
Mathematisch-Naturwissenschaftliche Fakultät der Rheinischen

Friedrich-Wilhelms-Universität Bonn

Signals processing in the Graph

Convolutional Networks

by

Andrii Lishchyshyn

andrej.lischishin@uni-bonn.de

Born 25th June 1997 in Kiev, Ukraine

Supervisor: Prof. Dr. Michael Griebel

Second supervisor: Dr. Bastian Bohn

Bachelor’s Thesis Mathematics

in the

Institute for Numerical Simulation

Research Group M. Griebel

November 7, 2018

https://www.uni-bonn.de
https://www.uni-bonn.de
http://wissrech.ins.uni-bonn.de/people/griebel.html
https://ins.uni-bonn.de/staff/bohn
https://www.ins.uni-bonn.de/institut/
http://wissrech.ins.uni-bonn.de/main/

“...”

Sensei Six

Zusammenfassung

Während des laufenden Jahrzehnts hat Deep Learning in verschiedenen Bereichen, von

Computer Vision und Bildanalyse bis hin zu Spracherkennung und natürlicher Sprachver-

arbeitung, ein herausragendes Leistungsniveau erreicht. Heutzutage ist Deep Learn-

ing eine eigenständige Technologie, die in kommerziellen Anwendungen verwendet wird,

einschließlich Siri, Face ID in IPhone (Apple), Googletext-Übersetzung, Betrugserken-

nung (Sentinel Protocol) und vielen anderen. In dieser Arbeit liegt der Schwerpunkt

auf einem Teilbereich des Deep Learning, insbesondere der Convolutional Neural Net-

works (CNNs). CNNs liefern derzeit eine State-of-the-Art-Leistung für eine Vielzahl

von Computer-Vision-Aufgaben. Die Forschung konzentrierte sich hauptsächlich auf

den Umgang mit 2D- oder 3D-euklidisch strukturierten Daten wie Bildern, Videos oder

akustischen Signalen. Während die Erweiterung von 2D auf 3D euklidisch strukturi-

erte Daten einfach ist, da Daten immer noch eine Gitterstruktur aufweisen, ist die

Erweiterung auf andere Arten von Daten wie 3D-Form-Mashes, Graphen sozialer Net-

zwerke oder IoT-Graphen nicht sehr klar. In diesem Zusammenhang werden wir eine

neue Graph-Faltungsnetzwerkarchitektur untersuchen, die auf einer generischen For-

mulierung basiert, die die 1-zu-1-Entsprechung zwischen Filtergewichten und Datenele-

menten ändert. Die Hauptnovalität dieses Ansatzes besteht darin, dass die Form des

Filters eine Funktion der Merkmale in der vorherigen Netzwerkschicht ist, die als ein inte-

graler Teil des neuronalen Netzwerks gelernt wird. Dieser Ansatz wurde in [1] vorgeschla-

gen.

Mathematisch-Naturwissenschaftliche Fakultät der Rheinischen

Friedrich-Wilhelms-Universität Bonn

Abstract

Institute for Numerical Simulation

Bachelor Thesis

by Andrii Lishchyshyn

andrej.lischishin@uni-bonn.de

Born 25th June 1997 in Kiev, Ukraine

Over the current decade, deep learning has achieved an outstanding performance level

in different fields, from computer vision and image analysis to speech recognition and

natural language processing. Nowadays, deep learning is a self-standing technology that

is used in commercial applications, including Siri, Face ID in IPhone (Apple), Google

text translation, fraud detection (Sentinel Protocol) and many others. In this work, the

main focus is on a subarea of deep learning, in particular convolutional neural networks

(CNNs). CNNs currently produce state-of-the-art performance on a wide variety of

computer vision tasks. Mostly, research was focused on dealing with 2D or 3D Euclidean-

structured data, such as images, videos or acoustic signals. While the extension from 2D

to 3D Euclidean-structured data is straightforward because data still has a grid structure,

extension to other types of data such as 3D shape mashes, social networks graphs or

Internet of Things (IoT) graphs is not very clear. In this regard, we will examine a new

graph-convolutional network architecture that builds on a generic formulation which

changes the 1-to-1 correspondence between filter weights and data elements. The main

novelty of this approach is that the shape of the filter is a function of the features in the

previous network layer, which is learned as an integral part of the neural network. This

approach was proposed in [1].

https://www.uni-bonn.de
https://www.uni-bonn.de
https://www.ins.uni-bonn.de/institut/

Acknowledgements

I wish to express my thanks to Prof. Dr. Michael Griebel and Dr. Bastian Bohn for an

interesting research topic, fruitful discussions and constant support.. . .

ix

Contents

Zusammenfassung v

Abstract vii

Acknowledgements ix

1 Introduction 1

1.1 Neural Networks . 2

1.2 Convolutional Neural Networks . 3

1.2.1 Convolutional layer . 4

1.2.2 Pooling layer . 6

1.2.3 Fully connected (FC) layer . 7

1.2.4 Loss Function and its minimization 8

1.2.5 Summary . 11

2 Graph-convolutional networks 13

2.1 Graph convolutions using dynamic filters 14

2.2 Generalization to non-Euclidean input domains 14

2.3 Computational complexity . 18

2.4 Translation invariance of soft-assignment in feature space 18

2.5 Outlook . 19

3 Convolutional Neural Networks on Graphs with Fast Localized Spec-
tral Filtering(ChebNet) 21

3.1 Learning Fast Localized Filters . 21

3.1.1 Graph Fourier Transform . 21

3.1.2 Spectral filtering of graph signals. 22

3.1.3 Polynomial parametrization for localized filters. 22

3.1.4 Recursive formulation for fast filtering. 23

3.1.5 Tensorflow . 23

3.2 Graph Coarsening . 24

4 Numerical Experiments 27

4.1 MNIST Dataset . 27

xi

Contents

4.2 Text Categorization on 20NEWS Dataset 29

4.3 Conclusion and future work . 30

4.3.1 Tensortrain . 31

Bibliography 33

References 33

xii

Chapter 1

Introduction

Convolutional neural networks [2] introduce an efficient architecture to extract mean-

ingful patterns in high-dimensional and large-scale datasets. CNNs are able to learn

local structures and compose them into multi-scale patterns. This has led to dramatic

improvement in video, image and sound recognition tasks. A basic CNN consists of an

input layer, multiple hidden layers and an output layer. At first, this looks just like a

simple neural network, but the difference is in the functioning of hidden layers. The

hidden layers of a CNN typically consist of convolutional layers, pooling layers, fully

connected layers and normalization layers. To be precise, CNNs extract the local sta-

tionarity property of the input data by revealing local features that are shared across the

data domain. These features are identified with localized convolutional filters or kernels,

which are learned from the data during iterative learning of the network. Convolutional

Networks combine three architectural ideas to ensure some degree of shift, scale and

distortion invariance: local receptive fields, shared weights and sub-sampling.

3D shape models, user data on social networks, genetic data on biological regulatory

networks or text documents on word embeddings are important examples of data lying

in irregular or non-Euclidean domains that can be represented with graphs. Graphs can

encode complex geometric structures and there is a variety of mathematical tools that

can be used for studying the graphs.

The non-Euclidean nature of such data implies that there are no such familiar properties

as global parametrization, vector space structure or shift-invariance. Therefore, basic

operations like convolution that are taken for granted in an Euclidean case are even

not well-defined on non-Euclidean domains. The purpose of this work is to study one

specific architecture of convolutional neural network for graph-data.

