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Abstract

An adaptive isogeometric method based on d-variate hierarchical spline con-
structions can be derived by considering a refine module that preserves a
certain class of admissibility between two consecutive steps of the adaptive
loop [6].

In this paper we provide a complexity estimate, i.e., an estimate on how
the number of mesh elements grows with respect to the number of elements
that are marked for refinement by the adaptive strategy. Our estimate is in
the line of the similar ones proved in the finite element context, [3, 24].
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1 Introduction

Throughout the last years, Isogeometric Methods have gained widespread interest
and are a very active field of research, [10, 2], investigating a wide range of appli-
cations and theoretical questions. Due to the tensor-product structure of splines,
there exists very stable procedure to perform mesh refinement and degree raising
which are known in the literature as h-refinement, p-refinement, k-refinement [10].
While these algorithms are very efficient, the preservation of the tensor-product
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structure at least locally to each patch, produces a dramatic increase of degrees
of freedom together with elongated elements. Mainly for this reason, several ap-
proaches have been proposed to alleviate these constraints and they all need the
definition of B-splines over non-tensor-product meshes. Indeed, there are several
strategies and we mention here T-splines [1], hierarchical B-splines [15, 19, 20] and
THB-splines [16], but also LR splines [12, 5], hierarchical T-splines [14], modified
T-splines [18], PHT-splines [11, 26] amongst others.

Clearly, the development of adaptive strategies exploiting the potential of non-
tensor-product splines is an interesting and important step which has been ap-
proached in a number of papers, at least from the practical point of view. In
fact, despite their performance in experiments [1, 13, 2, 20, 14], the advantages
of mesh-adaptive Isogeometric Methods have not been assessed in theory until
today. Partial results, in particular on approximation, efficient and reliable error
estimates, and convergence of the adaptive procedure, have been proven in pre-
liminary work [6] in the context of (truncated) hierarchical splines, and we aim at
continuing this study providing further ingredients that are needed to prove the
optimal convergence of the proposed adaptive approach in the spirit of Adaptive
Finite Element Methods [3, 24, 9, 8].

In particular, in this paper we address the complexity of the mesh refinement
procedure proposed in [6]. The relation between the set of marked elements and the
overall number of refined elements introduced by the refine module is not straight-
forward: additional elements may be refined to create only (strictly) admissible
meshes. Admissibility is a restriction to suitably graded meshes that allows for
the adaptivity analysis of hierarchical isogeometric methods. By starting from an
initial mesh configuration, the complexity estimate provides a bound for the ratio
of the newly inserted elements and the cumulative number of elements marked
for refinement in the subdivision process that leads from the initial to the final
mesh. This allows to control the propagation of the refinement beyond the set
of elements initially selected by the marking strategy. An analogous complexity
analysis is currently available for bivariate and trivariate T-splines [22, 21].

This paper is organized as follows. In Section 2, we recall notation and ba-
sic results from [6]. Section 3 is devoted to the announced complexity estimate.
Conclusions and an outlook to future work are given in Section 4.

2 Hierarchical refinement

In this section, we recall notation and basic results from [6]. Since the complex-
ity analysis of the REFINE module can be directly performed in the parametric
setting, we avoid to introduce the two different notations for parametric/physical
domains (corresponding to with/without the hat symbol ·̂ in [6]).
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2.1 The truncated hierarchical basis

Let V 0 ⊂ V 1 ⊂ · · · ⊂ V N−1 be a nested sequence of tensor-product d-variate
spline spaces defined on a closed hypercube D in Rd. For each level ℓ, with
ℓ = 0, 1, . . . , N − 1, we denote by Bℓ the normalized tensor-product B-spline basis
of the spline space V ℓ defined on the grid Gℓ, and we assume that G0 consists of
open hypercubes with side length 1. The Cartesian product of d open intervals
between adjacent (and non-coincident) grid values defines a quadrilateral element
Q of Gℓ. For all Q ∈ Gk we denote by hQ := 2−k the length of its side, and by
ℓ(Q) its level, i.e., ℓ(Q) = k. Moreover, we assume a fixed degree p = (p1, . . . , pd)
at any hierarchical level. The analysis could be generalized to the more general
case of a non-uniform initial knot configuration by suitably taking into account
the corresponding maximum local mesh size and to variable degrees as well.

