higher process counts. Given
that the performance of AMG deteriorates drastically at 131K
processes we ran an additional test at 80K cores for AMG.

For GMG, we observe excellent scalability for the smoother
all the way up to 131K processes. The setup costs reduce up
to 8K processes but increase slightly at higher counts. We
observe the best scalability for the smoother since the time
complexity for this step is O(N/p). The transfer and setup
times start to increase beyond 16K processes. This happens
since we dynamically shrink the number of active processes
based on the minimal grain size. The number of elements
per process at 16K processes is 7.5K, which after the first
coarsening drops below our minimal grain size. Therefore for
process counts above 16K most processes are idle at all grids
except the finest level. The increase in the setup cost is largely
due to the balancing and partition of the first coarsened grid.
This also causes the transfer costs to slightly increase as seen
in Table I. Given that no transfer occurs on the finest grid, the
transfer cost is dominated by the transfer on the finest grid
and therefore we observe suboptimal behavior beyond 16K.
Assume that at a particular grid level we have N/p elements
per process. With uniform refinement, we shall obtain N/8p
elements at the coarser level and therefore the communication
bandwidth for a transfer at this grid is O(N/8p). However,
if we shrink the number of processes at this grid by a factor
of 8 to compensate for the coarsening, the communication
bandwidth at the active processes is now O(N/p). We expect
that better scaling for the setup and transfer components can
be achieved by adjusting the grain size.

2) Weak Scalability: Weak scalability tests were performed
on the shell mesh using a grain size of 215K elements per



TABLE I
STRONG SCALING ON THE SPHERICAL SHELL MESH

Cores 512 1024 2048 4096 8192 16384 32768 65536 80000 131072
AMG Setup 10.87 5.68 3.5 2.45 1.99 3.03 4.36 6.11 10.15 645.37
AMG Solve 42.39 22.64 12.65 10.8 8.79 7.6 10.87 11.95 20.64 14.51
GMG Setup 2.72 1.58 1.0 0.73 0.65 0.8 1.09 1.44 - 2.42
GMG Smoother 36.59 19.03 9.61 5.31 3.21 1.54 0.78 0.27 - 0.14
GMG Transfer 5.65 2.86 2.77 2.56 2.87 2.53 3.27 2.16 - 2.33
Coarse Setup 0.3 0.23 0.21 0.21 0.23 0.25 0.26 0.23 - 0.29
Coarse Solve 0.47 0.51 0.63 0.67 0.86 1.15 1.31 1.28 - 1.37
GMG Total 44.73 24.21 14.22 9.47 7.82 6.27 6.71 5.38 - 6.55

Strong scaling shown on a spherical shell mesh (24 octrees) with approximately 124M elements from 512 to 131K processes for the variable coefficient
Poisson problem. Shown are timings (in seconds) of individual components of the solve. One pre- and one post-smoothing are used. All runs converged to a
relative tolerance of 10−10 in 8 iterations. The first two rows report results for using AMG directly on the fine mesh. Since the ML implementation scaled
poorly at 131K we performed an additional solve at 80K processes only for AMG. The remaining rows are for GMG using AMG as the direct coarse-grid
solver.

TABLE II
WEAK SCALING ON THE SPHERICAL SHELL MESH

Cores 8 64 512 4096 32768 262144
AMG Setup 8.02 9.71 10.64 12.74 41.3 -
AMG Solve 46.56 49.41 42.02 46.01 57.3 -
GMG levels 3 4 5 6 7 8
GMG Setup 1.94 2.38 2.72 3.04 7.71 14.6
GMG Smoother 34.93 35.42 36.59 41.52 42.48 45.8
GMG Transfer 3.6 4.12 5.65 8.38 11.35 11.96
Coarse Setup 0.25 0.28 0.3 0.35 0.68 0.58
Coarse Solve 0.40 0.40 0.47 0.67 1.40 1.54
GMG Total 41.12 42.6 45.73 53.96 63.62 74.48

Weak scaling on a spherical shell mesh (24 octrees) with 215K elements per process for the variable coefficient Poisson problem. Shown is the time (in
seconds). One pre- and one post-smoothing step was performed. All runs converged to a relative tolerance of 10−10 in 8 iterations. The first two rows report
results for using AMG directly on the fine mesh. Since the ML implementation does not support matrices of dimension larger than 231 due to the use of 32
bit indices, we only report the numbers up to 32K processes. The remaining rows are for GMG using AMG as the direct coarse-grid solver.

process, from process counts of 8 to 262K with both the
problem size and the process count growing by a factor of 8.
For the problem size increasing by a factor of 32,768 our total
runtime only increases by 81%, corresponding to a parallel
efficiency of 55%. The same experiment is also repeated using
AMG instead of GMG. These results are reported in Table II.
Since the ML implementation does not support matrices of
dimension larger than 231 due to the use of 32 bit indices, we
only report the numbers up to 32K processes.

