
The Visual Computer manuscr ipt No.
(will be inserted by theeditor)

FeatureSensitiveMultiscaleEditing on Surfaces

U. Clarenz
�

, M. Gr iebel
�

, M. Rumpf
�

, M. A. Schweitzer
�

, A. Telea
�

�

Fachbereik Mathematik, Duisburg University, Lotharstrasse65, 47048 Duisburg, Germany
�

Institut für Angewandte Mathematik, Bonn University, Wegelerstrasse6, 53115 Bonn, Germany
�

Eindhoven University of Technology, Department of Mathematicsand Computer Science, DenDolech 2, 5600 MB Eindhoven, Netherlands

Received: date / Revised version: date

Abstract A novel editingmethodfor largetriangular meshes
ispresented. It isbased on astable local surfaceclassi� cation
and feature detection algorithm, the de� nition of a � nite ele-
ment matrix encoding a weighted coupling of adjacent mesh
nodes, and an algebraic multigrid (AMG) algorithm. In par-
ticular, edgesand cornersare regarded as featureson thesur-
face. We detect features using an analysis of local zero and
� rst surfacemoments, ascomputing thesequantitiesisrobust
and noise resistant. The feature detection is encoded in a �-
niteelement matrix, passed to theAMGalgorithm. TheAMG
algorithm generates a matrix hierarchy ranging from � ne to
coarserespresentationsof the initial � negrid matrix. Thishi-
erarchy comesalong with acorrespondingmultiscaleof basis
functions, which re� ect the surface features on all hierarchy
levels. Weconsider either thesebasisfunctionsor distinct sets
froman inducedmultiscaledomaindecompositionashandles
for surfacemanipulation. Finally, wepresent amultiscaleed-
itor which enablesboolean operationson thishierarchical do-
main decomposition and simple algebraic operations on the
basis functions. Users can thus interactively design their fa-
vorite surface handles by simple grouping operations on the
multiscaleof thefeature-sentitivebasisfunctionsor domains.
Several applicationson largemeshes underline the effective-
nessand � exibility of thepresented tool.

Key words surfaceprocessing – algebraic multigrid – mul-
tiscale featuredetection

1 Introduction

Flexible, interactive surface modeling is a challenging topic
in computer graphics. In particular, multiresolution strategies
haveproved to bean ef� cient way for processing large trian-
gular surface meshes [18,20,22]. Surfaces of a complicated
shapeandnontrivial topologyhavetobetreatedandprocessed
in an intuitive and interactive way [34]. Hereby, surface fea-
turessuch asedgesand cornersareof particular interest. The
set of all surfacefeaturesisusually characterized by different

scales. Usually, one � nds prominent, sharp, and long edges,
together with less pronounced, slighty curved features, con-
� ned in smaller surface regions. Usually, such features sep-
arate the surface in a number of smooth regions that corre-
spond intuitively to different object parts. Just astheedgefea-
tures, these parts come at different scales, e.g. the dragon’s
horn and tongue on � ner scales, and the head and body, on
coarser scales. Toour knowledge, thismultiscalenatureof sur-
face featureshasnot been considered so far. In thispaper we
present anovel approach to surfacemodeling which

– robustly detects featureson largeand small scales,
– computesamultiscalelibrary of surfacehandlesre� ecting

features, and
– enablesa � exible interactive, and reliable multiscale sur-

faceediting.

In the following, we outline the main steps of the proposed
method(seealsoFig. 2andtheexampleinFig.1).Themethod
is based on a local zero and �rs t moment analysis to classify
features on discrete surface. The zero and � rst moment inte-
gral quantitiesare stable to computeand they give less noisy
results compared to discrete curvaturequantities. The result-
ing local surfaceclassi� cation, computed at the triangulation
verticesof thesurface, isencoded in a �nit eelement stiffness
matrix. Thereby, thematrix describesthecoupling of regions
on thesurface. By construction, thiscoupling ismuch weaker
along feature edges than in smooth areas. Next, an algebraic
multigrid (AMG) method isapplied to thismatrix. TheAMG
deliversamatrix representation on multiplescalesand an ac-
companyingmultiscalelibrary of discretebasisfunctions,which
canbeseenasfeaturesensitivesurfacehandles. Inother words,
the AMG delivers a multiscale representation of our surface
classi� er. Coarselevelsshow themainsurfacecharacteristics,
i.e. the smooth regions separated by the most salient surface
features. Finer levelsshow the(usually smaller) regionssepa-
ratedby lesspronounced,detail surfacefeatures.Tobuildgen-
eral surfacehandles, an editor tool is presented which allows
combiningbasisfunctionsfromthemultiscalelibrary.Figure1
showsthedifferent ingredientsof theapproach: therobust fea-
turedetectionshowingtheweak couplingalongfeatureedges,
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theAMG-based domain decomposition on a particular scale,
several surface handles selected form the multiscale library,
and � nally thesurfaceeditedby deleting theselected handles.

Reviewof relatedwork Themethodwepresent hereisrelated
toother applicationsof AMGwhicharealsorelatedtoprecon-
ditioning. In particular, in [28], AMG isused to segment im-
agesviaamultiscalemethod. In theseapplicationsthecoars-
eningiscomparabletoahierarchical watershedalgorithm[24],
wherehomogeousregionson surfaces, bounded by curvature
features, are extracted. Furthermore, AMG has been applied
tooptimal graphdrawingapplications[33].Here,AMGserves
againasanappropriateclusteringalgorithm.Thecommonmul-
tiscalecharacteristicdistinguishestheseapproachesin partic-
ular fromother surfacedecompositionmethods, suchasthose
given in [35], whereanother watershed approach istaken into
account, and in [10], whereacombinatorical approach ispre-
sented.

