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Fig. 1. Time-discrete geodesics between a cat and a lion and the letters A and B.
Geodesic distance is measured on the basis of viscous dissipation inside the objects
(color-coded in the middle row from blue, low dissipation, to red, high dissipation),
which is induced by a pairwise 1-1 deformation map between consecutive shapes along
the discrete geodesic path. Shapes are represented via level set functions, whose level
lines are texture-coded in the bottom row for the 2D example.

Abstract. A variational approach to defining geodesics in the space of
implicitly described shapes is introduced in this paper. The proposed
framework is based on the time discretization of a geodesic path as a
sequence of pairwise matching problems, which is strictly invariant with
respect to rigid body motions and ensures a 1-1 property of the induced
flow in shape space. For decreasing time step size, the proposed model
leads to the minimization of the actual geodesic length, where the Hessian
of the pairwise matching energy reflects the chosen Riemannian metric
on the shape space. Considering shapes as boundary contours, the pro-
posed shape metric is identical to a physical dissipation in a viscous fluid
model of optimal transportation. If the pairwise shape correspondence is
replaced by the volume of the shape mismatch as a penalty functional,
for decreasing time step size one obtains an additional optical flow term
controlling the transport of the shape by the underlying motion field.
The implementation of the proposed approach is based on a level set
representation of shapes, which allows topological transitions along the
geodesic path. For the spatial discretization a finite element approxima-
tion is employed both for the pairwise deformations and for the level set
representation. The numerical relaxation of the energy is performed via
an efficient multi–scale procedure in space and time. Examples for 2D
and 3D shapes underline the effectiveness and robustness of the proposed
approach.
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1 Introduction

This paper deals with the computation of geodesic paths and distances between
(possibly non-rigid) shapes represented via level sets in 2D and 3D. Such com-
putations are fundamental for problems ranging from computational anatomy to
object recognition, warping, and matching. The aim is to reliably and effectively
evaluate distances between non-parametrized geometric shapes of possibly dif-
ferent topology. We investigate the close link between abstract geometry on the
infinite-dimensional space of shapes and the continuum mechanical viewpoint
of shapes as being boundary contours of physical objects, e. g. identifying the
Riemannian metric on shape space with the physical dissipation — the loss of
energy due to friction. Thereby, we simultaneously address the following major
challenges:
• a physically sound modeling of the geodesic flow of shapes given as boundary
contours of objects on a void background,
• the need for a coarse time discretization which is nevertheless invariant with
respect to rigid body motions, ensures a 1-1 object correspondence, and relates
to the corresponding continuous geodesic path,
• a numerically effective multi–scale treatment of the resulting time and space
discrete energy.
Our approach is closely linked to the concept of optimal transportation [1]. The
motion field v governing the flow in shape space vanishes outside the object
bounded by the corresponding shape contour. The field is optimal in the sense
that it minimizes an accumulated physical dissipation — a quadratic functional
depending on the first order local variation of a flow field, representing the rate
at which mechanical energy is converted into heat in a viscous fluid per unit
volume. Thus, the Riemannian metric on the shape space is defined to coincide
with this rate of dissipation. If we assume frame indifference as first principle
(rigid body motion invariance), then the dissipation depends only on the sym-
metric part ε[v] = 1

2 (DvT + Dv) of the Jacobian Dv of the underlying motion
field v. Under the additional assumption of isotropy, a typical model for the local
rate of dissipation is given by Diss[v] =

∫ 1

0

∫
O g(v, v) dxdt with

g(v, v) =
λ

2
(trε[v])2 + µ tr(ε[v]2) (1)

(cf. Fuchs et al. [2]), where O describes the deformed object. Here tr(ε[v]2) mea-
sures the averaged local change of length and (trε[v])2 the local change of volume
(obviously div v = tr(ε[v]) = 0 represents an incompressible flow), induced by
the transport by v. In their pioneering paper Miller et al. [3] exploited the fact
that in case of sufficient Sobelev regularity for the motion field v on the whole
surrounding domain, the induced flow consists of a family of diffeomorphisms.
A straightforward time discretization of a geodesic flow would neither guaran-
tee local rigid body motion invariance for the time discrete problem nor a 1-1
mapping property between objects at consecutive time steps.

