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1 Introduction

Nowadays, in the digital age, an important step in the development of industrial products
is the implementation and exploration of numerical simulations. Consider, for instance, the
car industry. Before a new car goes into production, its behaviour in car crashes is analysed.
Numerical simulations of the crash offer many advantages over real crashes. Executing them
is faster and cheaper than actually producing and crashing each prototype. This enables the
engineer to simulate the crash behaviour for many different configurations of the car. While,
due to technological progress, more and more simulations can be executed, the analysis and
evaluation of them becomes more and more challenging. In this thesis, we will consider the
example of crash simulations to investigate two approaches which may assist the engineer in
this task. Both approaches can be applied analogously for the analysis of many other types
of numerical simulations in industry and research. We will examine the approaches analysing
the deformation of a specific part of the car during the crash.

In contrast to many other approaches from the field of knowledge discovery and machine
learning, the presented approaches do not consider the simulations as points on a mani-
fold embedded in a high dimensional Euclidean space, but represent the simulation data as
functions on a reference embedding of the considered object, in our case, the car part.

The car part is modelled as a (two-dimensional) surface M in R3. It is discretized using a
triangular surface mesh consisting of N nodes, see Figure 1.1. The output of a simulation
are the coordinates of the nodes at each timestep and sometimes further data as the stress
acting on each node at each timestep. In general, the data is interpreted as samples of square
integrable functions in L2(M).

In the first part of Chapter 2, I will present the considered simulation data in more detail.
In the second part of the chapter, we will contemplate in more detail how the data can be
interpreted as elements of L2(M).

The focus of this thesis is Chapter 3, where we will analyse the invariant operator approach,
proposed by Iza-Teran in [Iza17]. Iza-Teran suggests representing the simulation data (viewed
as functions in L2(M)) in the spectral domain of operators that act on L2(M) and possess
certain invariances. For this purpose, he uses in [Iza17] and [IG17] the Laplace-Beltrami
operator and a Fokker-Planck operator. First observations and considerations in [Iza17] and
[IG17] suggest multiple benefits of the invariant operator approach:

1. It can be used to reduce the dimensionality of the data, either to represent it directly
in a low dimensional space as R3, where the engineer can easily identify similar points
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Figure 1.1: Model and discretization of the considered car part, given by its embedding in
the initial state of a crash simulation.

and outliers, or as preprocessing to reduce the complexity of further analysis methods.
As the data from all simulations is transformed to the spectral domain of the same
operator, the complexity is linear in the number of simulations as opposed to many
other approaches. Given a new simulation, it can readily be transformed to the same
spectral domain while for other approaches the embedding of new simulations is often
cumbersome.

2. Iza-Teran observes that different spectral coefficients correspond to different basic trans-
formations. This is in the sense that varying a selected coefficient for the coordinate
functions of an embedding, the embedding is translated, rotated or transformed differ-
ently. He refers to this as separation of effects. Iza-Teran observes a connection between
the invariances of the operator and the observed basic transformations. The Laplace-
Beltrami operator, for instance, is in a sense invariant under isometries. Isometric
transformations are transformations that preserve intrinsic distances. Examples are
translations and rotations, but also the crumpling of a sheet of paper. The transform-
ations observed for variations in the spectral domain of the Laplace-Beltrami operator
seem to be isometric. In [Iza17], Iza-Teran conjectures the existence of a representa-
tion of the group of isometries in the space of eigenfunctions of the Laplace-Beltrami
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operator.

Writing a complex transformation as composition of several basic transformations yields
the opportunity to analyse the influence of parameter changes on the different basic
transformations separately. Given, for example, that the car part breaks, the engineer
might be able to focus specifically on the transformation leading to the break. On the
other hand, ignoring certain projection coefficients would yield a representation which
is invariant under the corresponding transformations.

3. Finally, Iza-Teran proposes constructing embeddings in between two timesteps t and
t + 1 of a simulation by linearly interpolating between the spectral coefficients of the
embeddings at time t and time t + 1. He proposes proceeding analogously to obtain
simulation data for parameter combinations in between parameter combinations for
which one already executed the simulations. This would be a benefit since running a
numerical simulation is still time-consuming.

Concerning the last point, we note that interpolating linearly between all spectral coefficients
is equivalent to a straight away linear interpolation between the embeddings or other function
data in the standard (Euclidean) basis. Iza-Teran’s observations in this regard are therefore
independent of the basis and thus no benefit of the representation of the data in the spectral
domain of invariant operators.

In this thesis, we will examine the influence of the invariances of the used operators on
the dimensionality reduction and the observed basic transformations in the separation of
effects. To do so, we will formalize in what sense the Laplace-Beltrami operator and the
Fokker-Planck operator are invariant. I will depict several problems concerning Iza-Teran’s
conjecture of the existence of a representation of the group of isometries in the spectral domain
of the Laplace-Beltrami operator. For that purpose, I will give a very brief introduction to
the representation of groups and distinguish the invariance of the Laplace-Beltrami operator
under isometries from the invariance of operators in the representation of groups. Further, I
implemented a Laplace-Beltrami operator using an equi-affine invariant metric. This operator
is in the same sense invariant under isometries with respect to the equi-affine invariant metric
as the standard Laplace-Beltrami operator is invariant under isometries with respect to the
Euclidean metric. We will compare the basic transformations in the separation of effects for
both Laplace-Beltrami operators and the Fokker-Planck operator.

Concerning the dimensionality reduction, we will prove an optimality statement for the rep-
resentation of smooth functions in the spectral domain of the Laplace-Beltrami operator. It
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explains the observations of the strong decay of the spectral coefficients for all three operat-
ors. I will depict gaps in the proof of the decay estimate for the spectral coefficients of the
Fokker-Planck operator presented by Iza-Teran in [Iza17].

In Chapter 4, I will present the Taylor approach. In the beginning of my work with the
crash data and the invariant operator approach, the assumption that all embeddings of a
simulation bundle are transformations of a reference embedding raised the question whether
one can characterize those transformations in a more direct way than the invariant operator
approach does. The idea of the Taylor approach is to do a Taylor expansion for those
transformations.

A detailed investigation of the Taylor approach was out of scope of this work. This is why I
will only present the basic idea, show an exemplary application for the analysis of the crash
data and state possible further applications, leaving several questions unanswered. To my
knowledge, a similar approach has not been used in the context of simulation bundles or
related fields like shape recognition from computer vision.

While in this thesis we will consider the analysis of car crash simulations, both approaches
can be applied to different types of simulations. The crash simulations produce data on (two-
dimensional) surfaces in R3, but the approaches can analogously be applied to simulations
that produce for example (one-dimensional) curves in R2 or R3, modelling a scalar quantity
of interest for the engineer over time or, in a different context, the spatial position of a
particle in time. Only the definition of the equi-affine invariant metric and the corresponding
Laplace-Beltrami operator presented in this thesis are restricted to the case of surfaces in R3.

At this point, I would like to acknowledge Professor Dr. Jochen Garcke and Dr. Rodrigo
Iza-Teran for their support and advice. In particular, I would like to thank Professor Dr.
Jochen Garcke for the opportunity to write this thesis at the Fraunhofer SCAI. Special thanks
go to my girlfriend Rebekka for her motivating words during difficult phases of my work on
this thesis and her intensive proofreading.
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2 Simulation data

In this chapter, we will take a closer look at our simulation data. The first part will give a
brief idea how the simulations are generated and what data they produce. Further, it will
introduce a car crash simulation bundle which we will use in several numerical examples in
Chapters 3 and 4. The second part will explain in more detail how we interpret the data as
functions on a reference embedding of the simulated object. It will explain informally how
we can restrict ourselves to the representation of a smaller set of functions than L2(M).

2.1 Numerical simulations in industry

Numerical simulations of industrial products allow faster and cheaper development of optim-
ized products. In the car industry, for instance, it was previously necessary to crash dozens of
cars during the design of a single model, while, nowadays, most of those crashes are simulated
on the computer. Only a few are performed physically to verify the results in the end of the
design process [Boa15].

The simulations investigated in this thesis are numerical solutions of nonlinear differential
equations. The differential equations model physical processes taking into account parameter
changes concerning for example material properties or the geometry of the considered object.
Finding analytical solutions of those equations is in general impossible. The first step of
the numerical solution process is to discretize the object and to define a timestep. Next, a
parameter configuration for the specific simulation is chosen. Then, several methods as, for
example, the finite element method are used to solve the differential equations. The simulation
resulting from this process contains the coordinates of the nodes of the discretized object at
all timesteps. Sometimes it contains additionally data as stress, velocity, acceleration or
temperature at the nodes.

The number of nodes in the discretization of the entire car in a crash simulation is nowadays
in the order of 3-4 millions, indicating the size of the problem. Nevertheless, using high
performance computers, hundreds of variants can be simulated and need to be evaluated by
the engineers.

Simulation bundles are many similar simulations for different parameter configurations. Para-
meters are for example material properties, geometries and load cases.

Further information on the simulation and the evaluation process can be found in [Iza17].
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Example

In Chapters 3 and 4, we will consider in several examples a simulation bundle produced by Iza-
Teran at the Fraunhofer Institute SCAI. The simulated object is a Chevrolet C2500 pick-up
truck, a model with around 60,000 nodes from the National Crash Analysis Center1. Using the
finite element program LS-DYNA2, Iza-Teran produced 116 simulations of a vehicle frontal
crash. For the different simulations, the thicknesses of nine car parts is varied randomly up
to ±30%. Each simulation contains 17 timesteps.

We focus in this thesis on a specific part of the car, depicted in Figure 1.1. It is discretized
with 1714 nodes. The variation of the thicknesses for the different simulations results in
different deformations of the part.

2.2 Simulation data as functions

In this section, we will illustrate at the above example how the data from a simulation bundle
can be interpreted as functions on a reference embedding of the simulated object. Here, I
will only present the rough idea. Several concepts, like regular surfaces, integration on those
and isometric maps will be defined later.

Let M be a reference embedding of the car part in R3, for example the car part at timestep
zero of a reference simulation, see Figure 1.1. It is modelled as a (two-dimensional, regular)
surface in R3 and discretized with a triangular surface mesh consisting of N nodes. The
simulation data are the coordinates of the nodes at each timestep. We interpret the x-, y-
and z-coordinates as samples of square integrable functions in L2(M). Analogously, data as
stress or temperature at the nodes can be interpreted as samples of functions in L2(M).

Restricting ourselves to coordinate functions, we do not need to consider the whole space
L2(M). Assuming that the embeddings of the car part at the different timesteps of the
simulations are smooth, isometric transformations of the reference embedding, the set of
possible coordinate functions is given by

{g ∈ L2(M) | g = fx for a C∞-isometry f : M → f(M) ⊂ R3}.

More generally, if the only requirement on the transformations is that all embeddings are
smooth transformations of the reference embedding and no (physically impossible) crossings

1Now ’Center for Collision Safety and Analysis, CCSA’, https://www.ccsa.gmu.edu/ (2018).
2http://www.lstc.com/products/ls-dyna (2018)

https://www.ccsa.gmu.edu/
http://www.lstc.com/products/ls-dyna
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of the car part occur, the set of possible coordinate functions is given by

{g ∈ L2(M) | g = fx for f ∈ Emb(M,R3)},

where Emb(M,R3) is the space of injective C∞-functions (i.e. embeddings) from M to R3.

Characterizing the set of possible coordinate functions helps to develop useful representations
of the coordinate data. In Chapter 3, we will see that the invariant operator approach yields
a representation for all functions from L2(M). This is one reason why the benefit of the
separation of effects that Iza-Teran observes in [Iza17] and [IG17] is questionable.
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3 Invariant operator approach

In Chapter 2, we saw how the data from a simulation bundle can be interpreted as elements
of the function space L2(M), where M is a reference embedding of the simulated object.
Initially, we have a representation of the data functions in the spatial domain, i.e. we are
given the function values at points x ∈ M . The invariant operator approach transforms
the functions in the spectral domain of an operator with certain invariances. In [Iza17] and
[IG17], Iza-Teran uses for this the Laplace-Beltrami operator and a Fokker-Planck operator.

The proceeding for the Laplace-Beltrami operator is the following. The operator is defined on
C∞(M) and extended to the Sobolev space H2,2(M). It exists an orthonormal basis of L2(M)
consisting of eigenfunctions {ψi}, i ∈ N, of the extended operator. A function f ∈ L2(M)
can be written as

f =
∞∑
i=1

αiψi

with αi = 〈f, ψi〉L2(M). Instead of considering the function f in the spatial domain, we can
consider its spectral representation given by the vector α =

(
α1, α2, . . .

)
. In general, the

complete vector α is needed to represent a function f . However, Iza-Teran observes in [Iza17]
and [IG17] a strong decay of the spectral coefficients αi for smooth functions. This suggests
neglecting high coefficients, reducing the dimensionality of the representation.

Apart from observations concerning the decay of the spectral coefficients, Iza-Teran observes
that different spectral coefficients seem to correspond to different basic transformations.

In Chapter 2, we saw that, under the assumption that all embeddings of the car part in the
simulation bundle are smooth transformations of the reference embedding and no (physically
impossible) crossings of the car part occur, their coordinate functions are elements of the
subset

{g ∈ L2(M) | g = fx for f ∈ Emb(M,R3)}

of L2(M).

In the invariant operator approach, we represent an element f ∈ Emb(M,R3) in the spectral
domain of, for instance, the Laplace-Beltrami operator as


fx

fy

fz

 =
∞∑
i=1

αiψi, where αi =


〈fx, ψi〉L2(M)

〈fy, ψi〉L2(M)

〈fz, ψi〉L2(M)

 .
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Iza-Teran observes that a variation of the first spectral coefficient α1 seems to correspond to
a translation of the embedding. A variation of the second spectral coefficient α2 appears to
be a rotation (see Figure 3.1). In [Iza17], the transformations obtained by the variation of
single spectral coefficients are referred to as independent transformation modes.

Iza-Teran conjectures in [Iza17] that the observed separation of effects upon variation of the
coefficients αi can mathematically be expressed as movements along orbits of Emb(M,R3).
Inspired by Bauer et al.’s works on shape spaces, see for instance [MM06], he defines a
simulation space as

Emb(M,R3)/G(M),

where G(M) is a group of isometric transformations acting on elements from Emb(M,R3)
by composition from the right. However, this setting does not seem to be appropriate as
mathematical framework for the observed separation of effects: As the elements of G(M) act
on Emb(M,R3) by composition from the right, G(M) can only contain maps from M to M .
We can think of those maps as reparametrizations of M . Concerning the separation of effects,
Iza-Teran observed that a variation of the spectral coefficients of a given embedding f ∈
Emb(M,R3) appears to correspond to an isometric transformation h : f(M) → h(f(M)) ⊂
R3 of the embedding f(M). Note, that h acts on the element f of Emb(M,R3) by composition
from the left. Note further, that the set of such isometric transformations depends on the
embedding f ∈ Emb(M,R3) and is in general not a group.

Another conjecture in [Iza17] and [IG17] is that there exists a link between the observed
”independent deformation modes” and the invariances of the used operator. The Laplace-
Beltrami operator, for example, is in some sense invariant under isometric transformations
and Iza-Teran observed that the transformations upon variation of the spectral coefficients
are predominantly isometric. Iza-Teran presumes a link to Representation Theory, where is
known that the eigenspaces of invariant operators can represent groups.

In this chapter, we will examine Iza-Teran’s conjectures. Especially, we will analyse the
influence of the invariances of the used operator on the observed transformations in the
separation of effects. In order to investigate this influence, I implemented a Laplace-Beltrami
operator using an equi-affine invariant metric, which we will compare to the operators used
by Iza-Teran.

The structure of this chapter is the following. First, we will define the operators which will
later be used. To do so, I will give an introduction to the basics of differential geometry,
present the equi-affine invariant metric and parts of Singer’s and Coifman’s work [SC08] on
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non-linear independent component analysis which inspired Iza-Teran to define the Fokker-
Planck operator. To examine the conjecture of a link between the invariances of the operator
and the observed basic transformations, it will follow a section concretizing in what sense
the used operators are invariant. Moreover, this section will contain a short insight into
invariant operators in the representation of groups and will show problems concerning the
hypothesis that the observed separation of effects can be explained by a link to Representation
Theory. The chapter will close with numerical observations and explanations concerning the
separation of effects and dimensionality reduction properties of the approach.
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(a) Variation of the first spectral coefficient seems to correspond to a translation.
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(b) Variation of the second spectral coefficient seems to correspond to a rotation.

