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Abstract A novel editing method for largetriangular meshes
is presented. It isbased on astable local surfaceclassi cation
and feature detection algorithm, the de nition of a nite ele-
ment matrix encoding a weighted coupling of adjacent mesh
nodes, and an algebraic multigrid (AMG) algorithm. In par-
ticular, edges and corners are regarded as features on the sur-
face. We detect features using an analysis of local zero and

rst surface moments, as computing these quantitiesis robust
ard noise resistant The featue detectin is encodéd in a -
nite element matrix, passed to the AMG algorithm. The AMG
algorithm generates a matrix hierarchy ranging from neto
coarse respresentations of theinitial negrid matrix. This hi-
erarchy comes along with a corresponding multiscale of basis
functions, which re ect the surface features on al hierarchy
levels. We consider either these basisfunctionsor distinct sets
from an induced multiscal e domain decomposition as handles
for surface manipulation. Finally, we present amultiscale ed-
itor which enables boolean operations on this hierarchical do-
main decomposition and simple algebraic operations on the
basis functions. Users can thus interactively design their fa-
vorite surface handles by simple grouping operations on the
multiscal e of the feature-sentitive basis functions or domains.
Several applications on large meshes underline the effective-
nessand exibility of the presented tool.

Key words surface processing— algebraic multigrid — mul-
tiscale feature detection

1 Introduction

Flexible, interactive surface modeling is a challenging topic
in computer graphics. In particular, multiresol ution strategies
have proved to be an ef cient way for processing large trian-
gular surface meshes [18,20,22]. Surfaces of a complicated
shapeand nontrivial topology haveto betreated and processed
in an intuitive and interactive way [34]. Hereby, surface fea-
tures such as edges and corners are of particular interest. The
set of al surface featuresis usually characterized by different

scales. Usually, one nds prominent, sharp, and long edges,
together with less pronounced, slighty curved features, con-

ned in smaller surface regions. Usually, such features sep-
arate the surface in a number of smooth regions that corre-
spond intuitively to different object parts. Just asthe edgefea-
tures, these parts come at different scales, e.g. the dragon’s
horn and tongue on ner scales, and the head and body, on
coarser scales. To our knowledge, thismultiscale nature of sur-
face features has not been considered so far. In this paper we
present a novel approach to surface modeling which

— robustly detecs featureson large and smal scales,

— computesamultiscalelibrary of surfacehandlesre ecting
features, and

— enablesa exibleinteractive, and reliable multiscale sur-
face editing.

In the following, we outline the main steps of the proposed
method (seealso Fig. 2and theexamplein Fig. 1). Themethod
isbase& on alocd ze and rst momern analyss to classify
features on discrete surface. The zero and rst moment inte-
gral quantities are stable to compute and they give less noisy
results compared to discrete curvature quantities. The result-
ing local surfaceclassi cation, computed at the triangulation
vertices of the surface, isencoded in a nit eelemen tiffness
matrix. Thereby, the matrix describes the coupling of regions
on the surface. By construction, this coupling is much weaker
along feature edges than in smooth areas. Next, an algebraic
multigrid (AM G) method is applied to this matrix. The AMG
delivers a matrix representation on multiple scales and an ac-
companying multiscalelibrary of discretebasisfunctions, which
can be seen asfeature sensitive surfacehandl es. In other words,
the AMG delivers a multiscale representation of our surface
class er. Coarselevelsshow the main surface characteristics,
i.e. the smooth regions separated by the most salient surface
features. Finer levels show the (usually smaller) regions sepa-
rated by lesspronounced, detail surfacefeatures. To build gen-
eral surface handles, an editor tool is presented which allows
combiningbasisfunctionsfromthemultiscalelibrary. Figure 1
showsthedifferentingredientsof the approach: therobust fea-
ture detection showing theweak coupling along feature edges,
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the AM G-based domain decomposition on a particular scale,
severa surface handles selected form the multiscale library,
and nally the surface edited by deleting the sel ected handles.

Review of related work Themethod we present hereisrelated
to other applicationsof AMG which arealso related to precon-
ditioning. In particular, in [28], AMG is used to segment im-
ages viaa multiscale method. In these applications the coars-
eningiscomparableto ahierarchical watershed algorithm[24],
where homogeous regions on surfaces, bounded by curvature
features, are extracted. Furthermore, AMG has been applied
to optimal graph drawing applications[33]. Here, AMG serves
again asan appropriateclustering algorithm. The common mul-
tiscal e characteristic distinguishes these approachesin partic-
ular from other surface decomposition methods, such asthose
givenin[35], where another watershed approach istaken into
account, and in[10], where a combinatorical approachis pre-
sented.

