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Abstract

We present an equivalent formulation of the
Maximum Variance Unfolding (MVU) ap-
proach to nonlinear dimensionality reduction
in terms of distance matrices. This yields a
novel interpretation of the MVU problem as a
regularized version of the shortest path prob-
lem on a graph. This interpretation enables
us to establish an asymptotic convergence re-
sult for the case that the underlying data are
drawn from a Riemannian manifold which
is isometric to a convex subset of Euclidean
space.

1 Introduction

Problems related to high-dimensional data arise in
many areas of science and engineering. Since a major
part of practically relevant algorithms for classifica-
tion, regression, and clustering suffer from the so-called
curse of dimensionality, the necessity arises to exploit
the fact that many of these high-dimensional data sets
are intrinsically low-dimensional, i.e., may be described
by few parameters. The goal of dimensionality re-
duction consists in recovering such low-dimensional
parametrizations empirically. A classical approach to
dimensionality reduction is Principal Component Anal-
ysis (PCA) [Hot33], which, however, assumes, that, up
to noise, the data lie in a linear submanifold, so that
it fails to recover the correct dimensionality of data
residing in nonlinear structures. Therefore, the prob-
lem of nonlinear dimensionality reduction (NLD) has
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been drawing the attention of researchers, especially in
recent years several new approaches were introduced.

Technically, in an NLD task, we are given a finite
number of data points in high-dimensional Euclidean
space that are assumed to reside in a low-dimensional
submanifold. The goal consists in obtaining a low-
dimensional representation of the data which respects
the intrinsic geometry.

A major part of approaches to NLD is referred to as
spectral methods. These rely on establishing a kernel
matrix and eventually obtain a geometrically faithful
low-dimensional representation of the data through a
spectral decomposition of the former. What is partic-
ularly appealing about spectral methods is that the
computation may be carried out by means of linear al-
gebra rather than non-convex optimization, which is in-
volved in regression-based approaches such as principal
manifolds [SMSW01]. Examples of spectral methods
for NLD are IsoMap [TdSL00], Laplacian Eigenmaps
[BN03], Locally Linear Embedding [RS00], Local Tan-
gent Space Alignment [ZZ02], and Maximum Variance
Unfolding [WS06a, WS06b, WS04, WSS04, WSZS06].
Each of these approaches, however, brings along its
own notion of a geometrically faithful low-dimensional
representation of manifold data, and a unifying analysis
is a matter of ongoing research.

We will focus on Maximum Variance Unfolding (MVU),
a heuristic approach to nonlinear dimensionality re-
duction. Informally, the procedure may be outlined as
follows: As is the case in many NLD heuristics, the
first step consists in establishing a neighborhood rela-
tion on the sampled configuration, i.e., in determining
which sample points are close to each other in terms
of the intrinsic geometry. The desired low-dimensional
representation is then taken to be a configuration of
maximum variance amongst those that preserve the
distances corresponding to edges of the neighborhood
graph.
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Besides intuitive and empirical plausibility, little is
known about consistency of the method. Moreover,
an empirical study of the asymptotic behavior of the
procedure as the number of data points increases is
computationally intractable. Note that this will prevent
us from numerical studies in regard to the convergence
results we will derive.

In this paper, we shall discuss an equivalent formulation
of the MVU problem in terms of the distance matrix of
the sought-after configuration. This amounts to a con-
vex optimization problem over the cone of Euclidean
distance matrices. We shall show that by omitting the
constraint that the sought-after distance matrix be Eu-
clidean, one arrives at an optimization problem whose
unique optimizer is the distance matrix of the neighbor-
hood graph. This suggests the interpretation of MVU
as a regularized version of the shortest path problem on
the neighborhood graph, which, additionally, reveals
an unexpectedly intimate link to the IsoMap approach.
Furthermore, we refine this insight by revealing that
each optimizer of the MVU problem is also an op-
timal l1-approximation to the distance matrix of the
neighborhood graph. Equipped with these new insights
and the theory of graph approximations to geodesic
distances [TdSLB00] originally dedicated to IsoMap,
we eventually derive an asymptotic convergence result
restricted to the case that the underlying manifold
is isometric to a convex domain in Euclidean space.
Eventually, we shall argue that Laplacian Eigenmaps
(LE) may be equivalently stated as a slightly modified
version of MVU and briefly present some insights on
a non-Euclidean version of Colored MVU [SSBG08], a
weighted extension of MVU.

1.1 Related Work

To our knowledge, the connection between MVU and
the shortest path problem on a graph has not yet been
pointed out. We consider it, however, worth mentioning
that Boyd et al. [SBXD06, XSB06] derive a connection
between MVU and the problem of finding a fastest
mixing Markov process (FMMP) on a graph by means
of duality theory for semidefinite programming. This
insight establishes a connection between MVU and LE
which is fundamentally different from that pointed out
in this paper.

The technique employed here to derive an SDP formu-
lation of the shortest path problem parallels that in
[BT96, Section 2.2.4, p. 36 ff], where it is used in the
context of Markov decision processes.

Convergence of MVU is not discussed rigorously in
any literature we are aware of. The asymptotic result
presented in this paper is informally foreshadowed in
[XSB06], which has actually inspired our analysis.

