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Abstract A novel editing method for large triangular meshes

is presented. It is based on a stable local surface classification

and feature detection algorithm, the definition of a finite ele-

ment matrix encoding a weighted coupling of adjacent mesh

nodes, and an algebraic multigrid (AMG) algorithm. In par-

ticular, edges and corners are regarded as features on the sur-

face. We detect features using an analysis of local zero and

first surface moments, as computing these quantities is robust

and noise resistant. The feature detection is encoded in a fi-

nite element matrix, passed to the AMG algorithm. The AMG

algorithm generates a matrix hierarchy ranging from fine to

coarse respresentations of the initial fine grid matrix. This hi-

erarchy comes along with a corresponding multiscale of basis

functions, which reflect the surface features on all hierarchy

levels. We consider either these basis functions or distinct sets

from an induced multiscale domain decomposition as handles

for surface manipulation. Finally, we present a multiscale ed-

itor which enables boolean operations on this hierarchical do-

main decomposition and simple algebraic operations on the

basis functions. Users can thus interactively design their fa-

vorite surface handles by simple grouping operations on the

multiscale of the feature-sentitive basis functions or domains.

Several applications on large meshes underline the effective-

ness and flexibility of the presented tool.

Key words surface processing – algebraic multigrid – mul-

tiscale feature detection

1 Introduction

Flexible, interactive surface modeling is a challenging topic

in computer graphics. In particular, multiresolution strategies

have proved to be an efficient way for processing large trian-

gular surface meshes [18,20,22]. Surfaces of a complicated

shape and non trivial topology have to be treated and processed

in an intuitive and interactive way [34]. Hereby, surface fea-

tures such as edges and corners are of particular interest. The

set of all surface features is usually characterized by different

scales. Usually, one finds prominent, sharp, and long edges,

together with less pronounced, slighty curved features, con-

fined in smaller surface regions. Usually, such features sep-

arate the surface in a number of smooth regions that corre-

spond intuitively to different object parts. Just as the edge fea-

tures, these parts come at different scales, e.g. the dragon’s

horn and tongue on finer scales, and the head and body, on

coarser scales. To our knowledge, this multiscale nature of sur-

face features has not been considered so far. In this paper we

present a novel approach to surface modeling which

– robustly detects features on large and small scales,

– computes a multiscale library of surface handles reflecting

features, and

– enables a flexible interactive, and reliable multiscale sur-

face editing.

In the following, we outline the main steps of the proposed

method (see also Fig. 2 and the example in Fig. 1). The method

is based on a local zero and first moment analysis to classify

features on discrete surface. The zero and first moment inte-

gral quantities are stable to compute and they give less noisy

results compared to discrete curvature quantities. The result-

ing local surface classification, computed at the triangulation

vertices of the surface, is encoded in a finite element stiffness

matrix. Thereby, the matrix describes the coupling of regions

on the surface. By construction, this coupling is much weaker

along feature edges than in smooth areas. Next, an algebraic

multigrid (AMG) method is applied to this matrix. The AMG

delivers a matrix representation on multiple scales and an ac-

companyingmultiscale library of discrete basis functions, which

can be seen as feature sensitive surface handles. In other words,

the AMG delivers a multiscale representation of our surface

classifier. Coarse levels show the main surface characteristics,

i.e. the smooth regions separated by the most salient surface

features. Finer levels show the (usually smaller) regions sepa-

rated by less pronounced,detail surface features. To build gen-

eral surface handles, an editor tool is presented which allows

combining basis functions from the multiscale library. Figure 1

shows the different ingredients of the approach: the robust fea-

ture detection showing the weak coupling along feature edges,
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the AMG-based domain decomposition on a particular scale,

several surface handles selected form the multiscale library,

and finally the surface edited by deleting the selected handles.

Review of related work The method we present here is related

to other applications of AMG which are also related to precon-

ditioning. In particular, in [28], AMG is used to segment im-

ages via a multiscale method. In these applications the coars-

ening is comparable to a hierarchical watershed algorithm [24],

where homogeous regions on surfaces, bounded by curvature

features, are extracted. Furthermore, AMG has been applied

to optimal graph drawing applications [33]. Here, AMG serves

again as an appropriate clustering algorithm. The common mul-

tiscale characteristic distinguishes these approaches in partic-

ular from other surface decomposition methods, such as those

given in [35], where another watershed approach is taken into

account, and in [10], where a combinatorical approach is pre-

sented.

One of the building blocks of our method is a reliable sur-

face feature detection, an indispensable tool in image and sur-

face processing. Features such as edges and corners in images

have to be classified in a stable way to enable edge preserv-

ing image denoising [26,1] and robust segmentation of im-

age subdomains bounded by edges [8]. In image processing,

a straightforward identification of edges can be based on an

evaluation of the image gradient. A sufficiently large gradi-

ent is supposed to indicate an edge. Alternatively, a frequently

considered edge indicator is the Canny edge indicator, which

searches for extrema of the second derivatives in the gradient

direction [13]. Furthermore, the structure tensor [31]) enables

a robust classification of edges and edge direction in images.

