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1 Introduction

Very long pure carbon tube-like structures were first re-
ported by Iijima in 1991.1 These nanotubes (NT) can be
used to reinforce polymer composites. Because the bend-
ing stiffness of NTs is in the range of0.4–4TPa,2 they pos-
sess the potential for large increases in strength and stiffness
when compared to typical carbon-fiber-reinforced polymer
composites. In this work, we derive stress-strain curves
from molecular dynamics (MD) simulations of polyethy-
lene (PE) NT composites to predict their macroscopic elas-
tic moduli and compare them to the rule-of-mixtures.
In several earlier works, MD simulations have been suc-
cessfully applied to predict elastic properties of PE/NT
composites.3,4 So far, the application of strain has been ac-
complished by uniformly expanding the length of the simu-
lation cell and the coordinates of the atoms in the direction
of the deformation. Then, a MD simulation or a potential
energy minimization is performed to equilibrate the sys-
tem and to measure the corresponding stress. In the present
work, we carry out the application of strain by employing
a Parrinello-Rahman-Nosé Lagrangian to control stress and
temperature.5,6 We compute the stress-strain curves of three
periodic model-systems, an infinite(10, 10) carbon NT, a
capped(10, 10) carbon NT embedded in PE, and the PE
matrix itself. To model the bonded interaction within these
hydrocarbon systems, we use a many-body bond order po-
tential (REBO) due to Brenner7 with an additional van der
Waals term8 (model I). Alternatively, we model the PE ma-
trix by a united-atom potential9 and just the NT by Bren-
ner’s potential (model II). In both models, the nonbonded
interaction of the atoms is represented by a Lennard-Jones
potential. We exploit the slopes of the stress-strain curves
to derive different elastic moduli and constants.

2 Computational Methods

To obtain an isothermal-isobaric ensemble (NPT), we intro-
duce additional degrees of freedom to anN -particle con-
stant volume and constant energy ensemble (NVE) with
cartesian coordinates~xi, massesmi and a potentialV . We
define a time-dependent matrix̂h = [~a1,~a2,~a3] consist-
ing of the basis vectors of the simulation cell and re-scale
the coordinateŝ~si = ĥ−1~xi. We also re-scale the timet
by t̄ =

∫ t
0 γ(τ)dτ and obtain the velocities in the form

~̇xi(t̄) = γĥ
˙̂
~si(t). Then, we define the fictitious potentials

Pext det ĥ andNfkBT ln γ with the external pressurePext

and the target temperatureT , the system’s number of de-
grees of freedomNf and Boltzmann’s constantkB. Now a
so-called Parrinello-Rahman-Nosé Lagrangian can be pos-

tulated and an extended Hamiltonian

H =
1
2

N∑

i=1

~pT
~si

G~p~si

mi
+

1
2

tr(pT
h ph)

MP
+

1
2

p2
γ

MT

+ V (h, h~s1, . . . , h~sN ) + Pext deth + NfkBTη

(1)

with variables~si(t) := ~̂si(t̄), h(t) := ĥ(t̄), G := hT h, and
η(t) := ln γ(t̄), can be derived.5,6,10Here,MP andMT are
fictitious masses. The resulting equations of motion (EQM)
read as

~̇si =
~p~si

mi
, ḣ =

ph

MP
, η̇ =

pγ

MT
, (2)

~̇p~si
= −h−1∇~xi

V −G−1Ġp~si
− pγ

MT
p~si

, (3)

ṗh = (Πint − diag (Pext))h−T deth− pγ

MT
ph , (4)

ṗγ =
N∑

i=1

~pT
~si

G~p~si

mi
+

tr(pT
h ph)

MP
−NfkBT . (5)

Here, the internal stress tensorΠint can be written as

Πint =
1

deth

(
N∑

i=1

mih~si~s
T
i hT − d

d h
V

)
hT . (6)

To accomplish various tensile load cases, we use an addi-
tional external stress tensorΠext within the EQM (4)

ṗh = (Πint − diag (Pext) + Πext) h−T det h− pγ

MT
ph .

(7)
Additionally, we apply a constraint to get a symmetric dis-
placement matrixe = hh−1

equilibrated − 1, which then equals
the linear strain tensorε.
For the numerical solution of the system of the ordinary
differential equations (2)-(5), we employ the “predictor-
corrector” time integration scheme based on Beeman’s ap-
proach11 and later modified by Refson12, to solve the diffi-
culty of the velocity-dependent forces in the EQM (2)-(5).

