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Abstract. An efficient new numerical method for simultaneously simulating soil
water flow and plant root growth is presented. It allows the calculation of the water
uptake of an entire root system while preserving the local impact of single roots. The
approach is based on the adaptive finite-element method, which enables a flexible fine
resolution along individual roots, which cannot be achieved by classical non-adaptive
algorithms.
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1. Introduction

To model soil water uptake by roots, two alternative approaches have
been developed in the past. The microscopic-scale approach studies
water movement towards individual roots. The root system is consi-
dered as a set of connected axes, that grow and branch according to
specific rules. In contrast, the macroscopic-scale approach regards the
root system as an abstract object whose spatial distibution is described
throughout the soil. Typical models in this category are root depths
and root length density models. Both approaches have their respective
merits, which have been intensly discussed in the literature. A detailed
overview can be found in Smit et al. (2000).

A major difficulty of the microscopic approach is the inherent com-
plexity of the root system. Nevertheless it is interesting to maintain the
individuality of roots. Clothier and Green (1997) state that “entire root
systems are dendritically complicated, and the fluxes of water to active
roots range through all points of the compass. It is the local detail of this
complex branching form that permits the plant to function effectively
to extract sufficient water and chemicals against the capillary forces
retaining them in the soil.”

In the last two decades several models of the root system archi-
tecture have been developed, e.g. (Rose, 1983; Pagés and Kervella,
1990; Berntson, 1992; Clausnitzer and Hopmans, 1994; Chikushi and
Hirota, 1998). Clausnitzer and Hopmans (1994) developed an accom-
plished description of the root growth process. With respect to water
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uptake these authors remark that “ attempts have recently been made
to numerically model water movement toward individual roots using
the Richards equation (Bruckler et al., 1991; Lafolie et al., 1991). How-
ever, . . . the computational costs of simulating water movement on such
a microscopic scale are still exceedingly high when considering complete
root systems.”

The main contribution of the present paper is to show that the adap-
tive finite-element method is an efficient new computational technique
to overcome these difficulties. It is ideally suited for problems involving
two different scales. The essential idea is to use fine resolution along
individual roots, while coarse resolution is sufficient in regions with-
out roots. This allows coupling the root system architecture with the
processes of water absorption and water flow in the soil. Our approach
enables the upscaling of localized information on single roots into a
comprehensive description of the root system as a whole.

In order to reach this goal, we combine a two-dimensional water flow
model, which is based on the Richards equation, with a two-dimensional
root growth model. A finite-element grid on the considered soil domain
serves as the framework for the water flow model. The root system is
simulated with the help of a cellular automaton and is coupled by the
sink term with the Richards equation. Having merged both models, the
numerical solution of the combined problem is then obtained by means
of adaptive finite-elements.

The paper is organized as follows: Chapter 2 contains the mathema-
tical equation describing soil water flow. Chapter 3 deals with modelling
water extraction. This comprises the root system architecture model
as well as the water uptake model. The mathematical algorithm for
the adaptive finite-element resolution along individual roots is given
in Chapter 4. Chapter 5 contains numerical examples illustrating the
power of our approach. Chapter 6 sums up and discusses our results. In
order to make the paper easier to read, we have consigned the mathe-
matical details to two appendices. Moreover, all parameters and their
units are listed in a separate appendix.

2. Soil water flow

The saturated/unsaturated water flow in a homogeneous porous media
is described mathematically by the Richards equation

∂tΘ(h)− div(K(h)∇(h + z)) = F (h), (2.1)

where h[m] is the unknown pressure head, Θ[m3 ·m−3] is the volumetric
soil water content, K[m · d−1] is the soil hydraulic conductivity, z[m]
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is the vertical space coordinate (positive upwards), t[d] is the time and
F [d−1] is the sink term to account for root uptake. The ∇-operator is
defined as the vector

(i
∂

∂x
+ j

∂

∂y
+ k

∂

∂z
)

with i, j and k denoting the positive unit vectors in x-, y-, and z-
direction, respectively.