1

Neural Networks

Previous works on deep neural networks over graph-structures data can be divided into

spectral [3–6] and spatial approaches. Spectral filtering approaches rely on the eigen-

decomposition of the graph Laplacian that enables convolutions over graphs. It is useful

for problems with fixed graph representation, but non-local eigen-decomposition is unsta-

ble when applied across different graphs, which makes the generalization across different

graphs rather difficult. In contrast, spatial approaches [7–9] provide filter localization

via the finite size of the kernel. However, although graph convolution in the spatial do-

main is conceivable, it faces the challenge of matching local neighbourhoods, as pointed

out in [4].

In this work, we will look at one specific graph convolutional neural network based on

local filtering. In this approach, the mapping between the filter weights and the nodes

in a neighborhood of the graph are learned as an integral part of the network. Moreover,

the mapping is a function of the features in the preceding layer of the network, rather

than being based on manually defined local coordinates on the graph.

1.1 Neural Networks

We will start with a short introduction to the Neural Networks in general. The first

steps in the area of neural networks were already made in the 1940s. An artificial neural

network is a computing system vaguely inspired by the biological neural networks that

constitute animal brains. A neural network itself is not an algorithm, but rather a

framework for many different machine learning algorithms to work together and process

complex data inputs. Such systems ”learn” to perform tasks by considering examples,

generally without being programmed with any task-specific rules.

A basic neural network has a clear structure:

• Input layer: No computation is done within this layer. It serves as a place where

data is fed to the network in order to produce some output.

• Hidden layer: Hidden layers are the essence of the network. They are places

where intermediate processing or computation is done, they perform computations

and then transfer the weights (signals of information) from the input layer to the

following layer (another hidden layer or the output layer).

• Output layer: Here we finally use some specific activation function that maps to

the desired output format.

• Connections and weights: The network consists of connections, each connection

transferring the output from one layer to the input of the other layer.

2

Convolutional Neural Networks

• Activation function: The activation function of a layer defines the output of

each node in that layer given an input or set of inputs.

• Learning rule: The learning rule is a rule or an algorithm which modifies the

parameters of the neural network, in order for a given input to the network to

produce a favored output. During this learning process, weights are typically

modified in a way that increases the accuracy of the network’s prediction.

A key trigger for renewed interest in neural networks and learning was Werbo’s (1975)

backpropagation algorithm that effectively solved the exclusive-or problem by making

the training of multi-layer networks efficient. Backpropagation is used in the learning

process and distributes the error term back up through the layers, by modifying the

weights at each node.

There are many classes of neural networks and these classes also have sub-classes. Classes

are usually formed by a type of layers or in general by the architecture of the network

and also by a task or data which are to be solved or is used.

In this work we are interested in specific architecture and a specific dataset, namely

Convolutional Neural Network on Graphs, which means that data is given as a graph.

1.2 Convolutional Neural Networks

In this section, we will look at an example of a convolutional neural network applied to

the digit recognition problem. We will follow one of the earliest examples in the field,

which is LeNet-5, first introduced in [2].

Figure 1.1: http://cs231n.github.io/convolutional-networks/

In this example, the input is an 32 × 32 image. Units in the first hidden layer are

organized in 6 layers, each of which is a feature map. A unit in a feature map has 25

inputs connected to a 5 × 5 block in the input, called the receptive field of the unit.

Each unit has 25 inputs, therefore 25 trainable weights plus a trainable bias.

3

http://cs231n.github.io/convolutional-networks/

Convolutional Neural Networks

The receptive fields of contiguous units in a feature map are centred on correspondingly

contiguous units in the previous layer. Therefore overlapping occurs. It is important to

note, that all units in the same feature map share the same weights, in particular the

same 25 weights and bias. One reason for that is to reduce the number of parameters

and another one, if some specific feature was already extracted at some place in the

input, the same type of features could be detected at any place of the input using the

same parameters. Say, if one found an edge at some place, one can then learn all other

edges using the same set of weights. The other feature maps in the layer use different

sets of weights and biases, thereby extracting different types of local features.

In the example of LeNet-5, at each input location six different types of features are

extracted. A sequential scanning of the input image with a single unit that has a local

receptive field and stores the states of the unit at corresponding locations in the feature

map is equivalent to convolution, followed by additive bias and non-linear unit.

The kernel of convolution is a set of weights used by units in the feature map. An

important property of convolutional layers is that if the input image is shifted, the

output of the feature map is shifted by the same amount, but will be left unchanged.

This is a basis of the resilience of CNNs to shifts and distortions.

1.2.1 Convolutional layer

Convolution is a mathematical operation on two functions (f and g) to produce a third

function, that is typically viewed as a modified version of one of the original functions.

Convolution is defined as follows:

(f ? g)(t)
def
=

∫ ∞
−∞

f(τ)g(t− τ)dτ =

∫ ∞
−∞

f(t− τ)g(τ)dτ (1.1)

In this context, the convolution formula can be decsribed as a weighted average of the

function f(τ) ar the moment t where the weighting is given by g(−τ) simply shifted by

amount t. As t changes, the weighting function emphasizes different parts of the input

function. In the context of CNN, f is an input and g represents a kernel.

In two-dimensional image processing terms, the continuous convolution integral may be

expressed as follows:

h(x, y) = (f ? g)(x, y)
def
=

∫ ∞
−∞

∫ ∞
−∞

f(τu, τv)g(x− τu, y − τv)dτudτv (1.2)

In a manner analogous to one-dimesional convolution, the function g(0 − τu, 0 − τv)

is simply the image function g(τu, τv) rotated by 180 degrees about the origin. The

4

Convolutional Neural Networks

function g(x − τu, y − τv) is the function further translated to move the origin of the

image function h to the point (x, y) in the (m,n) plane.

Convolution of digital sampled images is analogous to that for continuous images, except

that the integral is transformed to a discrete summation over the image dimensions, m

and n.

h(x, y) = (f ? g)(x, y)
def
=

∑
τu

∑
τv

f(τu, τv)g(x− τu, y − τv) (1.3)

Figure 1.2: http://cs231n.github.io/convolutional-networks/

Here you can see an example (going through the link below the figure there is a nice

demo), where input has depth 3 (three blue squares on the left) and there are 2 different

filters (second and third column from the left, each of them has also depth 3) that

are applied with a stride of 2 to each depthslice (each blue square in the first column

individually) of the input. If we look at equation 1.3, then f is now three squares in

the first column in figure 1.2 and g is at first the second and then the third column.

Therefore, when applying the first filter, h is the first green square, in the last column

of figure 1.2 and when applying the second filter to the input, the second green square

5

http://cs231n.github.io/convolutional-networks/

Convolutional Neural Networks

in the last column of figure 1.2.

Stride is a parameter which determines the value of the step while convolving the input

with a filter. When the stride is 2, then the filters jump 2 pixels at a time as we slide

them around.

Sometimes it will be convenient to pad the input volume with zeros around the border.

The size of this zero-padding is a hyperparameter. The convenient feature of zero

padding is that it will allow us to control the spatial size of the output volumes.