Figure 3.1: Example of transformations obtained by variation of selected spectral coefficients
for the coordinate functions of an embedding of the car part.
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3.1 Construction of the continuous operators

3.1.1 Basics of Differential Geometry

In this section, I will present some basics of differential geometry. I will stick to the case
of 2-submanifolds of R3, so-called regular surfaces. Personally, I tend to imagine general
manifolds as regular surfaces and their theory is all we need for our application. To generalize
the following definitions and statements, only marginal adjustments are needed.

Based on Chapters 3 to 5 of [Bär10] and on [Gri09], we will see how differentiation and
integration on regular surfaces are defined, define the notion of Riemannian metric and close
with the definition of the Laplace-Beltrami operator. I will present mainly definitions and
aim to give an idea of their meaning, leaving out the proofs. Those can be found in [Bär10].
For a more detailed introduction to differential geometry, see for example [Mic08].

Let us start with the definition of the underlying structure. A regular surface is a subset of
R3 that locally resembles R2.

Definition 3.1.1 (Regular surface). A subset M ⊂ R3 is a regular surface if for every point
p ∈ M exists an open neighbourhood V of p in R3, an open set U ⊂ R2 and a smooth (i.e.
infinitely often differentiable) map φ : U → R3 such that

1. φ(U) = M ∩ V and φ : U →M ∩ V is bijective with smooth inverse and

2. the Jacobian matrix Dφ(u) has rank 2 in every point u ∈ U .

φ, or as well the triple (U, φ, V ), is called a local parametrization of M around p. The
components u1 and u2 of u are called local coordinates of a point φ(u) ∈ M (with respect to
the parametrization φ).

To ensure well-definedness of many of the following definitions, we restrict them to smooth
functions on regular surfaces.

Definition 3.1.2 (Smooth functions on regular surfaces). Let M ⊂ R3 be a regular surface,
p ∈M and f : M → Rn. If the following equivalent conditions are fulfilled, f is called smooth
close to p:

1. It exists an open neighbourhood V of p in R3 and an extension f̃ of f|M∩V to V that is
smooth (i.e. infinitely often differentiable in the usual sense for functions from an open
set Ω ⊂ Rn to Rm) around p.

2. It exists a local parametrization (U, φ, V ) with p ∈ V such that f ◦φ : U → Rn is smooth
around φ−1(p).
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3. The function f ◦ φ : U → Rn is for each local parametrization (U, φ, V ) with p ∈ V

smooth around φ−1(p).

Note that the first definition can only be used to define smooth functions on submanifolds
while the second and third definition can be used for manifolds in general.

Differentiating a function f : Rd → R in a point x in the direction of a vector v ∈ Rd indicates
how the function changes if we move a small amount in direction v.

A function f : M → R is only defined on M . Therefore, differentiation of a function
f : M → R is only defined for directions v ∈ Rd that stay in M . Those directions are
characterized by the tangent space of M .

Definition 3.1.3 (Tangent space). Let M ⊂ R3 be a regular surface. The tangent space of
M in a point p ∈M is defined by

TpM =
{
v ∈ R3 | It exist ε > 0, γ : (−ε, ε)→M with γ(0) = p, γ̇(0) = v

}
.

The tangent space of a regular surface is in every point p ∈ M 2-dimensional. Given a
local parametrization (U, φ, V ) of M around p and u ∈ U with φ(u) = p, the vectors ∂φ

∂ui
(u),

i = 1, 2, form a basis of TpM . They describe how a movement in the coordinate directions
in the parameter space U ∈ R2 is translated into a movement on the manifold. They are
linearly independent by the second requirement in Definition 3.1.1 of a regular surface.

To define the differential dpf of a smooth function f on M at a point p ∈M in the direction
of some vector v from the tangent space TpM , we choose a curve γ : (−ε, ε) → M in the
manifold with γ(0) = p, γ̇(0) = v for some ε > 0 as it exists by definition of TpM . We
consider f along this curve and use the usual notion of differentiability for functions from an
interval I ⊂ R to R on the function composition f ◦ γ : (−ε, ε) → R at the point t = 0. We
set

dpf(v) = d

dt
(f ◦ γ)|t=0. (3.1.1)

In the case M = R2 × {0}, an application of the chain rule reveals that this is equivalent to
the usual definition of differentiation in R2.

The next step is to define the gradient of f . Remember that for a smooth function f : Rd → R,
the gradient can be defined by the requirement that the scalar product of the gradient with
a direction v ∈ Rd corresponds to differentiation of f in direction v. To transfer this to
functions on manifolds, we need scalar products on the tangential spaces TpM .
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Definition 3.1.4 (Riemannian metric). Let M ⊂ R3 be a regular surface. A Riemannian
metric assigns to each point p ∈M an inner product gp on the tangent space TpM such that
for any local parametrization (U, φ, V ) of M and i, j ∈ {1, 2} the functions

Gij : U → R,

Gij(u) = gφ(u)

(
∂φ

∂ui
(u), ∂φ

∂uj
(u)
)

are smooth. The tuple (M, g) is called Riemannian manifold.

An example for a Riemannian metric is the induced (Euclidean) metric from the embedding
space R3

gp(v, w) = 〈v, w〉R3 for all v, w ∈ TpM ⊂ R3. (3.1.2)

The Riemannian metric can be used to generalize notions as lengths, angles, areas and further
geometric quantities to the regular surface M . The metric g replaces the Euclidean inner
product in the definition of those quantities in the Euclidean space.

Definition 3.1.5 (Length and angle of tangent vectors). Let M be a regular surface and g a
Riemannian metric on M . Let p ∈ M and v, w be vectors from the tangent space TpM . We
define the length of v as

‖v‖p =
√
gp(v, v).

We define the angle θ between v and w by

cos θ = gp(v, w)
‖v‖p‖w‖p

.

Definition 3.1.6 (Length of a curve). Let a < b ∈ R, c : [a, b] → M be a curve on a
Riemannian manifold (M, g). We define the length of c as

`(c) =
∫ b

a

√
gc(t) (ċ(t), ċ(t)) dt.

To define integration for functions on (M, g), we integrate piecewise in local parameters
(U, φ, V ) and multiply a deformation factor that incorporates how the area of a small cube
in U ⊂ R2 changes when φ maps it to M ⊂ R3. Locally, φ can be approximated by the linear
map φ(u+ v) ≈ φ(u) +Dφ(u)v. Hence, the square

[u+ r1e1, u+ r2e2] ⊂ U,
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where r1, r2 ∈ [0, r] with r > 0 small and ei the standard basis of R2, maps approximately to
the parallelogram

φ(u) + [r1∂u1φ(u), r2∂u2φ(u)],

where r1, r2 ∈ [0, r]. Using the notions of length and angle given by the metric g, the volume
of that parallelogram can be seen to be

√
detG(u), where G(u) is the matrix from Definition

3.1.4 of the Riemannian metric.

Definition 3.1.7 (Integration). Let M be a regular surface, g a Riemannian metric on M .
Let (U, φ, V ) be a local parametrization of M and f : M → R with f|M\V = 0. f is called
integrable if the function

U → R

u 7→ f(φ(u))
√

det(G(u))

with G as above is integrable. We define∫
M
fdA =

∫
U
f(φ(u))

√
detG(u) du.

A function h : M → R is called integrable if it can be written as a finite sum

h = h1 + . . .+ hk

such that for each hi : M → R exists a local parametrization (Ui, φi, Vi) of M such that
hi|M\Vi

= 0 and hi is integrable according to the definition above. We define

∫
M
hdA =

k∑
i=1

∫
M
hidA.

Back to differentiation. Using the Riesz representation theorem on the functional

dfp : TpM → R,

sending a tangential vector v at a point p ∈M on the derivative of f at point p in direction
v, we can make the following definition.



3.1 Construction of the continuous operators 15

Definition 3.1.8 (Gradient of a function on a manifold). Let M ⊂ R3 be a regular surface,
g a Riemannian metric on M . The gradient of a smooth function f : M → R at a point
p ∈M is defined as the unique vector ∇f(p) ∈ TpM such that

gp (∇f(p), v) = dfp(v) for all v ∈ TpM.

Like the gradient for a function from Rd to R, the gradient for a function from a Riemannian
manifold (M, g) to R points in the direction of the steepest increase within M with respect
to the metric g.

The gradient assigns to each point p ∈ M smoothly a vector ∇f(p) in the tangent space
TpM . Thereby it is an example for a smooth vector field.

Definition 3.1.9 (Vector field). A vector field W on M assigns to each point p ∈M a vector
W (p) ∈ Tp(M). Given a local parametrization (U, φ, V ) of M , the vector field on M ∩ V can
be written as

W (p) =
2∑
i=1

W i(p) ∂φ
∂ui

(φ−1(p)).

It is called smooth, if the coefficient functions W i(p) : M ∩ V → R are smooth. This is
equivalent to Definition 3.1.2 of smooth functions on manifolds.

Next, we need to define differentiation of a smooth vector field W . We want to proceed as
for scalar functions and define differentiation along curves on the surface. However, doing
so, the derivative Ẇ is no longer a vector field since Ẇ is in general not tangential to the
surface. To enforce that the derivative of a vector field is again a vector field, we project it
on the tangential space. This defines the covariant derivative.

Definition 3.1.10 (Covariant derivative). Let M ⊂ R3 be a regular surface with Riemannian
metric g, W a smooth vector field on M , p ∈ M and v ∈ TpM . Let c : (−ε, ε) → M with
c(0) = p, ċ(0) = v. The covariant derivative ∇vW ∈ TpM of W in p in direction of v is
defined as

∇vW = ∇
dt

(W ◦ c)(0) = Πp

(
d

dt
W ◦ c|t=0

)
,

where Πp is the (w.r.t. g) orthogonal projection on the tangent space TpM .

Finally, we can define the divergence of a smooth vector field. While the gradient assigns a
vector field to a scalar function, the divergence assigns a scalar function to a vector field. We
notice that the covariant derivative of a smooth vector field W defines for each p ∈ M an
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endomorphism of TpM
∇.W : TpM → TpM, v 7→ ∇vW.

Definition 3.1.11 (Divergence). The trace of the endomorphism ∇.W is called divergence
of W in p.

To get an idea of the meaning of the divergence, let us take a look at the divergence theorem.

Theorem 3.1.12 (Divergence theorem). Let Mreg ⊂ R3 be a regular surface and g a Rieman-
nian metric on Mreg. Let W be a smooth vector field on Mreg with compact support. Let
M ⊂Mreg be a surface with boundary. Let ν be the outer unit normal field of M with respect
to Mreg and g. It holds ∫

M
divWdA =

∫
δM

g(W, ν)ds.

For the definitions of a surface with boundary, the outer unit normal field, the integral on the
boundary and for a proof of the theorem, I refer to [Bär10]. The theorem yields the following
interpretation of the divergence: The vector field W describes a flux on the regular surface
Mreg. The divergence of W in a point p ∈ Mreg specifies whether p is a source or a sink of
the flux. To see this, we take as surface with boundary the closure of a small ball B in Mreg

with radius r and centre p. The integral on the right hand side specifies how much of the
flux leaves the ball B while the left hand side averages the divergence over the whole ball.
The limiting process r → 0 yields the above interpretation.

Finally, we can define the Laplace-Beltrami operator as the composition of the divergence
and the gradient.

Definition 3.1.13 (Laplace-Beltrami operator). Let M ⊂ R3 be a regular surface with
Riemannian metric g. We define the Laplace-Beltrami operator ∆ : C∞(M) → C∞(M)
as

∆f = div∇f.

Like the definition of div and ∇, the definition of ∆ depends on the Riemannian metric g.

For a compact Riemannian manifold (M, g), Helffer shows in [Hel10] that the negative
Laplace-Beltrami operator −∆ has a selfadjoint, positive semi definite extension with com-
pact resolvent to the Sobolev space H2,2(M). Further, he shows that this implies the exist-
ence of an orthonormal basis of L2(M) consisting of eigenvectors {ψi}, i ∈ N, of −∆ with
corresponding eigenvalues 0 ≤ λ1 ≤ λ2 ≤ . . ., λi →∞.
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3.1.2 Affine-invariant metric

In the last section, we saw the definition of the Laplace-Beltrami operator for a general
Riemannian metric g. In [Iza17] and [IG17], Iza-Teran uses the induced Euclidean metric

gp(v, w) = 〈v, w〉R3 for all v, w ∈ TpM ⊂ R3.

In this thesis, we will consider additionally a Laplace-Beltrami operator using an equi-affine
invariant metric.

An equi-affine transformation is a transformation of the form ψ : R3 → R3, ψ(x) = Ax + b,
where A ∈ R3×3 is a quadratic matrix with detA = 1 and b ∈ R3 is a translation vector. An
equi-affine transformation is volume-preserving. To see this, let B ⊂ R3 be a measurable set
and AB = {Ax+ b | x ∈ B}. Using the transformation formula, we obtain

vol(AB) =
∫
AB

1dx =
∫
B
|det(A)|dx =

∫
B

1dx = vol(B).

Consider the matrix A = diag(2, 1/2, 1) and the vector e1 = (1, 0, 0)T . It holds detA = 1 and

‖e1‖R3 = 1 6= 2 = ‖Ae1‖R3 .

This shows that the Euclidean metric is not invariant under equi-affine transformations.

In the following, I will present a metric which is invariant under such transformations. Using
this metric in the definition of the Laplace-Beltrami operator yields an operator which is in
the same sense invariant under isometries with respect to the equi-affine invariant metric as
the Laplace-Beltrami operator used by Iza-Teran is invariant under isometries with respect
to the Euclidean metric, see Section 3.3.

The equi-affine invariant metric was introduced by Blaschke in [Bla23]. Raviv et al. use the
metric in several works for the construction of a Laplace-Beltrami operator, see, for instance,
[Ra10] and [Ra14]. They use properties of the spectrum of the operator for shape recognition.
Utilising the equi-affine invariant metric, their classification of shapes is invariant under equi-
affine transformations.

In this thesis, I will follow Raviv et al.’s presentation of the metric in [Ra10] and [Ra14]. At
several points, I will add explanations and details. In particular, I will show a connection
between the Gaussian curvature in a point and the determinant of the bilinear form used in
the construction of the metric. This connection is important for the definition of the metric
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on surfaces consisting not only of elliptic points.

The first step to define an equi-affine invariant metric on a regular surface M is to define
pointwise an equi-affine invariant symmetric bilinear form on the tangent spaces TpM for
p ∈M .

Let (U, φ, V ) be a local parametrization of M around p and u ∈ U such that φ(u) = p. To
define a bilinear form b : TpM × TpM → R, it suffices to define b for the basis vectors ∂φ

∂u1
(u)

and ∂φ
∂u2

(u) of TpM .

Later on, we want to use b to define a Riemannian metric. Remembering Definition 3.1.5 of
the length of a vector, we think of b( ∂φ∂ui

(u), ∂φ∂ui
(u)) as the (squared) length of the tangent

vector ∂φ
∂ui

(u). To define an equi-affine invariant notion of length, we can not use the Eu-
clidean notion of length, but need to employ some property that is preserved under equi-affine
transformations. Remembering that equi-affine transformations are volume-preserving, we
define

Bij = b

(
∂φ

∂ui
(u), ∂φ

∂uj
(u)
)

= det
(
∂φ

∂u1
(u), ∂φ

∂u2
(u), ∂2φ

∂ui∂uj
(u)
)
, i, j ∈ {1, 2}.

From the transformation formula, we know that the volume of a parallelepiped
P = [a1u, a2v, a3w], a1, a2, a3 ∈ [0, 1], formed by the vectors u, v and w ∈ R3 is given by∫

P
1dx =

∫
[0,1]3

|det((u|v|w))|dx.

The expression

det
(
∂φ

∂u1
(u), ∂φ

∂u2
(u), ∂2φ

∂ui∂uj
(u)
)

gives the signed volume of the parallelepiped formed by the vectors ∂φ
∂u1

(u), ∂φ
∂u2

(u) and
∂2φ

∂ui∂uj
(u), see Figure 3.2.

Like the volume, the signed volume is preserved under equi-affine transformations since

det ((Au|Av|Aw)) = det (A · (u|v|w)) = det(A) · det((u|v|w)) = det((u|v|w)).

The symmetric matrix B ∈ R2×2 characterizes the bilinear form b.

The bilinear form b is equi-affine invariant but it depends on the parametrization φ. To see
and to remove this dependence, let (Ũ , φ̃, Ṽ ) be another parametrization of M around p and
ũ such that φ̃(ũ) = p. Let B̃ and b̃ be the matrix and the bilinear form defined analogously to
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Figure 3.2: To define the bilinear form, use the (signed) volume of the parallelepiped formed
by φ1 = ∂φ

∂u1
(u), φ2 = ∂φ

∂u2
(u) and φij = ∂2φ

∂ui∂uj
(u), where u ∈ U with φ(u) = p.