This equation was originally derived by L. A. Richards (Richards,
1931). Before solving the Richards equation one must supply param-
eters for the functions Θ(h) and K(h). For parametrizing the rela-
tionship between the water content and the pressure we use the Van
Genuchten approach (Van Genuchten, 1980)

Θ(h) = Θr + (Θs −Θr)
(

1
1 + (−ah)n

)m

(2.2)

with m = 1−1/n. Here Θr and Θs denote the residual and the saturated
volumetric water content, respectively. The parameters a > 0, n > 1
have to be specified for each soil type. For parametrizing the relation-
ship between the hydraulic conductivity and the pressure we use the
Mualem model (Mualem, 1976)

K(S) = KsS
1/2(1− (1− S1/m)m)2, (2.3)

where Ks[m · d−1] is the saturated conductivity and S[m3 ·m−3] is the
normalized volumetric water content defined as

S =
Θ−Θr

Θs −Θr
.

The numerical solution of (2.1) is based on the Jäger-Kačur scheme,
which is a new, very efficient algorithm for solving degenerate, parabolic
differential equations (Jäger and Kačur, 1995). Since the algorithm of
the Jäger-Kačur is mathematically intricate, we have consigned the
details to Appendix 1.

3. Modelling of water extraction

3.1. The rootsystem and its growth

As said in the introduction, there are two main categories of models
describing root growth, viz. macroscopic root depth and root length
density models and microscopic models of the root system architecture.
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Figure 1. Cellular automaton.

In the present paper we simulate root growth with the help of a cellular
automaton. This approach belongs to the second category of models.

Geometrically, the root system is a set of cells, the length of which
is increased by elongation and branching of its members. A hierarchy
of root members may be defined among the axes, according to their
order. By Cannon’s classification (1949) we shall call the axes directly
connected to the shoot system order 1 axes, the axes extending from
the axes of order 1 order 2 axes and so on (Figure 1). This distinction
among root axes is not purely formal, because axes of different order
also differ in their morphology.

The extension of the root system is simulated in discrete time steps,
by applying three formalised developmental processes to the existing
root system at each time step. These are root emission (i.e. generation
of new root axes from the shoot system), growth (i.e. elongation of
existing axes), and branching (i.e. development of new lateral axes).
We use different time intervals for the root development simulation
and for the water flow model. The time steps for the root development
model are of constant length, while the time steps for the soil water flow
model are automatically adjusted as will be described below. The rules
for the root system extension are based primarily on Pagés and Kervella
(1990). Growth is, however, also a function of the local conditions in
our model. To define the growth direction and elongation rate, we use
the data on local water content as calculated according to the water
flow model.
Emission In the case of a primary root system only one root axis
of order 1 is emitted. At the beginning we must specify the starting
point of this axis and its growth direction. To achieve this, we choose
one cell from our cellular automaton, which is located directly under
the soil surface and assume that this cell will start growing directly
downwards (Figure 2). The growth and branching of this cell will give
rise to lateral roots of order 2 and 3.
Growth The growth of all existing axes always starts at the tip of
the root. We must specify the growth direction and length of each axis
for each growth time step. We assume that for each branch there are 5
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soil surface

Figure 2. Emission.

possible directions of growth. These directions are shown in Figure 3.
The cell marked with the letter ”s” describes the tip of the root. The

1 5

2 3 4

s

Figure 3. Possible growth directions.

model assumes that one growth direction is more probable than the
others. For an axis of order 1 this is vertical, and for axes of order
two and order three it is at an angle of 45 degrees to the mother axis
(Figure 4). Our model allows, however, that axes may deviate from

3

2

3

45 45oo

Figure 4. More propable growth directions.

their preferred direction towards a direction of higher water content.
For these reasons the growth direction is fixed at each point of time

tw, when the root grows, as in the following: Cell ”s” represents the tip
of the branch, and ”r” is the next cell in the preferred growth direction.
Let ”threshold” be a given value in the interval (0, 1) and ”rnd numbi”,
i ∈ [1, 5], a sequence of random numbers between 0 and 1. First we set
the growth direction equal to the preferred direction ”r”. Then we check
for the elements i ∈ [1, 5], i 6= r the following condition:

threshold (Θ(i)−Θ(s)) rnd numbi > (Θ(r)−Θ(s)) rnd numbr.

