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Introduction - Why Liouville Quantum Gravity?

In modern Physics a common problem is given by the need of integrating over large
function spaces, requiring so appropriate definitions of measures. In string theory and
quantum gravity, one possible case is represented by the object ”e−SL(U)dU”, where
dU is the ”uniform Lebesgue measure”, and the exponential weight SL the ”Liouville
Action”.

Unfortunately, the former is far from being well-defined if the space is infinite-
dimensional (a common scenario), while Liouville Action might have a quite complicated
form, depending e.g. on the ”underlying metric of the space” or on the ”central charge”.
Frequently, people try to proceed heuristically, but unfortunately there are circumstances
where even this approach doesn’t suffice.

In the first part of this master’s thesis, we study a case in which a full mathematical
treatment for a related problem is available. We usually work with a subset D ⊆ C, but
the theory can be extended to Riemann Surfaces thanks to a general well behavior under
conformal change of coordinates. As described above, the first problem will be essentially
to define a measure of the form ”e−SL(U)dU” on a space that extends C∞c (D) (smooth
and compactly supported real functions with domain D). It will be possible because
under this specific setting, the paper [2] shows that after changing coordinates, Liouville
Action can be rewritten as a (Dirichlet) scalar product. Consequently, we can see the
resulting object as ”e−<U,U>dU” similar to an attempt of defining a Gaussian variable
on this infinite-dimensional space. Indeed, despite the notion of infinite-dimensional
Lebesgue measure doesn’t exist (and so the formal symbol ”dU” alone is mathematically
meaningless), infinite-dimensional Gaussians like in this case are possible (so being the
full symbol ”e−SL(U)dU” meaningful).

Roughly speaking, the constructed measure is called Gaussian Free Field (abbrevi-
ated GFF) and represents the first important notion of this work. Gaussian Free Fields
are preliminary for studying the central topic of this thesis - Liouville Quantum Gravity
(abbreviated LQG) - whose origin intersects with Statistical Physics. Interacting particle
systems are commonly modeled via 2D-(random) graphs. By making them ”thinner and
thinner”, one could try to guess what happens in the continuous counterparts, where
graphs are now ”replaced” by Riemann Surfaces.

If M is the manifold chosen to work with (assume it to be smooth and simply con-
nected), the Riemann Uniformization Theorem claims that it is conformally equivalent
to the unit disk D, the complex plane C, or the complex sphere C ∪ {∞}. An equival-
ent version for expressing the theorem is to say that M can be parametrized by points
z = x+ iy belonging to one of the three previous spaces, in a way that the metric takes
the form eλ(z)(dx2 + dy2) for a real-valued function λ (isothermal coordinates). Notions
like area, length and curvature can be easily expressed in the new form (again, showed
in [2]). In such a setting, we have now a candidate way for defining a ”random surface”,
by replacing the deterministic λ with a random variable h. Indeed, by choosing h to
be distributed like a GFF, we obtain a measure µ called Liouville Quantum Gravity or
Liouville measure.
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This construction is not straightforward. We start by approximations hε and associ-
ated measures µε easy for working with, showing that they finally converge to a measure
defined to be µ.

We are then interested in some basic geometric properties. What happens to a
set under the influence of LQG? The quantitative relation between the ”dimensions”
of it according to original Lebesgue measure, and a ”dimension” according to LQG is
called ”KPZ relation”. It was discovered in the late 80’s by Knizhnik, Polyakov and
Zamolodchikov but only recently completely formalized. Furthermore, essentially the
”same” KPZ relation seems to appear in various different contexts of modern Statistical
Physics, for reasons not yet completely understood (see [4] for a good overview).

Finally, I’d like to spend few non-technical words about my writing. I strongly
hope to have been sufficiently clear, rigorous and precise on every aspect, aware that
occasionally some particularly long computations have been omitted, preferring a direct
use of the listed references. I chosen on purpose a compact style and I hope the reading
experience might be a pleasure. I’d like to express my gratitude to the reader for his/her
time and attention.
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Chapter 1

Gaussian Free Fields

1.1 Conformal mappings

Every time we have objects and maps, it is important to understand which properties
remain invariant up to appropriate change of coordinates. For instance, in differen-
tial geometry it is the practice to study objects up to diffeomorphisms, in elementary
topology up to continuity or homotopy, in Riemannian geometry up to isometry, etc...

Our objects will be ”invariant” up to conformal mappings. The inverted commas are
needed because sometimes it is necessary to add some extra terms, but always without
deep changes in the underlying structure. We assume the reader to be familiar with
undergraduate complex analysis, and we recall the main useful theorems and definitions.
For revising or studying more, the author recommends the classical book by Rudin [6].
The first step is to recall what a conformal function is.

Definition 1.1.1 (Conformal mapping). Let D, D′ ⊆ C. If a function f : D →
D′ is bijective, holomorphic and admits an holomorphic inverse, then it is said to be
biholomorphic, or conformal.

Sometimes the notion of conformal mapping is defined in a slightly different way.
The references help in solving possible misunderstandings, but for our purposes we just
rely on the definition above and avoid further characterizations.

Before proceeding, it’s better to fix some notation. The default user probability
triple is understood to be (Ω,A,P), as frequently denoted in many textbooks. The set
of natural numbers N is intended to start from 1, the real and imaginary part of a
complex number z are referred respectively with <(z), =(z), or sometimes with Re z and
Im z. We use the letter D for the open unitary disk {z ∈ C : ‖z‖<1}, and the symbol H
for the upper half plane {z ∈ C : Im z > 0}. With Bε(z) we mean the open ball of radius
ε centered in z, while the ”circle of radius ε and center z” is intended to be ∂Bε(z), i.e.
the set {y ∈ C : |y − z| = ε}. Finally, when we say a subset D ⊆ C to be proper, we
mean D 6= C.

A remarkable fact to underline, is the existence of a conformal map between the
unitary disk and the half plane, despite the former being bounded while the latter not.
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It is a very good example for illustrating the strength of conformal invariance.

Proposition 1.1.1 (Moebius Map). The map φ : H → D defined as z 7→ i−z
i+z is con-

formal.

Proof. For every z ∈ H the function φ(z) = i−z
i+z is well defined, and since =(z) > 0

we have |φ(z)| < 1. It is straightforward to check that is it holomorphic. If we define
ψ : z 7→ i1−z

1+z , it holds =(ψ(z)) > 0 every time z ∈ D. The new map ψ : D → H is
actually well-defined and holomorphic too, and finally the fact that ψ ◦ φ = Id = φ ◦ ψ
concludes the proof.

The function in the proposition is usually called Moebius Map and it belongs to a
larger family of maps called linear fractional transformations. During his PhD thesis,
Riemann discovered the following milestone of complex analysis.

Theorem 1.1.1 (Riemann Mapping Theorem). Let D ( C be proper and simply con-
nected. For each z ∈ D, there exists exactly one conformal map fz : D → D such that
fz(z) = 0 and f ′z(z) ∈ R+.

Proof. The proof is very long and involves an appropriate preliminary work. The reader
is invited in consulting [6].

Note that, in the previous theorem, the existence of a generic conformal map is
already in itself something not obvious. An immediate consequence is the opportunity
of extending the notion of radius, typical of balls, to more generic complex subsets.

Definition 1.1.2 (Conformal Radius). Let D ⊆ C proper and simply connected. For
each z ∈ D, the quantity R(z;D)

.
= 1

f ′z(z) is called conformal radius of D from the point
z. The function fz is intended to be the one from the Mapping Theorem above.

The following lemma will help for discovering further properties.

Lemma 1.1.1 (Conformal radius in practice). Let D ⊆ C be proper and simply con-
nected. If φ : D → D is a generic conformal mapping with φ(z) = 0, then |φ′(z)| = f ′z(z)
(where again, fz is the map in the Riemann Mapping Theorem). As a consequence,
R(z;D) = |φ′(z)|−1.

Proof. The map φ is conformal, consequently φ′(z) ∈ C\{0}. Being a non-zero complex
number, it can be rotated until to reach the positive real axis. In other words, there exists
θ ∈ R such that the rotation map r : C → C given by z 7→ zeiθ realize φ′(z)eiθ ∈ R+.
The map r can be restricted on the disk D giving a conformal mapping D → D that
sends 0 in 0, consequently the composition r ◦ φ : D → D is still conformal and sends z
in 0. The derivative of this map in z is now positive, being (r ◦ φ)′(z) = eiθφ′(z). Due
to the uniqueness part in the Riemann Mapping Theorem, this composition map must
coincide with f ′z and the claim follows by taking the modules.

