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Abstract

This study aims at introducing new algebraic multi-level solution techniques
for linear systems with M-matrices. Previous optimal geometric construc-
tions by multi-level generating systems or multi-level frames are adapted.
The new contribution is a purely algebraic construction of multi-level frames.
A new class of algebraic multi-level algorithms is derived by applying sub-
space correction iterative solvers to the algebraic multi-level linear system.
These algorithms feature error resilience properties and potential massive
parallelism. The proposed work outperforms previous geometric construc-
tions since a black-box, geometry-independent methodology is considered.
Moreover, optimality results of geometric constructions are matched. Over-
all, the new method will be well suited for generic linear algebra libraries for
future multi- and many-core systems.

Keywords: Algebraic Multigrid, Subspace Correction, Iterative Solver,
Multi-Level Frames

1. Introduction

The solution of large sparse linear systems is the dominant computational
part of many solvers for partial differential equations (PDEs). Multigrid
solvers are optimal problem-size independent iterative solvers for such sys-
tems. Nevertheless, multigrid solvers tend to have limited parallel scalability
on extreme-scale high performance computing (HPC) clusters [1]. Moreover,
next generation Exascale clusters are expected to have a growing number
of (hardware) failures [2]. These issues require us to develop new optimal-
complexity linear solvers that are scalable and resilient.
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Randomized subspace correction iterative solvers for multi-level frames,
cf. [3], give rise to mesh-width independent solvers for e.g. elliptic problems.
The randomized, greedy-type solution algorithm from [3] is error-resilient by
construction and might expose a high grade of parallelism by some suitable
extension. However, it has been only discussed for model-type problems,
since knowledge of the geometric structure of the discretized problem geo-
metry is needed for the multi-level construction.

To easily solve problems on complex geometries, we introduce a purely
algebraic multi-level construction approach. The multi-level construction is
based on classical (Ruge-Stüben) algebraic multigrid (AMG). Projections
between grid levels are replaced by algebraic prolongations and restrictions,
while the different levels are generated by standard AMG coarsening. The
solution of the resulting algebraic multi-level frame linear system by a Gauss-
Seidel iterative method is equivalent to some algebraic multigrid method with
Gauss-Seidel smoother. Moreover, we construct a new randomize greedy-
type algebraic multi-level method by applying randomized greedy subspace
correction techniques from [3] to the algebraic multi-level frame system.

Numerical results will be given, showing that the new method matches the
geometry-dependent solver results from [3] for equivalent complex-geometry
elliptic problems discretized by linear finite elements. The purely algebraic
construction makes the proposed method an optimal candidate for general-
purpose linear solver libraries. Resilience and potential massive parallelism
might be influencal for future linear solver developments in Exascale com-
puting.

In Section 2, we discuss related work. Section 3 reviews standard (geo-
metric) multi-level frames with iterative solvers and subspace correction
schemes. Section 4 introduces the new algebraic multi-level frames covering
the necessary AMG background. Numerical results are given in Section 5.
Section 6 concludes this study with a short outlook.

2. Related work

Theory and numerical treatment of the so-called multi-level generating
system for (elliptic) PDEs has been first discussed in [4, 5] and a series on
follow-up studies [3, 6, 7, 8]. In the generating system approach, a basis for
a fixed Galerkin finite element discretization level is replaced by a generat-
ing system of multi-level basis functions. Equivalence of the application of
standard iterative solvers to the resulting multi-level generating system and
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optimal-complexity multi-level solvers on single-level discretizations has been
intensively discussed in [4, 5]. More recently, multi-level generating systems
have been reconsidered as multi-level frames [9, 10], accounting for the close
connection to wavelet-based techniques [11]. Many of these approaches can
be also re-interpreted as additive or multiplicative Schwarz methods [3, 12].