For a small ”threshold” the moisture content in a direction other than
the preferred one must be very high, in order to divert the root growth
in this direction. Conversely a high ”threshold” supports growth to-
wards moisture. Thus we consider only water content as the driving
force for root growth.
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Other aspects which determine the trajectories of roots have been
simulated by Clausnitzer and Hopmans (1994). In their description
they include the direction of the root tip in the previous time phase,
a random deviation representing the space-exploring behaviour of the
root tip, geotropism along an angle to the horizontal plane and the
negative soil strength gradient.

Having chosen the growth direction, we must now determine the
elongation rate er[m · d−1]. In general this rate is influenced by the
species of the plant, water content, temperature, nutrient content and
the order of the axes. In our model we will take two factors that in-
fluence the elongation rate into consideration: the water content and
the order of the root. In order to find the elongation rate for a certain
branch, we calculate the pressure head value in the cell, that lies next
to the tip of the branch in the growth direction. Depending on this
result we set the variable ”er”. Let er = k · l, where l[m] denotes the
cell length. The function k[d−1] measures the number of cells, for which
the corresponding branch will be prolongated in the present time step.
This function is piecewise constant and depends as well on the pressure
head as on the root order. A possible choice of k for the root order one
is shown in Figure 5. The pressure values hi, i = 1, 2, 3, 4, 5 as well as
the factors ki, i = 1, 2, 3, 4, 5 must be set by the user. The elongation

h1h2h3h4h5

k

h

k1
k2
k3
k4

k5

Figure 5. Elongation rate.

rate decreases with the order of the branches. For the roots of order two
we choose the values for the elongation rate identical to the root order
1. The values for the third hierarichal degree are obtained by halving
the ki values of order 2.
Root branching Studies of the root distribution along the mother
axis show that this distribution is not random (Riopell, 1969; Mallory
et al., 1970; Charlton, 1983). The youngest side roots are separated
from the tip of the mother axis by a relatively extensive apical non-
branching zone. In order to model these phenomena, two variables are
defined (Lungley, 1973; Pagés and Aries, 1988):
- the length of the apical non-branching zone (LAZ[m]);
- the inter-branch distance along the axis (IBD[m]).
For each root growth time step and each axis the possibility of root
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branching is tested. If the distance between the tip of a branch and
the last lateral branch along that axis is larger than the sum of the
two variables LAZ and IBD, then a new root is initiated at a distance
IBD from the preceding side root, as exemplified in Figure 6. Here the
upper left side roots and the right side roots already exist. We observe,
how a new side branch of order two is formed on the left at the IBD
distance below the right second order side root. Both variables LAZ
and IBD depend on the order of a branch and are quantified during the
computer simulation. Finally we assume that the formation of lateral
roots is equally distributed to the left and right side of the mother axis.

To model the acropetal branching, other authors (Diggle, 1988;
Clausnitzer and Hopmans, 1994) also consider the duration of apical
non-branching, i. e. new branches can only appear on parts of the
mother root having reached a given age.

1

3

2
3

2

2

Branched
zone

Apical 
non−branched
zone

IBD

LAZ

3

Figure 6. Formation of a new lateral root.

