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Osteoporosis is a widely spread disease with severe consequences for patients
and high costs for health care systems. The disease is characterised by a loss of
bone mass which induces a loss of mechanical performance and structural integrity.
It was found that transverse trabeculae are thinned and perforated while vertical
trabeculae stay intact. For understanding these phenomena and the mechanisms
leading to fractures of trabecular bone due to osteoporosis, numerous researchers
employ micro-finite element models. To avoid disadvantages in setting up classical
finite element models, composite finite elements (CFE) can be used.

The aim of the study is to test the potential of CFE. For that, a parameter study
on numerical lattice samples with statistically simulated, simplified osteoporosis is
performed. These samples are subjected to compression and shear loading.

Results show that the biggest drop of compressive stiffness is reached for transverse
isotropic structures losing 32% of the trabeculae (minus 89.8% stiffness). The biggest
drop in shear stiffness is found for an isotropic structure also losing 32% of the
trabeculae (minus 67.3% stiffness).

The study indicates that losing trabeculae leads to a worse drop of macroscopic
stiffness than thinning of trabeculae. The results further demonstrate the advantages
of CFEs for simulating micro-structured samples.
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1 Introduction

Osteoporosis is a widely spread disease [RSN+
95] characterised by a loss of bone mass which

induces a loss of stiffness and structural integrity [KOJ05, MM01].
Numerous researchers investigated the mechanical properties of trabecular bone using voxel-

based micro finite element models (µFE) models [MHR94, GK02, vRHER03, MYK05, TWV+
06,

WWKL07, CPA+
07]. Direct conversion of voxels gained from computed tomography into

a hexahedral FE mesh is a robust method but results in a rough mesh with nonsmooth
surfaces. Subsequent smoothing [BM06] can lead to distorted elements and thus possibly to
a corruption of the results. Generating “good” tetrahedral meshes is a nontrivial problem
[BE92, TW00, She02]. Moreover, they are inherently unstructured. This prohibits the application
of geometric multigrid methods [Bra77, Xu89, BR02] for efficient numerical computation.

To overcome these disadvantages in classical µFE models, composite finite elements (CFE)
introduced in [HS97b, HS97a, HS98] can be used. A 3D implementation in case of an image
based domain description is presented in [LPR+

09, PRS07].
In contrast to µFE models of trabecular structures, [YK99, GK02, DSG05, DSMG07] pro-

posed lattice models to simulate osteoporotic and nonosteoporotic trabecular bone by varying
trabecular thickness, spacing or random material removal. Compared to lattice models, the
volume-based CFE approach permits a much better resolution of the elastic behaviour at
trabecular crossings.

This study aims to test the potential of CFE on parameter studies on artificial lattice samples
with statistically simulated, simplified osteoporosis. These samples are meant to investigate the
influence of structural changes, such as degradation or thinning of trabeculae on the macroscopic
stiffness, being one influence factor (among others) on biomechanical stability.

2 Materials and Methods

2.1 Geometries of Samples

We consider artificial micro-structured, elastic specimens consisting of equidistant 10× 10× 10
rods with circular cross section with diameter d = 0.134 mm [HLM+

99] and length l = 0.335 mm
for the starting configuration. These specimens represent one cell of a periodic micro-structure
big enough for determining macroscopic material parameters [HJMH88].

Displacement boundary conditions are applied to all free trabecular ends on two opposite
faces of the bounding box: The bottom face is clamped so that the displacement is zero. The top
face is loaded separately with a displacement in longitudinal direction (compression in z) or
in a transverse direction (shear in x), both by 1% of the edge length of the sample. We do not
impose displacement boundary conditions on the remaining four side faces.

All trabeculae in one space direction have the same diameter, so the sample is fully described
by triples of trabecular diameter-to-length ratios d/l. Similarly, the entries of the degradation
ratio triples p specify the ratio of trabeculae (up to integer rounding) randomly removed in each
space direction.

2.2 Composite Finite Elements

We use CFE for our simulations [HS97b, HS97a, HS98] and use the implementation of discreti-
sation and solver for three-dimensional problems as described by [LPR+

09, PRS07].
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Table 1: Sample geometries (3× 3× 3 trabeculae) with diameter-to-length ratios (cf. Section 2.1)
d/l = (0.4, 0.4, 0.4) (upper table) and d/l = (0.2, 0.2, 0.4) (lower table) are resolved at
different resolution corresponding to 0.6/1.2 to 34.2/68.4 grid cells per trabecula. The
tables show the computational resolution, the number of degrees of freedom used in
the computation, the amount of memory used for storing the matrix of the system of
equations and the total memory requirement for the simulation (also including object
description, matrix, data vectors and multigrid solver). Results obtained at resolution 93

to 2573 are compared to the 5133 results, considering the fraction of volume segmented,
and a root mean square (RMS) error of the displacement for compression and shear
simulations, relative to the imposed displacement of 0.01.