In this paper, we present a time discretization of the squared path length in
shape space which is based on a pairwise matching of intermediate shapes cor-
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responding to subsequent time steps. In fact, such a discretization of a path as
concatenation of short connecting lines between consecutive points on the path
is most natural with regard to the variational definition of a geodesic and for
instance underlies the algorithm by Schmidt et al. [4]. Our approach is inspired
both by work in mechanics [5] and in geometry [6]. Here, a suitable deforma-
tion energy will measure the deformation between subsequent shapes. This can
be regarded as the infinite-dimensional counterpart of the following time dis-
cretization for a geodesic between two points sA and sB on a finite-dimensional
Riemannian manifold: Consider a sequence of points sA = s0, s1, . . . , sK = sB
connecting two fixed points sA and sB and minimize

∑K
k=1 dist2(sk−1, sk), where

dist(·, ·) is a suitable approximation of the Riemannian distance. In our case, the
squared approximate distance is replaced by the deformation energy, for which
we will employ a particular class of so-called polyconvex energies [7] to ensure
both exact frame indifference (observer independence and thus rigid body mo-
tion invariance) and a global 1-1 property. We will also discuss the corresponding
continuous problem when the time discretization step vanishes.

Even though the functionals are borrowed from nonlinear elasticity, the un-
derlying physics is only related to elasticity in the sense that a viscous defor-
mation can be regarded as the limit of infinitely small elastic deformations with
subsequent stress relaxation. Indeed, different from elasticity, none of the shapes
is in a stressed configuration since local stresses are immediately absorbed via
dissipation, which in a physical context reflects a local heating.

Fig. 2. Discrete geodesics between a straight and a rolled up bar, from first row to
fourth row based on 1, 2, 4, and 8 time steps. The light gray shapes in the first row
show the linear interpolation of the deformations connecting the dark gray shapes. The
shapes from the finest time discretization are overlayed over the others as thin black
lines. In the last row the rate of viscous dissipation is rendered on the shape domains
O1, . . . ,OK−1 from the previous row, color-coded as .
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Both the built-in exact frame indifference and the 1-1 mapping property
ensure that fairly coarse time discretizations already lead to an accurate ap-
proximation of geodesic paths (cf. Fig. 2). The actual convergence is dealt with
later in this paper. Careful consideration is required with respect to the effec-
tive minimization of the time discrete path length. Already in the case of low
dimensional Riemannian manifolds the need for efficient minimization strategies
is apparent. To give a conceptual sketch of the proposed algorithm on the actual
shape space, Fig. 3 depicts the proposed procedure in the case of R2 considered
as the stereographic projection of the two-dimensional sphere and outlines the
advantage of our proposed optimization framework.

Fig. 3. Different refinement levels of discrete geodesics (K = 1, 2, 4, . . . , 256) from
Johannisburg to Kyoto in the stereographic projection (right) and backprojected on
the globe (left). A single-level nonlinear Gauss-Seidel on the finest resolution with
successive relaxation of the different vertices requires 917235 elementary relaxation
steps, whereas in a cascadic relaxation from coarse to fine resolution in time, only 2593
of these elementary minimization steps are needed.

1.1 Related work

Conceptually, in the last decade, the distance between shapes has been been
studied on the basis of a general framework of a space of shapes and its intrinsic
structure. The notion of shape space has been introduced already in 1984 by
Kendall [8].