One of the building blocks of our method isareliable sur-
facefeature detection, an indispensabletool inimage and sur-
face processing. Features such as edgesand cornersinimages
have to be class ed in a stable way to enable edge preserv-
ing image denoising [26,1] and robust segmentation of im-
age subdomains bounded by edges [8]. In image processing,
a straightforward identi cation of edges can be based on an
evaluation of the image gradient. A suf ciently large gradi-
ent is supposed to indicate an edge. Alternatively, afrequently
considered edge indicator is the Canny edge indicator, which
searches for extrema of the second derivativesin the gradient
direction[13]. Furthermore, the structuretensor [31]) enables
arobust class cation of edges and edge direction in images.

Stable local classi cation of triangular meshes has been
considered in surface applicationstoo [19, 23] withtheaim to
improvesurface processing. Feature detectionisusually based
on the measurement of dihedral angles[22] or on alocal cur-
vature analysis [19,22]. An edge is supposed to be indicated
by onesuf ciently largeprinciplecurvatureand the correspond-
ing principle curvature direction is perpendicular to the edge
on the surface. A well known approach for curvature evalua-
tion on discrete surfacesisalgorithm proposedin [25]. In [11]
principal curvatures are evaluated based on alocal projection
of the mesh onto quadratic polynomial graphs. If concerned

withlargetriangular andirregular grids, e. g. generated by march-

ing cubes, such detectorsaretediousto treat and arobust clas-
s cation is hard to achieve. In critical applications features
are usually extracted manually [17]. Various applicationsrely
on arobust feature detection. In surfacefairing agiveninitial,
noisy meshes have to be smoothed, while simultaneoudly pre-
serving edges on the surface[14,11]. In recent mesh decima-
tion tools, surface meshes are simpli ed while edge features
areretained[32]. Asa nal application, we mention automatic
texture generation, where it is desirable that the texture map
is bounded by feature lines[23].

Moment analysis for feature detection has already been
present inthegraphicsand computer vision areas[ 29, 21]. Here
we focus on using momentsasamultiscalefeatureclass ca
tion tool and provide details for their robust computation. Fi-

naly, thereisawealth of literature addressing thetopic of sur-
face editing, such as[34] and [2]. However, to our knowledge,
no similar methods based on algebraic multigrid (AMG) ex-
ist. Since the main message of this paper isthenovel introduc-
tion of the AMG inthe eld of multiscale surface processing,
we shall not insist on reviewing speci ¢ surface editing meth-
ods and tools.

The paper isorganized asfollows. In Section 2 we brie y
review algebraic multigrid methods. Thenthelocal class ca
tion of surfaces based on momentsis discussed in Section 3.
We will usethisclassi cationto de neamatrix encoding the
features of the surface in Section 4 and in Section 5 a mul-
tiscale library of surface handles will be computed applying
algebraic multigrid to this matrix. The multiscal e surface edi-
tor will beintroducelin Section 6 and in Section 7 we present
some applications. Finally in Section 8 we draw conclusions
and indicate future work directions.

Notation

Before we devel op our approach to multiresol ution modeling,
let us rst brie y introduce some basic notations. For a de-
tailed introduction to geometry and differential calculus we
refer to [15]. Let us consider a closed and orientable surface
. Let be some coordinate

map from an atlas. For each point on  the tangent space
isspanned by thebasis — — . By we denote

the tangent bundle. Measuring lengthon  requiresthe def-
inition of ametric . Asthe corre-
sponding matrix notationweobtainthe rst fundamental form
with — —,where indicatesthe scalar

. Theinverseof isdenoted by .
of afunction isde ned astherepresen-
with respect to the metric . In coordinates we

product in
The gradient
tation of
obtain

We de ne the divergence div of avector eld
as the dual operator of the gradient with respect to the -
producton  and obtain in coordinates

div — —

Finally, the Laplace Beltrami operator isgiven by
div

Let usdenoteby thenorma eld onthe surface

2 A brief introduction to AMG

In this section we give a short review of the basic algebraic
multigrid algorithm (for scalar PDEs) and the heuristicswhich



led to its development, see [30] for a detailed introduction to
AMG.

Algebraic multigrid methods were rst introduced in the
early 1980's[3-6, 27] for the solution of linear systems

coming from the discretization of scalar dliptic PDEs. The

development of AMG was led by the idea to mimic (geomet-
ric) multigrid methods, i.e. their functionality and convergence
behavior, in applicationswhereahierarchy of (nested) meshes
and interlevel transfer operators could not (or only with huge
effort) be provided. The amount of input information for the
iteration scheme should be minimal, i.e., the linear systemit-
self should provide all the information needed for the algo-
rithm.