B and b but using φ̃ instead of φ. In a neighbourhood A ⊂ U of u we can write the original
parametrization φ as function composition φ̃ ◦ ψ : A → V for a smooth function ψ : A → Ũ

with ψ(u) = ũ. Using the chain rule, we obtain

∂φ

∂ui
(u) = ∂(φ̃ ◦ ψ)

∂ui
(u) = ∂φ̃

∂ũ1
(ψ(u))∂ψ1

∂ui
(u) + ∂φ̃

∂ũ2
(ψ(u))∂ψ2

∂ui
(u).

Using ψ(u) = ũ and defining

ξi = ∂ψ1
∂ui

(u) and ηi = ∂ψ2
∂ui

(u),

we write
∂φ

∂ui
(u) = ξi

∂φ̃

∂ũ1
(ũ) + ηi

∂φ̃

∂ũ2
(ũ).

Further, we get

∂2φ

∂ui∂uj
(u) =ξij

∂φ̃

∂ũ1
(ũ) + ηij

∂φ̃

∂ũ2
(ũ)+

ξiξj
∂2φ̃

∂ũ2
1
(ũ) + (ξiηj + ηiξj)

∂2φ̃

∂ũ1∂ũ2
(ũ) + ηiηj

∂2φ̃

∂ũ2
2
(ũ),

where
ξij = ∂2ψ1

∂ui∂uj
(u) and ηij = ∂2ψ2

∂ui∂uj
(u).
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Using the above formulas to express the bilinear form b in terms of φ̃ yields

b

(
∂φ

∂ui
(u), ∂φ

∂uj
(u)
)

= det
(
∂φ

∂u1
(u), ∂φ

∂u2
(u), ∂2φ

∂ui∂uj
(u)
)

= det
(
ξ1
∂φ̃

∂ũ1
(ũ) + η1

∂φ̃

∂ũ2
(ũ), ξ2

∂φ̃

∂ũ1
(ũ) + η2

∂φ̃

∂ũ2
(ũ),

ξij
∂φ̃

∂ũ1
(ũ) + ηij

∂φ̃

∂ũ2
(ũ) + ξiξj

∂2φ̃

∂ũ2
1
(ũ) + (ξiηj + ξjηi)

∂2φ̃

∂ũ1∂ũ2
(ũ)+

ηiηj
∂2φ̃

∂ũ2
2
(ũ)
)
.

Using that the determinant is linear in its columns, that det(v1, v2, v3) = −det(v2, v1, v3) and
that det(v1, v2, v3) = 0 if vi and vj , i 6= j ∈ {1, 2, 3} are linearly dependant, we get

b

(
∂φ

∂ui
(u), ∂φ

∂uj
(u)
)

= (ξ1η2 − ξ2η1) · det
(
∂φ̃

∂ũ1
(ũ), ∂φ̃

∂ũ2
(ũ),

ξiξj
∂2φ̃

∂ũ2
1
(ũ) + (ξiηj + ξjηi)

∂2φ̃

∂ũ1∂ũ2
(ũ) + ηiηj

∂2φ̃

∂ũ2
2
(ũ)
)
. (3.1.3)

On the other hand, the above formulas, the bilinearity of b̃ and the linearity of the determinant
in its columns yield

b̃

(
∂φ

∂ui
(u), ∂φ

∂uj
(u)
)

= det
(
∂φ̃

∂ũ1
(ũ), ∂φ̃

∂ũ2
(ũ),

ξiξj
∂2φ̃

∂ũ2
1
(ũ) + (ξiηj + ξjηi)

∂2φ̃

∂ũ1∂ũ2
(ũ) + ηiηj

∂2φ̃

∂ũ2
2
(ũ)
)

(3.1.4)

We conclude that the bilinear forms b and b̃ differ by the factor (ξiηj − ξjηi) = detDψ(u).

Using the Jacobian

Dψ(u) =

ξ1 ξ2

η1 η2


of ψ in u, Equation 3.1.3 can be written as

Bij = (ξ1η2 − ξ2η1)
(
Dψ(u)T B̃Dψ(u)

)
.

Using detDψ(u) = detDψ(u)T = (ξ1η2 − ξ2η1), we obtain

detB = (ξ1η2 − ξ2η1)4 det B̃. (3.1.5)
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Finally, we can define an equi-affine invariant symmetric bilinear form h as

h

(
∂φ

∂ui
(u), ∂φ

∂uj
(u)
)

= detB−
1
4Bij , i, j ∈ {1, 2}. (3.1.6)

For the moment, we assume detB > 0, we will later come back to this.

The definition of h does not depend on the parametrization φ, i.e.

h̃

(
∂φ̃

∂ũi
(ũ), ∂φ̃

∂ũj
(ũ)
)

= det B̃−
1
4 B̃ij , i, j ∈ {1, 2}

defines the same bilinear form on TpM . This can be seen using Equations 3.1.3, 3.1.4 and
3.1.5 to obtain

h̃

(
∂φ

∂ui
(u), ∂φ

∂uj
(u)
)

= det B̃−
1
4 · b̃

(
∂φ

∂ui
(u), ∂φ

∂uj
(u)
)

= (ξ1η2 − ξ2η1) · detB−
1
4 · (ξ1η2 − ξ2η1)−1 · b

(
∂φ

∂ui
(u), ∂φ

∂uj
(u)
)

= h

(
∂φ

∂ui
(u), ∂φ

∂uj
(u)
)
.

To characterize in which cases our assumption detB > 0 is fulfilled and to construct a
Riemannian metric from the bilinear form h, we need the term of Gaussian curvature. Be-
fore we define Gaussian curvature, we need some further notions of differential geometry.
The following is based on [Bär10]. We consider regular surfaces equipped with the induced
Euclidean metric.

Definition 3.1.14 (Normal field). Let M ⊂ R3 be a regular surface. A normal field on M

is a map
N : M → R3

such that for every p ∈ M , the vector N(p) is orthogonal on the tangent plane of M in p,
N(p) ⊥ TpM . A normal field on M is called unit normal field if it fulfils ‖N(p)‖ = 1 for all
p ∈M .

Given the definition of normal fields and definition 3.1.2 of smooth maps on M , we can define
orientable surfaces.

Definition 3.1.15 (Orientable surface). A regular surface M ⊂ R3 is called orientable if
there exists a smooth unit normal field on M .
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Let me illustrate this concept with two simple examples. Choosing N(x) = x, we see that
the unit sphere is an orientable surface. The Möbius strip on the other hand is an example
of a non-orientable surface. An orientable surface has exactly two smooth unit normal fields,
N and −N .

To characterize how an orientable regular surface with smooth unit normal field N curves,
we examine how N changes when we move along the surface. Given a point p ∈ M and
v ∈ TpM , let γ : (−ε, ε)→M be such that γ(0) = p, γ̇(0) = v. We defined the differential of
N at p in direction v as

dpN(v) = d

dt
(N ◦ γ)|t=0.

As N ◦ γ defines a curve on the unit sphere S2 ⊂ R3 and N(γ(0)) = N(p), we have
dpN(v) ∈ TN(p)S

2. Further, it holds TN(p)S
2 = N(p)⊥ = TpM . Therefore, the differential

dpN : TpM → TpM is an endomorphism.

It can be shown that the map dpN : TpM → TpM is self-adjoint with respect to the Euclidean
inner product of R3 restricted to TpM . We know from the spectral theorem that we can find
an orthonormal basis X1, X2 of TpM consisting of eigenvectors of dpN ,

dpN(Xi) = κiXi, i = 1, 2,

where κ1, κ2 ∈ R.

Definition 3.1.16 (Principal curvature). The eigenvalues κ1 and κ2 are called principal
curvatures of the regular surface M with orientation N in point p. The corresponding eigen-
vectors X1 and X2 are called directions of principal curvature.

One can imagine the principal curvatures as a measure of the minimal and the maximal
curvature of the orientable regular surface M in the direction of the smooth unit normal field
N . Choosing as orientation of M the unit normal field −N the principal curvatures switch
their signs.

Definition 3.1.17 (Gaussian curvature). Let M ⊂ R3 be a regular surface with orientation
N , p ∈ M . Let κ1 and κ2 be the principal curvatures of M in p. We define the Gaussian
curvature of M in p as

K(p) = κ1κ2.

We call the point p

1. elliptic, if K(p) > 0,
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2. hyperbolic, if K(p) < 0,

3. parabolic, if K(p) = 0.

In an elliptic point, the surface bends in the same direction, independent of the direction in
that one moves. In a hyperbolic point, it bends in different directions, while in a parabolic
point exists a direction in that it does not bend at all. See Figure 3.3 for examples.

(a) Elliptic points. (b) Hyperbolic points. (c) Parabolic points.

Figure 3.3: Example for regular surfaces with different Gaussian curvatures.

Back to the definition of an equi-affine invariant metric. Given a parametrization (U, φ, V )
of M around a point p ∈ M , we defined an equi-affine invariant bilinear form b on TpM .
This bilinear form depended on the parametrization φ. We saw that we can remove the
dependence by defining another bilinear form h as

h

(
∂φ

∂ui
(u), ∂φ

∂uj
(u)
)

= detB−
1
4Bij , i, j ∈ {1, 2}

where B ∈ R2×2 is the matrix with entries

Bij = det
(
∂φ

∂u1
(u), ∂φ

∂u2
(u), ∂2φ

∂ui∂uj
(u)
)
, i, j ∈ {1, 2}.

In the definition of h, we assumed detB > 0. This assumption is fulfilled if and only if the
Gaussian curvature of M in p is greater than 0, i.e. p is an elliptic point. To see this, we use〈

∂2φ

∂ui∂uj
(u), N(p)

〉
R3

= −
〈
∂φ

∂ui
(u), dpN

(
∂φ

∂uj
(u)
)〉

R3

, (3.1.7)

where N is an orientation of M . A proof of this equation can for example be found on
page 121 of [Bär10].
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Omitting the function argument u for simplicity, by definition of B holds

detB = det
(
∂φ

∂u1
,
∂φ

∂u2
,
∂2φ

∂u2
1

)
det

(
∂φ

∂u1
,
∂φ

∂u2
,
∂2φ

∂u2
2

)
− det

(
∂φ

∂u1
,
∂φ

∂u2
,

∂2φ

∂u1∂u2

)2

.

We write ∂2φ
∂ui∂uj

as linear combination of ∂φ
∂u1

, ∂φ
∂u2

and N(p), use the linearity of the deter-
minant in its columns and the fact that det(v, w, v) = 0 to obtain from the above equation

detB = det
(
∂φ

∂u1
,
∂φ

∂u2
, N(p)

)2(〈∂2φ

∂u2
1
, N(p)

〉
R3

〈
∂2φ

∂u2
2
, N(p)

〉
R3

−
〈

∂2φ

∂u1∂u2
, N(p)

〉2

R3

 .
Using Equation 3.1.7, this becomes

detB = det
(
∂φ

∂u1
,
∂φ

∂u2
, N(p)

)2 (〈 ∂φ

∂u1
, dpN

(
∂φ

∂u1

)〉
R3

〈
∂φ

∂u2
, dpN

(
∂φ

∂u2

)〉
R3

−
〈
∂φ

∂u1
, dpN

(
∂φ

∂u2

)〉2

R3

)
.

The first factor is greater than zero as ∂φ
∂u1

, ∂φ
∂u2

andN(p) are linearly independent. To examine
the second factor, let κ1 and κ2 be the principal curvatures for the orientation N with the
corresponding directions of principal curvature X1 and X2. X1 and X2 are orthonormal
eigenvectors of dpN with corresponding eigenvalues κ1 and κ2. Let

A =

a1 a2

b1 b2


be the matrix describing the change of basis from ∂φ

∂ui
(u) to Xi, i.e. ∂φ

∂u1
(u) = a1X1 + a2X2

and ∂φ
∂u2

(u) = b1X1 + b2X2. Inserting this, we get

〈
∂φ

∂u1
, dpN

(
∂φ

∂u1

)〉
R3

〈
∂φ

∂u2
, dpN

(
∂φ

∂u2

)〉
R3
−
〈
∂φ

∂u1
, dpN

(
∂φ

∂u2

)〉2

R3

=〈a1X1 + a2X2, a1κ1X1 + a2κ2X2〉 · 〈b1X1 + b2X2, b1κ1X1 + b2κ2X2〉

− 〈a1X1 + a2X2, b1κ1X1 + b2κ2X2)2

=(a2
1κ1 + a2

2κ2)(b2
1κ1 + b2

2κ2)− (a1b1κ1 + a2b2κ2)2

A short calculation reveals that this is equal to K(p) det(A)2, where K(p) = κ1κ2 is the
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Gaussian curvature of M in p. The expression det(A)2 is greater than zero since A describes
a change of basis. Altogether, we obtain sgn(detB) = sgn(K(p)).

Hence, our assumption detB > 0 is fulfilled in all elliptic points. In all hyperbolic and para-
bolic points Raviv et al. define h = 0. As detB is invariant under equi-affine transformations
and sgn(detB) = sgn(K(p)), we get that under equi-affine transformations elliptic, hyperbolic
and parabolic points are mapped to elliptic, hyperbolic and parabolic points, respectively.
Therefore, h defines an equi-affine invariant symmetric bilinear form on the tangent space
TpM for every point p of the regular surface M .

The next step is to construct a metric from h. Let us at first consider elliptic points. Raviv
et al. propose in [Ra10] and [Ra14] to project h on the space of positive definite matrices.
Considering the symmetric matrix H defined as

Hij = h

(
∂φ

∂ui
(u), ∂φ

∂uj
(u)
)
,

and characterizing the bilinear form h, they write

H = UΛUT

where U is orthogonal and Λ = diag{γ1, γ2}. They define the symmetric positive definite
metric H̄ by

H̄ = U |Λ|UT .

In hyperbolic and parabolic points they set H̄ = 0. If all points of the regular surface M are
elliptic, H̄ defines a valid Riemannian metric on M that is equi-affine and parametrization
invariant. For all other regular surfaces it defines a valid Riemannian metric on elliptic
regions while hyperbolic and parabolic regions are ignored. In our implementation, we handle
hyperbolic points like elliptic points, only using the absolute value of detB in Equation 3.1.6,
such that |detB|−1/4 is a real number. It is not clear why Raviv et al. set the metric to
zero for hyperbolic points. Using the metric for car parts, which often have many hyperbolic
points, numerical observations support our procedure.

The equi-affine invariant Laplace-Beltrami operator is defined using H̄ as metric in the usual
definition of the Laplace-Beltrami operator 3.1.13.
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3.1.3 Fokker-Planck operator

Apart from the Laplace-Beltrami operator for the induced Euclidean metric, Iza-Teran uses in
[Iza17] and [IG17] a Fokker-Planck operator. He refers to the operator as ”operator for point
clouds” or ”operator of independent components”. It comes from the context of nonlinear
independent component analysis (NICA) [SC08]. However, Iza-Teran uses it in a different
way. In this section, I will give a short overview how the operator is motivated and built in
[SC08] before I will explain how Iza-Teran uses it in our context.

General setting

The underlying model in Singer’s and Coifman’s construction of the operator in [SC08] is the
following:

Given observable data points yi ∈ Rn, they assume that these points are the images of points
xi ∈ Rm, lying in a lower dimensional parameter space, m ≤ n, under a non-linear mapping
f : Rm → Rn, i.e.

yi = f(xi), i = 1, . . . , N.

The data points xi ∈ Rm in the parameter space are samples of a stochastic process
x = (x1, . . . , xm) ∈ Rm whose components are independent stochastic Itô processes, i.e.

dxj = aj(xj)dt+ bj(xj)dωj , j = 1, . . . ,m,

where aj and bj are unknown drift and noise coefficients, and ω̇j are independent δ-correlated
white noises.

Their objective is to find for each observed sample yi = f(xi) the underlying parameters
xi = (xi1, . . . , xim). In order to achieve this, Singer’s and Coifman’s first step is to approximate
the distance of the samples in the parameter space. They show that for the Jacobian
J(xi) ∈ Rn×m, J(xi)j` = ∂fj

∂x`
(xi), of the map f at a point xi can be assumed

C(yi) = J(xi)J(xi)T ,

where C(yi) is the covariance matrix of the stochastic process (y1, . . . , yn) = y = f(x) at the
point yi = f(xi), i.e.

Cj`(yi) = Cov(yij , yi`), j, ` ∈ {1, . . . , n}.