An isometrically invariant distance measure between two objects SA and SB
in (different) metric spaces is the Gromov–Hausdorff distance, which is (in a
simplified form) defined as the minimizer of 1

2 supyi=φ(xi),ψ(yi)=xi |d(x1, x2) −
d(y1, y2)| over all maps φ : SA → SB and ψ : SB → SA, matching point pairs
(x1, x2) in SA with pairs (y1, y2) in SB . It evaluates — globally and based on an
L∞ type functional — the lack of isometry between two different shapes. Mémoli
and Sapiro [9] introduced this concept into the shape analysis community and
discussed efficient numerical algorithms based on a robust notion of intrinsic
distances d(·, ·) on the shapes given by point clouds. Bronstein et al. incorporate
the Gromov–Hausdorff distance concept in various classification and modeling
approaches in geometry processing [10].

Charpiat et al. [11] discuss shape averaging and shape statistics based on the
notion of the Hausdorff distance of sets. They propose to use smooth approxi-
mations of the Hausdorff distance based on a comparison of the signed distance
functions of shapes. The approach by Eckstein et al. [12] is conceptually related.
They consider regularized geometric gradient flow for the warping of surfaces.
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There are a variety of approaches which consider shape space as an infinite-
dimensional Riemannian manifold. Michor and Mumford [13] gave a correspond-
ing definition exemplified in the case of curves. Younes [14] considered a left
invariant Riemannian distance between planar curves. Miller and Younes gener-
alized this concept to the space of images [15]. Klassen and Srivastava [16] pro-
posed a framework for geodesics in the space of arclength parametrized curves
and suggested a shooting type algorithm for the computation, whereas Schmidt
et al. [4] presented an alternative variational approach.

Dupuis et al. [17] and Miller et al. [18] defined the distance between shapes
based on a flow formulation in the embedding space. The underlying motion fields
v are globally defined, and as Riemannian metric they considered

∫
Ω
Lv · v dx,

where L was chosen as a higher order elliptic operator [19, 14]. This operator
ensures sufficient regularity along paths of finite length and thus implies a dif-
feomorphic property for the flow map φ generated via integration of the motion
fields v.

Fuchs et al. [2] proposed a Riemannian metric on shape space motivated by
linearized elasticity, leading to the same quadratic form (1), which is in their
approach evaluated on a displacement field. They used a B-spline parametriza-
tion of the shape contour together with a finite element approximation for the
displacements on an accompanying triangulation of one of the two objects. Due
to the linearization this approach is not rigid body motion invariant, and they
do not consider a hierarchical treatment. The explicitly parametrized shapes on
a geodesic path share the same topology. A Riemannian metric in the space of
surface triangulation in 3D of fixed mesh topology has been investigated by Kil-
ian et al. [20], where an inner product of deformations fields as the underlying
metric measures the local distance from a rigid body motion.

1.2 Key contributions

Key contributions of our approach are: • The presented time discretization
strictly ensures rigid body motion invariance and a 1-1 mapping property. •
The implicit treatment of shapes via level sets allows for topological transitions
and enables to compute geodesics in the context of partial occlusion. • Robust-
ness and effectiveness of the algorithm is ensured via a cascadic multi–scale
relaxation strategy. • The approach mathematically rigorously links consecutive
pairwise shape matching and a flow perspective on a Riemannian shape space. •
A formal connection between physics-motivated and geometry-motivated shape
spaces is provided, with an intuitive physical interpretation of the framework.

2 Variational time discretization: Preamble and the
discrete geodesic model

In this section, we present the time discretization of a geodesic path in shape
space, whereas the induced Riemannian distance will be investigated in Sec. 3.
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We do not consider a purely geometric notion of shapes as curves in 2D or sur-
faces in 3D. In fact, motivated by physics, we consider shapes S as boundaries
∂O of sufficiently regular, open object domains O ⊂ Rd for d = 2, 3.
Discrete path in shape space. Given two shapes SA, SB , we define a discrete path
of shapes as a sequence of shapes S0, S1, . . . , SK with S0 = SA and SK = SB .
For the time step τ = 1