Roughly speaking, we de ne a sequence of matrices
from the input ( ne level) matrix viathe a natural
coarsening (often named Galerkin projection)

where  isan appropriately chosen prolongation matrix (en-
coding how coarse scale (') basis functions are combined us-
ing the basisfunctionson the ner scale ( ). In particular,
AMG constructs a sequence of appropriate prolongation ma-
trixes using information from the matrix
on the previous level only. The construction of a pro-
longation matrix can also be viewed as the construction of a
problem-dependent basis . We construtacoarse basis
which capturesthe appropriatefeaturesrelevant for the
approximation of the corresponding continuous problem, i.e.
theunderlying differential operator (cf. Section 4). Thetheory
and the design of ef cient AMG packagesisrather involved.
We here require the basic AMG capabilities. There are sev-
eral suitable AMG packages available on the Web (e.g. un-
der www.mgnet.org, see also the software discussd in [33]).
Let usrecall the essentia ingredients of AMG algorithms. In
general, any AMG implementation worksasfollows (see also
Fig. 4):

— Given negrid matrix
Construct prolongation
De nerestriction

De nethe coarse matrix
identity.

Recursive application givesasequenceof prolongation
and restriction  matrices, aswell as matrices  on all
levels

;i.e. coarsebasisfunctions

viathe Galerkin

The fundamental ingredient in this AMG construction is the
notion of algebraic smoothness. With the hel p of such asmooth-
ness measurewe can set up areduced graph of the matrix from
which we can then “merge” ne level basis functions
onlevel inan appropriatefashionto de nethe coarseba
sis onlevel . Hence, algebraic smoothnessisde ned
as a generalization of the concept of geometric smoothness
with the aim to extract some measurable quantity which can
be (easily) computed from the matrix. In particular, in our ap-
plication wewei ght the geometric smoothness of asurface (cf.
Section 4) with the help of local surfaceclassi er (cf. Section
3). Several different measures for algebraic smoothness are

" Inother words, the operator
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used today in the various algebraic multigrid methods [27,7,
9]. Commonto all theseheuristicde nitionsisthegeneral ob-
servationthat asimplerelaxation scheme—most of ten Gauss—
Seidel smoothing is used in AMG—damps (ef ciently) high
energy components, i.e. eigenvectorsassociated with largeeigen-
values, only. Consequently, the coarse grid correction must be
ableto deal with theremaining small energy components. These
small energy functions should be represented accurately on
coarser grids.

The construction of the coarse basis itself isatwo-
step process. First, we select so-called coarse grid points, i.e. a
subset of indiceswhich givethe sparsity pattern of the prolon-
gationmatrix . Theninasecond step wede nean interpo-
lation formula, i.e. the weights of the prolongation matrix
Thistell ushow acoef cient vector onacoarser level isrep-
resented with respect to the ner level . Thus, we de ne
how information from the coarse basis is represented
in terms of the nelevel basis . There are many dif-
ferent approachesto the de nition of AMG prolongation ma-
trixes. Our numerical experimentswith different prolongation
matrices showed that arenormali zed variant of avery classical
and widely used interpolation scheme, see e.g. [16], gave the
most favorable results. Hence, throughout the paper we used
this interpolation scheme with a smple averaging of the in-
terpolation weights to enforce mass conservation. Note that
thistwo-step processcan al so beviewed asagraph coarsening
scheme: We select asubset of nelevel verticesasthe coarse
vertex set and de ne an approriate sum of the weights of the
removed edgesonthe nelevel asweightsfor the coarselevel
edges (cf. Section 5).

To illustrate the performance of AMG, we give a here a
very basic rst example. Consider a at square domain

. Now we select the subset ,
where isasmall positivereal and  isthe ball of radius
centered at theorigin . Next, we de nethefunction

issmooth overall but exhibitsa
discontinuous jump on the ring-shaped boundary of . Next,
wede nethefollowingdifferential operator div .
We discretize this problem by the usual  nite element proce-
dure. Hence, wede neaquadraticform
corresponding to this operator. Then, let  bethe nite ele-
ment space correspondingto atriangulationof — and
the basis of hat shaped basisfunctions, where isthe number
of nodes of the triangulation. Finally, we compute the

nite element stiffness matrix

The multiscale of AMG basis functionsis depicted in Fig. 5.
These basis functions clearly follow the discontinuities of
However, notethat in smooth regionsthe bases haveanonzero
overlap. Moreover, the AM G method doesnot impose any con-
straints on the way this overlap takes place - for instance, it
does not guarantee that a smooth region is entirely covered
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by a single basis function or by a number of bases having the
same nonzero support size. Nevertheless, thisis not a serious
problem for our method (see, for more details, Sec. 5).
Obvioudy, the above is just a succint presentation of the
AMG method. However, we stress again that AM G tools have
been devel oped with the very purpose of being used as black
box solvers. Since our method does not explicitly rely on the
Speci ¢ parameters or coarsening strategy of a given AMG
solver, one should be ableto easily substitute the AMG solver
oneavailsof instead of the onewe used, and obtain similar re-
sults. Different AM G parameter settings and coarsening strate-
giesarelikely to deliver dlightly different basis functions, es-
pecially inthesmoot areasHowever, given the strong classi-
er discontinuitiesfollowing the edge features, variousAMG
tools should deliver the same basis function behavior along
these features.

