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0 Einleitung

Das Ziel dieser Arbeit besteht darin, zwei Variationsmethoden höherer Ordnung zur Flä-
chenbearbeitung in 3D bzw. Kurvenbearbeitung in 2D zu entwickeln, vorzustellen und zu
vergleichen. Grundsätzlich ist Flächenbearbeitung in 3D ein wichtiges Problem in der Com-
putergraphik, wo durch Animation ganze Filme produziert, oder dreidimensionale Modelle
dargestellt werden. In dieser Arbeit wollen wir Flächen vor allem so bearbeiten, dass Störun-
gen geglättet werden, während scharfe Ecken und Kanten der Fläche erhalten bleiben sollen.
Der Grund dafür, dass wir nicht nur Flächen in 3D, sondern auch Kurven in 2D bearbeiten,
liegt darin, dass es eine interessante Vereinfachung des dreidimensionalen Problems darstellt.

Bevor wir allerdings in der Lage sind, Methoden zur Flächenbearbeitung zu behandeln,
müssen wir wissen, wie man Flächen mathematisch darstellt. Daher wird im ersten Abschnitt
von Kapitel 2 einleitend dargestellt, wie man Flächen parametrisch beschreibt und wie Begrif-
fe wie Gaußsche Krümmung und mittlere Krümmung im parametrischen Sinn definiert sind.
Im zweiten Abschnitt von Kapitel 2 wird auf den parametrischen Fall aufbauend erklärt, wie
Flächen durch Level-Set-Funktionen dargestellt werden können und wie Gaußsche und mitt-
lere Krümmung in diesem Sinn definiert sind.
Gibt man Flächen durch Level-Set-Funktionen an, so erhält man automatisch mehrere Flä-
chen, denn jede Niveaufläche bestimmt eine Fläche. Grundsätzlich ist es nun möglich nur
eine einzelne Fläche zu bearbeiten, doch es ist einfacher alle gegebenen Flächen, bzw. Niveau-
flächen gleichzeitig zu bearbeiten, wie es in dieser Arbeit gemacht wird. Das hat allerdings
zur Folge, dass wir uns einen Schritt von der Anwendung an realen Problemen weg bewe-
gen: Wenn wir dort mehr als eine Fläche bearbeiten, würde zu viel Rechenzeit und Speicher
benötigt.

Da wir Flächen bearbeiten wollen, indem wir Energien minimieren, müssen wir wissen,
wie man dies macht. Daher werden im letzten Abschnitt von Kapitel 2 Gradientenflüsse ein-
geführt. Wir starten mit der grundlegenden Idee und führen schließlich Flächenentwicklun-
gen, die Gradientenflüsse sind, ein.

In Kapitel 3 beschäftigen wir uns mit dem gekoppelten Evolutions Modell, doch wir star-
ten mit dem Willmore-Fluss, wie er in [10] vorgestellt wird. Wir sind uns zwar bewusst, dass
wir keine scharfen Ecken und Kanten erhalten können, wenn wir den Willmore-Fluss auf Flä-
chen anwenden, aber es ist eine Methode vierter Ordnung und daher ist es interessant sie im
Vergleich zu den in dieser Arbeit vorgestellten Methoden zu sehen. Nach einer kurzen Prä-
sentation des Willmore-Flusses wird das gekoppelte Evolutions Modell im Fall der Willmore-
Energie entwickelt und getestet, bevor es anschließend verallgemeinert aufgeschrieben wird.
In diesem Modell vermeidet man Gleichungen vierter Ordnung, indem man das Normalen-
Vektorfeld n : Ω ⊂ Rd → Rd zur Fläche, die durch die Level-Set-Funktion φ : Ω → R

gegeben ist, als zweite Variable einführt. Das heißt, unsere Hauptenergie Emain[n, φ] hängt
von n und φ ab und wird auch in beiden Variablen minimiert. In diesem Fall müssen wir
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0 Einleitung

allerdings darauf achten, dass n und φ zueinander passen. Das kann mit Hilfe einer Straf-
energie Epenalty[n, φ] gemacht werden, die Null ist, wenn n = ∇φ

|∇φ| ist und in allen anderen

Fällen einen Wert größer Null annimmt. Diese Strafenergie addiert man mit einem Faktor 1
ε

zur Hauptenergie, so dann man die Gesamtenergie E[n, φ] = Emain[n, φ] + 1
ε Epenalty[n, φ] be-

kommt, die nun in beiden Variablen durch Gradientenflüsse minimiert wird.

Eine andere Methode die Willmore Energie zu minimieren ist das Refitting-Modell, das in
Kapitel 4 thematisiert wird. Dieses Modell wird auch in [23] beschrieben und basiert auf der
Idee, dass zu jeder regulären Fläche ein Einheitsnormalen-Vektorfeld existiert, das abgesehen
vom Vorzeichen eindeutig ist. Folglich kann man anstelle der Fläche selber auch das zuge-
hörige Normalen-Vektorfeld bearbeiten, sprich die Energie in n anstelle φ minimieren und
φ anschließend an n anpassen. Das kann man machen, indem man einen Schritt in der Mini-
mierung von Emain rechnet, das n renormalisiert und anschließend φ an n anpasst, indem man
eine Refittingenergie minimiert, die gleich Null ist, wenn n = ∇φ

|∇φ| ist und ansonsten größer
Null.

Wir wenden die beiden Modelle aber nicht nur auf die Willmore Energie an, denn damit
können wir keine scharfen Ecke und Kanten erhalten. Im letzten Abschnitt von Kapitel 3
führen wir eine neue Energie ein. Die Idee für diese neue Energie stammt von Selim Esedoḡlu
[11]. Sie soll ähnliche Eigenschaften haben wie

ETV [φ] := ‖φ‖TV(Ω) := |Dφ|(Ω) = sup
{∫

Ω
φ υ′ dx | υ ∈ C1

0(Ω), ‖υ‖∞ ≤ 1
}

,

die TV-Norm in 1D, soll allerdings für Flächen im R3 gelten. Die neue Energie ist gegeben
durch

∫
Ω |k|δ|∇φ|δ dx, wobei k die Gaußsche Krümmung der Fläche bezeichnet. Sie basiert

auf einem Lemma, das aus dem Satz von Gauß–Bonnet folgt. Aus diesem Lemma können
wir schließen, dass die neue Energie für Level-Set-Funktionen, deren Niveauflächen Kugeln
oder Würfel sind, gleich ist. Folglichen sollten sich Würfel unter Minimieren dieser Energie
nicht in Kugeln verwandeln. Im letzten Abschnitt von Kapitel 3 und 4 werden beide Metho-
den auf unsere neue Energie angewendet.

Ein Nachteil unserer Modelle und Energien ist, dass sie nicht immer ohne Probleme funk-
tionieren. Daher beschäftigen wir uns am Ende von Kapitel 4 mit den Problemen die entste-
hen, wenn wir das Refitting-Modell in 3D mit unserer neuen Energie testen. Abschließend
werden dann die Vor- und Nachteile beider Methoden zusammengefasst, bevor dargestellt
wird, mit welchen Aufgaben man sich in Zukunft noch beschäftigen könnte.
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1 Introduction

The aim of this work is to evolve, present and compare two different variational methods
to process surfaces in 3D or curves in 2D with higher order methods. In general, surface
processing in 3D is an important problem in computer graphics where whole films are pro-
duced by animation or three dimensional models are made. In this work, we want to process
surfaces in such a way that perturbations are smoothed and sharp edges and corners of the
surface are preserved. The reason for processing curves in 2D in this work is that it is a nice
simplification of the 3D model.

For being able to treat methods for surface processing, we must be able to describe them
mathematically. Thus in the first section of chapter 2 we describe how surfaces can be param-
etrized and how expressions like Gaussian and mean curvature are defined in this setting and
use it as a bridge to the description of surfaces by level set functions. Consequently in the next
section all expressions known from the previous one are translated into the level set setting.
If one describes surfaces by level set functions, each level set describes a surface. In general
it is possible to process only one of them, but it is easier to process all given level sets as it is
done in this work. Thus we are one step further away from applying these models on realistic
problems, because it requires too much memory and computation time to process more then
one surface in realistic problems.

As we want to process surfaces by minimizing energies, we need to know how to do this.
Therefore in the last section of chapter 2, we introduce gradient flows. We start with the main
idea behind gradient flows and end with surface evolutions which are gradient flows.

In chapter 3 we deal with coupled evolution model. But we do not start with it directly.
First we regard Willmore flow as it is presented in [10]. Of course we know that it is not pos-
sible to preserve sharp corners and edges by applying Willmore flow on a surface, but it is a
fourth order method to process surfaces, thus it is nice to see how it is done there in compar-
ison to our two methods. After a short presentation of Willmore flow, the coupled evolution
model is evolved and tested in the special case of minimizing the Willmore energy, finally the
general structure is written down.
In this model, equations of fourth order are avoided by taking n : Ω ⊂ Rd → Rd, the unit nor-
mal vector field to our surface given by our level set function φ : Ω ⊂ Rd → R as second vari-
able. That means our main energy is an energy Emain[n, φ] and will be minimized in n and φ at
the same time. But in this case we have to take care that n and φ fit to each other. This is done
by a penalty energy which equals zero if and only if n = ∇φ

|∇φ| . This penalty energy is added to

our main energy so that we get the global energy E[n, φ] = Emain[n, φ] + 1
ε Epenalty[n, φ] which

we have to minimize in n and φ by gradient flows in these variables.

A different method how for minimizing the Willmore energy is given by the refitting model,
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presented in chapter 4. This is described in [23] and bases on the idea that to each regular sur-
face exists a unit normal vector field which is unique apart from sign. Thus it is possible to
minimize the main energy in n instead of φ and refit the surface to our unit normal vector
field. This can be done by calculating one step in the minimization of Emain, renormalizing n,
so that it is of unit length and refitting φ to n by minimizing a refitting energy which equals
zero if and only if n = ∇φ

|∇φ| .

But we do not only apply both methods on the Willmore energy. In the third section of chap-
ter 3, a new main energy is introduced. The idea to this energy goes back to Selim Esedoḡlu
[11]. It should have similar properties as

ETV [φ] := ‖φ‖TV(Ω) := |Dφ|(Ω) = sup
{∫

Ω
φ υ′ dx | υ ∈ C1

0(Ω), ‖υ‖∞ ≤ 1
}

,

the TV norm in 1D, but it should hold for surfaces in R3. This new energy equals
∫

Ω |k|δ|∇φ|δ dx,
where k denotes the Gaussian curvature of the surface, and bases on a lemma which follows
from the theorem of Gauss–Bonnet. From this lemma we can conclude that our new energy
is of the same value if we regard level set functions whose level sets are spheres or cubes.
Consequently cubes should not evolve to spheres when minimizing our new energy. In the
last sections of chapter 3 and 4 our two methods are applied to this energy.

But we have to admit that our models and our new energy do not always work without
shortcomings. At the end of Chapter 4 it is pointed out what shortcomings arise while test-
ing the refitting model on our new energy in 3D, the advantages and disadvantages of both
models are summarized and finally we point out what one can treat in future.
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2 Mathematical Background

2.1 Explicit description of surfaces by parametrization

As we want to treat evolution of curves in R2 and surfaces in R3 we should think about how
to describe these objects mathematically. The most intuitive way consists of considering a
parametrization. In [5] we can find the following definition for R3

Definition 2.1.1. A subset M ⊂ R3 is a regular surface if, for every point p ∈ M, there exist
a neighborhood V of p in R3 and a mapping x : ω ⊂ R2 → V ∩M of an open set ω ⊂ R2

onto V ∩M, such that:

(a) x is a differentiable homeomorphism;

(b) The Jacobian (Dx)q : R2 → R3 is injective for all q ∈ ω.

The mapping x is called a parametrization of M at p.

In the case of R2, our regular surface is a regular curve whose definition can be found in [6].

x

ξ

c
v

Dx v

M⊂ R3

α = x ◦ c

ω ⊂ R2

Figure 2.1: Parametrization of a regular surface M⊂ R3.

As preparing step we introduce some expressions like mean curvature or Gaussian curva-
ture and translate them to the level set setting later.

For definition of basic terms like regular curve, parametrization and curvature of a curve
we refer to [13, 17]. In this section we will concentrate on the case of a regular surface in R3.

First let us consider the tangent space of a regular surface. A tangent vector at a point p of
a regular surface M is the tangent vector in a point t = 0 of some curve α : (−ε, ε) →M with
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2 Mathematical Background

α(0) = p [5]. With respect to our parametrization we can write α = x ◦ c, where c describes a
curve in ω ⊂ R2. Therefore the tangent vector is defined as

α̇(0) = ˙x ◦ c(0) = Dx(c(0)) ċ(0) = Dx(c(0)) v = ∑
i

vi
∂x(c(0))

∂ξi

when v ∈ R2 and ξi the basis vectors of R2. This leads to the following definition of tangent
space:

Definition 2.1.2. Let M ⊂ R3 be a regular surface with parametrization x : ω ⊂ R2 → M.
The tangent space in p ∈ M to M, with p = x(ζ), ζ ∈ ω is given by

TxM = Tx(ζ)M =

{
∑

i
vi

∂x
∂ξi

(ζ) | vi ∈ R

}
= {Dx(ζ) v | v ∈ R2}.

Remark 2.1.3. From now on we will shorten our notation and write Dx and ∂x
∂ξi

instead of
Dx(ζ) and ∂x

∂ξi
(ζ).

The normal unit vector to a surface M⊂ R3 in a point p = x(ζ) ∈ M can be written as

n(p) =
∂x
∂ξ1
∧ ∂x

∂ξ2

| ∂x
∂ξ1
∧ ∂x

∂ξ2
|
(ζ),

which can be proved easily:

n · ∂x
∂ξi

=
∂x
∂ξ1
∧ ∂x

∂ξ2

| ∂x
∂ξ1
∧ ∂x

∂ξ2
|
· ∂x

∂ξi
= det

(
∂x
∂ξ1

| ∂x
∂ξ1
∧ ∂x

∂ξ2
|
,

∂x
∂ξ2

| ∂x
∂ξ1
∧ ∂x

∂ξ2
|
,

∂x
∂ξi

)
= 0, i = 1, 2

because the three vectors are linearly dependent.

Next we need a metric onM for being able to measure lengths onM. The length of a curve
α : I →M, α(t) = x ◦ c(t) with I ⊂ R is given by

l(x ◦ c) =
∫

I
|∂t(x ◦ c)| dt =

∫
I

√
Dx ċ · Dx ċ dt =

∫
I

√
(Dx)TDx |ċ| dt.

Therefore g = (Dx)TDx ∈ R2,2, which is called metric tensor, controls the change of length
under the influence of the parametrization x. The first fundamental form, which defines a
scalar product on TζM is given by

g(v, w) = ∑
i,j

gijviwj, with gij =
∂x
∂ξi

· ∂x
∂ξ j

, v, w ∈ TζM,

where TζM = R2 denotes the tangent space in the parameter space.
The second fundamental form which is defined by

h(v, w) = ∑
i,j

hijviwj, with hij = −n · ∂2x
∂ξi∂ξ j

, v, w ∈ TζM

will lead us to the definition of mean and Gaussian curvature. But first we will write hij in a
different way.
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2.1 Explicit description of surfaces by parametrization

Lemma 2.1.4. hij, which is defined as hij = −n · ∂2x
∂ξi∂ξ j

in the second fundamental form can be written
as

hij =
∂n
∂ξ j

· ∂x
∂ξi

.

Proof. As n ⊥ TxM

0 =
∂

∂ξ j

(
n · ∂x

∂ξi

)
=

∂n
∂ξ j

· ∂x
∂ξi

+ n · ∂2x
∂ξ j∂ξi

⇔ hij =
∂n
∂ξ j

· ∂x
∂ξi

.

A further very short calculation gives us a nice property of ∂n
∂ξ j

:

0 =
∂

∂ξ j
|n|2 = 2

∂

∂ξ j
n · n,

thus the normal component of the normal variation vanishes and ∂n
∂ξ j

∈ TxM. Therefore we
can define an operator called shape operator as follows:

Definition 2.1.5. Let M ⊂ R3 be a regular surface with parametrization x : ω ⊂ R2 → M
then the endomorphism STxM : TxM→ TxM, defined by

STxM
∂x
∂ξi

=
∂n
∂ξi

, i = 1, 2

is called shape operator.

From this definition follows

STxMDx v · Dx w = ∑
i,j

STxM
∂x
∂ξi

· ∂x
∂ξ j

viwj

= ∑
i,j

∂n
∂ξi

· ∂x
∂ξ j

viwj

hij=hji
= ∑

i,j
hijviwj

= h(v, w).

Thus STxM is the representation of h on TxM. Analogously we define an operator STζM via

h(v, w) = g(STζMv, w).

The operator STζM is a version of STxM on TζM.

Proposition 2.1.6. Both versions of the shape operator STxM and STζM are diagonalizable and have
the same eigenvalues κi and eigenvectors vi.

11
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Proof. For STxM,

STxMDx v · Dx w = h(v, w)
= h(w, v)
= STxMDx w · Dx v
= Dx v · STxMDx w,

thus STxM is symmetric.
The symmetry of STζM can be shown by

g(STζMv, w) = h(v, w) = h(w, v) = g(STζMw, v) = g(v, STζMw)

Therefore both operators are diagonalizable and if κi and vi are the eigenvalues and the eigen-
vectors of STζM,

STxMDx vi · Dx w = h(vi, w)
= g(STζMvi, w)

= g(κivi, w)
= κiDx vi · Dx w.