All together works as follows, starting with the first depthslice of the input (first square

in the first column of figure 1.2) and the first depthslice of the first filter (first square

in the second column of figure 1.2), we place the filter’s slice over this first depthslice as

shown in figure 1.2, and then moving the slice of the filter over the slice of the input from

left to right and from top to bottom, for each second pixel (stride 2) performing element-

wise multiplication and doing so for each slice of the input with the corresponding slice

of the filter for each filter separately and then summing over the depth, we are getting, in

this case, two output volumes, because there are two filters. This convolution operation

results in output volume, which is represented in green. After this bias is added. This

is how convolution layer functions in the example when the input is an image.

1.2.2 Pooling layer

Once a feature has been detected, its exact location becomes less important. Only its

relative location to other features is relevant. Moreover, it is not only less important,

but it can even be harmful, because the positions are likely to vary for different instances

of the input. For example, if we take handwritten digits as input, and we will look at

n different instances of the same digit, positions will vary drastically. A way out is a

reduction of spatial resolution of the feature map. This can be achieved by means of a

pooling layer, which performs local averaging and reduces sensitivity of the output to

shifts and distortions. In LeNet-5 example, the second hidden layer is a pooling layer.

This layer comprises six feature maps. The receptive field of each unit is a 2 by 2 area

in the previous layer’s corresponding feature map. Each unit computes the average of

its four inputs, multiplies it by trainable weights, adds a trainable bias and passes the

result through the non-linear unit, in particular a sigmoid function. A non-linear unit

is needed in order to capture some non-linear patterns while training. Next to sigmoid

function, rectified linear unit (ReLU) function is often used.

In the following figure, a max pooling operation is illustrated. In addition to max

pooling, units can also perform other functions, such as average pooling or even L2-

norm pooling. Average pooling was often used historically but has recently fallen out

6

Convolutional Neural Networks

of use in favor of the max pooling operation, which has been shown to work better in

practice.

Figure 1.3: http://cs231n.github.io/convolutional-networks/

The pooling layer down-samples the volume spatially, independently in each depth slice

of the input volume.

Here the difference between max- and average-pooling is illustrated:

Figure 1.4: https://pythonmachinelearning.pro/introduction-to-convolutional-
neural-networks-for-vision-tasks/

1.2.3 Fully connected (FC) layer

Neurons in a fully connected layer have full connections to all activations in the previous

layer. The output from the convolutional layers represents high-level features in the data.

While that output could be flattened and connected to the output layer, adding a fully

connected layer is a cheap way of learning non-linear combinations of these features.

Convolutional and pooling layers are providing a meaningful, low-dimensional and in

some sense invariant feature space and the fully connected layer is learning a (possi-

bly non-linear) function in that space. It is also trivial to convert from FC layers to

Convolutional layers.

7

http://cs231n.github.io/convolutional-networks/
https://pythonmachinelearning.pro/introduction-to-convolutional-neural-networks-for-vision-tasks/
https://pythonmachinelearning.pro/introduction-to-convolutional-neural-networks-for-vision-tasks/

Convolutional Neural Networks

1.2.4 Loss Function and its minimization

In order to train a neural network to perform some task, we must adjust the weights of

each unit in a such way that the error between the desired output and the actual output

is reduced.

Optimization algorithms used for training of deep models differ from traditional opti-

mization algorithms. Machine learning usually acts indirectly. In most machine learning

cases, we care about some performance measure P , that is defined with respect to the

test set and may also be intractable. We therefore optimize P indirectly. We reduce a

different cost function J(θ) in the hope that doing so will improve P . This is in contrast

to pure optimization, where minimizing J is a goal in and of itself.

Without diving into rigorous details, for more insight one may want to look into [10],

[11], we need some metric, in order to be able to analyze this error. For this reason, cost

function is defined, it can be written as an average over the training set, such as

J(θ) = E(x,y)∼p̂dataL(f(x, θ), y), (1.4)

where L is the per-example loss-function, f(x, θ) is the predicted output when the input

is x, p̂data is the empirical distribution, and θ are so called weights, or in other words

parameters, which should be modified in order to find the solution. In the supervised

learning case, y is a target output. It is trivial to extend this, for example, to include θ or

x as arguments, or to exclude y as argument, to develop various forms of regularization

or unsupervised learning.

Equation (1.4) defines an objective function with respect to the training set. We would

usually prefer to minimize the corresponding objective function where the expectation

is taken across the data-generating distribution pdata rather than just over the finite

training set:

J∗(θ) = E(x,y)∼pdataL(f(x, θ), y), (1.5)

The goal of training a neural network is to reduce the expected generalization error

given by equation (1.6). This quantity is known as risk. The expectation is taken over

the true distribution pdata. If the true distribution would be known, risk minimization

would be an optimization task solvable by an optimization algorithm. When we do not

know pdata(x, y) but only have a training set of samples, we have a machine learning

problem.

In order to convert a machine learning problem back into an optimization problem

is to minimize the expected loss on the training set. This means replacing the true

8

Convolutional Neural Networks

distribution p(x, y) with the empirical distribution p̂(x, y) defined by the training set.

E(x,y)∼p̂data(x,y)[L(f(x, θ), y)] =
1

m

m∑
i=1

L(f(xi, θ), yi), (1.6)

where m is the number of training examples.

The training process based on minimizing this average training error is known as em-

pirical risk minimization.

Empirical risk minimization is prone to overfitting. Models with high capacity can sim-

ply memorize the training set. The most effective modern optimization algorithms are

based on gradient descent, but many useful loss functions, such as 0 − 1 loss, have no

useful derivatives. These two problems force us to use a slightly different approach from

empirical risk minimization, which in its turn brings another level of postponement,

because now the quantity that we actually minimize is even more different from the

quantity we truly want to minimize.

Insight into the optimization problem, and into the various techniques for solving it, can

be obtained by considering a local quadratic approximation to the error function. It is

possible to evaluate the gradient of an error function efficiently by means of the back-

propagation procedure. The use of this gradient information can lead to significant

improvements in the speed with which the minima of the error function can be located.

The simplest way to use gradient information is to choose the weight update to comprise

a small step in the direction of the negative gradient, so that

θτ+1 = θτ − η∇E(θτ) (1.7)

where η > 0 is known as the learning rate. After each such update, the gradient is

re-evaluated for the new weight vector and the process is repeated. Note that the error

function is defined with respect to a training set, and so each step requires that the

entire training set be processed in order to evaluate ∇E. At each step the weight vector

is moved in the direction of the greatest rate of decrease of the error function, and so this

approach is known as gradient descent. Although such an approach might intuitively

seem reasonable, in fact it turns out to be a poor algorithm, for reasons discussed in [12],

there an in-depth discussion on which algorithms are more efficient can also be found.

Now we will take a look at an efficient technique for evaluating the gradient of an error

function E(θ) for a feed-forward neural network. We will see that this can be achieved

using a local message passing scheme in which information is sent alternately forwards

and backwards through the network and is known as error backpropagation. Most

training algorithms involve an iterative procedure for minimization of an error function,

with adjustments to the weights being made in a sequence of steps. At each such step,

we can distinguish between two distinct stages. In the first stage, the derivatives of

9

Convolutional Neural Networks

the error function with respect to the weights must be evaluated. In the second stage,

the derivatives are used to compute the adjustments to be made to the weights. The

simplest of such techniques involves gradient descent. It is important to recognize that

the two stages are distinct. For in depth discussion on this matter, consult [11], which

we are mainly following in this section.

The backpropagation procedure can be summarized as follows:

• Apply an input vector xn to the network and forward propagate through the

network using:

– aj =
∑

i θjizi,

where zi is the activation, or input, that sends a connection to a unit j, and

θji is the weight associated with that connection.