The metric equivalence assumption underlying our con-
vergence result for MVU is justified by the convergence
result for graph approximations to geodesic distances
presented in [TdSLB00]. Interestingly, this result is
intended as a justification for IsoMap.

2 EDM-Formulations of Maximum
Variance Unfolding and IsoMap

2.1 Preliminaries

What follows are basic notations we shall use through-
out the paper when dealing with linear algebra or
differential geometry, respectively.

The symbolM refers to a (Riemannian) manifold, Ea to
a-dimensional Euclidean space as a specific Riemannian
manifold, dist to a metric, distM to the geodesic metric
on a Riemannian manifold. Furthermore, we use the
abbreviation distE for distEa when the dimension a
follows from the context.

We shall deal extensively with the subsequently defined
sets of matrices: SN denotes the space of symmetric
matrices of order N and SN�O the set of symmetric

positive semidefinite (SPSD) matrices of order N . Sim-
ilarly, SN≥O refers to the set of nonnegative (monotone)
symmetric matrices of order N .

We denote by I the identity matrix, ei the i-th unit
vector, 1 the vector of all ones, and by P⊥1 the or-
thogonal projector along the linear hull of 1. Finally,
for N ∈ N, N denotes the set of the first N natural
numbers (without 0).

Definition 1 A (finite, weighted) undirected graph is
a triplet G := (V,E, dw), where the vertex set V is a
finite set, the edge set E ⊆ {e | e ⊆ V ∧ |e| = 2}, and
the edge weighting dw : E → R>0, {i, j} 7→ dwij.

A path γ of cardinality |γ| = k ∈ N in G is a tuple γ =
(γ1, . . . , γk) ∈ V k such that for each i = 1, . . . , k − 1,
{γi, γi+1} ∈ E. The set of all paths in a graph G is
denoted by ΠG. We say that γ ∈ ΠG connects the
vertices v, w ∈ V if γ1 = v and γ|γ| = w. The set of
all paths connecting v, w ∈ V is denoted by ΠG

vw. The
length γ ∈ ΠG is defined as

l(γ) :=

|γ|∑
i=2

√
dwγi−1γi .

The graph distance between v, w ∈ V is defined as

distG(v, w) := min
γ∈ΠG

vw

l(γ).

The corresponding distance matrix is defined as DG :=
(dist2

G(v, w))v,w∈V . We say that γ ∈ ΠG
vw is a shortest
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path if l(γ) = distG(v, w). We shall refer to the prob-
lem of computing DG as the shortest path problem.

Definition 2 A finite sequence {xi}i∈N ⊆ ED is called
D-dimensional N -configuration. We define the corre-
sponding configuration matrix by X := [x1, . . . , xN ],
Gram matrix by G := G(X) := (〈xi, xj〉)i,j∈N =
XTX, and distance matrix by D := D(X) :=
(dist2

E(xi, xj))i,j∈N .

The mean of a configuration is defined as 1
NX1. A

configuration is said to be mean centered if X1 = 0.

2.2 Maximum Variance Unfolding

Maximum Variance Unfolding (MVU), proposed by
Weinberger et al. [WS06a, WS06b, WS04, WSS04,
WSZS06], is a heuristic for nonlinear dimensionality
reduction. It relies on the intuition that a faithful
low-dimensional representation of high-dimensional
data residing on a low-dimensional, possibly nonlinear
manifold may be obtained by an appropriate ”unfold-
ing” thereof. Specifically, we are given a configura-
tion Y = {yi}i∈N ⊆ Ea which is assumed to lie on
a d-dimensional Riemannian submanifold of Ea with
d� a. The goal consists in obtaining a configuration
X = {xi}i∈N ⊆ Ed which, in some sense, reflects the
intrinsic geometry of the given configuration. More pre-
cisely, the configuration X should recover the geodesic
distances between the points in Y to some extent. Since
the geodesic distances are typically not available, we
must rely on estimations thereof. As is common in
spectral methods for NLD, we establish a neighbor-
hood relation on Y and use Euclidean distances for
approximations of geodesic distances between neigh-
boring points. The physical intuition leading to the
MVU approach now is as follows: In terms of the
Euclidean metric, we pull the points in the data set
maximally apart while preserving distances between
neighboring points. Moreover, we require that the con-
figuration be mean centered. Since, on one part, the
intrinsic dimensionality d is obscure in many practical
situations, on the other part, the heuristic assumes
that pulling the data apart under the given constraints
recover d automatically, any constraints stipulating
the dimensionality of the sought-after configuration are
omitted. Parametrized in the Gram matrix K := XTX
of the latter, the approach amounts to the following
semidefinite program:

max
K∈SN�O

〈I,K〉

s.t. 〈Eij ,K〉 ≤ dEij , {i, j} ∈ E,〈
11T ,K

〉
= 0.

(2.1)

where
Eij := (ei − ej)(ei − ej)T , (2.2)

E is the edge set of the neighborhood graph, and

〈A,B〉 =
∑
i,j∈N

aijbij , A,B ∈ SN .