3 Moment-based surface analysis

In the following, we will introduce and discuss local surface

classi cation baseal on zeo ard rst orde surface moments.

Thiswill in particular allow to robustly distinguish smooth re-
gions from the vicinity of edgesor corners on surfaces. For a
surface , the zero moment is given by the local barycenter
of  with respect to an Euclidian ball centered at :

Theparameter servesasa Iter width. Furthermore, the rst
moment isde ned by

where . Due to the de nition via
local integration, the zero and the  rst moment is expected to
be robust with respect to noise.

Momentsin smooth areas and at edges

In the following two sections we will explain, how zero and

rst moment information may be used to distinguish between
smooth and non-smooth surfaceparts. It turnsout, that the zero
moment shift, de ned by

scales quadraticaly w.r.t the Iter width insmooth surface
domains, whereas on edges and corners, the scaling is only
linear (cf. Fig. 6). Furthermore, theeigenvaluesof the rst mo-
ment giveus additional informationin the presence of
an edge. Thisjusti es the usage of moments as detectors for
surfacefeatures. For agiven, usually small, parameter , only

featureslarger than will be detectel. The zero moment shift
playstherole of ascaled approximate normal.
Indeed, the quadratic scaling of the zero moment is given
by therelation

Theexplicit constant ¢(d) = ¢(2) = 0.125 (we consider 2D sur-
faces only). The quantity is the mean curvature
vector at . For aproof we refer to [12].

We now discuss the case of non-smooth surface features,
suchasedgesandcorners.Let  beasurface, whichissmooth
up to the edge set on the surface. Then, for ,
thereis avector , such that

In thissense, the zero order moment scaleslinearly on thesin-
gularity set of the surface. Next, we consider the rst moment.
Let us assume that for the apex angle of a surface

edgeisof size  (cf. Fig. 6). Thenin the eigenvaluesof the
rst moment are and up to higher
order terms, where and . For aformal

proof, we refer againto [12].

Local surface feature classibcation

Wewill usetheseresultsto de nelocal surfaceclass ers,i.e.
quantitiesthat enable usto robustly distinguish between smooth
surface areas and features such as edgesand corners. Thiswill
|ater be encodedin amathematical operator onthe surface (see
Section 4). We have seen that the shift of the zero moment
differs by an order of magnitudein if compared on edges
and in smooth areas on the surface, respectively. Hence, let us
de nea rstloca surfaceclass er

where with suitably chosen .Inall
our applications we have chosen and .
We observe that in smooth regionson  and

close to edges or corners (cf. Fig. 7). Even
though  can already serve as agood class cation tool, we

can further improve the feature detection quality by incorpo-

rating rst moment information. Suppose to be
thesmalleg and largeg eigenvalue of , respectively. From
(1) we know that the quotient is approximately
given by

where  isthe apex angle of an edge feature. This relation
for isvalid for larger than .Es

pecially, in the smooh ca% ( ), this quotient van-
isheswhereit increases for decreasing . Hence, we can fur-
ther pronounce edges in the classi cation by the choice of a
combined zeroand rst moment classi cation



We mention that, for smaller than |, the quotient of the
eigenvaluesagaintendsto , when . Inthissense, very
sharp features are detected in aweaker sensethan they should.
However, asour experiments showed, this seemsto be only of
theoretical interest. Figure 7 comparesthe results obtained by
the class cation with  and . For all surfaceswe tried,
the combined classi er showed a better separation of the fea-
ture areas (edges and corners) from the smooth areas than the
zeromoment class er. Duetoitssuperior quality we have ap-
pliedtheclass er in all applications below (cf. Fig. 8).