Oneof thebuilding blocksof our method isareliablesur-
facefeaturedetection, an indispensabletool in imageand sur-
faceprocessing. Featuressuch asedgesand cornersin images
have to be classi� ed in a stable way to enable edge preserv-
ing image denoising [26,1] and robust segmentation of im-
age subdomainsbounded by edges [8]. In image processing,
a straightforward identi� cation of edges can be based on an
evaluation of the image gradient. A suf� ciently large gradi-
ent issupposedto indicateanedge. Alternatively,afrequently
considered edgeindicator is theCanny edgeindicator, which
searchesfor extremaof thesecond derivativesin thegradient
direction [13]. Furthermore, thestructuretensor [31]) enables
a robust classi� cation of edgesand edgedirection in images.

Stable local classi� cation of triangular meshes has been
considered in surfaceapplicationstoo [19,23] with theaim to
improvesurfaceprocessing.Featuredetectionisusually based
on themeasurement of dihedral angles[22] or on a local cur-
vature analysis [19,22]. An edge is supposed to be indicated
by onesuf� ciently largeprinciplecurvatureandthecorrespond-
ing principle curvaturedirection is perpendicular to the edge
on the surface. A well known approach for curvatureevalua-
tion ondiscretesurfacesisalgorithmproposed in [25]. In [11]
principal curvaturesareevaluated based on alocal projection
of the mesh onto quadratic polynomial graphs. If concerned
with largetriangularandirregular grids,e. g.generatedby march-
ingcubes, suchdetectorsaretediousto treat andarobust clas-
si� cation is hard to achieve. In critical applications features
areusually extractedmanually [17]. Variousapplicationsrely
on arobust featuredetection. In surfacefairing agiven initial,
noisy mesheshaveto besmoothed, whilesimultaneously pre-
serving edgeson thesurface[14,11]. In recent mesh decima-
tion tools, surface meshes are simpli� ed while edge features
areretained[32].Asa� nal application,wementionautomatic
texture generation, where it is desirable that the texture map
isbounded by feature lines [23].

Moment analysis for feature detection has already been
present inthegraphicsandcomputer visionareas[29,21].Here
wefocuson using momentsasamultiscalefeatureclassi� ca-
tion tool and providedetails for their robust computation. Fi-

nally, thereisawealthof literatureaddressingthetopicof sur-
faceediting, suchas[34] and [2]. However, toour knowledge,
no similar methodsbased on algebraic multigrid (AMG) ex-
ist. Sincethemainmessageof thispaper isthenovel introduc-
tion of theAMG in the� eld of multiscalesurfaceprocessing,
weshall not insist on reviewingspeci� c surfaceediting meth-
odsand tools.

Thepaper isorganized asfollows. In Section 2 webrie� y
review algebraicmultigridmethods. Then thelocal classi� ca-
tion of surfacesbased on moments is discussed in Section 3.
Wewill usethisclassi� cation to de� neamatrix encoding the
features of the surface in Section 4 and in Section 5 a mul-
tiscale library of surface handles will be computed applying
algebraic multigrid to thismatrix. Themultiscalesurfaceedi-
tor wil l beintroducedin Section6 and in Section 7 wepresent
some applications. Finally in Section 8 we draw conclusions
and indicate futurework directions.

Notation

Beforewedevelopour approachto multiresolutionmodeling,
let us � rst brie� y introduce some basic notations. For a de-
tailed introduction to geometry and differential calculus we
refer to [15]. Let us consider a closed and orientable surface
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Finally, theLaplaceBeltrami operator `a@ isgiven by
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Let usdenoteby c thenormal � eld on thesurface
�

.

2 A br ief introduction to AMG

In this section we give a short review of the basic algebraic
multigridalgorithm(for scalar PDEs) andtheheuristicswhich
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led to its development, see [30] for a detailed introduction to
AMG.

Algebraic multigrid methods were � rst introduced in the
early 1980’s[3–6,27] for thesolution of linear systems �����

�

coming from thediscretization of scalar elliptic PDEs. The
development of AMG was led by the ideato mimic (geomet-
ric) multigridmethods, i.e. their functionality andconvergence
behavior, inapplicationswhereahierarchy of (nested) meshes
and interlevel transfer operatorscould not (or only with huge
effort) be provided. The amount of input information for the
iteration schemeshould beminimal, i.e., the linear system it-
self should provide all the information needed for the algo-
rithm.

Roughly speaking, we de� ne a sequence of matrices ���

from the input (� ne level) matrix �	��
��
� via the a natural
coarsening (often named Galerkin projection)

�

�
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where �

� isan appropriately chosen prolongationmatrix (en-
coding how coarsescale ( ! ) basis functionsare combined us-
ing thebasis functionson the � ner scale ( ! "$# ). In particular,
AMG constructsa sequenceof appropriateprolongation ma-
trixes %

�

��&

�(')�+*-,-,-,.* /

using information from the matrix ���0���

on the previous level !1"�# only. The construction of a pro-
longation matrix can also be viewed as the construction of a
problem-dependent basis %32���* 45& . Weconstruct acoarser basis

%62���* 4.& whichcapturestheappropriatefeaturesrelevant for the
approximation of thecorresponding continuousproblem, i.e.
theunderlyingdifferential operator (cf. Section4). Thetheory
and the design of ef� cient AMG packages is rather involved.
We here require the basic AMG capabilities. There are sev-
eral suitable AMG packages available on the Web (e.g. un-
der www.mgnet.org, see also the software discussed in [33]).
Let us recall the essential ingredientsof AMG algorithms. In
general, any AMGimplementationworksasfollows(seealso
Fig. 4):

– Given � negrid matrix ����
��7� .
– Construct prolongation �

� ; i.e. coarsebasisfunctions %32
�8* 4

& .
– De� ne restriction �

�

����

�
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�

� .
– De� nethecoarsematrix �

�

��9�

�
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� viatheGalerkin
identity.