A (low-dimensional) configuration corresponding to
an optimizer is eventually retrieved from a spectral
decomposition thereof.

The formulation (2.1), which we shall refer to as clas-
sical MVU, is presented and discussed in [SBXD06,
XSB06]. It deviates from the original version proposed
in [WS06a, WS06b, WS04, WSS04, WSZS06] in that
the local distance constraints have been relaxed to in-
equalities. We stress that all results we will present
in Section 3 also hold for equality constraints (cf. Re-
mark 4).

Since we will study the equivalent EDM-cone formula-
tion of (2.1), we give the following definitions:

Definition 3 1. The set of Euclidean distance ma-
trices of order N is defined as

EDMN :=
{

(dist2
E(xi, xj))i,j∈N | ∃ n ∈ N :

xi ∈ Rn, i ∈ N} . (2.3)

2. The set of distance matrices of order N is defined
as (with D := (dij)i,j∈N )

DMN :=
{
D ∈ SN≥O | dii = 0, i ∈ N∧√

dij ≤
√
dik +

√
dkj , i, j ∈ N

}
. (2.4)

Obviously, EDMN ⊆ DMN . Furthermore, we obtain

Proposition 1 The sets DMN and EDMN defined in
Definition 3 are proper closed convex cones1.

Since the proof is not essential for the observations of
this article it is only provided in the supplementary
material.

Remark 1 We stress that the notion of a distance
matrix stipulated here essentially differs from that in
[Ver04]. Specifically, the notion of a distance matrix
considered therein may be obtained by omitting the
square roots in the definition of ours. Therefore, show-
ing that DMN is a cone is non-trivial. For EDMN this
is well known (see, e.g., [Dat05]), but the DMN case is
not handled in [Dat05] or [Ver04], nor in other related
literature we have found.

1A subset C of a Banach space is called cone if λC ⊆
C ∀ λ ≥ 0. A cone is called proper if v ∈ C ∧ −v ∈ C
implies v = 0.
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Distance matrices may be considered as representations
of metrics on graphs. In particular, we shall be inter-
ested in graph approximations to geodesic distances in
the manifold learning setting.

For the sake of simplicity, we shall henceforth identify
configurations with their corresponding configuration
matrices.

It is well-known that each matrix S ∈ SN�O may be

decomposed according to S = XTX for some X ∈
Rr×N , where r denotes the rank of S. Conversely, every
Gram matrix is symmetric and positive semidefinite.
Therefore, SN�O may be considered as the set of all
Gram matrices corresponding to N -configurations.

One may easily verify that the distance matrix of
a configuration is invariant under rigid transforma-
tion. The Gram matrix, however, is only invariant
under unitary transformation, but depends on the ab-
solute position of the configuration in the chosen co-
ordinate system. To achieve a 1 − 1 correspondence,
we restrict ourselves to mean centered configurations.
The corresponding set of Gram matrices is given by
P⊥1SN�OP⊥1. Given D ∈ EDMN , the Gram matrix of a
corresponding mean centered configuration is given by
− 1

2P⊥1DP⊥1. Conversely, as may easily be verified by
the well-know parallelogram formula, given S ∈ SN�O,
the distance matrix of any corresponding configuration
is (sii+ sjj −2sij)i,j∈N . For more details on Euclidean
distance matrices, please refer to [Dat05, Sec. 5.10].

The above discussed correspondences between config-
urations, distance and Gram matrices enable us to
cast optimization problems related to configurations
in terms of Gram matrices so as to obtain semidefinite
optimization problems. Besides this computational
advantage, the correspondences provide new interpre-
tations of existing methods, which we shall exploit in
the following.

In this paper, we shall obtain novel insights by studying
the subsequent equivalent EDM-cone formulation of
(2.1):

max
D∈EDMN

〈
11T , D

〉
s.t. 〈eij , D〉 ≤ dEij , {i, j} ∈ E,

(2.5)

where eij := eie
T
j . Here and in what follows,

DE = (dEij)i,j∈N denotes the Euclidean distance ma-

trix corresponding to the configuration Y, i.e., dEij :=

dist2
E(yi, yj), i, j ∈ N .

Remark 2 Equivalence of the programs (2.1) and
(2.5) may be established by replacing K in (2.1) by
the invertible parametrization

EDMN → −P⊥1SN�OP⊥1, D 7→ −
1

2
P⊥1DP⊥1.

2.3 IsoMap

IsoMap [TdSL00] is one of the earliest approaches to
manifold learning. The procedure may be outlined as
follows:

1. Establish a neighborhood graph and use Euclidean
distances for edge weights.

2. Obtain the graph distance matrix DG.

3. Obtain a Gramian K̃ by setting all negative eigen-
values of −0.5P⊥1D

GP⊥1 to zero.

4. Obtain a low-dimensional representation of the
data by means of PCA of the Gramian K̃.

Remark 3 As a by-product of step 3, we obtain a
spectral decomposition of the optimizer, which imme-
diately provides us with the desired PCA in the last
step. Therefore, in a practical implementation, one
would merge the final two steps. We list them sepa-
rately merely for theoretical reasons that should become
clear in the course of our discussion.