The previous lemma clarifies the alternative definition of conformal radius in the
notes [3], and prepares the ground for the next proposition. A very important point is
that, indeed, conformal radius behave regularly under conformal changes:
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Proposition 1.1.2 (Conformal change of radius). Let D, D′ two proper simply con-
nected subsets of C. Suppose to have φ : D → D′ conformal. Then for every z ∈ D,
R(φ(z);D′) = |φ′(z)|R(z;D)

Proof. Let ψD : D → D be a conformal mapping such that ψD(z) = 0. Define the
function ψD′ : D′ → D by ψD ◦ φ−1, still conformal by construction (composition of
conformal maps). Note that ψD′(φ(z)) = 0, consequently (lemma above) it can be used
for computing the conformal radius. By using the chain rule for complex derivatives,
one obtains

R(φ(z);D′) =
1

ψ′D′(φ(z))
=
|φ′(z)|
|ψ′D(z)|

= |φ′(z)|R(z;D)

which concludes the proof.

For simplicity, from now on we will always work with subsets D ⊆ C required to be
bounded, simply connected, open and with smooth boundary. We prefer to call them
standard subsets, in a way to avoid long descriptions in every proposition. The reason
for these property will be better explained during the work. Roughly speaking, being
open and simply connected ensure a conformal mapping to the unitary disk, boundedness
will guarantee normalization for some (probability) measures, and finally the smooth
boundary will be required for the use of Gauss-Green formula.

We would like to end this section with an informal discussion about different possible
alternative settings, possibly beneficial for the big picture. It is possible to extend the
Riemann Mapping Theorem on Riemann Surfaces, where it takes the name of Uniform-
ization Theorem, claiming that every simply connected Riemann Surface is conformally
equivalent to the open disk, the complex plane or the Riemann Sphere. We will not
study nor use this fact in details, but a rough idea that motivates its relation with Li-
ouville Quantum Gravity (LQG) is given in the introductory section. Note that in this
generalization, we have a more complicated geometry (a manifold), but the dimension
remains unchanged. One could ask what happens if we for example keep the geometry
euclidean, but instead we increase the dimensions, e.g. by working in Cn. Unfortunately,
the Riemann Mapping theorem does not hold into this setting, partially because for di-
mensions higher that two there is a theorem from Liouville that puts strong limits on
the amount of available conformal functions. The author thinks that it is probably a
good first reason for which LQG manages to be studied on simply connected Riemann
Surfaces, but there are still obstacles for other general settings.

1.2 Test functions, distributions and Dirichlet energy

Let D ⊆ C be open, bounded. We consider the usual space of test functions C∞c (D) =
{f : D → R : f smooth and compactly supported}. This space can be equipped with
(at least) two nice topologies. The first is related to the notion of distribution, while the
second to the one of Dirichlet Energy.

According to the first topology (the construction and more details are available in
[5]), a sequence of test functions {φn}n∈N is said to converge to another test function
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φ iff ∂αφn → ∂αφ uniformly for all possible multi-index α, with supp{φn} ⊆ K ⊆ D
commonly contained in a compact set K. Elements belonging to the dual space D′(D) =
{f : D → R : f linear, continuous w.r.t this topology} are called distributions (not to be
confused with the homonym concept in probability theory). When we have a sequence
of distributions {ψn}n∈N ⊆ D′(D), ψ ∈ D′(D) such that ψn(φ)→ ψ(φ), ∀φ ∈ C∞c (D) we
say that ψn converge to ψ in the sense of distributions (note that the last convergence is
on reals). Sometimes we indicate with the symbol H−1 or H−1(D), rather than D′(D),
the space of distributions over D endowed with the convergence above.

Many important tools from Mathematical Analysis are extended from functions to
distributions, but for reasons of time we could only have a very concise overview on
strictly needed results. First of all, the map L1

loc(D) → D′(D), f 7→
∫
f · is a linear

injective embedding. The resulting functional is intended to act like C∞c (D) 3 φ 7→∫
D fφ ∈ R (Lebesgue integration). Such a map is usually not surjective, and suggests

how some distributions are induced by measures like the pointwise evaluation obtained
via Dirac integration (f(x) 7→

∫
D f(x)δy(dx) = f(y)). When φ is a distribution and

∃f ∈ L1
loc(D) s.t. φ(·) =

∫
f ·, we say that f represents φ.

Derivation is carried on in this setting, too. If ψ ∈ D′(D), then ∂xψ is the new
distribution defined as ∂xψ(φ) = −ψ(∂xφ) (compare the minus sign to the integration
by parts formula). When f is a function regularly enough to be seen as a distribution (e.g.
f ∈ L1

loc(D) - we usually use the symbol ”f” both for the function and the represented
distribution) its distributional derivative is commonly called weak derivative. When f
admits an ordinary derivative too, commonly called strong, they usually coincide (in the
sense that the strong derivative represents the weak one, for instance it happens for test
functions, so in our setting there is no risk of ambiguity).

The sum of two distributions is defined in the elementary way, and so objects like
the Laplacian are completely meaningful. Distributions whose Laplacian vanishes are
called harmonics, and they play a strong role in our theory due to important properties,
summed up in the following theorem (see [3]):

Theorem 1.2.1 (Weil’s lemma). Let ψn be a sequence of harmonic distribution con-
verging to ψ. Then ψ must be harmonic too. Furthermore, every harmonic distribution
φ is automatically a smooth function, which is also harmonic in the strong sense (i.e. it
is represented by a φ ∈ C∞(D) s.t. ∆φ = 0).

The other topology is induced by putting a scalar product on C∞c (D) called Dirichlet
product, defined as (f1, f2)∇ := 1

2π

∫
D∇f2∇f2dx. Here the norm of a function is called

Dirichlet energy. Note that (routine change of variables) if g : D → D′ is a conformal
mapping, then

∫
D′ ∇(f1◦g−1)∇(f2◦g−1) =

∫
D∇f1∇f2 (conformal invariance of Dirichlet

Product in dimension 2).
A key property that we’ll heavily use is a corollary of the Stokes theorem (see [5]):

Theorem 1.2.2 (Gauss-Green formula). Let Ω ∈ C be open and bounded, with smooth
boundary. If u, v ∈ C2(D) ⊇ C∞c (D) and at least one of them has compact support,
then

∫
Ω∇u∇vdx = −

∫
Ω u∆vdx
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As already said, from now on we assume D to have smooth boundary (for using
Gauss-Green), denote with Hs(D) the space of test functions when considered equipped
with Dirichlet product, and define H(D) to be its Hilbert completion. It is known [3]
that H(D) coincides with the Sobolev space H1

0 (D) = {f ∈ L2(D) : ∇f ∈ L2(D)}
(where the gradient is intended to be weak). Furthermore, the Gauss-Green formula can
be extended on this space with exactly the same assumptions and properties as before,
except that u ∈ H(D) and v ∈ C2

c (D) (see [3]).

1.3 Finite dimensional Gaussian random variables

In this section we revise some properties of multidimensional Gaussians on a finite di-
mensional real vector space V with scalar product (·, ·). Define µV to be the probability

measure e−
(v,v)

2 Z−1dv, where dv is the Lebesgue measure on V and Z a normalizing
constant (it always exists). Then µV is called standard Gaussian measure on V .

Theorem 1.3.1 (Characterization of Gaussians). Let v : Ω → V be a Lebesgue meas-
urable random variable on (V, (·, ·)). Then the following are equivalent:

i v has law µV (i.e. v is a standard Gaussian random variable on V );

ii v has the same law as
∑d

j=1 αjvj where v1, .., vd is a (deterministic) orthonormal
basis for V and the αj are i.i.d. real Gaussian random variables with mean zero
and variance one;

iii The characteristic function of v is given by E[ei(v,t)] = e−
1
2
‖t‖2 for all t ∈ V ;

iv For each fixed w ∈ V , the inner product (v, w) is a real Gaussian variable with
zero mean and variance (w,w).

Proof. This is a standard result that can be found in [1].

Another important fact is given by the Girsanov transform, used in various situations:

Theorem 1.3.2 (Girsanov’s theorem for the finite dimensional case). Let X be a gaus-
sian vector in (V, (·, ·)) with mean µ and covariance matrix C, under the probability

measure P. Let u ∈ V and define a new probability measure dQ
dP = e(X,u)

Z̃
where Z̃ is

the normalization constant. Then under Q, X is still a Gaussian vector but now with
covariance matrix C and mean µ+ Cu. In particular, X ∼ N(0, 1) under P if and only
if X − u ∼ N(0, 1) under Q.

Proof. Again, this is a standard result that for instance can be found in [3].

Finally, we’d like to underline another property about one dimensional Gaussians
useful later:

Proposition 1.3.1 (Exponential gaussians have exponented means). Let N be a 1-

dimensional Gaussian random variable with mean a and variance b. Then E(eN ) = ea+ b
2 .
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Proof. This is again a common easy result, so we see no problems in referring directly
to [2].

Now that we have a clear idea about how to work with Gaussians on finite dimensional
spaces, it is spontaneous to think about a possible counterpart in an infinite dimensional
setting, motivated by the Introductory section. In other words, we wonder if it would
be possible to define a notion of ”gaussianity” for random variables with values in more
general Hilbert spaces.