3.2. Model for the sink

The term F in the Richards equation is defined equal to the volume
of water extracted from a unit volume of soil per unit time. There
are different approaches to describe this term (Molz, 1981; Smit et al.,
2000). The process of water extraction by roots involves both plant
and soil factors. Our approach is flexible enough to deal with both
phenomena. For this purpose we consider the soil and root resistance
as a system of two resistors in series. Using an analogy of Ohm’s law
we conclude that the flux density Q[m3 ·m−2 · s−1] of water entering
the root is given by

Q =
h− hw

Rs + Rr
. (3.4)

Here hw[m] is the pressure head in the root, Rs[d] is the soil resistance
and Rr[d] is the root resistance. Formula (3.4) was already formulated
by Gardner and Ehlig (1962). Since then it has been used and refined
by many other authors, for example (Hillel et al., 1975; Radcliffe et al.,
1986; Biondini, 2001).
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The soil resistance can be taken as directly proportional to the flow
path length and inversely to the hydraulic conductivity. The root re-
sistance has been investigated by several researchers (Landsberg and
Fowkes, 1978; Frensch and Steudle, 1989; Alm et al., 1992; Aura, 1996;
Doussan et al., 1998). In wet soil water root uptake is primarily deter-
mined by the root resistance. As the soil dries, the influence of the soil
resistance increases, and root shrinkage may reduce the liquid-phase
continuity between a root and the surrounding soil. This variable con-
tact resistance was first quantitatively evaluated by Herkelrath et al.
(1977). These authors multiplied the uptake rate by a factor Θ/Θs,
which accounts for the soil-root contact resistance. The effects of limited
root-soil contact have been further studied by Faiz and Weatherley
(1978), Hansen et al. (1991), Bouten (1992).

More details on the types of resistance to water movement in the
soil-root system can be found in the monographs of Kramer and Boyer
(1995), Smit et al. (2000), Lösch (2001) as well as in the recent reviews
by Hopmans and Bristow (2002), Mmolawa and Or (2000).

The above discussion shows that various different effects influence
the way roots extract water. A main advantage of our finite-element al-
gorithm is that different kinds of uptake functions can be implemented
flexibly.

So far we have dealt with the flux density Q of water entering the
root. In order to obtain the sink term F , we must next calculate the
volume of water extracted by a single cell of our automaton. Assuming
each cell to be a cube with edge length l, which absorbes water through
its 4 lateral sides, we conclude that the water volume extracted per unit
time by one cell of our automaton is equal to Q · 4l2. Division of this
expression by the cube volume l3 yields the following form of the sink
term in the Richards equation:

F (x, y, t, h) =
h− hw

Rs + Rr
l−1ρ(x, y, t).

Here ρ is a dimensionless indicator function, which is equal to 4 inside
the cells of the automaton and 0 otherwise.

A disadvantage of the cellular automaton considered is that the cell
distribution is not realistic at locations in diagonal branches, where cells
meet only in one corner. A possible way to cope with this problem is the
addition of halfcells, which are located above and beneath such cells,
to our rootsystem. Thus one replaces the root system from Figure 1 by
the root system shown in Figure 7.

A second way to handle cells, which meet only in one corner, is the
smoothing of F by convolution. Instead of F the function Gσ ∗ F is
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Figure 7. Smoothing of the root system

used, where Gσ denotes the Gauß-kernel:

Gσ(x, y) =
1

(2
√

πσ)2
e
−(x2+y2)

4σ .

Numerically the size of the actual discrete time step is a good choice
for the smoothing parameter σ.

3.3. Implementing the cellular automaton on the
computer

First of all we fix the root thickness l and divide the given rectangular
domain Ω in quadrates of length l. The cells are numbered - starting
from the top - from left to right and summarized in an array (Figure 8).
This field forms our cellular automaton. It consists of structures of

1 2 3 4 5 6 7 ...

Figure 8. Initiating of cellular automaton

type CELL. Each structure contains the following cell information:
- affiliation to the root system;
- cell location: inside or on the boundary of the domain Ω.