Next, they show that the square of the Euclidean distance of two samples xi and xk in the
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parameter space can be written as

∥∥∥xi − xk∥∥∥2
= ‖J

−1(yi)(yi − yk)‖2 + ‖J−1(yk)(yi − yk)‖2

2 +O(‖yi − yk‖4)

= 1
2
(
yi − yk

)T (
J−TJ−1(yi) + J−TJ−1(yk)

) (
yi − yk

)
+O(‖yi − yk‖4)

= 1
2
(
yi − yk

)T (
C(yi)−1 + C(yk)−1

) (
yi − yk

)
+O(‖yi − yk‖4), (3.1.8)

where yi = f(xi) and yk = f(xk).

Singer and Coifman show that the discrete normalized graph Laplacian for the Gaussian
kernel

Wij = exp

−
(
yi − yk

)T (
C(yi)−1 + C(yk)−1

) (
yi − yk

)
4ε

 (3.1.9)

converges for N → ∞ to a backward Fokker-Planck operator on the parameter space which
separates into n one-dimensional components. This implies that for each component
j ∈ {1, . . . ,m} of the parameter space exists a unique eigenfunction ψij of the operator, that
depends only on the j-th component xj of the data points in the parameter space. Moreover,
this dependence is strictly monotone.

Singer and Coifman assume that the ij-th eigenvector of the operator for a fixed number N of
data points approximates the ij-th eigenfunction of the operator for N →∞. Thus, its k-th
entry approximates a scaled version of the j-th entry xkj of the parameter vector xk which
was mapped to the observed data point yk.

In praxis, calculating the covariance matrices C(yi) is problematic. If we have the possibility
to run several short simulations (simulation bursts) of a small enough time length δ > 0,
all initiating in xi, we can approximate it using the sample covariance of the resulting point
cloud yi1, . . . , y

i
M

Ci,δ = 1
M

M∑
j=1

(yij − yi)(yij − yi)T (3.1.10)

and
C(yi) = d+ 2

δ2 Ci,δ +O(δ), (3.1.11)

where d = dimMX = dimMY is the dimension of the manifold on that the data points xi

in the parameter space and the observable data points yi, respectively, lie. For a proof, see
[SC08]. However, we often do not have the possibility to run such simulation bursts.

In [SC08], Singer and Coifman illustrate the approach with the following example. The para-
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meter domain is the unit square [0, 1]× [0, 1] ⊂ R2, the stochastic process for the parameters
(x1, x2) is the Brownian motion with reflection at the boundary and the map f is given by

y1 = x1 + x3
2, y2 = x2 − x3

1.

The operator described above approximates the Laplacian of the unit square, whose eigen-
values are λn,m = π2(n2 +m2), n,m ∈ N0, with the corresponding eigenfunctions
φn,m(x1, x2) = cos(nπx1) cos(mπx2). In particular φ1,0 depends only on x1 and is strictly
monotonically decreasing. Given only an observable point y = f(x) and the value of the ei-
genfunction φ1,0 at this point, we can recover the component x1 up to the scaling by cos(π·).
The same holds for the second component x2 using φ0,1.

For my work, I used an implementation of the Fokker-Planck operator, following Iza-Teran’s
description in [IG17], which differs slightly from the normalization presented in Iza-Theran’s
thesis [Iza17]. Inspired by the normalization with α = 1

2 in Coifman’s work on Diffusion
maps [CL06], Iza-Teran normalizes the kernel W from Equation 3.1.9 using the following
steps. First, he uses a density normalization

Wdens = D−
1
2WD−

1
2 (3.1.12)

of the kernel W as in [TC14], where D is a diagonal matrix with elements

Dii =
Nh∑
j=1

Wij .

Next, the matrix Wdens is transformed into another symmetric matrix

Wstoch = D̃−
1
2WdensD̃

− 1
2 (3.1.13)

where D̃ is the diagonal matrix with elements

D̃ii =
Nh∑
j=1

(Wdens)ij .

Iza-Teran uses the eigenvectors of that matrix in his numerical experiments.

Our application

In the invariant operator approach, we want to represent elements of the space L2(M) in the
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spectral domain of an operator. Here, M is a reference embedding of the simulated object, in
our case a regular surface in R3. Before we continue, it is important to notice that we want
to build an operator on M and not for example on the space of embeddings.

A natural way to extend Singer’s and Coifman’s approach to the analysis of car crash sim-
ulations is to consider the different embeddings of the car part in the simulation bundle as
observable data points yi ∈ Emb(M,R3) or in the discrete case as observable data points
yi ∈ R3N , where N is the number of nodes used in the discretization of the part. In this
setting, the parameter space is closely related to the space of physical parameters of the sim-
ulation bundle. Additionally, time is a parameter. The mapping f between parameter space
and observable space is given by the solution of the partial differential equations underlying
the simulation.

Under the assumption that the physical parameters vary according to independent stochastic
Itô processes, this extension could fit in Singer’s and Coifman’s setting. However, it is of no
interest for our application. First, we know the physical parameters for each simulation and
do not need to approximate them. Second, nor are we interested in an operator on the space
of embeddings of the car part, nor in an operator on the space of physical parameters. For
the invariant operator approach, we need an operator on the regular surface M given by a
reference embedding of the car part.

Therefore, Iza-Teran proceeds differently. Given N points y1, . . . , yN ∈ R3 on a reference
embedding M of the car part, he calculates for each point yi the sample covariance matrix
Ci,δ from Equation 3.1.10 for the point cloud {yji }

#embeddings
j=1 formed by the i-th points of

embeddings of the car part for different physical parameters or different timesteps.

Given the matrices Ci,δ, he chooses a δ to calculate the matrix Ci from Equation 3.1.11.
Following along as Singer and Coifman, he uses the expression

1
2 (yi − yk)T

(
C(yi)−1 + C(yk)−1

)
(yi − yk)

from Equation 3.1.8 as new notion of distance between the points yi and yk, i, k ∈ {1, . . . , N}.

While this certainly gives a new notion of distance between the points yi of the regular
surface M , it does not seem to fit in Singer’s and Coifman’s setting: The points yi lie all on
a reference embedding M of the car part. They only differ in their intrinsic position on the
car part. Let us assume that they are the images of points xi in a parameter space under a
nonlinear map f , i.e. f(xi) = yi as in Singer’s and Coifman’s setting. It is not clear what the
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parameter space and the map should look like. It is solely clear that an interpretation of the
parameter space as the space of physical parameters and time and of the map as the solution
of the partial differential equations underlying the simulations is not possible. However, to
approximate the Jacobian of f in xi, Iza-Teran computes the sample covariance matrix of
the point cloud {yji }

#embeddings
j=1 , formed by the i-th points of embeddings of the car part for

different physical parameters or timesteps. The assumption that those points can be used to
approximate the Jacobian of f , a map that is independent of the physical parameters and
time, is at least questionable.

The interpretation of the constructed operator as operator of independent components is
no longer justified. We should think of the operator as a Laplace-Beltrami operator, or -
depending on the normalization, compare to Coifman’s work on Diffusion maps [CL06] - a
Fokker-Planck operator on the regular surface M , which does not use the induced Euclidean
metric but a different notion of distance given by

d(yi, yk) = 1
2 (yi − yk)T

(
C−1
i,δ + C−1

k,δ

)
(yi − yk) , (3.1.14)

where C−1
i,δ are the pseudoinverses of Ci,δ.

In the computation of Ci,δ, Iza-Teran uses the i-th points yji of the embeddings for different
physical parameters and timesteps. If the position of the i-th point varies strongly between
the embeddings, i.e. it depends strongly on the choice of physical parameters, the absolute
values in the matrix Ci,δ will be bigger than for points with less variation. Hence, the distances
around points whose positions depend strongly on the choice of physical parameters shrink
in relation to distances around points whose positions depend less strongly on the choice of
physical parameters. The parameter δ in the computation of the matrices Ci controls the
amount of shrinkage.

3.2 Numerical Evaluation of the Operators

In this section, I will present algorithms for the numerical computation of the eigenbases of
the above defined operators. For the computation of the Laplace-Beltrami operator using the
induced Euclidean metric and for the computation of the Fokker-Planck operator, we follow
the algorithms presented in [Iza17]. For theory on the convergence of the discrete operators
to the continuous ones, I refer to Iza-Teran’s work [Iza17].
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3.2.1 Laplace-Beltrami operator

Let (M, g) be a regular surface and let ∆ be the corresponding Laplace-Beltrami operator.
Given a mesh K of vertices V and faces F approximating the surface, we define the mesh
Laplace operator by

Lhkf(w) = 1
4πh2

∑
t∈F

Area(t)
#V (t)

∑
v∈V (t)

exp
(
−dG(v, w)2

4h

)
(f(v)− f(w)) (3.2.1)

for all w ∈ V , all f : V → R. Here, V (t) is the set of vertices of the face t, dG(v, w) denotes
the graph distance between the vertices v and w with respect to the Riemannian metric g
and h is a parameter controlling the size of the local neighbourhoods of the vertices.

Algorithm 1 describes the general computation of the eigenvector basis of the mesh Laplace
operator. It introduces a parameter ρ. All summands in Equation 3.2.1 for which
exp

(
−dG(v,w)2

4h

)
is under a certain threshold controlled by the parameter ρ are ignored.

Choosing a small ρ speeds up the computation. For a sufficiently large parameter ρ, the
operator L from Algorithm 1 coincides with the operator from Equation 3.2.1.

Algorithm 1 Spectral decomposition of the mesh Laplace operator.
Input: A regular surface given as triangular mesh M with Nh points and Nf faces.
Parameter: nev: Number of eigenvectors to return, h: controlling the size of local
neighbourhoods, ρ: controlling up to what distance vertices are included in Equation
3.2.1.
Output: First nev greatest eigenvectors of the mesh Laplace operator.

Initialize array area[Nh] with values 0.
5: for k = 1, . . . , Nf do

for i = 1, 2, 3 do
area[index of i-th vertex of k-th face] += (area of k-th face)/3

end for
end for

10: for k = 1, . . . , Nh do
[ids,dists] = graphdist(k,M, ρ ·

√
h) . distances to all nodes with dG(k, l) < ρ ·

√
h.

for each l, d ∈ [ids,dists] do
W [k, l] = area[k] · area[l] · exp(−d2/(4h))/(4πh2)

end for
15: end for

D = diag(W · (1, . . . , 1))
L = W −D
[U,E] = eigen(L, nev)
return greatest nev eigenvectors U of L.
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For the Laplace Beltrami operator using the induced Euclidean metric, I use software pub-
lished by Jian Sun on Github3. Instead of the graph distance, it uses a shortest path algorithm
for triangular surface meshes to approximate the geodesic distance of two nodes.

For the Laplace Beltrami operator using the equi-affine invariant metric, the first step is to
calculate the edge lengths and the area with respect to the equi-affine invariant metric. I
describe those calculations below. After those calculations, Algorithm 1 can be applied using,
for instance, Dijkstra’s algorithm to compute the graph distances for the new edge lengths.

Equi-affine invariant metric

In this section, I will describe the numerical approximation of the equi-affine invariant metric
defined in Section 3.1.2. The regular surface M must be given as triangular mesh. I will follow
Raviv et al.’s description in [Ra10] and [Ra14], adding several details including the process of
unfolding a given triangle patch to the plane and an explanation how the obtained estimate
of the metric tensor can be used to approximate the equi-affine invariant edge lengths.

For each triangle T of the surface, we calculate a constant approximation of the metric tensor
H̄. To do so, we need a local parametrization of the regular surface around T , i.e. a map φ

from a subset U of R2 to a subset V ∩M ⊂ R3 of the regular surface around T . To construct
such a parametrization, we consider a patch of four triangles consisting of T and the three
neighbouring triangles. For now, we assume that T is not at the boundary of the mesh.

To get a 2-dimensional parameter domain U , we unfold the triangle patch to the plane and
do an affine transformation, such that T becomes the unit triangle with vertices u1 = (0, 0),
u2 = (1, 0) and u3 = (1, 1). See Figure 3.4 for an illustration. Next, a quadratic para-

(a) Triangle patch in R3. (b) Unfolded triangle patch
in R2.

(c) Normalized triangle patch
in R2.

Figure 3.4: Unfolding and normalizing a triangle patch. Notations for Algorithm 2.

3https://github.com/areslp/matlab/tree/master/MeshLP/MeshLP

https://github.com/areslp/matlab/tree/master/MeshLP/MeshLP
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metrization φ of the surface around T is calculated solving the linear equation system

φj(ui1, ui2) = c
(0)
j + c

(1)
j ui1 + c

(2)
j ui2 + c

(3)
j ui1u

i
2 + c

(4)
j (ui1)2 + c

(5)
j (ui)2

2 = Xi
j

for all j = 1, 2, 3 and i = 1, . . . , 6, where (ui1, ui2) and (Xi
1, X

i
2, X

i
3) are the six corners

of the four unfolded and normalized triangles in R2 and of the original triangles in R3,
respectively. φ is the unique quadratic map R2 → R3 mapping the six corners of the unfolded
and normalized triangles to the corresponding corners of the original triangles in R3. We use
it as a local parametrization of the regular surface around T . The proceeding is summarized
in Algorithm 2.

Algorithm 2 Unfold a triangle patch to calculate the coefficients of a quadratic approxim-
ation of a local parametrization of a regular surface.

Input: A triangle T in a triangular mesh K.
Output: Coefficient matrix C.

. Unfold the 3 triangles around T to the plane. See Figure 3.4 for the notation.
u1 = (0, 0)T

5: u2 = (‖X1 −X2‖, 0)T . ‖ · ‖ denotes the Euclidean norm.
u3 = ‖X1 −X3‖ · (cos(∠X2X1X3), sin(∠X2X1X3))T
if triangle I is Null then . Invert centre triangle. See Figure 3.5.

X4 = X1 + (X2 −X3)
end if

10: u4 = ‖X1 −X4‖ · (cos(∠X4X1X2),− sin(∠X4X1X2))T
if triangle II is Null then

X5 = X2 + (X3 −X1)
end if
u5 = u2 + ‖X2 −X5‖ · (− cos(∠X3X2X1 + ∠X5X2X3), sin(∠X3X2X1 + ∠X5X2X3))T

15: if triangle III is Null then
X6 = X1 + (X3 −X2)

end if
u6 = (cos(∠X2X1X3 + ∠X3X1X6), sin(∠X2X1X3 + ∠X3X1X6))
. Do a linear normalization such that u1 = (0, 0), u2 = (1, 0) and u3 = (0, 1).

20: N = (u2|u3)−1

for i = 1, . . . , 6 do
ui = Nui

end for
Declare matrix P ∈ R6×6. . For the values of the polynomials 1, u, v, uv, u2, v2 at ui.

25: for i = 1, . . . , 6 do
set i-th row of P to (1, ui1, ui2, ui1 · ui2, (ui1)2, (ui2)2).

end for
solve linear system PC = (X1| . . . |X6)T
return Coefficient matrix C ∈ R6×3.
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Given the parametrization φ, we approximate the pre-metric tensor H at the point
u = (1/2, 1/2). To do that, we note

∂φ

∂u1
(u) = c(1) + c(3)u2 + 2c(4)u1,

∂φ

∂u2
(u) = c(2) + c(3)u1 + 2c(5)u2,

∂2φ

∂u2
1
(u) = 2c(4),

∂2φ

∂u2
2
(u) = 2c(5),

∂2φ

∂u1∂u2
(u) = c(3)

and compute

Bij = det
(
∂φ

∂u1
(u), ∂φ

∂u2
(u), ∂2φ

∂ui∂uj
(u)
)

for i, j = 1, 2. Next, we set
H = | det(B)|−

1
4B,

where we assume for now that detB 6= 0.

Given the approximation of the pre-metric tensor H in the triangle T , we calculate the
eigendecomposition UΛUT = H and use H̄ = U |Λ|UT as approximation of the metric
tensor in T .

Next, we want to use H̄ to get an estimate of the equi-affine invariant edge lengths in T , i.e.
an estimate of the equi-affine invariant distances between the vertices X1, X2 and X3.

In Definition 3.1.6, we defined the length of a curve c : [0, 1] → M on a regular surface M
with Riemannian metric h as

`(c) =
∫ 1

0

√
hc(t) (ċ(t), ċ(t)) dt.

The vertices X1, X2 and X3 of T correspond in the parameter domain U to the vertices
u1 = (0, 0), u2 = (1, 0) and u3 = (0, 1) of the unit triangle. In the following, we use circular
indices, i.e. 3 + 1 = 1.