In order to define hierarchical spline spaces, we additionally consider a nested
sequence of domains Ω0 ⊇ Ω1 ⊇ . . . ⊇ ΩN−1, that are closed subsets of D. Any Ωℓ

is the union of the closure of elements that belong to the tensor-product grid of
the previous level. The hierarchical mesh Q is defined as

Q :=
{
Q ∈ Gℓ, ℓ = 0, . . . , N − 1

}
, (1)

where

Gℓ :=
{
Q ∈ Gℓ : Q ⊂ Ωℓ ∧ ∄ Q∗ ∈ Gℓ∗ , ℓ∗ > ℓ : Q∗ ⊂ Ωℓ∗ ∧ Q∗ ⊂ Q

}
(2)

is the set of active elements of level ℓ. We say that Q∗ is a refinement of Q, and
denote Q∗ � Q, when Q∗ is obtained from Q by splitting some of its elements
via “q-adic” refinement. Although the hierarchical approach allows us to consider
any integer q ≥ 2, we will focus on the case of standard dyadic refinement with
q = 2. Hierarchical B-splines are constructed according to a selection of active
basis functions at different levels of detail, see also [19, 25].

Definition 1. The hierarchical B-spline (HB-spline) basis H with respect to the
mesh Q is defined as

H(Q) :=
{
β ∈ Bℓ : supp β ⊆ Ωℓ ∧ supp β 6⊆ Ωℓ+1, ℓ = 0, . . . , N − 1

}
,

where supp β denotes the intersection of the support of β with Ω0.

The following definition introduces the truncation mechanism, the key concept
used to define the truncated basis for hierarchical splines [16].

Definition 2. Let
s =

∑

β∈Bℓ+1

cℓ+1
β (s)β,
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be the representation of s ∈ V ℓ ⊂ V ℓ+1 with respect to the finer basis Bℓ+1. The
truncation of s with respect to Bℓ+1 is defined as

truncℓ+1 s :=
∑

β∈Bℓ+1

suppβ*Ωℓ+1

cℓ+1
β (s)β.

Definition 3. The truncated hierarchical B-spline (THB-spline) basis T with re-
spect to the mesh Q is defined as

T (Q) :=
{
Truncℓ+1 β : β ∈ Bℓ ∩H(Q), ℓ = 0, . . . , N − 1

}
,

where Truncℓ+1 β := truncN−1(truncN−2(. . . (truncℓ+1(β)) . . . )), for any β ∈ Bℓ ∩
H(Q).

For details on the properties of the truncated basis, we refer to [16, 17].

2.2 Admissible meshes

We consider the class of admissible meshes introduced in [6].

Definition 4. A mesh Q is admissible of class m if the truncated basis functions
in T (Q) which take non-zero values over any element Q ∈ Q belong to at most m
successive levels.

Since the case m = 1 refers to uniform meshes, we will from now on focus on
the case m ≥ 2. The relevance of admissible mesh configurations relies on two
properties of THB-splines. First, for each element Q of an admissible mesh, the
number of truncated basis functions of degree p = (p1, . . . , pd) which are non-zero
on Q is less than m

∏d

i=1(pi + 1). Second, if Q is an admissible mesh of class
m, then for all truncated basis functions τ ∈ T (Q) and elements Q ∈ Q with
Q ∩ supp τ 6= ∅, we have |Q| . | supp τ | . |Q|, where the hidden constants in
these inequalities depend on m but not on τ , Q and N . These properties may be
suitably exploited in the analysis of adaptive isogeometric methods.

In order to characterize a certain class of admissible meshes, we consider the
generalization of the support extension usually considered in the tensor-product
B-spline case to hierarchical configurations.