K the shape Sk is supposed to be an approximation of
S(tk) (tk = kτ), where S(t), t ∈ [0, 1], is a continuous path connecting SA = S(0)
and SB = S(1), e. g. a geodesic between these two shapes (continuous results
will be presented in the next section).
Pairwise deformations between consecutive shapes. Now, we introduce a match-
ing deformation φk for each pair of consecutive shapes Sk−1 and Sk such that
φk(Sk−1) = Sk, and a corresponding deformation energy

Edeform[φk,Sk−1] =
∫
Ok−1

W (Dφk) dx , (2)

where W is an energy density (cf. [21]). As in the axiom of elasticity, the energy
is assumed to depend only on the local deformation, reflected by the Jacobian
Dφ. But different from elasticity, we suppose the material to relax immediately
so that the object at the next time step is again in a stress-free configuration.
Let us emphasize that the stored energy does not depend on the deformation
history as in most plasticity models in engineering. If we postulate as funda-
mental assumption on the time discretization the invariance of the deformation
energy with respect to rigid body motions,1 i. e.

Edeform[Q ◦ φk + b,Sk−1] = Edeform[φk,Sk−1] (3)

forQ ∈ SO(d) and b ∈ Rd (the axiom of frame indifference in continuum mechan-
ics), one deduces that the energy density only depends on the first Cauchy–Green
deformation tensor DφTDφ (which geometrically represents the metric measur-
ing the deformed length in the reference configuration), i. e. W (A) = W̄ (ATA)
for some W̄ . Now, we assume that the deformation is chosen such that the Hes-
sian at the identity coincides with the desired local dissipation rate or metric
tensor (1) (cf. Sec. 3). For an isotropic material the energy can be rewritten
as a function solely depending on the principal invariants of the Cauchy–Green
tensor, namely I1 = tr(DφTDφ), controlling the local average change of length,
I2 = tr(cof(DφTDφ)) (cofA := detAA−T ), reflecting the local average change
of area, and I3 = det (DφTDφ), which controls the local change of volume. Fur-
thermore let us assume that the energy is a convex function of Dφ, cofDφ, and
detDφ and that isometries, i. e. deformations with DφT(x)Dφ(x) = 1, are local
minimizers [7] (Fig. 4 provides an example of good local isometry preservation).
A template in this class of energy densities is W̄ = α1I

p
2
1 + α2I

q
2
2 + Γ (I3) with

p > 0, q ≥ 0, α1, α2 > 0, and Γ convex. Indeed, by straightforward computation
one verifies that for any dissipation rate (1), there is a nonlinear energy density

1 Our general framework can be extended to other invariances as well.
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of the above type such that the dissipation rate is the corresponding Hessian. In
our computations this energy was chosen so that λ

µ = 3. A built-in penalization

of volume shrinkage, i. e. Γ I3→0−→ ∞, ensures local injectivity [22], and thus the
sequence of deformations φk linking objects Ok−1 and Ok actually represents
homeomorphisms (rigorously proved for deformations with finite energy under
mild assumptions for sufficiently large p, q, certain growth conditions on Γ , and
very soft instead of void material on Ω\O with Dirichlet boundary conditions on
∂Ω). Let us remark that self-contact at the boundary is still possible, so that the
mapping from Sk−1 = ∂Ok−1 to Sk = ∂Ok does not have to be homeomorphic.
By interpreting such self-contact as a closing of the gap between two object edges
in the sense that the viscous material flows together, this will indeed allow for
certain topological transitions along a discrete path in shape space [7] (cf. Fig. 1
for an example). Based on these mechanical preliminaries we can now define a
time discrete geodesic path.

Definition (Discrete Geodesic). A discrete path S0, S1, . . . , SK connecting two
shapes SA and SB is a discrete geodesic, if there exists an associated fam-
ily of deformations φk with φk(Sk−1) = Sk which minimizes the total energy∑K
k=1 Edeform[φk,Sk−1].