The application of more sophisticated iterative solvers to multi-level frame
or generating system discretizations naturally leads to new classes of multi-
grid/-level type algorithms. In [3, 13], the Gauss-Southwell method [14] has
been applied in this context, giving rise to a new greedy-type multi-level
method. The new method shows problem-size independent convergence with
a high potential for robustness and problem-adaptivity. Moreover, a preced-
ing randomized subspace selection process leads to a randomized iterative
subspace correction technique with optimal convergence. This randomized
iterative subspace correction technique has a close relationship to random-
ized (block) Kaczmarz iterative methods [15, 16] and randomized coordinate
decent methods [17, 18, 19], which are known from large-scale optimization.
Another related field are asynchronous iteration techniques [20]. These tech-
niques provide a theoretical and practical framework for iterative methods
that allow for the re-use of iteration results from several previous iterations.
Indeed, they allow to define asynchronous update steps in a single itera-
tive process. Therefore, more recent applications of asynchronous iterations
are scalable and hardware-aware iterative solvers and multigrid smoothers
[21, 22].

Randomized and asynchronous iterative methods promise to overcome
resilience issues, which are expected to occur for HPC clusters of growing
size [2]. While iterative methods are generally well-known to be robust for
a certain class of hardware- or software-induced errors, resilient multigrid
methods are still subject to current research [23, 24]. Scalability of multi-
grid methods and smoothers might also be improved by randomized and
asynchronous iterative methods. Here, recent studies, such as [1], suggest a
scalability bottleneck for standard smoothers on large-scale HPC systems. In
addition, problem-adapted multigrid techniques such as semi-coarsening [25]
and line smoothers [26] have been proposed before. Greedy-type approaches
should improve over such existing methodologies.

The algebraic or matrix-dependent construction of multi-level or multi-
grid methods is attractive for optimal-complexity black-box linear algebra
libraries. A review of these methods is given in [27]. More recently, two tech-
niques, namely classical Ruge-Stüben AMG [28] with further developments
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e.g. in [29, 30] and (smoothed) aggregation-based AMG [31] are in main use.
While classical AMG constructs hierarchies of variables by reusing a subset
of the variables from a fine level on the next coarser level, aggregation-based
techniques construct new variables on a coarser level by replacing a set of fine
grid variables. Aggregation-based techniques tend to be easier to implement
and parallelize. On the other hand, classical AMG is more robust.

To the best of our knowledge, the only known connection between AMG
and frame-based constructions has been discussed in the partially unpub-
lished work [32, 33, 34], where so-called AMGlets, thus algebraically con-
structed wavelets, are considered. AMGlets primarily aim at generalizing
basis function constructions for some classes of differential operators, while
the present work focuses on geometry-independent optimal solvers. Greedy-
based techniques have been discussed for AMG with respect to the construc-
tion of the multigrid hierarchy [35], but not for smoothers, so far. Therefore,
we argue that the introduction of an AMG-based multi-level frame technique
is new. Moreover, by transferring randomized subspace correction methods
to AMG, we introduce a new class of resilient, scalable and problem-adapted
algebraic multi-level methods.

3. Multi-level frame systems and their iterative solution

This section introduces the original (geometric) multi-level frame con-
struction. A short review of multi-level frames for the solution of elliptic
PDEs is given. Some knowledge of the structure of the resulting linear sys-
tem is collected. Finally, properties of iterative linear solvers for multi-level
frame systems are summarized.

3.1. Multi-level frames for the solution of elliptic PDEs

We closely follow [10, 3] for the introduction of multi-level frame dis-
cretizations of elliptic PDEs.

For a separable Hilbert spaceH, its dual spaceH′ and the duality product
< ·, · > on (H,H′), we can introduce a frame forH as the countable collection
Φ = {φi : i ∈ ∆} ⊂ H with

C‖f‖2
H′ ≤

∑
i∈∆

|〈f, φi〉|2 ≤ D‖f‖2
H′ ∀f ∈ H′
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Let Ω ⊂ R{2,3} be a piecewise linearly bounded domain. As a model
problem, we aim at solving the elliptic partial differential equation

−∆u = g in Ω

u = 0 on ∂Ω

by a Galerkin approach. We therefore choose H = H1
0 (Ω) and introduce the

usual bilinear form

a(u, v) =

∫
Ω

∇u · ∇v dx, a : H×H → H′

and the corresponding linear functional

F (v) =

∫
Ω

gv dx, F ∈ H′ .