The key idea underlying the algorithm consists in the
approximation of geodesic distances by graph distances
in a neighborhood graph. As for the latter, the follow-
ing convergence result has been established.

Theorem 1 (Main Theorem A in [TdSLB00])
Let εmax, εmin, δ > 0, 0 ≤ λ1, λ2 < 1 and suppose that

1. M is compact and geodesically convex.

2. ∀ i, j ∈ N : distE(yi, yj) ≤ εmin ⇒ {i, j} ∈ E,

3. ∀ {i, j} ∈ E : distE(yi, yj) ≤ εmax,

4. ∀ m ∈M : ∃ i ∈ N : distM(yi,m) ≤ δ,

5. εmax ≤ min
{
s0,

2
π r0

√
24λ1

}
, where s0 denotes the

minimum branch separation of M, and r0 the
minimum radius of curvature,

6. δ ≤ 0.25λ2εmin.

Then we have

(1− λ1) distM(yi, yj) ≤ distG(yi, yj)

≤ (1 + λ2) distM(yi, yj). (2.6)

Moreover, the authors of [TdSLB00] provide exten-
sions of this result to a probabilistic setting and the
k-NN rule. Hence, not only do the results presented
in [TdSLB00] put graph approximations to geodesic
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distance on a sound footing, but they also enable conver-
gence guarantees in practically realistic, probabilistic
settings.

The rationale for step 3 is that, even if the consid-
ered manifold is isometric to a convex subset of Eu-
clidean space, and, hence, for any configuration from
M, the matrix − 1

2P⊥1D
MP⊥1 is positive semidefi-

nite, where DM denotes the geodesic distance matrix
corresponding to the configuration, while the matrix
− 1

2P⊥1D
GP⊥1 need not be, even if it approximates

DM arbitrarily well. This is simply due to the fact
that EDMN is closed.

We shall consider an equivalent EDM-formulation of
step 3, which, since removing components correspond-
ing to negative eigenvalues is equivalent to finding the
best semidefinite approximation in terms of the Frobe-
nius norm

||A||F :=
√
〈A,A〉,

is given by

min
D∈EDMN

||P⊥1(D −DG)P⊥1||F . (2.7)

In the main part of this paper, we shall establish an
interesting connection between IsoMap and MVU. One
of the main messages to be conveyed by this paper
consists in the insight that asymptotic convergence
of MVU may be obtained from the IsoMap-related
convergence Theorem 1.

3 MVU as a Regularized Shortest
Path Problem

We shall be interested in a generalization of MVU which
deals with an abstract graph endowed with arbitrary
positive edge weights and constrains the sought-after
distance matrix to an arbitrary subset of DMN . This
abstraction is inconsequential with respect to the proof
of the subsequent theorem. In brevity, it states that the
generalized MVU problem is equivalent to computing
the best approximation to the distance matrix of the
neighborhood graph with respect to || · ||1.

Theorem 2 Let C ⊆ DMN and G := (N,E, dw) be a
weighted graph. If G is connected, then the following
programs are equivalent:

max
D∈C

〈
11T , D

〉
s.t. 〈eij , D〉 ≤ dwij , {i, j} ∈ E,

(3.1)

and

min
D∈C
||D −DG||1

s.t. 〈eij , D〉 ≤ dwij , {i, j} ∈ E.
(3.2)

Proof. Let D be feasible for (3.1). Then, for all i, j ∈ N
and all γ ∈ ΠG

ij , the triangle inequality implies

√
dij ≤

|γ|∑
k=2

√
dγk−1γk ≤

|γ|∑
k=2

√
dwγk−1γk

= l(γ).

In particular, the inequality holds for any shortest path
between i, j. Thus, we obtain dij ≤ dGij for all i, j ∈ N ,
which yields〈

11T , D
〉
−
〈
11T , DG

〉
=
〈
11T , D −DG

〉
=∑

i,j∈N
dij − dGij = −

∑
i,j∈N

|dij − dGij | = −||D −DG||1.

Since adding a constant to the objective does not affect
contour lines and maximizing is equivalent to minimiz-
ing the additive inverse, the result follows. �

The subsequent results are immediate consequences of
the above.

Corollary 1 Let G := (N,E, dw) be a weighted graph.
If G is connected, then DG is the unique solution of

max
D∈DMN

〈
11T , D

〉
s.t. 〈eij , D〉 ≤ dwij , {i, j} ∈ E.

(3.3)

This result tells us, that the shortest-path-problem on
a graph is equivalent to a variant of MVU, called non-
Euclidean MVU, where now the distance matrix is no
longer constrained to be Euclidean.

Corollary 2 Let G := (N,E, dw) be a weighted graph.
If G is connected, then the following holds.