Let c̃i : [0, 1]→M , c̃(t) = ui+t·(ui+1−ui) be a curve along the i-th edge of the triangle in the
parameter domain and ci : [0, 1]→M be the image of that curve under the parametrization
φ, i.e. ci(t) = φ(c̃i(t)). Then ci(0) = Xi and ci(1) = Xi+1. To approximate the distances



3.2 Numerical Evaluation of the Operators 35

between Xi and Xi+1, we consider the length of the curve ci. To approximate, for example,
the distance between X1 and X2, we consider the curve c̃1(t) = (0, 0)+t ·((1, 0)−(0, 0)) = te1

and c1 : [0, 1]→M , c1(t) = φ(c̃1(t)). By the chain rule holds ċ1(t) = ∂φ
∂u1

and we get

`(c1) =
∫ 1

0

√
hc1(t)

(
∂φ

∂u1
(c1(t)), ∂φ

∂u1
(c1(t))

)
dt

which we approximate by
√
H̄11. Similarly, we get as approximations for the distances

between X2 and X3 and between X3 and X1
√
H̄11 − 2H̄12 + H̄22 and

√
H̄22, respectively.

Algorithm 3 summarizes the computation of the new edge lengths.

Algorithm 3 Computation of the equi-affine invariant edge lengths for a triangle from the
mesh.

Input: A triangle T in a triangular mesh M .
Output: Equi-affine invariant edge lengths of T .

Follow Algorithm 2 to get the coefficient matrix C = (c1, . . . , c6)T ∈ R6×3 for a quadratic
approximation of a local parametrization of the surface.
. Calculate first and second derivatives of the quadratic approximation φ at the point
u = (1/2, 1/2)T .
φ1 = c2 + 0, 5c4 + 2 · 0, 5c5
φ2 = c3 + 0, 5c4 + 2 · 0, 5c6
φ11 = 2c5
φ22 = 2c6
φ12 = c4.

5: . Calculate the pre-metric tensor H.
H(0, 0) = det(φ1|φ2|φ11)
H(1, 1) = det(φ1|φ2|φ22)
H(1, 0) = H(0, 1) = det(φ1|φ2|φ12)
if |detH| < 1e−3 then

H = ε · Id2×2
else

H = |detH|−
1
4H

10: U,E = eigen(H) . Such that Udiag(E)UT = H
H = Udiag(abs(E))UT

end if
. Calculate the equi-affine invariant edge lengths.
e0 =

√
H(0, 0)

e1 =
√
H(0, 0)− 2H(0, 1) +H(1, 1)

e2 =
√
H(1, 1)

return e0, e1, e2.
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We follow this procedure for every triangle. For each edge e of an inner triangle T , we get
two estimates for the distance between the vertices connected by the edge, one considering
the triangle T and one considering the neighbouring triangle that shares the edge e with
T . We choose the average of the two estimates. Notice that, in general, it is not clear if
there exists an embedding of the vertices in R3 such that the Euclidean distances between
the vertices correspond to our estimates of the equi-affine invariant distances. It is not even
guaranteed that the new edge length fulfil the triangle inequality, it is possible that the sum
of the lengths of the two shorter edges is smaller than the length of the third edge.

Given the new edge lengths, we use Heron’s formula to compute the area of the triangle.
Heron’s formula states that the area of a triangle with edge lengths a, b and c is given by

A =
√
s(s− a)(s− b)(s− c),

where
s = a+ b+ c

2 .

There are a few special cases and remarks concerning the above computations. In [Ra14],
Raviv et al. consider only closed surfaces without boundary. However, the mesh discretizing
the car part in our simulation bundle contains boundary triangles. If a triangle is at the
boundary of the mesh, we invert it in the midpoint of each boundary edge to get a patch of
four triangles. See Figure 3.5 for an example. Subsequently, we follow along as above.

Another special case is that detB = 0, i.e. the triangle lies in an approximately parabolic
region, compare Section 3.1.2. At such points, we set the continuous metric to zero. Numer-
ically, we set

H = εI = ε

1 0
0 1


for a small constant ε > 0. For a justification I refer to [Ra14].

To my knowledge, Raviv et al. did not examine the conditions on the mesh under which the
discrete approximation of the metric converges to the continuous metric. An analysis of the
convergence is out of scope of this thesis. Further works should treat this problem.

3.2.2 Fokker-Planck operator

The numerical computation of the Fokker-Planck operator and its eigendecomposition is
described in Algorithm 4. As parameters, I used ε = 0.01 and δ = 0.1 which produce



3.3 Invariance of operators 37

(a) T has a boundary edge. (b) T is inverted.

Figure 3.5: The centre triangle is inverted in the midpoint of each boundary edge to get a
patch of four triangles.

similar results as presented in [IG17]. However, the operator depends strongly on the chosen
parameters.

3.3 Invariance of operators

Iza-Teran calls his approach in [Iza17] and [IG17] ”invariant operator approach”. He states
that the Laplace-Beltrami operator is invariant under isometries and the Fokker-Planck oper-
ator is invariant under a nonlinear transformation. However, he does not elaborate on what
he means in general by calling an operator invariant. In fact, concretizing in what sense
Iza-Teran’s Fokker-Planck operator is invariant is difficult.

Further, Iza-Teran conjectures that the observed separation of effects can be explained using
a known link between invariant operators and the representation of groups. However, the
type of invariance used in this theory is another type of invariance than the one of the
Laplace-Beltrami operator with respect to isometries.

In this section, we will examine and compare the different invariances.

3.3.1 Invariant operator in the representation of groups

In [Iza17], Iza-Teran observes that the transformations upon variation of single spectral coef-
ficients are predominantly isometric. He offers the following link between the representation
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Algorithm 4 Spectral decomposition of the Fokker-Planck operator.

Input: 1) reference simulation x: A surface embedded in R3, given as Nh points.
2) data set bundle {xj}, j = 1, . . . ,m: Surfaces embedded in R3, each one given
as Nh points.

Parameter: nev: number of eigenvectors to return, ε: controlling the size of local
neighbourhoods, δ: parameter in the approximation of the covariance
matrix. In our setting, δ controls the distortion of the Euclidean metric,
see Section 3.1.3.

Output: First nev greatest eigenvectors of the operator.

for k = 1, . . . , Nh do
5: Compute for each point xk of x the sample covariance matrix Ck,δ of the point cloud

{xkj }mj=1 formed by the k-th points of the surfaces xj , see Equation 3.1.10.
Set C[k] = pseudoinverse of Ck,δ · 1

δ .
end for
for k = 1, . . . , Nh do

10: for j = 1, . . . , Nh do
Calculate the Gaussian kernel W [k, j] using Equation 3.1.9 and the pseudoinverses
in C.

end for
end for

15: Let D1 be a diagonal matrix with D1[ii] =
∑Nh
k=1W [i, k].

Set Wdens = D
− 1

2
1 ·W ·D−

1
2

1 .
Let D2 be a diagonal matrix with D2[ii] =

∑Nh
k=1Wdens[i, k].

Set Wstoch = D
− 1

2
2 ·Wdens ·D

− 1
2

2 .
[U,E] = eigen(Wstoch, nev)

20: return greatest nev eigenvectors U of Wstoch.

of groups and invariant operators as a first theoretical approach to explain this. The following
is based on [Sug90] and [Gal13].

Theorem 3.3.1. Let F be the space of complex valued C∞-functions on the sphere S2 ⊂ R3.
A linear representation Ta of the rotation group SO(3) on F is defined by

Taf(x) = f(a · x)

for a ∈ SO(3) and f ∈ F . The Laplace-Beltrami operator ∆S2 on F commutes with Ta, i.e.
for any a ∈ SO(3) and f ∈ F holds

∆S2(Taf) = Ta(∆S2f).
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A linear representation of a Lie group G in a vector space V defines how an element from
G acts on an element of V . Formally, it is a group homomorphism U : G → GL(V ) such
that the map g 7→ U(g)(u) is continuous for every u ∈ V . Here, GL(V ) is the group of linear
invertible maps from V to itself.

We note that the Laplace-Beltrami operator is invariant with respect to the rotation group
in the sense that it commutes with the representation of the group in F .

Theorem 3.3.2. The eigenvalues of ∆S2 are given by −k(k+ 1), k ∈ N0. The space Hk(S2)
of eigenfunctions for the eigenvalue −k(k + 1) is spanned by sin(kθ) and cos(kθ). It holds

C∞(S2) ⊂ L2(S2) =
∞⊕
k=0

Hk(S2).

Further, the representation T of SO(3) into Hk(S2), given by

Taf(x) = f(a · x)

for a ∈ SO(3) and f ∈ Hk(S2) is irreducible.

A representation T of a group G in a vector space V is called irreducible, if it does not exist
a non-trivial subspace W of V such that T defines a linear representation of G in W , i.e. it
does not exist a subspace W ⊂ V , W 6= ∅, W 6= V , such that Ta(w) ∈ W for all w ∈ W and
a ∈ G.

This expansion in irreducible subspaces yields two opportunities. Let fi be elements of a
Hilbert space H, for instance different embeddings of our car part interpreted as elements of
L2(M,R3). Assume that there exists an element f ∈ H and a linear representation T of a
Lie Group G such that all elements fi are the result Taif of the action of an element ai on
f . If we can decompose H into irreducible subspaces

H =
∞⊕
k=0

Hk,

we know that if the projection of f on Hk is 0 for some k, so will be the projection of all
fi on Hk. We can therefore neglect the space Hk for the representation of our simulations.
In practice this yields the possibility of a lossless dimensionality reduction. Moreover, given
such an expansion, it suffices to consider the projection of the simulations fi on a single Hk

(for a k for that this projection is not 0) to be able to observe all group actions of G that
distinguish between the different simulations.
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However, I do not see how those theorems could be used to explain that the variation of
different spectral coefficients in the invariant operator approach corresponds to different basic
transformations, i.e. different group actions, when the theorem states for the above case, that
actions of the group SO(3) act on all subspaces Hk in the same way.

3.3.2 Invariance of the Laplace-Beltrami operator

The Laplace-Beltrami operator is invariant with respect to isometries. To clarify in what
sense, we first define what an isometry between regular surfaces is.

Definition 3.3.3 (Isometry). Let M1 and M2 be regular surfaces in R3 with Riemannian
metric g1 and g2, respectively. A smooth map f : M1 →M2 is called isometry, if:

1. it is bijective and

2. for each p ∈M1, the differential

dpf : TpM1 → Tf(p)M2

is a linear isometry with respect to the metrics gi, i.e.

g
f(p)
2 (dpf(X), dpf(Y )) = gp1(X,Y )

for all X,Y ∈ TpM1.

If there exists such an isometry f , the surfaces (M1, g1) and (M2, g2) are called isometric.

The differential dpf is defined analogously as for functions f : M1 → R in Equation 3.1.1.

Isometries are maps that preserve distances: The length of a curve c(·) on (M1, g1) is identical
to the length of the image of the curve under f , f(c(·)), on (M2, g2).

At this point, note once more that there are different types of isometries. Given a regular
surface M with Riemannian metric g, we can consider isometries g : M → M . Those maps
form a group G(M). They can be thought of as reparametrizations of M .

In our application, we consider isometric transformations of different embeddings
f ∈ Emb(M,R3) of our car part. We are interested in isometries acting on the embeddings
f ∈ Emb(M,R3) by composition from the left, i.e. isometries g : f(M)→ g(f(M)) ⊂ R3, as
for example translations and rotations.
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While the isometric maps g : M → M form a group G(M), the isometric maps acting
on Emb(M,R3) by composition from the left are hard to characterize. For each element
f ∈ Emb(M,R3), we can consider the set of isometries g : f(M)→ g(f(M)) ⊂ R3 acting by
composition from the left, but this set depends on the chosen element f and does not form
a group.

Let us now examine in what sense the Laplace-Beltrami operator is invariant under isometries.

Theorem 3.3.4 (Invariance under isometries). Let (M1, g1) and (M2, g2) be regular surfaces,
∆M1 ,∆M2 the corresponding Laplace-Beltrami operators on C∞(M1), C∞(M2) and
f : M2 →M1 an isometry. It holds

(∆M1h) ◦ f = ∆M2(h ◦ f)

for all h ∈ C∞(M1).

Proof. Let p ∈ M1, (U, φ, V ) be a local parametrization of M1 around p, ũ ∈ U such that
φ(ũ) = p. The Laplace-Beltrami operator acting on a function h ∈ C∞(M1) can in local
coordinates be written as

∆M1h(p) = 1√
detG1(ũ)

2∑
i,j=1

∂

∂ui

(
Gij1 (ũ)

√
detG1(ũ)∂(h ◦ φ)

∂uj
(ũ)
)
,

where (G1)ij(ũ) = g1( ∂φ∂ui
(ũ), ∂φ∂uj

(ũ)) and Gij1 are the entries of the inverse matrix. See for
example [Gri09] for a proof.

As f is smooth and bijective, (U, f−1 ◦ φ, f−1(V )) is a local parametrization of M2 around
f−1(p) ∈M2 and (f−1 ◦ φ)(ũ) = f−1(p). We obtain

∆M2(h ◦ f)(f−1(p)) = 1
detG2(ũ)

2∑
i,j=1

∂

∂ui

(
Gij2 (ũ)

√
detG2(ũ)∂(h ◦ f ◦ f−1 ◦ φ)

∂uj
(ũ)
)

= 1
detG2(ũ)

2∑
i,j=1

∂

∂ui

(
Gij2 (ũ)

√
detG2(ũ)∂(h ◦ φ)

∂uj
(ũ)
)
.



42 3.3 Invariance of operators

Further, by the second property in Definition 3.3.3, we obtain that for all u ∈ U

(G2)ij(u) = g2

(
∂(f−1 ◦ φ)

∂ui
(u), ∂(f−1 ◦ φ)

∂uj
(u)
)

= g2

(
dpf

−1
(
∂φ

∂ui
(u)
)
, dpf

−1
(
∂φ

∂uj
(u)
))

= g1

(
∂φ

∂ui
(u), ∂φ

∂uj
(u)
)

= (G1)ij(u).

Using this, it follows

∆M2(h ◦ f)(f−1(p)) = 1√
detG1(ũ)

2∑
i,j=1

∂

∂ui

(
Gij1 (ũ)

√
detG1(ũ)∂(h ◦ φ)

∂uj
(ũ)
)

= ∆M1h(p)

which proves the theorem.

The theorem can either be applied to the Laplace-Beltrami operator using the induced Eu-
clidean metric or to the Laplace-Beltrami operator using the equi-affine invariant metric.
However, an isometry with respect to the Euclidean metric is in general not an isometry with
respect to the equi-affine invariant metric and vice versa. To see this, let us consider a simple
example given similarly but with a small mistake in [Ra14].

Consider the regular surfaces given by the parametrizations

M1(u, v) = (u, v, u2 + v2)

M2(u, v) = (2u, v2 , u
2 + v2)

depicted in Figure 3.6.

Consider the smooth, bijective map f : M1 →M2, f(x) = Ax with

A =


2 0 0
0 1

2 0
0 0 1

 .

As it is an equi-affine transformation, we expect it to be an isometry with respect to the
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Figure 3.6: Two surfaces that are isometric with respect to the equi-affine invariant metric.

equi-affine invariant metric.

Let p ∈M1, p = M1(u, v). Following Section 3.1.2, the equi-affine invariant metric in p with
respect to the basis B1 = {∂M1

∂u (u, v), ∂M1
∂v (u, v)} of the tangent space TpM1 is given by

G =

√2 0
0
√

2

 .
The point p ∈M1 is mapped to a point f(p) ∈M2 with f(p) = M2(u, v). Further,

dpf(∂M1
∂u

(u, v)) = d

dt
(f(M1(u+ t, v)))|t=0 = d

dt
(M2(u+ t, v))|t=0 = ∂M2

∂u
(u, v)

and analogously
dpf(∂M1

∂v
(u, v)) = ∂M2

∂v
(u, v).

Calculating the equi-affine invariant metric in f(p) with respect to the basis B2 = {∂M2
∂u (u, v),

∂M2
∂v (u, v)} yields again the matrix G, therefore, f is indeed an isometry with respect to the

equi-affine invariant metric. On the other hand, f is not an isometry with respect to the
Euclidean metric, as the induced Euclidean metric in p ∈M1 with respect to the basis B1 is
given by

G1 =

1 + 4u2 4uv
4uv 1 + 4v2

 ,
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while the induced Euclidean metric in f(p) ∈M2 with respect to the basis B2 is given by

G2 =

4 + 4u2 4uv
4uv 1

4 + 4v2

 .
To illustrate the invariance of the Laplace-Beltrami operator in more detail and to bring
out the difference between the operator for the induced Euclidean metric and the one for
the equi-affine invariant metric, we consider one more example. I computed the Laplace-
Beltrami operators for a given embedding of the car part and a transformed embedding. The
transformation is given by f(x) = Ax with

A =


1 2 0
1 3 0
0 0 1

 .
The first column of Figure 3.7 shows the original shape and the transformed shape. The first
and third rows of the remaining columns show the second, fifth and tenth eigenvectors of the
Laplace-Beltrami operator using the induced Euclidean metric and the equi-affine invariant
metric on the original shape. The second and fourth rows show the corresponding eigen-
vectors for the operators on the transformed shape. To facilitate the comparison between the
eigenvectors for the original and the transformed shape, the eigenvectors for the transformed
shape are overlaid onto the untransformed shape.