– zj = h(aj)

to find the activations of the hidden and output units.

• Evaluate δk = ∂En
∂aj

for all the output units using:

– δk = yk − tk,
where yk is the k-th output and tk is the actual value.

• Backpropagate the δ’s using:

– δj = h′(aj)
∑

k θkjδk

to obtain δj for each hidden unit in the network.

• Use ∂En
∂θji

= δjzi to evaluate the required derivatives.

For batch methods, the derivative of the total error E can then be obtained by repeating

the above steps for each pattern in the training set and then summing up over all

patterns:
∂E

∂θji
=

∑
n

∂En
∂θji

(1.8)

Backpropagation is only the first stage and serves to evaluate the needed derivatives

in order to use them in the second stage by feeding them into the chosen optimization

algorithm, e.g. Stochastic Gradient Descent.

We will stop at this point; any further information on how cost function should be

modified and which algorithms are then used for the minimization can be found in [10],

[11].

10

Convolutional Neural Networks

1.2.5 Summary

When we saw an example of basic Convolutional Neural Network for digits classifica-

tion task, a natural question is: how accurate are Deep Neural Networks on average?

Since the emergence of Deep Neural Networks (DNNs) as a prominent technique in the

field of computer vision, the ImageNet classification challenge has played a major role

in advancing the state-of-the-art. While accuracy figures have steadily increased, the

resource utilization of winning models has not been properly taken into account.

In the following [13] a comprehensive analysis of important metrics in practical applica-

tions is presented: accuracy, memory footprint, parameters, operations count, inference

time and power consumption.

In the ImageNet classification challenge, the ultimate goal is to obtain the highest accu-

racy in a multiclass classification problem framework, regardless of the actual inference

time.

In the following figure on the left, accuracy statistics for the major Deep Neural Network

architectures is shown. The analysis is based on re-evaluations of top-1 accuracies for all

networks with a single central-crop sampling technique. Single central-crop technique

means that top-5 validation method is used for error measuring.

On the right, top-1 accuracy versus amount of operations required for a single forward

pass is shown. For more statistical measurements see [13].

Figure 1.5: https://arxiv.org/pdf/1605.07678.pdf

The next question is, what are the other settings and data-types that CNNs could be

applied to? One of the problem-types is learning from data that doesn’t have a regular

grid structure, with other words is non-Euclidean. In the next chapter we will look at

this task in greater detail.

11

https://arxiv.org/pdf/1605.07678.pdf
https://arxiv.org/pdf/1605.07678.pdf

Chapter 2

Graph-convolutional networks

Neural networks that operate on graphs have previously been introduced in [14] and then

in [15] as a form of recurrent neural network. Their framework requires the repeated

application of contraction maps as propagation functions until node representations

reach a stable fixed point. This approach went almost unnoticed, re-emerging in a

modern form in [16]. The first formulation of CNNs on graphs is due to [17], who used

the definition of convolutions in the spectral domain. For a more in-depth review of the

history of CNNs on graphs, the reader is refered to [18].

As we already know, existing approaches to generalize convolutional networks to non-

regular graph-structured data can be divided into two broad categories: spectral filtering

methods and local filtering methods (also called spatial). While successful with noise-

free data such as synthetic 3D shape models, spectral techniques have more difficulties

with real observed data for which global decompositions may be unstable across, for

instance, various shapes in various poses.

In the computer vision and graphics community, Masci et al. [8] showed the first CNN

model on meshed surfaces, resorting to a spatial definition of the convolution operation

based on local intrinsic patches. Followup works proposed a different construction of

intrinsic patches on point clouds [7, 19]. Basically, all these methods differ in how they

establish a correspondence between filter weights and nodes in local graph neighbor-

hoods.

In contrast to the previously mentioned works, Masci’s et al. method learns filter shapes

by estimating the means and variances of Gaussians that associate filter weights to the

local pseudo-coordinates. The approach that we are following [1] instead of considering

hand-designed local pseudo-coordinates, uses the features of the preceding layer to map

between local graph patches and filter weights.

13

Generalization to non-Euclidean input domains

2.1 Graph convolutions using dynamic filters

In order to see how this new approach corresponds to the conventional CNN, we will

start with conventional architecture and will transform it step by step.

In the case of conventional CNNs, the parameters are represented as a set of D × E
filters Fd,e, each of size h × w, where D is the dimension of the input features, E the

dimension of the output features. Therefore, in order to compute one of the E output

channels, each of the D input channels should be convolved with corresponding filters,

afterwards summed over D and biased.

Figure 2.1: [1]. Left: representation as D × E filters Fd,e, each of size h× w. Right:
equivalent representation using M = h× w weight matrices, each of size E ×D.

An equivalent way to perform the same computation is to rearrange the weights as a

set of M = h × w weight matrices Wm ∈ RE×D. Each of these matrices projects input

features in RD to output features in RE . Projecting is here understood as vector matrix

multiplication. The result of the convolution is derived by summing the projection of

each of M neighbors of the central pixel. The output yi ∈ RE of the convolution can

then be computed as follows:

yi = b+

M∑
m=1

Wmxj(m,i), (2.1)

where b ∈ RE denotes a vector of bias terms and j(m, i) gives the index of the pixel in

m-th relative position with respect to i. For example, j(1, i) = i refers to the central

pixel of the convolution, j(2, i) refers to the top left pixel with respect to pixel i.

2.2 Generalization to non-Euclidean input domains

Current approach belongs to the local filtering approaches and the main difficulty in com-

parison to conventional CNNs is an establishment of correspondence between neighbors

14

Generalization to non-Euclidean input domains

and weight matrices Wm ∈ RE×D. In regular CNNs this correspondence is straightfor-

ward and fixed, which is most important.

Before diving into an actual approach, introducing the settings is necessary. We assume

that we have n samples xi ∈ Rdx . Each sample xi is associated with a vector yi ∈ Rdy

for a regression task or a label yi ∈ {0, , C} for a classification task.

Input data is structured as a graph G = (V,E,A), where V is the set of |V | = dx

vertices, E is the set of edges and A ∈ Rdx×dx is the adjacency matrix. This is called

signal classification / regression, as the samples xi to be classified or regressed are

graph signals.

Other modelling settings are:

1. node classification / regression:

Instead of considering signals on the graph, one can use a data graph, i.e. an ad-

jacency matrix A ∈ Rn×n which represents pairwise relationships between samples

xi ∈ Rdx . The problem here is to predict a graph signal y ∈ Rn×dy given a graph

characterized by A and some graph signals X ∈ Rn×dx .

2. graph classification / regression:

Here interest is in classification of the whole graph, with or without signals on top.

The task here is to classify or regress a whole graph Ai ∈ Rn×n (with or without

an associated data matrix Xi ∈ Rn×dx) into yi ∈ Rdy .

Settings for the current approach are a slight modification of signal classification/regres-

sion case. There are still n samples, but instead of xi ∈ Rdx , we now have xi ∈ Rdx×D.

In particular, this means that |V | = number of features = dx, so each vertex is a D−dim
feature, edges represent connections between features and on top of these graph we have

n samples.

Now we start with the approach introduced in [1] itself. The main point is, instead

of assigning each neighbor j of a vertex i to a single weight matrix as in the modified

conventional CNN (2.1), soft-assignment qm(xi, xj) is used across the M weight matrices.