Implementation of zero and brst moment

In the previous section, we have treated arbitrary surfaces. In
applications, we usually deal with two-dimensional, irregular,
triangular grids. In thefollowing we will detail the discretiza-
tion of the presented local surface classi cation in this case.
We consider atriangular mesh with grid sizefunction .
In our implementation, we compute the moments centered at
each node of the triangulation.
Letus xonenode anddenotethediscretemomentsby
and . Giventhisradius , we rst colled all trian-
gles of thetriangulation such that
, by performing a simple breadth rst search
fromthenode  onthe mesh connectivity graph. This set of
triangles splitsinto two subsets. The rst one - denoted by
- consists of all elementswith . The second one
is the complement. Now we iteratively compute the inte-
gras and .Oneachtriangleof  we
use the following exact integration formulas:

arethenodesof and ,
and . For the corre-
sponding computations on we apply an approxima-
tion. For each triangle , theintersection of the sphere
and the edges of the triangle consists of two points de-
noted by . We replace the curvilinear connection
by theline segment connecting and . Hence, were-
place by apolygonwhichwe again can splitinto trian-
gles. We proceed now as above using exact integration on all
these virtual triangles. To ensure arobust moment calculation
we choose in our applications.

where

4 A matrix encoding features

Givenaclass er onasurface ,wecande

ne a mathematical operator which considers the clas-
s er asagpatia coupling weight on the surface. Suppose
to be large in smooth surface regions and small on edges and
corners. In our applications, we choose asaboveand
de ne

div
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In case of a homogeneous surface with we obtain a
constant spatial coupling described by the negative Laplace
Beltrami operator div . If onethinksin term
of diffusion, isthe diffusion coef cient, which issmall on
edges and approximately in smooth regions. This type
of operator has already proved to be a powerful tool in fea-
ture preserving surface fairing and image denoising [26, 11].
Here, we do not aim to process the surface via a differential
equation. Instead we are interested in a multiscale decompo-
sition of the operator itself. With respect to our actua aim of
designing an editing tool for discrete, triangular surfaces in-
stead of the continuous operator , wetreat itsdiscrete nite
element counterpart . Hence, following the generd -
nite element paradigmswe rst introduce the quadratic form
acting on functions on

Furthermore let

bethe niteelement spaceon
ousfunctionsbeing af nelinear on each triangle of
usua basis ,on isde ned by
where isthe number of vertices of and

for all vertices . Notetha we use capitd |lettesfor discrete
objects to distinguish them from continuous objects denoted
with lower case |etters. We now de ne adiscrete operator
actingon  and a corresponding matrix where a
matrix entry is given by

consisting of those continu-
.The

and isthestandardbasisof . Thismatrix de-
scribes the coupling on the discrete surface weighted by the
classi er . Thiscouplingisencodedintermsof the coupling
of adjacent nodesof thetriangulation. Indeed, for every pair of
adjacentnodes and  the matrix entry describesthe
coupling strength. In Section 5 we will discussthe multiscale
decomposition of this matrix, the centerpoint of our method.

Assembling the matrix

Before we discuss the multiscale decomposition of the ma-
trix , we detail its actual computation. The assembly of
is based on the standard Finite Element assembly procedure.
We start by initiaizing followed by atraversal of all
surfacetriangles .Oneach with nodes , acor-
responding local matrix is computed rst, corre-
sponding to all pairings of local nodal basis functions. Next,
thelocal matrix isadded to the matching locationsintheglobal
matrix ,i.e.foreverypair weupdate

. Here is de ned as the global index of the node
withlocal index . For thelocal matrix we need alocal surface
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classi er for every triangle  on , whichwede ne
by averaging. We obtain for the local matrix:

where  istheareaof triangle , isthenodal basisfunc-
tion corresponding to the node  for any local index
thegradienton ,and theouter normal totheedge op-
positeof . Finaly isthe height of the triangle over the
edge . Thetrianglewiseclass er is deduced by aver-
aging fromthe classi er values on the nodes and

of the triangle .
Giventhesparsity of , weuseacompressed row matrix stor-
agemodel, i.e. store only the nonzero entriesand their column
indexes, for every matrix row. Thiscon nesthe matrix mem-
ory reguirements to e.g. around 10 megabytes for a mesh of
280472 triangles.

5 Multiscale decomposition by AMG

As discussed so far, the matrix ~ de ned above can be re-
garded as a description of the surface shape. In particular the
smoothness modulus and the distinct surface features are en-
codedinthismatrix. Besides prominent feature edges, succes-
sively ner, moredetailed edgesareencoded. At thispoint, we
require atool capableto analyze and represent this multiscale
of features. Here AMG comesinto play. Given amatrix which
encodes inhomogeneities on different scales - in our case the
features detected by the classi er - we apply AMG (cf. Sec-
tion 2) to detect this multiscale. AMG will deliver a scale of
surface descriptionsin terms of matrices ~ for
ranging from detailed ( ) to very coarse (). To-
gether with these matricesweobtainbasisfunctions ~ onall
scales. Hence, we obtain handlesfor surface editing on differ-
ent detail scales. One might either manipulate large scale fea
turessuch asthe head, tail, or legs of the meshesshowninthis
paper. Alternatively, adjustments of small details, suchas n-
ger tips or ears, can be performed. This section describes the
underlying mathematics related to the multiscale representa-
tion. The next section presentsthe actual editing tool, con g-
ured as a simple but effective “combiner” of basis functions.
Recalling, we apply the AMG algorithm (cf. Section 2) to
the matrix introduced in the previous section. Run-
ning AMG on the matrix ~ we obtain a sequence of prolon-
gation matrices

as output, where is decreasing and .The
entriesin each columnof  describe how the basisfunctions
for can be generated from the basis func-

tions for on the previous, ner level.