The proof that κi and vi are eigenvalues and eigenvectors of STζM if they are eigenvalues and
eigenvectors of STxM can be done analogously.

κi is the curvature of a curve α = x ◦ c on M with c(0) = ζ, ċ(0) = vi and is called principle
curvature, vi denotes the principle curvature direction.

Definition 2.1.7. The mean curvature of a regular surface is given by

h = ∑
i

κi = tr(S)

and the Gaussian curvature is given by

k = ∏
i

κi = det(S),

where S denotes the shape operator.

2.2 Implicit description by level sets

After we know the most important expressions in the parametric setting we can consider the
implicit way of treating surfaces [18, 21]. In this case a surface is given as a set of points
x ∈ Ω ⊂ Rd, d = 2, 3 with the property that a given differentiable function φ : Ω → R equals
a constant value at these points:

Mc[φ] := [φ = c] := {x ∈ Ω | φ(x) = c} (2.1)

and it holds the following proposition.
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2.2 Implicit description by level sets

Proposition 2.2.1. Let Ω be a subset of Rd and φ : Ω → R a differentiable function. A level set

Mc[φ] = [φ = c] = {x ∈ Ω | φ(x) = c}

is a regular surface if ∇φ(x) 6= 0 on Mc.

Remark 2.2.2. The proposition above follows by the implicit function theorem.

In this setting the normal vector to a surface Mc is given by

n =
∇φ

|∇φ| (2.2)

and therefore the tangent space is defined by

TxM = {v ∈ Rd+1 | v · n = 0}. (2.3)

From the previous section, we know that we need the shape operator for calculating the
mean and Gaussian curvature of a surface Mc.

Remark 2.2.3. In level set formulation the variation of the normal is given by

Dn =
1

|∇φ|PD2φ (2.4)

where P = 1− n⊗ n denotes the projection operator onto the tangent space TxM.

Proof.

Dn = D
∇φ

|∇φ|

=

 |∇φ|φ,ij − φ,i
φ,k φ,kj
|∇φ|

|∇φ|2


ij

=
1

|∇φ|

(
φ,ij −

φ,i

|∇φ|
φ,k

|∇φ|φ,kj

)
ij

=
1

|∇φ|PD2φ.

Remark 2.2.4. To prevent confusion by the notation used, note that:

• we use the Einstein summation convention

• in the projection operator, n⊗ n is defined by a⊗ b = (aibj)ij

• the expression φ,i denotes the derivation of φ with respect to the ith variable φ,i = ∂φ
∂xi

13



2 Mathematical Background

From |n|2 = 1 we follow

0 = ∇ζ |n|2 =
(

∂ζ j |n|
2
)

j
= 2

(
nini,j

)
j = nT Dn

Therefore, if {vi}i denotes the basis of TxM, the last row of Dn has to be zero and we can
write it as

Dn =

 STxM ∗

0 0

 . (2.5)

Now we extend the shape operator STxM which is defined on TxM to an operator

Sext
TxM := DnP =

 STxM 0

0 0

 =
1

|∇φ|PD2φP (2.6)

which corresponds to the operator STζM in the previous section.

This correspondence is detailed in the following proposition:

Proposition 2.2.5. In level set formulation, the mean curvature of a surface Mc is given by

h = tr(Dn) = ∂ini (2.7)

and the Gaussian curvature is given by

k = det(Dn + n⊗ n). (2.8)

Proof.

h = tr(STxM) = tr(Sext
TxM) =

1
|∇φ| tr(PD2φP)

=
1

|∇φ| tr(P2D2φ) =
1

|∇φ| tr(PD2φ) = tr(Dn),

k = det(STxM) = det(Sext
TxM + n⊗ n)

= det

 STxM 0

0 1


= det(Dn + n⊗ n).
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2.3 Gradient flows

2.3 Gradient flows

Apart from expressions like mean curvature and Gaussian curvature, we are going to min-
imize various energy functionals. A nice possibility to minimize them is based on a very
simple idea. This gradient flow and the idea behind it is explained in [3]. Let us explain the
basic idea in the case of finite dimension.

It is well known that the gradient of a function f ∈ C1(Rn, R) points in the direction of
steepest ascent, thus − grad f (x) = −

(
∂

∂x1
f (x), . . . , ∂

∂xn
f (x)

)
points in the direction of steep-

est descent. Based on this we can formulate the following proposition:

Proposition 2.3.1. Let f : Rn → R be a continuously differentiable function and x0 ∈ Rn. The
solution x : R≥0 → Rn of the differential equation

d
dt

x(t) = −grad f (x(t)),

x(0) = x0

fulfills

0 ≤ t1 ≤ t2 ⇒ f (x(t1)) ≥ f (x(t2)).

Proof.

f (x(t2))− f (x(t1)) =
∫ t2

t1

( f ◦ x)′(t) dt

=
∫ t2

t1

grad f (x(t)) · d
dt

x(t) dt

= −
∫ t2

t1

| grad f (x(t))|2 dt ≤ 0

But we can say more about the properties of our solution x(t). From the continuity of grad f
follows:

grad f (x(t1)) 6= 0 and t1 < t2 ⇒ f (x(t1)) > f (x(t2)).

That means if we have a function f ∈ C1(Rn, R), a starting point x0 ∈ Rn with grad f (x0) 6= 0
and solve the differential equation above we get a point where f is strict smaller then f (x0).
If in addition f is strict convex we are able to minimize our function f by solving the cor-
responding gradient flow equation. But we have to be careful: it works for strict convex
functions, only. In all other cases it is not guaranteed that we will find the global minimum.

The problem discussed above is only a very simple example of a more general concept. In
the general concept we regard abstract manifolds instead of vector spaces and the dimension
of the manifold can be infinite.
Let A be an abstract manifold. The tangent space to A in x ∈ A is denoted by TxA and the
metric on A is written as gx : TxA× TxA → R. Now we consider a scalar mapping E : A →
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2 Mathematical Background

R, which we want to minimize. As the differential E′[x] is an element of the cotangent space
at the point x ∈ Awe need the metric to define a descent direction in the tangent space which
is denoted by − gradgx

E[x].

Definition 2.3.2. Let A be a manifold, TxA the tangent space to A in x ∈ A, E : A → R a
scalar mapping and gx : TxA× TxA → R a metric on A. Then the gradient of E is defined by

gradgx
E[x] = v ∈ TxA :⇔ ∀w ∈ TxA, gx(v, w) = 〈E′[x], w〉.

Now it is possible to regardA as a normed, complete real function space X and E as a func-
tional E : X → R. In this case the tangenial space TxA = X and for all x, w ∈ X 〈E′[x], w〉 is

the first variation of E at x in direction w, defined by d
dε E[x + εw]

∣∣∣
ε=0

.

Combining this with what we know from the finite dimensional case, we can formulate the
following definition of gradient flow for minimizing functionals.

Definition 2.3.3. Let X be a complete real function space, E a functional which maps X to R

and gx : X × X → R the metric on X. The gradient flow for minimizing E is defined by

∂tx(t) = − gradgx
E[x]

:⇔ gx(t) (∂tx(t), w) = −〈E′[x(t)], w〉 ∀w ∈ X

with starting point x(0) = x0 ∈ X.

Example 2.3.4 (Heat equation). As example we consider X = H1(Ω), the Dirichlet energy

Ed[φ] =
1
2

∫
Ω
|∇φ|2 dx

and the L2 metric gL2(v, w) :=
∫

Ω vw dx. In this case, the gradient flow is

∂tφ = − gradgL2
Ed[φ],

which is equivalent to∫
Ω

∂tφψ dx = − d
dε

[
1
2

∫
Ω
|∇ (φ + εψ) |2 dx

] ∣∣∣
ε=0

= −
∫

Ω
∇φ · ∇ψ dx

for all H1(Ω). This is the weak formulation of the heat equation

∂tφ− ∆φ = 0.

A further step consists in considering surface evolutions which are gradient flows. In these
cases our energy looks like

E[M] =
∫
M

f [x] dA

16



2.3 Gradient flows

and we have to choose a metric on TM⊥. In general, TM⊥ is defined as

TM⊥ := {(x, v(x)) | x ∈ M, v(x) ∈ TxM⊥} (2.9)

and TxM⊥ = n(x)R, where n(x) denotes the unit normal vector to M in x ∈ M. Then our
metric on TM⊥ is given by

gM : TM⊥ × TM⊥ → R, gM((x, v1(x)n(x)), (x, v2(x)n(x))) =
∫
M

µ[v1, v2](x) dA,

where µ : H1(Ω)× H1(Ω) → H1(Ω) and vin with vi ∈ H1(Ω). The variation of a surface M
in normal direction is Mε = M+ εvin.

Remark 2.3.5. To shorten the notation, we define

gM(v1n, v2n) := gM((x, v1(x)n(x)), (x, v2(x)n(x))).

Remark 2.3.6. In the notation above the abstract manifold A can be identified with the set of
all surfaces M and TMA with TM⊥.

Definition 2.3.7. Let

E[M] =
∫
M

f [x] dA

be an energy depending on a surface M and

gM : TM⊥ × TM⊥ → R, gM(v1n, v2n) =
∫
M

µ[v1, v2] dA,

a metric on TM⊥ with vi ∈ H1(Ω) and density µ : H1(Ω)× H1(Ω) → H1(Ω), which needs
to be symmetric, bilinear and positive-definite. If x denotes the identity on M, the gradient
flow for minimizing this energy is given by

∂tx(t) = − gradgM
E[x]

⇔ gM((∂tx · n)n, vn) = − d
dε

E[x + εvn]
∣∣∣
ε=0

.

As we want to describe shapes implicitly by level set functions and treat all level sets si-
multaneously we define

L := {[φ = c] | c ∈ R},

the ensemble of all level sets. Moreover, we do not only need an energy depending on a
surface Mc = [φ = c], but a global version which we can get by integrating E[Mc] over all
possible level sets. For this we need the co-area formula [2, 12]. If we add an integrable weight
function w : R → R+

0 , which needs to fulfill
∫ ∞
−∞ w < ∞, it is possible to select a bigger or

smaller region around one specific level set. In general we consider an energy

E[φ] :=
∫

R
w(c) E[[φ = c]] dc

co-area=
∫

Ω
w(φ)|∇φ| f dx

=
∫

Ω
|∇H(φ)| f dx

17



2 Mathematical Background

where

H(s) =
∫ s

−∞
w(t) dt.

For getting the corresponding metric, we take the known metric

gM : TM⊥ × TM⊥ → R, gM(v1n, v2n) =
∫
M

µ[v1, v2] dA

and integrate it with a weight function w : R → R+
0 over all possible level sets. Additionally

we take into account the level set equation which gives a connection between s := ∂tφ, the
variation of φ and v, the normal variation. From the level set equation [19, 21]

∂tφ = −|∇φ|v,

the connection is given by vi = − si
|∇φ| . Combining these aspects leads to

gφ(s1, s2) =
∫

R
w(c) gMc(v1n, v2n) dc

co-area=
∫

Ω
|∇H(φ)| µ[v1, v2] dx

=
∫

Ω
|∇H(φ)| µ

[
− s1

|∇φ| ,−
s2

|∇φ|

]
dx.

Remark 2.3.8. In general, gφ is a metric on TM⊥, that means gφ : TM⊥ × TM⊥ → R, but we
shorten our notation and write gφ(s1, s2) instead of gφ(s1n, s2n).

At this point we know enough to formulate the following Proposition:

Proposition 2.3.9. Let

E[φ] =
∫

Ω
|∇H(φ)| f [φ] dx

be an energy depending on a level set function φ : Ω → R, where H is defined as above and

gφ(s1, s2) =
∫

Ω
|∇H(φ)| µ

[
− s1

|∇φ| ,−
s2

|∇φ|

]
dx

being the corresponding metric with µ : TxM⊥ ⊗ TxM⊥ → M symmetric, bilinear and positive-
definite, where si denotes the variation of φ. The gradient flow for minimizing E[φ] is given by

∂tφ = − gradgφ
E[φ]

⇔
∫

Ω
|∇H(φ)| µ

[
− ∂tφ

|∇φ| ,−
ϑ

|∇φ|

]
dx = − d

dε

∫
Ω
|∇H(φ + εϑ)| f [φ + εϑ] dx

∣∣∣
ε=0

.

Example 2.3.10 (Mean curvature flow). In the case of mean curvature flow, where f ≡ 1,
µ[v1, v2] = v1v2 and

w =
{

1 on [−c, c], for c big enough,
0 else.

18



2.3 Gradient flows

we have an energy

Emcm[φ] =
∫

Ω
|∇φ|dx,

the metric

gφφ(s1, s2) =
∫

Ω
s1s2|∇φ|−1 dx

and the gradient flow equation is∫
Ω

∂tφ

|∇φ|ϑ dx = − d
dε

∫
Ω
|∇(φ + εϑ)|dx

∣∣∣
ε=0

⇔
∫

Ω

∂tφ

|∇φ|ϑ +
∇φ

|∇φ| · ∇ϑ dx = 0.
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3 Coupled Evolution Models

3.1 Willmore flow

In this chapter, we present a new idea on how to minimize the Willmore energy. But before
we do this we give a review of Willmore flow as it is presented in [10]. There as well as in this
work surfaces are described by level set functions.
The Willmore energy on a (d− 1)-dimensional surface M embedded in Rd is defined as

ewf[M] :=
1
2

∫
M

h2 dA

where h denotes the mean curvature on M. This surface M can be one level set of a level
set function φ(t) : Ω ⊂ Rd → R and in this case it would be written as M = Mc :=
{x ∈ Ω|φ(x) = c}. If we want to evolve all level sets simultaneously, we have to modify the
Willmore energy. This can be done by integrating ewf[Mc] over all possible values for c, for
which we need the co-area formula [12, 2]

Ewf[φ] =
∫

R
ewf[Mc] dc =

1
2

∫
Ω

h2|∇φ|dx.

For this definition of a global Willmore energy, it is necessary to set ewf[Mc] = 0 if Mc = ∅.
In terms of the general form of energy presented in Definition 2.3.9, we have f = 1

2 h2 and
H = id.

As seen in Section 2.3, we need a metric on the manifold L, the ensemble of all level sets.
Here we consider the L2 metric on a surface M

gM(δφ1, δφ2) =
∫
M

δφ1δφ2 dA,

where δφ1 and δφ2 are tangent vectors on L and play the same role as s1 and s2 in Section 2.3.
If we generalize this metric as done above, we get the following metric on L

gφφ(δφ1, δφ2) :=
∫

R

∫
Mc

v1v2 dA dx =
∫

Ω

δφ1

|∇φ|
δφ2

|∇φ| |∇φ|dx =
∫

Ω
δφ1δφ2|∇φ|−1 dx. (3.1)

As example take the last one in the previous chapter (Example 2.3.10).

Remark 3.1.1. The metric introduced above is called gφφ and will be used in later chapters.

Proposition 3.1.2. Let

Ewf[φ] =
1
2

∫
Ω

h2|∇φ|dx.
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3 Coupled Evolution Models

be the Willmore energy for treating all level sets simultaneously and

gφφ(δφ1, δφ2) :=
∫

Ω
δφ1δφ2|∇φ|−1 dx

the L2-metric on L, where L denotes the manifold of all level sets. Then the corresponding initial value
problem for the Willmore flow in level set form can be written as:

Given an initial function φ0 on Ω find a pair of functions (φ, w) with φ(0) = φ0 such that

∫
Ω

∂tφ

|∇φ|ϑ dx =
∫

Ω
−1

2
w2

|∇φ|3∇φ · ∇ϑ− |∇φ|−1P∇w · ∇ϑ dx, (3.2)∫
Ω
|∇φ|−1wψ dx =

∫
Ω

∇φ

|∇φ| · ∇ψ dx (3.3)

for all t > 0 and all functions ϑ, ψ ∈ C∞
0 (Ω).

Proof. The gradient flow for minimizing Ew[φ] is given by

∀ϑ ∈ C∞
0 (Ω) gφφ(∂tφ, ϑ) = −〈E′w[φ], ϑ〉 (3.4)

with initial condition φ(0) = φ0 and ϑ ∈ C∞
0 (Ω). From the definition of gφφ it follows

gφφ(∂tφ, ϑ) =
∫

Ω

∂tφ

|∇φ|ϑ dx

and the variation of our energy is

− 〈E′w[φ], ϑ〉 = − d
dε

E[φ + εϑ]
∣∣∣
ε=0

= − d
dε

1
2

∫
Ω
|∇(φ + εϑ)|

(
div

[
∇(φ + εϑ)
|∇(φ + εϑ)|

])2

dx
∣∣∣
ε=0

= −
∫

Ω

(
1
2

h2 ∇φ

|∇φ| · ∇ϑ + |∇φ|h div
[
∇ϑ

|∇φ| −
∇φ

|∇φ|2
∇φ

|∇φ| · ∇ϑ

])
dx

=
∫

Ω

(
−1

2
|∇φ|−3(|∇φ|h)2∇φ · ∇ϑ + |∇φ|−1P∇(|∇φ|h) · ∇ϑ

)
dx. (3.5)

In the last step we apply integration by parts and take into account

∇ϑ

|∇φ| −
∇φ

|∇φ|2
∇φ

|∇φ| · ∇ϑ = |∇φ|−1P∇ϑ

and

∇(|∇φ|h) · P∇ϑ = P∇(|∇φ|h) · ∇ϑ.