For the description of the whole root system, a structure ROOTSYS-
TEM is built. It contains the total number of already existing branches
as well as pointers to the cellular automaton and the main axis of
order 1. The information about each individual branch is stored in the
structure BRANCH. This structure contains information about:
- order of the branch;
- time of origination of the branch;
- branch length expressed by the number of cells;
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- branch-free length;
- cell number of the original cell;
- cell number of the tip;
- preferred growth direction;
- array with the numbers of all cells pertaining to this branch;
- pointer to the next branch of equal order with the same mother

axis;
- pointer to the first lateral root of the current branch.

Using this storage structure one can easily traverse all branches.
Initiating the cellular automaton consists of marking the cells al-

ready originated in the main root of order 1. Moreover, the total number
of branches must be set to 1, since at the beginning only one single
root exists. Next, information about this initial root is written into the
storage space provided for this structure.

After initiating the variables, the root growth process has to be
implemented. It is schematically described by the following pseudo
code. For each growth time step, the function RootGrowth is started:

RootGrowth{
branch = rootsystem → macrobranch;
TreatBranch;
branch = branch → firstchild;
while(branch){

TreatBranch;
child = branch → firstchild;
while(child){

TreatBranch;
child = child → next;

}
branch = branch → next;

}
TreatBranch{

Growth;
Branching;

}
Growth{

choose growthdirection;
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calculate elongationrate;
extend branch in growthdirection by elongationrate;

}
Branching{

if(branch → nonbranchinglength > LAZ + IBD)
initial new child;

}

4. Adaptivity

We use adaptivity in order to compute the numerical solution efficiently
as well as to cope with the complexity of the root system. Our aim is the
computation of an approximate pressure head distribution, such that
the error e (i. e. the difference between the exact and the approximate
solution) lies under a given tolerance.

For this purpose we have to discretize our problem with respect
to time and space. Time is discretized by means of the Jäger-Kačur
scheme (see Appendix 1). Space is discretized by using a finite-element
triangulation for the soil domain Ω under consideration. All functions
on Ω are approximated by piecewise linear finite-elements. The decisive
trick lies in the fact that the underlying triangulation is not static, but
can be dynamically adapted. This means that some triangles will be
refined while others will be coarsened depending on the properties of
the approximate solution actually calculated. Intuitively speaking, the
mesh must be refined, where the solution shows steep gradients and
oscillations. Conversely, the mesh can be coarsened in regions, where
the solution is smooth.

In order to formulate our adaptive strategy precisely, we introduce
three error estimators:

(i) the initial error estimator E0 copes with that part of the error,
which stems from approximating the initial pressure head distri-
bution at time point t0 by piecewise linear finite-elements.

(ii) the time error estimator Ei
τ yields an upper bound for the diffe-

rence between the numerical solution evaluated at time point ti

and the numerical solution evaluated at time point ti−1.

(iii) the grid error estimator Ei
h gives an upper threshold for the spatial

discretization error of the finite-element approximation at time
point ti.
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We omit the technical details of how to construct E0, Ei
τ and Ei

h. A
comprehensive description is given in Wilderotter (2001). Here we only
summarize the following important properties:

(i) The error estimators can be explicitly computed since they only
depend on the data of the problem and on the numerical solution
already calculated, but not on the unknown analytical solution.

(ii) E0, Eh are compounded from local quantities E0(T ) and Ei
h(T ),

which can be computed on each triangle T of our domain Ω:

E0 =
∑

T∈T 0

E0(T ), Ei
h =

∑

T∈T i

Ei
h(T )

Here T 0 and T i represent the triangulations at the point t0 and
ti, respectively.

(iii) The computational costs for calculating E0, Ei
τ and Ei

h are low.

Geometrically, E0 is responsible for the spatial adaptive refinement of
Ω at the initial time t0, while Ei

h does the same job for time points
ti following t0. Ei

τ controls the size of the time step. This size is auto-
matically adjusted to optimize overall simulation time and convergence
behavior within each time step.

We recall that our final aim is to approximately compute the pres-
sure head distribution with a guaranteed accuracy TOL. With this in
mind, our adaptive method now reads as follows:

Algorithm

Step I. Initially, the domain Ω is refined until E0 ≤ TOL.
Step II. In the second step we iterate the SERC-algorithm. SERC
stands for

Solve - Estimate - Refine - Coarsen.