Indeed, we obtain thefollowing simplerecursiverecipeto cal-
culate a multiscale of basis functions

Collecting al basis function on all scales we

build up amultiscale library

of functionswhichre ects, on all scales, the surface features
encoded by thelocal surfaceclassi er (cf.Fig.9). Letusre-
call that the prolongation matrices induce a sequence of ma-
trix representations on different levels:

where the restriction matrices arede ned as
.Ingenera, asoutlinedin Sec. 2thegoal of AMG
isto compute prolongationsin such away that, for the num-
ber of degrees of freedom , the mapping corresponding to
thematrix  isasuf ciently good approximation of theorig-
inal matrix . Hereby, the underlying algebraic smoothness
criterion depends on the problem setting. |n our case, smooth-
nessisinduced by the spatially varying surfaceclassi er
An interpretation of the entriesof  isthat measures of
strength of the coupling between the basis functions and
or - if wethink interm or surfaceregions- the coupling of
the domainsde ned by the supports of the basis functions. In
particular, the coupling is expected to be weak across edges,
as described by

Furthermore, the shape of the basis functionswill clearly
show the strength of the node couplingin the matrix. On edges,
theweights  aresmall, becauséheclass er issmall
inthisregion. Hence, AMG will cluster verticeson both sides
of an edge on much ner scales and will collect verticesfrom
both sides of the edge at later stages of the coarsening pro-
cess. In particular, it is expensive - in terms of the built-in op-
timization in a concrete AMG implementation - to generate
basis functions whose masses are equally distributed on dif-
ferent sides of an edge feature (cf. Fig. 5 and 9). However, as
aready mentioned in Sec. 2, thisisnot a problem for the pro-
posed method, asit will be explained next.

As usuall, bask functionson a given scak overlap each
other. Hence, it turnsout to be sometimes hard to treat to visu-
alize basisfunctionsdirectly in an graphical user interfacefor
e.g. asurface editor or processing tool. Hence, aiming to rep-
resent the set of overlapping basis functions
visually, let usde neacorresponding domain decomposition

for every (cf. Fig.10). Here, we de ne

, Where

Let us remark that the domains on different scales need not
be strictly spatially nested. Nethertheless, these domains are



bounded by surfacefeaturelines. Thischaracteristicisenough
for building a simple and intuitive way to represent and ma-
nipulate such domains on different scales (see Sec. 6).

A major featureof our method isitsspeed. TheAMG com-
putation of the prolongation matrices takes between 3 and 6
seconds for meshes up to 300000 elements on a Pentium 4
PC at 1.5 GHz running Linux. The domain decompositionin-
volvesjust multiplication of the prolongationsand thus takes,
for the same datasetsand platform, 1to 3 seconds. Thes owest
part of the pipelineis assembling the classi er matrix, which
islinear in the number of mesh triangles, and takes about 10
seconds for the largest mesh we tried, i.e. 280472 elements.
The matrix assembly complexity is quadratic in the radius
of theintegrationball  (see Sec 3). For all examplesaball
sizeof ,where istheaveragetrianglesize, wasused. Larger
balls, that would slow down the assembly, are not required, as
the surface features we are looking for inthe class er are al-
ready present on this scale.

The graph perspective
The mesh can be trivially encoded in a graph
, Wherethevertices andtheegdes

of the mesh are the graph nodes and egdes, respec-
tively. In case of our af n e nite element space  the spar-
Sity pattern of the matrix ~ is such that in the th row, cor-
responding to the vertex , the only nonzero entries are
those corresponding to adjacent nodes , connectedto by
an edge ,andtheentry re ectingthe self-coupling
of node with itself. Hence, the entries in the matrix can
be regarded as weightson the egdes  of the graph . In-
deed, AMG generates a sequence of graphs

for .Onlevel the set of graph nodes
spondsto the basis and for every entry

their exists an edge with that weight. One might
ask whether thegraphs ~ for again generate immersed
polygonal grids . Thisis known to be a design principle
of progressive mesh algorithms. However, in our casethereis
in general no such mesh nesting sequence and it would be a
much too severe restriction to formulate this property in the
AMG agorithm as a constraint.