We observe that the eigenvectors of the Laplace-Beltrami operator using the equi-affine in-
variant metric for the original and the transformed shape are identical. This is because the
transformation is an isometry with respect to the equi-affine invariant metric since detA = 1.

I picked the second, fifth and tenth eigenvectors since the eigenvectors in between are for the
most part constant, making it more difficult to see the invariance although it is still present.
A similar example was given in Figure 6 of [Ra14] using the shape of a centaur instead of a
car part.

Now that we have an idea in what sense the Laplace-Beltrami operator is invariant under
isometries, let us compare it to the invariance in Theorem 3.3.1 from the context of the
representation of groups.

In that context, we had a function space F , a Laplace-Beltrami operator acting on that space,
∆ : F → F , a Lie group G and a linear representation T of G, describing how an element of
G acts on an element of F . The Laplace-Beltrami operator was invariant under actions from
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formed shape.
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Figure 3.7: First and second rows: Eigenvectors of the Laplace-Beltrami operator using the
induced Euclidean metric on the original and the transformed shape, respectively.
Third and fourth rows: Same for the Laplace-Beltrami operator using the equi-
affine invariant metric. All eigenvectors are overlaid onto the original shape.

G in the sense that ∆ and T commuted.

In our application, we interpret all simulation data as functions on a regular surface M which
is a reference embedding of the car part. The function space F should be the space C∞(M).
The Laplace-Beltrami operator ∆M acts on C∞(M). Choosing as group G the group G(M)
of isometries g : M → M , the natural definition of the action of an element g of G on
f ∈ C∞(M) is

Tgf(x) = f ◦ g(x).

From Theorem 3.3.4 follows ∆MTgf(·) = Tg∆Mf(·), i.e. the Laplace-Beltrami operator
commutes with the actions of G and is therefore in the same sense invariant under isometries
as it is in Theorem 3.3.1 invariant under rotations.
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However, a problem occurs. The above link between the invariance of the Laplace-Beltrami
operator with respect to isometries and the representation of groups is only valid for iso-
metries acting on Emb(M,R3) by composition from the right. To use the theory from the
representation of groups for Iza-Teran’s observations concerning the separation of effects,
we would need a similar representation for isometries acting by composition from the left.
Nevertheless, we saw above that those isometries are hard to characterize and do not form a
group.

3.3.3 Invariance of the Fokker-Planck operator

Iza-Teran motivates the use of the Fokker-Planck operator by its invariance under a nonlinear
transformation without elaborating on what he means by that. In this section, we will
examine in what sense the Fokker-Planck operator might be considered invariant.

The (observable) data points yi ∈ Rn in Singer’s and Coifman’s setting in [SC08], which we
considered in Section 3.1.3, are the images of points xi ∈ Rm, m ≤ n, in an unobservable
parameter space under a nonlinear map f . Instead of building an operator on the manifold
of the observable data points, Singer and Coifman build an operator on the manifold of the
unobservable points xi. In the construction of the operator, they approximate the distance
of the unobservable points. The resulting operator is asymptotically independent of f , in the
sense that it would not depend on f , if one was able to calculate the exact distances of the
unobservable points. On the other hand, an operator as the Laplace-Beltrami operator, built
on the manifold of the observable data points yi, depends on f . Notice however, that this
invariance of the Fokker-Planck operator is a different kind of invariance than the invariance
of the Laplace-Beltrami operator with respect to isometries and the invariance of an operator
in the representation of groups. Remember further from Section 3.1.3, that Iza-Teran uses
the ideas from [SC08] in a way that does not allow a model of the data points as images of
unobservable parameters under a nonlinear map as in Singer’s and Coifman’s settings.

Nevertheless, the way Iza-Teran builds the operator, it possesses the following property.

Theorem 3.3.5 (Invariance of the Fokker-Planck operator). Given a set of points
X = {x1, . . . , xn} ⊂ Rm and an injective map f : X → Rn, let Y1, . . . , Yn be multivariate
random variables with values in Rn, finite expectations and finite variances. Consider the
multivariate random variables Zi = f(xi)+Yi ∈ Rn. Using for each i the covariance matrices
of Zi for the construction of the operator in Algorithm 4, the resulting operator is independent
of the map f .

Proof. The theorem follows directly from the formula of the covariance of a multivariate
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random variable. It holds

Var[Zi] = E[(Zi − E[Zi])(Zi − E[Zi])T ]

= E[(f(xi) + Yi − f(xi)− E[Yi])(f(xi) + Yi − f(xi)− E[Yi])T ]

= E[(Yi − E[Yi])(Yi − E[Yi])T ]

= Var[Yi].

Therefore, the covariance of the Zi and hence the construction of the operator is independent
of f .

To obtain an invariance of the operator in Iza-Teran’s setting, we can proceed as follows. Let
the points xi ∈ R3 be the mesh points of the car part at a timestep t0 in a reference simulation.
For the construction of the sample covariance matrices Ck,δ, we use the mesh points from all
simulations at a timestep t1 > t0. We assume that the deformation of the car part between
the reference state at timestep t0 and the different states at timestep t1 can be modelled as a
combination of a deterministic nonlinear transformation due to the proceeding in time and a
stochastic component due to the change of the physical parameters. By Theorem 3.3.5, the
operator does not depend on the deterministic nonlinear transformation.

Note however, that this is again a different type of invariance than the invariance of the
Laplace-Beltrami operator under isometries and the invariance of operators in the represen-
tation of groups.

In Section 3.1.3, we saw that the operator can be interpreted as a Laplace-Beltrami operator
for a different ”covariance metric”. In this setting, it is invariant under isometries with respect
to the covariance metric in the sense of Section 3.3.2.

3.4 Separation of effects

In the invariant operator approach, we represent an element f ∈ Emb(M,R3) in the spectral
domain of, for instance, the Laplace-Beltrami operator as


fx

fy

fz

 =
∞∑
i=1

αiψi, where αi =


〈fx, ψi〉L2(M)

〈fy, ψi〉L2(M)

〈fz, ψi〉L2(M)

 .

Numerical observations from [Iza17] and [IG17] suggest that variations of the spectral coef-
ficients αi correspond to different basic transformations, referred to as ”independent defor-
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mation modes”. Being able to analyse different aspects of a transformation separately can be
interesting for the engineer. Ignoring on the other hand certain aspects of a transformation
neglecting the corresponding spectral coefficients is of high interest for shape recognition since
there are many basic transformations of a shape that should not influence its classification.

For the numerical analysis of the separation of effects, consider the following procedures:

1. Calculate the eigenvectors ψi, i = 1, . . . , N of one of the above presented operators.
Project the coordinate functions fx, fy and fz of an embedding of the car part on the
eigenvectors to write

fx =
N∑
i=1

αxi ψi with αxi = 〈fx, ψi〉

and analogously for fy and fz. Choose a spectral coefficient J ∈ {1, . . . , N}. Modify
one or more of the coefficients axJ , ayJ and azJ . Leave all other coefficients fixed. An
example for this procedure was already given in Figure 3.1.

2. Calculate the eigenvectors ψi, i = 1, . . . , N , of one of the above presented operators.
Project the coordinate functions f jx, f jy and f jz of several embeddings xj , j = 1, . . . ,M
of the car part at different timesteps and in different simulations on the eigenvectors.
Choose a spectral coefficient J ∈ {1, . . . , N} (for instance the one with the highest vari-
ance), compute the minimal and maximal spectral coefficients from all M simulations
and linearly interpolate between them. Leave all other coefficients fixed.

The second procedure can be seen as special case of the first one. It differs only in that a
projection coefficient for variation may be chosen with respect to the variability of the data
and in that the given data yields an interval for the variation of the coefficient. In praxis, this
procedure might be the more interesting one, as it respects which of the projection coefficients
is most important to represent the changes between the simulations for different parameters
and allows to examine what type of transformation the coefficient represents. However, to
understand what actually causes the observations of a separation of effects, we will consider
in the following only the first procedure.

Iza-Teran conjectures in [Iza17] and [IG17] a link between the invariances of the used operator
and the basic transformations observed upon variation of the spectral coefficients. In the first
part of this section, we will follow the above procedure for all three presented operators and
compare the results to investigate this conjecture. In the second part of this section, we will
examine the reasons for the numerical observations.
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3.4.1 Numerical observations

Figures 3.8 to 3.11 show the simultaneous variation of the x-, y and z- components of different
spectral coefficients for an embedding of the car part. The Fokker-Planck operator was
calculated using as reference embedding the embedding of the car part at timestep 7 in a
reference simulation. The embeddings of all 116 simulations at timestep 7 were used to form
the point clouds.

For all operators, the first spectral coefficient seems to correspond to a translation. We
observe this in Figure 3.8.
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(c) Fokker-Planck operator.

Figure 3.8: Stepwise increase of the first spectral coefficients seems to correspond to a trans-
lation.

For all operators, the second coefficient seems to correspond to a rotation. This is shown in
Figure 3.9.

For the Laplace-Beltrami operator using the induced Euclidean metric, the third coefficient
corresponds to a bending of the car part. This is illustrated in Figure 3.10. The behaviour for
the Laplace-Beltrami operator using the equi-affine invariant metric and for the Fokker-Planck
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operator is due to the fact that the support of the third eigenfunction of those operators is
very small. I will further expand on this in the next section.

In Figure 3.11 we see the variation of the fifth spectral coefficient. For the Laplace-Beltrami
operator using the induced Euclidean metric, it corresponds to a local deformation on the left
side of the car part. For the Laplace-Beltrami operator using the equi-affine invariant metric,
it corresponds to a bending, similar to the bending observed in Figure 3.10. The behaviour
for the Fokker-Planck operator is again due to a small support of the fifth eigenfunction.
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(a) LBO for induced Euclidean metric.
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Figure 3.9: Stepwise increase of the second spectral coefficients seems to correspond to a
rotation.

3.4.2 Theoretical framework

In the invariant operator approach, we write the coordinate functions of an embedding of the
car part as finite linear combination of the eigenvectors {ψi}Ni=1 of an invariant operator,


fx

fy

fz

 =
N∑
i=1

αiψi, where αi =


〈fx, ψi〉RN

〈fy, ψi〉RN

〈fz, ψi〉RN

 (3.4.1)
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and where N is the number of nodes of the discretization.
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(a) LBO for induced Euclidean
metric.
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Figure 3.10: Rowwise increase of the third spectral coefficients. In the first column we ob-
serve a bending. In the second and third columns we observe strongly local
deformations.

Increasing the x-component aJx of the J-th spectral coefficient corresponds to an addition of
the J-th basis function ψJ to the x-coordinates of the embedding. This holds analogously
for the y- and z- components of the spectral coefficient.

To understand why we observe certain transformations when we vary the spectral coefficients,
we need to look at the eigenfunctions ψi of the operators.

To explain how the shape of the eigenfunctions relates to the observed transformations, we



52 3.4 Separation of effects

consider in this section the Laplace-Beltrami operator for the induced Euclidean metric, the
same thoughts apply to the other operators.
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(a) Column: LBO for induced
Euclidean metric.
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invariant metric.
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(c) Column: Fokker-Planck
operator.

Figure 3.11: Rowwise increase of the fifth spectral coefficients starting with the original and
the reduced coefficients, respectively. In the first column, we observe a local
deformation. In the second column, we observe a bending, similar to the bending
in Figure 3.10. The deformation in the third column is similar to the local
deformations in Figure 3.10.

Figure 3.12 shows the first, second, third and fifth eigenvectors of the operator on the embed-
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ding of the car part from the previous section. For better visualisation, the eigenfunctions are
scaled to the interval [0, 1] such that the full width of the colour map is used. The problem
of this scaling is that the original variance of the eigenfunctions is lost. In fact, the first
eigenfunction is nearly constant. The difference between the function values at points with
small x-value and points with large x-value is much smaller than for the second eigenfunction.
Knowing the eigenfunctions, we can explain the observed transformations. The first eigen-
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Figure 3.12: Eigenvectors of the Laplace-Beltrami operator using the induced Euclidean met-
ric. Scaled to the interval [0, 1] to use the full range of the colour map.

function is nearly constant. Increasing the x-component a1
x in Equation 3.4.1, we increase

the x-coordinate of each point by approximately the same amount, causing a translation of
the car part in the x-direction. Analogously, this holds for the y- and z-components. This
explains the translation in Figure 3.8.

In Figure 3.9, we observed that a variation of the second spectral coefficient seems to corres-
pond to a rotation. How can the form of the second eigenfunction explain this observation?
In Figure 3.12, we see that the second eigenfunction decreases in the x-direction. Figure
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3.13 shows a plot of the x-coordinates of the nodes of the embedding against the value of
the second eigenfunction. It underlines the monotone dependence. If we increase the y-
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Figure 3.13: Plot of the x-coordinates of the nodes of the embedded car part against the value
of the second eigenfunction.

component a2
y of the second spectral coefficient, i.e. add a factor of the second eigenfunction

to the y-coordinates of the embedding, the y-coordinates of points with small x-coordinate
increase while the y-coordinates of points with large x-coordinate decrease. Increasing at the
same time the x-component a2

x of the second spectral coefficient, the x-coordinates of points
with small x-coordinate increase, while the x-coordinates of points with large x-coordinate
decrease. If the increase is small enough, the combination corresponds visually to a rota-
tion of the embedding in the x-y-plane around the centre of the part. However, increasing
the coefficients further, the x- and y-coordinates of points with initially small x-coordinate
continue increasing while the x- and y-coordinates of points with initially large x-coordinate
continue decreasing, breaking the illusion that an increase of the second projection coefficient
corresponds to a rotation. Similarly, reducing the size of the x-component of the second
spectral coefficient, the x-coordinates of points with small x-coordinate become even smaller,
while the x-coordinates of points with already large x-coordinate become even larger, leading
to a stretching of the part, not to a rotation.

In the same way, the bending of the car part and the local deformation observed in Figures
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3.10 and 3.11 can be explained. In Figure 3.12, we see that the third eigenfunction of the
Laplace-Beltrami operator is large for points with small and with large x-coordinate and small
for points in the middle. Increasing the z-component a3

z of the third projection coefficient,
we increase the z-component of the points at the left and the right of the beam and decrease
the z-component of the points in the middle. This is the first ingredient for the observed
bending. Increasing the x-component a3

x, we increase the x-component for points that were
initially on the left and the right of the beam and decrease the x-component of the points
that were initially in the middle. This leads to a stretching of the part on the right and the
bending on the left as the points that were initially in the middle move to the left and the
points that were initially on the left move to the right. While the bending seems to be at first
sight a physically reasonable deformation, it does not respect any physical constraints: Parts
of the beam are stretched, others crushed, intrinsic distances change and at the latest when
we increase the spectral coefficients further or when we decrease them, the visual impression
of a physically reasonable deformation breaks.

Iza-Teran conjectures in [Iza17] that the observed separation of effects upon variation of the
coefficients αi can mathematically be expressed as movements along orbits of Emb(M,R3).
Indeed, a variation of the J-th spectral coefficients of an element f ∈ Emb(M,R3) corresponds
to a movement along the orbit

{f + αJψJ |αJ ∈ R3},

where ψJ : M → R is the J-th eigenfunction of the used operator. The set {ψi1} × {ψi2} ×
{ψi3}, ij ∈ N, builds a basis of the whole space L2(M,R3). Consequently, the orbits are in
general no subset of Emb(M,R3). Further, the orbit actions are in general not isometric.
Indeed, given two arbitrary points p1 and p2 on M and an eigenfunction ψi such that
ψi(p1) 6= ψi(p2), we can modify the i-th spectral coefficient such that the points p1 and p2

have the same embedding coordinates. This modification is unique. However, if we do not
fix the points p1 and p2, there are many variations of spectral coefficients that cause two
different points on M to have the same embedding coordinates in R3. In our application, this
means that in general occur (physically impossible) crossing of the car part upon variation
of the spectral coefficients.