For a standard linear finite element discretization, we introduce an appro-
priate triangulation or partition Tl, l ≥ 0 of Ω with element sizes h ≈ 2−l.
Then,

Vl := span{ϕl,k|k ∈ ∆l}

is the finite-dimensional subspace of linear Lagrange finite element basis func-
tions over Tl. Finally, we have to solve the linear system

Al~ul = ~fl

with

Al = (al;k,k′)k,k′ , al;k,k′ := a(ϕl,k, ϕl,k′) and fl;k = F (ϕl,k)

in order to get an approximation for the given PDE in Vl.
For a multi-level frame approximation, we instead introduce the series of

nested subspaces

V0 ⊂ V1 ⊂ . . . ⊂ Vl ⊂ . . . ⊂ L2(Ω)

for nested triangulations. For geometric multi-level frames, the coarsest sub-
space V0 is usually expected to resolve the boundary exactly, which might be
a strong limitation.
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The objective of multi-level frames is the approximation of the PDE as in
a multi-resolution analysis. That is, we introduce the (countable) collection

Φ = {ϕl,k|k ∈ ∆l, l ∈ N0} .

Following [10, Theorem 5], this collection defines a frame in H1(Ω). By
replacing the standard finite element basis with the (finite) collection or
generating system

ΦL = {ϕl,k|k ∈ ∆l, l ∈ {0, . . . , L}}

of maximum level L, cf. [3], we are able to introduce a multi-level discretiza-
tion on level L, with a new linear system

ĀL~̄uL = ~̄fL . (1)

Here, the system matrix is composed of matrix blocks as

ĀL = (Al,l′)1≤l,l′≤L , Al,l′ =
(
al,l′;k,k′

)
k∈∆l,k′∈∆l′

, al,l′;k,k′ = a(ϕl,k, ϕl′,k′)

and the right-hand side is given as

~̄fL =
(
~fl

)
1≤l≤L

, ~fl = (fl;k)k∈∆l
, fl;k = F (ϕl,k) .

By construction, the matrix of the multi-level frame system (1) is singular.
However, cf. [10], the right-hand side lies in the image of the multi-level
system matrix. For such problems, Krylov subspace solvers converge to a
(non-unique) solution vector ~̄uL. The final unique solution on level L is
constructed by projection on the solution space VL.

3.2. Structure of the multi-level system

In [4, 13], we learned that the multi-level system (1) has some specific
structure. We can easily rewrite it in terms of the standard finite element
stiffness matrix on level L and appropriate prolongation and restriction oper-
ators Pl and Rl that transfer functions between the different approximation
spaces Vl as

Pl : Vl → Vl+1 and Rl : Vl → Vl−1 .
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In the following, these linear operators are understood as matrices with re-
spect to the appropriate basis or generating system. For the standard multi-
level frame construction, Pl and Rl are chosen as in an appropriate stan-
dard geometric multigrid method. We also use the more general notation
P l+1
l := Pl and P l−1

l := Rl.
The reformulation of the multi-level problem (1) further involves to in-

troduce the transfer matrices

SL :=


P 0
L

P 1
L
...

PL−1
L

PL
L

 , SL :=
[
PL

0 P
L
1 . . . P

L
L−1P

L
L

]

with concatenated restriction operators P l
L = PL−1

L · . . . · P l
l+1 and PL

L = IL
the identity matrix on level L. We can then rewrite (1) as

ĀL~̄uL = SLALS
L~̄uL = SL

~fL = ~̄fL . (2)

A solution on level L can be derived from the multi-level solution ~̄uL by

~uL = SL~̄uL .

3.3. Iterative solvers on multi-level frame systems

Following [5], the iterative solution of the multi-level system (1) for a
maximum level of L corresponds to the solution of the standard single-level
finite element problem on level L by a sophisticated, typically optimally
preconditioned, iterative solver.

Solving the system (1) by a Jacobi-preconditioned conjugate gradient iter-
ative solver corresponds to a BPX-preconditioned CG solver for the standard
problem. Furthermore, the standard Gauss-Seidel iteration for the linear sys-
tem A~x = ~b, A ∈ RN×N , which is given in Algorithm 1, is equivalent to some
standard geometric multigrid V-cycle with Gauss-Seidel smoother [5, 3].