Relaxed formulation of the consecutive matching. Computationally, the con-
straint φk(Sk−1) = Sk for a 1-1 matching of consecutive shapes is difficult to
treat and non-robust (e. g. , not allowing for the handling of noise). Hence, we
utilize a relaxed formulation adding a mismatch penalty

Ematch[φk,Sk−1,Sk] = vol(Ok−14φ−1
k (Ok)) , (4)

where A4B = A \B ∪B \A defines the symmetric difference between two sets.
One might want to further restrict the set of possible shapes Sk along a discrete
geodesic adding an additional surface energy term Earea[S] =

∫
S da. Finally, we

end up with the total discrete energy

Eτ [(φk,Sk−1,Sk)k=1,...,K ]

=
K∑
i=1

(1
τ
Edeform[φk,Sk−1] + ηEmatch[φk,Sk−1,Sk] + ντEarea[Sk]

)
, (5)

where η, ν are parameters, and a minimizer of this energy describes a relaxed
discrete geodesic path between two shapes SA and SB .

Fig. 4. Discrete geodesic for two different examples from [2] and [23] where the local
rate of dissipation is color-coded as . In the right example the local preservation
of isometries is clearly visible, whereas in the left example stretching is the major effect.
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3 Viscous fluid model in the limit for τ → 0

We now investigate the relation of the above-introduced relaxed discrete geodesic
paths and a time continuous model for geodesics in shape space.

At first, let us derive from a time discrete sequence of deformations (φk)k=1,...,K

and shapes (Sk)k=0,...,K a time continuous deformation field φτ , a corresponding
motion field vτ , and a continuous path Sτ in shape space:

vτ (t) :=
1
τ

(φk − 1) , (6)

φτ (t) := (1 + (t− tk−1)vτ ) ◦ φk−1 ◦ . . . φ1 , (7)
Sτ (t) := (1 + (t− tk−1)vτ )(Sk−1) , (8)

for t ∈ [tk−1, tk). If we now let τ → 0 and assume that Sτ (t)→ S(t) for a regular
family of shapes (S(t))0≤t≤1 and that vτ (t)→ v(t) with an induced sufficiently
regular flow (φ(t))0≤t≤1 with φ̇ = v, the following limit behavior can be observed:
The first term in the global discrete energy representing the deformation energy
(2) turns into a time continuous dissipation functional,

Diss[v] =
∫ 1

0

∫
O(t)

Cε[v] : ε[v] dxdt , (9)

where C=2 Hess W̄ , ε[v]= 1
2 (DvT +Dv), and A :B = tr(ATB) for A,B ∈ Rd×d.

To see this, we observe that Dφτ (t)TDφτ (t) = 1 + 2(t − tk) ε[vτ (t)] + O(τ2)
for t ∈ [tk, tk+1), and by second order Taylor expansion of W̄ at the identity,
W̄ (DφTDφ) = τ2Cε[v] : ε[v]+O(τ3). Here, we have used the fact that W̄ attains
its minimum 0 at the identity. Thus, the resulting Riemannian structure given
by the rate of dissipation is indeed associated with the Hessian of our in general
nonlinear deformation energy at the identity. For the well-known exemplary
metric (1), the length control based on the first invariant I1 of Dφτ turns into
the infinitesimal length control via tr(ε[v]2), and the volume control based on the
third invariant I3 of Dφτ turns into the control of compression via tr(ε[v])2 (cf.
Fig. 5 for the impact of these two terms on the shapes along a geodesic path).
In the limit the term for the mismatch energy (4) converges to an optical flow

Fig. 5. Two geodesic paths between dumb bell shapes varying in the size of the ends. In
the left example the ratio λ/µ between the parameters of the dissipation is 0.01 (leading
to rather independent compression and expansion of the ends since the associated
change of volume implies relatively low dissipation), and 100 in the right example
(now mass is actually transported from one end to the other). The underlying texture
on the shape domains O0, . . . ,OK−1 is aligned to the transport direction, and the
absolute value of the velocity v is color-coded as .
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type energy