Now we can define

w := −|∇φ|h.

22



3.1 Willmore flow

w is then given by∫
Ω
|∇φ|−1wψ dx = −

∫
Ω

div
(
∇φ

|∇φ|

)
ψ dx ∀ψ ∈ C∞

0 (Ω)

⇔
∫

Ω
|∇φ|−1wψ dx =

∫
Ω

∇φ

|∇φ| · ∇ψ dx ∀ψ ∈ C∞
0 (Ω)

Together with (3.4) where we replace −|∇φ|h by w we get the initial value problem of Propo-
sition 3.1.2.

Remark 3.1.3. The variable w which is introduced in the proof above can be understood as
curvature concentration. Generally it is a weighted mean curvature. In these regions, where
our level set function φ is steep there are lots of level sets close to each other and if additionally
mean curvature is big in these regions we have a high curvature concentration.

For a better understanding of Willmore flow we will study a simple explicit example in 2D.

Example 3.1.4. Let us start with a level set function φ : Ω ⊂ R2 → R with φ(x) = |x|,
0 6= x ∈ Ω. It is easy to proof that ∇φ(x) = x

|x| , |∇φ(x)| = 1 and h = div
(
∇φ
|∇φ|

)
= |x|−1.

Knowing this and using 3.5 we can write (3.4) as∫
Ω

∂tφϑ dx =
∫

Ω

(
−1

2
|x|−2 x

|x| · ∇ϑ + P∇
(
|x|−1

)
· ∇ϑ

)
dx

for all ϑ ∈ C∞
0 (Ω). The second summand at the right hand side vanishes, because

P∇
(
|x|−1

)
= P

(
− x
|x|3

)
=
(

1− ∇φ

|∇φ| ⊗
∇φ

|∇φ|

)(
− x
|x|3

)
= − x

|x|3 +
1
|x|2

(
xixj

)
ij

x
|x|3 = − x

|x|3 +
1
|x|5

(
∑

j
xix2

j

)
i

= − x
|x|3 +

x
|x|3 = 0.

Thus integration by parts leads to∫
Ω

∂tφϑ dx =
∫

Ω
−1

2
1
|x|3 ϑ dx,

from which follows with the fundamental lemma of the calculus of variations

∂tφ = −1
2

1
φ3 . (3.6)

At this point it is easy to proof

φ(t, x) =
(
−2t + φ0(x)4

) 1
4

.

For further information cp. [26].
That means if we start with a radial symmetric initial function φ0(x) = φ0(|x|) our level set
function will stay radial symmetric and circles will grow.
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3 Coupled Evolution Models

In contrast to the Euler-Lagrange equation of a circle with radius r under the influence of
Willmore flow [10],

ṙ =
1
2

r−3,

we seem to obtain the opposite sign, but this is not true. We do not consider the evolution of
the radius of a single circle. We choose one circle in Ω and observe how the level set equation
on this circle changes. Therefore we have to get the opposite sign.

3.2 Willmore energy minimized by coupled evolution model

After seeing how surfaces can be processed by Willmore flow as presented in [10] we want to
present a new method. This new method is based on the fact that each surface has a normal
vector field n up to orientation. This leads to the idea to take n instead of w, the curvature
concentration, as second variable. But in contrast to Willmore flow we will take this into
account while modeling the energy.

3.2.1 Energy and metric

On a surface Mc the energy for Willmore flow coupled with Mean curvature flow is

e[Mc] =
∫
Mc

1 + h2 dA (3.7)

Mc is defined by Mc := {x ∈ Ω ⊂ Rd | φ(x) = c} whereas φ : Ω ⊂ Rd → R is a smooth
function with ∇φ 6= 0 almost everywhere.

As we want to consider a global energy for all level sets we apply the co-area formula
[12, 2], which leads to

Emain[φ] =
∫

Ω
(1 + h2)|∇φ|dx.

Now we have to take into account that we want to treat n as a second variable. We know
that h = div n, thus we can write

Emain[φ] =
∫

Ω
(1 + (divn)2)|∇φ|dx

and have to care about n really being the normal field according to our level sets. One way to
do so is to add a penalty energy

Epenalty[n, φ] =
∫

Ω

∣∣∣n− ∇φ

|∇φ|

∣∣∣2 dx

=
∫

Ω
|n|2 + 1− 2n · ∇φ

|∇φ| dx

to Emain which leads to our global energy
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3.2 Willmore energy minimized by coupled evolution model

E[n, φ] =
∫

Ω

(
α + (div n)2) |∇φ|dx +

1
ε

∫
Ω
|n|2 + 1− 2n · ∇φ

|∇φ| dx. (3.8)

Here we replaced 1 with α ∈ [0, 1]. With α it is possible to determine the influence of the
mean curvature flow and with ε ∈ R the influence of Epenalty. The penalty energy has the
property to be zero if normal vector field and surface fit to each other exactly. In every other
case it is greater than zero.

For being able to formulate the corresponding gradient flow, we should think about the
right metric on variations of surfaces (δn, δφ) with δn being a tangent vector on N := {n ∈
Rd | |n| = 1} the ensemble of all normal vector fields and δφ a tangent vector on L, the mani-
fold of our level set ensemble. We confine to the case that the dependence of δn is independent
of δφ and vice versa. Thus we write

gφ

(
(δn1, δφ1), (δn2, δφ2)

)
:= gφn(δn1, δn2) + gφφ(δφ1, δφ2)

First let us have look at gφn(δn1, δn2). On a single surface Mc we would choose the L2

metric on Mc which is given by

gMc(δn1, δn2) =
∫
Mc

δn1 · δn2 dA

But we want to evolve all level sets Mc simultaneously. Therefore we need the co-area
formula again.

gφn(δn1, δn2) =
∫

R

∫
Mc

δn1 · δn2 dA dc =
∫

Ω
δn1 · δn2|∇φ|dx. (3.9)

An explanation for the choice of gφφ is given in [10] and Section 3.1.
Altogether, we get as metric on N ×L

gφ

(
(δn1, δφ1), (δn2, δφ2)

)
:=
∫

Ω
δn1 · δn2|∇φ|+ δφ1 δφ2|∇φ|−1 dx. (3.10)

3.2.2 Evolution equation

Proposition 3.2.1. Let

E[n, φ] =
∫

Ω

(
α + (div n)2) |∇φ|dx +

1
ε

∫
Ω
|n|2 + 1− 2n · ∇φ

|∇φ| dx.

with a vector field n : Ω ⊂ Rd → Rd and a level set function φ : Ω ⊂ Rd → R be the energy to
minimize in n and φ and

gφ((δn1, δφ1), (δn2, δφ2)) :=
∫

Ω
δn1 · δn2|∇φ|+ δφ1 δφ2|∇φ|−1 dx
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3 Coupled Evolution Models

the corresponding metric on N ×L. The corresponding weak system of partial differential equations
is given by ∫

Ω
∂tn · ϑ|∇φ|+ 2 div n div ϑ|∇φ|+ 2

ε

(
n− ∇φ

|∇φ|

)
· ϑ dx = 0 (3.11)∫

Ω
∂tφψ

1
|∇φ| +

∇φ · ∇ψ

|∇φ|
(
α + (div n)2)

−2
ε

(
n · ∇ψ

|∇φ| −
(n · ∇φ)(∇φ · ∇ψ)

|∇φ|3

)
dx = 0 (3.12)

for all ψ ∈ C∞
0 (Ω, R) and ϑ ∈ C∞

0 (Ω, Rd).

Proof. If our energy E[n, φ] and our metric gφ((δn1, δφ1), (δn2, δφ2)) are defined as in the
proposition, we know that the gradient flow for minimizing our energy is given by

gφ

(
(∂tn, ∂tφ), (ϑ, ψ)

)
= −〈E′[n, φ], (ϑ, ψ)〉 (3.13)

for all functions ψ ∈ C∞
0 (Ω, R) and ϑ ∈ C∞

0 (Ω, Rd). The notation on the right hand side of
(3.13) means we are calculating the variation of E in n in the direction of ϑ and in φ in the
direction of ψ. As

d
dε

(div(n + εϑ))2
∣∣∣
ε=0

= 2div n div ϑ,

d
dε
|∇(φ + εψ)|

∣∣∣
ε=0

=
∇φ · ∇ψ

|∇φ|

and

d
dε

(
n · ∇(φ + εψ)
|∇(φ + εψ)|

) ∣∣∣
ε=0

= n ·
(
∇ψ

|∇φ| −
∇φ

|∇φ|2
∇φ

|∇φ| · ∇ψ

)
= n ·

(
P[φ]∇ψ

|∇φ|

)
we get:

〈E′[n, φ], (ϑ, ψ)〉 =
∫

Ω
2 div n div ϑ|∇φ|+ 1

ε

(
2n · ϑ− 2ϑ · ∇φ

|∇φ|

)
dx +∫

Ω

∇φ · ∇ψ

|∇φ|
(
α + (div n)2)− 2

ε
n ·
(

P[φ]∇ψ

|∇φ|

)
dx. (3.14)

P[φ] denotes the projection on the tangent space as already mentioned in Remark 2.2.3. Since

gφ((∂tn, ∂tφ), (ϑ, ψ)) =
∫

Ω
∂tn · ϑ|∇φ|+ ∂tφψ|∇φ|−1 dx

we can deduce the weak formulation of our system from (3.13). Therefore we choose ψ ≡ 0,
which leads to the equation in n and later ϑ ≡ 0, which leads to the equation in φ.∫

Ω
∂tn · ϑ|∇φ|+ 2 div n div ϑ|∇φ|+ 2

ε

(
n · ϑ− ϑ · ∇φ

|∇φ|

)
dx = 0∫

Ω
∂tφψ

1
|∇φ| +

∇φ · ∇ψ

|∇φ|
(
α + (div n)2)− 2

ε

(
n · ∇ψ

|∇φ| −
(n · ∇φ)(∇φ · ∇ψ)

|∇φ|3

)
dx = 0,
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3.2 Willmore energy minimized by coupled evolution model

with ϑ andψ as defined above in (3.13).

Remark 3.2.2. We formulated this model for Ω ⊂ Rd, but in this chapter we will only consider
d = 2.

Before we discretize the system given in Proposition 3.2.1, we want to have a look at a
special case, which demonstrates what happens if we apply this gradient flow on radial sym-
metric input data.

Example 3.2.3 (Radial symmetric problem). Starting with a radial symmetric input φ : Ω =
[0, 1]2 → R, φ(x) = |x| makes our system much easier. We assume that radial symmetric
input data will stay radial symmetric. In this case n(x) = l x

|x| with l ∈ R and we only have to
choose special test functions in C∞

0 (Ω). Thus for calculating

d
dε

E[n + εϑ, φ + εψ]
∣∣∣
ε=0

(3.15)

we have to consider ϑ ∈ {γ ∈ C∞
0 (Ω, R2)

∣∣γ(x) = η(x) x
|x| , η ∈ C∞

0 (Ω)}.
Knowing this and using integration by parts, we can calculate the Euler-Lagrange equations
from (3.11) and (3.12)∫

Ω
∂tn · ϑ|∇φ| − 2∇(|∇φ|div n)ϑ +

2
ε

(
n− ∇φ

|∇φ|

)
· ϑ dx = 0∫

Ω
∂tφ ψ

1
|∇φ| − div

(
∇φ

|∇φ| (α + (div n)2)
)

ψ +

2
ε

(
div

(
n

|∇φ|

)
− div

(
(n · ∇φ)∇φ

|∇φ|3

))
ψ dx = 0

As x
|x| ·

x
|x| = 1, these two are equivalent to

∫
Ω

∂tl η − 2∇
(

l
1
|x|

)
︸ ︷︷ ︸

=−l x
|x|3

ϑ +
2
ε
(l − 1)η dx = 0

∫
Ω

∂tφ ψ− α div
(

x
|x|

)
︸ ︷︷ ︸

=|x|−1

ψ− div
(

l2 x
|x|3

)
︸ ︷︷ ︸

=− l2
|x|3

ψ +
2
ε

ψ
(

div
(

l
x
|x|

)
− div

(
l

x
|x|

)
︸ ︷︷ ︸

=0

)
dx = 0,

from which follows

l̇ = − 2
φ2 l +

2
ε
(1− l) (3.16)

φ̇ =
α

φ
− l2

φ3 . (3.17)

For a better understanding we take a set {x ∈ Ω | |x| = 0.2} ⊂ Ω, solve the two cou-
pled evolution equations on this set with Explicit Euler method and compare the numerical
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3 Coupled Evolution Models

solution with

φwf(t) =
(

φwf(0)4 − 4t
) 1

4
, φwf(0) = 0.2,

the analytical solution of the corresponding Willmore flow equation φ̇wf = −φ−3
wf .

Therefore we calculate with a time step size h2

50 (h = 2−6), start with l0 = 1, φ0 = 0.2 and solve
the evolution equations for different ε. In Figure 3.1 we can observe that the solution φ of our
system of coupled evolution equations converges to the solution of Willmore flow for ε → 0.
In Figure 3.2 we can see that in the case of ε = 1

2 the length l of our normal field decreases,
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Figure 3.1: In the left image the solution φ of the coupled evolution equations 3.16 and 3.17 is plotted
over time for different ε. Additionally 3.18 is plotted in the same image. The right image is
a zoom in of the left one.

while it nearly does not change in the case of ε = 2 ∗ 10−5.
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Figure 3.2: In these two images the solutions l and φ of 3.16 and 3.17 are visualized. In the left image
ε = 1

2 and in the right one ε = 2 ∗ 10−5. In both images l is visualized by the red and φ by
the green line and both values are plotted over time.

In Subsection 3.2.4 we show results of the corresponding test.
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3.2 Willmore energy minimized by coupled evolution model

3.2.3 Discretized problem

Next we look into numerical treatment of our problem, which includes regularization and
discretization.

Regularization

In our energy (3.8) singularities arise where ∇φ vanishes. To prevent these singularities and
to ensure Mc being a regular surface (cf. Proposition 2.2.1), we can use the regularized δ-
norm |v|δ := (|v|2 + δ2)

1
2 for v ∈ Rd and δ ∈ R>0, as done in [10], and replace all |∇φ| by

|∇φ|δ, which leads to the regularized energy

Eδ[n, φ] =
∫

Ω

(
α + (div n)2) |∇φ|δ dx +

1
ε

∫
Ω
|n|2 + 1− 2n · ∇φ

|∇φ|δ
dx. (3.18)

Proposition 3.2.4. Let n : Ω ⊂ Rd → Rd be a vector field, φ : Ω ⊂ Rd → R a level set function
and

Eδ[n, φ] =
∫

Ω

(
α + (div n)2) |∇φ|δ dx +

1
ε

∫
Ω
|n|2 + 1− 2n · ∇φ

|∇φ|δ
dx

the regularized energy we want to minimize in n and φ. Moreover let gφ be the corresponding metric on
N ×L, as given in Proposition 3.2.1. The corresponding weak system of partial differential equations
is given by∫

Ω
∂tn · ϑ|∇φ|δ + 2 div n div ϑ|∇φ|δ +

2
ε

(
n · ϑ− ϑ · ∇φ

|∇φ|δ

)
dx = 0 (3.19)

∫
Ω

∂tφψ
1

|∇φ| δ

+
∇φ · ∇ψ

|∇φ|δ
(
α + (div n)2)− 2

ε

(
n · ∇ψ

|∇φ|δ
− (n · ∇φ)(∇φ · ∇ψ)

|∇φ|3δ

)
dx = 0

with ψ ∈ C∞
0 (Ω, R) and ϑ ∈ C∞

0 (Ω, Rd).

Comparing this system with the corresponding one from Proposition 3.2.1, we see that it is
nearly the same. In the regularized version, we can write |∇φ|δ instead of |∇φ|.
The proof is identical to the one of Proposition 3.2.1, since ∇ (|x|δ) = x

|x|δ .

Discretization

In a further step we deal with spatial discretization by piecewise bilinear finite elements. In
case d = 2, which we first consider, our domain is covered with a uniform rectangular grid
C. The base function set {ϕi}i∈I of our finite element space V consists of piecewise bilinear
functions. I is the index set of mesh nodes and the base function ϕi is equal to one at node i
and equal to zero at all other nodes. This leads to the following definition of our finite element
space

V := {Φ ∈ C0(Ω) |Φ
∣∣
C ∈ P1∀C ∈ C}. (3.20)

P1 denotes the space of bilinear functions, C ∈ C denotes the elements of C. Please be aware
of upper case letters representing discrete quantities while lower case letters represent con-
tinuous quantities, unless mentioned otherwise.
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3 Coupled Evolution Models

Let I1 be the Lagrangian interpolation onto V . Now we can formulate our semi-discrete finite
element problem.

Semi-discrete finite element problem 3.2.5. Find functions N ∈ Vd, Φ ∈ V with N(0) =
I1(n0), Φ(0) = I1(φ0) and∫

Ω
∂tN ·Θ|∇Φ|δ + 2 div N div Θ|∇Φ|δ +

2
ε

(
N ·Θ−Θ · ∇Φ

|∇Φ|δ

)
dx = 0

∫
Ω

∂tΦΨ
1

|∇Φ| δ

+ c
∇Φ · ∇Ψ
|∇Φ|δ

(
α + (div N)2)− 2c

ε

(
N · ∇Ψ
|∇Φ|δ

− (N · ∇Φ)(∇Φ · ∇Ψ)
|∇Φ|3δ

)
dx = 0

for all t > 0, an arbitrary but fixed c > 0 and all test functions Θ ∈ Vd, Ψ ∈ V .