Proposition 1.3.2 (Hilbert spaces detect every rotation). If H is an infinite dimensional
separable Hilbert space and µ a rotational invariant measure on H, then µ must be the
constant zero-measure.

Proof. Let {en}n∈N be an orthonormal basis for the space. Define the balls Bn
.
=

{x ∈ H : ‖x− en‖ < 1
2} for every n ∈ N. By hypothesis of rotational invariance they

must have all the same measure. On the other hand, they are disjoint, consequently∑∞
n=0 µ(Bn) = µ(∪Bn) ≤ µ(H) = 1. The only possible solution is therefore to have

µ(Bn) = 0, and so by doing a rescaling we find µ{x ∈ H : ‖x− h‖ ≤ ‖h‖
2 } = 0 for all

h ∈ H, leading to µ = 0 since every open set can be written as a countable union of
balls of the previous type.

Since being rotational invariant is a key point we require on a measure if we hope
to obtain something close to a ”gaussian”, the previous proposition answer negatively
to the question above. Consequently, intuitively speaking, there is no way of defining
a normal distribution on an infinite dimensional space, but a possible compromise is
shown in the following section.

1.4 Construction of Gaussian Free Fields

Let H be an infinite-dimensional separable Hilbert space with scalar product (·, ·) and
norm ‖·‖ =

√
(·, ·). For a finite dimensional space E ⊆ H, we denote with µE the

standard gaussian measure on it (see section 1.3). We introduce the notion of measur-
able norm, but we mainly rely on characterization theorems rather than on the direct
definition (same strategy as [1]).

Definition 1.4.1. A norm | · | on H is said to be measurable, if ∀ε > 0, ∃Eε ⊆ H a finite
dimensional subspace, such that ∀E finite dimensional subspace, E ⊥ Eε ⇒ µE{x ∈ E :
|x| > ε} < ε.

A measurable norm | · | can actually differ from the original one ‖·‖. Let B be the
Banach completion of H according to a measurable norm | · | and denote its dual by
B′ = {f : B → R s.t. f is linear and continuous w.r.t |·|}. Let B be the smallest σ-algebra
on B that makes all functionals in B′ measurable. In his paper ([7]) Gross showed that
every element of B′ is necessarily continuous w.r.t the originally Hilbert space norm ‖·‖
too, and consequently (Riesz theorem) for each f ∈ B′ there is a unique hf ∈ H such
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that (hf , h) = f(h). With this identification in mind, we can write B′ ⊆ H ⊆ B, and
intend (f, h) to be (hf , h) whenever f ∈ B′ and h ∈ H. But we introduce a new notation
more: when f ∈ B′ and b ∈ B (instead as before, where b ∈ H ⊆ B), the symbol (f, b)
will mean f(b).

Summing up, when f ∈ B′ the expression (f, ·) is meaningful for every element in
b ∈ B, coherent with the previous convention where b ∈ H ⊆ B. The notation is
understood to be symmetric, fully justifying the case ”(h, f)” (with h ∈ B, f ∈ B′)
studied later (and this notation will be actually extended to f ∈ H(D) ⊇ B′).

Let E ⊆ B′ be a finite-dimensional subspace with H-orthonormal basis e1, ..., ek,
φE : B → E the map defined via b 7→

∑k
i=1(ei, b)ei. Thanks to the notation just seen,

the map φE is nothing but an extension to B of the ordinary projection from H to E.
All the ideas here find a place in the following key theorem discovered by Gross:

Theorem 1.4.1 (Gross). If | · | is measurable, then there exists a unique probability
measure G on (B,B) for which G(φ−1

E S) = µE(S) on each finite-dimensional subspace
E of B′ and each Lebesgue measurable subset S ⊆ E.

Proof. It requires a specific paper. The reader is invited in consulting [7] or [1].

A very strong consequence obtained by considering one dimensional subspaces is
given below.

Theorem 1.4.2 (GFF: Uniqueness). Let (H, ‖·‖) be a separable Hilbert space with
scalar product (·, ·) and measurable norm | · |. Then ∃!G probability measure on (B,B)
such that, whenever (Ω, A,P) is our starting probability space and h : Ω → B is a
B-valued random variable:

1 if Law(h) = G, then (*) ∀f ∈ B′, the random variable (h, f) : Ω → R defined as
ω 7→ (h(ω), f) is a 1-dimensional real Gaussian with mean zero and variance (f, f);

2 if h has the property (*) described above, then Law(h) = G.

Proof. Part (1). Let h : (Ω,A,P) → (B,B,G) be a random variable with law G. Let
f ∈ B′ and E = span{f}. The map φE : (·, f

‖f‖)
f
‖f‖ : B → E is a projection as

in the reasoning above (the basis needs to be normalized). Furthermore, (h, f
‖f‖)

f
‖f‖ is

nothing but the composition φE◦h, consequently P(h−1◦φ−1
E (A)) = G(φ−1

E (A)) = µE(A)

by using the hypothesis Law(h)=G. It implies that (h, f) f

‖f‖2 is a standard Gaussian

variable on E, so ((h, f) f

‖f‖2 , f) = (h, f) is a one-dimensional real Gaussian of zero mean

and variance (f, f) by using property (iv) of the previous section.
Part(2). The reasoning is essentially the same. Let h : (Ω,A,P) → (B,B, ·) such

that (h, f) ∼ N(0, (f, f)) for every f ∈ B′. Let E ⊆ B′ a finite dimensional subspace
with orthonormal basis f1, ..., fn. We want to show that h−1 ◦ φ−1

E (S) = µE(S) for each
measurable subset S, but it is straightforward: h−1 ◦ φ−1

E = (φE ◦ h)−1 and the latter is
a standard Gaussian measure on E since φE ◦ h =

∑n
i (h, fi)fi (use characterization (ii)

showed in the previous section).
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In other words, the theorem states that given a triple (H,B, | · |) with | · | meas-
urable, then there exists a unique measure G that behaves like a Gaussian on every
finite dimensional subspace of B′ ⊆ H ⊆ B, and that every B-valued random variable
whose law follows the same property, has to be distributed as G. Note that this con-
struction, trivial in finite dimension, is essentially a generalization of the content of the
section before. Constructing the measure on B rather than directly on H can be seen as
a nice alternative way for defining Gaussians over infinite dimensional spaces avoiding
the obstacles previously described. The quadruple (H,B,G, | · |) is conceptually so rich
to deserve a name, and is called Abstract Wiener Space. The usual Wiener Space can
actually be obtained by following the description in [1], fully justifying this name.

From now on, we focus on the case H = H(D), where H(D) is the separable Hilbert
space introduced before (section 1.2). First, we need to know if a measurable norm on this
space (always) exists. The paper [1] gives a positive answer, by using a construction based
on Laplacian’s eigenvalues. Consequently, we have the base quadruple (H(D), B,G, | · |)
by using the theorem above. We would like to go a further, trying to find (existence and)
an explicit expression for the random variable h. This goal is achieved by ”summing an
infinite amount of Gaussians”. As first step, we check that the sum is actually possible:

Proposition 1.4.1 (GFF: existence (1)). Let {αi}i∈N be i.i.d. ∼ N(0, 1). Let {fi}i∈N be
any orthonormal basis of H(D). The, the infinite sum ĥ

.
=
∑

i∈N αifi does not converge
in H(D), but it does in the larger space B ⊇ H(D) w.r.t the measurable norm.

Proof. This is one of the main purpose of the paper [1].

On the other hand, ĥ is actually a random variable satisfying property (*) defined
in the main theorem above:

Proposition 1.4.2 (GFF: existence (2)). For each f ∈ B′, the random variable (ĥ, f)∇
is a one-dimensional real Gaussian with variance (f, f)∇.

Proof. Since the convergence holds for every orthonormal basis {fj}j∈N we choose one

where fk = f
‖f‖ , for a fixed k, possible since f ∈ B′ ⊆ H(D). Then, (h, f)∇ = f(h)

(that’s exactly the notation introduced at the beginning of this section, h is a random
variable in B), but f(h) = f(

∑
j∈N αjfj), where the limit it taken w.r.t the measurable

norm. Since f ∈ B′, it is a linear functional B → R continuous w.r.t such a norm, the
previous expression is equal to

∑
j∈N αj(f, fj)∇ = αk

√
(f, f)∇ ∼ N(0, (f, f)∇), which

concludes the proof.

In other words, h
.
= ĥ, whose existence is now guaranteed, is a B-valued random

variable satisfying the properties listed in the theorem above. Consequently, Law(h) =
G.