The i-th iteration looks like the following:

1 At the time point ti we compute the numerical pressure head dis-
tribution in the form of a piecewise linear finite-element approxi-
mation on the actual triangulation. In order to obtain this finite-
element approximation, we must solve a system of nonlinear equa-
tions.

2 We calculate Ei
τ and check whether Ei

τ > TOL. If this is the case,
we reduce the time step from ti−1 to ti and choose a smaller value
for ti. Then we go to (1).
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3 We calculate Ei
h(T ) for every triangle T of our triangulation. We

refine those triangles T where Ei
h(T ) is not small enough, while we

coarsen triangles T where Ei
h(T ) is too small.

4 When the mesh has been changed, we go to (1) and solve the
nonlinear equation system once more, this time, however, with
the modified triangulation. In this way we obtain a new improved
finite-element approximation for the time point ti.

5 Finally, we choose the next time point ti+1 depending on the size
of Ei

τ .

The above description is only a rough sketch of the algorithm. The
complete implementation is mathematically much more intricate and
summarized in Appendix 2.

5. Numerical example

Now we demonstrate the power of our method by an example. We con-
sider root water uptake in a quadrate of soil with two meter side length,
whose upper boundary coincides with the soil surface: Ω = (0, 2)2 (Fi-
gure 9). The total simulation time T is 75 days. The ground-water level

h = 0

1m

2m

Figure 9. Cross-section of soil.

is initially located at a depth of one meter under the soil surface. The
initial pressure is in hydrostatic equilibrium with this surface. The lower
and the vertical boundaries are assumed to be impermeable. On the
upper boundary we assume a non-flow condition. The soil parameters
in (2.2), (2.3) are set as follows:

Θr = 0.0, a = 0.15, Ks = 0.001, Θs = 0.4, n = 1.9.

The parameters of the root growth model are quantified in Table I.
Finally the soil resistance is given by Rs = l/K(Θ). The root resistance
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Table I. Parameters of the root growth model

l[m] 2−7 root thickness

τw[d] 1.0 time step for root growth

δ 1.7 factor to adjust the time step

threshold 0.07 value for determining the growth direction

LAZ[m] 32l non-branching zone for branches of order 1

16l non-branching zone for branches of order 2

IBD[m] 16l distance between two branches of order 2

10l distance between two branches of order 3

hw[m] -50.0 pressure in the root

h1[m] 0.0

h2[m] -0.05

h3[m] -0.2 pressure values to determine the elongation rate

h4[m] -10.0

h5[m] -20.0

k1[d
−1] 4

k2[d
−1] 2

k3[d
−1] 2 factors to determine the elongation rate

k4[d
−1] 0

k5[d
−1] -2

is the reciprocal of the root hydraulic conductivity and was calculated
from the values found in Doussan et al. (1998), see also Frensch and
Steudle (1989): Rr = 5.2 · 103[d].

Figures 10-15 show the pressure head distribution and the corre-
sponding grids for the time sequence t ∈ {10, 25, 40, 55, 65, 75}. As
expected, we observe a strong refinement along the roots. The black
line in the middle of the square shows the ground-water level. When
the roots begin to grow, they absorb water from the surrounding soil.
The soil becomes dry from water uptake and the ground-water level
falls slowly.

6. Conclusions

A new computational approach for simulating water uptake by plant
roots has been developed. The basic idea is as follows: Use fine resolu-
tion near the roots, where interesting local effects are to be expected.
In contrast, use coarse resolution in soil regions farther from the roots,
where the solution is predicted to be smooth. Since the location and dis-
tribution of the roots changes continuously during the growth process,
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Figure 10. Pressure distribution and adaptive refined grids for t = 10.0

Figure 11. Pressure distribution and adaptive refined grids for t = 25.0

Figure 12. Pressure distribution and adaptive refined grids for t = 40.0
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Figure 13. Pressure distribution and adaptive refined grids for t = 55.0

Figure 14. Pressure distribution and adaptive refined grids for t = 65.0

Figure 15. Pressure distribution and adaptive refined grids for t = 75.0
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it is of decisive numerical importance, that the discretization mesh is
adapted dynamically. This allows calculations and simulations of root
water uptake scenarios, which are not feasible when working with static
fixed meshes.

