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1 Introduction tulated and an extended Hamiltonian
Very long pure carbon tube-like structures were first re- 1 Y ﬁg;Gﬁgi ltr(pgph) 1 p?y

ported by lijima in 1991% These nanotubes\T) can be H= 2 2 m 2 Mp 2 My )
used to reinforce polymer composites. Because the bend- i=1

ing stiffness of NTs is in the range 64— TPa,? they pos- + V(h,h&1,...,hsN) + Pexg det h + NykpTn
sess the potential for large increases in strength and stiffnes . . - -

when compared to typical carbon-fiber-reinforced ponm\é{F‘ﬁ variabless; (t) := s;(t), h(tg o h(t), G := h'h, and
composites. In this work, we derive stress-strain curvéd) := In (%), can be derived:>*°Here,Mp and M7 are
from molecular dynamicsMD) simulations of polyethy- fictitious masses. The resulting equations of motQW)

lene PE) NT composites to predict their macroscopic elakead as

tic moduli and compare them to the rule-of-mixtures. . Ds, . Dh . Dry

In several earlier works, MD simulations have been suc- % = = h = My T My (2)
cessfully applied to predict elastic properties of PE/NT . o L Py
compositesi# So far, the application of strain has been ac- Ps; = —h VzV -G Gps, — Sy 3
complished by uniformly expanding the length of the simu- T P

lation cell and the coordinates of the atoms in the direction Pn = (it — diag (Pext)) h™ " det h — Miph , (4)
of the deformation. Then, a MD simulation or a potential T
energy minimization is performed to equilibrate the sys- . N }%Gﬁgi tr(plpn)

tem and to measure the corresponding stress. In the presenty = > P VA NykpT'. (5)
work, we carry out the application of strain by employing i=1 ’

a Parrinello-Rahman-Néd.agrangian to control stress an#liere, the internal stress tenddy,, can be written as
temperature.® We compute the stress-strain curves of three ) N p

periodic model-systems, an infinif@¢0, 10) carbon NT, a oo b 4 T
capped(10, 10) carbon NT embedded in PE, and the PE Mine = det h (; mihsis; th) e )

matrix itself. To model the bonded interaction within these ] ) ] ]
hydrocarbon systems, we use a many-body bond order f-a2ccomplish various tensile load cases, we use an addi-
tential REBQ due to Brennef with an additional van dertional external stress tenshg; within the EQM (4)

Waals ternf (model |). Alternatively, we model the PE ma- . _ ~
( D y Prn = (Hint _dlag (Pext) +Hext)h Tdeth— piph

trix by a united-atom potentidland just the NT by Bren- My

ner’s potential fnodel Il). In both models, the nonbonded @)
interaction of the atoms is represented by a Lennard-JoAdslitionally, we apply a constraint to get a symmetric dis-
potential. We exploit the slopes of the stress-strain curygacement matrix = hh;qluilibrate 4 — 1, which then equals

to derive different elastic moduli and constants. thelinear strain tensor.

For the numerical solution of the system of the ordinary
differential equations (2)-(5), we employ the “predictor-
To obtain an isothermal-isobaric ensemI)é{T), we intro- corrector” time integration scheme based on Beeman’s ap-
duce additional degrees of freedom to Arparticle con- proach?! and later modified by Refsdg, to solve the diffi-
stant volume and constant energy ensembl¥E) with culty of the velocity-dependent forces in the EQM (2)-(5).
cartesian coordinateg, massesn; and a potential/’. We _ .

define a time-dependent matrix = [, @, @] consist- 3 Numerical Experiments

ing of the basis vectors of the simulation cell and re-scal¢ tensile load tests are carried outrdrmal conditions
the coordinates; = h~17;. We also re-scale the time i.e. forT = 273.15K and forP.; = 1.01325 - 10~% GPa.

by ¢t = fg v(7)dr and obtain the velocities in the fornThe fictitious masses are set fdy = 10.0uA” and

: 10.0u. We use a timestep df.1fs for model |

2 Computational Methods

2 [N . e el . M =
%i(f) = yhsi(t). Then, we define the fictitious potential§ o ¢ for model Il. We use a stress ratebl GPa/ps

Pexi det h and NykgT In~y with the exterr,lal pressutx: in all tensile load test cases and measure the induced stress
and the target temperatu§ the system's number of de-r .— _11, . and straine. Details of the studied systems

grees of freedoniV; and Boltzmann's constaitz. Now & are given in figure 1 and the derived elastic constants are
so-called Parrinello-Rahman-Ne&agrangian can be poSsymmarized in tables 1-3.