Therefore, the function that maps the features from one layer to the next is defined as

follows:

yi = b+
M∑
m=1

1

|Ni|
∑
j∈Ni

qm(xi, xj)Wmxj , (2.2)

where qm(xi, xj) is the assignment of xj to the m-th weight matrix, Ni is the set of

neighbors of vertex i (including i) and |Ni| is it’s cardinal.

15

Generalization to non-Euclidean input domains

As discussed above, there is no one-to-one mapping between the neighbor and the weight

matrix. Instead, there is a soft-assignment function, which is some sort of distribution

function and is defined as follows:

qm(xi, xj) ∝ exp(uTmxi + vTmxj + cm) (2.3)

with the following properties:

•
∑M

m=1 qm(xi, xj) = 1

• This formulation is resilient to variations in the degree of nodes, because:

∑
j∈Ni

1

|Ni|

M∑
m=1

qm(xi, xj) =
∑
j∈Ni

1

|Ni|
= 1

• Nonetheless, conventional CNNs over grid-graphs are recovered if ∀i|Ni| = M and

the assignment is binary, i.e. qm(xi, xj) ∈ {0, 1}.

It is also worth to note, that vm and um are additional degrees of freedom, or in other

words, weights that are also learned. In particular this feature distinguishes this ap-

proach from the other, because mapping between signals and weights is learned as an

integral part of the network and is not deterministic.

In the following figure there is a schematic illustration of the mapping between neighbors

xj of the center pixel xi and filter weights. On the left side in CNNs for pixel grids, on

the right in graph-convolutional approach discussed above.

Figure 2.2: [1]

The key novelty in this approach is that the mapping between neighbors xj of the center

pixel xi and filter weights is learned as an integral part of the neural network, using

features computed in the preceding layer of the network, rather then using some fixed

correspondence.

16

Generalization to non-Euclidean input domains

In the next figure difference in computations in a standard CNN and in the discussed

graph approach is shown.

Figure 2.3: [1].Computation in a standard CNN where patches of w × h pixels are
convolved with D×E filters to map the D dimensional input features to E dimensional

output features.

Figure 2.4: [1].Representing the CNN parameters as a set of M = h × w weight
matrices, each of size D × E. Each weight matrix is associated with a single relative

position in the input batch.

Figure 2.5: [1].Graph convolutional approach, where each relative position in the
input is associated in a soft manner to each of the M weight matrices using the function

q(xi, xj).

17

Outlook

Note, once more, that the main goal of the approach is to learn weight matrices Wm and

additional weights vm and um that come from soft-assignment functions qm, in order to

achieve high accuracy of prediction.

2.3 Computational complexity

Another important question is how the computational complexity of the new approach

compares to the complexity of the standard CNN. The weight matrices Wm contain the

same number of parameters in both, conventional and graph-based, CNN, in particular,

MDE parameters, where M is number of weight matrices, D the input dimension and E

the output dimension. Additional parameters in the graph-based approach with respect

to standard CNN are vectors vm and um, which contain 2MD parameters. Therefore,

the total number of parameters increases by a factor 1+2/E, because (MDE+2MD =

(MDE(1 + 2/E))).

According to equation 2.2, we need to multiply all feature vectors xi with the weight

matrices Wm and weight vectors vm, um. This costs O(NMDE) operations, where N is

the number of nodes in the graph. The soft-assignments in equation 2.3 and activations

in 2.2 can be computed in O(NMKE) operations, where K is the average number of

neighbors of each vertex. All together this results into O(NME(K +D)).

For a conventional CNN, computational cost is O(NMED), see 2.1. Assuming that K

is substantially smaller than D, which is typically the case, the computation cost of the

graph-based approach is comparable to one of the standard CNN.

2.4 Translation invariance of soft-assignment in feature space

In equation 2.2, if um = −vm, then qijm ∝ exp(uTm(xj−xi)+cm), which leads to translation

invariance of the qijm in feature space. If the input features include spatial coordinates, it

is natural to impose translation invariance on the assignment function. In the numerical

experiments chapter, comparison of translation invariant and non-invariant cases will be

shown.

Another point in equation 2.2 which can be tuned is, once more, soft-assignment func-

tion, but now instead of using just the linear sum and taking exp-function over this

sum, one can use some other metric, for example soft-assignment based on Mahalanobis

distance.

18

Outlook

2.5 Outlook

In the next chapter, we will look at another reformulation of CNN for the graph-based

data, this time, in the context of spectral graph theory. Afterwards, we will compare

both approaches.

19

Chapter 3

Convolutional Neural Networks

on Graphs with Fast Localized

Spectral Filtering(ChebNet)

In contrast to the first approach, ChebNet is a spectral approach. This approach was

introduced in [3] and from now on we will follow this paper. Because the approach is

spectral, there is a well-defined localization operator on graphs via convolutions with

Kronecker delta implemented in the spectral domain [20]. The convolution theorem [21]

defines convolutions as linear operators that diagonalize in the Fourier basis (represented

by the eigenvectors of the Laplacian operator).

3.1 Learning Fast Localized Filters

Settings for this approach are the same as for the previous one: an undirected, connected

graph G = (V,E,W), where V is a finite set of |V | = n vertices, E is a set of edges

and W ∈ Rn×n is a weighted adjacency matrix encoding the connection weight between

two vertices. In contrast to dynamic filters approach from previous chapter, adjacency

matrix now plays an important role in the convolution operation.

3.1.1 Graph Fourier Transform

An input (signal) x : V → R defined on the nodes of the graph may be seen as a vector

x ∈ Rn where xi is its value at the ith node. A crucial operator in spectral graph analysis

is the graph Laplacian [22], of which the combinatorical definition is L = D−W ∈ Rn×n

21

Learning Fast Localized Filters

where D ∈ Rn×n is the diagonal matrix with Dii =
∑

jWij and the normalized definition

is L = In − D−1/2WD−1/2 where In is an identity matrix. L is a symmetric positive

definite matrix, therefore it has set of orthonormal eigenvectors {ul}n−1l=0 ∈ Rn and their

associated ordered real non-negative eigenvalues {λl}n−1l=0 , identified as the frequencies of

the graph. The Laplacian L is then diagonalized by the Fourier basis U = [u0, ..., un−1] ∈
Rn×n such that L = UΛUT where Λ = diag([λ0, ..., λn−1]) ∈ Rn×n.

The graph Fourier transform of a signal x ∈ Rn is then defined as x̂ = UTx ∈ Rn and its

inverse as x = Ux̂. Now we have all tools to define the filtering operation (convolution).

3.1.2 Spectral filtering of graph signals.

The convolution operator on graph ∗G is defined in the Fourier domain such that x∗Gy =

U((UTx) � (UT y), where � is the element-wise Hadamard product. Now, a signal x

filtered by gθ is defined as

y = gθ(L)x = gθ(UΛUT)x = Ugθ(L)UTx (3.1)

A non-parametric filter, i.e all parameters are free, would be defined as

gθ(Λ) = diag(θ), (3.2)

where θ ∈ Rn is a vector of Fourier coefficients.

3.1.3 Polynomial parametrization for localized filters.

There are two limitations to non-parametric filters:

• they are not localized in space

• their learning complexity is in O(n)

These can be overcome with the use of a polynomial filter

gθ(L) =

K−1∑
k=0

θkΛ
k, (3.3)

where the parameter θ ∈ RK is a vector of polynomial coefficients. The value at vertex

j of the filter gθ centered at vertex i is given by (gθ(L)δi)j = (gθ(L))i,j =
∑

k θk(L
k)i,j .