Definition 5. The support extension S(Q, k) of an element Q ∈ Gℓ with respect
to level k, with 0 ≤ k ≤ ℓ, is defined as

S(Q, k) :=
{
Q′ ∈ Gk : ∃ β ∈ Bk, supp β ∩Q′ 6= ∅ ∧ supp β ∩Q 6= ∅

}
.
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By a slight abuse of notation, we will also denote by S(Q, k) the region occupied
by the closure of elements in S(Q, k). A relevant subset of admissible meshes can
be defined according to the result of Proposition 9 in [6].

Definition 6. Let Q be the mesh of active elements defined according to (1) and
(2) with respect to the domain hierarchy Ω0 ⊇ Ω1 ⊇ . . . ⊇ ΩN−1. A mesh Q is
strictly admissible of class m if

Ωℓ ⊆ ωℓ−m+1 (3)

where

ωℓ−m+1 :=
⋃{

Q : Q ∈ Gℓ−m+1 ∧ S(Q, ℓ−m+ 1) ⊆ Ωℓ−m+1
}
,

for ℓ = m,m+ 1, . . . , N − 1.

The overlay Q∗ of two meshes Q1,Q2 is the mesh obtained as the coarsest
common refinement of Q1 and Q2, usually indicated as

Q∗ = Q1 ⊗Q2.

Let {Ωℓ
1}ℓ=0,...,N1−1 and {Ωℓ

2}ℓ=0,...,N2−1 be the nested sequence of domains that
define the hierarchical meshes Q1 and Q2, respectively, with Ω0

1 = Ω0
2. The domain

hierarchy {Ωℓ
∗}ℓ=0,...,N∗−1, with N∗ = max(N1, N2), associated to Q∗ satisfies

Ωℓ
∗ = Ωℓ

1 ∪ Ωℓ
2 and ωℓ

∗ ⊇ ωℓ
1 ∪ ωℓ

2

for ℓ = 1, . . . , N∗ − 1, where Ωℓ
i = ∅ when ℓ ≥ Ni, for i=1,2. Consequently, if Q1

and Q2 are strictly admissible, for any level ℓ, we have

Ωℓ
∗ ⊆ wℓ−m+1

∗

since any Q ∈ Ωℓ
∗ either belongs to Ωℓ

1 or Ωℓ
2 and the overlay Q∗ is a refinement

of both Q1 and Q2. The overlay Q∗ of two strictly admissible meshes is then a
strictly admissible mesh. Note that the number of elements of the overlay mesh
Q∗ is bounded as follows, see e.g., [4, 22],

#Q∗ = #(Q1 ⊗Q2) ≤ #Q1 +#Q2 −Q0,

where Q0 is the initial mesh configuration. The above inequality may be used
for discussing the optimality of the resulting adaptive isogeometric method, anal-
ogously to adaptive finite element setting.
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2.3 The REFINE module

In order to define an automatic strategy to steer the adaptive method, we will
propagate the refinement procedure over a suitable neighborhood of any marked
element.

Definition 7. The neighborhood of Q ∈ Q ∩ Gℓ with respect to m is defined as

N (Q, Q,m) :=
{
Q′ ∈ Gℓ−m+1 : ∃Q′′ ∈ S(Q, ℓ−m+ 2), Q′′ ⊆ Q′

}
,

when ℓ−m+ 1 ≥ 0, and N (Q, Q,m) = ∅ for ℓ−m+ 1 < 0.

A sequence of strictly admissible meshes can be recursively defined by suitably
extending the refinement of coarser regions beyond the set of marked elements M
through the algorithms presented in Figure 1.

Note that these algorithms follow the structure of informal high-level descrip-
tions in the spirit of the analogous modules related to the adaptive finite element
methods.

Q∗ = REFINE(Q,M,m)

for all Q ∈ Q ∩M do

Q = REFINE RECURSIVE(Q, Q,m)
end for

Q∗ = Q

Q = REFINE RECURSIVE(Q, Q,m)

for all Q′ ∈ N (Q, Q,m) do
Q = REFINE RECURSIVE(Q, Q′,m)

end for

subdivide Q and
update Q by replacing Q with its children

Figure 1: The REFINE and REFINE RECURSIVE modules.