A main advantage of our approach is its flexibility. Various micro-
scopic root growth models can be included. In the present paper we used
a relatively simple prototype, in order to make clear the fundamental
ideas of two scale problems. We emphasize, however, that our approach
can be definitely extended to the architecture of more complex root
system models. Moreover, the sink term can be chosen in such a way
that the root resistance as well as the soil resistance are both taken
into consideration. Different models for quantifying the influence of the
root and soil resistance on water extraction can be implemented and
tested.

The adaptive finite-element method can help substantially to un-
derstand the link between rootzone form and function by performing
virtual experiments on the computer. We agree with Pagés et al. (2000),
who state, “ that acquisition of resources within the soil environment is
a complex process . . . . Thus, models should mix different formalisms for
representing at the same time physical processes (e.g. Darcy’s law) and
biological ones (e.g. root growth). These models should also succeed in
the integration of several organisation levels.”

In the present paper we successfully combined a model for water
flow based on Richards equation with a root growth model. Moreover,
we showed that the adaptive finite-element method is an important
contribution for computationally upscaling from the individual root
level to the level of a complete root system.

Appendix

A. The Jäger-Kačur scheme

In order to solve the Richards equation (2.1) numerically, we convert it

by means of the Kirchoff transformation u = T (h) =
h∫
0

K(s)ds in the

following form

∂tb(u)− div(∇u + K(b(u))ez) = F (b(u)), (A.5)

where ez is the unit vector in upward z-direction and b(u) = Θ(h).
Numerically, we will solve the Richards equation in the form (A.5). In
this way we will obtain the distribution of the water content Θ(h) =
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b(u) as well as u. The pressure head h can then be computed from u
by inversion of the Kirchoff transformation: h = T−1(u).

The numerical solution of equation (A.5) is computed iteratively
with help of the Jäger-Kačur scheme.

Let τ i be the i-th time step and ti =
∑i

l=1 τ l. Given the numerical
solution U i−1 at time point ti−1, we want to calculate the solution U i

at time point ti. For this purpose we look for a parameter µi and a
function θi such that

µiθi − τ i∆θi = µiU i−1 + τ i∇ ·K(b(U i−1))− τ iF (b(U i−1)), (A.6)

where the relaxation parameter µi must satisfy the following conver-
gence condition:

ε

2
≤ µi ≤ bε(U i−1 + λ(θi − U i−1))− bε(U i−1)

θi − U i−1
(A.7)

with 0 < ε = o(1) and with the parameter λ ∈ (0, 1) close to 1. Having
determined µi and Θi, the solution U i at the new time point ti is now
obtained by algebraic correction:

bε(U i) = bε(U i−1) + µi(θi − U i−1).

Here bε denotes the regularization of b defined as

bε(s) =
{

b(s) + εs for s > 0
b(s) for s ≤ 0

The scheme (A.6), (A.7) is implicit with respect to µi and θi and
must therefore be solved by some special kind of fixed point iterations,
the so called inner iterations.

B. The adaptive refinement algorithm

For the space discretization we use linear finite-elements. By T i we
denote a sequence of subsequently refined/coarsened triangulations of
Ω into triangles T with usual regularity properties as in Ciarlet (1978).
NT i is the number of triangles in T i. For refinement we use the bisection
(Bänsch, 1991). Coarsening was described in detail by Nochetto et al.
(1997). In order to calculate a finite-element approximation U i on T i

with a guaranteed accuracy TOL, we proceed as follows:

Let Γ0, Γτ ,Γh > 0 be given refinement parameters and let γτ , γh > 0
be given coarsening parameters with

Γ0 + Γτ + Γh ≤ 1, γτ < Γτ , γh < Γh.
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Step I. In the first step a given macro-triangulation T 0 is made finer
according to the data. We refine all T ∈ T 0 with

E0(T ) >
Γ2

0 TOL2

NT 0

and prolongate U0 onto the new grid by interpolation. We continue
until

E0 ≤ Γ2
0 TOL2.