Numerical tests showed that c in the second equation is necessary. We talk about the reason
for this in the next section.

Next we want to deal with time discretization. Therefore we replace ∂tN and ∂tΦ by differ-
ence quotients. That means we have to choose a time step size τ > 0 and want to compute
Nk(·) ∈ Vd which approximates n(kτ, ·) on Ω and Φk(·) ∈ V which approximates φ(kτ, ·) on
Ω. Until we are able to write down our fully discrete problem we have to decide which part
we want to treat explicitly or implicitly. In general for calculating the (k + 1)th time step we
will take weights from the kth time step. Moreover we will treat the penalty part explicitly,
while we will treat the main part implicitly. This leads to the following fully discrete problem.

Fully discrete finite element problem 3.2.6. For a given time step τ > 0, find a sequence (Nk, Φk)
with Nk ∈ Vd, Φk ∈ V , satisfying the initial conditions N0 = I1(n0), Φ0 = I1(φ0) and

∫
Ω

Nk+1 − Nk

τ
·Θ|∇Φk|δ + 2 div Nk+1 div Θ|∇Φk|δ +

2
ε

(
Nk ·Θ−Θ · ∇Φk

|∇Φk|δ

)
dx = 0∫

Ω

Φk+1 −Φk

τ|∇Φk|δ
Ψ + c

∇Φk+1 · ∇Ψ
|∇Φk|δ

(
α + (div Nk)2

)
−

2c
ε

(
Nk · ∇Ψ
|∇Φk|δ

− (Nk · ∇Φk)(∇Φk · ∇Ψ)
|∇Φk|3δ

)
dx = 0

for all test functions Θ ∈ Vd, Ψ ∈ V and an arbitrary but fixed c > 0.

But this is no fully practical finite element problem. Therefore we have to consider numer-
ical quadrature. The parabolic terms at the left hand side of the equations will be replaced
using standard mass lumping [25] and for all other terms we use a lower order Gaussian
quadrature rule. Concerning notation: In this work I0 denotes the piecewise constant inter-

polation I0( f )
∣∣∣
C

= f (sC) where sC is the center of gravity of any element C ∈ C and I1the

piecewise multilinear Lagrangian interpolation using the nodes of the element as quadrature
nodes. This allows exact integration of third order tensor product polynomials [8, 14].

Fully discrete finite element problem 3.2.7 (with quadrature rules). For a given time step τ >
0, find a sequence (Nk, Φk) with Nk ∈ Vd, Φk ∈ V , satisfying the initial conditions N0 = I1(n0),
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3.2 Willmore energy minimized by coupled evolution model

Φ0 = I1(φ0) and

∫
Ω
I1

(
Nk+1 − Nk

τ
·Θ
)
I0

(
|∇Φk|δ

)
+ 2 I1

(
div Nk+1 div Θ|∇Φk|δ

)
+

2
ε
I1

(
Nk ·Θ−Θ · ∇Φk

|∇Φk|δ

)
dx = 0∫

Ω
I1

(
Φk+1 −Φk

τ
Ψ
)
I0

(
|∇Φk|−1

δ

)
+ cI1

(
∇Φk+1 · ∇Ψ
|∇Φk|δ

(
α + (div Nk)2

))
−

2c
ε
I1

(
Nk · ∇Ψ
|∇Φk|δ

− (Nk · ∇Φk)(∇Φk · ∇Ψ)
|∇Φk|3δ

)
dx = 0

for all test functions Θ ∈ Vd, Ψ ∈ V and an arbitrary but fixed c > 0.

For further fully discrete finite element problems in this work we will skip this formulation
with quadrature rules. It always works as demonstrated above.

Matrix formulation

The next step on the way of implementing this problem is to write it in matrix formulation.
Thus we will calculate some matrices, which requires multiple indices. To prevent confusion
caused by a big number of indices, we do not care for the time index until the very end of this
subsection.
Now let us consider the first summand in both equations, for which we need weighted mass
matrices. As the first equation is a vector valued equation, we will calculate the mass matrix
which is used in this case. The fact that {ϕi}i∈I is the base function set of V can be written as
V = span{ϕi}i∈I . In a similar notation, we define

Vd := span{ϕ
j
i | i ∈ I, j ∈ 1, . . . d} when ϕ

j
i =

(
0 · · · 0 ϕi 0 · · · 0

)T = ϕiej

where ϕi (ϕi ∈ V) is in the jth column of ϕ
j
i .

Knowing this we can write the jth component of N as

N j = ∑
l∈I

Ni
l ϕl and Φ = ∑

l∈I
Φi ϕi.

Remark 3.2.8. For clearness we will neglect the quadrature rules while calculating the matrices
for the matrix formulation and take it into account again when we note down the final version.

Now let us calculate∫
Ω

ω N · ϕ
j
i dx =

∫
Ω

ω N j ϕi dx

=
∫

Ω
ω ∑

l∈I
N j

l ϕl ϕi dx

=
(∫

Ω
ω ϕl ϕi dx

)
i,l∈I

(
N j

l

)
l∈I
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3 Coupled Evolution Models

when ω : Ω → R denotes a general weight. Hence in case d = 2, the mass matrix which will
be applied on the whole vector N, the nodal coordinate vector, is[

Mnn 0
0 Mnn

]
with

Mnn := M[|∇Φk|δ], and M[ω] :=
(∫

Ω
I0(ω) I1(ϕi ϕj) dx

)
i,j∈I

.

Remark 3.2.9. In this work the nodal coordinate vector to a discrete scalar function F =
∑l∈I Fl ϕl is denoted by F = (Fl)l∈I and the nodal coordinate vector to a vector valued function

V = (V j)j=1,...d =
(

∑l V j
l ϕl

)
j=1,...d

in Rd is denoted by V =
((

V j
l

)
l∈I

)
d=1,...d

.

Next we need to calculate∫
Ω

ω div N div ϕ
j
i dx =

∫
Ω

(
ω

d

∑
k=1

Nk
,k

)
ϕi,j dx

=
∫

Ω
ω

(
d

∑
k=1

∑
l∈I

Nk
l ϕl,k

)
ϕi,j dx

=
d

∑
k=1

∑
l∈I

Nk
l

(∫
Ω

ω ϕl,k ϕi,j dx
)

=
d

∑
k=1

(∫
Ω

ω ϕl,k ϕi,j dx
)

i,l∈I

(
Nk

l

)
l∈I

.

In case d = 2, it leads to the matrix [
L00

nn L01
nn

L10
nn L11

nn

]
with

Ljk
nn := L̃jk[|∇Φk|δ], and L̃jk[ω] :=

(∫
Ω
I1(ω ϕl,k ϕi,j) dx

)
i,l∈I

.

A further expression to be calculated is∫
Ω

ω∇Φ · ϕ
j
i dx =

∫
Ω

ω Φ,j ϕi dx

=
∫

Ω
ω ∑

l∈I
Φl ϕl,j ϕi dx

= ∑
l∈I

Φl

(∫
Ω

ω ϕl,j ϕi dx
)

=
(∫

Ω
ω ϕl,j ϕi dx

)
i,l∈I

(Φl)l∈I

and therefore in 2D we get the matrix [
P0

np
P1

np

]
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3.2 Willmore energy minimized by coupled evolution model

with

Ps
np := Ps[|∇Φk|−1

δ ], and Ps[ω] :=
(∫

Ω
I1(ω ϕi ϕj,s) dx

)
i,j∈I

.

Except for the weighted stiffness matrix which is given by

L[ω] :=
(∫

Ω
I1(ω∇ϕi · ∇ϕj) dx

)
i,j∈I

and especially in our case

Lpp := L
[

α + (div Nk)2

|∇Φk|δ

]
, and L̃pp := L

[
Nk · ∇Φk

|∇Φk|3δ

]
,

there is only one expression left, we need to calculate,

∫
Ω

ω N · ∇ϕi dx =
∫

Ω
ω

d

∑
k=1

Nk ϕi,k dx

=
∫

Ω
ω

d

∑
k=1

∑
l∈I

Nk
l ϕl ϕi,k dx

=
d

∑
k=1

(∫
Ω

ω ϕl ϕi,k dx
)

i,l∈I

(
Nk

l

)
l∈I

and it leads to the following matrix

[
P0

pn P1
pn
]

with Ps
pn :=

(
Ps

np

)T
.

Now we can define M := M[1] and Mpp = M[|∇Φk|−1
δ ]. All together it leads to the following

matrix formulation of 3.2.6:

Matrix formulation 3.2.10. For a given time step τ > 0 find a sequence (Nk, Φk) when Nk ∈ V2
,

Φk ∈ V , satisfying the initial conditions N0 =
(
I1(n0)(xi)

)
i, Φ0 =

(
I1(φ0)(xi

)
i, when xi denotes

the nodes of the grid, and

Ln Nk+1 = Rnn Nk + Rnp Φk

Lp Φk+1 = Rpn Nk + Rpp Φk

with

Ln =
[

Mnn + 2τL00
nn 2τL01

nn
2τL10

nn Mnn + 2τL11
nn

]
, Rnn =

[
Mnn − 2τ

ε M 0
0 Mnn − 2τ

ε M

]

Rnp =

[
2τ
ε P0

np
2τ
ε P1

np

]
, Lp =

[
Mpp + cτLpp

]
Rpn =

[
2cτ

ε P0
pn

2cτ
ε P1

pn

]
, Rpp =

[
Mpp −

2cτ

ε
L̃pp

]
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3 Coupled Evolution Models

Remark 3.2.11. V is defined by

V := R|I|

From the definition of Mnn, (Ljk
nn)j,k, Mpp and L̃pp, the symmetry of our left hand side oper-

ators Ln and Lp follows. Moreover, since |∇Φk|δ, α are greater equal to zero, the weights of
all matrices are greater than zero. Thus both operators on the left hand side of the equation
system are positive definite and symmetric. Consequently both equations can be solved by a
conjugate gradient method [8, 14, 15].

3.2.4 Numerical tests

For all numerical tests we chose Ω = [0, 1]d with d = 2, 3. In this chapter we only consider
tests in 2D, i. e. Ω = [0, 1]2 and if we choose a grid depth we get a grid width h = 2−depth.
In a first test we consider the radial symmetric case. That means we start with an image

φ0(x, y) =
√

(x− 0.5)2 + (y− 0.5)2 + 0.12.

As parameters we take α = 0, c = 1, δ = 0.01, ε = 0.5, τ = h2

50 and let the program run for 100
time steps. The results can be seen in Figure 3.3.

We observe that circles grow, but at this point we still do not know if they grow with the

0.000

0.7000

   0.000

0.7000

   0.000

0.7000

   

Figure 3.3: Level sets after 0, 10 and 100 time steps of the size τ = h2

50 in comparison to level sets after
0 time steps.

correct speed. Therefore we consider the error functions

errorl(t) :=
∫

[φ=k]
(|n(x, y, t)| − l̃(x, y, t))2 dA

≈
∫

Ω
|H′

ρ(φ− k)|(|n(x, y, t)| − l̃(x, y, t))2 dx (3.21)

and

errorφ(t) :=
∫

[φ=k]
(φ(x, y, t)− φ̃(x, y, t))2 dA

≈
∫

Ω
|H′

ρ(φ− k)|(φ(x, y, t)− φ̃(x, y, t))2 dx, (3.22)
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3.2 Willmore energy minimized by coupled evolution model

where n(x, y, t), φ(x, y, t) are the solutions of our fully discrete problem 3.2.6 and l̃, φ̃ are the
solutions of Example 3.2.3, calculated with the Explicit Euler timestepping [9, 14]. Hρ(s) is a
regularized version of the Heavyside function and defined as

Hρ(s) :=
1
2

+
1
π

arctan
(

s
ρ

)
. (3.23)

Regarding these error functions with ρ = 2−7 for two different level sets k = 0.2, 0.3 and two
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Figure 3.4: The Heavyside function H(s) and its regularized version H 1
64

(s).
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Figure 3.5: In the first row, errorl(t) is plotted and in the second row, errorφ(t). In both rows in the
first image the error functions for k = 0.2 on a grid with grid depth 6 and 7 are compared,
in the images of the second column for k = 0.3 and grid depth 6 and 7 and in the third
column the information of the two previous images are plotted at the same time.

different grid depth 6 and 7 leads to some interesting results. First we are able to observe that
a growing error in l leads to a growing error in φ, directly. Moreover the error for the bigger
circle, that means for the 0.3 level set, is slightly smaller as the error for the smaller circle. But
in general, the error on a finer grid is smaller than the error on a coarser grid and additionally
the error is very small in comparison to the grid width, which equals h = 0.015625 on a grid
with grid depth 6 and h = 0.0078125 on a grid with grid depth 7. Thus the accuracy of our
calculated n is reasonable.

35



3 Coupled Evolution Models

 0

 2

 4

 6

 8

 10

 12

 14

 16

 0.0001  0.0002  0.0003  0.0004

main energy

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.0001  0.0002  0.0003  0.0004

penalty energy

 0

 2

 4

 6

 8

 10

 12

 14

 16

 0.0001  0.0002  0.0003  0.0004

whole energy

Figure 3.6: The first image shows Emain in the radial symmetric case plotted over time, the second image
shows Epenalty and the third one E = Emain + 1

ε Epenalty.

Nevertheless, we should have a look at the energy shown in Figure 3.6. These images demon-
strate a shortcoming of this model. With the gradient flow we are able to minimize our global
energy. But we can not guarantee that both parts of the energy are minimized. In the case
of this test the global energy and the main energy decrease, but the penalty energy increases.
The only chance to minimize both energy parts consists in trying different ε. But no other ε
we tested leads to better results.

After we know that this method works very well on circles we test how squares evolve.
Therefore we start with an image

φ0(x, y) =
√

max(|x− 0.5], |y− 0.5|)2 + 0.001

whose level sets are squares and which is continuously differentiable at (x, y) = (0.5, 0.5). In
this case we have to be careful when choosing parameters. For example: It is not possible
to calculate with c = 1. This is easy to explain. If we consider the second equation of our
discretized problem∫

Ω

Φk+1 −Φk

τ|∇Φk|δ
Ψ + c

∇Φk+1 · ∇Ψ
|∇Φk|δ

(
α + (div Nk)2

)
−

2c
ε

(
Nk · ∇Ψ
|∇Φk|δ

− (Nk · ∇Φk)(∇Φk · ∇Ψ)
|∇Φk|3δ

)
dx = 0

and have a closer look at the third summand, we see that it is of the same type as in the case of
weighted mean curvature flow. This can be better seen if we reformulate this third summand

−2c
ε

Nk · ∇Ψ
|∇Φk|δ

= −2c
ε

∇Φk · ∇Ψ
|∇Φk|2δ

.

This reformulation can be done to demonstrate the problem, because the penalty part of our
energy takes care that our image Φ really fits to our normal vector field N and in this case
Nk = ∇Φk

|∇Φk |δ
. But the problem lies in the sign of this summand. Normally, under the influence

of mean curvature flow, curves move in direction of the inner normal. But in this case, they
move in the direction of the outer normal. Additionally our curve will move at the corners
only, because at the sides of the squares, mean curvature equals zero. The typical evolution
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3.2 Willmore energy minimized by coupled evolution model

Figure 3.7: Typical evolution of a square under the gradient flow discussed in the text above, when
c = 1.

of a square under this flow can be seen in Figure 3.7. This behavior can be avoided by using
c � 1. Qualitatively it is the same as if we calculated with two different time step sizes. One
time step sizes τn for the evolution in N and τφ for the evolution in Φ. The first equation
leads to a smoothing of our vector field. Thus, if we choose a small c, the vector field will
be smoothed faster as the image φ evolves, which causes the square not only to evolve at the
corner, but in a region around the corner.
If we take parameters α = 0, c = 1 · 10−5, δ = 0.005, ε = 0.09, τ = h2

50 and take a grid with
grid depth 6 we get images as shown in Figure 3.8. The corners get smoother and smoother

0.1000

0.5000

   0.1000

0.5000

   0.1000

0.5000

   

Figure 3.8: Evolution of squares after 0, 20000 and 100000 time steps of the size τ = h2

50 while mini-
mizing Willmore energy with coupled evolution model.

until the whole square evolves to a circle. As we can see in Figure 3.9, this evolution really
minimizes our energy, but we do not want to have this behavior. We want to smooth small
perturbations, but keep sharp corners. Thus we have to think about another main energy.

3.2.5 Generalization of this model

Before we start to modify this model it makes sense to generalize it. If we remember the
structure of our model, our energy consists of two parts. One main part and one penalty part.
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Figure 3.9: The first image shows Emain in the case of squares as input data plotted over time, the second
image shows Epenalty and the third one E = Emain + 1

ε Epenalty.