– Recursiveapplicationgivesasequenceof prolongation �

�

and restriction �:� matrices, as well as matrices �	� on all
levels !)��;

�3<+<3<=�?> .

The fundamental ingredient in this AMG construction is the
notionof algebraicsmoothness.With thehelpof suchasmooth-
nessmeasurewecanset upareducedgraphof thematrix from
which we can then “merge” � ne level basis functions 2������8* 4

on level !3"@# in an appropriatefashion to de� nethecoarseba-
sis %62���* 4.& on level ! . Hence, algebraic smoothness is de� ned
as a generalization of the concept of geometric smoothness
with the aim to extract some measurable quantity which can
be(easily) computed from thematrix. In particular, in our ap-
plicationweweight thegeometricsmoothnessof asurface(cf.
Section 4) with thehelp of local surfaceclassi� er (cf. Section
3). Several different measures for algebraic smoothness are

used today in the variousalgebraic multigrid methods [27,7,
9]. Commontoall theseheuristicde� nitionsisthegeneral ob-
servationthat asimplerelaxationscheme—most oftenGauss–
Seidel smoothing is used in AMG—damps (ef� ciently) high
energy components, i.e. eigenvectorsassociatedwith largeeigen-
values, only. Consequently, thecoarsegridcorrectionmust be
abletodeal with theremainingsmall energy components.These
small energy functions should be represented accurately on
coarser grids.

Theconstruction of thecoarsebasis %62���* 4.& itself isatwo-
stepprocess. First, weselect so-calledcoarsegridpoints, i.e. a
subset of indiceswhichgivethesparsity patternof theprolon-
gation matrix �

� . Then in asecond step wede� nean interpo-
lation formula, i.e. theweightsof theprolongationmatrix �

� .
Thistell ushow acoef� cient vector on acoarser level ! isrep-
resented with respect to the � ner level !A"B# . Thus, we de� ne
how information from the coarse basis %32 ��* 4 & is represented
in termsof the � ne level basis %62 �����8* 4 & . Thereare many dif-
ferent approachesto thede� nition of AMG prolongationma-
trixes. Our numerical experimentswithdifferent prolongation
matricesshowedthat arenormalizedvariant of avery classical
and widely used interpolation scheme, see e.g. [16], gavethe
most favorable results. Hence, throughout the paper we used
this interpolation scheme with a simple averaging of the in-
terpolation weights to enforce mass conservation. Note that
thistwo-stepprocesscanalsobeviewedasagraphcoarsening
scheme: Weselect asubset of � ne level verticesas thecoarse
vertex set and de� ne an approriatesum of the weights of the
removededgeson the� nelevel asweightsfor thecoarselevel
edges(cf. Section 5).

To illustrate the performance of AMG, we give a here a
very basic � rst example. Consider a � at square domain CD�
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In other words, theoperator d issmoothoverall but exhibitsa
discontinuousjump on thering-shaped boundary of O . Next,
wede� nethefollowingdifferential operator e]fg�h" div �
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We discretize thisproblem by the usual � nite element proce-
dure.Hence,wede� neaquadraticform kA��l
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ment spacecorrespondingtoatriangulationof C and %ut
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thebasisof hat shaped basisfunctions, where w is thenumber
of nodesof the triangulation. Finally, we compute the wyx`w

� nite element stiffnessmatrix � :
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The multiscale of AMG basis functions is depicted in Fig. 5.
Thesebasis functionsclearly follow thediscontinuitiesof d .
However,notethat insmoothregionsthebaseshaveanonzero
overlap.Moreover, theAMGmethoddoesnot imposeany con-
straints on the way this overlap takes place - for instance, it
does not guarantee that a smooth region is entirely covered



FeatureSensitiveMultiscale Editing on Surfaces 5

by asinglebasis function or by anumber of baseshaving the
samenonzero support size. Nevertheless, this isnot aserious
problem for our method (see, for moredetails, Sec. 5).

Obviously, the above is just a succint presentation of the
AMGmethod. However, westressagain that AMGtoolshave
been developed with thevery purposeof being used asblack
box solvers. Since our method doesnot explicitly rely on the
speci� c parameters or coarsening strategy of a given AMG
solver, oneshouldbeableto easily substitutetheAMG solver
oneavailsof insteadof theoneweused, andobtainsimilar re-
sults. Different AMGparameter settingsandcoarseningstrate-
giesare likely to deliver slightly different basis functions, es-
pecially in thesmoothareas. However,giventhestrongclassi-
� er discontinuitiesfollowing theedgefeatures, variousAMG
tools should deliver the same basis function behavior along
these features.

3 Moment-based sur faceanalysis

In the following, we will introduce and discuss local surface
classi�cation based on zero and �rs t order surface moments.
Thiswill in particular allow to robustly distinguishsmoothre-
gionsfrom thevicinity of edgesor cornerson surfaces. For a
surface � , thezero moment isgiven by the local barycenter
of � with respect to an Euclidian ball �������	� centered at � :
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���������

� ���������
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Theparameter ! servesasa� lter width. Furthermore, the� rst
moment isde� ned by
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"

?&C&C&C.? D . Due to the de� nition via
local integration, thezero and the � rst moment isexpected to
berobust with respect to noise.

Moments in smooth areasand at edges

In the following two sections we will explain, how zero and
� rst moment information may beused to distinguish between
smoothandnon-smoothsurfaceparts. It turnsout, that thezero
moment shift, de� ned by

E

�=���$�F�


��

�

�
�$�

�

�

3

scales quadratically w.r.t � the � lter width ! in smooth surface
domains, whereas on edges and corners, the scaling is only
linear (cf.Fig.6).Furthermore, theeigenvaluesof the� rst mo-
ment �

"

�

�
�$� giveusadditional informationin thepresenceof
an edge. This justi� es the usage of momentsas detectors for
surfacefeatures. For agiven, usually small, parameter ! , only

featureslarger than ! wil l bedetected. Thezero moment shift
E

� plays the roleof ascaled approximatenormal.
Indeed, thequadratic scaling of thezero moment isgiven

by the relation
E

�B�
�$�G�

�

!BH=I-�
JK�ML2���$�

E

���	�$NPO��
!BH:�K�

Theexplicit constant c(d) = c(2) = 0.125(weconsider 2D sur-
faces only). The quantity LQ���	�

E

�
�$� is the mean curvature
vector at � . For aproof we refer to [12].