corre-

6 A multiscale surface editor

The basis functions from the multiscale library can
be directly used as handlesto processthe surface. Frequently,
however, the“handles’ the user hasin mind to manipulatethe
surfaceare not precisely recovered by one of theavailable AMG
basis functions. Desired handles can be generated by combin-
ing afew basisfunctionsfrom the AMG multiscale library of
basis functions. We present here a simple but effective fea
ture editor based on this strategy. The editor allows to select
a given basis function on a given level by just two intuitive
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mouse picks. Several such bases can be then added to design
the desired handle. In detail, for an arbitrary surface point
- chosen by a rst mouse pick - we extrad from the multi-
scale domain decomposition a sequence of activated domains
, Where is the set from the domain
decomposition on level  for which . A second point
- chosen by a second mouse pick - identi es now a single
active set from the activated sets, where

Hence, the corresponding basis function isinterac-
tively andintuitively selected formthe multiscalelibrary
This function inintializes the handle

The process can be repeated e.g. by picking another two sur-
facepoints and . Thehandleisupdated

Figure 11 shows an example. The rst pick (at the black ar-
row’slocation) producesthe activated domainscorresponding
tothehand’'smiddle nger tip. Surface color coding indicates
the editor’s current status. Picking apoint , the activated do-
mains are drawn in colors corresponding to the sequence pa-
rameter , usinga xed color map (see Fig. 11). The second
pick (light blue arrow) adds now abasisto the current handle.
The domain

where we choose , essentially being the support of
the current handle , isawaysshown by a xed color (light
blue, Fig. 11). Coloring guides the user’s iterative handle se-
lection. In al our applications, to selectioniterations(i.e.
2 to 10 clicks) were suf cient to de ne the desired surface
handles (cf. Figures 11,12, 13, 14). In addition, we provide a
mechanism to step back in the handle construction. Picking
apoint intheaready selected domain  deletes the previ-
ously added basis function containing in its support.

7 Applications

After having sel ected the desired surface handl es, one can edit
the surface. We show here a number of simple surface edit-
ing operations performed on the selected handles. These op-
erations serve only asillustration for the presented multiscale
surface decompositionand handleconstruction. However, this
does not diminish the usability of our technique. Indeed, state
of the art surface processing operations can be easily substi-
tuted in place of the ones shown here.

Inthe rst example (Fig. 12), we select ve features on
the Stanford bunny dataset, i.e. the ears, from paws, and tail.
Using the handle construction method (Sec. 6) these features
are easily selectd by just ten mouse clicks, two for evely fea-
ture, in the order: left ear, right ear, left paw, right paw, tail
(Fig. 12 &j). Thecompletehandleis shownin Fig. 12 k. Next,
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we remove the ears by smoothing the mesh. Smoothing de-
forms the mesh in the inward normal direction and performs
amesh decimation simultaneously by removing triangles that
become smaller than a fraction of the average triangle size.
Decimation is needed to ensure that the deformed mesh does
not contain unnecessarily small triangles Finally, we in ate
the paws and tail by mesh deformation in the outward normal
direction. Figure 12 | shows the edited mesh and the selected
domain.

Inthe second exampl e, we select eight featureson themesh
inFig. 13, i.e. the ears, middle toes, and tail. Selecting these

nedetailsrequiresonly two clicks per feature. Figures13a,b
show the selection of the left front toe. Next, we in ate the
toes and ears and round the tail. (Fig. 13 ¢). Thein ationis
done as for the previous example. The tail rounding is a se-
guence of alternate mesh in ations and smoothings. Finally,
we separately select the body, also in two clicks, and smooth
it. Figure 13 d shows the nal result and the domain corre-
sponding to the body.

In the last example, we select four features on the dragon
dataset (Fig. 14), i.e. the horn, tongue, hind leg spike, and tail
tip. Wedetail theselection of thehorn. The rstclick (Fig. 14 a)
produces the activation domains for the horn’stip. A second
click, inthe same place, selectsthe upper half of thehorn only,
sincethereisno single basiscoveringthewholehorn (Fig. 14 b).
Two moreclicks, both on the horn’s stem, are needed to select
the rest of the horn (Fig. 14 c,d). After al details are selected
(Fig. 14 e), we erase them by mesh decimation, to yield the

nal result (Fig. 14).

8 Conclusions

We have presented anovel techniquefor manipulating surface
meshesat different levelsof detail, consisting of thefollowing
ingredients: the stable computation of surface class ers, the
classi er assembly into a nite element matrix, the computa-
tion of a sequence of basis functions on different detail lev-
elswith the AMG method, and a ssimple but effective surface
editor based on these basis functions. Overall, selecting sur-
face features at different detail levelsis done by a few mouse
clicks. Although the machinery behind the editor is quite in-
volved, its users may employ it being totally unaware of the
underlying complexities.