Stable local classification of triangular meshes has been

considered in surface applications too [19,23] with the aim to

improve surface processing. Feature detection is usually based

on the measurement of dihedral angles [22] or on a local cur-

vature analysis [19,22]. An edge is supposed to be indicated

by one sufficiently large principle curvature and the correspond-

ing principle curvature direction is perpendicular to the edge

on the surface. A well known approach for curvature evalua-

tion on discrete surfaces is algorithm proposed in [25]. In [11]

principal curvatures are evaluated based on a local projection

of the mesh onto quadratic polynomial graphs. If concerned

with large triangular and irregular grids, e. g. generated by march-

ing cubes, such detectors are tedious to treat and a robust clas-

sification is hard to achieve. In critical applications features

are usually extracted manually [17]. Various applications rely

on a robust feature detection. In surface fairing a given initial,

noisy meshes have to be smoothed, while simultaneously pre-

serving edges on the surface [14,11]. In recent mesh decima-

tion tools, surface meshes are simplified while edge features

are retained [32]. As a final application, we mention automatic

texture generation, where it is desirable that the texture map

is bounded by feature lines [23].

Moment analysis for feature detection has already been

present in the graphics and computer vision areas [29,21]. Here

we focus on using moments as a multiscale feature classifica-

tion tool and provide details for their robust computation. Fi-

nally, there is a wealth of literature addressing the topic of sur-

face editing, such as [34] and [2]. However, to our knowledge,

no similar methods based on algebraic multigrid (AMG) ex-

ist. Since the main message of this paper is the novel introduc-

tion of the AMG in the field of multiscale surface processing,

we shall not insist on reviewing specific surface editing meth-

ods and tools.

The paper is organized as follows. In Section 2 we briefly

review algebraic multigrid methods. Then the local classifica-

tion of surfaces based on moments is discussed in Section 3.

We will use this classification to define a matrix encoding the

features of the surface in Section 4 and in Section 5 a mul-

tiscale library of surface handles will be computed applying

algebraic multigrid to this matrix. The multiscale surface edi-

tor will be introduced in Section 6 and in Section 7 we present

some applications. Finally in Section 8 we draw conclusions

and indicate future work directions.

Notation

Before we develop our approach to multiresolution modeling,

let us first briefly introduce some basic notations. For a de-

tailed introduction to geometry and differential calculus we

refer to [15]. Let us consider a closed and orientable surface� �����
. Let ���
	�� ��
��������� ��� be some coordinate

map from an atlas. For each point � on
�

the tangent space��� �
is spanned by the basis ��� ����! #" �

�
�$�&%
'
. By

� �
we denote

the tangent bundle. Measuring length on
�

requires the def-

inition of a metric ()�&* " * � � � � � + � � � � �
. As the corre-

sponding matrix notation we obtain the first fundamental form(-,.�0/2143 � 143 with /21435, � ��$�76 * �
�
�$�98 , where * indicates the scalar

product in
� �

. The inverse of / is denoted by /;:;<=,.�0/ 1>3 � 1>3 .
The gradient ?A@�B of a function B is defined as the represen-

tation of C�B with respect to the metric ( . In coordinates we

obtain

? @ BD�>,FE 1HG 3 /
143JI �0BLKM� �I � 3 II � 1ON

We define the divergence div @QP of a vector field PSR � �
as the dual operator of the gradient with respect to the TMU -
product on

�
and obtain in coordinates

div @QPV�>,WE 1
II � 1 �&�XP 1 KM�

�ZY C#[]\2/ � ^_ C#[]\J/ N
Finally, the Laplace Beltrami operator `a@ is given by

` @�b �4, div @ ? @�b N
Let us denote by c the normal field on the surface

�
.

2 A brief introduction to AMG

In this section we give a short review of the basic algebraic

multigrid algorithm (for scalar PDEs) and the heuristics which
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led to its development, see [30] for a detailed introduction to

AMG.

Algebraic multigrid methods were first introduced in the

early 1980’s [3–6,27] for the solution of linear systems ������
coming from the discretization of scalar elliptic PDEs. The

development of AMG was led by the idea to mimic (geomet-

ric) multigrid methods, i.e. their functionality and convergence

behavior, in applications where a hierarchy of (nested) meshes

and interlevel transfer operators could not (or only with huge

effort) be provided. The amount of input information for the

iteration scheme should be minimal, i.e., the linear system it-

self should provide all the information needed for the algo-

rithm.

Roughly speaking, we define a sequence of matrices ���
from the input (fine level) matrix �	��
��
� via the a natural

coarsening (often named Galerkin projection)

� � 
���� � � ��������� ��� ������� � ��������� �
where � � is an appropriately chosen prolongation matrix (en-

coding how coarse scale ( ! ) basis functions are combined us-

ing the basis functions on the finer scale ( ! "$# ). In particular,

AMG constructs a sequence of appropriate prolongation ma-

trixes % � ��& �(')�+*-,-,-,.* / using information from the matrix ���0���
on the previous level !1"�# only. The construction of a pro-

longation matrix can also be viewed as the construction of a

problem-dependent basis %32���* 45& . We construct a coarser basis%62���* 4.& which captures the appropriate features relevant for the

approximation of the corresponding continuous problem, i.e.

the underlying differential operator (cf. Section 4). The theory

and the design of efficient AMG packages is rather involved.

We here require the basic AMG capabilities. There are sev-

eral suitable AMG packages available on the Web (e.g. un-

der www.mgnet.org, see also the software discussed in [33]).

Let us recall the essential ingredients of AMG algorithms. In

general, any AMG implementation works as follows (see also

Fig. 4):

– Given fine grid matrix ����
��7� .

– Construct prolongation � � ; i.e. coarse basis functions %32 �8* 4 & .
– Define restriction � � 
���� � � � � .

– Define the coarse matrix � � 
��9� � � � � � via the Galerkin

identity.

– Recursive application gives a sequence of prolongation � �
and restriction �:� matrices, as well as matrices �	� on all

levels !)��; �3<+<3<=�?> .