1. If DG ∈ EDMN , then DG is the unique solution
of (2.5).

2. The program (2.5) is equivalent to

min
D∈EDMN

||D −DG||1

s.t. 〈eij , D〉 ≤ dwij , {i, j} ∈ E.
(3.4)

In general, DG need not be Euclidean, even if DM

is for all possible configurations. Furthermore, since
EDMN is closed, it is even possible for a sequence of
configurations of increasing size and ”density” that the
bi-Lipschitz bounds relating DM and DG according to
Theorem 1 become arbitrarily tight while DG remains
strictly outside EDMN . Hence, considering the non-
Euclidean version of MVU (3.3), its solution DG may
provide an arbitrarily good approximation to the intrin-
sic distance matrix DM. However, if DM is in EDMN ,
one typically prefers an approximation therein. This
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is achieved by restricting the search space to EDMN

and thus arriving at classical MVU. This justifies our
speaking of a regularized shortest path problem. In the
light of manifold learning, it may be even clearer to
speak of a regularized geodesic distance approximation
problem.

In the same fashion, with the EDM-formulation (2.7) in
mind, IsoMap may be considered as a regularized short-
est path problem, except that it is based on a different
cost function and does not incorporate any constraints
other than the distance matrix to be Euclidean.

According to its authors, MVU was intended as an
approach which, as opposed to IsoMap, avoids taking
global geodesic distance estimates into account. We
consider it remarkable that global distance estimates
are incorporated implicitly, seemingly unnoticed by
others so far.

Remark 4 All results presented so far in this section
also hold for the original version of MVU [WS06a,
WS06b, WS04, WSS04, WSZS06], which is obtained
by replacing the family of constraints

〈eij , D〉 ≤ dwij , {i, j} ∈ E,

by
〈eij , D〉 = dwij , {i, j} ∈ E,

in all of the above optimization problems. This is due
to the fact that the proof of Theorem 2 carries over to
the latter case verbatim.

4 Asymptotic Result

Let us now formulate the setting of our result on the
asymptotic behavior of MVU.

Assumption 1 1. M is a d-dimensional compact
Riemannian manifold isometric to a convex subset
of Ed,

2. Y := {y1, . . . , yN} ⊆ M with geodesic distance
matrix DM,

3. G := (N,E, dw),

4. the distance matrix DG satisfies (1 − ε)DM ≤
DG ≤ (1 + ε)DM for some ε ≥ 0.

Remark 5 The last item of Assumption 1 may be
justified by Theorem 1 and the therefrom derived prob-
abilistic convergence results on graph approximations
to geodesic distances presented in [TdSLB00]. Specif-
ically, we may assume that ε → 0 as N → ∞, i.e.,
for an increasing number of suitably drawn samples.
This observation qualifies the subsequent theorem as an
asymptotic result.

Combined with the subsequent lemma, the derivations
presented in Section 3 yield the convergence result.
The notation is as follows: For a set S, RS denotes
the set of real-valued functions on S. Furthermore the
restriction of a function f ∈ RS to a subset S̃ ⊆ S is
denoted by f |S̃ .

Lemma 1 Let S be a set, S̃ ⊆ S, C ⊆ RS̃, f ∈ RS,

and f̃ ∈ RS̃. Moreover, let || · || be a norm on RS̃ and
c, ε ≥ 0. If

||f̃ − f |S̃ || ≤ cε, (4.1)

(1− ε)f |S̃ ∈ C, (4.2)

then

||f̂−f |S̃ || ≤ (2c+||f |S̃ ||)ε ∀ f̂ ∈ argmin
f∈C

||f−f̃ ||. (4.3)

Proof.

||f̂ − f |S̃ || ≤ ||f̂ − f̃ ||+ ||f̃ − f |S̃ ||
(2)

≤ ||(1− ε)f |S̃ − f̃ ||+ ||f̃ − f |S̃ ||
≤ ε||f |S̃ ||+ 2||f̃ − f |S̃ ||
(1)

≤ (||f |S̃ ||+ 2c)ε. �

Theorem 3 (Asymptotic behavior of MVU)
Let Assumption 1 hold. Then any solution of (2.5)
satisfies

||D −DM||1 ≤ 3||DM||1ε ≤ 3(N diam(M))2ε, (4.4)

where diam(M) := supx,y∈M distM(x, y).

Proof. The proof is a mere application of Lemma 1 and
Corollary 2. Assigning therein

• S :=M×M, S̃ := X × X ,

• C :=
{
f ∈ RS̃ |(f(xi, xj))i,j∈N is feasible for (2.5)

}
,

• f := dist2
M(·, ·), f̃ : (xi, xj) 7→ dGij ,

• || · || := ||(·(xi, xj)i,j∈N )||1,

• c := ||DM||1, DM := (dist2
M(xi, xj))i,j∈N ,

it remains to verify the conditions (4.1) and (4.2). State-
ment 4 of Assumption 1 yields

||f̃ − f |S̃ || = ||D
G −DM||1 =

∑
i,j∈N

|dGij − dMij |

≤
∑
i,j∈N

εdMij = ε||DM||1,
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from which (4.1) follows. To obtain (4.2), please note
that Statement 2 of Assumption 1 implies that DM ∈
EDMN . Invoking the left inequality of Statement 4
of Assumption 1 and the fact that EDMN is a cone,
it follows that (1 − ε)DM ∈ EDMN and is therefore
feasible for (2.5). Hence, the hypothesis of Lemma 1
holds and the first inequality of (4.4) follows from
(4.3) and the fact that ||f |S̃ || = ||DM||1. The second
inequality is eventually obtained from the estimate

||DM||1 =
∑

i,j∈N
dMij ≤ maxi,j∈N d

M
ij ≤ (diamM)2. �

The above result is a step towards an answer to the
question of to what extent the geometrically intrinsic
structure of the underlying manifold is revealed by
MVU. Specifically, it states that, under certain cir-
cumstances, any distance matrix obtained from MVU
provides an approximation to the geodesic distance
matrix of the given configuration and the average error
becomes arbitrarily small as the number of points in
the configuration increases. Interestingly, the crucial
point (4) of Assumption 1 may be established in virtue
of Theorem 1, which was intended as a convergence
result for IsoMap by its authors.