EOF =
∫

S
t∈[0,1](t,S(t))

∣∣(1, v(t))T · nS(t)

∣∣ da , (10)

where nS(t) denotes the normal on the shape tube
⋃
t∈[0,1](t,S(t)) in space time

and (1, v(t)) is the underlying space time motion field (cf. L1 type optical flow
functionals like in [25]). To see this, we have to consider vol(Ok−14φ−1

k (Ok)) as
the time discrete mismatch induced by a motion field vτ which is not consistent
with the actual time discrete flow of the shape Sτ . Indeed, (1, vτ )T·nSτ is the local
rate with which (1+ (t− tk−1)vτ )(Sk−1) and the tube of shapes

⋃
t∈[0,1](t,S(t))

diverge on the time interval [tk−1, tk).
The third term of the global energy measuring the shape perimeter turns into
the time integral over the perimeter. Finally, as Sτ (t)→ S(t) and vτ (t)→ v(t),
the energy converges against

E [v,S] = Diss[v] + η EOF[v,S] + ν

∫ 1

0

Earea[S(t)] dt . (11)

The convergence of the time-discrete energy functional (5) for τ → 0 in the sense
of Γ -convergence involves further considerations and is not treated here. In the
limit η →∞, the optical flow term will act as a mere penalty which ensures that
the family of shapes S(t) is exactly generated by the flow associated with v(t).
In this case and if we set ν = 0, Diss[v] indeed represents the first fundamental
form for the desired Riemannian metric. Thus, the notion of our time discrete
geodesics is consistent with this both geometrically and physically sound time
continuous geodesic path model in a Riemannian shape space.

4 Regularized level set approximation

To numerically solve the minimization problem for the energy (5), we assume the
object domains O to be represented by zero super level sets {x ∈ Ω : u(x) > 0}
of a scalar function u. Similar representations of shapes have been used for
shape matching and warping in [26, 11]. We follow the approximation proposed
by Chan and Vese [27] and encode the partition of the domain into object and
background in the different energy terms via a regularized Heaviside function
Hε(uk). As in [27] we consider the function Hε(x) := 1

2 + 1
π arctan

(
x
ε

)
, where ε

is a scale parameter representing the width of the smeared-out shape contour.
Hence, the mismatch energy is replaced by the approximation

Eεmatch[φk, uk−1, uk]=
∫
Ω

(Hε(uk(φk))−Hε(uk−1))2dx, (12)

and the area of the kth shape Sk is replaced by the total variation Eεarea[uk] =∫
Ω
|∇Hε(uk)|dx of Hε ◦ uk. With respect to the deformation energy we assume

that the whole computational domain is deformed, but with a material which
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is several orders of magnitude softer on the complement set Ω \ Ok than inside
Ok. Hence, the elastic energy (2) is replaced by the energy

Eε,δdeform[φk, uk−1]=
∫
Ω

((1−δ)Hε(uk−1)+δ)W (Dφk)dx, (13)

where δ = 10−4 in our implementation. Let us emphasize that in the energy
minimization algorithm, the guidance of the initial zero level lines towards the
final shapes relies on the nonlocal support of the regularized Heaviside function
(cf. [28]). Finally, we end up with the approximation of the total energy,

Eε,δτ [(φk, uk)k]=
K∑
k=1

(1
τ
Eε,δdeform[φk, uk−1]+ηEεmatch[φk, uk−1, uk]+ντEεarea[uk]

)
.(14)

In our applications we have chosen η = 200 and ν = 0 except for Fig. 7, where
ν = 0.005. The essential formulas for the variation of the energy can be found
in the appendix.