By exploiting key properties of the REFINE RECURSIVE module, summa-
rized in Lemma 8 and Proposition 9 below, Corollary 10 characterizes the output
of the REFINE procedure [6].

Lemma 8 (Recursive refinement). Let Q be a strictly admissible mesh of class m
and Q ∈ Q. The call to Q∗ = REFINE RECURSIVE(Q, Q,m) terminates and
returns a refined mesh Q∗ with elements that either were already active in Q or
are obtained by single refinement of an element of Q.

In addition, if Q ∈ Gℓ, the level ℓ∗ of all newly created elements Q∗ generated
by the call to Q∗ = REFINE RECURSIVE(Q, Q,m) satisfies

ℓ∗ ≤ ℓ+ 1 . (4)

In order to verify this, we may note that the recursion is applied to elements of level
< ℓ, and, in particular, of level ≤ ℓ−m+ 1. If Q∗ is a child of Q then ℓ∗ = ℓ+ 1.
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Otherwise, Q∗ is obtained by splitting some elements in the chain of neighborhoods
generated by set of recursive calls and, consequently, ℓ∗ ≤ ℓ−m+ 2 < ℓ+ 1 since
m ≥ 2.

Proposition 9. Let Q be a strictly admissible mesh of class m ≥ 2 and let
Q ∈ Gℓ, for some 0 ≤ ℓ ≤ N − 1. Then it follows that the call to Q∗ =
REFINE RECURSIVE(Q, Q,m) returns a strictly admissible mesh Q∗ � Q of
class m.

Corollary 10. Let Q be a strictly admissible mesh of class m ≥ 2 and M the set
of elements of Q marked for refinement. The call to Q∗ = REFINE (Q,M,m)
terminates and returns a strictly admissible mesh Q∗ � Q of class m.

Note that in each computation of the neighborhood N (Q, Q,m), the choice of
level ℓ−m+ 2 for the support extension yields the smallest neighborhood that is
acceptable for preserving the class of admissibility of the mesh when subdividing
the given element Q. Nevertheless, depending on the underlying hierarchical mesh
configurations, the basis functions could be also truncated at different intermediate
levels.

3 Linear Complexity

This section is devoted to a complexity estimate in the style proposed by Binev,
Dahmen and DeVore [3] and, in an alternative version, by Stevenson [24], for
adaptive finite element methods.

3.1 Auxilliary results

For every pair of mesh elements (Q,Q′), let dist(Q,Q′) be the Euclidean distance
of their midpoints. Given a Q ∈ Gℓ, all Q′ ∈ N (Q, Q,m) satisfy

dist(Q,Q′) ≤
√
d

2
diam(S(Q, ℓ−m+ 2)) ,

where ℓ = ℓ(Q) and

diam(S(Q, ℓ−m+ 2)) := 2−ℓ+m−2 (2 p+ 1) = 2−ℓCs ,

with Cs = Cs(p,m) := 2m−2(2 p+ 1), p := maxi=1,...,d pi. Hence,

dist(Q,Q′) ≤ 2−ℓ−1 Cd, Cd = Cd(d, p,m) :=
√
dCs . (5)
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Lemma 11. Let Q be a strictly admissible mesh of class m ≥ 2, M the set
of elements of Q marked for refinement, and Q′ ∈ Q ∩ M. Any newly created
Q ∈ Q∗\Q obtained by the call to Q∗ = REFINE RECURSIVE(Q, Q′,m) satisfies

dist(Q,Q′) ≤ 2−ℓ(Q)C with C :=
√
d C̃, C̃ :=

(
2−1 +

2

1− 21−m
Cs

)
, (6)

where then C depends on d, p and m.