The fundamental ingredient in this AMG construction is the

notion of algebraic smoothness. With the help of such a smooth-

ness measure we can set up a reduced graph of the matrix from

which we can then “merge” fine level basis functions 2������8* 4
on level !3"@# in an appropriate fashion to define the coarse ba-

sis %62���* 4.& on level ! . Hence, algebraic smoothness is defined

as a generalization of the concept of geometric smoothness

with the aim to extract some measurable quantity which can

be (easily) computed from the matrix. In particular, in our ap-

plication we weight the geometric smoothness of a surface (cf.

Section 4) with the help of local surface classifier (cf. Section

3). Several different measures for algebraic smoothness are

used today in the various algebraic multigrid methods [27,7,

9]. Common to all these heuristic definitions is the general ob-

servation that a simple relaxation scheme—most often Gauss–

Seidel smoothing is used in AMG—damps (efficiently) high

energy components, i.e. eigenvectors associated with large eigen-

values, only. Consequently, the coarse grid correction must be

able to deal with the remaining small energy components.These

small energy functions should be represented accurately on

coarser grids.

The construction of the coarse basis %62���* 4.& itself is a two-

step process. First, we select so-called coarse grid points, i.e. a

subset of indices which give the sparsity pattern of the prolon-

gation matrix � � . Then in a second step we define an interpo-

lation formula, i.e. the weights of the prolongation matrix � � .
This tell us how a coefficient vector on a coarser level ! is rep-

resented with respect to the finer level !A"B# . Thus, we define

how information from the coarse basis %32 ��* 4 & is represented

in terms of the fine level basis %62 �����8* 4 & . There are many dif-

ferent approaches to the definition of AMG prolongation ma-

trixes. Our numerical experiments with different prolongation

matrices showed that a renormalized variant of a very classical

and widely used interpolation scheme, see e.g. [16], gave the

most favorable results. Hence, throughout the paper we used

this interpolation scheme with a simple averaging of the in-

terpolation weights to enforce mass conservation. Note that

this two-step process can also be viewed as a graph coarsening

scheme: We select a subset of fine level vertices as the coarse

vertex set and define an approriate sum of the weights of the

removed edges on the fine level as weights for the coarse level

edges (cf. Section 5).

To illustrate the performance of AMG, we give a here a

very basic first example. Consider a flat square domain CD�E "�#GF3#�H0IKJMLNI . Now we select the subset OP��Q �?R?I "�Q �SR?I+�)T ,
where U is a small positive real and Q	V is the ball of radius W
centered at the origin ; . Next, we define the functionX �ZY � � []\ ;^;G; � Y`_$Ca"bO; < ;G; \ � Y`_cO
In other words, the operator d is smooth overall but exhibits a

discontinuous jump on the ring-shaped boundary of O . Next,

we define the following differential operator e]fg�h" div � X�i�j � .
We discretize this problem by the usual finite element proce-

dure. Hence, we define a quadratic form kA��l �?m�� �onqp X`i l � i m��
corresponding to this operator. Then, let r�s be the finite ele-

ment space correspondingto a triangulation of C and %ut � �+<3<+< t1v=&
the basis of hat shaped basis functions, where w is the number

of nodes of the triangulation. Finally, we compute the wyx`w
finite element stiffness matrix � :

� 4-z 
��9kA�{t 4 � t z � ��| p X}i t 4 j3i t z <
The multiscale of AMG basis functions is depicted in Fig. 5.

These basis functions clearly follow the discontinuities of d .

However, note that in smooth regions the bases have a nonzero

overlap. Moreover, the AMG method does not impose any con-

straints on the way this overlap takes place - for instance, it

does not guarantee that a smooth region is entirely covered



Feature Sensitive Multiscale Editing on Surfaces 5

by a single basis function or by a number of bases having the

same nonzero support size. Nevertheless, this is not a serious

problem for our method (see, for more details, Sec. 5).

Obviously, the above is just a succint presentation of the

AMG method. However, we stress again that AMG tools have

been developed with the very purpose of being used as black

box solvers. Since our method does not explicitly rely on the

specific parameters or coarsening strategy of a given AMG

solver, one should be able to easily substitute the AMG solver

one avails of instead of the one we used, and obtain similar re-

sults. Different AMG parameter settings and coarsening strate-

gies are likely to deliver slightly different basis functions, es-

pecially in the smooth areas. However, given the strong classi-

fier discontinuities following the edge features, various AMG

tools should deliver the same basis function behavior along

these features.

3 Moment-based surface analysis

In the following, we will introduce and discuss local surface

classification based on zero and first order surface moments.

This will in particular allow to robustly distinguish smooth re-

gions from the vicinity of edges or corners on surfaces. For a

surface � , the zero moment is given by the local barycenter

of � with respect to an Euclidian ball �������	� centered at � :
��� �
�	�
��������� � ��������� � d � �
The parameter ! serves as a filter width. Furthermore, the first

moment is defined by
#"� �
�$�%�&� � �'� �)(+*-, ��� ��� � 
��� ���$�.��/0��� � 
��� �
�$���.� d �� � �'��� (+*-, ��� �1/2� d � � 
��� �
�$��/ 
��� �
�$�3
where 45/�67�&�8��4:9;6=<>�;9@? <BA " ?&C&C&C.? D . Due to the definition via

local integration, the zero and the first moment is expected to

be robust with respect to noise.