Concerning the example of rotations, it is impossible that a single spectral coefficient repres-
ents a rotation. In general, we need to modify all N projection coefficients to represent any
affine transformation g : R3 → R3, g(x) = Ax + b exactly: We apply g to our embedding
from Equation 3.4.1, to get for the coordinate functions f̃x, f̃y and f̃z of the transformed
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embedding


f̃x

f̃y

f̃z

 = A


fx

fy

fz

+ b

=
(

N∑
i=1

(
Aαi

)
ψi

)
+ b

= (Aα1 + c−1b)ψ1 +
N∑
i=2

(
Aαi

)
ψi, (3.4.2)

where we assumed for the last equality that ψ1 is constant with entries c.

Thus, any affine transformation is up to the translation term visible in every projection
coefficient. No finite number of projection coefficients can represent an affine transformation
if it is not simply a translation.

Aside from the numerical observation of the orbits, Iza-Teran made the following experiment:
He calculated the variance of the spectral coefficients for rotations of the embedding. Doing
that, he observed that there are only a few coefficients with high variance. However, this is
not because only a few spectral coefficients are affected by rotations or certain coefficients
are better suited to represent rotations than others. From Equation 3.4.2, we know that
the spectral coefficients of the rotated embeddings lie on spheres, where the radius of the
sphere is the Euclidean norm of the spectral coefficient of the original embedding. Thus, the
variance of a spectral coefficient under rotations depends only on the Euclidean norm of the
coefficient for the original embedding. Most of the coefficients vary only weakly, because only
a few spectral coefficients for the original embedding have a large Euclidean norm. This is
due to the strong decay of the spectral coefficients treated in the next section.

Similarly, Iza-Teran observes in [Iza17] that for the example from Section 2.1 of a car crash
simulation bundle exist only a few spectral coefficients with high variance. This is illustrated
by Figure 3.14 showing the variance of the 1714 spectral coefficients for the 116 embeddings
at timestep 7. However, this is again not because only a few spectral coefficients are affected
by the transformations between the reference embedding and the other embeddings of the
car part or because a few coefficients are better suited to represent those transformations.

The variance of a coefficient is again mainly due to the norm of the coefficient for the original
embedding. This can be seen in Figure 3.15, which shows the variance of the 1714 spectral
coefficients for the 116 embeddings at timestep 7 after scaling each coefficient to the interval
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Figure 3.14: Variance of the spectral coefficients of the embeddings from the car crash simu-
lation bundle from Section 2.1 at timestep 7.

[0, 1]. Again, most of the coefficients vary only weakly, because only a few spectral coefficients
for the original embedding have a large Euclidean norm. This is once again due to the strong
decay of the spectral coefficients treated in the next section.

3.5 Decay of the spectral coefficients

Apart from the separation of effects, Iza-Teran observes in [Iza17] and [IG17] a strong decay
of the spectral coefficients. Further, he motivates a decay estimate for the spectral coefficients
of the Fokker-Planck operator.

In the first part of this section, we will numerically observe and compare the decay of the
spectral coefficients of the different operators. In the second part, we will come across a
problem in Iza-Teran’s estimate for the decay of the spectral coefficients of the Fokker-Planck
operator. Further, we will prove a decay estimate for the spectral coefficients of the Laplace-
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Figure 3.15: Scaled variance of the spectral coefficients of the embeddings from the car crash
simulation bundle from Section 2.1 at timestep 7.

Beltrami operator following ideas from Aflalo, Brezis et al. in [Afl16] and [BG17]. Those
thoughts yield an optimality result for the representation of functions in the spectral domain
of the Laplace-Beltrami operator. Since Taubin’s publication [Tau95] in 1995 and Karni’s
and Gotsman’s publication [KG00] in 2000, the spectral domain of Laplacians was in many
publications used for the compression of mesh geometries. However, a theoretical foundation
for the proceeding had long been missing.

3.5.1 Numerical observations

In this section, we will consider once again the embeddings of our car part at timestep 7 in
the 116 crash simulations from the simulation bundle presented in Section 2.1.

Figure 3.16 shows the decay of the absolute value of the spectral coefficients for every tenth of
the 116 embeddings. The plots for the other embeddings look similar. We observe for all three
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operators a strong decrease of the first spectral coefficients. However, while the coefficients
for the Laplace-Beltrami operators keep decreasing, the coefficients of the Fokker-Planck
operator stagnate or even start increasing again. While the first spectral coefficients for the
Laplace-Beltrami operator are in the order of 104, after the first two hundred, the coefficients
are in the order of 101, decreasing only slowly further. However, the eigenvectors are of length
1714 and normed such that the size of each entry is in the end on average in the order of
10−2. This underlines the small influence of the trailing eigenvectors in the representation
of the embeddings using the Laplace-Beltrami operator eigenbases. For the Fokker-Planck
operator, the influence of the trailing eigenvectors seems to be higher.
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Figure 3.16: Absolute value of the spectral coefficients for every tenth of 116 simulations.
First row: Laplace-Beltrami operator using the induced Euclidean metric, second
row: Laplace-Beltrami operator using the equi-affine invariant metric, third row:
Fokker-Planck operator.

Figure 3.17 shows the reconstruction of an embedding of the car part using only the first 30,
the first 300 and all 1714 eigenvectors of the different operators. The result confirms that
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the first eigenvectors are of much higher importance for the representation of the embedding
than the trailing eigenvectors. As Figure 3.16 suggests, the reconstruction using the Laplace-
Beltrami operators, especially of the operator for the induced Euclidean metric, seems to be
better suited for a low-dimensional representation of the embeddings.
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Figure 3.17: Reconstruction using N eigenvectors. First row: Laplace-Beltrami operator us-
ing the induced Euclidean metric, second row: Laplace-Beltrami operator using
the equi-affine invariant metric, third row: Fokker-Planck operator.

3.5.2 Theoretical framework

In the last section, we observed a strong decay of the spectral coefficients for the embeddings
of the car part from our example simulation bundle.

In [Iza17], Iza-Teran states a theorem concerning the decay of the spectral coefficients of the
Fokker-Planck operator. However, to prove the statement, he assumes that his Fokker-Planck
operator approximates a backward Fokker-Planck operator on some unobservable parameter
space as the operator in Singer’s and Coifman’s setting does. In Section 3.1.3, we saw that
this assumption is questionable.
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Instead of Iza-Teran’s approach to explain the decay of the spectral coefficients, we will
follow ideas from [Afl16] and [BG17] to prove an optimality and a decay estimate for the
Laplace-Beltrami operator.

In Section 3.1.3, we saw that Iza-Teran’s Fokker-Planck operator can be interpreted as a
Laplace-beltrami operator for a different metric. Therefore, the results apply as well to this
operator.

From Section 3.1.1, we know that for a compact Riemannian manifold (M, g) exists an or-
thonormal basis of L2(M) consisting of eigenfunctions {ψi}, i ∈ N of the negative Laplace-
Beltrami operator −∆ with corresponding eigenvalues 0 ≤ λ1 ≤ λ2 ≤ . . . and λi →∞.

We prove the following theorem concerning the maximal L2-error for an approximation of a
function using only the first k ∈ N spectral coefficients.

Theorem 3.5.1 (L2-error estimate for Laplace-Beltrami operator eigenfunction approxim-
ation). Let (M, g) be a compact Riemannian manifold with corresponding gradient ∇ and
Laplace-Beltrami operator ∆. Let {ψi}, i ∈ N be an orthonormal basis of L2(M) of eigen-
functions of −∆ as above. Let B be the class of all (ordered) orthonormal bases of L2(M),
where for b ∈ B we write b = (b1, b2, . . .). Then for all k ∈ N with λk+1 > 0 holds

∥∥∥∥∥f −
k∑
i=1
〈f, ψi〉ψi

∥∥∥∥∥ = ‖∇f‖√
λk+1

(3.5.1)

for all f ∈ H2,2(M). Further, if for b ∈ B holds

∥∥∥∥∥f −
k∑
i=1
〈f, bi〉bi

∥∥∥∥∥ ≤ ‖∇f‖√
λk+1

(3.5.2)

for all k ∈ N and f ∈ H2,2(M), then b is an orthonormal basis of eigenfunctions of −∆
with corresponding eigenvalues {λi}i∈N. Here ‖ ·‖ and 〈·, ·〉 denote the standard L2-norm and
inner product.

Note that Parceval’s identity states that

∥∥∥∥∥f −
k∑
i=1
〈f, ψi〉ψi

∥∥∥∥∥
2

=
∞∑

i=k+1
|〈f, ψi〉|2

such that the theorem yields as well a decay estimate for the sum of the trailing spectral
coefficients.
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Aflalo and Kimmel state in [AK13] that there exists a constant c such that for the eigen-
values λk of the negative Laplace-Beltrami operator holds λk ≈ ck as k → ∞. Together
with Theorem 3.5.1, this implies that for the sum of the squared trailing spectral coeffi-
cients of a function f ∈ H2,2(M), and hence (using Parceval’s identity) for the squared
L2-approximation error, holds

∞∑
i=k+1

|〈f, ψi〉|2 ≤
c ‖∇f‖2

k

for a constant c independent of f .

Proof of Theorem 3.5.1: First, we note that by the Divergence Theorem 3.1.12 holds

‖∇f‖2 = −〈∆f, f〉.

We continue with the proof of Equation 3.5.1:
≥: Let f = c√

λk+1
ψk+1 ∈ H2,2(M) for c > 0. Then

‖∇f‖2 = 〈−∆f, f〉 = c2.

Further ∥∥∥∥∥f −
k∑
i=1
〈f, ψi〉ψi

∥∥∥∥∥
2

= ‖f − 0‖2 = c2

λk+1
.

≤: Let f ∈ H2,2(M), then

‖∇f‖2 = 〈−∆f, f〉

= 〈
∑
i∈N

λi〈f, ψi〉ψi,
∑
i∈N
〈f, ψi〉ψi〉

=
∑
i∈N

λi〈f, ψi〉2

≥
∞∑

i=k+1
λi〈f, ψi〉2

≥ λk+1

∞∑
i=k+1

〈f, ψi〉2.
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With that, we conclude

∥∥∥∥∥f −
k∑
i=1
〈f, ψi〉ψi

∥∥∥∥∥
2

=

∥∥∥∥∥∥
∞∑

i=k+1
〈f, ψi〉ψi

∥∥∥∥∥∥
2

=
∞∑

i=k+1
〈f, ψi〉2

≤ ‖∇f‖
2

λk+1
.

For the proof of Equation 3.5.2, we use the following Lemma:

Lemma 3.5.2. Let b ∈ B. Assume∥∥∥∥∥f −
n∑
i=1
〈f, ψi〉ψi

∥∥∥∥∥ ≤ ‖∇f‖√
λn+1

(3.5.3)

for all n ∈ N and f ∈ H2,2(M). Assume further that λi < λi+1 for some i ∈ N. Then

〈bj , ψk〉 = 0

for all 1 ≤ j ≤ i < k.

Proof. Let k > i be fixed. Let ` be the largest integer ` ≤ k − 1 such that λ` < λ`+1. Then
we have i ≤ ` and λ`+1 = λ`+2 = . . . = λk.

Let f = c1ψ1 + . . . + c`ψ` + cψk such that 〈f, bj〉 = 0 for all j ∈ {1, . . . , `} and f 6= 0. Such
a f exists as this is an underdetermined linear equation system. By scaling, we may assume
that

c2
1 + . . .+ c2

` + c2 = 1.

Using 〈f, bj〉 = 0 for all j ≤ ` and using Equation 3.5.3 for n = `, we get

1 =
∑̀
m=1

c2
m + c2 = ‖f‖2 =

∥∥∥∥∥f − ∑̀
m=1
〈f, bm〉bm

∥∥∥∥∥
2

≤ 1
λ`+1

‖∇f‖2

As ‖∇f‖2 = 〈−∆f, f〉 we have

1
λ`+1

‖∇f‖2 = 1
λ`+1

(∑̀
m=1

c2
mλm + c2λk

)
.
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We use λ`+1 = λk to obtain

−λ`+1c
2 ≤

∑̀
m=1

λmc
2
m.

Using c2
1 + . . .+ c2

l + c2 = 1, this is equivalent to

λ`+1
∑̀
m=1

c2
m ≤

∑̀
m=1

λmc
2
m

which is again equivalent to ∑̀
m=1

(λ`+1 − λm)c2
m ≤ 0.

As λ`+1 > λm ≥ 0 for all m ≤ ` it follows cm = 0 for all m ≤ l.
Therefore, f = ±ψk and by choice of f

〈ψk, bj〉 = ±〈f, bj〉 = 0

for all j ∈ {1, . . . , l}. As i ≤ `, this proves the claim.

Now we use the lemma to prove Equation 3.5.2 from Theorem 3.5.1. Assume again∥∥∥∥∥f −
n∑
i=1
〈f, bi〉bi

∥∥∥∥∥ ≤ ‖∇f‖√
λn+1

for all n ∈ N and f ∈ H2,2(M).

Let i1 ≥ 1 be the smallest integer such that λi1 < λi1+1. From the lemma we get

〈bj , ψk〉 = 0

for all 1 ≤ j ≤ i1 < k. Therefore, b1, . . . , bi1 ∈ span{ψ1, . . . ψi1} which implies that each
b1, . . . , bi1 is an eigenfunction of −∆ with corresponding eigenvalue λ1 = . . . = λi1 . Due to
dimensions, the functions b1, . . . , bi1 form an orthonormal basis of

span{ψ1, . . . , ψi1} = span{b1, . . . , bi1}.

Let i2 ≥ i1 + 1 be the next smallest integer such that λi2 < λi2+1. From the lemma we get
as above bi1+1, . . . , bi2 ∈ span{ψ1, . . . , ψi2}. Using span{ψ1, . . . , ψi1} = span{b1, . . . , bi1}, this
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implies by orthogonality of the bj and due to dimensions

span{ψi1+1, . . . , ψi2} = span{bi1+1, . . . , bi2}.

Analogously, we proceed for the next blocks.

Theorem 3.5.1 implies that the eigenbasis for the Laplace-Beltrami operator is, with respect
to the maximal L2-error, optimal for the representation of all Sobolev functions f ∈ H2,2(M)
with a gradient bounded by a constant c > 0.

In Section 2.2, we saw that not every element of L2(M) is a possible coordinate function of
an embedding of the car part. Assuming, for instance, that the embeddings of the car part
at the different timesteps of the simulations are smooth, isometric transformations of the
reference embedding, the set C of possible coordinate functions is given by

C = {g ∈ L2(M) | g = fx for a C∞-isometry f : M → f(M) ⊂ R3}.

Under this assumption, the Euclidean norm of the gradient of the coordinate functions is
at each point of the manifold bounded by

√
2. From this follows that the L2-norms of the

gradients of the coordinate functions are bounded by
∫
M

√
2dA.

However, not every function f ∈ H2,2(M) with ‖∇f‖ ≤
∫
M

√
2dA is an element of C. Hence,

it is not clear whether the eigenbasis of the Laplace-Beltrami operator is optimal for the
representation of the functions in C. Nevertheless, the theorem might be a step in the right
direction to explain the numerical observations.

Further, the theorem explains Iza-Teran’s observations in [Iza17], that the eigenfunctions of
the Laplace-Beltrami operator are also well suited to represent other simulation data like the
stress or the temperature. Usually, those functions are as well smooth and have a bounded
gradient.

Note, that we did not specify the metric used on the manifold M . The theorem can be
applied to all three operators used in this thesis. Depending on the relation expected between
the different embeddings of the simulated object, for instance isometric with respect to the
Euclidean metric, to the equi-affine invariant metric or to the ”covariance metric” from Section
3.1.3, the theorem would suggest to use the corresponding operator.
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3.6 Summary

Let us summarize our results concerning the separation of effects, the decay of the spectral
coefficients and the connection to the invariances of the used operators.

We saw that the observed transformations in the separation of effects are due to the form of
the eigenfunctions of the used operator. However, we could not find a proper link between
the form of the eigenfunctions and specific transformations. For the Laplace-Beltrami oper-
ator, for instance, we could not find a proper link between the eigenfunctions and isometric
transformations.

We saw results from the representation of groups, linking the eigenspaces of the Laplace-
Beltrami operator on the sphere to the representation of the group of rotations. We saw
that such a link between the eigenspaces of the Laplace-Beltrami operator on a general
submanifold and more general isometric transformations is not given. Especially, we saw
that the isometric transformations we are interested in are of the form g : M → g(M) ⊂ R3

for a regular surface M ⊂ R3 and do not form a group.

Further, we saw that the transformations upon variation of the spectral coefficients of the
Laplace-Beltrami operator might seem to be isometric, but rarely are isometric.

We compared the transformations upon variation of the spectral coefficients of three operators
with different invariances. However, for all operators, the transformations were similar.