We now discuss the case of non-smooth surface features,
suchasedgesandcorners.Let � beasurface,whichissmooth
up to the edge set R

�

on the surface. Then, for SUT�R

�

,
there isa vector V

E

�
�$� , such that
E

�B���	�F�W! V
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In thissense, thezeroorder moment scaleslinearly on thesin-
gularity set of thesurface. Next, weconsider the� rst moment.
Let us assume that for S8TZR

�

the apex angle of a surface
edgeisof size []\ (cf. Fig. 6). Then in ! theeigenvaluesof the
� rst moment are !

H=^

, !
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H
\ and !

HdcGe=f�_�H

\ up to higher
order terms, where
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�hgi�&[:j and
clk

gK� gnm:ono . For a formal
proof, werefer again to [12].

Local surface featureclassiÞcation

Wewill usetheseresultsto de� nelocal surfaceclassi� ers, i.e.
quantitiesthat enableustorobustly distinguishbetweensmooth
surfaceareasand featuressuchasedgesandcorners.Thiswill
later beencodedinamathematical operatoronthesurface(see
Section 4). Wehaveseen that theshift of thezero moment

E

�

differs by an order of magnitude in ! if compared on edges
and in smooth areason thesurface, respectively. Hence, let us
de� nea � rst local surfaceclassi� er
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• close to edges or corners (cf. Fig. 7). Even
though
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can already serveas a good classi� cation tool, we
can further improvethe featuredetection quality by incorpo-
rating � rst moment information. Suppose Š|‹
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thesmallest andlargest eigenvalueof
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where []\ is the apex angle of an edge feature. This relation
for Š
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is valid for \ larger than gK� [�‘][:m

k’…

mn“ . Es-
pecially, in the smooth case ( \”�–•
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[ ), this quotient van-
isheswhere it increases for decreasing \ . Hence, wecan fur-
ther pronounce edges in the classi� cation by the choice of a
combined zero and � rst moment classi� cation
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We mention that, for � smaller than ����� , the quotient of the
eigenvaluesagain tendsto � , when ���	� . In thissense, very
sharpfeaturesaredetected inaweaker sensethanthey should.
However, asour experimentsshowed, thisseemsto beonly of
theoretical interest. Figure7 comparestheresultsobtainedby
the classi� cation with 
��


 and 
���� �


 . For all surfaces we tried,
thecombined classi� er showed abetter separation of thefea-
tureareas(edgesand corners) from thesmooth areasthan the
zeromoment classi� er. Dueto itssuperior quality wehaveap-
plied theclassi� er 
���� �


 in all applicationsbelow (cf. Fig. 8).

Implementation of zero and Þrst moment

In theprevioussection, we havetreated arbitrary surfaces. In
applications, weusually deal with two-dimensional, irregular,
triangular grids. In thefollowing wewill detail thediscretiza-
tion of the presented local surface classi� cation in this case.
Weconsider a triangular mesh ��� with grid size function � .
In our implementation, we compute the momentscentered at
each nodeof the triangulation.

Let us� x onenode ��� anddenotethediscretemomentsby
�
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, by performing a simple breadth � rst search
from thenode ��� on themesh connectivity graph. Thisset of
trianglessplits into two subsets. The� rst one- denotedby 12�

- consistsof all elementswith ���435%


6'

���0( . Thesecond one
127 is the complement. Now we iteratively compute the inte-
grals 8
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use the following exact integration formulas:
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sponding computationson 1
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 we apply an approxima-
tion. For each triangle �[Z\3]1

7
, theintersection of thesphere
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 and the edges of the triangle consists of two points de-
noted by _
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_
I . We replace the curvilinear connection �[Z`#

^

%


 by thelinesegment connecting _

�

and _\I . Hence, were-
place �

Z
#H%


 by apolygonwhichweagaincansplit into trian-
gles. We proceed now asaboveusing exact integration on all
thesevirtual triangles. To ensurearobust moment calculation
wechoose �

+

F

� in our applications.

4 A matr ix encoding features

Given a classi� er 
bac� �ed4f

�

on a surface � , we can de-
� ne a mathematical operator gih 
[j which considers the clas-
si� er as a spatial coupling weight on the surface. Suppose 


to be large in smooth surface regionsand small on edgesand
corners. Inour applications, wechoose 


+



��� �


 asaboveand
de� ne

gYh 
[jka

+

9 div l

'


.m2ln(

�

In case of a homogeneous surface with 


+

� we obtain a
constant spatial coupling described by the negative Laplace
Beltrami operator oYpqa

+

9 div l m l . If one thinks in term
of diffusion, 
 is the diffusion coef� cient, which is small on
edges and approximately �NWJr in smooth regions. This type
of operator has already proved to be a powerful tool in fea-
ture preserving surface fairing and image denoising [26,11].
Here, we do not aim to process the surface via a differential
equation. Instead we are interested in a multiscale decompo-
sition of the operator itself. With respect to our actual aim of
designing an editing tool for discrete, triangular surfaces in-
stead of thecontinuousoperator g , we treat itsdiscrete � nite
element counterpart g � h 
[j . Hence, following the general � -
nite element paradigmswe � rst introducethe quadratic form

g

'Rs

�$t

( acting on functionson � :

g

'Rs

�$t

(&a

+

K

l


um l

sYv

m l

t

d>

�

Furthermorelet
w

�

+

�N�
��xuy

�

'