Moments in smooth areas and at edges

In the following two sections we will explain, how zero and

first moment information may be used to distinguish between

smooth and non-smooth surface parts. It turns out, that the zero

moment shift, defined byE �=���$�F� 
��� �
�$� � � 3
scales quadratically w.r.t � the filter width ! in smooth surface

domains, whereas on edges and corners, the scaling is only

linear (cf. Fig. 6). Furthermore, the eigenvalues of the first mo-

ment � "� �
�$� give us additional information in the presence of

an edge. This justifies the usage of moments as detectors for

surface features. For a given, usually small, parameter ! , only

features larger than ! will be detected. The zero moment shiftE � plays the role of a scaled approximate normal.

Indeed, the quadratic scaling of the zero moment is given

by the relationE �B�
�$�G� � !BH=I-�
JK�ML2���$� E ���	�$NPO��
!BH:�K�
The explicit constant c(d) = c(2) = 0.125 (we consider 2D sur-

faces only). The quantity LQ���	� E �
�$� is the mean curvature

vector at � . For a proof we refer to [12].

We now discuss the case of non-smooth surface features,

such as edges and corners. Let � be a surface, which is smooth

up to the edge set R � on the surface. Then, for SUT�R � ,

there is a vector VE �
�$� , such thatE �B���	�F�W! VE �
�$�XNPO��
!Y�K�
In this sense, the zero order moment scales linearly on the sin-

gularity set of the surface. Next, we consider the first moment.

Let us assume that for S8TZR � the apex angle of a surface

edge is of size []\ (cf. Fig. 6). Then in ! the eigenvalues of the

first moment are ! H=^ , ! H�^`_.a+b H \ and ! HdcGe=f�_�H \ up to higher

order terms, where ^ �hgi�&[:j and clk gK� gnm:ono . For a formal

proof, we refer again to [12].

Local surface feature classification

We will use these results to define local surface classifiers, i.e.

quantities that enable us to robustly distinguish between smooth

surface areas and features such as edges and corners. This will

later be encoded in a mathematical operator on the surface (see

Section 4). We have seen that the shift of the zero moment
E �

differs by an order of magnitude in ! if compared on edges

and in smooth areas on the surface, respectively. Hence, let us

define a first local surface classifierp �� �
�$�G�rqts'u E �B���	� u! v
where q1�Mw:�x� "y�z|{�}�~ with suitably chosen � 3���� g . In all

our applications we have chosen ����gi� g:g�[ and � �8[]g .
We observe that

p �� ���	� k��>� � in smooth regions on � andp �� ���$���x� �-� � close to edges or corners (cf. Fig. 7). Even

though
p �� can already serve as a good classification tool, we

can further improve the feature detection quality by incorpo-

rating first moment information. Suppose �|� 9�� 3 �|�%� * to be

the smallest and largest eigenvalue of

 "� ���	� , respectively. From

(1) we know that the quotient �K� 9+� � �|��� * is approximately

given by�|� 9+� � �K��� * k0c:��^`e=f�_ H \ k gK� [��-o:m e=fn_ H \ 3
where []\ is the apex angle of an edge feature. This relation

for � � 9�� � � �%� * is valid for \ larger than gK� [��][:m k�� mn� . Es-

pecially, in the smooth case ( \���� � [ ), this quotient van-

ishes where it increases for decreasing \ . Hence, we can fur-

ther pronounce edges in the classification by the choice of a

combined zero and first moment classificationp � ? "� �rq s u E � u � � 9+�!X� �%� * v �
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We mention that, for � smaller than ����� , the quotient of the

eigenvalues again tends to � , when ���	� . In this sense, very

sharp features are detected in a weaker sense than they should.

However, as our experiments showed, this seems to be only of

theoretical interest. Figure 7 compares the results obtained by

the classification with 
��
 and 
���� �
 . For all surfaces we tried,

the combined classifier showed a better separation of the fea-

ture areas (edges and corners) from the smooth areas than the

zero moment classifier. Due to its superior quality we have ap-

plied the classifier 
���� �
 in all applications below (cf. Fig. 8).

Implementation of zero and first moment

In the previous section, we have treated arbitrary surfaces. In

applications, we usually deal with two-dimensional, irregular,

triangular grids. In the following we will detail the discretiza-

tion of the presented local surface classification in this case.

We consider a triangular mesh ��� with grid size function � .

In our implementation, we compute the moments centered at

each node of the triangulation.

Let us fix one node ��� and denote the discrete moments by� �
 � � and
� �
 � � . Given this radius � , we first collect all trian-

gles ��� ��������� �� "! of the triangulation such that ���$#&% 
�' ���$(*)+, �.- + � �������0/ , by performing a simple breadth first search

from the node ��� on the mesh connectivity graph. This set of

triangles splits into two subsets. The first one - denoted by 12�
- consists of all elements with ���435% 
6' ���0( . The second one127 is the complement. Now we iteratively compute the inte-

grals 89;:=<6>@?�A and 89B:4<6>DC�>@?EA . On each triangle of 1 � we

use the following exact integration formulas:� � ' � � ( + �F ' � �HG � �=G ��IJ( �K 9*LNMO>2CP>@?�A + �F 'RQ � C Q �SG Q � C Q �TG Q I C Q IU( �
where � � � � � � ��I are the nodes of � � and Q � + ' � �VG � � (0WVX ,Q � + ' � � G � I (OWVX and Q I + ' � � G � I (OWUX . For the corre-

sponding computations on 1 7 #Y% 
 we apply an approxima-

tion. For each triangle �[Z\3]1 7 , the intersection of the sphere^ % 
 and the edges of the triangle consists of two points de-

noted by _ �N� _ I . We replace the curvilinear connection �[Z`#^ % 
 by the line segment connecting _ � and _\I . Hence, we re-

place � Z #H% 
 by a polygon which we again can split into trian-

gles. We proceed now as above using exact integration on all

these virtual triangles. To ensure a robust moment calculation

we choose � + F � in our applications.