Fig. 1: We studied the following systems: (a) A PE matrix containing 9 chains of €38 units. (b) A6 nm capped(10, 10) NT embedded in 8 chains of 1420

CH units. Each of the NT caps consists of one li&dfio molecule. (c) A periodically replicated 0, 10) NT spanning the length of the unit cell embedded in 8
chains of 1095CH> units. In all equilibrated systems the PE matrix has a density of approxintagedy/cm?. The volume fraction of the NT is approximately

2.8% for (b), and approximatel§.5% for (c). Additionally, we computed a Young’s modulus4tf3.85 GPa and a Poisson ratio a 6f23 for the NT of system (c).

Note that all materials are assumed todsthotropic, thus the compliance matrix has only nine independent constants. The nanotubes are aligned parallel with the
third coordinate direction.

077 —034 —-044 0.0 00 0.0 1 -0 -0 0.0 0.0 0.0 T .
. 080 045 00 00 00} Loy 00 00 00 results suggest the possibility to use nanotubes to reinforce
085 m 200 00| FE| 0 AR 00 (g_g) an appropriate matrix. They furthermore indicate that long
3.22 2(1+ o

nanotubes should be used. For a fixed tensile loading di-
rection, the nanotubes should be aligned parallel with the

Tab. 1: The computed compliance matrix of () model Il has nearly isotropic form; right hand side
with modulus & := E3" ~ 0.85 and ratio 5 := (v}{'s; + v3355)/2 ~ 0.44; see table 3. Here, we
used the stress-strain relation (£,;, €99, 2633, 2619, 2623)7 = S(711, Tan, T3, T12, Ta3)T tO cOMpute
the components of the compliance matrix 5.

System S C
124 -062 -021 00 0.0 0.0 1.29 073 071 0.0 0.0 0.0
127 -0.18 00 00 00 1.24 0.67 00 00 00
(b) 0.57 0.0 00 0.0 222 00 00 00
343 00 0.0 029 0.0 0.0
sym 527 0.0 sym 019 0.0
5.88 0.17
1.013 —0.351 —0.0087 0.0 0.0 0.0 1.14 044 035 00 00 00
0869 —0.0085 0.0 0.0 00 132 038 00 00 0.0
© 0.0393 0.0 00 00 2559 0.0 00 00
283 0.0 0.0 035 0.0 0.0
sym 7.47 0.0 sym 013 0.0
5.94 0.17

Tab. 2: The compliance matrix S and the elastic constant matrix C' for systems (b) and (c) for mode! I1.
Here, we used the relation C' = S~ to compute the elasticity matrix C' from the matrix S.

&/Stem Model FEs3 [GPa] V11,33 V22,33 Eqq [GPa]
@ | 0.6142  0.4850 04304 | 0.7100
@ I 0.8495  0.4394 04501 | 1.1034
(b) | 14777 0.2778 0.3532 0.6455
(b) I} 1.7422 0.3722 0.3215 0.8043
(©) | 23.395 0.2161 0.2795 1.1010
© I 25435  0.2222 0.2157 | 0.9868

Tab. 3: Elastic moduli and Poisson ratios of the studied systems for model | and
model 1. Subjected to transverse loading conditions, the Young modulus of the com-
posite isin the range of the modulus of the matrix. Subjected to longitudinal loading
conditions, we see amodulus two times higher for (b) and approximately thirty times
higher for (c). For (c) the ROM gives a prediction of E¢omposite & 27 GPa for
model | and II. Thereis only adlight difference between model | and 11, because no
forming or breaking of bonds takes place in these tensile simulations.

4 Concluding Remarks
The macroscopic rule-of-mixtureRQM)

(8)

Ecornposite = QﬁberE‘ﬁber + (1 - Qﬁber)E‘matrix

loading direction. For general kinds of loading directions,
very long nanotubes in random orientation will most likely
produce the best results.
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