Both parts depend on n and φ. The influence of one part in comparison to the other one can
be controlled by a parameter ε. Thus the general structure is

E[n, φ] = Emain[n, φ] +
1
ε

Epenalty[n, φ]. (3.24)

The task of the main energy is to determine the main evolution of our level sets. In contrast
to this, the penalty part ensures that our vector field n and our image φ fit to each other.
Moreover, it can force n to be of normal length. The penalty energy we have seen, guarantees
n being of normal length, but later we will see another penalty energy which only fits φ to n
and vice versa. In this case we have to choose another way to ensure normal length of our
vector field. But we will think about that later.
In general the variation of our energy E[n, φ] in n and φ leads to a system of two coupled
gradient flow equations. One in n

gφn(∂tn, ϑ) = − d
dε

E[n + εϑ, φ]
∣∣∣
ε=0

(3.25)

and another one in φ

gφφ(∂tφ, ψ) = − d
dε

E[n, φ + εψ]
∣∣∣
ε=0

. (3.26)

The general algorithm for solving this system of partial differential equations is given by

Algorithm 3.2.12.
for (k=0; k<num_timesteps; k++) {

calculate Nk+1
by solving (3.25);

calculate Φk+1
by solving (3.26);

Nk = Nk+1
;

Φk = Φk+1
;

}

3.3 Absolute value of mean curvature

As known from other papers like [10, 7] and as we were able to observe in the numerical tests
of the last chapter, neither isotropic Willmore flow nor the version with coupled evolution
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3.3 Absolute value of mean curvature

equation preserves edges and corners of level sets. This motivates us to modify our energy to
get a new gradient flow which is able to preserve edges.

3.3.1 Motivation for the choice of the energy

We are searching for an energy which is not able to distinguish between a ball and a cube in
3D or in general between a smooth monotone function and a monotone function with jumps.
The idea to such an energy goes back to Selim Esedoḡlu [11]. In dimension 1 we already know
an energy with this property. This energy equals the TV norm [20, 22], thus it is given by

ETV [φ] := ‖φ‖TV(Ω) := |Dφ|(Ω) = sup
{∫

Ω
φ υ′ dx | υ ∈ C1

0(Ω), ‖υ‖∞ ≤ 1
}

. (3.27)

As an example we will calculate this energy for two different monotone functions, a continu-
ous and a discontinuous one.

Example 3.3.1. If we calculate the TV energy for the functions

u1 : [0, 1] → R, u1(x) = x and u2 : [0, 1] → R, u2(x) =
{

uz = 0 for x ∈ [0, 1
2 )

uo = 1 for x ∈ [ 1
2 , 1]

we can see ETV [u1] = ETV [u2].

ETV [u1] = sup
{∫ 1

0
u1υ′ dx | υ ∈ C1

0([0, 1]), ‖υ‖∞ ≤ 1
}

= sup
{
−
∫ 1

0
u′1 υ dx | υ ∈ C1

0([0, 1]), ‖υ‖∞ ≤ 1
}

=
∫ 1

0
|u′1| dx

=
∫ 1

0
1 dx = 1

ETV [u2] = sup
{∫ 1

0
u2υ′ dx | υ ∈ C1

0([0, 1]), ‖υ‖∞ ≤ 1
}

= sup
{
−
∫ 1

2

0
u′2υ dx + uz( 1

2 )υ( 1
2 )− uz(0)υ(0)−

∫ 1

1
2

u′2υ dx + uo(1)υ(1)− uo( 1
2 )υ(

1
2
)

| υ ∈ C1
0([0, 1]), ‖υ‖∞ ≤ 1

}
= sup{(uz( 1

2 )− uo( 1
2 ))υ( 1

2 ) | υ ∈ C1
0([0, 1]), ‖υ‖∞ ≤ 1}

= sup{−1 υ( 1
2 ) | υ ∈ C1

0([0, 1]), ‖υ‖∞ ≤ 1}
= 1.

Thus if we start with a function like u2 and minimize the TV energy, a function like u1 would
not be preferred because it does not decrease the energy. Additionally, if we compare the TV
energy of the blue and the red function in Figure 3.10 the TV energy of the blue function is
smaller then the TV energy of the red function. That means if we start with a function like the
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3 Coupled Evolution Models

Figure 3.10: Two discontinuous functions, which look similar, but whose TV norm is different. The
TV norm of the left function is lower then the TV norm of the right one.

red one and minimize the TV energy, it will evolve to a monotone function.

The theorem of Gauss–Bonnet [6, 17] helps us to find an energy with similar properties for
surfaces. A lemma which follows from this theorem can be found in [6]

Lemma 3.3.2. Let M be an orientable compact surface, then∫
M

k dA = 2πχ(M),

with χ denoting the Euler-Poincaré characteristic [6].

This means for each surface M which is homeomorphic to a sphere MS∫
M

k dA =
∫
MS

k dA = 4π. (3.28)

As the surface MC of a cube is homeomorphic to a sphere MS, (3.28) holds for MC, too.
Thus we could replace h2 by k in Emain and should get a gradient flow which preserves edges if
the influence of the mean curvature flow is small enough. But this would not solve our prob-
lem. Our energy could be minimized by shapes with piecewise negative Gaussian curvature.
Thus nonconvex shapes could be minimizers of our energy. An idea along the previous dis-
cussed definition of the BV-Norm is to take the absolute value of the Gaussian curvature. In
the case of positive Gaussian curvature that is in the case of convex shapes, the corresponding
gradient flow will behave as in the case without the absolute value. Moreover, if we start with
an object which has piecewise negative Gaussian curvature, these regions should evolve so
that the absolute value of Gaussian curvature gets smaller. And we can hope that it will lead
to convex shapes whose Gaussian curvature is positive.
Consequently we could try to work with the following energy

E[n, φ] =
∫

Ω
(α + |k|)|∇φ| dx +

1
ε

∫
Ω
|n|2 + 1− 2n · ∇φ

|∇φ| dx, (3.29)

with α ∈ [0, 1] and ε ∈ R.
But before we start to work with this energy, we should think about a simplification. As we
are working in dimension 2, mean curvature and Gaussian curvature are the same because
our level sets are of dimension one. Thus we have only one principle curvature, which means
it does not matter if we consider Gaussian curvature which is defined as the product of all
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3.3 Absolute value of mean curvature

principle curvatures, or mean curvature which is defined as sum of all principle curvatures.
Therefore we can rewrite our energy (3.29) in the following way

E[n, φ] =
∫

Ω
(α + |div n|)|∇φ| dx +

1
ε

∫
Ω
|n|2 + 1− 2n · ∇φ

|∇φ| dx, (3.30)

with α ∈ [0, 1] and ε ∈ R and this is the energy we will work with in this section.
For the same reasons as mentioned in Section 3.2.3 we need to regularize our energy:

Eδ[n, φ] =
∫

Ω
(α + |div n|δ)|∇φ|δ dx +

1
ε

∫
Ω
|n|2 + 1− 2n · ∇φ

|∇φ|δ
dx. (3.31)

3.3.2 Evolution equation

As the penalty part of our energy remains the same as in the unmodified version, our problem
changes just slightly.

Proposition 3.3.3. Let

E[n, φ] =
∫

Ω
(α + |div n|δ)|∇φ|δ dx +

1
ε

∫
Ω
|n|2 + 1− 2n · ∇φ

|∇φ|δ
dx

with vector field n : Ω ⊂ Rd → Rd and level set function φ : Ω ⊂ Rd → R be the energy we want
to minimize in n and φ and

gφ((δn1, δφ1), (δn2, δφ2)) :=
∫

Ω
δn1δn2|∇φ|δ + δφ1δφ2|∇φ|−1

δ dx

the corresponding regularized metric on N ×L. The corresponding weak system of partial differential
equations is given by∫

Ω
∂tn · ϑ|∇φ|δ +

div n div ϑ

|div n|δ
|∇φ|δ +

2
ε

(
n− ∇φ

|∇φ|δ

)
· ϑ dx = 0

∫
Ω

∂tφψ
1

|∇φ| δ

+
∇φ · ∇ψ

|∇φ|δ
(α + |div n|δ)−

2
ε

(
n · ∇ψ

|∇φ|δ
− (n · ∇φ)(∇φ · ∇ψ)

|∇φ|3δ

)
dx = 0

for all ψ ∈ C∞
0 (Ω, R) and ϑ ∈ C∞

0 (Ω, Rd).

Proof. The proof of this proposition can be done analogously to the proof of Proposition 3.2.1.
We only have to be careful because this version is regularized and Emain is different. The
variation of our main energy Emain in n and φ is given by

〈E′main[n, φ], (ϑ, ψ)〉 =
∫

Ω

div n div ϑ

|div n|δ
|∇φ|δ dx +

∫
Ω

∇φ · ∇ψ

|∇φ|δ
(α + |div n|δ) dx.

From Lemma 3.3.2 we know that ∫
M

k dA = 2πχ(M)
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3 Coupled Evolution Models

stays the same for spheres of different size. Thus, in dimension 2

∫
Ω
|h|dx

should not change in the case of radial symmetric initial values. This means if we start with a
radial symmetric level set function we should only see the influence of mean curvature flow.
For being sure our gradient flow applied on a radial symmetric level set function behaves as
expected, we will test this special case.

Example 3.3.4 (Radial symmetric initial value). Let us start again with an image φ : Ω ⊂
R2 → R, φ(x) = |x|, a normal field n : Ω → R2, n(x) = l x

|x| , l ∈ R and calculate

d
dε

E[n + εϑ, φ + εψ]
∣∣∣
ε=0

with ϑ ∈ {γ ∈ C∞
0 (Ω, R2) | γ(x) = η(x) x

|x| , η ∈ C∞
0 (Ω)}. As we consider the unregularized

version we have to ignore all δ in the evolution equations of Proposition 3.3.3. Integration by
parts leads to the following Euler-Lagrange equations

∫
Ω

∂tn · ϑ|∇φ| − ∇
(
|∇φ| div n

|div n|

)
ϑ +

2
ε

(
n− ∇φ

|∇φ|

)
· ϑ dx = 0∫

Ω
∂tφ ψ

1
|∇φ| − div

(
∇φ

|∇φ| (α + |div n|)
)

ψ +

2
ε

(
div

(
n

|∇φ|

)
− div

(
(n · ∇φ)∇φ

|∇φ|3

))
ψ dx = 0,

which are equivalent to

∫
Ω

∂tl η −∇(sign(l))ϑ +
2
ε
(l − 1)η dx = 0∫

Ω
∂tφ ψ− α div

(
x
|x|

)
︸ ︷︷ ︸

=|x|−1

ψ− |l|div
(

x
|x|2

)
︸ ︷︷ ︸

=0

ψ +
2
ε

ψ
(

div
(

l
x
|x|

)
− div

(
l

x
|x|

)
︸ ︷︷ ︸

=0

)
dx = 0.

Thus it follows

l̇ = ∇(sign(l)) +
2
ε
(1− l) (3.32)

φ̇ =
α

φ
(3.33)

Thus in the case of α = 0, i. e. without mean curvature flow, nothing will change if we start
with a radial symmetric problem and a normal field which fits to the image φ exactly and is
of unit length, that means l ≡ 1.
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3.3 Absolute value of mean curvature

3.3.3 Discretization

The discretization works similar as in the previous model. The summands which come from
the main part of our energy will be treated implicitly, while the penalty part will be treated
explicitly. For time discretization we use difference quotients, again. All together we obtain
the following fully discrete problem:

Fully discrete finite element problem 3.3.5. For a given time step τ > 0 find a sequence (Nk, Φk)
with Nk ∈ Vd, Φk ∈ V , satisfying the initial conditions N0 = I1(n0), Φ0 = I1(φ0) and∫

Ω

Nk+1 − Nk

τ
·Θ|∇Φk|δ +

div Nk+1 div Θ
|div Nk|δ

|∇Φk|δ +
2
ε

(
Nk ·Θ−Θ · ∇Φk

|∇Φk|δ

)
dx = 0∫

Ω

Φk+1 −Φk

τ|∇Φk|δ
Ψ + c

∇Φk+1 · ∇Ψ
|∇Φk|δ

(
α + |div Nk|δ

)
−

2c
ε

(
Nk · ∇Ψ
|∇Φk|δ

− (Nk · ∇Φk)(∇Φk · ∇Ψ)
|∇Φk|3δ

)
dx = 0

for all test functions Θ ∈ Vd, Ψ ∈ V .

The c is necessary because of the same reasons as in the previous section.
The formulation above shows we can reuse most parts of the implementation of the previous
model. We only have to change the weight of two operators. Thus the matrix formulation is
given by

Matrix formulation 3.3.6. For a given time step τ > 0 find a sequence (Nk, Φk) with N ∈ V2
,

Φ ∈ V , initial conditions N0 =
(
I1(n0)(xi)

)
i, Φ0 =

(
I1(φ0)(xi)

)
i, where xi denotes the nodes of

the grid, and

Lan Nk+1 = Rnn Nk + Rnp Φk

Lap Φk+1 = Rpn Nk + Rpp Φk

with

Lan =
[

Mnn + τL00
ann τL01

ann
τL10

ann Mnn + τL11
ann

]
, Rnn =

[
Mnn − 2τ

ε M 0
0 Mnn − 2τ

ε M

]

Rnp =

[
2τ
ε P0

np
2τ
ε P1

np

]
, Lap =

[
Mpp + cτLapp

]
Rpn =

[
2cτ

ε P0
pn

2cτ
ε P1

pn

]
, Rpp =

[
Mpp −

2cτ

ε
L̃pp

]
.

Remark 3.3.7. Two operators are different in comparison to the previous problem. These op-
erators are

Ljk
ann := L̃jk

[
|∇Φk|δ
|div Nk|δ

]
with L̃jk[ω] =

(∫
Ω
I1(ω ϕl,k ϕi,j) dx

)
i,l∈I

and

Lapp := L
[

α + |div Nk|δ
|∇Φk|δ

]
with L̃[ω] =

(∫
Ω
I1(ω∇ϕi · ∇ϕj) dx

)
i,j∈I

.
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3 Coupled Evolution Models

3.3.4 Numerical tests

First we want to test if circles really keep their size under this gradient flow. Therefore we
start with an image

φ0(x, y) =
√

(x− 0.5)2 + (y− 0.5)2 − 0.2

and calculate on a grid with grid depth 6. The other parameters are α = 0, c = 0.01, δ = 0.005,
ε = 0.001 and τ = h2

50 . As expected the level sets do not change in most parts of the image.
Only at the point where the level set function is not continuously differentiable, they slightly
change. This evolution can be demonstrated by visualizing the level set function as function
graph, as it is done in Figure 3.11. But only very few level sets are involved in this change,
most of them do not change. This can be shown very well in the case of the zero level set. If
we calculate the volume, enclosed by the zero level set, in each time step, it stays exactly the
same. This enclosed volume can be calculated by

vol0(Φk) :=
∫

Ω
1− Hρ(φ) dx (3.34)

where Hρ(s) is a regularized version of the Heavyside function, defined in (3.23). In Figure
3.12 the volume enclosed by the zero level set is plotted over time.

y1.000000 1.000000x y1.000000 1.000000x

Figure 3.11: Function graph of a level set whose level sets are circles after 0 and 100 time steps of the
size τ = h2

50 .

The change of level sets near the singularity in the middle of the image corresponds to
the decrease of energy. But if we consider Figure 3.13 we can see that we have the same
shortcoming as described in previous tests. The global energy decreases and behaves very
similar to the main energy, but the penalty energy decreases at the beginning and increases
later. The decrease of the main energy is effected by the change of level sets near the point
where the level set function is not continuously differentiable. If we would calculate the
energy analyticly it would be infinite because of the non continuously differentiable point. At
this point the level set function is smoothed by applying the gradient flow, thus the energy is
finite after some timesteps. In our numerical tests the energy is not infinie at the beginning,
but the decrease of energy can be observed.

In a second test, we start with an image

φ0(x, y) = max(|x− 0.5|, |y− 0.5|)
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Figure 3.12: Volume enclosed by the zero level set (a circle) plotted over time. Over the whole time, it
equals 0.14594.
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Figure 3.13: All energy plots belong to the test where we start with radial symmetric input data. In the
first image, Emain is plotted over time, in the second image, Epenalty and in the third one,
E = Emain + 1

ε Epenalty.

whose level sets are squares. If we test it with parameters α = 0, c = 0.01, δ = 0.0005,
ε = 0.001 and τ = h2

50 on a grid of grid depth 6, we get a shortcoming because inner level sets
shrink. We can solve this shortcoming by choosing a finer grid with grid depth 7. There we
get images as shown in Figure 3.14. Corners are smoothed slightly, but this smoothing is the
only evolution observed.
If we consider the different energies, visualized in Figure 3.15, we can see the shortcoming

of an increasing penalty energy does not exist. The parameters are such that both energies
decrease and additionally we can observe a fast decrease of energy during the first time steps
which is followed by a long period where it slightly decreases.

As third test, we start with an image

φ0(x, y) = min
(√

(x− 0.35)2 + (y− 0.5)2 + 0.12,
√

(x− 0.65)2 + (y− 0.5)2 + 0.12

)
whose level sets form a nonconvex shape. In this case we want to see convexification and if
we take parameters α = 0, c = 0.01, δ = 0.0005, ε = 0.001 and τ = h2

50 we are able to observe
convexification as visualized in Figure 3.16.
In Figure 3.17 where the energies are plotted we can see a new effect. After a fast initial
decrease, the energies start to oscillate.
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Figure 3.14: Evolution of squares after 0, 100 and 1000 time steps of the size τ = h2

50 on a grid with
grid depth 7. In the second row we zoomed in on the upper right part of the image above.
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Figure 3.15: All energy plots belong to the test where we start with a level set function whose level sets
are squares. In the first image Emain is plotted over time, in the second image Epenalty and
in the third one E = Emain + 1

ε Epenalty.