4 A matrix encoding features

Given a classifier 
bac� �ed4f� on a surface � , we can de-

fine a mathematical operator gih 
[j which considers the clas-

sifier as a spatial coupling weight on the surface. Suppose 

to be large in smooth surface regions and small on edges and

corners. In our applications, we choose 
 + 
 ��� �
 as above and

define

gYh 
[jka + 9 div l ' 
.m2ln( �

In case of a homogeneous surface with 
 + � we obtain a

constant spatial coupling described by the negative Laplace

Beltrami operator oYpqa + 9 div l m l . If one thinks in term

of diffusion, 
 is the diffusion coefficient, which is small on

edges and approximately �NWJr in smooth regions. This type

of operator has already proved to be a powerful tool in fea-

ture preserving surface fairing and image denoising [26,11].

Here, we do not aim to process the surface via a differential

equation. Instead we are interested in a multiscale decompo-

sition of the operator itself. With respect to our actual aim of

designing an editing tool for discrete, triangular surfaces in-

stead of the continuous operator g , we treat its discrete finite

element counterpart g � h 
[j . Hence, following the general fi-

nite element paradigms we first introduce the quadratic formg 'Rs �$t ( acting on functions on � :

g 'Rs �$t (&a +
K
l 
um l sYv m l t d > �

Furthermore letw � + �N� ��xuy � ' � � (*zz � ��{
L xi| ��� � x � � !

be the finite element space on � � consisting of those continu-

ous functions being affine linear on each triangle of � � . The

usual basis �N} � ! ��~ ��������� � , on
w � is defined by } � ' ���V( +�� � �

where � is the number of vertices of ��� and } � ' ���V( +�� � �
for all vertices � � . Note that we use capital letters for discrete

objects to distinguish them from continuous objects denoted

with lower case letters. We now define a discrete operator g �
acting on

w � and a corresponding ���]� matrix A where a

matrix entry is given by

A � �Da + g ' } � � } � ( +
K
lb� 
�m2l�} � v m2l]}\� d >

and ��} �N��������� }H��! is the standard basis of
w � . This matrix de-

scribes the coupling on the discrete surface weighted by the

classifier 
 . This coupling is encoded in terms of the coupling

of adjacent nodes of the triangulation. Indeed, for every pair of

adjacent nodes � � and ��� the matrix entry A � � describes the

coupling strength. In Section 5 we will discuss the multiscale

decomposition of this matrix, the centerpoint of our method.

Assembling the matrix

Before we discuss the multiscale decomposition of the ma-

trix A , we detail its actual computation. The assembly of A
is based on the standard Finite Element assembly procedure.

We start by initializing % + � followed by a traversal of all

surface triangles � . On each � with nodes _"� � _�� � _ I , a cor-

responding local matrix 'R� � � ' �"($(�� � is computed first, corre-

sponding to all pairings of local nodal basis functions. Next,

the local matrix is added to the matching locations in the global

matrix % , i. e. for every pair -���� we update A���� ��� � ��� � � + A���� ��� � ��� � � G� � � ' �D( . Here r ' - ( is defined as the global index of the node

with local index - . For the local matrix we need a local surface
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classifier ������� for every triangle � on �	� , which we define

by averaging. We obtain for the local matrix:


���
 ��������������� �����
��� ��� � ��� 
 ���������! �" $# �% � � # 
% 


�&�������' �" )( �% �+* ( �'* � ( 
% 
,* ( 
�* ���������-(
� � ( 
.  �" 

where  �� is the area of triangle � ,

� � is the nodal basis func-

tion corresponding to the node / � for any local index 0 , �
�

the gradient on � , and # � the outer normal to the edge ( � op-

posite of / � . Finally
% �

is the height of the triangle over the

edge ( � . The trianglewise classifier ������� is deduced by aver-

aging from the classifier values on the nodes 1"24351�6 and 1�7
of the triangle � : �������8�:9-;=<>�����?1�@4�BAC���?1"2D�EAC���?1�7F�G� .
Given the sparsity of H , we use a compressed row matrix stor-

age model, i.e. store only the nonzero entries and their column

indexes, for every matrix row. This confines the matrix mem-

ory requirements to e.g. around 10 megabytes for a mesh of

280472 triangles.

5 Multiscale decomposition by AMG

As discussed so far, the matrix H defined above can be re-

garded as a description of the surface shape. In particular the

smoothness modulus and the distinct surface features are en-

coded in this matrix. Besides prominent feature edges, succes-

sively finer, more detailed edges are encoded. At this point, we

require a tool capable to analyze and represent this multiscale

of features. Here AMG comes into play. Given a matrix which

encodes inhomogeneities on different scales - in our case the

features detected by the classifier - we apply AMG (cf. Sec-

tion 2) to detect this multiscale. AMG will deliver a scale of

surface descriptions in terms of matrices H+I for JK�ML53 �D�N�$O
ranging from detailed ( HP@Q�RH ) to very coarse ( HTS ). To-

gether with these matrices we obtain basis functions UKIWV � on all

scales. Hence, we obtain handles for surface editing on differ-

ent detail scales. One might either manipulate large scale fea-

tures such as the head, tail, or legs of the meshes shown in this

paper. Alternatively, adjustments of small details, such as fin-

ger tips or ears, can be performed. This section describes the

underlying mathematics related to the multiscale representa-

tion. The next section presents the actual editing tool, config-

ured as a simple but effective “combiner” of basis functions.