In [14], a greedy version of the Gauss-Seidel method was introduced. It
is called Gauss-Southwell method. For a given iterate ~x(n′), it computes the
residual ~r(n′) = ~b−A~x(n′). Here, it picks the variable index i? with maximum
absolute residual

i? := argmax
i∈{1,...,N}

∣∣∣r(n′)
i

∣∣∣ .
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Algorithm 1 Gauss-Seidel method

Require: A ∈ RN×N , ~b ∈ RN , ~xinit ∈ RN , Niter

1: function GaussSeidel
2: ~x(0) := ~xinit
3: for n ∈ {0, . . . , Niter − 1} do
4: for i ∈ {1, . . . , N} do
5: ~x

(n+1)
i := 1

aii

(
bi −

∑i−1
j=1 aijx

(n+1)
j −

∑N
j=i+1 aijx

(n)
j

)
6: return ~x(Niter)

Algorithm 2 Gauss-Southwell method

Require: A ∈ RN×N , ~b ∈ RN , ~xinit ∈ RN , Niter

1: function GaussSouthwell
2: ~x(0) := ~xinit
3: for n′ ∈ {0, . . . , NNiter − 1} do
4: ~r(n′) := ~b− A~x(n′)

5: i? := argmax
i∈{1,...,N}

∣∣∣r(n′)
i

∣∣∣
6: ~x

(n′+1)
i? := 1

ai?i?

(
bi? −

∑i?−1
j=1,j 6=i? ai?jx

(n′)
j

)
7: return ~x(NNiter)

Then, a correction step is applied such that we have a zero residual for

variable x
(n′+1)
i? in the next iteration. In [13], an up to O(logN) complexity

approach for this update step is given. A total of N of these one-variable-
update steps is usually considered as one iteration, cf. Algorithm 2. In [3] and
[13], it is shown that an iterative solution of the multi-level frame system by
the Gauss-Southwell method is at least as fast as the Gauss-Seidel method,
in terms of iterations. In many cases, the Gauss-Southwell algorithm clearly
outperforms the Gauss-Seidel method.

Another approach discussed in [3] is a modification of the Gauss-Southwell
method. The modified approach randomly picks a new variable index instead
of optimizing over all variables. We call this approach random Gauss-Seidel
method and assume an equal distribution over all variables. Numerical re-
sults in [3] show similar (optimal) solution performance for the multi-level
frame system, in terms of asymptotic complexity, but a larger constant. This
limitation is removed by an alternative approach discussed in [3], which we
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Algorithm 3 k-random block-Gauss-Seidel method

Require: A ∈ RN×N , ~b ∈ RN , ~xinit ∈ RN , Niter, k
1: function kRandomBlockGaussSeidel
2: ~x(0) := ~xinit
3: for n′ ∈ {0, . . . , NNiter − 1} do
4: ~r(n′) := ~b− A~x(n′)

5: I := uniformRandomSubset (k, {1, . . . , N})
6: i? := argmax

i∈I

∣∣∣r(n′)
i

∣∣∣
7: ~x

(n′+1)
i? := 1

ai?i?

(
bi? −

∑i?−1
j=1,j 6=i? ai?jx

(n′)
j

)
8: return ~x(NNiter)

call k-random block-Gauss-Seidel method. It randomly picks k variables and
performs the greedy Gauss-Southwell-type correction on that variable subset,
cf. Algorithm 3. In [3], a numerical result for an elliptic problem suggests
that the k-random block-Gauss-Seidel method ouptperforms the standard
Gauss-Seidel method for k ≥ 3. For k = 1, this method is identical to the
random Gauss-Seidel method.

4. Algebraic multi-level frames

In our new purely algebraic approach, we aim at solving general linear
systems of type

A~x = ~b

with A ∈ RN×N and ~x,~b ∈ RN by a multi-level method. We further require
A to be an M-matrix, to be able to apply classical AMG in its original
form. Our aim is then to introduce an algebraically constructed variable
hierarchy D0 ⊂ D1 ⊂ . . . ⊂ DL with DL := {1, . . . , N}. This hierarchy
and corresponding interpolation and restriction transfer operators will give
rise to the algebraic multi-level system. It will be based on the structure
considerations from Section 3.2.

4.1. Algebraic coarsening and transfer operators

As motivated before, we use coarse level selection techniques and pro-
longation/restriction operators from classical Ruge-Stüben AMG. Therefore,
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we give a brief review of the necessary basic facts from algebraic multigrid,
cf. [36, Appendix A].