Proof. The existence of Q ∈ Q∗ \ Q means that REFINE RECURSIVE is called
over a sequence of elements Q′ = QJ , QJ−1, . . . , Q0 and corresponding meshes
QJ , . . . ,Q0 so that Qj−1 ∈ N (Qj, Qj,m), with Q′ ∈ M and Q being a child of Q0,
namely ℓ(Q) = ℓ(Q0) + 1. Since ℓ(Qj−1) = ℓ(Qj)−m+ 1, it follows

ℓ(Qj) = ℓ(Q0) + j (m− 1). (7)

We have
dist(Q,Q′) ≤ dist(Q,Q0) + dist(Q0, Q

′)

and

dist(Q,Q0) = 2−ℓ(Q)2−1
√
d , dist(Q0, Q

′) ≤
J∑

j=1

dist(Qj, Qj−1) .

According to (5) and (7), we obtain

J∑

j=1

dist(Qj, Qj−1) ≤
J∑

j=1

2−ℓ(Qj)−1 Cd =
J∑

j=1

2−ℓ(Q0)−1−j(m−1) Cd

< 2−ℓ(Q0)Cd

∞∑

j=0

2−j(m−1) =
2−ℓ(Q0)

1− 21−m
Cd =

2−ℓ(Q)+1

1− 21−m
Cd .

Hence, dist(Q,Q′) ≤ 2−ℓ(Q)C, where C is the constant defined in (6).

3.2 Main result

The main result of this paper states the existence of a generic constant Λ =
Λ(d, p,m) < ∞ that bounds, for any sequence of successive refinements, the ratio
between the number of new elements in the final mesh QJ and the number of all
marked elements encountered in the refinement process from Q0 to QJ .
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Theorem 12 (Complexity of REFINE). Let M :=
⋃J−1

j=0 Mj be the set of marked
elements used to generate the sequence of strictly admissible meshes Q0,Q1, . . . ,QJ

starting from Q0 = G0, namely

Qj = REFINE(Qj−1,Mj−1,m), Mj−1 ⊆ Qj−1 for j ∈ {1, . . . , J} .

Then, there exists a constant Λ > 0 so that

#QJ −#Q0 ≤ Λ
J−1∑

j=0

#Mj ,

with Λ = Λ(d, p,m) := 4(4C̃ + 1)d, where C̃ is defined in (6).

Proof. We denote by G :=
⋃

j G
j the set of the initial mesh elements and all

elements that can be generated from their successive dyadic subdivision. Let
Q ∈ G, QM ∈ M, let

λ(Q,QM) :=

{
2ℓ(Q)−ℓ(QM) if ℓ(Q) ≤ ℓ(QM) + 1 and dist(Q,QM) < 21−ℓ(Q) C,

0 otherwise.

The proof consists of two main steps devoted to identify

(i) a lower bound for the sum of the λ function as QM varies in M so that each
Q ∈ QJ \ Q0 satisfies ∑

QM∈M

λ(Q,QM) ≥ 1 ; (8)

(ii) an upper bound for the sum of the λ function as the refined element Q varies
in QJ \ Q0 so that, for any j = 0, . . . , J − 1, each QM ∈ Mj satisfies

∑

Q∈QJ\Q0

λ(Q,QM) ≤ Λ . (9)

If inequalities (8) and (9) hold for a certain constant Λ, we have

#QJ −#Q0 =
∑

Q∈QJ\Q0

1 ≤
∑

Q∈QJ\Q0

∑

QM∈M

λ(Q,QM)

≤
∑

QM∈M

Λ = Λ
J−1∑

j=0

#Mj ,

and the proof of the theorem is complete. We detail below the analysis of (i) and
(ii).
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(i) Let Q ∈ QJ \ Q0 be an element generated in the refinement process from
Q0 to QJ , and let j1 < J be the index so that Q ∈ Qj1+1\Qj1 . Lemma 11 together
with (4) state the existence of Q1 ∈ Mj1 with

dist(Q,Q1) ≤ 2−ℓ(Q) C and ℓ(Q) ≤ ℓ(Q1) + 1 ,

and, consequently λ(Q,Q1) = 2ℓ(Q)−ℓ(Q1) > 0. The repeated use of Lemma 11
yields a sequence {Q2, Q3, . . . } with Qi−1 ∈ Qji+1 \ Qji , for j1 > j2 > j3 > . . . ,
and Qi ∈ Mji such that

dist(Qi−1, Qi) ≤ 2−ℓ(Qi−1) C and ℓ(Qi−1) ≤ ℓ(Qi) + 1. (10)