The whole process requires setting few (if any) parame-
ters. Thetwoclass er parameters and  (Sec. 3) were xed
for al our test surfaces. The AMG tool speci ¢ parameters
were xed aswell for al surfaces. These parameters control
theway theprolongations  are constructed (Sec. 2). Differ-
ent parameter settings slightly change the number of decom-
position levels obtained and the shape of the basis functions.
However, the coarse levels, which are the interesting onesfor
our editing tool, remain practically unchanged. Thereason hereof
isthe class er design which strongly distinguishes between

at and curved areas (Sec. 3).

Thereislittle else that could be automated in the process.

The most complex implementation part of the entire pipeline

isindeedthe AM G tool. However, asmentioned, several avail-
able AMG tools can be used, virtually as black boxes. Imple-
menting the moment-based classi ers, matrix assembly, basis
function computation, and the editor, is straightforward.

Another point of discussionistherelation betweenthe de-
composition quality and themesh quality. Here, the samewel |-
known guidelines apply as when studying mesh quality in u-
enceon solving PDEsusing nite elementsMesha contain-
ing bad aspect triangles (sivers) and/or high valence vertices
may encodetheclass eratinsuf cientresolution. Thisprob-
lemismuch seriousin PDE solvingvia nite elementsthanin
our case. Indeed, as already stated, the large jumpsin classi-

er values (severa orders of magnitude) will be visible even
on apoor quality mesh. Secondly, the coarser levels produced
by the AMG re ect the coare scale classi er variatiors and
are, by de nition, lesssensitiveto small scale perturbations. A
good example of the robustness of our decompositionwith re-
spect to mesh quality isthe hound (Fig. 13), which usesapoor
quality mesh (themesh dataisavailableat www.cs.virginia.edu/
gfx/Courses/2001/Advanced.spring.01/plymodels).

The presented technique opens a multitude of directions
for surface processing. Various other data, such as surface pa-
rameterization, texture, shading, or normalscan berepresented
on the multiscale induced by surface features. State of the art
surface processing operations, such as editing, decimation, or
morphing, can be coupl ed with the surface decomposition out-
put. Such surface data can also be encoded into new classi-

ers, to produce novel waysfor multilevel surface representa-
tions. Finally, an interesting question iswhether the presented
AM G-based techniquecan be applied to mesh-free, point-based
surface representations, such as the one used in the PointShop
3D editing tool [36].
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Fig. 1 Surface processing example: (a) feature detector (b) feature-
guided surface decomposition (c) features selected for deletion (d)
surface after feature deletion
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decomposition
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Fig. 2 Stepsof the multiscale surface editing method
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Fig. 4 General AMG construction

Fig.5 For asimplesecond order differential operator on aplanar do-
main, algebraic multigrid basis functions are depicted on different
scales (upper row: coarsest scale, middle row and lower row succes-
sively ner scales). The basis functions clearly re ect the ring type
feature region encoded in the operator.

M (x) M (x)

X

Fig. 6 Theintersections of a ball aredrawn for points ina
smooth areas and on an edge respectively. In addition, we show the
approximate normal and the eigen direction of the rst mo-
ment for apoint on an edge.
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Fig. 7 The zero moment and the combined moment feature classi-
ersare compared on atriangular mesh. The combined classi er de-
tectssigni cantly more robustly the surface edges.

Fig. 8 For different triangular surface meshes we show the local
feature class cation result using a color coding for the classi er

Fig. 9 Selected basis functions are color coded on ablue (low)
to red (high) colormap on the coarsest scale (upper row) and on the
third coarsest scale(lower row).

U. Clarenz et dl.

Fig. 10 On different scales (corresponding to the columns) the do-
main decomposition  isshown for several triangular surfaces. The
surfaces consist of 280472 (bunny), 87140 (dragon) 25030 (hound),
and 96966 (horse) triangles, respectively.

-
-

Fig. 11 Selection stepsinthefeatureeditor (from left to right). First,
for a picked point , al active domains are color coded or-
ange, red, yellow, green and violet for increasing scale . Next, pick-
ing into one of these active domains at point , selects a particular
scale . Thisactivates and the corresponding basisfunc-
tion . The support is drawn in blue. Repeating this proce-
dure adds a second basis function to the handle with two clicks.

—
-
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Fig. 12 Application 1: In ten clicks, ve features (ears, front paws,
tail) are selected (a). Next, the handle and the edited surface are
shown (k,l)
e) f)
Fig. 14 Application 3: The dragon’s horn is selected in a sequence
of four clicks (a..d). Next, other features are selected (€). Finally, the
selection is erased (f)
2X = a) b)
c) d)

Fig. 13 Application 2: Theleft hind leg middletoeis selected by two
clicks on the red domain (a,b). Similarly, other features are selected
(c). Finaly, the selection is edited (d)