Isotropic Diameters d/l = (0.4, 0.4, 0.4)
resolution # DOF matrix memory total memory volume fraction RMS error RMS error

in MB in MB (compression) (shear)
93 1 665 0.88 5.06 0.883848 0.055986 0.027218

173 10 635 5.95 15.99 0.978967 0.015301 0.016932
333 55 365 36.51 78.78 0.992375 0.007203 0.011090
653 329 163 167.50 385.66 0.997552 0.003150 0.004636

1293 2 227 491 770.87 2 121.34 0.999344 0.001287 0.001877
2573 16 118 895 3 757.56 12 141.17 0.999868 0.000443 0.000561
5133 122 019 597 20 211.29 79 944.99 1.0 0.0 0.0

Thin Transverse Diameters d/l = (0.2, 0.2, 0.4)
resolution # DOF matrix memory total memory volume fraction RMS error RMS error

in MB in MB (compression) (shear)
93 1 395 0.88 4.52 0.841816 0.0401753 0.033242

173 8 163 5.94 14.50 0.978785 0.0175723 0.014527
333 39 789 33.27 70.07 0.992192 0.0066041 0.010219
653 213 309 148.69 343.03 0.997183 0.0029428 0.004587

1293 1 358 175 677.20 1 926.19 0.999167 0.0014859 0.001654
2573 9 562 185 3 360.91 11 341.66 0.999823 0.0006160 0.000510
5133 71 219 541 18 606.01 76 716.81 1.0 0.0 0.0

CFE use degrees of freedom located on a uniform hexahedral grid consisting of cubes,
effectively on the same grid on which the geometric shape of the elastic structure is described
via a level set function [OS88]. Cubes are divided into six tetrahedra on which standard
piecewise affine basis functions are adapted to CFE basis functions to reflect the actual domain
boundary. The underlying uniform hexahedral grids contain canonical coarse scales, permitting
to use the multigrid solver described in [LPR+

09].

2.3 Computational Resolution

As a preliminary simulation we consider two less complex samples (3× 3× 3 trabeculae without
degradation; similar to [SWWR08]) over a wide range of resolutions (see Table 1). A relative
root mean square error of less than 0.01 for the displacement in case of compression is obtained
at 333 resolution, corresponding to 2.13 and 4.26 voxels per trabecular diameter for d/l = 0.2
and 0.4, respectively. Hence we consider computational grids with 1293 nodes (corresponding
to 5.12 and 2.56 voxels per trabecular diameter) sufficient for 10× 10× 10 objects. For this
resolution, our c++ CFE code can be run on a standard desktop PC.
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2.4 Linearised Elasticity

As a description for linearised elasticity, we use the Lamé-Navier model with constants
λ = 9.779 GPa and µ = 5.038 GPa of the trabecular tissue. These correspond to a Young’s
modulus E = 13.4 GPa [RTP97], and according to the variations in [RTP97, LKHG98] we use a
Poisson’s ratio ν = 0.33.

3 Results

Maximum loss of compressive stiffness of 89.8% is obtained for specimens with transverse
isotropic diameters subjected to isotropic degradation. For shear, maximum loss of initial stiff-
ness of 67.3% is reached for an isotropic structure subjected to isotropic degradation. Changing
degradation from isotropic, to mainly transverse, to only transverse reduces the maximum loss
of compressive stiffness from 76.6% to 50.3% to 6.3% for structures with trabecular diameter-to-
length ratio (cf. Section 2.1) d/l = (0.4, 0.4, 0.4) and from 89.8% to 66.5% to 2.1% for structures
with d/l = (0.2, 0.2, 0.4). In the shear case, the above changes reduce the maximum losses in
stiffness from 67.3%, 52.1% to 35.8% for structures with d/l = (0.4, 0.4, 0.4) and from 66.3% to
48.6% to 32.4% for structures with d/l = (0.2, 0.2, 0.4) (Figure 1).
Varying the degradation from vertical direction over isotropic degradation to solely transverse
isotropic degradation shows rising compressive stiffnesses from 748.61, 1421.56 to 1951.25 MPa
for structures with d/l = (0.4, 0.4, 0.4) and from 295.17, 939.01 to 1700.77 MPa for structures
with d/l = (0.2, 0.2, 0.4). For shear stiffness this leads to a lower change in stiffness from 123.60
to 159.35 to 173.57 MPa for structures with d/l = (0.4, 0.4, 0.4) and from 31.14 to 40.97 to 44.24
MPa for structures with d/l = (0.2, 0.2, 0.4). (Figure 2).
Keeping constant isotropic degradation ratios (10%, 20%, 40%) and varying d/l ∈ [0.2, 0.7] for
the transverse trabeculae shows an increase in stiffness 244.86%, 354.12% and 746.26% for thick
transverse trabeculae compared to thin transverse trabeculae for the three degradation ratios
respectively (Figure 3).