The result guarantees convergence only in terms of
average error. But what justifies our usage of the term
”convergence” is Theorem 1, which gives us conditions
so that the constant ε can become arbitrarily small,
in particular the configuration needs to be sufficiently
large and dense. Furthermore, the magnitude diamM
depends exclusively on the underlying manifold rather
than the considered configuration. In particular, it is fi-
nite for a compact manifold. Granted, convergence ”on
average” is a somewhat weak result. On the other hand,
to our awareness, ours is the first rigorous convergence
analysis of MVU.

5 Additional Observations

5.1 Laplacian Eigenmaps as a Modified
Maximum Variance Unfolding

The σ-Laplacian of a weighted graph G = (N,E, dw)
is defined as

LGσ :=
∑
{i,j}∈E

ωijEij , ωij := exp(−σ−1dwij), {i, j} ∈ E,

where Eij is as stipulated in (2.2). Laplacian Eigen-
maps, devised in [BN03], is a spectral NLD method
which deploys the quadratic form induced by some σ-
Laplacian of a suitably chosen neighborhood graph as
an objective. As above, the edge set of neighborhood
graph is typically established by means of the ε- or
k-NN-rule with Euclidean distances in ambient space

for edge weights. Specifically, the approach consists in
using the column set of a solution of the subsequent
optimization as a low-dimensional representation of the
sampled configuration Y:

min
X∈Rd×N

trXLXT s.t. XXT = I, X1 = 0. (5.1)

Clearly, X is an optimizer of (5.1) if and only if its
columns form an orthogonal basis for an eigenspace of
L corresponding to a collection of d smallest nonzero
eigenvalues. Thus, computationally, the problem may
be efficiently solved by means of linear algebra rather
than optimization procedures. Nevertheless, it is advan-
tageous from a theoretical point of view to consider the
original formulation as an optimization problem. To fit
(5.1) into the semidefinite programming framework, it
is required that the quadratic constraint be eliminated.
To do so, we invoke the following result adapted from
[Dat05, p. 308], which enables us to cast an eigenvalue
problem of the form (5.1) as a semidefinite program.

Proposition 2 Let A ∈ SN�O. Then the spectral pro-
jector onto the eigenspace of A corresponding to its
d-smallest eigenvalues is an optimizer of

min
K∈SN�O

〈A,K〉 s.t. 〈I,K〉 ≥ d, I −K ∈ SN�O. (5.2)

Furthermore, if the d+ 1- and d-smallest eigenvalues
of A are distinct, then the solution is unique.

Please note that the last constraint of (5.2) is equiv-
alent to ||K||∗2 ≤ 1, where || · ||∗2 denotes the operator
norm induced by the Euclidean inner product on RN .
Equipped with this result, we may cast (5.1) as the
equivalent semidefinite program

min
K∈SN�O

〈L,K〉 s.t. 〈I,K〉 ≥ d, ||K||∗2 ≤ 1. (5.3)

Interchanging the constraint with the objective by
means of a Lagrange multiplier, we arrive at the fol-
lowing insight.

Theorem 4 Let X be an optimizer of (5.1). Then
XTX is an optimizer of

max
K∈SN�O

〈I,K〉

s.t. 〈Eij ,K〉 ≤ dist2
E(xi, xj), {i, j} ∈ E,〈

11T ,K
〉

= 0,

||K||∗2 ≤ 1.

(5.4)

A more detailed derivation is provided in the supple-
mentary material.

Please note that (5.4) is basically an instance of MVU,
except for the additional imposing a bound on the norm
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of K. Thus, the message of the foregoing reasoning
is that Laplacian Eigenmaps may be cast in a slightly
modified MVU framework.

5.2 Non-Euclidean Colored MVU

We conclude the main part of this paper by a brief
outlook to a generalization of non-Euclidean MVU in
which nonnegative objectives other than the matrix of
all ones are allowed. Specifically, we consider

min
D∈DMN

〈W,D〉 s.t. 〈eij , D〉 ≤ dwij , {i, j} ∈ E, (5.5)

for a connected graph G = (N,E, dw) and some weight
matrix W ≥ O. As an aside, it is worth mentioning
that (5.5) is the DM formulation of the non-Euclidean
version of Colored MVU [SSBG08], a generalization of
MVU allowing for positive semidefinite objective ma-
trices other than the identity in (2.1). The subsequent
proposition provides a preliminary characterization of
the set of optimizers of (5.5).