We iteratively apply Lemma 11 as long as

λ(Q,Qi) > 0 and ℓ(Qi) > 0 ,

until we reach the first index L with λ(Q,QL) = 0 or ℓ(QL) = 0. By considering
the three possible cases below, inequality (8) may be derived as follows.

• If ℓ(QL) = 0 and λ(Q,QL) > 0, then

∑

QM∈M

λ(Q,QM) ≥ λ(Q,QL) = 2ℓ(Q)−ℓ(QL) > 1 ,

since ℓ(Q) > ℓ(QL) = 0.

• If λ(Q,QL) = 0 because ℓ(Q) > ℓ(QL) + 1, then (10) yields ℓ(QL−1) ≤
ℓ(QL) + 1 < ℓ(Q) and hence

∑

QM∈M

λ(Q,QM) ≥ λ(Q,QL−1) = 2ℓ(Q)−ℓ(QL−1) > 1.

• If λ(Q,QL) = 0 because dist(Q,QL) ≥ 21−ℓ(Q) C, then a triangle inequality
combined with Lemma 11 leads to

21−ℓ(Q) C ≤ dist(Q,Q1) +
L−1∑

i=1

dist(Qi, Qi+1) ≤ 2−ℓ(Q) C +
L−1∑

i=1

2−ℓ(Qi) C .

Consequently, 2−ℓ(Q) ≤ ∑L−1
i=1 2−ℓ(Qi), and we obtain

1 ≤
L−1∑

i=1

2ℓ(Q)−ℓ(Qi) =
L−1∑

i=1

λ(Q,Qi) ≤
∑

QM∈M

λ(Q,QM).
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(ii) Inequality (9) can be derived as follows. For any 0 ≤ j ≤ J−1, we consider
the set of elements of level j whose distance from QM is less than 21−j C defined
as

B(QM, j) :=
{
Q ∈ Gj : dist(Q,QM) < 21−j C} .

According to the definition of λ, the set B(QM, j) collects the elements at level j
so that λ(Q,QM) > 0. We then have

∑

Q∈QJ\Q0

λ(Q,QM) ≤
∑

Q∈G\Q0

λ(Q,QM) =

ℓ(QM)+1∑

j=1

2j−ℓ(QM) #B(QM, j) . (11)

Since the diagonal of an element Q of level j is 2−j
√
d, the diagonal of the

hypercube composed by the union of the closure of all elements in B(QM, j) is less
or equal to

2 · 21−j C + 2−j
√
d = 2−j

√
d (4 C̃ + 1) ,

where C̃ is defined in (6). Hence,

#B(QM, j) ≤ (4 C̃ + 1)d ,

and the index substitution k := 1− j + ℓ(QM) reduces (11) to

∑

Q∈QJ\Q0

λ(Q,QM) ≤
ℓ(QM)+1∑

j=1

2j−ℓ(QM)#B(QM, j) =

ℓ(QM)∑

k=0

21−k#B(QM, j)

< 2
∞∑

k=0

2−k#B(QM, j) = 4#B(QM, j) ≤ Λ ,

with Λ = Λ(d, p,m) = 4(4C̃ + 1)d.

4 Conclusions

We developed a complexity estimate which says that the ratio between the refined
elements and the marked elements along the refinement history stays bounded,
when refinement is performed as proposed in [6]. In particular, this estimate
guarantees that the refinement routine ensuring the (strict) admissibility of the
refined mesh remains local at least when looking at the overall refinement process.
Note that for a single refinement step, it may be impossible to prove such an
estimate [23].

Our work paves the way to the analysis of optimal convergence of the adaptive
strategy proposed in [6] that will be addressed in further studies [7].
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