Recalling, we apply the AMG algorithm (cf. Section 2) to

the matrix HQXZY�[�V [ introduced in the previous section. Run-

ning AMG on the matrix H we obtain a sequence of prolon-

gation matrices

1 I X\Y [^]`_�a-V [^]�b
as output, where cDd I�e4Igf!@hVjijijikV S is decreasing and d @ �&d . The

entries in each column of 1�I describe how the basis functionsUKIlV � for 0K�m9^3 �D�N� 3$d I can be generated from the basis func-

tions UKIWn�2oV � for 0p�q9^3 �N�D� 3$d IWn�2 on the previous, finer level.

Indeed, we obtain the following simple recursive recipe to cal-

culate a multiscale of basis functionsU IWV �Br � s
 f�2tVjijijiuV [^]`_�a 1 I
G� U IWn�2oV

wv 0��x9y3 �D�N� d�z5J{�Q9y3 �N�D�$O

U @hV � r �
� � v 0 2 3 �D�N� d

Collecting all basis function UKIlV � on all scales J��|L53 �N�D�$O we

build up a multiscale library} �������Qc4U IWV � e ]N~��$�����?�F�?�� ~Ka?�����k�-��� ]
of functions which reflects, on all scales, the surface features

encoded by the local surface classifier � (cf. Fig. 9). Let us re-

call that the prolongation matrices induce a sequence of ma-

trix representations HPI�X\Y�[^]$V [^] on different levels:H I r ��� I H IWn{2 1 I J���9y3 �N�N� 3 OH @ r ��H
where the restriction matrices � I XQY [ ]`_�a V [ ] are defined as��I{�Q�?1�I��

�
. In general, as outlined in Sec. 2 the goal of AMG

is to compute prolongations in such a way that, for the num-

ber of degrees of freedom d I , the mapping corresponding to

the matrix H+I is a sufficiently good approximation of the orig-

inal matrix H . Hereby, the underlying algebraic smoothness

criterion depends on the problem setting. In our case, smooth-

ness is induced by the spatially varying surface classifier ��� � � .
An interpretation of the entries of H+I is that H+I��
 measures of

strength of the coupling between the basis functions UKIWV � andUKIlV 
 or - if we think in term or surface regions - the coupling of

the domains defined by the supports of the basis functions. In

particular, the coupling is expected to be weak across edges,

as described by ��� � � .
Furthermore, the shape of the basis functions will clearly

show the strength of the node coupling in the matrix. On edges,

the weights H ��
 are small, because the classifier �����N�y�h� is small

in this region. Hence, AMG will cluster vertices on both sides

of an edge on much finer scales and will collect vertices from

both sides of the edge at later stages of the coarsening pro-

cess. In particular, it is expensive - in terms of the built-in op-

timization in a concrete AMG implementation - to generate

basis functions whose masses are equally distributed on dif-

ferent sides of an edge feature (cf. Fig. 5 and 9). However, as

already mentioned in Sec. 2, this is not a problem for the pro-

posed method, as it will be explained next.

As usually, basis functions on a given scale overlap each

other. Hence, it turns out to be sometimes hard to treat to visu-

alize basis functions directly in an graphical user interface for

e.g. a surface editor or processing tool. Hence, aiming to rep-

resent the set of overlapping basis functions cDUKIWV � e � f�2tVjijijikV [^]
visually, let us define a corresponding domain decomposition� I for every J��QL53 �D�N�$O (cf. Fig.10). Here, we define

� I r �c � IWV � e � f�2tVjijijikV [^] , where� IlV � r �QcD/�X��	�K uU IWV ��� U IlV 
 v>� �Q9^3 �D�N� 3$d I e
Let us remark that the domains on different scales need not

be strictly spatially nested. Nethertheless, these domains are
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bounded by surface feature lines. This characteristic is enough

for building a simple and intuitive way to represent and ma-

nipulate such domains on different scales (see Sec. 6).

A major feature of our method is its speed. The AMG com-

putation of the prolongation matrices takes between 3 and 6

seconds for meshes up to 300000 elements on a Pentium 4

PC at 1.5 GHz running Linux. The domain decomposition in-

volves just multiplication of the prolongations and thus takes,

for the same datasets and platform, 1 to 3 seconds. The slowest

part of the pipeline is assembling the classifier matrix, which

is linear in the number of mesh triangles, and takes about 10

seconds for the largest mesh we tried, i.e. 280472 elements.

The matrix assembly complexity is quadratic in the radius �
of the integration ball

���
(see Sec. 3). For all examples, a ball

size of ��� , where � is the average triangle size, was used. Larger

balls, that would slow down the assembly, are not required, as

the surface features we are looking for in the classifier are al-

ready present on this scale.