�
�

(*z

z

�

��{

L

xi|

���

�
x

�
�

!

bethe� niteelement spaceon �
� consistingof thosecontinu-

ousfunctionsbeing af� nelinear on each triangleof �
� . The

usual basis �N}
�

!
�•~

�€�‚•‚•‚• ƒ

, on
w

� is de� ned by }
�

'

�…„V(

+‡†

�
„

where ˆ is the number of verticesof ��� and }
�

'

�…„V(

+‰†

�
„

for all vertices�
„ . Notethat weusecapital lettersfor discrete

objects to distinguish them from continuousobjects denoted
with lower case letters. Wenow de� neadiscreteoperator g

�

acting on
w

� and a corresponding ˆ‹Š]ˆ matrix A where a
matrix entry isgiven by

A

�
„Da

+

g

'

}

�

�

}

„

(

+

K

lbŒ


•m2lŽ}
�

v

m2l]}\„ d>

and ��}

�N���������

}H••! isthestandardbasisof
w

� . Thismatrix de-
scribes the coupling on the discrete surface weighted by the
classi� er 
 . Thiscoupling isencoded in termsof thecoupling
of adjacent nodesof thetriangulation. Indeed, for every pair of
adjacent nodes �

� and �‘„ thematrix entry A

�
„ describes the

coupling strength. In Section 5 wewill discussthemultiscale
decomposition of thismatrix, thecenterpoint of our method.

Assembling thematrix

Before we discuss the multiscale decomposition of the ma-
trix A , we detail its actual computation. The assembly of A

is based on the standard Finite Element assembly procedure.
We start by initializing %

+

� followed by a traversal of all
surfacetriangles � . On each� with nodes _"�

�

_…�

�

_

I , acor-
responding local matrix 'R’

�
„

'

�"($(“�
„ is computed � rst, corre-

sponding to all pairings of local nodal basis functions. Next,
thelocal matrix isaddedtothematchinglocationsin theglobal
matrix % , i. e. for every pair

-€�“”

weupdate A–•˜—

�š™

�

•›—

„
™

+

Aœ•›—

�š™

�

•˜—

„
™

G

’

�
„

'

�D( . Here r

'

-

( is de� ned as the global index of the node
with local index

-

. For thelocal matrix weneedalocal surface
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classi� er ������� for every triangle � on �	� , which we de� ne
by averaging. We obtain for the local matrix:


���


���������������

�����

���

���

�

���




���������! �" $#

�

%

�

�

#




%




�&�������' �" )(

�

%

�+*

(

�'*

�

(




%


,*

(


�*

���������-(

� �

(




.

 �" 

where  �� is theareaof triangle � ,

�

� is thenodal basis func-
tion corresponding to the node /

� for any local index 0 ,
�

�

the gradient on � , and
#

� the outer normal to the edge
(

� op-
posite of /

� . Finally
%

� is the height of the triangle over the
edge

(

� . The trianglewiseclassi� er ������� is deduced by aver-
aging from the classi� er valueson the nodes 1"24351�6 and 1�7

of the triangle � : �������8�:9-;=<>�����?1�@4�BAC���?1"2D�EAC���?1�7F�G� .
Given thesparsity of H , weuseacompressedrow matrix stor-
agemodel, i.e. storeonly thenonzeroentriesand their column
indexes, for every matrix row. Thiscon� nesthematrix mem-
ory requirements to e.g. around 10 megabytes for a mesh of
280472 triangles.

5 Multiscale decomposition by AMG

As discussed so far, the matrix H de� ned above can be re-
garded asa description of thesurfaceshape. In particular the
smoothnessmodulusand the distinct surface featuresareen-
codedin thismatrix.Besidesprominent featureedges,succes-
sively � ner,moredetailededgesareencoded.At thispoint,we
requireatool capableto analyzeand represent thismultiscale
of features. HereAMGcomesintoplay. Givenamatrix which
encodes inhomogeneitieson different scales - in our case the
features detected by the classi� er - we apply AMG (cf. Sec-
tion 2) to detect this multiscale. AMG will deliver a scale of
surface descriptions in terms of matrices H+I for JK�ML53

�D�N�$O

ranging from detailed ( HP@Q�RH ) to very coarse ( HTS ). To-
gether with thesematricesweobtainbasisfunctions UKIWV

�

onall
scales. Hence, weobtainhandlesfor surfaceediting on differ-
ent detail scales. Onemight either manipulatelargescalefea-
turessuch asthehead, tail, or legsof themeshesshown in this
paper. Alternatively, adjustmentsof small details, such as� n-
ger tipsor ears, can be performed. Thissection describes the
underlying mathematics related to the multiscale representa-
tion. Thenext section presentstheactual editing tool, con� g-
ured asa simplebut effective“combiner” of basis functions.

Recalling, weapply theAMG algorithm (cf. Section 2) to
thematrix HQXZY�[�V [ introduced in theprevioussection. Run-
ning AMG on the matrix H we obtain a sequence of prolon-
gation matrices

1

I

X\Y

[^]`_�a-V [^]�b

asoutput, where cDd

I�e4Igf!@hVjijijikV S

isdecreasing and d

@

�&d . The
entriesin each column of 1�I describehow thebasisfunctions

UKIlV

�

for 0K�m9^3

�D�N�

3$d

I

can be generated from the basis func-
tions UKIWn�2oV

�

for 0p�q9^3

�N�D�

3$d

IWn�2

on the previous, � ner level.