Definition 1.4.2 (Gaussian Free Field). Let (H(D), B,G, | · |) the quadruple defined
above. The random variable h is called Gaussian Free Field. Sometimes it will abbrevi-
ated with GFF.
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The probability measure G will be frequently indicated by ”dh” and can be inter-
preted like an infinite dimensional Gaussian measure on B. Later we’ll see how in this
concrete setting B can be identified with the space of distributions H−1(D), justifying
the alternative definition of Gaussian free fields as ”the choice of a random distribution”.

Finally, we remark (immediate corollary of the main theorem) the solid covari-
ance structure that will play a central role for the whole work: for each f1, f2 ∈ B′,
Cov[(h, f1)∇, (h, f2)∇] = (f1, f2)∇.

The reader is now invited in comparing this results with the first half of the paragraph
”Introduction”, section . If few words (see [2] for more details), one of the proposed goal
was to give a meaning to the heuristic object ”eSL(U)dU” interpreted as an attempt to
describe an infinite-Gaussian measure on the space H(D), (·, ·)∇. The work done in this
section proposes a full mathematical treatment by setting ”eSL(U)dU = dh”, trying to
offer a possible solution.

1.5 Random distributions and conformal invariance

In the previous section we gave a complete construction of the object h, from which
the symbols (h, f)∇ are defined every time f ∈ B′ ⊆ H(D). Unfortunately, it actually
doesn’t suffice for our purposes, since in ”practice” it’s very common to have f ∈ H(D).
Here we describe a solution to this problem.

As seen, one can think of h as a the infinite sum
∑∞

i=1 αifi, where αi are i.i.d. as
N(0, 1) and {fi}i∈N is an orthonormal basis for H(D), having in mind the convergence
in the larger space B. On the other hand, observe that if f ∈ H(D), then f =

∑∞
i=1 βifi.

Consequently, we literally define the symbol ”(h, f)∇” as
∑∞

i=1 αiβi. It is completely
legal since the partial sums converges almost surely due to the same principle as before,
see [1] for more details. Furthermore, under this construction the covariance structure
is still preserved, i.e. Cov[(h, f1)∇, (h, f2)∇] = (f1, f2)∇ (by ordinary computation and
the use of Parseval’s identity).

In other words, although ”ignoring the full construction of h”, we have a concrete
collection of random variables, namely (h, f)∇ for each f ∈ H(D), suitable for our
problem and retro-compatible with the GFF definition in the section before. With these
properties in mind, we’ll move now to another very important fact.

For every ρ ∈ C∞c (D), we’ll see a way for defining the function ”−∆−1ρ” belonging
to H(D). The author suggests to temporarily accept this property in order to proceed
towards the main point of this section, postponing its construction later (section 1.7).
We introduce a new important notation/definition: for every ρ ∈ C∞c (D), define (h, ρ)

.
=

2π(h,−∆−1ρ)∇ (now meaningful since ∆ρ ∈ H(D)) and we show why Gaussian Free
Fields are sometimes called ”random distributions”:

Proposition 1.5.1 (GFFs are random distributions). Almost surely for every ω ∈ Ω,
the map (h(ω), ·) : C∞c (D) → R is a distribution (in the sense of Analysis, see section
1.2).

Recall that the truncated series hN
.
=
∑N

i=1 αifi converges almost surely in the

12



larger space B ⊇ H. This property is preserved in the new setting: indeed, such a
series converges in the sense of distribution, too. Define (hN , ρ)

.
= 2π(hN ,−∆−1ρ)∇ =

−2π
∑N

i=1 αi
∫
D fiρdx, where the last equality holds since the basis fi can be chosen with

elements of Hs(D) = C∞c (D) allowing the use of the Gauss-Green formula (section 1.2).

Proposition 1.5.2 (Partial sums converge in distribution). The truncated series hN

converges almost surely in the space of distributions. More precisely, almost surely for
each ω ∈ Ω, for each ρ ∈ C∞c (D), (hN (ω), ρ)→ (h(ω), ρ).

Both the proofs can be found in [1] and [3]. What done is nothing but showing that
under our setting (i.e. the choice H = H(D)), we can identify B = H−1(D) (in case, the
paper [1] offers a complete formal proof in every detail), implying that we can interpret
h as a random variable on H−1(D). Recall (section 1.2) that with the symbol ”H−1(D)”
we intend the space of distributions over D.

We conclude by commenting how Gaussian Free Fields behave under change of
coordinates. If fn is an orthonormal basis of H(D), φ : D → D̃ a conformal map,
then fn ◦ φ−1 defines an orthonormal basis for H(D̃) (conformal invariance of Dirichlet
product). As a consequence, the series

∑
i∈N αi(fi ◦ φ−1) must converge to a Gaus-

sian Free Fields in the space B̃ ⊇ H(D̃), call it hφ−1 . On the other hand, if h is

a distribution on D it is usual to define h ◦ φ−1, the pullback distribution on D̃ as
(h ◦ φ−1, ρ̃) 7→ (h, ρ̃ ◦ φ|φ′|2). Here ρ̃ ∈ C∞c (D̃) and the square term (requested by defin-
ition) is intuitively justified as follows: when the distribution admits an integral repres-
entation, the added term counterbalances the square jacobian arising due the change of
variables. The following proposition ensures that hφ−1 = h ◦ φ−1 avoiding so any risk of
ambiguity.

Proposition 1.5.3 (GFFs are conformally invariant). Let φ : D → D̃ be a conformal
mapping. Then hφ−1 = h ◦ φ−1.

Proof. Let ρ̃ ∈ C∞c (D̃). By using directly the definitions, we have (almost surely):
(hφ−1 , ρ̃) = limN→∞(hNφ−1 , ρ̃) = −2π limN→∞

∑N
i=1 αi(fi ◦ φ−1, ρ̃) =

= −2π limN→∞
∑N

i=1 αi
∫
D̃(fi ◦ φ−1)(x̃)ρ(x̃)dx̃ =

= −2π limN→∞
∑N

i=1 αi
∫
D fi(x)(ρ̃ ◦ φ)(x)|φ′(x)|2dx =

= −2π limN→∞
∑N

i=1 αi(fi, ρ̃ ◦ φ|φ′|2) =
= limN→∞(hN , ρ̃ ◦ φ|φ′|2) = (h, ρ̃ ◦ φ|φ′|2) = (h ◦ φ−1, ρ̃)
The ”key” point is the change of variables x̃ = φ(x) that introduces the required

derivative term.

1.6 The spatial Markov property

In this section we study a ”spatial Markov property”. The name is suggested because
if the usual Markov property is about independence from the past, here we have an
independence result between far areas in the space (see corollary).
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Theorem 1.6.1 (Spatial Markov Property). Let U ⊆ D be an open subset with smooth
boundary, and h a Gaussian Free Field on D. Then h = h0 + φ where:

i h0 is a GFF on U (and zero outside U);

ii ∀ω ∈ Ω, φ(ω) is a distribution on D, harmonic when restricted to U ;

iii h0 and φ are independent random variables.

Remark 1.6.1. Before proceeding with the proof, it’s better to remark some concepts:

1 the intended sum is between two random distributions, i.e.

a.s.∀ω ∈ Ω, ∀ρ ∈ C∞c (D), (h(ω), ρ) = (h0(ω), ρ) + (φ(ω), ρ)

where φ(ω) is a distribution on D and so (φ(ω), ρ) means its evaluation on the
function ρ; (h0(ω), ρ) is constant zero on elements ρ outside C∞c (U) ⊆ C∞c (D);

2 almost surely for each ω, φ(ω) is a distribution on D harmonic when restricted on
U . By Weyl’s lemma, this restriction is then a full harmonic smooth function (see
section 1.2);

3 possible intuitive meaning: in order to know a GFF on a domain, we can estimate
it on a smaller region and then perturb the results with an appropriate harmonic
function.

Proof of the theorem. The key point is the Hilbert space decomposition H(D) = H(U)⊕
Harm(U), where the latter set refers to smooth functions on D that are harmonic on
U ⊆ D.

Indeed, the two spaces are orthogonal by the Gauss-Green formula, so it suffices to
verify that their sum spans the full space H(D). Since H(U) is complete by construction,
it is a closed subspace of H(D). Let f ∈ H(D) and denote by f0 its orthogonal projection
onto H(U). The function φ = f − f0 is actually harmonic, as the following reasoning
proves. By construction (projection) φ is orthogonal to H(U), and so for every test
function ψ ∈ C∞c (U) ⊆ H(U) we have 0 = (φ, ψ)∇ = −

∫
D(∆φ)ψ = −

∫
U (∆φ)ψ. The

first equality is orthogonality, the second the Gauss-Green formula and the third uses
the support of ψ. The obtained equation proves ∆φ = 0 in U in the sense of distribution.
By Weyl’s lemma φ is a smooth function harmonic in the usual sense, leading to the
conclusion φ ∈ Harm(U).