3 Numerical Experiments

All tensile load tests are carried out atnormal conditions,
i.e. forT = 273.15K and forPext = 1.01325 · 10−4 GPa.
The fictitious masses are set toMT = 10.0 u Å2

and
MP = 10.0 u. We use a timestep of0.1 fs for model I
and0.2 fs for model II. We use a stress rate of0.01GPa/ps
in all tensile load test cases and measure the induced stress
π := −Πint and strainε. Details of the studied systems
are given in figure 1 and the derived elastic constants are
summarized in tables 1-3.



Fig. 1: We studied the following systems: (a) A PE matrix containing 9 chains of 1330CH2 units. (b) A6 nm capped(10, 10) NT embedded in 8 chains of 1420
CH2 units. Each of the NT caps consists of one halfC240 molecule. (c) A periodically replicated(10, 10) NT spanning the length of the unit cell embedded in 8
chains of 1095CH2 units. In all equilibrated systems the PE matrix has a density of approximately0.9 g/cm3. The volume fraction of the NT is approximately
2.8% for (b), and approximately6.5% for (c). Additionally, we computed a Young’s modulus of403.85GPa and a Poisson ratio a of0.23 for the NT of system (c).
Note that all materials are assumed to beorthotropic, thus the compliance matrix has only nine independent constants. The nanotubes are aligned parallel with the
third coordinate direction.

���� � �
�����
�
��� 	 	�
����  ��
���� � ����� ����� ����� ���� � ��
���� � ����� ����� ����� �� � � ����� ����� ����� �� � � ����� ����� �� � � �� 	 ����� � � � �

� ����
���
� ��
�����
�
��
 �� 
 �� ��� � ��� � ��� �� 
 �� ��� � ��� � ��� ��!��� � ��� � ��� ���" �$# ��&% ��� � � ��� �� � � ��" �$# ���% ��� ���" �$# ���%

� ����
�

Tab. 1: The computed compliance matrix of (a) model II has nearly isotropic form; right hand side
with modulus '(*) +,(.- / 0 01 132,465 7&8 and ratio '9 ) +;: 9 - / 0 0< < / 1 1>= 9 - / 0 0? ? / 1 1 @ ACBD2E465 F&F ; see table 3. Here, we
used the stress-strain relation
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the components of the compliance matrix
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Tab. 2: The compliance matrix
�

and the elastic constant matrix
�

for systems (b) and (c) for model II.
Here, we used the relation

�"!"�$#&%
to compute the elasticity matrix

�
from the matrix

�
.
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(a) I ��� ��� � ����� � � � ����� � � � � ��� � � � �
(a) II ��� � � � ����� � � � ����� � � ��� � � � � � �
(b) I � � � � � ����� � � � ����� � � � � ��� � � � �
(b) II � � � � � ����� � � � ����� � � � � ��� � � � �
(c) I � ��� � � ����� � � � � ��� � � � � � � � ��� �
(c) II � � � � � ����� � � � ����� � � � � ��� � � � �

Tab. 3: Elastic moduli and Poisson ratios of the studied systems for model I and
model II. Subjected to transverse loading conditions, the Young modulus of the com-
posite is in the range of the modulus of the matrix. Subjected to longitudinal loading
conditions, we see a modulus two times higher for (b) and approximately thirty times
higher for (c). For (c) the ROM gives a prediction of !#" $ %'& $ ( ) * +-,/. 0'132'4 for
model I and II. There is only a slight difference between model I and II, because no
forming or breaking of bonds takes place in these tensile simulations.

4 Concluding Remarks

The macroscopic rule-of-mixtures (ROM)

Ecomposite = ΩfiberEfiber + (1− Ωfiber)Ematrix (8)

holds for the long continuous nanotube, but fails for the
short fully embedded nanotube; see table 3. The simulation

results suggest the possibility to use nanotubes to reinforce
an appropriate matrix. They furthermore indicate that long
nanotubes should be used. For a fixed tensile loading di-
rection, the nanotubes should be aligned parallel with the
loading direction. For general kinds of loading directions,
very long nanotubes in random orientation will most likely
produce the best results.
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