Indeed,weobtain thefollowingsimplerecursiverecipetocal-
culatea multiscaleof basis functions

U

IWV

�Br

� s




f�2tVjijijiuV [^]`_�a

1

I


G�

U

IWn�2oV


wv

0��x9y3

�D�N�

d�z5J{�Q9y3

�N�D�$O

U

@hV

� r

�

�

� v

0

2

3

�D�N�

d

Collecting all basis function UKIlV

�

on all scales J��|L53

�N�D�$O we
build up a multiscale library

}

�������Qc4U

IWV

�

e

]N~€•$•ƒ‚ƒ‚?‚F•?„…

~Ka?•ƒ‚ƒ‚k‚-•‡†

]

of functionswhich re� ects, on all scales, the surface features
encodedby thelocal surfaceclassi� er � (cf. Fig. 9). Let usre-
call that the prolongation matrices induce a sequence of ma-
trix representations HPI�X\Y�[^]$V [^] on different levels:

H

I

r

�‰ˆ

I

H

IWn{2

1

I

J��Š9y3

�N�N�

3

O

H

@

r

�‰H

where the restriction matrices ˆ I XQY [ ]`_�a V [ ] are de� ned as
ˆ‹I{�Q�?1�Iƒ�

�

. Ingeneral,asoutlinedinSec. 2 thegoal of AMG
is to compute prolongations in such a way that, for the num-
ber of degrees of freedom d

I

, the mapping corresponding to
thematrix H+I isasuf� ciently goodapproximationof theorig-
inal matrix H . Hereby, the underlying algebraic smoothness
criteriondependson theproblemsetting. Inour case, smooth-
nessisinducedby thespatially varyingsurfaceclassi� er ���

�

� .
An interpretation of the entriesof H+I is that H+I

��
 measuresof
strength of the coupling between the basis functions UKIWV

�

and
UKIlV




or - if wethink in termor surfaceregions- thecouplingof
thedomainsde� ned by thesupportsof thebasis functions. In
particular, the coupling is expected to be weak across edges,
asdescribed by ���

�

� .
Furthermore, theshape of thebasis functionswill clearly

show thestrengthof thenodecouplingin thematrix.Onedges,
theweights H

��
 aresmall, becausetheclassi� er ����ŒN•yŽh� issmall
in thisregion. Hence, AMG will cluster verticeson both sides
of an edgeon much � ner scalesand will collect verticesfrom
both sides of the edge at later stages of the coarsening pro-
cess. In particular, it isexpensive- in termsof thebuilt-in op-
timization in a concrete AMG implementation - to generate
basis functions whose masses are equally distributed on dif-
ferent sidesof an edgefeature(cf. Fig. 5 and 9). However, as
already mentioned in Sec. 2, this isnot aproblem for thepro-
posed method, as it will beexplained next.

As usually, basis functionson a given scale overlap each
other. Hence, it turnsout to besometimeshard to treat to visu-
alizebasisfunctionsdirectly in an graphical user interfacefor
e.g. asurfaceeditor or processing tool. Hence, aiming to rep-
resent the set of overlapping basis functions cDUKIWV

�

e

�

f�2tVjijijikV [^]

visually, let usde� neacorrespondingdomain decomposition
•

I for every J��QL53

�D�N�$O (cf. Fig.10). Here, we de� ne
•

I

r

�

c

•

IWV

�

e

�

f�2tVjijijikV [^]

, where
•

IlV

�

r

�QcD/•X•�	�K uU

IWV

��‘

U

IlV




v>’

�Q9^3

�D�N�

3$d

I
e

Let us remark that the domains on different scales need not
be strictly spatially nested. Nethertheless, these domains are
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boundedby surfacefeaturelines.Thischaracteristic isenough
for building a simple and intuitive way to represent and ma-
nipulatesuch domainson different scales (seeSec. 6).

A major featureof our methodisitsspeed.TheAMGcom-
putation of the prolongation matrices takes between 3 and 6
seconds for meshes up to 300000 elements on a Pentium 4
PC at 1.5 GHz runningLinux. Thedomain decomposition in-
volvesjust multiplication of theprolongationsand thustakes,
for thesamedatasetsandplatform,1to3seconds.Theslowest
part of thepipeline is assembling theclassi� er matrix, which
is linear in the number of mesh triangles, and takes about 10
seconds for the largest mesh we tried, i.e. 280472 elements.
The matrix assembly complexity is quadratic in the radius �

of theintegrationball
���

(seeSec. 3). For all examples, aball
sizeof ��� ,where � istheaveragetrianglesize, wasused.Larger
balls, that would slow down theassembly, arenot required, as
thesurfacefeaturesweare looking for in theclassi� er areal-
ready present on thisscale.

Thegraph perspective

The mesh �	��

����� can be trivially encoded in a graph
�

���

�����

��������� , wherethevertices
�

��

�

�

� andtheegdes
����
 �!�"� of themesh are the graph nodesand egdes, respec-
tively. In case of our af�n e � nite element space #�� the spar-
sity pattern of the matrix $�� is such that in the % th row, cor-
responding to the vertex &(' , the only nonzero entries $

�

'
)

are
thosecorresponding to adjacent nodes &

) , connected to &
' by

an edge *+�

'
)�,

��� , and theentry &
' re� ecting theself-coupling

of node % with itself. Hence, theentries $
'
) in thematrix can

be regarded as weights on the egdes ��� of the graph
�

� . In-
deed, AMG generatesasequenceof graphs

��-

�

�.�/�0-

�1�

-

�

for 23�54��7686869�;: . On level 2 the set of graph nodes
�

-

corre-
spondsto thebasis <>=

-@?

'BA

'@C�D

? E E EB? F�G and for every entry $

-

'
)IH

�

J

their exists an edge *

-

'
)
,

�

-

with that weight. One might
ask whether thegraphs

�

-

for 2�K

J

again generateimmersed
polygonal grids �

-

. This is known to be a design principle
of progressivemesh algorithms. However, in our casethereis
in general no such mesh nesting sequence and it would be a
much too severe restriction to formulate this property in the
AMG algorithm asa constraint.