Taken together, I do not see a reason to conjecture a link between the invariances of the used
operator and the observed transformations.

The representation of the data in the spectral domain of an operator yields the opportunity
to analyse separately the influence of parameter changes on different spectral coefficients.
The idea in the separation of effects is that this enables us to investigate separately the
influence of parameter changes on different basic transformations. However, the transform-
ations corresponding to single spectral coefficients may at first sight seem to be reasonable
physical transformations, but rarely are. There does not seem to be a link to the invariances
of the operators and we saw that in general physically impossible crossings of the car part
occur. Therefore, the benefit of a partitioning of the complex transformation between the
embeddings into the transformations corresponding to variations of spectral coefficients of
”invariant” operators is questionable. The eigenbases of those operators do, from a physical
point of view, not seem to be better suited than any other basis of L2(M) or, in the discrete
case, other bases of RN .
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Concerning the decay of the spectral coefficients and the reconstruction properties, our nu-
merical observations indicates that the eigenbasis of the Laplace-Beltrami operator using
the induced Euclidean metric is better suited for the low-dimensional representation of our
embeddings than the eigenbases of the other operators.

We saw an optimality statement for the representation of smooth functions in the spectral
domain of a Laplace-Beltrami operator and saw to what extent this can be used to justify
the representation of simulation data in the spectral domain of a Laplace-Beltrami operator
for compression purposes.

A numerical comparison to other state-of-the-art dimensionality reduction and compression
approaches is needed.

Finally, in this thesis, we employed a Laplace-Beltrami operator using an equi-affine invariant
metric. While the observations for the operator were similar as the observations for the other
operators, especially the eigenfunctions seem to be noisier and their ordering differs from
the expected multi-resolution nature of eigenfunctions of Laplace-Beltrami operators, see for
instance [JN01]. This might be due to the many hyperbolic and parabolic points on the
surfaces of car parts and the many boundaries at which a good numerical approximation of
the continuous metric is difficult.
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4 Taylor approach

In this chapter, we will see a different approach for the representation of the simulation data.
The fact that the different embeddings of the car part are really similar and Iza-Teran’s
assumption that all embeddings are transformations of a reference embedding gave me the
idea to focus directly on the transformations. Instead of looking for a different representation
of the embeddings, I wanted to represent those transformations. To do so, we will consider
their Taylor expansion.

In the first part of this chapter, I will shortly present the idea and the numerical realization
of the approach. In Section 4.2, we will consider an exemplary application of the approach
in the analysis of crash simulations. We will see that only few coefficients in the Taylor
approach are needed to represent similar data and see a way to obtain an invariance under
affine transformations.

4.1 Theoretical framework

The Taylor approach can be applied to many types of data. It can be similar curves in R2

or R3, similar surfaces in R3 or even structures in higher dimensions.

As motivated in Section 2.2, we assume that all embeddings are smooth, injective transfor-
mations of a reference embedding M , modelled as k-dimensional submanifold of Rd, i.e. each
embedding T is the image of an element f ∈ Emb(M,Rd).

A smooth function on a submanifold can locally be extended to an open neighbourhood of
the submanifold. Consider the components f1, . . . , fd of f . Assume they can be extended to
Rd and that their extensions can globally be represented by their Taylor series, i.e.

fi(x) =
∑
|α|∈Nd

0

xα

α!D
αfi(0) for all x ∈ R3, i = 1, . . . , d. (4.1.1)

Here, α ∈ Nd0 is a multi-index, |α| =
∑d
i=1 αi, xα = xα1

1 . . . xαd
d and Dα = ∂α1

x1 . . . ∂
αd
xd

. We are
interested in the coefficients Dαfi(0) which characterize the transformation f .

In the discrete setting, we are given N nodes x1, . . . , xN ∈ Rd on the reference embed-
ding M and the positions of the corresponding points on the transformed embedding T , i.e.
f(x1), . . . , f(xN ).
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From Equation 4.1.1, we obtain

fi(x1)

...
fi(xN )

 =
∑
|α|∈Nd

0

Dαfi(0)
α!


(x1)α

...
(xN )α

 .

Neglecting summands for α > M for some M ∈ N0, we consider the linear equation system

fi(x1)

...
fi(xN )

 =
∑
|α|≤M

ci,α


(x1)α

...
(xN )α

 . (4.1.2)

We define

K = |{α ∈ Nd0 | |α| ≤M}| =

M + d

d

 .
Depending on N and K and on whether or not the vectors on the right are linearly independ-
ent, this linear equation system has zero, one or infinitely many solutions. Therefore, we do
not look for a solution, but build an orthonormal basis of the space spanned by the vectors
on the right and project on this basis. The projection coefficients are used to characterize
the transformation f .

This procedure yields the best fit of the reference embedding, given as points x1, . . . , xN , to
the transformed embedding, given as points f(x1), . . . , f(xN ), with a polynomial P : Rd → Rd

of degree ≤M .

To represent all affine transformations of the reference embedding, for example translations
and rotations, it suffices to choose M = 1, yielding (d+ 1)d coefficients, which is exactly the
number of degrees of freedom of an affine transformation from Rd to Rd.

Mathematically, we minimize for all i = 1, . . . , d∥∥∥∥∥∥∥∥∥


fi(x1)− Pi(x1)

...
fi(xN )− Pi(xN )


∥∥∥∥∥∥∥∥∥
RN

over all polynomials P : Rd → Rd of degree ≤M .
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Note, that the dimensionality of the space of functions of the form

∑
|α|≤M

ci,α


(x1)α

...
(xN )α

 ,

respectively the dimensionality of the space

{(P (x1), . . . , P (xN ))T |P : Rd → Rd a polynomial of degree ≤M} ⊂ RN×d,

depends on the reference embedding. Given for example, that all points xi of the reference
embedding fulfil xid = 0, then the vectors ((x1)α, . . . , (xN )α) are for all α = (0, . . . , 0, αd)
linearly dependent.

Concerning the numerical orthonormalization of the vectors, we assume K ≤ N and use the
QR-decomposition using Householder reflections, see for example [Bin09]. This procedure is
more stable than the Gram-Schmidt algorithm.

We write the matrix X ∈ RN×K with columns ((x1)α, . . . , (xN )α)T , α ∈ Nd0 with |α| ≤ M ,
as product X = QR for an orthogonal matrix Q ∈ RN×N and an upper triangular matrix
R ∈ RN×K . As R is an upper triangular matrix, the span of the columns of X is contained
in the span of the first K columns of Q.

The reduced QR-decomposition is given by X = Q1R1 where Q1 ∈ RN×K consists of the first
K columns of Q and the upper triangular matrix R1 ∈ RK×K consists of the first K rows of
R.

In the case that the columns of X are linearly independent, the span of the columns of X
equals the span of the columns of Q1. To obtain equality in the case that the columns of X
are not linearly independent, we delete all columns of Q1 for which the corresponding row of
R1 is the zero vector.

For the numerical computation, I use the function qr from the python library numpy.linalg,
which is an interface of the LAPACK routines dgeqrf and dorgqr. It yields the reduced
QR-decomposition X = Q1R1. Next, I delete the columns of Q1 for which the corresponding
rows are zero vectors and project the coordinate-functions of the embeddings on the remaining
columns.

Let us consider the following simple example. Our data are the numerical solutions of the
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following system of time dependent ordinary differential equations

ẋ = x3 + xy2 − x− y

ẏ = y3 + x2y − y + x (4.1.3)

in the interval t ∈ [0, 8] for different initial conditions. As initial conditions we take
x0 = 0.4 · cos(θ), y0 = 0.4 · sin(θ) for eleven equidistant samples θ ∈ [0, 2π]. For the discrete
solution we choose the timestep ∆t = 0.01 yielding eleven vectors x1, . . . , x11 ∈ R2×802, see
Figure 4.1.

0.4 0.3 0.2 0.1 0.0 0.1 0.2 0.3 0.4
x

0.4

0.3

0.2

0.1

0.0

0.1

0.2

0.3

0.4

y

Figure 4.1: Eleven solutions of the system of time dependent ordinary differential equations
4.1.3 for different initial conditions.

For the numerical computation, I used the function ode in the python library scipy.linalg.

We see that the solution vectors xi differ only by rotation. Consequently, choosing any vector
xi as reference embedding and following the Taylor approach for M = 1, we can represent all
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vectors x1, . . . , x11 with only six projection coefficients per vector, the number of degrees of
freedom of a general affine transformation from R2 to R2.

In Section 3.4, we saw that the invariant operator approach needs for an exact representation
all 1604 projection coefficients. This is because the invariant operator approach builds a basis
of L2(M), respectively R802, and can represent any element of those spaces. We saw that we
obtain a good approximation of smooth functions in L2(M) using only the first coefficients
and especially all smooth deformations of M have smooth coordinate functions. However,
the Taylor approach has in the case of simple transformations between the embeddings an
advantage, as it only focusses on the representation of the transformations. On the other
hand it is open, whether or not it yields in the limit of M =∞ a basis of L2(M).

4.2 Undoing transformations

Given the projection coefficients as characterization of the transformations between the em-
beddings, we can for example use them as feature vectors in another dimensionality reduction
method. We will demonstrate this with Diffusion maps, a nonlinear method for dimensio-
nality reduction. See for example [CL06] for details or [Tes16] for a short introduction to the
method.

We consider again the simulation bundle presented in Section 2.1, consisting of 116 crash
simulations with 17 timesteps. We consider the embeddings of the car part at the timesteps
8 to 17.

As reference embedding, we choose the car part at timestep 1 in an arbitrary simulation.
Then, we calculate for each embedding of the car part the twelve projection coefficients for
a maximal polynomial degree M = 1 and apply Diffusion maps. The obtained embedding
in the 3-dimensional space is similar to the embedding obtained applying Diffusion maps on
the original data, where each embedding is described by a vector in R3·1714, see Figure 4.2.

Hence, the first twelve projection coefficients contain the information that is used by Diffusion
maps to embed the original data.

The first twelve projection coefficients of the Taylor approach are only able to represent affine
transformations of the reference geometry, for example translations and rotations. However,
this type of transformation might not be of high interest for the engineer who wants to focus
on actual deformations of the part. The Taylor approach yields a simple possibility to remove
the influence of such transformations. In the last section, we saw that the projection on the
polynomials of degree ≤ 1 corresponds to finding the best affine fit of the reference embedding
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(a) Embedding for the original data.
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(b) Embedding for the projection coefficients.

Figure 4.2: Diffusion maps embedding for the original data given as vectors in R5142 and for
the first twelve projection coefficients from the Taylor approach with maximal
polynomial degree one.
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to the transformed embedding in the sense that we minimize for all i ∈ {1, 2, 3}

∥∥∥∥∥∥∥∥∥


fi(x1)− Pi(x1)

...
fi(xN )− Pi(xN )


∥∥∥∥∥∥∥∥∥
RN

(4.2.1)

over all affine transformations P : R3 → R3, P (x) = Ax+b, where x1, . . . , xN ∈ R3×1714 is the
reference embedding. Indeed, we can use the projection coefficients to obtain the minimizing
transformation P . To see this, let


1 x1

1 x1
2 x1

3
...

...
...

...
1 xN1 xN2 xN3

 =
(
(q1) (q2) (q3) (q4)

)
·


r11 r12 r13 r14

r22 r23 r24

r33 r34

r44


be the reduced QR-decomposition of the matrix X. Assuming that the columns (1), (x1),
(x2) and (x3) of X are linearly independent, it holds rii 6= 0. We write

(1) =r11(q1) ⇒ (q1) = 1
r11

(1)

(x1) =r12(q1) + r22(q2) ⇒ (q2) = 1
r22

(x1)− r12
r11r22

(1)

(x2) =r13(q1) + r23(q2) + r33(q3) ⇒ (q3) = 1
r33

(x2)− r23
r22r33

(x1) +
(

r12r23
r11r22r33

− r13
r11r33

)
(1)

and

(x3) = r14(q1) + r24(q2) + r34(q3) + r44(q4)

⇒ (q4) = 1
r44

(x3)− r34
r33r44

(x2) +
(

r23r34
r22r33r44

− r24
r22r44

)
(x1)

+
(

r12r24
r11r22r44

+ r13r34
r11r33r44

− r14
r11r44

− r12r23r34
r11r22r33r44

)
(1).

Let cji , i = 1, 2, 3, j = 1, . . . , 4, be the projection coefficients of (fi(x1), . . . , fi(xN ))T on (qj).
We have

(Pi(x1), . . . , Pi(xN ))T = c1
i (q1) + c2

i (q2) + c3
i (q3) + c4

i (q4)
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for a minimizing P of Equation 4.2.1. Inserting the above equations for (qj), we get

(Pi(x1), . . . , Pi(xN ))T =
(
c1
i

r11
− c2

i r12
r11r22

− c3
i r13
r11r33

+ c3
i r12r23
r11r22r33

− c4
i r14
r11r44

+ c4
i r12r24
r11r22r44

+ c4
i r13r34
r11r33r44

− c4
i r12r23r34
r11r22r33r44

)
(1)

+
(
c2
i

r22
− c3

i r23
r22r33

− c4
i r24
r22r44

+ c4
i r23r34
r22r33r44

)
(x1)

+
(
c3
i

r33
− c4

i r34
r33r44

)
(x2)

+ c4
i

r44
(x3).

Defining the sum in front of (1) as bi and the expressions in front of (x1), (x2) and (x3) as
ai1, ai2 and ai3, we see that P is given as P (x) = Ax+ b. To undo the affine transformation
P from the transformed embedding (f(x1), . . . , f(xN )), we compute
(A−1(f(x1)− b), . . . , A−1(f(xN )− b)).

Using the resulting vectors as feature vectors for Diffusion maps yields the embedding shown
in Figure 4.3. The influence of the time on the embedding is mostly removed.

The timesteps 8 to 17 of each simulation differ mainly by small translations and rotations due
to the bouncing of the car when it hits the wall. Those influences removed, the embedding
depends now primarily on the bending of the beam. Figure 4.4 shows two embeddings of the
left cluster, one of each cluster in the middle and two of the right cluster.

4.3 Summary

The Taylor approach is a new idea for the analysis of simulation bundles. It can be used for
tasks as compression and reconstruction of simulation data, denoising - for example given an
exact reference embedding before the crash and noisy embeddings during the crash - and the
undoing of transformations.

Its performance in those task and whether or not an undoing of transformations is of interest
depends however highly on the specific data. Consider, for example, once more Figure 4.1:
Whichever reference embedding we choose, all other embeddings are linear transformations
of it. Therefore, we get an exact reconstruction of the embeddings using only six projection
coefficients.

The idea to characterize the transformations between a reference embedding and transformed
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Figure 4.3: Diffusion maps embedding with clusters A to F for the crash data after undoing
the best affine transformation of the reference embedding to the transformed
embedding.

embeddings might yield further approaches for the analysis of simulation bundles, the Taylor
expansion being only one possibility of a characterization.

Especially, the Taylor approach uses polynomials and while a polynomial of degree zero
corresponds to translations, polynomials of degree one correspond to affine transformations.
Affine transformations like rotations are mostly physically reasonable transformations, but
in general not all affine transformations of the reference embedding are physically reasonable
and the same holds for quadratic and higher order transformations. An approach focussing
on the characterization of the transformations between the reference embedding and the
transformed embeddings but respecting physical constraints would be highly interesting.
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(h) Cluster F.

Figure 4.4: Embeddings of the beam corresponding to the different clusters in Figure 4.3.
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5 Conclusion

In Chapter 3 of this thesis, we investigated the invariant operator approach. Concerning the
decay of the spectral coefficients, the main result is an optimality estimate for the represent-
ation of smooth functions in the spectral domain of Laplace-Beltrami operators. Concerning
the separation of effects, the main results are that the transformations upon variation of
chosen spectral coefficients do not seem to be linked to the invariances of the employed op-
erator and do not fulfil any physical constraints. Consequently, a partitioning of complex
transformations in those ”basic transformations” seems to be of no use for the analysis of
simulation bundles.

In Chapter 4, I shortly presented the Taylor approach, a novel approach for the investigation
of simulation bundles. The approach resulted from the idea to focus on the representation
of the transformations between similar embeddings instead of representing the embeddings
directly. We saw some first results and possible applications. However, there are still many
gaps that I could not fill, focussing this thesis mainly on the investigation of the invariant
operator approach.

Similarly to the invariant operator approach, the Taylor approach does not respect phys-
ical constraints for the transformations between the embeddings. Developing an approach
that focusses on the characterization of the transformations between similar embeddings and
respects suitable physical constraints is an interesting topic of research.
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