5 Finite element discretization in space

For the spatial discretization of the energy Eε,δτ in (14) the finite element method
has been applied. The level set functions uk and the different components of the
deformations φk are represented by continuous, piecewise multilinear (trilinear
in 3D and bilinear in 2D) finite element functions Uk and Φk on a regular grid
superimposed on the domain Ω = [0, 1]d. For the ease of implementation we
consider dyadic grid resolutions with 2L+ 1 vertices in each direction and a grid
size h = 2−L. In 2D we considered L = 7, . . . , 10 and in 3D L = 7.
Single level minimization algorithm. For fixed time step τ and fixed spatial grid
size h, let us denote by Eε,δτ,h[(Φk, Uk)k] the discrete total energy depending on
the set of K discrete deformations Φ1, . . . , ΦK and K + 1 discrete level set func-
tions U0, . . . , UK , where U0 and UK describe the shapes SA and SB and are
fixed. This is a nonlinear functional both in the discrete deformations Φk (due
to the concatenation Uk ◦ Φk with the discrete level set function Uk and the
nonlinear integrand W (·) of the deformation energy Eε,δdeform) and in the discrete
level set functions Uk (due to the concatenation with the regularized Heaviside
function Hε(·)). In our energy relaxation algorithm for fixed time step and grid
size, we consider a gradient descent approach. We constantly alternate between
performing a single gradient descent step for all deformations and one for all
level set functions. The step sizes are chosen according to Armijo’s rule. This
simultaneous relaxation with respect to the whole set of discrete deformations
and discrete level set functions, respectively, already outperforms a simple non-
linear Gauss-Seidel type relaxation (cf. Fig. 3). Nevertheless, the capability to
identify a globally optimal shortest path between complicated shapes depends
on an effective multi–scale relaxation strategy (see below).
Numerical quadrature. Integral evaluations in the energy descent algorithm are
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performed by Gaussian quadrature of third order on each grid cell. For various
terms we have to evaluate pushforwards U ◦Φ of a discretized level set function
U or a test function under a discretized deformation Φ. In our algorithm, this
evaluation is performed exactly at the quadrature points.
Cascadic multi–scale algorithm. The variational problem considered here is highly
nonlinear, and for fixed time step size the proposed scheme is expected to have
very slow convergence; also it might end up in some nearby local minimum. Here,
a multi-level approach (initial optimization on a coarse scale and successive re-
finement) turns out to be indispensable in order to accelerate convergence and
not to be trapped in local minima far from the global minimum. Due to our
assumption of a dyadic resolution 2L + 1 in each grid direction, we are able to
build a hierarchy of grids with 2l+1 nodes in each direction for l = L, . . . , 0. Via
a simple restriction operation we restrict every finite element function to any of
these coarse grid spaces. Starting the optimization on a coarse grid, the results
from coarse scales are successively prolongated onto the next grid level for a
refinement of the solution [29]. Hence, the construction of a multigrid hierarchy
allows to solve coarse scale problems in our multi-scale approach on coarse grids.
Since the width ε of the diffusive shape representation Hε ◦ uk should naturally
scale with the grid width h, we choose ε = h.
On a 3 GHz Pentium 4, still without runtime optimization, 2D computations for
L = 8 and K = 8 require ∼ 1 h. Based on a parallelized implementation we
observed almost linear scaling.

6 Further results and generalizations

We have computed discrete geodesic paths for 2D and 3D shape contours. The
method is both robust and flexible due to the underlying implicit shape descrip-
tion via level sets (cf. Fig. 1 and Fig. 6). Indeed, neither topologically equivalent
meshes on the initial shapes are required, nor need the shapes themselves be
topologically equivalent. In addition, we can easily restrict the approach to the
submanifold of 2D area or 3D volume preserving objects based on a predictor
corrector scheme. Fig. 7 shows an example of two different geodesics between
the letters X and M, demonstrating the impact of the term Earea controlling the
d− 1 dimensional area of the shapes.