Now the the Hilbert decomposition is done, we come back to the original claim.
Let h be an instance of the GFF on D, {f0

n} an orthonormal basis for H(U) and {φn}
an orthonormal basis for Harm(U). Let Xn and Yn be i.i.d N(0, 1) and try to define
h0 =

∑∞
n=1Xnf

0
n, φ =

∑∞
n=1 Ynφn. In the following lines with the word ”converges”,

we mean ”almost surely, converges in the sense of distributions” (section 1.2). The sum
h0 + φ is nothing but a truncated series of the form hN , so it converges to h. On the
other hand h0 converges too, precisely to a GFF on H(U) (and by construction is zero
outside U), so the same kind of convergence must happen for the second term. In other
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words, almost surely for each ω ∈ Ω, the sum
∑∞

n=1 Yn(ω)φn converges in the sense
of distribution. But every term of this series is a smooth function in D harmonic on
U , so we can identify it with a distribution on D harmonic in U , and consequently
the same holds for every partial sum. Furthermore, being harmonicity preserved under
convergence (section 1.2), the sum limit is still a distribution on D harmonic on U ,
concluding with property (ii).

Finally, independence (iii) directly follows from the σ-algebras splitting, consequence
of the Hilbert space decomposition.

Corollary 1.6.1 (Disjoint means indipendent). Let A,C ⊆ D open, bounded, disjoint
and with smooth boundaries. Let h be a GFF on D, denote with hX its restriction on
the subdomain X. Then hA ⊥⊥ hB.

Proof. h = hA +φ and hA ⊥⊥ φ, implying in particular hA ⊥⊥ φ|B. Taking the restriction
on the first expression, we obtain hB = hA|B + φ|B = 0 + φ|B, but φ|B ⊥⊥ hA and so the
claim.

1.7 Green Functions

Let D ⊆ C be an open set, Bt a Brownian Motion starting inside D with exit time τD=
inf {t ∈ R|Bt /∈ D}. When A ⊆ D is a measurable subset of non-zero Lebesgue measure,
the quantity Ex[

∫ τ
0 1A(Bt)dt] is the average time that a Brownian Motion starting in

x ∈ D spends in A before leaving D. By using Fubini, it is the same as
∫ τ

0 pt(x,A)dt
where pt is the Brownian Motion transition function. Roughly speaking, Green Functions
deal with the case when A is replaced by a singleton: the previous formal equality fails
(because every singleton measures zero according to Lebesgue), but it’s still beneficial
for our intuition.

Definition 1.7.1 (Green Functions). Let D ⊆ C open, y ∈ D. The Green Function
on the domain D is the map (D × D) \ ∆ → R, defined as G(x, y) := GD(x, y) :=
π
∫ τ

0 pt(x, y)dt, where τD is the exit time from D and pt(x, y) = (2πt)−1exp(−|x−y|2/2t)
is the Brownian Motion transition function.

In the definition, the diagonal needs to be excluded, since we would have ”G(x, x) =
∞”. For convenience, we say that G is finite when G(x, y) < ∞ every time x 6= y. By
properties of Brownian Motion we have that GD is finite every time D is bounded. On
the other hand, to have a finite Green Function on an unbounded domain is a possible
scenario, as shown by GH(x, y) = log|x−ŷ|

log|x−y| (direct computation possible by using the

reflection principle of Brownian Motion on the half plane). Green Functions behaves
coherently w.r.t. conformal mappings. Before the main claim, we need an easy lemma
for preparing the ground.

Lemma 1.7.1 (Green Functions as distributions). For each x ∈ D, the map G(x, ·) ∈
L1
loc(D \ {x}).
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Proof. Let A ⊆ D \ {x} be bounded. Then
∫
AG(x, y)dy = π

∫ τ
0

∫
A pt(x, y)dydt =

π
∫ τ

0 pt(x,A)dt = Ex[
∫ τ

0 1A(Bt)dt] <∞ since A is bounded.

The previous lemma justifies the distributional interpretation in the incoming pro-
position.

Proposition 1.7.1 (Green Functions are conformally invariant). Let T : D′ → D be
conformal. Then for every (x, y) ∈ (D ×D) \∆, one has GT (D)(T (x), T (y)) = GD(x, y)

Proof. Thanks to the previous lemma it suffices to check the equality in the distributional
sense. Let φ ∈ C∞c (D) be a test function and (notation) let x′ = T (x). Then (Fubini)∫

D′
GD′(x

′, y′)φ(y′)dy′ = Ex′ [
∫ τ ′

0
φ(B′t′)dt

′]

where B′t′ is a Brownian motion (in D′ ) starting from x′, and τ ′ its exit time from
D′. Recall now that for an holomorphic function f(z) = (f(x0), f(y0)) written in R2

coordinates, one has detJ(x0, y0) = |f ′(z0)|2; it implies that the change of variable
y′ = T (y) on the left side gives:∫

D′
GD′(x

′, y′)φ(y′)dy′ =

∫
D
GD′(T (x), T (y))φ(T (y))|T ′(y)|2dy

We want now to rewrite the right hand of the previous formula with variables in D too.
This purpose is reachable by using the Dublin-Schwartz formula which guarantees the
existence of a Brownian Motion B̂t in D, starting in x′ = T (x), such that B′t = T (B̂F (t))

where F : t 7→
∫ t

0
1

|T ′(T−1(B′s))|2
ds. Consequently we have:

Ex′ [
∫ τ ′

0
φ(B′t)dt

′] = Ex′ [
∫ τ ′

0
φ(T (B̂F (t))dt]

Note that if τ̂ = inf{t ∈ R+ : B̂t /∈ D}, then F−1(τ ′) = τ̂ . By setting s = F (t) we have
dt = |T ′(Bs)|2ds and so the last expectation equals:

Ex[

∫ τ

0
φ(T (B̂s))|T ′(B̂s)|2ds =

∫
D
GD(x, y)φ(T (y))|T ′(y)|2dy

In other words we proved:∫
D
GD′(T (x), T (y))φ(T (y))|T ′(y)|2dy =

∫
D
GD(x, y)φ(T (y))|T ′(y)|2dy

and so the claim follows thanks to the arbitrary choice of φ ∈ C∞c (D) and symmetry of
G.

Summing up: we know the explicit form of G over the half plan, which is conformally
mapped into the unitary disk by Moebius map (section 1.1). Furthermore, the unitary
disk is conformal to any proper simply connected set of C (Riemann mapping theorem).
As a consequence, by composing all the maps and considering the conformal invariance
just proved, we are able to compute G for all the cases in our interest. A complete
analytic description is not necessarily, the following approximations will suffice.
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Proposition 1.7.2 (Green Functions: analytic properties). For each x ∈ D, the follow-
ing holds:

1 G(x, ·) is harmonic in D\{x} and, as a distribution, ∆G(x, ·) = −2πδx(·);

2 G(x, y) = − log |x− y| − Ĝx(y) where, when x ∈ D is fixed, Ĝx(y) is the harmonic
extension to y ∈ D of the map − log |x− y|, function of y ∈ ∂D;

3 G(x, y) = − log |x− y|+ logR(x;D) + o(1) as y → x;

4 G(x, y) = − log |x− y|+O(1) as y → x;

5 For each x ∈ D, −Ĝx(x) = logR(x;D);

Proof. (1): Let φ ∈ C∞c (D). Note that φ vanishes on ∂D and that
∫
DG(x, y)∆φ(y)dy =

πEx[
∫ τ

0 ∆φ(Bt)dt] by using Fubini (τ is the exiting time from D). On the other hand,
Itô formula implies:

φ(Bτ )− φ(B0) =

∫ τ

0
∇φ(s) · dBs +

1

2

∫ τ

0
∆φ(Bt)dt

By taking the expectation and recalling that the mid term is a martingale, one obtains:

2π(φ(Bτ )− φ(B0)) = πEx[

∫ τ

0
∆φ(Bt)dt] = G(x, y)

and finally, since φ vanishes on ∂D and B0 = x the claim follows. To be more precise,
we deduce that ∆G(x, ·) = −2πδx(·) in the distributional sense. Consequently, G(x, ·)
is an harmonic distribution on D \ {x}, and so a smooth harmonic function thanks to
the Weyl’s principle (section 1.2).

(2): Note that the Green function G can be extended on the boundary ∂D, where it
assumes the constant value 0 (a Brownian motion starting outside D, is already outside
D at time 0). We proved harmonicity in part (1), consequently both the y-functions
G(x, y) and − log |x− y| − Ĝx(y) solve the same Dirichlet problem and so they must
coincide by uniqueness theorems. The author has actually no direct experience in PDEs
theory, he apologies for that and suggests to consult [3] for more precise details.