In AMG, a multigrid hierarchy is constructed from the structure and
entries of the underlying system matrix. Geometric properties are ignored.
Notation usually follows graph theory by identifying variables as graph nodes
or points and non-zero non-diagonal entries in the system matrix as weighted
edges between these nodes.

Let A ∈ RN×N be a given M-matrix that is a stiffness or system matrix on
(the finest) level L. Each variable then corresponds to one index in an index
set DL := {1, . . . , N}. Variables on coarser levels of the (algebraic) multigrid
hierarchy are collected in subsets Dl with D0 ⊂ D1 ⊂ . . . ⊂ DL. Classical
Ruge-Stüben AMG classifies variables on each level l into disjoint sets of
coarse grid variables C l and fine grid variables F l, such that Dl = C l ·∪ F l.
The coarse grid variables are reused on the next coarser level, i.e. Dl−1 := C l.

To formulate an algorithm for the choice of fine and coarse grid points,
– we call this choice C/F splitting – we need some further notation. The
neighborhood of a variable i ∈ Dl is given by

N l
i :=

{
j ∈ Dl

∣∣ j 6= i, alij 6= 0
}
,

where the alij are the matrix entries of the (subsequently constructed) coarse
grid operator on level l. A variable i is strongly negatively coupled to a
variable j if we have the relation

−alij ≥ εstr max
k
|alik|

for a given, fixed 0 < εstr < 1. We collect these variables in

Sl
i :=

{
j ∈ N l

i

∣∣ i strongly negatively coupled to j
}

and further define Sl
i
>

:=
{
j ∈ Dl

∣∣ i ∈ Sl
j

}
. Algorithm 4 then summarizes

the standard coarsening or C/F splitting algorithm of Ruge-Stüben AMG,
cf. [36, Appendix A].

Next, we consider the algebraic construction of prolongation and restric-
tion operators. In difference to the geometric case, prolongation operators
P l+1

l ∈ R|Dl+1|×|Dl| from algebraic multigrid are matrices by definition. As

usual, we further assume P l
l+1 = P l+1

l

>
, that is, restriction matrices are con-

structed from given prolongation matrices. Therefore, it is enough just to
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Algorithm 4 Standard coarsening algorithm

Require: level l, Dl, S
l, Sl>

1: function AMGstandardCoarsening
2: F l := ∅, C l := ∅, U l := Dl

3: for i ∈ U l do
4: λli :=

∣∣∣Sl
i
> ∩ U l

∣∣∣+ 2
∣∣∣Sl

i
> ∩ F l

∣∣∣
5: while ∃i s.th. λli 6= 0 do
6: find imax := argmaxi λ

l
i

7: C l := C l ∪ {imax}
8: U l := U l \ {imax}
9: for j ∈

(
Sl
i
> ∩ U l

)
do

10: F l := F l ∪ {j}
11: U l := U l \ {j}
12: for i ∈ U l do
13: λli :=

∣∣∣Sl
i
> ∩ U l

∣∣∣+ 2
∣∣∣Sl

i
> ∩ F l

∣∣∣
14: return C l, F l

define prolongation, which is also called interpolation in AMG. Here, we have
further notation

C l
i := C l ∩N l

i , F l
i := F i ∩N l

i , C̃ l
i := C l ∩ Sl

i, F̃ l
i := F l ∩ Sl

i .

For the so-called direct interpolation, interpolation matrices are constructed
as follows: Coarse grid variable are identically transferred form coarse to
fine grid. However, fine grid variables eli, i ∈ F l have to be interpolated
appropriately. This is done using the set of interpolatory variables I li := C̃ l

i

that are all strongly connected coarse grid variables. The interpolation rule
of direct interpolation is then given by

eli =
∑
j∈Ili

wl
ije

l
j, wl

ij = −αl
i

alij
alii
, αl

i =

∑
k∈N l

i
alik∑

j∈Ili
alij

.

Standard interpolation additionally considers strong connections between fine
grid nodes. To this end, the original (coarse grid) operator matrix Al is
expanded to a matrix Âl, such that we replace for each given fine grid variable
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i ∈ F l, the variable j ∈ F̃ l
i as

ej −→
∑
k∈N l

j

aljke
l
k/a

l
jj .

The new set of interpolatory variables is Î li = C̃ l
i ∪ (

⋃
j∈F̃ l

i
C̃ l

j). Standard
interpolation is finally constructed by applying direct interpolation to the
extended matrix Âl.