Fig. 6. Geodesic path between the cat and the lion, with the local rate of dissipation
on the shapes S0, . . . ,SK−1 color-coded as (top) and a transparent slicing plane
with texture-coded level lines (bottom).
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Fig. 7. Geodesic paths between an X and an M, without a contour length term (ν = 0),
allowing for crack formation, (top rows) and with this term damping down cracks and
rounding corners (bottom rows). In the bottom rows we additionally enforced area
preservation along the geodesic.

Fig. 8. A discrete geodesic connecting different poses of a matchstick man can be
computed (from left to right starting with the second), even though part of one arm
and one leg of S0 (left) are occluded.

In many shape classification applications, one would like to evaluate the
distance of a partially occluded shape from a given template shape. As a proof
of concept, Fig. 8 depicts a corresponding discrete geodesic path. This requires
a minor modification of our model, i. e. solely for k = 0 in Eεmatch we insert a
smooth function as a mask for S0.
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Fig. 9. Left: Pairwise geodesic distances between (also topologically) different letter
shapes. Obviously, the Bs and Xs form clusters, and these two clusters are closer to
each other than the significantly distant M. Right: Pairwise geodesic distances between
different scanned 3D feet (data courtesy of adidas). Despite being geometrically fairly
close, the computed geodesic distance allows to single out the fourth foot as being
significantly farther away from the other three, which are almost at equal distance,
even though feet 1 and 4 are of equal volume and feet 2 and 3 have 13 % less volume.

Furthermore, we evaluated distances between different 2D letters based on
the discrete geodesic path length. The resulting clustering is shown in Fig. 9 left.
Finally, in Fig. 9 right we studied distances between four different foot level sets
converted from 3D scans. Surprisingly, the observed clustering is different from
the criterion based on the enclosed volume.



13

7 Conclusions and future work

We have proposed a novel variational time discretization of geodesics in shape
space. The key ingredients are the 1-1 mapping property between consecutive
time steps and the rigid body motion invariance. The approach is physically mo-
tivated and based on measuring flow-induced dissipation in the interior of shape
contours. The proposed formulation allows to weight the effect of the local change
of length and volume separately, leading to significantly different geodesic paths.
Both physically and with respect to the shape description, geodesic paths can un-
dergo certain topological transitions. A cascadic multi–scale relaxation strategy
renders the computation robust and effective. Future generalization of the model
might deal with the incorporation of prior statistical knowledge and the space
of general image morphologies. Furthermore, we would like to rigorously investi-
gate the time discrete to time continuous limit via the concept of Γ convergence.
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Appendix. Here, we give explicit formulas for the variation of the different energy
contributions in directions of the unknown functions uk (k = 1, . . . ,K − 1) and φk
(k = 1, . . . ,K), required in the numerical implementation. Let us denote by 〈δwE , ϑ〉 a
variation of an energy E with respect to a parameter function w in a direction ϑ. Using
straightforward differentiation, for sufficiently smooth uk and φk we obtain

〈δφkE
ε
match[φk, uk−1, uk], ψ〉 = 2

Z
Ω

(Hε(uk◦φk)−Hε(uk−1)) δε(uk◦φk)∇uk◦φk ·ψ dx ,

〈δuk−1E
ε
match[φk, uk−1, uk], ϑ〉 = −2

Z
Ω

(Hε(uk ◦ φk)−Hε(uk−1)) δε(uk−1)ϑ dx ,

〈δukE
ε
match[φk, uk−1, uk], ϑ〉 = 2

Z
Ω

(Hε(uk ◦ φk)−Hε(uk−1)) δε(uk ◦ φk)ϑ ◦ φk dx ,

〈δφkE
ε,δ
deform[φk, uk−1], ψ〉 =

Z
Ω

((1− δ)Hε(uk−1) + δ)W,A(Dφk) : Dψ dx

for test functions ϑ and test displacements ψ, where W,A denotes the derivative of W

with respect to its matrix argument. For the variation of Eεarea[uk] we refer to [27].
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