We also present weak scaling for the constant coefficient
Poisson problem on the Antarctica mesh with 400K elements
per process in Table III. The largest mesh contains 100B
elements and our implementation sustains a double precision
floating point rate of 272 teraflops per second (based on
hardware performance counters from the PAPI library [38].

C. Robustness

In order to test the robustness of the multigrid solver in
the presence of strong jumps we performed experiments with
the variable coefficient Poisson problem using a checkerboard
pattern for the coefficients. The coefficients were alternately
1 and 107 and the frequency of the pattern was varied
and the convergence rate was measured. The experiment
was performed on an uniformly-refined unit-cube mesh with
approximately 16M elements (Nx = 28). The number of
grids was fixed at 6 for all cases, with AMG being used for

TABLE III
WEAK SCALING OF THE ANTARCTIC ICE-SHEET MESH

64 512 4096 32768 262144
Setup 2.97 2.64 3.1 3.76 8.6
Smoother 289.7 301.5 336.3 391.3 409.1
Transfer 7.45 8.47 11.5 11.35 15.88
Coarse Setup 1.85 2.13 0.82 1.27 1.63
Coarse Solve 24.3 30.8 18.47 30.1 26.01
Total Time 326.3 345.5 370.2 437.8 461.2

Weak scaling on a large forest (45K octrees), namely the Antarctica mesh
with 400K elements per process for the constant coefficient Poisson problem.
Four pre- and post-smoothing steps were performed and all runs converged
to a relative tolerance of 10−8 in 10 iterations. AMG is used as the coarse
grid solver. Shown is the time (in seconds) for individual components of the
solve.

the coarse grid solve. In Table IV, we report the number of
iterations to reduce the 2-norm of the residual by a factor of
10−8 for different values of K, where the frequency of the
checkerboard pattern is 2K . Thus, further work is needed to
come up with an appropriate smoothing method for problems
with jumps in the coefficient.

In this work we only consider isotropic coefficients, but the
effects of anisotropy can be studied by using stretched grids.
In this experiment, we changed the anisotropy by stretching
the mesh along the z dimension. The x, y dimensions were
not changed. We considered a stretched mesh generated from
a uniform octree with 2M elements and measure the con-



TABLE IV
EFFECT OF JUMPS IN COEFFICIENTS

µ
K 7 6 5 4 3 2 1
Its. 107 57 29 15 8 7 7

Robustness with respect to jumps in the coefficients of the variable-coefficient Poisson problem. We show the number of iterations required to converge to a
relative tolerance of 10−8 for different values of K, which controls the frequency of the jumps (the number of jumps is proportional to K). A uniformly-refined
unit cube domain with 16M elements was used here.

TABLE V
EFFECT OF ANISOTROPY

ξ 0.01 0.1 0.5 1 2 10 100
Iters 231 35 9 7 9 36 233

Effect of stretched elements: The number of iterations required to converge to
a relative tolerance of 10−8 for different stretching, ξ, along the z direction.
The unit cube domain with 2M elements was used for this experiment.

vergence rate for different anisotropies. The anisotropy ξ is
measured as the ratio between the z and the x, y dimensions.
In Table V we report the number of iterations needed to reduce
the 2-norm of the residual by a factor of 10−8 for different
values of ξ. This experiment shows that the Jacobi smoother
used in this work is not able to handle strong anisotropies.
Given that the octree performs isotropic refinement, this is a
significant limitation of this work. We are currently working
on efficient smoothers that are able to overcome this problem.

IV. CONCLUSION

We presented a parallel, matrix-free multigrid method on
geometry-conforming unstructured forests of octrees. We use
algebraic multigrid as the coarse-grid direct solver. Our V-
cycle implementation uses only non-blocking point-to-point
communications and no barriers, resulting in excellent strong
and weak scalability up to 262K cores on ORNL’s Jaguar.
We achieved such an excellent scalability for a scalar Poisson
equation, which has a low floating point to memory operations
ratio. Also, note that in all of our runs we use one MPI process
per core. It follows that introducing shared memory parallelism
would readily provide an immediate 10×–100× boost in core
count (and performance) thus, suggesting the feasibility of
efficient, 10M-core multigrid solvers for unstructured grids
with trillions of unknowns.

There are two main extensions for the current work:
development of smoothers to handle jump coefficients and
anisotropy, and to support higher-order discretizations.
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