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1 Introduction

The quality of crystalline silicon highly influences the qual-
ity of semiconductor devices fabricated with it. Grown-in
defects, such as octahedral voids or networks of large dis-
location loops can be detrimental to the functionality of de-
vices. Both type of defects result from the interaction of
intrinsic point defects, vacancies and self-interstitials dur-
ing growth and subsequent annealing of the crystal. In or-
der to qualitatively describe the formation of microdefects
in crystalline silicon, a detailed understanding of intrinsic
point defects is necessary.
Modeling of defect dynamics in silicon crystals during
growth requires the description of physical phenomena on
different length and time scales. Continuum balance equa-
tions are used to describe the distribution, transport and ki-
netic interactions of point defects, either vacancies or self-
interstitials, throughout the crystal as a function of the local
temperature.9 These equations contain highly temperature-
dependent material properties, which describe atomistic
events, such as the diffusion of a self-interstitial through the
silicon lattice or the recombination of a vacancy with a self-
interstitial. The absence of direct experimental measure-
ments of intrinsic point defect properties at high tempera-
tures make it necessary to compute these properties from
atomistic simulations based on empirical or semiempirical
atomistic models. Here, the microscopic quality of the crys-
tal is given by the intrinsic point defect concentration. In or-
der to understand the dynamics of these defects large scale
molecular dynamics simulations based on the potentials of
Stillinger-Weber and Tersoff are performed and the tem-
perature dependence of the diffusion coefficients for self-
interstitials and vacancies is computed.

2 Computational Method

Simple pair potentials like the Lennard-Jones interaction
are not sufficient for the simulation of covalent systems.
Here, Stillinger and Weber4 and Tersoff6–8 proposed new
empirical potentials consisting of two- and three-body
terms. Both potentials stabilize the diamond structure at
low pressure. Stillinger and Weber fitted the incorporated
parameters to give good agreement with experimental data
for the melting point and the liquid structure. The param-
eters of the Tersoff potential are fitted to correctly repro-
duce cohesive energies and the elastic properties of sili-
con. We use both potentials for molecular dynamics in the
(NVT)-ensemble to compute the diffusion coefficients of
self-interstitials and vacancies.
Macroscopic values in the canonical ensemble can be mea-

sured by averaging the microscopic values with the Boltz-
mann factor. In this sense the diffusion coefficient is di-
rectly related to the spatial motion of the particles. Einstein
first derived that the diffusion coefficientDI,V can be writ-
ten as

DI,V =
1
6

∂

∂t
〈(~xI,V (t0)− ~xI,V (t))2〉, (1)

where~xI,V (t) is the position of a particle (interstitial (I) or
vacancy (V)) at timet and〈.〉 denotes averaging with the
probability function. Since we cannot compute the average
without knowing the probability function, we use the alter-
native formulation

DI,V = lim
t→∞

1
6(t− t0)

(~xI,V (t0)− ~xI,V (t))2 (2)

and approximate this by

DI,V ≈ 1
6(t− t0)

(~xI,V (t0)− ~xI,V (t))2 . (3)

For t large enough this gives a good approximation to the
diffusion coefficient.
The procedure is now as follows: Starting from an initial
configuration of a perfect crystal with one self-interstitial or
vacancy, we perform a molecular dynamics run of several
nanoseconds at a given temperature in a periodic box. The
coupling to a heat bath is simulated by the Nosé thermo-
stat.2 The position of the single point defect is tracked over
time. Its identification is achieved by checking the local en-
vironment of each particle for variations from the perfect
tetrahedral structure. The resulting trajectory of the point
defect is afterwards corrected with respect to the periodic
boundary conditions and smoothed by a low-pass filter to
remove local fluctuations, see Fig.1 (left). From this data
the functionrI,V (t) = (~xI,V (t0)− ~xI,V (t))2 is computed,
Fig.1 (right). Linear regression results in an approximation
of the diffusion coefficient at this temperature according to
equation (3). As one can see in Fig.1 (right), large fluctu-
ations ofr(t) imply the necessity for molecular dynamic
runs with long time intervals in order to minimize the error.
The choice of the simulation parameters is therefore a com-
promise between large system sizes to reduce finite size ef-
fects and an acceptable computation time for the necessary
physical simulation time.

3 Numerical experiments

We decided to use a system size of 1000 particles in a
periodic box of length2.67nm, which is larger than that



Fig. 1: Left: The x-coordinate of the trajectory (points) of a self-interstitial and the x-coordinate of the periodically corrected trajec-
tory (dashed line). Right: FunctionrI(t) (solid line) and resulting linear fit (dashed line).

Fig. 2: Left: Diffusion coefficients for interstitials computed with Stillinger-Weber and Tersoff potential and linear fits. Right:
FunctionsDI(T ), comparison of our results with the results of M. Tang5, T. Sinno3 and D. Maroudas1.

used in most of the literature.1,3,5 This leads to a density of
2.44g/cm3 conforming to the specifications given in.4

The resulting diffusion coefficients for a self-interstitial at
several temperatures computed by the method described
above with either the Stillinger-Weber or the Tersoff po-
tential are shown in Fig.2 (left). Since the temperature de-
pendence of the diffusion coefficient is expected to show an
Arrhenius behavior

DI,V = D0
I,V e−Em

I,V /kBT (4)

with migration energyEm
I,V and diffusivity prefactorD0

I,V ,
we fit the logarithm of these data points to a straight line,
see Fig.2 (left). The results for a self-interstitial are

Stillinger-Weber: Em
I = 1.35eV D0

I = 0.72cm2/s
Tersoff: Em

I = 1.58eV D0
I = 0.19cm2/s.

As shown in Fig.2 (right), the values are in good agreement
with the ones found in the literature.1,3,5Such data can then
be used as input parameters for the macroscopic equations.

4 Concluding remarks

The temperature dependence of the diffusion coefficient for
a point defect in crystalline silicon computed by means
of molecular dynamics with two empirical potentials is in
agreement with the results found in the literature. Due to
the small number of data points so far, more simulations
have to be performed to stabilize the results, whereas the

uncertainty of each data point itself can only be minimized
by increasing the simulation time. The resulting more accu-
rate data can be used to transfer the point defect dynamics
on the atomistic level to the macroscopic process simula-
tion of silicon crystal growth. This can result in an opti-
mization of this process and the ability to produce crystals
of improved quality.
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