By [[23], Lemma 5.2], dG(i, j) > K implies (LK)i,j = 0, where dG is the shortest path

22

Learning Fast Localized Filters

distance, i.e. the minimum number of edges connecting two vertices on the graph.

Therefore, spectral filters represented by Kth-order polynomials of the Laplacian are

exactly K-localized and their learning complexity is O(K).

3.1.4 Recursive formulation for fast filtering.

The cost to filter a signal x as y = Ugθ(Λ)UTx is still high with O(n2) operatons because

of the multiplication with the Fourier basis U . A solution is to parametrize gθ(L) as a

polynomial function that can be computed recursively from L, as K multiplications by

a sparse L cost O(K|E|) << O(n2). One such polynomial is the Chebyshev expansion.

A Chebyshev polynomial Tk(x) of order k can be computed by recurrence relation

Tk(x) = 2xTk−1(x) − Tk−2(x) with T0 = 1 and T1 = x. Chebyshev polynomials form

an orthogonal basis for L2([−1, 1], dy/
√

1− y2), the Hilbert space of square integrable

functions respect to measure dy/
√

1− y2. A filter can therefore be parametrized as the

truncated expansion

gθ(Λ) =

K−1∑
k=0

θkTk(Λ̃), (3.4)

of order K − 1, where the parameter θ ∈ RK is a vector of Chebyshev coefficients and

Tk(Λ̃) ∈ Rn×n is the Chebyshev polynomial of order k evaluated at Λ̃ = 2Λ/λmax − In,

a diagonal matrix of scaled eigenvalues in [−1, 1].

The filtering can then be computed as y = gθ(L)x =
∑K−1

k=0 θkTk(Λ̃)x. Setting x̄k =

Tk(Λ̃)x ∈ Rn, the recurrence relation can be used to compute x̄k = 2Λ̃x̄k−1 − x̄k−2 with

x̄0 = 1 and x̄1 = Λ̃x.

The entire filtering operation y = gθ(L)x = [x̄0, ..., x̄K−1]θ then costs O(K|E|).

The idea of recursive formulation is crucial when implementing ChebNet using Tensor-

Flow. It allows to vectorize all the operations and as a consequence to leverage use of

GPUs.

3.1.5 Tensorflow

Tensorflow is a machine learning software library released by Google. It allows the user

to build and test different machine learning algorithms, some of which are already im-

plemented and only user related changes are needed. In cases when some new changes

are wanted, the user has access to all low level tools that are needed for this purpose.

A key feature of Tensorflow is that the main object one manipulates and passes around

is the Tensor. A Tensor is a generalization of vectors and matrices to potentially higher

23

https://www.tensorflow.org
https://www.tensorflow.org

Graph Coarsening

dimensions. Tensorflow represents tensors as n-dimensional arrays of base datatypes.

The use of tensors is inspired by the hardware that was also improved over the current

decade and is usually used when working with machine learning algorithms, namely

Graphical Processing Units or GPUs.

One can think of GPUs as ”vector processors”. Vector processors expect most of the

computation to be expressed in terms of vector operations, and are optimized to per-

form these operations as quickly as possible, perhaps even at the expense of scalar

performance.

Therefore, when one is developing machine learning algorithms, Tensorflow together

with GPUs looks like a good setup to start with.

3.2 Graph Coarsening

Another question is how to perform pooling operations on graph structured data. In case

of the standard CNN, pooling allows us to look at the data in different resolutions, so

something similar is also needed here. It then requires some meaningful neighborhoods

on graphs, where similar vertices are clustered together. Doing this multiple times is

equivalent to multi-scale clustering of the graph. It is however known that graph clus-

tering is NP-hard [24], so an approximation algorithm is needed. There are different

approaches; one that was used in the paper we follow is called Graclu’s multilevel clus-

tering algorithm [25]. This algorithm uses a greedy scheme to compute coarser versions

of a given graph and is able to minimize several popular clustering objectives, from

which here normalized cut [26] is chosen. Graclu’s greedy rule consists, at each coars-

ening level, of picking an unmarked vertex i and matching it with one of its unmarked

neighbors j that maximizes the local normalized cut Wij(1/di+1/dj). The two matched

vertices are then marked and the coarsened weights are set as the sum of their weights.

This scheme divides the number of vertices at each level by approximately two (there

exists a few singletons at each level, singletons are non matched vertices) from one level

to the next.

After coarsening, the vertices of the input graph and its coarsened versions are not

arranged in any meaningful way. It is possible to arrange the vertices in such a way

that a graph pooling operation becomes as efficient as a 1D pooling. The first step is to

create a balanced binary tree; the second step is to rearrange the vertices.

The next figure shows an example of graph coarsening and pooling:

24

Graph Coarsening

Figure 3.1: https://arxiv.org/pdf/1606.09375.pdf

In the above figure is an example of max pooling of size 4 (or two poolings of size 2) on a

signal x ∈ R8 living on G0, the finest graph given as input. It originally has n0 = |V0| = 8

vertices, ordered arbitrarily. For a pooling of size 4, two coarsenings of size 2 are needed:

Graclus gives G1 of size n1 = |V1| = 5, then G2 of size n2 = |V2| = 3, the coarsest graph.

Sizes are set to n2 = 3, n1 = 6, n0 = 12 and fake nodes (in blue) are added to V1 (1 node)

and V0 (4 nodes) to pair with the singeltons (in orange), in such a way that each node has

exactly two children. Nodes in V2 are then ordered arbitrarily and nodes in V1 and V0 are

ordered consequently. At that point, the arrangement of vertices in V0 permits a regular

1D pooling on x ∈ R12 such that z = [max(x0, x1),max(x4, x5, x6),max(x8, x9, x10)] ∈
R3, where the signal components x2, x3, x7, x11 are set to neutral value.

25

https://arxiv.org/pdf/1606.09375.pdf

Chapter 4

Numerical Experiments

In this chapter we will look into some results that were obtained while training presented

architectures and we will compare these results to those presented in the corresponding

papers. We will also discuss some further steps which might lead to better performance

in speed and accuracy.

4.1 MNIST Dataset

To validate the approach presented in Section 2.1, we used a dataset of 70,000 digits

represented on a 2D grid of size 28 × 28. First we had to represent each image as a

graph. For this reason we construct an 8-NN graph of the 2D grid which produces a

graph of n = |V | = 976 nodes (282 = 784 pixels and 196 fake nodes as explained in

Section 3.2) and |E| = 3198 edges.

In the next figure, there is a plot of validation accuracy for both approaches presented

above. In case of ChebNet K = 25, it means filters are of the size 5×5, and for Dynam-

icFilters approach M = 25, which corresponds to the number of weight matrices used

per layer. For the relation between M and K, refer to Section 2.2. In the table below, the

figure there is all-important information for both approaches. Another important point

is the time it takes to achieve shown accuracies. In both cases Adam [27] optimization

algorithm together with mini-batch approach was used. Training was performed on a

CPU-cluster.

27

MNIST Dataset

Compute Node Dell PowerEdge M620 et (Total: 78)

CPUS Intel(R) Xeon(R) CPU E5-2650 v2 @ 2.60GHz (Total: 256)

Memory 64 GB per node (Total: 4992 GB)

Hard disk 500 GB per node

Such a big time difference (actual time below the first graph) lies in implementation

details, namely in using fast filtering technique presented in Section 3.1.4 for ChebNet

and in case of DynamicFilters there is no similar technique, besides vectorization, which

is needed when using GPUs, but when implementing vectorization, it brings redundancy

(the same parameters should be stored and calculated multiple times in order to achieve

vectorization), which is one of the trade-offs between using of GPUs (potentially faster

calculations) and increased number of parameters (increasing storage capacity) that

should be considered.