(3): Let’s start by proving the claim for the disk D. By using the explicit form
of the conformal Radius for the half plane H (section 1.1) and conformal invariance,
one directly computes GD(0, z) = − log |z| making the statement trivial. Let now be
x, y ∈ D, and T : D → D a conformal mapping such that T (0) = x and T (z) = y.
GD(x, y) = GD(T (0), T (z)) = GD(0, z) = − log |z|. Then by adding and subtracting the
same quantity we have:

GD(x, y) = − log |x− y|+ logR(x;D) + log |T (0)− T (z)| − logR(x;D)− log |z|.
It is clear that y → x iff T (y)→ T (x) (continuity of T and its inverse), and observe

how the second part in the previous estimation can be rewritten as:

log |T (0)− T (z)

z
|−log | 1

R(x;D)
| = log |T (0)− T (z)

z
|−log |R(0;D)

R(x;D)
| = log |T (0)− T (z)

z
|−log |T ′(0)|

17



by using the conformal property of the radius (again, proved in section 1.1). The previous
quantity is then an o(1) as y → x, since it converges to the differences of the same
derivative. The result is now true for the unitary disk, and can be easily extended for
any proper simply connected domain D by using the same strategy. Let’s see how.

Let a, b ∈ D and T : D → D a conformal mapping. Call a = T (x), b = T (y).
GD(a, b) = GD(x, y) = − log |x− y| + logR(x;D) + o(1), and again by adding and sub-
tracting the same quantity:

GD(a, b) = − log |a− b|+ logR(a;D) + log |T (x)− T (y)

x− y
|+ log | R(x;D)

R(T (x);D)
|

The last two members are an o(1) for a → b since they converge to log |T ′(x)| −
log |T ′(x)| = 0, and the claim follows.

(4): direct consequence of (3);
(5): By part (2) and (3) we have G(x, y) = − log |x− y| − Ĝx(y) and G(x, y) =

− log |x− y| + logR(x;D) + o(1) as y → x. We want to show: −Ĝx(x) = logR(x;D).
By using Taylor expansion, write Ĝx(y) = Ĝx(x) + o(1) as y → x and substitute in
the first expression. Finally, by taking the differences of the two members we have
0 = Ĝx(x)− logR(x;D)+o(1) as y → x and so the claim follows by taking the limit.

1.8 Green Functions and Gaussian Free Fields

Green Functions enjoy a good intuitive meaning (as seen), and at the same time can be
used for computing covariances of Gaussian Free Fields (as we’ll prove).

Proposition 1.8.1 (Inverse Laplacian). The inverse Laplacian operator ∆−1 : C∞c (D)→
H(D) acting as f 7→ ∆−1f , where ∆−1f is the map x 7→ − 1

2π

∫
DG(x, y)f(y)dy is well-

defined. The notation is coherent with intuition, since we have ∆∆−1f = ∆−1∆f = f
every time f ∈ C∞c (D).

Proof - sketch. We need only check that ∆−1f ∈ H(D), the second part directly follows
from harmonicity of G in the sense of distributions. We will not give a complete proof
here, rather we describe the underlying idea. As shown in the appropriate resources
([3],[1]), the inverse Laplacian can be equivalently constructed in way based instead on
some eigenfunction powers of the classical Laplacian operator. One then checks that
new operator acts from test functions to H1

0 (D), where now this set is a Sobolev space
whose definition is based on such eigenfunctions too. Finally, one proves that H1

0 (D) is
isomorphic to H(D), leading to the final result.

The previous property implies injectivity for ∆−1, but not surjectivity which is ac-
tually not true. Indeed, in the equation h = ∆−1f , h ∈ H(D), one might be temp-
ted to use Laplacian on both sides, but it is generally not possible since this operator
is not defined on H(D), being this space constructed taking into account only weak
gradients and not second derivatives (e.g. see [3]). We usually call −ρi the inverse
Laplacian of a test function fi, whenever there is no risk of ambiguity. According to
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this new notation, when f ∈ C∞c (D), the symbol (h, f) is then equal to 2π(h, ρ)∇
(see section 1.5). Finally, we define the gamma map for test functions f1 and f2, as
Γ(f1, f2) :=

∫
D2 G(x, y)f1(x)f2(x)dxdy. The symbol Γ(f) will be a shortcut for Γ(f, f).

Proposition 1.8.2 (Green Functions compute covariances). If f1, f2 ∈ C∞c (D), then

Cov[(h, f1), (h, f2)] = Γ(f1, f2)

Proof. By construction Cov[(h, f1), (h, f2)] = (2π)2Cov[(h, ρ1)∇, (h, ρ2)∇] = (2π)2(ρ1, ρ2)∇
so the only real fact to check is that (2π)2(ρ1, ρ2)∇ = Γ(f1, f2). By direct computation:

Γ(f1, f2) =

∫
D2

f1(x)G(x, y)f2(y)dydx =

∫
D
f1(x)[

∫
D
G(x, y)f2(y)dy]dx =

= −
∫
D
f1(x)[

∫
D
G(x, y)∆ρ2(y)dy]dx = 2π

∫
D
f1(x)ρ2(x)dx = −2π

∫
D

∆ρ1(x)ρ2(x)dx =

= (2π)2(ρ1, ρ2)∇ where every step directly uses the respective definitions, the distribu-
tional equality ∆G(x, ·) = −2πδx(·) and finally the Gauss-Green formula.

The following theorem allows a coherent alternative definition of the notion of GFF.

Theorem 1.8.1 (GFF as a process indexed by test functions). A GFF h is the unique
stochastic process (hρ)ρ∈C∞c (D) such that for every choice of ρ1, . . . , ρn, the random
vector (hρ1 , . . . , hρn) is centered and Gaussian with covariance structure Cov[hρi , hρj ] =
Γ(ρi, ρj).

Proof. Thanks to Kolmogorov’s theorem we need to check only on finite-dimensional
marginals. Since we deal with an hypothetical Gaussian process, coherence between
sub-marginals is automatic and the result becomes equivalent to the positive definition
of the covariance matrix (symmetry is directly inherited by G(x, y) = G(y, x)). But
this condition is easy to check, while

∑
i,j λiλjΓ(ρi, ρj) = Γ(

∑
i λiρi,

∑
j λjρj) ≥ 0 since

Γ(ρ, ρ) ≥ 0 being the Dirichlet energy (i.e. a norm) of a certain function as proved
above.

The previous proposition is nice since it allows to forget for a moment the full struc-
ture we studied before, in favor of a more abstract viewpoint. It suggests how Gamma
maps and Green Functions can be another way for building a GFF, and so trying to
extend them might be a way for discovering more general definitions. In the remaining
section, since the checking of every property was particularly long and strictly specific
for this context, we chosen to directly refer to [3] and illustrate here a brief but hopefully
clear description of the winning ideas.

Let M+ be the set of (non-negative) measures ρ with compact support in D such
that

∫
D2 G(x, y)ρ(dx)ρ(dy) < ∞. Then, define M as the collection of signed measures

ρ = ρ+ − ρ−, ρ± ∈ M+. Note that M includes all the test functions, by splitting
them into the positive and negative part, and letting each of them induce the weighted
measure A 7→

∫
A f±dx. The function Γ can be now be extended on ρ1, ρ2 ∈ M via
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Γ(ρ1, ρ2) =
∫
D2 G(x, y)ρ1(dx)ρ2(dy) keeping coherence with the previous definition. The

same happens for the inverse Laplacian operator, acting now from M → H(D) and
defined as ρ 7→ ∆−1ρ(·) .

= − 1
2π

∫
DG(·, y)ρ(dy). The same reasoning as before is repeated

for the new scenario: to integrate against measures is valid by coherently defining (h, ρ)
.
=

2π(h,−∆−1ρ)∇ for ρ ∈ M. By using a density argument we obtain our most general
definition of Gaussian Free Field:

Theorem 1.8.2 (GFF: most general definition). There exists a unique stochastic process
(hρ)ρ∈M such that for every choice of ρ1, . . . , ρn, the vector (hρ1 , . . . , hρn) is a centered
Gaussian with covariance structure Cov[hρi , hρj ] = Γ(ρi, ρj).

It is a good moment for summing up the various GFF constructions. We start
from the space H(D) with an orthonormal basis {fn}n∈N and {αn}n∈N ∼ N(0, 1) i.i.d.
The sequence h

.
=
∑

n∈N fiαi converges a.s. in a larger space B, so the GFF h is a
random variable in B (and B can be identified with the space of distributions H−1 =
H−1(D)). The law of h behaves like an infinite-dimensional Gaussian, in particular
it has a covariance structure that holds for every element of B′ ⊆ H(D). For our
purposes, this is not enough, and we would like to work with the larger space H(D) ⊇ B′.
We reach this goal by summing orthonormal basis coefficients, as seen in section 1.5,
making now meaningful the symbol (h, f)∇ for f ∈ H(D). Since the Inverse Laplacian
brings test functions to H(D), integration against test functions is valid by defining
(h, f)

.
= 2π(h,−∆−1f)∇. Finally, the integration domain can be extended to the most

general class M, composed by Greenian measures. Every step is done preserving the
covariance structure. This section also describes how Kolmogorov’s theorem and the
structure characterization of Gaussian processes are sufficient for describing the existence
of Gaussian Free Fields, omitting all the steps before. The two viewpoints are very
important and the paper [3] confirms their full compatibility in more details. The author
hopes that the efforts for describing the first method can be beneficial and interpreted
as a concrete way for understanding what is truly happening beyond formalism.