Step II. In the second step, we iterate the SERC-algorithm. SERC
stands for

Solve - Estimate - Refine - Coarsen.

The i-th iteration looks like follows:

1 Set ti = ti−1 + τ i and solve the system of equations.

2 In order to select the time step τ i, the algorithm checks whether

∑

T∈T i

Ei
τ (T ) >

Γ2
τ TOL2

4
.

If this is the case, τ i is reduced and we go to (1).

3 In order to adapt the grid, we check whether

Ei
h(T ) >

Γ2
h TOL2

4NT i

, Ei
h(T ) <

γ2
h TOL2

4NT i

.

In the first case we refine T, whereas in the second one we coarsen
T.

4 When the mesh has been changed, we recalculate and compute U i.

5 We test the time step size once more. If

∑

T∈T i

Ei
τ (T ) >

Γ2
τ TOL2

4
,

we reduce τ i and continue with (1).

6 The space discretization is tested once more. If

∑

T∈T i

Ei
h(T ) >

Γ2
h TOL2

4
,

then we go to (3). Otherwise we accept U i, T i and τ i.
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Table II. Parameter set used in the paper

Symbol Definition Units

Basic variables

t time d

z depth m

Soil parameters

Θ volumetric soil water content m3 ·m−3

h pressure head m

K hydraulic conductivity m · d−1

F sink term to account for root uptake d−1

Plant parameters

l root thickness m

LAZ length of non-branching zone m

IBD distance between two branches of the m

same order

hw pressure in the root m

er elongation rate m · d−1

hi, i = 1, · · · , 5 pressure values for elongation rate m

ki, i = 1, · · · , 5 factors for elongation rate d−1

7 We set T i+1 = T i, τ i+1 = τ i. If

∑

T∈T i

Ei
τ (T ) <

γ2
τ TOL2

4
,

then we enlarge τ i+1.

8 If ti+1 is less than the simulation endpoint T, we set i = i + 1 and
continue with (1).

C. List of symbols used

In Table II we describe the main variables and parameters used in our
paper.
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Lösch, R.: 2001, Wasserhaushalt der Pflanzen. Wiebelsheim: Quelle & Meyer Verlag.
Lungley, D. R.: 1973, ‘The growth of root systems – a numerical computer simulation

model.’. Plant and Soil 38, 145–159.
Mallory, T. E., S. H. Chiang, E. G. Cutter, and E. J. Gifford: 1970, ‘Sequence

and pattern of lateral root formation in five selected species.’. Am. J. Bot. 57,
800–809.

Mmolawa, K. and D. Or: 2000, ‘Root zone solute dynamics under drip irrigation: A
review.’. Plant and Soil 222, 163–190.

Molz, F. J.: 1981, ‘Models of water transport in the soil–plant system: a review.’.
Wat. Res. Res. 17, 1245–1260.

Mualem, Y.: 1976, ‘A new model for predicting the hydraulic comductivity of
unsaturated porous media.’. Water Resour. Res. 12, 513–522.

Nochetto, R. H., A. Schmidt, and C. Verdi: 1997, ‘Adapting meshes and time-steps
for phase change problems’. Quaderno, Milano 12.

Pagés, L. and F. Aries: 1988, ‘SARAH: modéle de simulation de la croissance, du
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parabolische Probleme.’. Ph.D. thesis, Universität Bonn, Mathematisch-
Naturwissenschaftliche Fakultät.

main.tex; 22/09/2002; 18:41; p.22