A further test concerning convexification starts with an image

φ0(x, y) =
√

(x− 0.5)2 + (y− 0.5)2 + 0.12 + 0.02 sin
( x

3h

)
cos

( y
3h

)
on a grid with grid depth 6 and parameters α = 0, c = 0.01, δ = 0.0005, ε = 0.001 and τ = h2

50 .
In Figure 3.18 we can see how nonconvex shapes evolve to convex shapes. Moreover we see
that the shapes only get convex, but most of them do not change their size. In the images
shown in Figure 3.18 only the 0.1 level set changes its size and this can be because it is too
close to the point where the level set function is not continuously differentiably. In Figure 3.19
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Figure 3.16: Evolution of a nonconvex shape after 0, 1000 and 10000 time steps of the size τ = h2

50 ,
h = 2−6. In the last image the situation after 0 and 10000 time steps is visualized.
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Figure 3.17: All energy plots belong to the test where we start with a level set function whose level sets
form nonconvex shapes. In the first image Emain is plotted over time, in the second image
Epenalty and in the third one E = Emain + 1

ε Epenalty.

we see the corresponding energies.
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Figure 3.18: Evolution of perturbed circles after 0, 1000 and 6000 time steps of the size τ = h2

50 ,
h = 2−6. In the last image, the situation after 0 and 6000 time steps is visualized.

Now we know that convexification in general works and we want to know if it works in the
case of nonconvex shapes with sharp corners, too. Therefore we start with an image whose
level sets are squares, which are perturbed at the middle of the sides. As parameters we take
α = 0, c = 0.01, δ = 0.0005, ε = 0.001 and τ = h2

50 . In the test with squares we had to calculate
on a grid with grid depth 7, thus we have to calculate with the same grid depth, too. The
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3 Coupled Evolution Models
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Figure 3.19: All energy plots belong to the test where we start with a level set function whose level sets
are perturbed circles. In the first image Emain is plotted over time, in the second image
Epenalty and in the third one E = Emain + 1

ε Epenalty.

results can be seen in Figure 3.20. It takes very long, but we really observe convexification.
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Figure 3.20: Evolution of partially perturbed squares after 0, 1000 and 10000 time steps of the size
τ = h2

50 , h = 2−7. In the last image the situation after 0 and 10000 time steps is visualized.

Additionally we can see in Figure 3.21 all parts of the energy decrease.
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Figure 3.21: All energy plots belong to the test where we start with a level set function whose level sets
are perturbed squares. In the first image Emain is plotted over time, in the second image
Epenalty and in the third one E = Emain + 1

ε Epenalty.

But in general this model has some shortcomings. First there are a lot of parameters which
have to be chosen. Thus it is very complicated to find the right combination of parameters.
Second, we want to minimize our energy in n over all normalized vector fields. The penalty
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3.3 Absolute value of mean curvature

part should guarantee that our vectors are of length one, but this does not work in all cases,
as we see in Figure 3.22 and 3.23. If we consider for example the test where we start with
squares, we can see it. After 100 time steps there are only some regions where the length of

Figure 3.22: Length of our vectors after 100 time steps (|N100|) and after 1000 time steps (|N1000|) for
a level set function whose level sets are squares.

our vector field goes up to 1.01, but after 1000 time steps the length of some vectors is 1.1. In
general this is not precise enough. And this shortcoming does not only appear in this case.
If we consider the first test with nonconvex shapes, we are able to observe this shortcoming,
too. But in general, images are not enough for analyzing behavior. Thus we calculate the

Figure 3.23: |N1000| for a nonconvex level set function as shown in Figure 3.16.

error in l after each time step. If we consider the L2 error

errorL2(x, y, t) :=
∫

Ω
(l(x, y, t)− 1)2 dx =

∫
Ω

(|n(x, y, t)| − 1)2 dx

we may not be able to see this shortcoming because possibly in most parts of the image the
normal field is of correct length. Therefore we have to consider two other error functions

errorL∞(x, y, t) := ‖|n(x, y, t)|‖L∞(Ω) − 1 and error-L∞(x, y, t) := 1− min
(x,y)∈Ω

|n(x, y, t)|.

With errorL∞ we are able to see the biggest difference between |n| > 1 and 1 and with error-L∞

we see the biggest difference between 1 and |n| < 1.
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3 Coupled Evolution Models

In the test where we started with a level set function whose level sets are squares, the L2 error
indicates no shortcomingss, but both other error functions detect them. In the other test which
belongs to Figure 3.23, we can see that all error functions increase. That means this method
does not always succeed in guaranteeing n being of normal length. Thus we should think
about another possibility.
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Figure 3.24: The images in the first row belong to the test where we start with a level set function whose
level sets are squares and the images in the second row belong to the test where we start
with a level set function whose level sets form a nonconvex shape as shown in Figure 3.16.
In the left image the errorL2 is plotted over time, in the second image errorL∞ and in the
third one error-L∞ .
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4 Evolution Models with Refitting

In the previous chapter we considered one energy E[n, φ] and minimized it in both variables
n and φ. This energy consisted of two different parts. The main part Emain, which determined
the behavior of the model and the penalty part Epenalty which took care of n being the unit
normal field of our image φ. Thus Epenalty had two different tasks. Ensuring that n is of unit
length (|n| = 1) and n is the normal field of φ, that means n = ∇φ

|∇φ|δ .
With another method we separate these two tasks. This new method is described in [23]. In
contrast to our first method where evolution of the initial shape and adapting of n and φ are
treated at the same time, the evolution of initial surface and adapting of n and φ are treated
separately.

4.1 General structure of the refitting model

The basic idea of this refitting model consists in the fact that to each regular surface exists
a normal vector field of unit length which is unique up to sign. Thus if we want to process
regular surfaces given by level sets of a level set function φ : Ω ⊂ Rd → R, we can process the
corresponding unit normal vector field n : Ω ⊂ Rd → Rd which initially is given by n = ∇φ

|∇φ|
instead of the level set function φ. Thus we can calculate the variation of our energy E[n, φ] in
n on the set

N :=
{

n : Ω ⊂ Rd → Rd | ∃φ : Ω → R n = n[φ] =
∇φ

|∇φ|a.e.
}

(4.1)

and get one gradient flow equation for n. As we want to evolve n, we need the time derivative
of n, thus we have to think about the definition of TnN , the tangent space to N in n ∈ N .

Lemma 4.1.1. The tangent space to N in n ∈ N is given by

TnN :=
{

ξ : Ω → Rd | ∃φ, ζ : Ω ⊂ Rd → R ξ =
P[φ]
|∇φ|∇ζ

}

with P[φ] = 1− ∇φ
|∇φ| ⊗

∇φ
|∇φ| .

Proof. The variation of n can be written as

d
dε

n[φ + εζ]
∣∣∣
ε=0

=
P[φ]
|∇φ|∇ζ.
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4 Evolution Models with Refitting

Knowing the right metric gφn : TnN × TnN → R we can write down the gradient flow
equation in n with fixed φ:

gφn(∂tn, ϑ) = − d
dε

E[n + εϑ, φ]
∣∣∣
ε=0

∀ϑ ∈ TnN . (4.2)

As we know from previous chapters the metric gφn is given by

gφn(ξ1, ξ2) :=
∫

Ω
ξ1 · ξ2|∇φ|dx. (4.3)

Recalling the definition of TnN , we can identify

ξ =
P[φ]
|∇φ|∇ζ

and reformulate the metric as

gφn(ξ1, ξ2) =
∫

Ω

P[φ]
|∇φ|2∇ζ1 · ∇ζ2|∇φ|dx

=
∫

Ω

P[φ]
|∇φ|∇ζ1 · ∇ζ2 dx.

Now we have a metric on TφL. As ∂tn = P[φ]
|∇φ|∇ζn and

∂tn = ∂t
∇φ

|∇φ|

=
|∇φ|∇(∂tφ)−∇φ

∇φ·∇(∂tφ)
|∇φ|

|∇φ|2

=
P[φ]
|∇φ|∇(∂tφ)

we can identify ζn = ∂tφ, i. e. we are led to the following evolution equation:∫
Ω

P[φ]
|∇φ|∇∂tφ · ∇ζ dx = − d

dε
E
[

n + ε
P[φ]
|∇φ|∇ζ, φ

] ∣∣∣
ε=0

. (4.4)

That means despite the fact that we started with an evolution equation in n ∈ N , now we
have an evolution equation in our level set function φ.
As example let us consider the case Emain[n, φ] equals the Willmore energy.

Example 4.1.2. In the case of

E[n, φ] =
1
2

∫
R

∫
Mc

h2 dA dc =
1
2

∫
Ω

(div n)2 |∇φ|dx,

the variation of this energy can be written as

d
dε

E[n + εξ]
∣∣∣
ε=0

=
∫

Ω
div n div ξ |∇φ|dx

=
∫

Ω
div n div

(
P[φ]
|∇φ|∇ζ

)
|∇φ|dx.
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4.1 General structure of the refitting model

This leads to the gradient flow equation

∫
Ω

P[φ]
|∇φ|∇∂tφ · ∇ζ dx = −

∫
Ω

div n div
(

P[φ]
|∇φ|∇ζ

)
|∇φ|dx

and the corresponding strong formulation

div
(

P[φ]
|∇φ|∇∂tφ

)
= div

(
P[φ]
|∇φ|∇ (div n|∇φ|)

)
.

But we have to be careful because there is the following shortcoming: In this model we
treat our level set function φ as a function depending on n, thus φ = φ[n]. But we neglected
this when calculating the variation of E. If we took it into account we would have to calculate
∂nφ. It is easy to write n as a function depending on φ, n[φ] = ∇φ

|∇φ| . But it is an open problem
how to formulate φ = φ[n], i. e. we do not know ∂nφ. In particular any transformation
φ̃ = β ⊗ φ preserves the normal field (see further in Subsection 4.2.2), which leads to an
ambiguity problem. Hence (4.4) is not a reformulation of (4.2) in abstract sense.
In [23] it is presented how to avoid the described shortcoming. The basic idea is the same, but
then we do not identify ξ = P[φ]

|∇φ|∇ζ and ζ = ∂tφ, we really solve the equation in n and refit
φ to n by minimizing a refitting energy Eref[n, φ] for a fixed n in φ. In general it is possible to
take the penalty energy which we know from the previous chapter as refitting energy, but in
this chapter we will work with another refitting energy. This one is the same as it is used in
[23]. It is given by

Eref[n, φ] =
∫

Ω
|∇φ| − n · ∇φ dx. (4.5)

The following Lemma describes a nice property of this energy.

Lemma 4.1.3. Let n : Ω ⊂ Rd → R be a unit normal vector field and φ : Ω ⊂ Rd → R a level set
function. Then the refitting energy

Eref[n, φ] =
∫

Ω
|∇φ| − n · ∇φ dx

is greater or equal zero and especially it is zero if n = ∇φ
|∇φ| .

Proof. The second statement is obvious and if we reformulate the refitting energy it is easy to
see that it is greater equal zero.

Eref[n, φ]
Cauchy Schwarz

≥
∫

Ω
|∇φ| − |n| |∇φ| dx

=
∫

Ω
(1− |n|)|∇φ|dx

|n|=1
= 0.
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4 Evolution Models with Refitting

Thus this energy is a good choice for refitting our level set function to n by minimizing it.
It is not possible to calculate many time steps in n without refitting our level set function,
because updates for n depend on φ and this level set function φ has to fit to the unit normal
vector field n. One way to solve this problem is to refit φ to n after each time step in n.
Similar to the coupled evolution model, we want to minimize our energy in n over the set
of all functions which map Ω ⊂ Rd to Rd and are of unit length. Thus our concept looks as
follows:

Refitting Concept 4.1.4. It is given a energy E[n, φ] and a refitting energy Eref[n, φ] with n : Ω ⊂
Rd → Rd and φ : Ω → R.
Minimize E[n, φ] in n under the constraints |n| = 1 and

φ[n] ∈ {υ : Ω → R| υ = argmin
γ

Eref[n, γ]}.

We have to be careful while noting down the second constraint because the argument which
minimizes Eref[n, γ] in γ is not unique. As it will be mentioned in detail in the following
section we try to guarantee the second constraint by a gradient flow in φ with respect to Eref.
This gradient flow is well posed and its strong version is given by

∂tφ + |∇φ|
(

div n− div
∇φ

|∇φ|

)
= 0.

The weak and discretized version is written down in the following section.

As we want to minimize the energy under special constraints, we have to ensure, that these
constraints are satisfied while solving the equation for n. This can be done by minimizing
Eref[n, φ] in φ after each time step in n. Until now we did not talk about how to guarantee the
unit length of our vector field n. If we minimize our energy by a simple gradient method this
is not guaranteed. Thus we have to renormalize our vector field after each time step in n and
before we minimize Eref. This procedure leads to the following algorithm.

Algorithm 4.1.5. for (k=0; k<num_timesteps; k++) {
calculate Ñk+1;
renormalize it: Nk+1 = Ñk+1

|Ñk+1|δ
;

calculate Φk+1 by minimizing Eref[Nk+1, Φ] in Φ until changes in Φ are
small enough;
}

4.2 Refitting model applied to the Willmore energy

If we want to minimize the Willmore energy with the refitting model, we have to take the
following energy as energy

E[n, φ] = Ew[n, φ] =
∫

Ω
(div n)2|∇φ|δ dx
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4.2 Refitting model applied to the Willmore energy

and minimize it in n under the constraints |n| = 1 and

φ[n] ∈ {υ : Ω → R | υ = argmin
γ

Eref[n, γ] = argmin
γ

∫
Ω
|∇γ|δ − n · ∇γ dx}.

As described in the previous section we will calculate the variation of E in n

d
dε

E[n + εϑ, φ]
∣∣∣
ε=0

=
∫

Ω
2 div n div ϑ |∇φ|δ dx. (4.6)

Together with (4.3) we can write the weak form of the gradient flow in n∫
Ω

∂tn · ϑ|∇φ|δ + 2 div n div ϑ |∇φ|δ dx = 0. (4.7)

Discretization in time and space (as before) leads to the following fully discrete problem

Fully discrete finite element problem 4.2.1. For a given time and space discretization based on
finite element space V find a sequence Nk ∈ Vd with |Nk| = 1, satisfying the initial condition
N0 = I1(n0) and

∫
Ω

Nk+1 − Nk

τ
·Θ|∇Φk|δ + 2 div Nk+1 div Θ |∇Φk|δ dx = 0 (4.8)

for all discrete test functions Θ ∈ Vd subject to the constraint

Φk[Nk] ∈ {Υ ∈ V |Υ = argmin
Γ

Eref[Nk, Γ]}.

For being able to minimize Eref[n, γ] we calculate its variation

d
dε

Eref[n, γ + εψ]
∣∣∣
ε=0

=
∫

Ω

∇γ · ∇ψ

|∇γ|δ
− n · ∇ψ dx. (4.9)

Knowing the metric gφφ as defined in (3.1) we can formulate the weak version of the gradi-
ent flow in γ, whose discretized version is:

Fully discrete finite element problem 4.2.2 (for minimizing the refitting energy). For a given
time step τ and a spatial discretization based on a finite element space V find a sequence Γk ∈ V ,
satisfying the initial condition Γ0 = I1(γ0) and

∫
Ω

Γk+1 − Γk

τ
Ψ|∇Γk|−1

δ +
∇Γk · ∇Ψ
|∇Γk|δ

− Nk · ∇Ψ dx = 0 (4.10)

for all discrete test functions Ψ ∈ V .

For being able to implement this we need to know the matrix formulation of (4.8) and (4.10).
But they are not as complicated, because the operators we need are known yet.
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4 Evolution Models with Refitting

Matrix formulation 4.2.3 (for evolution equation in N). For a given time step τ > 0 find a
sequence Nk with N ∈ V2

, satisfying the initial condition N0 =
(
I1(n0)(xi)

)
i, where xi denotes the

nodes of the grid, and[
Mnn + 2τL00

nn 2τL01
nn

2τL10
nn Mnn + 2τL11

nn

]
Nk+1 =

[
Mnn 0

0 Mnn

]
Nk (4.11)

subject to the constraint

Φk[Nk] ∈ {Υ ∈ V |Υ = argmin
Γ

Eref[N
k, Γ]}.

Mnn and Ljk
nn are defined as

Mnn = M[|∇Φk|δ] (4.12)

and

Ljk
nn = L̃jk[|∇Φk|δ], with L̃jk[ω] =

(∫
Ω

ωI1
(
φl,kφi,j

)
dx
)

i,l∈I
. (4.13)

Matrix formulation 4.2.4 (for minimizing Eref in Γ). For Nko ∈ V2
and initial condition

Γ0 =
(
I1(γ0)(xi)

)
i, where xi denotes the nodes of the grid, calculate the sequence Γk with Γ ∈ V ,

τ > 0 and

Γk+1 = Γk − τM−1
pp

(
LppΓk −

[
M 0
0 M

]
Nko

)
with

Mpp = M[|∇Φ|−1
δ ], M = M[1], Lpp = L[|∇Γk|−1

δ ]. (4.14)

The matrix on the left hand side of the equation presented in 4.2.3 is symmetric and pos-
itive definite, thus we can solve this equation with conjugate gradient method. The matrix
formulation 4.2.4 shows we do not need to solve a system of equations for solving the refit-
ting equation, we can use a gradient descent with time step size control. This time step size
control is called Armijo Rule [3] and it determines for a fixed β ∈]0, 1[ the smallest m ∈ Z

with which

Eref[Γ
k+1
βm ]− Eref[Γ

k]

βm〈E′ref[Γ
k], Γk+1

βm − Γk〉
≥ σ,

Γk+1
βm := Γk − βm M−1

pp

(
LppΓk −

[
M 0
0 M

]
Nko

)
.