28

Text Categorization on 20NEWS Dataset

In the following table, all-important details of MNIST test are presented.

Dataset Architecture Approach Accuracy

MNIST GC32-P4-GC64-P4-FC512 Chebyshev (K=25) 99.1

MNIST GC32-P4-GC64-P4-FC512 Dynamic Filters (M=25) 98.2

Computation cost Number of parameters

O(NKED) KDE

O(NME(avg.Number.Neighb.+D)) MDE + 2MD

4.2 Text Categorization on 20NEWS Dataset

In the previous section, the graph was generated from structured data; in this example

graph is generated from unstructured data. Now we are dealing with a text categoriza-

tion problem in the 20NEWS dataset which consists of 18,846 (11,314 for training and

7,532 for testing) text documents associated with 20 classes. We extracted the 1,000

most common words from the 93,953 unique words in this corpus. Each document is

represented using the bag-of-words model, normalized across words. To be able to test

both models, we construct a 16-NN graph in the same manner as with MNIST dataset,

with zi being the word2vec embedding, where zi is the 2D coordinate of word i, which

results in a graph of n = |V | = 1, 000 nodes and |E| = 14, 346 edges. Models were

trained by the Adam optimizer with an initial learning rate of 0.001.

29

Conclusion and future work

In the following table, all-important details of 20NEWS example are presented.

Dataset Architecture Approach Accuracy

20NEWS GC32 Chebyshev (K=5) 53.1

20NEWS GC32 Dynamic Filters (M=5) 46.2

4.3 Conclusion and future work

In this work, we have looked into recent papers about generalization of CNNs to graphs.

The first approach, which uses dynamic filters, belongs to spatial approaches, the sec-

ond one, ChebNet, is a spectral approach. In the following table we summarize both

approaches:

• ChebNet

– Filters are exactly localized in r-hops support

– O(1) parameters per layer

– No computation of φ, φT ⇒ O(n) computational complexity (assuming sparsely-

connected graphs)

– Because of the previous statement, efficient vectorization while implementing

in Tensorflow

– Stable under coefficients perturbation

– Filters are basis-dependent ⇒ do not generalize across graphs

30

Conclusion and future work

• Dynamic filters

– Local filters are determined dynamically, based on the features in the preced-

ing layer of the network

– Stable under coefficients perturbation

– For vectorization while implementing redundancy is needed

However, it is difficult to come to any conclusions at this point about which approach is

more accurate and computationally more efficient. For this, further experiments using

GPUs are needed.

4.3.1 Tensortrain

As we saw in 4.1, the training time was longer in case of Dynamic Filters approach.

Therefore, it might be an advantage to use Tensor Train decomposition which was

presented in [28]. Below are the results in ms benchmarking T3F on CPU and GPU and

comparing against the TTPY library.

Figure 4.1: https://github.com/Bihaqo/t3f

The main idea behind Tensor Train decomposition is to present each tensor in a specific

form and then perform all kinds of operations and because of this, specific representation

operations will take less time.

31

https://github.com/Bihaqo/t3f

References

[1] Nitika Verma, Edmond Boyer, and Jakob Verbeek. Feature-steered graph convolu-

tions for 3d shape analysis. 2018. URL https://arxiv.org/pdf/1706.05206.pdf.

[2] Yann Lecun, Lon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based

learning applied to document recognition. In Proceedings of the IEEE, pages 2278–

2324, 1998. URL http://yann.lecun.com/exdb/publis/pdf/lecun-01a.pdf.

[3] Michaël Defferrard, Xavier Bresson, and Pierre Vandergheynst. Convolutional

neural networks on graphs with fast localized spectral filtering. 2016. URL

https://arxiv.org/abs/1606.09375.

[4] Joan Bruna, Wojciech Zaremba, Arthur Szlam, and Yann Lecun. Spectral networks

and locally connected networks on graphs. In International Conference on Learning

Representations (ICLR2014), CBLS, April 2014, 2014. URL https://arxiv.org/

pdf/1312.6203.pdf.

[5] Mikael Henaff, Joan Bruna, and Yann LeCun. Deep convolutional networks on

graph-structured data. CoRR, abs/1506.05163, 2015. URL https://arxiv.org/

pdf/1506.05163.pdf.

[6] Thomas N. Kipf and Max Welling. Semi-supervised classification with graph convo-

lutional networks. CoRR, abs/1609.02907, 2016. URL https://arxiv.org/pdf/

1609.02907.pdf.

[7] Davide Boscaini, Jonathan Masci, Emanuele Rodolà, and Michael Bronstein. Learn-

ing shape correspondence with anisotropic convolutional neural networks. In D. D.

Lee, M. Sugiyama, U. V. Luxburg, I. Guyon, and R. Garnett, editors, Advances

in Neural Information Processing Systems 29, pages 3189–3197. Curran Associates,

Inc., 2016.

[8] Jonathan Masci, Davide Boscaini, Michael M. Bronstein, and Pierre Vandergheynst.

Geodesic convolutional neural networks on riemannian manifolds. In Proceedings of

the 2015 IEEE International Conference on Computer Vision Workshop (ICCVW),

33

https://arxiv.org/pdf/1706.05206.pdf
http://yann.lecun.com/exdb/publis/pdf/lecun-01a.pdf
https://arxiv.org/abs/1606.09375
https://arxiv.org/pdf/1312.6203.pdf
https://arxiv.org/pdf/1312.6203.pdf
https://arxiv.org/pdf/1506.05163.pdf
https://arxiv.org/pdf/1506.05163.pdf
https://arxiv.org/pdf/1609.02907.pdf
https://arxiv.org/pdf/1609.02907.pdf

References

ICCVW ’15, pages 832–840, Washington, DC, USA, 2015. IEEE Computer Society.

ISBN 978-1-4673-9711-7. doi: 10.1109/ICCVW.2015.112. URL http://dx.doi.

org/10.1109/ICCVW.2015.112.

[9] Federico Monti, Davide Boscaini, Jonathan Masci, Emanuele Rodolà, Jan Svoboda,

and Michael M. Bronstein. Geometric deep learning on graphs and manifolds using

mixture model cnns. In CVPR, pages 5425–5434. IEEE Computer Society, 2017.

URL https://arxiv.org/pdf/1611.08402.pdf.

[10] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. MIT Press,

2016. http://www.deeplearningbook.org.

[11] Christopher M. Bishop. Pattern Recognition and Machine Learning (Informa-

tion Science and Statistics). Springer-Verlag, Berlin, Heidelberg, 2006. ISBN

0387310738.

[12] Christopher M. Bishop. Neural Networks for Pattern Recognition. Oxford Univer-

sity Press, Inc., New York, NY, USA, 1995. ISBN 0198538642.

[13] Alfredo Canziani, Adam Paszke, and Eugenio Culurciello. An analysis of deep

neural network models for practical applications. CoRR, abs/1605.07678, 2016.

URL http://arxiv.org/abs/1605.07678.