The graph perspective

The mesh �	��

����� can be trivially encoded in a graph� ��� ����� ��������� , where the vertices
� ��

� � � and the egdes

����
 �!�"� of the mesh are the graph nodes and egdes, respec-

tively. In case of our affine finite element space #�� the spar-

sity pattern of the matrix $�� is such that in the % th row, cor-

responding to the vertex &(' , the only nonzero entries $ �'
) are

those corresponding to adjacent nodes & ) , connected to & ' by

an edge *+�'
)�, ��� , and the entry & ' reflecting the self-coupling

of node % with itself. Hence, the entries $ '
) in the matrix can

be regarded as weights on the egdes ��� of the graph
� � . In-

deed, AMG generates a sequence of graphs

��- � �.�/�0- �1� - �
for 23�54��7686869�;: . On level 2 the set of graph nodes

� -
corre-

sponds to the basis <>= -@? 'BA '@C�D ? E E EB? F�G and for every entry $ -'
)IH�J
their exists an edge * -'
) , � -

with that weight. One might

ask whether the graphs
� -

for 2�K J
again generate immersed

polygonal grids � -
. This is known to be a design principle

of progressive mesh algorithms. However, in our case there is

in general no such mesh nesting sequence and it would be a

much too severe restriction to formulate this property in the

AMG algorithm as a constraint.

6 A multiscale surface editor

The basis functions = -L? '
from the multiscale library Ł

�NM � can

be directly used as handles to process the surface. Frequently,

however, the “handles” the user has in mind to manipulate the

surface are not precisely recovered by one of the available AMG

basis functions. Desired handles can be generated by combin-

ing a few basis functions from the AMG multiscale library of

basis functions. We present here a simple but effective fea-

ture editor based on this strategy. The editor allows to select

a given basis function on a given level by just two intuitive

mouse picks. Several such bases can be then added to design

the desired handle. In detail, for an arbitrary surface point &
- chosen by a first mouse pick - we extract from the multi-

scale domain decomposition a sequence of activated domains

<7O -P A - C � ? E E EB? Q , where O -@? 'NR PTS
is the set O -@? '

from the domain

decomposition on level 2 for which & , O -L? '
. A second pointU

- chosen by a second mouse pick - identifies now a single

active set O - R/V S ? 'NR PTS
from the activated sets, where

2 � U �W�YX[Z]\^<+2`_ U , O -L? 'LR PTS A
Hence, the corresponding basis function = - R/V S ? 'LR PTS

is interac-

tively and intuitively selected form the multiscale library a �bM � .
This function inintializes the handle

=dce= - R@V S ? 'NR P+Sgf
The process can be repeated e.g. by picking another two sur-

face points h& and hU . The handle is updated

=dciX[j/k3<�4���=mln= - RpoV S ? 'LRBoP+S A f
Figure 11 shows an example. The first pick (at the black ar-

row’s location) produces the activated domains corresponding

to the hand’s middle finger tip. Surface color coding indicates

the editor’s current status. Picking a point & , the activated do-

mains are drawn in colors corresponding to the sequence pa-

rameter 2 , using a fixed color map (see Fig. 11). The second

pick (light blue arrow) adds now a basis to the current handle.

The domain

Orqs�t<+u , � � _p= � u"�vKxw A
where we choose wy� J f J 4 , essentially being the support of

the current handle = , is always shown by a fixed color (light

blue, Fig. 11). Coloring guides the user’s iterative handle se-

lection. In all our applications, 4 to z selection iterations (i.e.

2 to 10 clicks) were sufficient to define the desired surface

handles (cf. Figures 11,12, 13, 14). In addition, we provide a

mechanism to step back in the handle construction. Picking

a point & in the already selected domain O deletes the previ-

ously added basis function containing & in its support.

7 Applications

After having selected the desired surface handles, one can edit

the surface. We show here a number of simple surface edit-

ing operations performed on the selected handles. These op-

erations serve only as illustration for the presented multiscale

surface decomposition and handle construction. However, this

does not diminish the usability of our technique. Indeed, state

of the art surface processing operations can be easily substi-

tuted in place of the ones shown here.

In the first example (Fig. 12), we select five features on

the Stanford bunny dataset, i.e. the ears, from paws, and tail.

Using the handle construction method (Sec. 6) these features

are easily selected by just ten mouse clicks, two for every fea-

ture, in the order: left ear, right ear, left paw, right paw, tail

(Fig. 12 a-j). The complete handle is shown in Fig. 12 k. Next,
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we remove the ears by smoothing the mesh. Smoothing de-

forms the mesh in the inward normal direction and performs

a mesh decimation simultaneously by removing triangles that

become smaller than a fraction of the average triangle size.

Decimation is needed to ensure that the deformed mesh does

not contain unnecessarily small triangles. Finally, we inflate

the paws and tail by mesh deformation in the outward normal

direction. Figure 12 l shows the edited mesh and the selected

domain.

In the second example, we select eight features on the mesh

in Fig. 13, i.e. the ears, middle toes, and tail. Selecting these

fine details requires only two clicks per feature. Figures 13 a,b

show the selection of the left front toe. Next, we inflate the

toes and ears and round the tail. (Fig. 13 c). The inflation is

done as for the previous example. The tail rounding is a se-

quence of alternate mesh inflations and smoothings. Finally,

we separately select the body, also in two clicks, and smooth

it. Figure 13 d shows the final result and the domain corre-

sponding to the body.

In the last example, we select four features on the dragon

dataset (Fig. 14), i.e. the horn, tongue, hind leg spike, and tail

tip. We detail the selection of the horn. The first click (Fig. 14 a)

produces the activation domains for the horn’s tip. A second

click, in the same place, selects the upper half of the horn only,

since there is no single basis covering the whole horn (Fig. 14 b).

Two more clicks, both on the horn’s stem, are needed to select

the rest of the horn (Fig. 14 c,d). After all details are selected

(Fig. 14 e), we erase them by mesh decimation, to yield the

final result (Fig. 14).