Proposition 3 Assume that G := (N,E, dω) be con-
nected. Then D ∈ DMN is an optimizer of (5.5) if
and only if D ≤ DG and dij = dGij , {i, j} ∈ Ẽ, where

Ẽ := {{i, j} | wij > 0}. In particular, DG is an opti-
mizer.

The next result provides a characterization of the case
where the optimizer DG is unique.

Definition 4 Let G = (V,E, dw) be a weighted graph.
We introduce the notion of a geodesic covering of G to
refer to a set C ⊂ {{i, j} |x, y ∈ V } such that for all
v, w ∈ V , there is {x, y} ∈ C such that some shortest
path between x and y in G traverses v and w.

Theorem 5 Assume that G be connected. Then the
graph distance matrix DG is the unique solution of
(5.5) if and only if Ẽ is a geodesic covering.

Finding applications for this result is as yet a matter
of ongoing research. We hope, however, that, under
additional requirements on W , this result is extendible
to the Euclidean case. Apart from this, it might be
possible to exploit this insight for efficiently solving
the shortest path problem on a graph, provided that a
suitable objective matrix W be available beforehand.

6 Conclusion

We have established a connection between MVU and
the shortest path problem on the underlying neighbor-
hood graph. This connection enables us to consider
the shortest path problem as a non-Euclidean version
of MVU, and, conversely, MVU as a regularized short-
est path problem. Moreover, we have argued that

the latter also applies to IsoMap, which establishes
a surprising connection between the two approaches
to manifold learning. Furthermore, by virtue of the
latter insight, we obtain a convergence result under
reasonable assumptions, partly justified by the con-
vergence theory of graph approximations to geodesic
distances established in [TdSLB00]. Apart from this,
we have demonstrated that Laplacian Eigenmaps is
essentially equivalent to a modified version of MVU
and considered Colored MVU in the distance matrix
view. Unfortunately, the observed link between MVU
and LE is too weak to account for the fact that the
two approaches may yield rather different results in
practice.

Please note that our asymptotic result guarantees con-
vergence in terms of a (relative) average error. Since
the latter is the optimization objective of MVU, we
can hardly expect pointwise convergence. Inspired by
[ZZ07], who consider a continuum version of IsoMap,
we are currently studying a continuum version of MVU.
We hope that stronger convergence results can be ob-
tained by considering MVU as a discretization thereof.

Furthermore, we have not addressed the case of a man-
ifold which is isometric to a connected rather than a
convex set, e.g., a manifold with “holes”. As a step
towards understanding this case, we are currently work-
ing on a generalization of Theorem 1 to manifolds with
a possibly non-convex boundary. The proof of Theo-
rem 3, however, crucially relies on the assumption that
the geodesic distance matrix of the sampled configu-
ration be Euclidean, which, in general, need not be
the case if the manifold is isometric to a connected
Euclidean domain. Here, as well, we believe that a
better understanding of the continuum version may
enable further insights.

Finally note that our observations are valid in a more
general setting than the afore considered case of embed-
ded manifolds where Euclidean distances in ambient
space are used as local distance estimators. Specifically,
the results presented in Section 3 linking MVU to the
shortest path problem and IsoMap do not only hold for
neighborhood graphs of Euclidean configurations, but
for arbitrary connected graphs. As for the asymptotic
analysis carried out in Section 4, the only assumption
on the distance estimator is a certain metric equiva-
lence between the induced metric and the restriction
of the geodesic metric onto the neighborhood graph.
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Appendix – Supplementary Material

Proof of Proposition 1

For EDMN , this is well-known (see [Dat05]).

It remains to show that DMN is a proper closed con-
vex cone. By definition, DMN is the intersection of
pre-images of closed sets under continuous functions.
Hence, DMN is closed.

It is trivially clear that λDMN ⊆ DMN for all λ ≥ 0.
Hence, it suffices to show that DMN + DMN ⊆ DMN

to obtain that DMN is a convex cone. To this end, let
D, D̃ ∈ DM. The fact that DMN + DMN ⊆ (SN≥O)∗ is
obvious. Thus, we may complete the proof by showing
that√

dij + d̃ij ≤
√
dik + d̃ik +

√
dkj + d̃kj , i, j, k ∈ N,

for all D, D̃ ∈ DM.

We have

dij + d̃ij

≤ (
√
dik +

√
dkj)

2 + (

√
d̃ik +

√
d̃kj)

2

= dik + dkj + d̃ik + d̃kj + 2(
√
dikdkj +

√
d̃ikd̃kj)

= dik + dkj + d̃ik + d̃kj + 2

√(√
dikdkj +

√
d̃ikd̃kj

)2

= dik + dkj + d̃ik + d̃kj+

+ 2

√
dikdkj + d̃ikd̃kj + 2

√
dikdkj d̃ikd̃kj

≤ dik + dkj + d̃ik + d̃kj+

+ 2

√
dikdkj + d̃ikd̃kj + dikd̃kj + dkj d̃ik

= dik + dkj + d̃ik + d̃kj + 2

√
(dik + d̃ik)(dkj + d̃kj)

=

(√
dik + d̃ik +

√
dkj + d̃kj

)2

,

where we used the geometric-arithmetic mean inequal-
ity
√
ab ≤ 1

2 (a+ b) ∀ a, b ≥ 0.