Remark 4.2.5. Of course Eref does not only depend on Γ, it depends on N, to. But if we would
write it here it could lead to confusions because we would need to note that Eref depends on N,
evaluated at a special time. But the time in N and the time which arises in this expression are
different times, because they belong to different minimizations. Thus it makes our notation
easier not to write down the dependence on N. But we will only do it in the inequality above
and in the following algorithm.

56



4.2 Refitting model applied to the Willmore energy

In the quocmesh library, this rule is implemented with β = 1
2 and σ = 3

4 as follows

calculate
Γk+1,i = Γk − τi M−1

pp DE(Γk)

check
Eref[Γ

k+1,i ]−Eref[Γ
k ]

〈E′ref[Γ
k ],Γk+1,i−Γk〉

≥ 3
4 τi

if yes: τi+1 = 2τi, until no, then τ = τi

if no: τi+1 = 1
2 τi, until yes, then τ = τi+1

calculate
Γk+1 = Γk − τM−1

pp DE(Γk)

where

DE(Γk) =
(

LppΓk −
[

M 0
0 M

]
Nko

)

in our case. Moreover the gradient descent as it is implemented in the quocmesh library re-
quires Mpp to be a diagonal matrix, which is given in this case.

Now we know everything to apply the algorithm presented in the previous section for solv-
ing this problem. But first we want to point out an important difference to the known version
of calculating Willmore flow. Therefore we consider a radial symmetric level set function as
input data.
In general we know, if we start with a radial symmetric input φ : Ω ⊂ R2 → R, φ(x) = |x|
and minimize Willmore energy Ew[n, φ], it will lead to growing of our circles. But in the case
of this model it is different. As it sounds slightly surprising, we will calculate this special case.

Example 4.2.6 (Radial symmetric initial value). If we consider the Willmore energy

E[n, φ] = Ew[n, φ] =
∫

Ω
(div n)2 |∇φ|dx,

start with an image φ and the assumption as mentioned in Example 3.2.3, our normalized
vector field is n : Ω ⊂ R2 → R2, n(x) = l x

|x| with l ∈ R and l = 1. l can change while
calculating the next n, therefore we renormalize it before we minimize the penalty energy.
First we calculate the variation of our energy

d
dε

E[n + εϑ, φ]
∣∣∣
ε=0

with ϑ ∈ {γ ∈ C∞
0 (Ω, R2)|γ(x) = η(x) x

|x| , η ∈ C∞
0 (Ω)}. We only have to consider these test

functions because we assume our level set function will stay radial symmetric.
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4 Evolution Models with Refitting

Together with integration by parts it leads to the following equation∫
Ω

∂tn · ϑ|∇φ| − 2∇(|∇φ|div n) ϑ dx = 0

⇔
∫

Ω
∂tl η − 2∇

(
l

1
|x|

)
︸ ︷︷ ︸

=−l x
|x|3

ϑ dx = 0

⇔
∫

Ω
∂tl η + 2l

1
|x|2 η dx = 0.

From this calculation we get the Euler-Lagrange equation for our vector field n

l̇ = − 2
φ2 l (4.15)

Thus the vector field n changes its length, but after calculating the new N and before refitting
our image Φ to this N we renormalize N. Therefore N does not change during the complete
calculation of one time step and consequently our image Φ will not change, too. In compari-
son to the first version how to minimize Willmore energy circles will neither grow nor shrink,
they will stay the same as at the beginning.

4.2.1 Differences in the three dimensional case

Until now we only dealt with curves in 2D. Let us now also consider surfaces in 3D.

If we want to minimize the Willmore energy Ew[n, φ] in φ : Ω ⊂ R3 → R, most parts of
the concept presented above do not change. We only have to be careful while formulating the
matrix formulations. The matrix formulation in 3D is not completely different to the one in
2D, but we have to extend our matrices in 4.2.3 and 4.2.4, so that the matrix formulations are
the following.

Matrix formulation 4.2.7 (for evolution equation in N ∈ V3). For a given time step τ > 0 find a
sequence Nk with N ∈ V3

, satisfying the initial condition N0 =
(
I1(n0)(xi)

)
i, where xi denotes the

nodes of the grid, and Mnn + 2τL00
nn 2τL01

nn 2τL02
nn

2τL10
nn Mnn + 2τL11

nn 2τL12
nn

2τL20
nn 2τL21

nn Mnn + 2τL22
nn

Nk+1 =

 Mnn 0 0
0 Mnn 0
0 0 Mnn

Nk (4.16)

subject to the constraint

Φk[Nk] ∈ {Υ ∈ V |Υ = argmin
Γ

Eref[N
k, Γ]}.

Mnn and Ljk
nn are defined as

Mnn = M[|∇Φk|δ] (4.17)

and

Ljk
nn = L̃jk[|∇Φk|δ], with L̃jk[ω] =

(∫
Ω

ωI1
(
φl,kφi,j

)
dx
)

i,l∈I
. (4.18)
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4.2 Refitting model applied to the Willmore energy

Matrix formulation 4.2.8 (for minimizing Eref in Γ in 3D). For a given time step τ > 0 and
Nko ∈ V3

calculate the sequence Γk with Γ ∈ V , initial conditions Γ0 =
(
I1(γ0)(xi)

)
i, where xi

denotes the nodes of the grid, and

Γk+1 = Γk − τM−1
pp

LppΓk −

 M 0 0
0 M 0
0 0 M

Nko


with

Mpp = M[|∇Φ|−1
δ ], M = M[1], Lpp = L[|∇Γk|−1

δ ]. (4.19)

4.2.2 Numerical tests

2D tests

As we saw in the previous subsection that circles will neither shrink nor grow, we want to
know if it is really possible to observe this behavior. Therefore we take a quadratic grid with
grid depth 6, which means a grid width h = 2−6 = 64−1 and create an input image

φ0(x, y) =
√

(x− 0.5)2 + (y− 0.5)2 − 0.2.

As further parameters we take δ = 0.0005 and τ = h
4 . Starting a run over 50 time steps leads

to images shown in Figure 4.1. The situations after 0 and 50 time steps are visualized in one

Figure 4.1: Situation after 0 and 50 time steps of the size τ = h
4 (h = 2−6) visualized in one image,

the right one is scaled by factor 1.8. The orange line visualizes the 0 level set.

image, but it is not possible to see a difference. Even if you zoom in and only consider the both
inner level sets you cannot see a difference. Thus we have to consider the volume enclosed
by one level set and calculate it at the beginning and after each time step, as described in
Subsection 3.3.4. In Figure 4.2 this function is plotted over time. Now we are able to see that
there are changes in the volume enclosed by the zero level set, but the differences in volume
are less than 10−3.

In a further test we start with another level set function

φ0(x, y) = max(|x− 0.5|, |y− 0.5|),
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4 Evolution Models with Refitting
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Figure 4.2: The volume of the zero level set (a circle) is plotted over time.

whose level sets are squares and do not change the other parameters. As we would expect
squares evolve to circles under the influence of our gradient flow and the energy decreases.
This can be seen in Figures 4.3 and 4.4.

Figure 4.3: Evolution of squares after 0, 200 and 600 time steps of the size τ = h
4 . In the second image,

the situation after 0 and 200 time steps is shown, in the third one after 0 and 600.
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Figure 4.4: E in the case where we started with a level set function whose level sets are squares, plotted
over time.

3D tests

In a further step we want to test this model in 3D. Therefore we start with a level set function
φ whose level sets are nonconvex shapes with sharp corners. We choose a grid with grid
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4.2 Refitting model applied to the Willmore energy

depth 6, that means a grid width h = 64−1 and take parameters δ = 0.0005 and τ = h2

50 . In

Figure 4.5: Evolution of a nonconvex shape with sharp corners after 0, 5 and 50 time steps of the size
τ = h2

50 and h = 64−1.
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Figure 4.6: Energy of a shape as shown in the first image of Figure 4.5, plotted over time.

Figure 4.6 we see that the energy decreases and in Figure 4.5 we observe that the shape gets
convex, but all corners get smoother and smoother. Additionally we can observe a shrinking
of the whole shape. Let us consider the unregularized, continuous version of the evolution
equation (4.10) for refitting our surface to our unit normal vector field. For this equation it
makes no difference if we consider a function γ or a function γ̃ with µ (γ̃) = γ and µ being a
continuous, strictly increasing, linear function. This is proved below:∫

Ω
∂tγψ|∇γ|−1 +

∇γ · ∇ψ

|∇γ| − n · ∇ψ dx = 0

⇔
∫

Ω
∂t (µ (γ̃)) ψ|∇ (µ (γ̃)) |−1 +

∇ (µ (γ̃)) · ∇ψ

|∇ (µ (γ̃)) | − n · ∇ψ dx = 0

⇔
∫

Ω
µ′∂tγ̃ψ|µ′∇γ̃|−1 +

µ′∇γ̃ · ∇ψ

|µ′∇γ̃| − n · ∇ψ dx = 0

⇔
∫

Ω
∂tγ̃ψ|∇γ̃|−1 +

∇γ̃ · ∇ψ

|∇γ̃| − n · ∇ψ dx = 0

That means this equations is not able to see a difference between two images whose geometry
is equal and which differ from each other by a contrast modulation as described above. Con-
sequently each shape with the same geometry but different size is a solution of this equation.
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4 Evolution Models with Refitting

For solving this problem it is necessary to take care that the volume of the shape does not
change.

In a second test we start with a level set function whose level sets are partially perturbed
cubes. All parameters stay the same as in the previous test. The results can be seen in Figure
4.7. In Figure 4.8 we can see that this evolution really reduces our energy. But again we
are able to observe the shrinking of the surface, and as expected not only the perturbation is
smoothed, but also the sharp corners which we would like to preserve are smoothed.
Thus the results in 2D and 3D point out what we know from the coupled evolution model:

Figure 4.7: Evolution of a partially perturbed cube after 0, 5 and 50 time steps of the size τ = h2

50 with
h = 64−1.
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Figure 4.8: Energy of a shape as shown in the first image of Figure 4.7, plotted over time.

This gradient flow can not be used if one wants to keep corners. Therefore we will test the
energy with which we worked in Section 3.3.

4.3 Absolute value of mean curvature

In this section we want to minimize

E[n, φ] = Eh[n, φ] =
∫

Ω
|div n|δ|∇φ|δ dx (4.20)
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4.3 Absolute value of mean curvature

under the constraints |n| = 1 and

φ[n] ∈ {υ : Ω → R | υ = argmin
γ

Eref[n, γ] = argmin
γ

∫
Ω
|∇γ|δ − n · ∇γ dx}.

As we want to process curves, first this ansatz leads to the same results as if we would
minimize

Eg[n, φ] =
∫

Ω
|k|δ|∇φ|δ dx

in n under the same constraints.

The constraints are the same as in the previous section we only have to consider the evo-
lution equation corresponding to (4.20). As described at the beginning of this chapter we
calculate the variation of Eh[n]

d
dε

Eh[n + εϑ, φ]
∣∣
ε=0 =

∫
Ω

div n div ϑ

|div n|δ
|∇φ|δ dx (4.21)

Knowing the metric on N , which is given by (3.9), we get the gradient flow for this energy,
whose discretized version is:

Fully discrete finite element problem 4.3.1. For a given time step τ and a spatial discretization
based on a finite element space V find a sequence Nk ∈ Vd with |Nk| = 1, satisfying the initial
condition N0 = I1(n0) and∫

Ω

Nk+1 − Nk

τ
·Θ |∇Φ|δ +

div Nk+1 div Θ
|div Nk|δ

|∇Φ|δ dx = 0

for all discrete test functions Θ ∈ Vd subject to the constraint

Φk[Nk] ∈ {Υ ∈ V |Υ = argmin
Γ

∫
Ω
|∇Γ|δ − Nk · ∇Γ dx} (4.22)

In comparison to the fully discrete problem in the previous section, only the evolution
equation for N is different. The matrix formulation of this equation is very similar to the one
corresponding to the Willmore energy.

Matrix formulation 4.3.2. For a given time step τ > 0 find a sequence Nk ∈ Vd
, satisfying the

initial condition N0 =
(
I1(n0)(xi)

)
i, where xi denotes the nodes of the grid, and[

Mnn + 2τL00
ann 2τL01

ann
2τL10

ann Mnn + 2τL11
ann

]
Nk+1 =

[
Mnn 0

0 Mnn

]
Nk (4.23)

subject to the constraint

Φk[Nk] ∈ {Υ ∈ V |Υ = argmin
Γ

Eref[N
k, Γ]}.

Mnn is defined as

Mnn = M[|∇Φk|δ], (4.24)

and

Ljk
ann = L̃jk

[
|∇Φk|δ
|div Nk|δ

]
, with L̃jk[ω] =

(∫
Ω
I1
(
ωφl,kφi,j

)
dx
)

i,l∈I
. (4.25)
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4 Evolution Models with Refitting

4.3.1 Qualitative behavior of the evolution in N

Before we test our gradient flow numerically we want to get to know some qualitative prop-
erties of this flow. Therefore we calculate the Euler-Lagrange equation to our energy. The
weak formulation of our evolution equation in n is given by

∫
Ω

∂tn · ϑ|∇φ|+ div n div ϑ

|div n| |∇φ|dx = 0.

Integration by parts and the knowledge of ϑ being a function in C∞
0 (Ω, R2) leads to

∫
Ω

∂tn · ϑ|∇φ| − ∇
(

div n
|div n| |∇φ|

)
· ϑ dx = 0.

The fundamental lemma of the calculus of variations allows us to derive the Euler-Lagrange
equation

|∇φ|∂tn = ∇
(

div n
|div n|

)
|∇φ|+ div n

|div n|∇ (|∇φ|) .

If we start for example with a signed distance function to a shape, i. e. a level set function
with |∇φ| = 1. Thus the vector field n only changes at these points, where the sign of div n
changes, that means, where mean curvature changes its sign. As we are considering the
regularized version

|∇φ|δ∂tn = ∇
(

div n
|div n|δ

)
|∇φ|δ +

div n
|div n|δ

∇ (|∇φ|δ) ,

n changes at those points where div n
|div n|δ changes. In Figure 4.9, color changes in these regions.

Figure 4.9: Different shapes (thin lines) and their mean curvature plotted as dense function for the
whole ensemble of all level sets. Red denotes positive, blue negative and green zero valued
mean curvature.
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4.3 Absolute value of mean curvature

4.3.2 Numerical tests

If we want to test this model, we should have a look on the radial symmetric case first. We
know that our model should behave as in the case of minimizing Willmore energy on this
way. We expect circles to stay unchanged. If we start with an input image

φ0(x, y) =
√

(x− 0.5)2 + (y− 0.5)2 − 0.2

on a grid with grid depth 6, δ = 0.005 and τ = h
4 we get images as shown in Figure 4.10.

In contrast to the corresponding test with Willmore energy we can observe some boundary

-0.2000

0.4000

   
  0.000 

0.05000

-0.2000

0.4000

   
  0.000 

0.2000

Figure 4.10: In the first image the situation after 0 and 1 time steps of the size τ = h
4 are visualized, in

the second image |N1 − N0|, in the third time step 0 and 20 and in the last one |N20 −
N0|.

effects. In the first image in Figure 4.10 it is nearly not visible, but in the corresponding
visualization of |N1−N0| it is possible to observe and it gets more during time. But especially
the visualization of |Ni − N0|, i = 1, 20 shows we can expect that the volume of the zero level
set will not change and except from some small changes it really stays the same, as shown in
Figure 4.11.
But the small effects which we can see cause the decreasing of our energy, which is visualized
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Figure 4.11: Volume of the zero level set, a circle, plotted over time.

in Figure 4.12.

Now we want to concentrate on what happens to squares. Gauss-Bonnet tells us that the
integral over the Gaussian curvature of a square and a circle are the same.
As input image we take

φ0(x, y) = max(|x− 0.5|, |y− 0.5|)
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Figure 4.12: E in the case where we started with a level set function whose level sets are circles, plotted
over time.

and all other parameters will stay the same. In Figure 4.13 we see: At first we only observe

0.000
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0.4000

   0.000

0.4000

   

Figure 4.13: Evolution of squares after 0, 5 and 20 time steps of the size τ = h
4 , h = 64−1.

a slight smoothing of the corners, later on boundary effects appear. Apart from this, our
gradient flow is able to preserve corners.
If we consider the energy in Figure 4.14 we can see that it decreases very much in the first
time step, but then the changes are very small so that we can say they are caused by boundary
effects.
In Subsection 4.3.1 we discussed in which regions our vector field will be smoothed and now
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Figure 4.14: E in the case where we started with a level set function whose level sets are squares, plotted
over time.

we can verify it. Therefore we visualize |N1 − N0| and compare it with the corresponding
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4.3 Absolute value of mean curvature

image from Figure 4.9. As we recall the change of color in the first image indicates where N
will change and the new image visualizes where N really changed. Figure 4.15 demonstrates
very nice that happens what we expect.

Figure 4.15: In the left image the mean curvature of a level set function whose level sets are squares is
plotted as dense function for the whole ensemble of all level sets. Red denotes positive, blue
negative and green zero valued mean curvature. In the right image |N1 − N0| is plotted,
i. e. we can see where N really changes.