In some cases, an additional Jacobi smoothing step is executed on the
system matrix, leading to the so-called Jacobi interpolation, cf. [36, Ap-
pendix A]. Usually, truncation is applied to interpolation or prolongation
matrices, in order to reduce the number of non-zero entries of the system
matrix on the next coarser level. Truncation removes matrix entries beyond
a relative threshold of εtr.

4.2. Algebraic multi-level system

Let us remember our intention to solve the linear system

A~x = ~b , (3)

with A ∈ RN×N an M-matrix and ~b ∈ RN an appropriate right-hand side.
We can now use Algorithm 4 to introduce a hierarchy D0 ⊂ D1 ⊂ . . . ⊂ DL of
variable indices, with DL = {1, . . . , N} the variable index set of the original
linear system (3) and

Dl = C l ·∪ F l, Dl−1 := C l ∀l ∈ {1, . . . , L}

the splitting into coarse and fine grid variables as in AMG. We furthermore
introduce the same interpolation or prolongation operators P l+1

l ∈ R|Dl+1|×|Dl|

and restriction operators P l
l+1 as in AMG. Depending on the given linear

system, we might use direct interpolation, standard interpolation, Jacobi
interpolation or combinations of these. We now construct an algebraic multi-
level system using algebraic transfer matrices

SL :=


P0

L

P1
L
...
PL−1

L

PL
L

 , SL :=
[
PL

0 PL
1 . . .PL

L−1PL
L

]
.
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The algebraic multi-level system is then given by

SLASL~̄x =: Ā~̄x = ~̄b := SL~b , (4)

with

Ā ∈ RN̄×N̄ , ~̄x,~̄b ∈ RN̄ , N̄ =
L∑
l=0

|Dl| .

As in the standard multi-level frame case, this system is not uniquely solvable.
However, a non-unique solution ~̄x can be projected back to a unique solution
of the original system (3) by

~x = SL~̄xL .

4.3. Performance and complexity considerations

By construction, the algebraic multi-level linear system is larger than the
original linear system (3). This increases the complexity of linear solvers that
are applied to the multi-level system, if we express the complexity in terms
of the number of unknowns N of (3). However, at the same time, optimized
greedy-type solvers and improved scalability in parallelizations are expected
to improve the measured runtime a lot. Therefore, a clear overall runtime
improvement over standard AMG is expected for a highly optimized parallel
algebraic multi-level frame solver.

Numerical results in this article reflect a feasibility study of the proposed
approach. Therefore runtime comparisons are considered future work. More-
over, it might be possible to reduce the overall computational complexity and
runtime by new on-the-fly construction and compression techniques. This is
also future work.

5. Numerical results

We study the solution properties of the iterative methods from Section 3.3
applied to the new algebraic multi-level frame construction. The model prob-
lem considered here is the Poisson problem

−∆u = 1 in Ω ,

u = 0 on ∂Ω

on the complex geometry Ω shown in Figure 1. It is the unit square with five
circular holes.
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Figure 1: Visualization of the triangulated domain (left) and the solution field of the
discussed model problem (right).

The model problem is discretized by first-order finite elements. For our
convergence studies, we define resolution levels L such that the triangula-
tion TL has a maximum triangle size of hmax = 2−L. Triangulation and
stiffness matrix assembly is done by COMSOL. Figure 1 shows on the left-
hand side a triangulation for level L = 6. Stiffness matrices and load vectors
were extracted using the COMSOL LiveLink for MATLAB extension and the
command mphmatrix. We use eliminated matrices and load vectors, thus po-
tential null spaces in the original stiffness matrix were removed by COMSOL,
beforehand. The algebraic multi-level system is constructed in MATLAB.

In our MATLAB-based numerical studies, we iteratively solve the alge-
braic multi-level frame system up to a normalized residual norm of 10−9.
Normalization is done with the norm of the right-hand side load vector. The
initial guess for the solution is a random vector. C/F splitting with strength
parameter εstr = 0.25 and standard interpolation with an additional Jacobi
interpolation step and truncation (εtr = 0.25) is applied. The algebraic
multigrid hierarchy has been coarsened until a maximum of 10 coarse grid
variables was left.