Recall now the construction of the truncated series hN =
∑N

i=1 αifi, where {fi}i∈N
is an orthonormal basis of H(D) (without loss of generality it can be composed by
test functions only). For a measure ρ (not necessarily in M) we define (hN , ρ) =∑N

i=1

∫
D fi(x)ρ(dx). Many properties similar to the test function case done in section

1.5 hold here in a similar fashion.

Proposition 1.8.3. Let D be a Greenian domain, hN the truncated series as above.
Then, for any ρ ∈M, we have (hN , ρ)→ (h, ρ) in probability and in L2(P)1, as N →∞.

Proof. This is again an approximation argument for which we directly refer to [3].

Proposition 1.8.4. Suppose that ρk ∈M is a sequence of measures weakly converging
to ρ (with ρ not necessarily in M). Then, for each ω ∈ Ω, (hN (ω), ρk)→ (hN (ω), ρ) as
k →∞.

1Recall that P is intended to be the probability measure in the user’s triple, as clarified in section 1.1.
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Proof. By definition (hN (ω), ρk) =
∑N

i=1 α(ω)
∫
D fi(x)ρk(dx), but each integral con-

verges to
∫
D fi(x)ρ(dx) since fi ∈ C∞c (D) and by the definition of weakly converging

measures.

One of the main goal we want to reach, is the construction of a measure (Liouville
Quantum Gravity) that depends on the ”pointwise evaluation” of a GFF h. Altought the
expression h(z) for z ∈ C is meaningless, an attempt to formalize it could be to consider
the quantity (h, δz), i.e. the GFF evaluated in the Dirac delta in z. Unfortunately, it is
not allowed because δz /∈M, since the related Green Function would be infinite thanks
to the divergence on the diagonal. A way for avoiding this problem is given by replacing
Dirac deltas with uniform measures ρzε on circles ∂Bε(z), then thinking to h(z) as a sort
of limit for ε → 0. The purpose of the following section will be to clarify more about
that technique and prove various related properties.

1.9 Circle averages and definition of hε(z)

Now we define and study the object hε(z) whose intuitive description has been given
before.

Definition 1.9.1 (Circle Averages). If h is a Gaussian Free field on D, and ρzε the
normalized uniform measure on the circle ∂Bε(z) ⊆ D, we define the circle average of h
as hε(z)

.
= (h, ρzε ).

Proposition 1.9.1 (Variance and existence). For every z ∈ D, ε > 0 s.t. ∂Bε ⊆ D, ρzε ∈
M. In particular, the just defined quantity hε(z) = (h, ρzε ) is well-defined. Furthermore,
Γ(ρzε ) = V ar[hε(z)] = − log ε+ logR(x;D) 2.

Proof. It is sufficient to prove Γ(ρzε ) = − log ε + logR(x;D), since it directly implies
ρ ∈ M by construction, while Varhε(z) = Γ(ρzε ) holds automatically thanks to the
covariance description given in the previous section. Note that

Γ(ρzε ) =

∫
D2

G(x, y)ρzε (dx)ρzε (dy) =

∫
D
ρzε (dx)(

∫
D
G(x, y)ρzε (dy))

Since in the second integral x is fixed, G(x, ·) is harmonic in the integration variable, and
that integral is exactly equal to G(x, z) by using the mean-value property for harmonic
functions. We can consequently continue this equality with:∫
D
ρzε (dx)(

∫
D
G(x, y)ρzε (dy)) =

∫
D
G(x, z)ρzε (dx) =

∫
D
− log |x− z|+ logR(z;D)ρzε (dx)

thanks to property (iv) in section 1.7, where the last quantity is equal to − log ε +
logR(z;D).

2We requested d(z, ∂D) > ε, but it can be done without relevant consequences: in the whole work ε
will be always very small and/or made converging to 0.
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With the risk of being repetitive, we remark again how the pointwise evaluation of
circle averages is now meaningful, so we could think as ”h(z)” (an object required for
the Liouville Quantum Gravity, we’ll see later) as a ”limit” for ε→ 0 of hε(z), in a sense
to be specified.

Since ρzε → δz weakly, by using proposition 1.8.4 in the previous section, one deduces
hNε,z → hN (z) punctually (where we mean hNε,z

.
= (hN , ρzε )). Since it holds for each

z ∈ D and radius small enough, we sometimes refer to this convergence by the symbol
”hNε → hN” as ε→ 0.

By using the same idea for the variance computation done in the first proposition, it
is possible to reveal more about the covariance structure.

Proposition 1.9.2 (Covariance of circle averages). Let z ∈ D, ε1, ε2 > 0 such that both
Bε1(z) ⊆ D and Bε2(z) ⊆ D. Then, Cov[hε1(z), hε2(z)] = − log(min(ε1, ε2)) +R(z;D).

Proof. Recall that Cov[hε1(z), hε2(z)] =
∫
D×D ρε1,z(dx)G(x, y)ρε2,z(dy). Without loss of

generality, assume ε2 < ε1 (if not, use symmetry of G for reversing the integral). We
focus on the term G(x, y)ρε2,z(dy). Since x always lies on a larger circle, G(x, ·) has
no singularity for y in the circle of radius ε2, consequently the mean value property for
harmonic functions can be used and the full integral reduces to

∫
DG(x, z)ρε1,z(dx) =

− log ε1 +R(z;D) by using the same computation as in the proposition above.

At this point, for a fixed z ∈ D, we know the process hε(z) to be Gaussian, with
mean zero and covariance structure as before. But there is actually much more:

Proposition 1.9.3 (Circle averages admits a continuous version). The process hε(z) has
a modification which is almost surely locally η-Hoelder continuous in the pair (z, ε) ∈
C× (0,∞) for every η < 1/2.

Proof. We refer to [2], where the technique is to use Kolmogorov regularity theorem.

Proposition 1.9.4 (Circle averages are Brownian Motions). Let tz0
.
= inf{t : Be−t(z) ⊆

D}, and let Vt
.
= he−t(z). If z ∈ D is fixed, then the process Vt

.
= Vtz0+t − Vtz0 is a

standard Brownian Motion in t.

Proof. The process Vtz0+t is continuous and Gaussian, with covariances equal to:

Cov[Vtz0+t,Vtz0+s] = Cov[hz
e−t

z
0+t
, hz

e−t
z
0+s

] = min(t, s) + tz0 + logR(x;D)

thanks to the explicit computations done before. Consequently, by using a character-
ization theorem, it is a (non-standard) Brownian Motion. On the other hand, since
VarVtz0 = tz0 + logR(z;D), the ”corrected” process Vt

.
= Vtz0+t − Vtz0 is now a standard

Brownian Motion in t.

This is the last result of this first master’s thesis chapter, where the goal was to give
a description of this mathematical object called Gaussian Free Field. It will be used in
the upcoming chapter in order to construct a measure called Liouville Quantum Gravity,
the main topic of this work.
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Chapter 2

Liouville Quantum Gravity

2.1 A quick overview

The author hopes that a small break for summing up the previous results in favor of the
big picture could be beneficial. In few words, the goals of the previous parts can be seen
as to:

1 introduce and define the notion of Gaussian Free Field, named h, with full math-
ematical rigour. At the same time, try to give an interpretation as an infinite
dimensional Gaussian and a random distribution, with connections to a specific
problem in modern Physics;

2 investigate some concretely useful approximation property, for example via the
objects hN or hε. Not only they will play a central role in many proofs, but they
can be used for numerical simulations, giving a practical tool in case of need;

3 study the well-behavior of h under conformal mappings.

Our progresses can be represented via the following conceptual ”commutative dia-
grams”:

hN h

hNε hε

N→∞

ε→0

N→∞

ε→0

D hD

D̃ hD̃ = hφ−1 = h ◦ φ−1

GFF

φ pullback−of−a−distribution

GFF

They author hopes that they might help to clarify the general structure we developed.
Not everything in the pictures is completely formal and literally right. It is done on
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purpose. When the reader is able to have clear ideas about the meaning of the two
diagrams, he can surely move to the next part without any problem. In order to give
an example, recall that there is no ”true” limit hε → h, but the writing should help in
keeping in mind how we’ll think about the pointwise evaluation ”h(z)” as a ”limit” of
the circle averages. All the required details will be given later, the goal for now is only
to have a reasonable good overview.