6 A multiscalesur faceeditor

Thebasis functions =

-L?

' from themultiscale library �
�NM

� can
bedirectly used ashandlesto processthesurface. Frequently,
however, the“handles” theuser hasin mind to manipulatethe
surfacearenot precisely recoveredby oneof theavailableAMG
basisfunctions. Desired handlescan begeneratedby combin-
ing afew basis functionsfrom theAMG multiscale library of
basis functions. We present here a simple but effective fea-
ture editor based on this strategy. The editor allows to select
a given basis function on a given level by just two intuitive

mousepicks. Several such basescan be then added to design
the desired handle. In detail, for an arbitrary surface point &

- chosen by a � rst mouse pick - we extract from the multi-
scaledomain decomposition asequenceof activated domains

<7O

-

P

A

-

C

�

? E E EB? Q , where O

-@?

'NR

PTS

is the set O

-@?

' from the domain
decomposition on level 2 for which &

,

O

-L?

' . A second point
U - chosen by a second mouse pick - identi� es now a single
activeset O

-

R/V

S ?

'NR

PTS

from theactivated sets, where

2

�

U

�W�YX[Z]\^<+2`_

U

,

O

-L?

'LR

PTS

A

Hence, the corresponding basis function =

-

R/V

S ?

'LR

PTS

is interac-
tively andintuitively selectedformthemultiscalelibrary a

�bM

� .
This function inintializes the handle

=dce=

-

R@V

S ?

'NR

P+Sgf

The processcan be repeated e.g. by picking another two sur-
facepoints h& and h

U . Thehandle isupdated

=dciX[j/k3<�4���=mln=

-

Rpo V

S ?

'LRBo

P+S

A

f

Figure 11 shows an example. The � rst pick (at the black ar-
row’slocation) producestheactivateddomainscorresponding
to thehand’smiddle� nger tip. Surfacecolor coding indicates
theeditor’scurrent status. Picking apoint & , theactivated do-
mainsare drawn in colorscorresponding to the sequencepa-
rameter 2 , using a � xed color map (see Fig. 11). The second
pick (light bluearrow) addsnow abasisto thecurrent handle.
Thedomain

Orqs�t<+u

,

�
�

_p=

�

u"�vKxw

A

where we choose wy�

J

f

J

4 , essentially being the support of
the current handle = , is always shown by a � xed color (light
blue, Fig. 11). Coloring guides the user’s iterative handlese-
lection. In all our applications, 4 to z selection iterations(i.e.
2 to 10 clicks) were suf� cient to de� ne the desired surface
handles (cf. Figures11,12, 13, 14). In addition, we providea
mechanism to step back in the handle construction. Picking
a point & in the already selected domain O deletes the previ-
ously added basis function containing & in its support.

7 Applications

After havingselected thedesiredsurfacehandles, onecanedit
the surface. We show here a number of simple surface edit-
ing operationsperformed on the selected handles. These op-
erationsserveonly as illustration for thepresented multiscale
surfacedecompositionandhandleconstruction.However, this
doesnot diminish theusability of our technique. Indeed, state
of the art surface processing operations can be easily substi-
tuted in placeof the onesshown here.

In the � rst example (Fig. 12), we select � ve features on
the Stanford bunny dataset, i.e. the ears, from paws, and tail.
Using thehandleconstruction method (Sec. 6) these features
areeasily selected by just ten mouseclicks, two for every fea-
ture, in the order: left ear, right ear, left paw, right paw, tail
(Fig. 12a-j). Thecompletehandleisshownin Fig. 12k. Next,
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we remove the ears by smoothing the mesh. Smoothing de-
forms the mesh in the inward normal direction and performs
amesh decimation simultaneously by removing trianglesthat
become smaller than a fraction of the average triangle size.
Decimation is needed to ensure that the deformed mesh does
not contain unnecessarily small triangles. Finally, we in�ate
thepawsand tail by mesh deformation in theoutward normal
direction. Figure12 l showstheedited mesh and theselected
domain.

Inthesecondexample,weselect eight featuresonthemesh
in Fig. 13, i.e. the ears, middle toes, and tail. Selecting these
� nedetailsrequiresonly twoclicksper feature. Figures13a,b
show the selection of the left front toe. Next, we in� ate the
toes and ears and round the tail. (Fig. 13 c). The in� ation is
done as for the previous example. The tail rounding is a se-
quence of alternate mesh in� ations and smoothings. Finally,
we separately select the body, also in two clicks, and smooth
it. Figure 13 d shows the � nal result and the domain corre-
sponding to the body.

In the last example, we select four featureson thedragon
dataset (Fig. 14), i.e. thehorn, tongue, hind leg spike, and tail
tip.Wedetail theselectionof thehorn.The� rst click (Fig.14a)
produces the activation domains for the horn’s tip. A second
click, in thesameplace, selectstheupper half of thehornonly,
sincethereisnosinglebasiscoveringthewholehorn(Fig.14b).
Two moreclicks, bothon thehorn’sstem, areneeded to select
the rest of thehorn (Fig. 14 c,d). After all detailsareselected
(Fig. 14 e), we erase them by mesh decimation, to yield the
� nal result (Fig. 14).

8 Conclusions

Wehavepresentedanovel techniquefor manipulatingsurface
meshesat different levelsof detail, consistingof thefollowing
ingredients: the stable computation of surface classi� ers, the
classi� er assembly into a � niteelement matrix, thecomputa-
tion of a sequence of basis functions on different detail lev-
elswith theAMG method, and a simplebut effectivesurface
editor based on these basis functions. Overall, selecting sur-
face featuresat different detail levels isdoneby a few mouse
clicks. Although the machinery behind the editor is quite in-
volved, its users may employ it being totally unaware of the
underlying complexities.