Remember that the model problem is given on a complex geometry. Here,
a standard (non-algebraic) multi-level frame construction would require a
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Figure 2: Relative residual decay for the solution of the algebraic multi-level linear system
by a Jacobi-preconditioned CG method (left) and by the Gauss-Seidel method (right) for
different resolution levels L.

considerable effort to construct special problem-dependent coarsening, pro-
longations and restrictions. It might be even necessary to exactly resolve the
boundary on the coarsest grid. In contrast, our algebraic approach works
without any modification.

Figure 2 shows on the left-hand side the residual decay for an iterative
solution of the algebraic multi-level system by a Jacobi-preconditioned CG
solver. This is equivalent to an algebraic-type BPX preconditioned solve
for the standard finite element problem. A small, problem-size dependent
increase in the number of iterations is visible. It is expected to stagnate for
lager problems sizes. On the right-hand side of the same figure, the Gauss-
Seidel iterative solver is used to solve the multi-level system. Here, optimal
problem-independent convergence is shown. The method is equivalent to
some algebraic multigrid method with Gauss-Seidel smoother. The Gauss-
Seidel results match the results given in [3] for the geometric multi-level frame
construction.

Results for the Gauss-Southwell iterative method, applied to the algebraic
multi-level system, are given on the left-hand side of Figure 3. Remember
that a single Gauss-Southwell step corrects a single variable. Therefore, we
here denote N̄ correction steps as a single iteration of the Gauss-Southwell
method. Following [13], one such iteration can be computed with a computa-
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Figure 3: Relative residual decay for the solution of the algebraic multi-level linear system
by the Gauss-Southwell method (left) and by the random Gauss-Seidel method (right) for
different resolution levels L.

tional complexity of O(N̄ log N̄). Optimal problem-independent convergence
is achieved. Moreover, the number of iterations is only half of the number of
Gauss-Seidel iterations.

The right-hand side of Figure 3 gives convergence results for the ran-
dom Gauss-Seidel method with the same definition of an iteration as in the
Gauss-Southwell case. Here again, problem-size independent convergence
is achieved. Note that this method performs corrections steps in a purely
random ordering. Therefore, this approach is resilient by construction. The
random Gauss-Seidel method needs about five times the amount of iterations
of the Gauss-Southwell method and about 2.5 times the number of iterations
of the standard Gauss-Seidel method. This relation roughly holds across all
levels. All results shown in Figure 3 match convergence results from [3] in a
qualitative way.

Finally, we compare the k-random block-Gauss-Seidel method for dif-
ferent block sizes with the standard Gauss-Seidel method and the Gauss-
Southwell method, cf. Figure 4. This is done for a fixed resolution level
L = 7. Our results qualitatively match those in [3]. For k ≥ 3, the k-random
block-Gauss-Seidel method performs at least as good as the Gauss-Seidel
method, i.e. an algebraic multigrid method with Gauss-Seidel smoother in
the standard formulation. In case of growing k, the necessary number of
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Figure 4: Comparison of the different relative residual decays for a complex geometry
Poisson problem on level L = 7, solved by the Gauss-Seidel method, the Gauss-Southwell
method and the k-random block-Gauss-Seidel method.

iterations seems to converge towards results of the Gauss-Southwell method.

6. Conclusions

We have introduced an algebraic multi-level frame construction. It trans-
forms the multi-level discretization approach, known as multi-level frames,
to a purely algebraic solver technique. In case of an elliptic model problem,
subspace correction iterative methods applied to the algebraic multi-level
frame system converge in a problem-independent way, i.e. achieve a simi-
lar performance as standard algebraic multigrid. Moreover, the proposed
approach exposes structure that will make it an optimal candidate for error-
resilience. Compared to the geometric construction shown in [3], we achieve
(qualitatively) identical results, even on a complex geometry. Due to its alge-
braic nature, the proposed method is an optimal candidate for generic linear
algebra libraries.

In the future, it is planned to discuss improvements for performance
and computational complexity. New on-the-fly construction and compres-
sion techniques may reduce the runtime and computational complexity. At
the same time, the extreme parallelism and error-resilience of the proposed
method is expected to be exemplified by providing a multi-level algebraic
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frames library based on work in [13]. This library might to be able to out-
perform classical algebraic multigrid approaches on multi- and many-core
architectures.
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