4 Discussion

The main advantage of CFE over classical FE is the representation of the geometric complexity
of the specimen considered. By using uniform hexahedral grids (and treating the complicated
shape in the basis functions), efficient data storage and cache-optimal data retrieval are achieved
and all involved matrices have a uniform sparsity structure. Most importantly, geometric
multigrid solvers can be used for efficient computations. Given the level set representation of
the specimen, grid generation is a fully automatic and straightforward procedure and no global
irregular tetrahedral meshing or artificial mesh smoothing is necessary.

The study shows the dependence of the structure stiffness on the degradation statistics of
artificial lattice samples. The parameter study indicates that the worst drop of macroscopic
compressive stiffness is obtained for a structure with transverse isotropic trabecular diameter
under isotropic degradation of the trabeculae. The worst drop of shear stiffness is obtained for
an isotropic structure under isotropic trabecular degradation with little difference to a transverse
isotropic structure (Figure 1).
The loss of macroscopic compressive stiffness in case of isotropic degradation is presumably
due to a loss in connectivity in all directions. This leads to lost support in loading direction
as well as support through the bending stiffness of transverse trabeculae. Thinner transverse
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Figure 1: The plots show the stiffness in MPa for degradation ratios β ∈ [0, 0.32] averaged
over n = 6 samples along with the standard deviations. For samples with diameter-
to-length ratios (cf. Section 2.1) d/l = (0.4, 0.4, 0.4) (solid lines) and samples with
diameter-to-length ratios d/l = (0.2, 0.2, 0.4) (dashed lines), we consider three different
scenarios of trabecular loss: isotropic degradation (degradation ratios p = (β, β, β),
top row), degradation mainly in transverse directions (p = (β, β, 0.5β), middle row)
and degradation only in transverse directions (p = (β, β, 0), bottom row). Results for
uniaxial compression is shown in the left column, uniaxial shear in the right column.
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Figure 2: The plots show the stiffness in MPa averaged over n = 6 samples along with the
standard deviations with varying degradation directions for uniaxial compression
(upper part) and shear (lower part). For two samples with isotropic diameters (diameter-
to-length ratios (cf. Section 2.1) d/l = (0.4, 0.4, 0.4), solid lines) and thinner diameters in
the transverse directions (d/l = (0.2, 0.2, 0.4), dashed lines) and a fixed overall degrada-
tion of 10% of the trabeculae, we vary the degradation anisotropy (degradation radios
p = (0.5β, 0.5β, 0.3− β), β ∈ [0.0, 0.3]) from degradation in longitudinal direction z
only to isotropic degradation to degradation in transverse directions x and y only.
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Figure 3: The plot shows stiffnesses in MPa averaged over n = 6 specimens along with the
standard deviations for uniaxial compression. We consider isotropic degradation of
10% (p = (0.1, 0.1, 0.1), cf. Section 2.1), solid line), 20% (p = (0.2, 0.2, 0.2), dotted line)
and 40% (p = (0.4, 0.4, 0.4), dashed line) where the radius of the transverse trabeculae
(d/l = (α, α, 0.4), α ∈ [0.2, 0.7]) is varied from slim diameter in the transverse directions
(α = 0.2) to isotropic diameters (α = 0.4) to thick diameter in the transverse directions
(α = 0.7).

trabeculae lead to a lower absolute stiffness (Figure 1). However, they have little influence on
the relative loss of stiffness. Interestingly, degrading the structures solely transversely has little
effect on the stiffness compared to isotropic degradation (Figure 1). This is more emphasised in
Figure 2 where a variation of the degradation direction from loading direction to transverse
direction reestablishes almost the initial stiffness.
Increasing the diameter of the transverse trabeculae results in rising macroscopic compressive
stiffness due to an increased cross sectional area of vertical trabeculae (Figure 3).

Only simplified trabecular structures were used. While using real bone samples would
have been more beneficial with respect to clinical questions, they are barely suitable for a
rigorous parameter study. Our elasticity model is limited to linear elasticity as nonlinearities at
microscopic level were not subject of this study.

Further work will include simulations for µCT-scanned samples of human vertebral trabecular
bone. In order to determine the full tensor of elasticity for the artificial and natural samples
described, a homogenisation procedure has been presented in [SWWR08]. Moreover, the concept
of CFEs will be generalised to the case of multi-phase materials with discontinuous material
parameter across geometrically complicated interfaces.
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