8 Conclusions

We have presented a novel technique for manipulating surface

meshes at different levels of detail, consisting of the following

ingredients: the stable computation of surface classifiers, the

classifier assembly into a finite element matrix, the computa-

tion of a sequence of basis functions on different detail lev-

els with the AMG method, and a simple but effective surface

editor based on these basis functions. Overall, selecting sur-

face features at different detail levels is done by a few mouse

clicks. Although the machinery behind the editor is quite in-

volved, its users may employ it being totally unaware of the

underlying complexities.

The whole process requires setting few (if any) parame-

ters. The two classifier parameters � and
�

(Sec. 3) were fixed

for all our test surfaces. The AMG tool specific parameters

were fixed as well for all surfaces. These parameters control

the way the prolongations ��� are constructed (Sec. 2). Differ-

ent parameter settings slightly change the number of decom-

position levels obtained and the shape of the basis functions.

However, the coarse levels, which are the interesting ones for

our editing tool, remain practically unchanged. The reason hereof

is the classifier design which strongly distinguishes between

flat and curved areas (Sec. 3).

There is little else that could be automated in the process.

The most complex implementation part of the entire pipeline

is indeed the AMG tool. However, as mentioned, several avail-

able AMG tools can be used, virtually as black boxes. Imple-

menting the moment-based classifiers, matrix assembly, basis

function computation, and the editor, is straightforward.

Another point of discussion is the relation between the de-

composition quality and the mesh quality. Here, the same well-

known guidelines apply as when studying mesh quality influ-

ence on solving PDEs using finite elements. Meshes contain-

ing bad aspect triangles (slivers) and/or high valence vertices

may encode the classifier at insufficient resolution. This prob-

lem is much serious in PDE solving via finite elements than in

our case. Indeed, as already stated, the large jumps in classi-

fier values (several orders of magnitude) will be visible even

on a poor quality mesh. Secondly, the coarser levels produced

by the AMG reflect the coarse scale classifier variations and

are, by definition, less sensitive to small scale perturbations. A

good example of the robustness of our decomposition with re-

spect to mesh quality is the hound (Fig. 13), which uses a poor

quality mesh (the mesh data is available at www.cs.virginia.edu/

gfx/Courses/2001/Advanced.spring.01/plymodels).

The presented technique opens a multitude of directions

for surface processing. Various other data, such as surface pa-

rameterization, texture, shading, or normals can be represented

on the multiscale induced by surface features. State of the art

surface processing operations, such as editing, decimation, or

morphing, can be coupled with the surface decomposition out-

put. Such surface data can also be encoded into new classi-

fiers, to produce novel ways for multilevel surface representa-

tions. Finally, an interesting question is whether the presented

AMG-based technique can be applied to mesh-free, point-based

surface representations, such as the one used in the PointShop

3D editing tool [36].
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a) b)

c) d)

Fig. 1 Surface processing example: (a) feature detector (b) feature-

guided surface decomposition (c) features selected for deletion (d)

surface after feature deletion

surface

Classifier
computation

AMG multiscale
decomposition

Matrix encoding

Handle
computation

Surface editing

stiffness matrix

family of bases

family of handles

surface classifier

Fig. 2 Steps of the multiscale surface editing method

Fig. 3 Coarse matrix �
�

definition illustrating matrix sizes

Fig. 4 General AMG construction

0.0

1.0

Fig. 5 For a simple second order differential operator on a planar do-

main, algebraic multigrid basis functions are depicted on different

scales (upper row: coarsest scale, middle row and lower row succes-

sively finer scales). The basis functions clearly reflect the ring type

feature region encoded in the operator.

Fig. 6 The intersections of a ball �������
	 are drawn for points � in a

smooth areas and on an edge respectively. In addition, we show the

approximate normal � � ����	 and the eigen direction of the first mo-

ment 

�
� ����	 for a point � on an edge.
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Fig. 7 The zero moment and the combined moment feature classi-

fiers are compared on a triangular mesh. The combined classifier de-

tects significantly more robustly the surface edges.

Fig. 8 For different triangular surface meshes we show the local

feature classification result using a color coding for the classifier����� ���	��

.

Fig. 9 Selected basis functions ��
 � � are color coded on a blue (low)

to red (high) colormap on the coarsest scale (upper row) and on the

third coarsest scale(lower row).

Fig. 10 On different scales (corresponding to the columns) the do-

main decomposition ��
 is shown for several triangular surfaces. The

surfaces consist of 280472 (bunny), 87140 (dragon) 25030 (hound),

and 96966 (horse) triangles, respectively.

Fig. 11 Selection steps in the feature editor (from left to right). First,

for a picked point � , all active domains � 
 � ������� are color coded or-

ange, red, yellow, green and violet for increasing scale � . Next, pick-

ing into one of these active domains at point � , selects a particular

scale � � � 
 . This activates � 
 ������� ������� and the corresponding basis func-

tion ��
 ������� ������� . The support is drawn in blue. Repeating this proce-

dure adds a second basis function to the handle with two clicks.



Feature Sensitive Multiscale Editing on Surfaces 13

a) b) c) d)

e) f) g) h)

i) j) k) l)

Fig. 12 Application 1: In ten clicks, five features (ears, front paws,

tail) are selected (a-j). Next, the handle and the edited surface are

shown (k,l)

a) b)

c) d)

2x

Fig. 13 Application 2: The left hind leg middle toe is selected by two

clicks on the red domain (a,b). Similarly, other features are selected

(c). Finally, the selection is edited (d)

a) b)

c) d)

2x

2x

f)e)

Fig. 14 Application 3: The dragon’s horn is selected in a sequence

of four clicks (a..d). Next, other features are selected (e). Finally, the

selection is erased (f)