[14] Michele Gori, Gabriele Monfardini, and Franco Scarselli. A new model for

learning in graph domains. Proceedings. 2005 IEEE International Joint Con-

ference on Neural Networks, 2005., 2:729–734 vol. 2, 2005. URL https://www.

researchgate.net/profile/Franco_Scarselli/publication/4202380_A_new_

model_for_earning_in_raph_domains/links/0c9605188cd580504f000000/

A-new-model-for-earning-in-raph-domains.pdf.

[15] Franco Scarselli, Michele Gori, Ah Chung Tsoi, Markus Hagenbuchner, and Gabriele

Monfardini. The graph neural network model. 2009 IEEE Transactions on Neu-

ral Networks, 2009., 20(1):61–80, 2009. URL http://citeseerx.ist.psu.edu/

viewdoc/download?doi=10.1.1.1015.7227&rep=rep1&type=pdf.

[16] Yujia Li, Daniel Tarlow, Marc Brockschmidt, and Richard S. Zemel. Gated

graph sequence neural networks. CoRR, abs/1511.05493, 2015. URL http:

//dblp.uni-trier.de/db/journals/corr/corr1511.html#LiTBZ15.

[17] Joan Bruna, Wojciech Zaremba, Arthur Szlam, and Yann LeCun. Spectral networks

and locally connected networks on graphs. CoRR, abs/1312.6203, 2013.

[18] Michael M. Bronstein, Joan Bruna, Yann LeCun, Arthur Szlam, and Pierre Van-

dergheynst. Geometric deep learning: Going beyond euclidean data. IEEE Signal

Process. Mag., 34(4):18–42, 2017.

34

http://dx.doi.org/10.1109/ICCVW.2015.112
http://dx.doi.org/10.1109/ICCVW.2015.112
https://arxiv.org/pdf/1611.08402.pdf
http://www.deeplearningbook.org
http://arxiv.org/abs/1605.07678
https://www.researchgate.net/profile/Franco_Scarselli/publication/4202380_A_new_model_for_earning_in_raph_domains/links/0c9605188cd580504f000000/A-new-model-for-earning-in-raph-domains.pdf
https://www.researchgate.net/profile/Franco_Scarselli/publication/4202380_A_new_model_for_earning_in_raph_domains/links/0c9605188cd580504f000000/A-new-model-for-earning-in-raph-domains.pdf
https://www.researchgate.net/profile/Franco_Scarselli/publication/4202380_A_new_model_for_earning_in_raph_domains/links/0c9605188cd580504f000000/A-new-model-for-earning-in-raph-domains.pdf
https://www.researchgate.net/profile/Franco_Scarselli/publication/4202380_A_new_model_for_earning_in_raph_domains/links/0c9605188cd580504f000000/A-new-model-for-earning-in-raph-domains.pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.1015.7227&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.1015.7227&rep=rep1&type=pdf
http://dblp.uni-trier.de/db/journals/corr/corr1511.html#LiTBZ15
http://dblp.uni-trier.de/db/journals/corr/corr1511.html#LiTBZ15

References

[19] Davide Boscaini, Jonathan Masci, Emanuele Rodol, Michael M. Bronstein, and

Daniel Cremers. Anisotropic Diffusion Descriptors. Computer Graphics Forum,

2016. ISSN 1467-8659. doi: 10.1111/cgf.12844.

[20] David I. Shuman, Sunil K. Narang, Pascal Frossard, Antonio Ortega, and Pierre

Vandergheynst. The emerging field of signal processing on graphs: Extending

high-dimensional data analysis to networks and other irregular domains. IEEE

Signal Process. Mag., 30(3):83–98, 2013. URL http://dblp.uni-trier.de/db/

journals/spm/spm30.html#ShumanNFOV13.

[21] Stphane Mallat. A Wavelet Tour of Signal Processing, Third Edition: The Sparse

Way. Academic Press, Inc., Orlando, FL, USA, 3rd edition, 2008. ISBN 0123743702,

9780123743701.

[22] F. R. K. Chung. Spectral Graph Theory. American Mathematical Society, 1997.

[23] David K. Hammond, Pierre Vandergheynst, and Rémi Gribonval. Wavelets on

graphs via spectral graph theory. CoRR, abs/0912.3848, 2009.

[24] Thang Nguyen Bui and Curt Jones. Finding good approximate vertex and edge

partitions is np-hard. Inf. Process. Lett., 42(3):153–159, May 1992. ISSN 0020-

0190. doi: 10.1016/0020-0190(92)90140-Q. URL http://dx.doi.org/10.1016/

0020-0190(92)90140-Q.

[25] Inderjit S. Dhillon, Yuqiang Guan, and Brian Kulis. Weighted graph cuts without

eigenvectors a multilevel approach. IEEE Trans. Pattern Anal. Mach. Intell., 29

(11):1944–1957, November 2007. ISSN 0162-8828. doi: 10.1109/TPAMI.2007.1115.

URL http://dx.doi.org/10.1109/TPAMI.2007.1115.

[26] Jianbo Shi and Jitendra Malik. Normalized cuts and image segmentation. IEEE

Trans. Pattern Anal. Mach. Intell., 22(8):888–905, August 2000. ISSN 0162-8828.

doi: 10.1109/34.868688. URL https://doi.org/10.1109/34.868688.

[27] Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization.

CoRR, abs/1412.6980, 2014. URL http://dblp.uni-trier.de/db/journals/

corr/corr1412.html#KingmaB14.

[28] Alexander Novikov, Pavel Izmailov, Valentin Khrulkov, Michael Figurnov, and

Ivan Oseledets. Tensor train decomposition on tensorflow (t3f). arXiv preprint

arXiv:1801.01928, 2018.

35

http://dblp.uni-trier.de/db/journals/spm/spm30.html#ShumanNFOV13
http://dblp.uni-trier.de/db/journals/spm/spm30.html#ShumanNFOV13
http://dx.doi.org/10.1016/0020-0190(92)90140-Q
http://dx.doi.org/10.1016/0020-0190(92)90140-Q
http://dx.doi.org/10.1109/TPAMI.2007.1115
https://doi.org/10.1109/34.868688
http://dblp.uni-trier.de/db/journals/corr/corr1412.html#KingmaB14
http://dblp.uni-trier.de/db/journals/corr/corr1412.html#KingmaB14

	Zusammenfassung
	Abstract
	Acknowledgements
	1 Introduction
	1.1 Neural Networks
	1.2 Convolutional Neural Networks
	1.2.1 Convolutional layer
	1.2.2 Pooling layer
	1.2.3 Fully connected (FC) layer
	1.2.4 Loss Function and its minimization
	1.2.5 Summary

	2 Graph-convolutional networks
	2.1 Graph convolutions using dynamic filters
	2.2 Generalization to non-Euclidean input domains
	2.3 Computational complexity
	2.4 Translation invariance of soft-assignment in feature space
	2.5 Outlook

	3 Convolutional Neural Networks on Graphs with Fast Localized Spectral Filtering(ChebNet)
	3.1 Learning Fast Localized Filters
	3.1.1 Graph Fourier Transform
	3.1.2 Spectral filtering of graph signals.
	3.1.3 Polynomial parametrization for localized filters.
	3.1.4 Recursive formulation for fast filtering.
	3.1.5 Tensorflow

	3.2 Graph Coarsening

	4 Numerical Experiments
	4.1 MNIST Dataset
	4.2 Text Categorization on 20NEWS Dataset
	4.3 Conclusion and future work
	4.3.1 Tensortrain

	Bibliography
	References