The whole process requires setting few (if any) parame-
ters. Thetwo classi� er parameters � and

�

(Sec. 3) were� xed
for all our test surfaces. The AMG tool speci� c parameters
were � xed as well for all surfaces. These parameters control
theway theprolongations ��� areconstructed (Sec. 2). Differ-
ent parameter settings slightly change the number of decom-
position levelsobtained and the shape of the basis functions.
However, thecoarse levels, which arethe interesting onesfor
our editingtool, remainpractically unchanged.Thereasonhereof
is the classi� er design which strongly distinguishes between
� at and curved areas(Sec. 3).

There is littleelse that could beautomated in theprocess.
Themost complex implementation part of theentirepipeline

isindeedtheAMGtool.However,asmentioned,several avail-
ableAMG toolscan beused, virtually asblack boxes. Imple-
menting themoment-basedclassi� ers, matrix assembly, basis
function computation, and theeditor, is straightforward.

Another point of discussion istherelationbetweenthede-
compositionquality andthemeshquality.Here, thesamewell-
known guidelinesapply aswhen studying mesh quality in� u-
enceon solving PDEsusing � niteelements. Meshescontain-
ing bad aspect triangles (slivers) and/or high valencevertices
may encodetheclassi� er at insuf� cient resolution. Thisprob-
lem ismuchseriousin PDE solvingvia� niteelementsthan in
our case. Indeed, as already stated, the large jumps in classi-
� er values (several ordersof magnitude) will be visible even
on apoor quality mesh. Secondly, thecoarser levelsproduced
by the AMG re�ect the coarse scale classi�er variations and
are, by de� nition, lesssensitivetosmall scaleperturbations.A
goodexampleof therobustnessof our decompositionwith re-
spect tomeshquality isthehound(Fig. 13), whichusesapoor
quality mesh(themeshdataisavailableat www.cs.virginia.edu/
gfx/Courses/2001/Advanced.spring.01/plymodels).

The presented technique opens a multitude of directions
for surfaceprocessing. Variousother data, such assurfacepa-
rameterization, texture,shading,or normalscanberepresented
on themultiscale induced by surfacefeatures. Stateof theart
surfaceprocessing operations, such asediting, decimation, or
morphing,canbecoupledwiththesurfacedecompositionout-
put. Such surface data can also be encoded into new classi-
� ers, to producenovel waysfor multilevel surfacerepresenta-
tions. Finally, an interesting question iswhether thepresented
AMG-basedtechniquecanbeappliedtomesh-free,point-based
surfacerepresentations, such astheoneused in thePointShop
3D editing tool [36].
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25. H.P. Moreton and C.H. Séquin. Functional optimization for
fair surfacedesign. In Proc. ACM SIGGRAPH, pages167–176,
1992.

26. P. Perona and J. Malik. Scale space and edge detection using
anisotropicdiffusion. In IEEETrans. Patt. Mach. Intell., volume
12(7), pages 629–639, 1990.
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a) b)

c) d)

Fig. 1 Surface processing example: (a) feature detector (b) feature-
guided surface decomposition (c) features selected for deletion (d)
surface after featuredeletion

surface

Classifier
computation

AMG multiscale
decomposition

Matrix encoding

Handle
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Surface editing

stiffness matrix

family of bases

family of handles

surface classifier

Fig. 2 Stepsof themultiscalesurface editing method

Fig. 3 Coarsematrix �

�

de� nition illustrating matrix sizes

Fig. 4 General AMG construction

0.0

1.0

Fig. 5 For asimplesecond order differential operator onaplanar do-
main, algebraic multigrid basis functions are depicted on different
scales (upper row: coarsest scale, middle row and lower row succes-
sively � ner scales). The basis functions clearly re� ect the ring type
feature region encoded in theoperator.

Fig. 6 The intersections of a ball �������
	 aredrawn for points � in a
smooth areas and on an edge respectively. In addition, we show the
approximate normal �

�
����	 and the eigen direction of the � rst mo-

ment 


�

�

����	 for apoint � on an edge.
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Fig. 7 The zero moment and the combined moment feature classi-
� ersarecompared on atriangular mesh. Thecombined classi� er de-
tects signi� cantly more robustly thesurface edges.

Fig. 8 For different triangular surface meshes we show the local
feature classi� cation result using a color coding for the classi� er

����� ���	��


.

Fig. 9 Selected basis functions ��


� �

arecolor coded on ablue (low)
to red (high) colormap on the coarsest scale (upper row) and on the
third coarsest scale(lower row).

Fig. 10 On different scales (corresponding to the columns) the do-
main decomposition ��
 isshown for several triangular surfaces. The
surfaces consist of 280472 (bunny), 87140 (dragon) 25030 (hound),
and 96966 (horse) triangles, respectively.

Fig. 11 Selectionstepsin thefeatureeditor (from left to right). First,
for a picked point � , all active domains �




� �������

are color coded or-
ange, red, yellow, green and violet for increasing scale � . Next, pick-
ing into one of these active domains at point � , selects a particular
scale �

�

�




. Thisactivates �



������� �������

andthecorrespondingbasisfunc-
tion ��


������� �������

. The support is drawn in blue. Repeating this proce-
dure adds asecond basis function to thehandle with two clicks.
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e) f) g) h)

i) j) k) l)

Fig. 12 Application 1: In ten clicks, � ve features (ears, front paws,
tail) are selected (a-j). Next, the handle and the edited surface are
shown (k,l)

a) b)

c) d)

2x

Fig. 13 Application2: Theleft hind legmiddletoeisselectedby two
clicks on the red domain (a,b). Similarly, other features areselected
(c). Finally, theselection isedited (d)

a) b)

c) d)

2x

2x

f)e)

Fig. 14 Application 3: The dragon’s horn is selected in a sequence
of four clicks(a..d). Next, other featuresareselected (e). Finally, the
selection iserased (f)