As a further test it would be nice if we could observe convexification. Therefore we start
with a perturbed circle as input image, which is given by

φ0(x, y) =
√

(x− 0.5)2 + (y− 0.5)2 + 0.12 + 0.02 sin
(

3x
4h

)
cos

(
3x
4h

)
. (4.26)

We choose a grid with grid depth 6, thus grid width is given by h = 64−1. Moreover, we
choose δ = 0.005 and τ = h

4 . As we can see in Figure 4.16 our perturbed circles evolve to

0.000

0.7000

   0.000

0.7000

   0.000

0.7000

   

Figure 4.16: Evolution of perturbed circles after 0, 1 and 10 time steps of the size τ = h
4 , h = 64−1.

nearly perfect circles in short time and Figure 4.17 demonstrates the energy decreases a lot
until our level sets are circles and then it stays almost constant.
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Figure 4.17: E in the case where we started with the level set function (4.26), plotted over time.

Now we know that it is possible to change nonconvex shapes into convex shapes and addi-
tionally we know that it is possible to preserve edges with this gradient flow. Thus it will be a
further step in testing our model to test if it is possible to observe both behaviors at the same
time. Therefore we start with the signed distance function of a nonconvex shape on a grid
with grid depth 6 and parameters as before. In Figure 4.18 we can see one level set with sharp
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0.5000

   -0.1000
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Figure 4.18: Evolution of nonconvex shape after 0, 10 and 20 time steps of the size τ = h
4 , h = 64−1.

corners. During time these corners are slightly smoothed, but in general the convex part of
this shape is preserved, while the nonconvex part gets convex.
At this point we want to do the same as in the test where we started with squares. We want
to compare what should change under the influence of our gradient flow in N and what re-
ally happens. Therefore we compare the corresponding image from Figure 4.9 with the image
which visualizes |N1−N0| of this test. The result is shown in figure 4.19. In the convex region
of our shape we can nicely see that the vector field only changes where we expect it to change.
In the nonconvex region it is more difficult.
Moreover we are able to observe that the energy decreases over the whole time as shown in
Figure 4.20.

The last test can not offer new results, but it is a very nice one. This time we calculate on
a finer grid with grid depth 7, thus grid width h = 128−1. All other parameters are again
the same as before. In Figure 4.21 we observe that perturbations vanish while corners and
the general shape are preserved. The energy decreases over the whole time again (cp. Figure
4.22).
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4.4 Refitting model applied on Gaussian energy in 3D

Figure 4.19: In the left image a non convex shape and the corresponding mean curvature is plotted as
dense function for the whole ensemble of all level sets. Red denotes positive, blue negative
and green zero valued mean curvature. In the right image |N1 − N0| is plotted, i. e. we
can see where N really changes.

 2

 2.5

 3

 3.5

 4

 4.5

 5

 0  0.01  0.02  0.03  0.04  0.05  0.06  0.07  0.08

Figure 4.20: E in the case where we started with a level set function as shown in Figure 4.18, plotted
over time.
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Figure 4.21: Evolution of partially perturbed squares after 0, 5 and 20 time steps of the size τ = h
4 ,

h = 128−1. In the last image the situation after 0 and 20 time steps is visualized at the
same time.

4.4 Refitting model applied on Gaussian energy in 3D

Of course we are able to consider the evolution equation presented in Section 4.3 in dimen-
sion 3, but we can not expect to observe a similar behavior as in dimension 2.
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Figure 4.22: E in the case of the last test, plotted over time.

As mentioned before, in the two-dimensional case our level sets are of dimension 1, but in the
one-dimensional case mean curvature, which is defined as the sum of all principle curvatures,
and Gaussian curvature, which is defined as the product of all principle curvatures, are the
same because we have only one principle curvature.
In the three-dimensional case our level sets are of dimension 2, thus we have two principle
curvatures and therefore mean curvature and Gaussian curvature are different. An example,
which shows the difference between mean curvature and Gaussian curvature is shown in Fig-
ure 4.23.

Ω

Mc

v0

v1

κ0 6= 0
κ1 = 0
⇒ h 6= 0, k = 0

Figure 4.23: Example for demonstrating the difference between mean and Gaussian curvature. v0 and
v1 are the principle curvature directions and κ0, κ1 the principle curvatures.

In the two-dimensional case it is possible to consider a level set function consisting of
squares and minimizing Eh[n, φ] on it in n under the known constraints and the squares will
stay squares. This behavior can be explained by the theorem of Gauss–Bonnet [6, 17], but
therefore we really have to consider the Gaussian curvature in three dimension, too. Thus we
have to minimize

Emain[n, φ] = Eg[n, φ] =
∫

Ω
|det(Dn + n⊗ n)|δ|∇φ|δ dx (4.27)

subject to the known constraints |n| = 1 and

φ[n] ∈ {υ : Ω → R | υ = argmin
γ

∫
Ω
|∇γ|δ − n · ∇γ dx}. (4.28)

Calculating the evolution equation works as before, but the part of calculating the variation
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4.4 Refitting model applied on Gaussian energy in 3D

of Eg[n, φ] is slightly more complicated. Therefore we will do it step by step.

d
dε

Eg[n + εθ, φ]
∣∣∣
ε=0

=
∫

Ω

det(Dn + n⊗ n)
|det(Dn + n⊗ n)|δ

d
dε

det(D(n + εθ) + (n + εθ)⊗ (n + εθ))
∣∣∣
ε=0
|∇φ|δ dx

and the variation of the determinant can be calculated as follows

d
dε

det(D(n + εθ) + (n + εθ)⊗ (n + εθ))
∣∣∣
ε=0

=
d
dε

det(Dn + n⊗ n + ε(Dθ + n⊗ θ + θ ⊗ n)) + O(ε2)
∣∣
ε=0

= det(Dn + n⊗ n)
d
dε

det(1 + ε(Dn + n⊗ n)−1(Dθ + n⊗ θ + θ ⊗ n)) + O(ε2)
∣∣∣
ε=0

= det(Dn + n⊗ n) tr((Dn + n⊗ n)−1(Dθ + n⊗ θ + θ ⊗ n))
= tr[(Cof(Dn + n⊗ n))T(Dθ + θ ⊗ n + n⊗ θ)].

Thus we get as variation of Eg[n]

d
dε

Eg[n + εθ, φ]
∣∣∣
ε=0

=
∫

Ω

det(Dn + n⊗ n)
|det(Dn + n⊗ n)|δ

tr[(Cof(Dn + n⊗ n))T(Dθ + θ ⊗ n + n⊗ θ)]|∇φ|δ dx.

From now on everything works as before and we can write down the discretized problem:

Fully discrete finite element problem 4.4.1. For a given spatial discretization based on a finite
element space V find a sequence Nk ∈ Vd with |Nk| = 1, satisfying the initial condition N0 = Ih(n0),
τ > 0 and ∫

Ω

Nk+1 − Nk

τ
·Θ|∇Φk|δ +

det(DNk + Nk ⊗ Nk)
|det(DNk + Nk ⊗ Nk)|δ

tr[(Cof(DNk + Nk ⊗ Nk))T(DΘ + Θ⊗ Nk + Nk ⊗Θ)]|∇Φ|δ dx = 0

for all discrete test functions Θ ∈ Vd subject to the constraint

Φk[Nk] ∈ {Υ ∈ V |Υ = argmin
Γ

Eref[Nk, Γ]}.

In contrast to the discrete formulations of previous evolution equations for N, this one is
completely explicit because it is still an open problem how to write it semi implicitly.
Before we are able to implement this problem we need the matrix formulation.

Matrix formulation 4.4.2. Find a sequence Nk ∈ Vd
, satisfying the initial condition

N0 =
(
I1(n0)(xi)

)
i, where xi denotes the nodes of the grid, τ > 0 and

Nk+1 = Nk − τM−1
pp DE(Nk, Φk) (4.29)
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4 Evolution Models with Refitting

subject to the constraint

Φk[Nk] ∈ {Υ ∈ V |Υ = argmin
Γ

Eref[N
k, Γ]}.

Mnn is defined as

Mnn = M[|∇Φk|δ]

and

DE(Nk, Φk) =
(
(DE0

i )
T
i , (DE1

i )
T
i , (DE2

i )
T
i

)T

with

DEj
i =

∫
Ω

det(DNk + Nk ⊗ Nk)
|det(DNk + Nk ⊗ Nk)|δ

|∇Φk|δ

tr
[(

Cof(DNk + Nk ⊗ Nk)
)T (

Dϕ
j
i + ϕ

j
i ⊗ Nk + Nk ⊗ ϕ

j
i

)]
dx.

4.4.1 Numerical tests

For solving both equations, the one for calculating N and the one for calculating Φ, we use a
gradient descent with time step size control as presented in the previous chapter.

As first test we want to verify that spheres really do not change under this gradient flow.
Therefore we start with an image

φ0(x, y, z) =
√

(x− 0.5)2 + (y− 0.5)2 + (z− 0.5)2 − 0.2

on a grid with grid depth 6, set δ = 0.0005 and calculate the volume, enclosed by the zero
level set, after each time step. The result is shown in Figure 4.24 and it is as good as it could
be. The volume equals 0.13403 over the whole time and if we consider the spheres there are
really no visible changes. But the images of the sphere are unspectacular so that we will not
show them here. But there is another nice test we can do. We know from the theorem of

 0.1325
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 0.135

 0.1355
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volume 0 level set

Figure 4.24: Volume of a sphere plotted against the number of time steps.

Gauss–Bonnet ∫
MS

k dA = 4π
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4.5 Open Problems

if MS denotes a sphere. Now it would be interesting to know if this integral really converges
to 4π for finer and finer grids. Therefore we have to calculate

∫
MS

k dA which can be done
approximately by calculating ∫

Ω
|∇Hρ(Φ)|k dx

where Hρ denotes the regularized Heavyside function. For δ we choose δ = h = 2−grid depth.

grid depth
∫

Ω |∇Hρ(Φ)|k dx
3 11.8315
4 12.221
5 12.2538
6 12.3667
7 12.4557

4π ≈ 12.566371 so the integral really seems to converge to 4π.

In a further test we want to see what happens to cubes. In general it is possible that corners
are smoothed a little bit, but apart from this they should not change. To verify this we start
with an image

φ0(x, y, z) = max (|x− 0.5|, |y− 0.5|, |z− 0.5|)− 0.3,

and set δ = 0.0005. In Figure 4.25 it is nice to see that the corners are smoothed a little bit

Figure 4.25: Evolution of a cube after 0, 1 and 10 time steps.

during the first steps, but then there are nearly no changes any more. This can be better seen
in Figure 4.26, where the volume enclosed by the zero level set is plotted against the number
of time steps.

4.5 Open Problems

Not all numerical tests of the model presented in the previous section lead to such nice results
as in the previous subsection. If we start for example with a nonconvex shape and δ = 0.0005
we detect some shortcomings. The images in Figure 4.27 seem to show a behavior of the
shape as expected: the region with negative Gaussian curvature gets bigger and at the same
time this negative curvature gets smaller. But it does not matter for how many time steps we
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Figure 4.26: Volume of the zero level set (a cube) plotted against the number of time steps.

Figure 4.27: Evolution of a nonconvex shape after 0, 300 and 600 time steps. In the second row the
Gaussian curvature is plotted on the shape.

let the program run, we do not get a convex shape, which contradicts our expectations. The
reason for this shortcoming is: the time step size control leads to an time step which tends to
zero during the discrete evolution.
Without time steps size control, we are able to observe that after some time steps the energy

increases (cp. Figure 4.28). This explains why we can not work with time steps size control.
But working without it does not solve our problem. The gradient descent does not only reach
a small local minimum of our energy, the energy increases a lot and our surface behaves very
strange. This can be seen in Figure 4.29, especially in the images where the Gaussian curva-
ture is plotted on the surface. Normally there should be one blue curve in the middle, where
the two balls touch each other, but we are able to observe a lot of smaller blue regions. That
means the surface has lots of dents and bumps. Later they extend onto both balls and cause
very strange behavior of the surface. As there is no smoothing part in the evolution equation
for refitting our surface to our unit normal vector field, bumps may be caused by refitting.
But at the moment it is not known how to treat this problem.
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Figure 4.28: Emain in the test where we started with a surface as shown in Figure 4.29 and calculated
without time step size control, plotted against the number of time steps. The left image is
a zoom in of the right image.

Figure 4.29: Evolution of a nonconvex shape after 0, 20 and 80 time steps of the size τ = h2

50 , h = 64−1

(i. e. without time steps size control). In the second row the Gaussian curvature is plotted
onto the surface.

4.5.1 Energy depending on mean and Gaussian curvature

The experiences we made above led to the idea to test the following energy

E[n, φ] = Ewg[n, φ] :=
∫

Ω

(
h2 + |k|δ

)
|∇φ|δ dx

=
∫

Ω

(
(div n)2 + |det (Dn + n⊗ n) |δ

)
|∇φ|δ dx. (4.30)

This energy is a combination of Willmore energy with which we worked in Section 4.2 and
the energy with which we worked in the previous section. The idea behind this energy is not
difficult. In the previous section we started a test with a level set function whose level sets
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look like two balls who touch each other in the middle. In this test we observed perturbations
in the middle of the object, where both balls touched each other. These perturbations got
more and later spread on the balls. Additionally we know that minimizing Willmore energy
on a surface leads to strong smoothing of the surface. Now we consider an energy which is a
combination of both energies and hope that the perturbations which we observed in the last
test of the previous section will be smoothed by the influence of Willmore energy.
As this energy is a combination of known energy we will only write down the fully discretized
problem, so that it is possible to see which parts we will treat implicitly or explicitly.

Fully discrete finite element problem 4.5.1. For a given time step τ and a spatial discretization
based on a finite element space V find a sequence Nk ∈ Vd with |Nk| = 1, satisfying the initial
condition N0 = I1(n0) and∫

Ω

Nk+1 − Nk

τ
·Θ|∇Φk|δ + 2 div Nk+1 div Θ|∇Φk|δ +

det(DNk + Nk ⊗ Nk)
|det(DNk + Nk ⊗ Nk)|δ

tr[(Cof(DNk + Nk ⊗ Nk))T(DΘ + Θ⊗ Nk + Nk ⊗Θ)]|∇φ|δ dx = 0

for all discrete test functions Θ ∈ Vd subject to the constraint

Φk[Nk] ∈ {Υ ∈ V |Υ = argmin
Γ

Eref[Nk, Γ]}. (4.31)

As refitting energy we will take the same energy as in the previous chapter

Eref[N, Γ] =
∫

Ω
|∇Γ|δ − N · ∇Γ dx.

4.5.2 Numerical test

Now we want to test our new energy. Therefore we start with the same surface as shown in
the first image of Figure 4.29. The parameters are the same and again we will minimize our
energy with a gradient descent without time step size control.
In Figure 4.30 we can see that our expectations are only partially verified. Especially in the

images after 80 time steps we can see that the perturbations are not spread as far as in the
previous test, but in the middle, where the balls touch each other they are still there and this
leads again to a unexpected behavior of our shape. In this case the same is true as above, at
the moment it is unknown how to treat this problem.
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4.5 Open Problems

Figure 4.30: Evolution of a nonconvex shape after 0, 20 and 80 time steps of the size τ = h2

50 , h = 64−1

(i. e. without time steps size control). In the second row the Gaussian curvature is plotted
onto the surface.
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5 Final Remarks

In this work we discussed two different methods how to process surfaces by minimizing en-
ergies. In general the used gradient flows lead to partial differential equations of fourth order,
but with our methods we get equations of second order. We applied both methods, the cou-
pled evolution model and the refitting model on the same energies, the Willmore energy and∫

Ω |k|δ|∇φ|δ dx which can be simplified by
∫

Ω |h|δ|∇φ|δ dx in 2D. We have demonstrated
important qualitative properties and discussed some shortcomings.

In the case of coupled evolution model there are lots of parameters which have to be set
and it is always difficult to find the right combination. This problem corresponds to the prob-
lem that our energy consists of two parts and we do not always succeed in minimizing both
energy parts. A frequently arising shortcoming is that the global energy decays, leading to
a larger penalty energy. In general it is possible to choose a smaller influence of the penalty
energy, but in practice it is very hard to find the right parameter and sometimes we were
not successful. Moreover we need a further parameter c for preventing an evolution as it is
known in the case of negative mean curvature flow, that means mean curvature flow which
evolves into the direction of the outer normal vectors to our level sets. The last shortcoming
in the case of coupled evolution model lies in the fact that the penalty energy does not always
succeed in guaranteeing unit length of our normal vector field.

In the case of refitting model we detect no shortcomings in two-dimensional tests, but the
three-dimensional test where we minimize Willmore energy shows that we would need to
add a term that enforces constant volume enclosed by our surface. An open problem remains
to minimize energies as presented in Subsection 4.5.1.

As we do not test the coupled evolution model in 3D, we can only compare both methods
in 2D. There the refitting model is the one which is easier to handle and leads to no further
shortcomings. In 3D it would be nice to consider the coupled evolution model. Perhaps this
model leads to less shortcomings as the refitting model. But at the moment it is unknown.
Thus, in future it would be nice to work on the problems presented in this chapter and to
program the coupled evolution model in 3D, too.

Moreover it would be nice to modify both models so that only one surface is processed. In
the section about gradient flows we point out how it can be done. Additionally this would
allow to use for example narrow band method [1, 16]. This could accelerate the algorithm
and save memory. All together it can be a further step into the direction of real application of
these models.
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