Sketch of a Proof of Theorem 4

Lifting the constraint into the objective of (5.3) by
means of a suitably chosen Lagrange multiplier z ≥ 0,
we obtain that any optimizer of the above also optimizes

min
K∈SN�O

〈L,K〉+ z(d− 〈I,K〉). (6.1)

Rescaling the objective yields the equivalent program

max
K∈SN�O

〈I,K〉 − z̃ 〈L,K〉 , (6.2)

where z̃ := 1/z. To complete our discussion, we make
use of the subsequent trivial lemma.

Lemma 2 Let S be a set and f, g : ∫ → R. Then, for
any z > 0, any optimizer x∗ of

max f(x)− zg(x)

is also an optimizer of

max f(x) s.t. g(x) ≤ g(x∗).

Let K be feasible for (6.2) and let D := D(K). We
have

〈L,K〉 =
∑
{i,j}∈E

wij 〈Eij ,K〉

Hence, we may consider −z̃wij as Lagrange multipliers.
Invoking Lemma 2 iteratively eventually gives rise to
Theorem 4.

Proof of Proposition 3

From the proof of Theorem 2, any D ∈ DM is feasible
for 5.5 if and only if D ≤ DG, where DG. This imme-
diately implies that DG is an optimizer of 5.5. Hence,
any feasible D is an optimizer if and only if∑

{i,j}∈Ẽ

wij(d
G
ij − dij) = 0.

Since, by virtue of D ≤ DG, all terms in the summation
are nonnegative, this identity is equivalent to dij =
dGij , wij > 0.

Proof of Theorem 5

Assume that Ẽ be a geodesic covering and let D be
an optimizer of (5.5). We show that D = DG. Let
{i, j} ∈ N2. If {i, j} ∈ Ẽ, then, by Proposition 3, we
have dij = dGij . If {i, j} /∈ Ẽ, then, again by Proposition

3, we have dij ≤ dGij . Now assume that dij < dGij . Since

Ẽ is a geodesic covering, there is {k, l} ∈ Ẽ and a
shortest path γ ∈ ΠG

kl such that i = γs1 , j = γs2 for
some 1 ≤ s1, s2 ≤ |γ|. Since γ is a shortest path in G,
so is the restricted path γ|s1≤s≤s2 ∈ ΠG

ij .

The triangle inequality and D ≤ DG from Proposition
3 yield √

dkl ≤ l̃(γ|s≤s1)︸ ︷︷ ︸
≤l(γ|s≤s1

)

+
√
dij︸ ︷︷ ︸

<
√
dGij

+ l̃(γ|s≥s2)︸ ︷︷ ︸
≤l(γ|s≥s2

)

< l(γ|s≤s1) +
√
dGij + l(γ|s≥s2)

=
√
dGkl,



Alexander Paprotny, Jochen Garcke

where l̃(γ̃) denotes the length of γ̃ with respect to the
weighting d̃wij = dij , {i, j} ∈ E. The strict inequality

contradicts the fact that dij = dGij by Proposition 3.
This proves sufficiency.

To show necessity, assume that Ẽ is not a geodesic
covering and let i, j ∈ V such that for all {k, l} ∈ Ẽ,
no shortest path in ΠG

kl passes through i and j. We
shall construct an optimal solution other than DG. To
this end, define

S := {{s, t} | s, t ∈ V,
there is a shortest path from s to t

passing through i, j} . (6.3)

Since S contains at least {i, j}, S is nonempty. Let

ε := min
{q,r}/∈S, {q,k}∈S∨{k,r}∈S

√
dGqr√

dGqk +
√
dGkr

.

It holds that ε < 1, since, otherwise, we would ob-

tain that
√
dGqr =

√
dGqk +

√
dGkr for some {q, k} /∈

S, {q, k} ∈ S, which, in turn, gives rise to the con-
tradiction that there is a shortest path from q to r
traversing i, j. Now define D̃ by

d̃qr =

{
ε2dGqr, {q, r} ∈ S,
dGqr, {q, r} /∈ S.

Since ε < 1 and S is nonempty, we obtain D̃ 6= DG.
Clearly, S ∩ Ẽ = ∅. Therefore, D̃ and DG have the
same objective value. To complete the proof, it remains
to show that D̃ is feasible. Obviously, D̃ is symmetric,
d̃ii = 0, and O ≤ D̃ ≤ DG, which, in particular, yields
d̃ij ≤ dwij , {i, j} ∈ E. Hence, D̃ ∈ DMN if√

d̃qr ≤
√
d̃qk +

√
d̃kr ∀ q, k, r ∈ V,

which is verified as follows: If {q, k} , {k, r} /∈ S, then√
dGqr ≤

√
dGqk +

√
dGkr =

√
d̃Gqk +

√
d̃Gkr.

Otherwise, we have√
dGqr ≤ ε(

√
dGqk +

√
dGkr) ≤

√
d̃qk +

√
d̃kr.

As d̃qr ≤ dGqr, the desired inequality follows.