We can now express in a similar way what we intend to do in the next step. Briefly
speaking, we introduce a new object µ = µh (a measure associated to the Gaussian Free
Field h) called ”Liouville Measure” or ”Liouville Quantum Gravity” (abbreviated LQG),
for which diagram (1) is still ”conceptually valid”, but unfortunately the symmetry of (2)
is ”broken”, altought still ”recoverable” by adding a small extra term. This phenomenon
will be called ”conformal covariance” (rather than ”invariance”), and needs not to be
confused with the homonym in Category Theory.

µN µ

µNε µε

N→∞

ε→0

N→∞
ε→0

D µD

D̃ µD̃ 6= µD ◦ φ

LQG

φ pullback−of−a−measure

LQG

Again, both the diagrams must be taken with a grain of salt, but the reader is encouraged
in having a look to them again after having read the new upcoming section.

2.2 Definition of µ as limit of µε

The goal of this section is to define a random probability measure µ called ”Liouville
Quantum Gravity” or ”Liouville measure” on a set D with standard hypothesis (see
section 1.1), by using an approximation argument. There is no difficulty in defining the

family of random measures {µε}ε>0 where µε(dz)
.
= ε

γ2

2 eγhε(z)dz, absolutely continuous
w.r.t. Lebesgue. The constant γ ∈ [0, 2) is fixed and for γ = 0 we reduce to the Lebesgue
case. Boundedness of D guarantees that the measures can be normalized. For sake of

clarification, randomness is intended as: ω 7→ µε(dz)(ω) = ε
γ2

2 eγhε(z)(ω)dz. We are
interested in showing a convergence result for this family of random variables, to a limit
random measure µ(dz). Let ε > 0 and δ

.
= ε

2 . In order to make notations shorter, define

σ(dz)
.
= R(z;D)

γ2

2 dz, an useful measure (R is the conformal radius function, section

1.1). Define also ĥε
.
= γhε(z)− (γ

2

2 )V ar[hε(z)] and, for an arbitrary A ⊆ D measurable,
let Iε

.
= µε(A).
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Theorem 2.2.1 (LQG convergence for the case γ <
√

2). Assume γ <
√

2. Under
the conditions stated above, we have E[(Iε − Iδ)2] ≤ Cε2−γ

2
for a constant C. Being so

Iε a Cauchy sequence in L2, it converges in probability too. In particular, among ε = 2k

such a convergence happens almost surely. In other words, for each measurable A ⊆ D
the sequence of real-valued random variables {µε(A)}ε>0 converges almost surely among
the dyadic sequence.

Proof. By Fubini we have

E[(Iε − Iδ)2] =

∫
A
E[(eĥε(x) − eĥδ(x))(eĥε(y) − eĥδ(y))]σ(dx)σ(dy)

We try to simplify this integral. On the set {(x, y) ∈ D : |x − y| > 2ε}, the objects
”hε(x)−hδ(x)” and ”hε(y)−hδ(y)” are independent by the Markov Property (corollary
in section 1.6). By decomposing

(eĥε(x) − eĥδ(x))(eĥε(y) − eĥδ(y)) = (1− eĥδ(x)+ĥε(x))(1− eĥδ(y)+ĥε(y))eĥε(x)+ĥε(y)

we detect more: the three factors are indeed measurable respectively w.r.t. FBε(x),
FBε(y) and D \ (FBε(x) ∪ FBε(y)) (by the Markov property again). But since they are
three disjoint σ-algebras, the expectation factorizes. Furthermore, by the martingale

property we have E[eĥδ(x)−ĥε(x)] = 1 (same for y), which makes the whole product
vanishing. In other words:

E[(Iε − Iδ)2] =

∫
|x−y|≤2ε

E[(eĥε(x) − eĥδ(x))(eĥε(y) − eĥδ(y))σ(dx)σ(dy)

≤
∫
|x−y|≤2ε

√
E[(eĥε(x) − eĥδ(x))2)E[(eĥε(y) − eĥδ(y))2)σ(dx)σ(dy) =

K

∫
|x−y|≤2ε

√
E[e2ĥε(x)]E[e2ĥε(y)]σ(dx)σ(dy)

by using firstly Cauchy-Schwartz, and then observing that now the expectations involve
only functions of Gaussian variables. Continuing the computation using that fact leads
to the final concluding result E[(Iε − Iδ)2] ≤ Cεγ2−2.

The second part of this section is devoted to the proof of the same convergence in
the remaining case γ ∈ [

√
2, 2). The main idea is not to stop the domain’s reduction on

the set |x − y| ≤ 2ε, rather try to continue. We will see later that the only ”relevant”
points are the ”thick points”, so the idea, roughly speaking, is to remove all the others.
Let’s convert these ideas into Mathematics. For each α > 0 and z ∈ D we define
the ”good event” Gαε (z)

.
= {ω ∈ Ω : hε(z)(ω) ≤ α log (1

ε )}, denoting then with Ĝαε (z) its
complement. Later we’ll comment more about that property (section on ”thick points”),
but for the moment observe that:
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Lemma 2.2.1 (Good events happen frequently). If α > γ, then E[eĥε(z)1Gαε (z)] ≥ 1 −
p(ε), where p is s.t. p(ε) → 0 when ε → 0. The map p might depend on α, and the
decay happens polynomially. The same estimation holds if we substitute ”ĥε(z)” with
”ĥ ε

2
(z)” (preserving ε in all the other terms).

Proof. If P̃ is the probability measure with Radon-Nikodym derivative dP̃
dP = eĥε(z)

(possible since eĥε(z) is the Brownian exponential martingale), then E[eĥε(z)1Gαε (z)] =

P̃(Gαε (z)) = 1 − P̃(Ĝαε (z)). By the change of variables ε = e−t, if Xs
.
= he−s(z) is the

circle-averages Brownian Motion under P, we know that under P̃, is Xs− sγ to preserve
such a law (classic Girsanov’s theorem). The event Ĝαε (z) becomes {ω ∈ Ω : Xs ≤ αs} =
{ω ∈ Ω : Xs − sγ ≤ (α − γ)s} = {ω ∈ Ω : B̃t ≤ kt} where B̃t is a Brownian motion
under P̃ and k > 0. But P̃(B̃t ≤ kt) is known to decay to zero exponentially as t→∞,
consequently it goes to zero polynomially as ε → 0. Finally, if we replace hε(z) with
h ε

2
(z) we obtain the same kind of estimation (but with t + log 2 rather than t) which

does not influence the asymptotic behavior.

The following quantities will have a key role in the final proof:

Definition 2.2.1 (J-integrals). Define:

Jαε
.
=

∫
A
eĥε(z)1Gαε (z)σ(dz)

J
′α
ε
2

.
=

∫
A
e
ĥ ε

2
(z)
1Gαε (z)σ(dz)

Corollary 2.2.1 (J-integrals approximate µε well). If α > γ, we have limε→0 E[|Iε − Jαε |] =
0 and limε→0 E[|I ε

2
− J ′αε

2
|] = 0.

Proof. Direct computations:

E[|Iε−Jαε |] = E[

∫
A
eĥε(z)1Ĝαε (z)σ(dz)] =

∫
A
E[eĥε(z)1Ĝαε (z)]σ(dz)] =

∫
A
P̃(Ĝαε (z))σ(dz) ≤ σ(A)p(ε)

Since exactly the same inequality holds for the other case, the proof is concluded.

Proposition 2.2.1 (J-integrals converges in L2(P)). Let γ ∈ [
√

2, 2). Then there exists
an α > γ sufficiently close to γ, such that E[(Jαε − J

′α
ε
2

)2] ≤ εr for some r > 0.

Proof. We follow exactly the same reasoning as in the proof before (Fubini → Spatial
Markov Property → Expectation splitting → Martingale property ). The difference
comes in the final step that we voluntarily pointed out:

... ≤ K ′
∫
|x−y|≤2ε

√
E[e2ĥε(x)1Gαε (x)]E[e2ĥε(y)1Gαε (x)]σ(dx)σ(dy)

If in the previous proof the term to evaluate was E[e2ĥε(x)] by using its gaussianity,

here we have E[e2ĥε(x)
1Ĝαε (z)] instead, for which can follow a similar strategy but there
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will be a drift coming from Girsanov’s theorem responsible for the shifting of γ. If
Xs = he−s(z) is the Brownian Motion in P, then Xs − 2γs is a Brownian Motion in P̃,

leading to E[e2ĥε(x)
1Ĝαε (z)] = P̃(B̃s ≤ (α − 2γ)s) decaying polynomially in ε = e−s. By

reassessing these results in the original integral, one obtains ... ≤ ε2−γ
2
ε
1
2

(2γ−α)2 and so
when γ ∈ [

√
2, 2), by choosing α enough close to γ we obtain a positive exponent εr with

r > 0 leading to the claim.

Corollary 2.2.2 (LQG convergence for the case γ ∈ [
√

2, 2)). Let γ ∈ [
√

2, 2).
Then {Iε}ε is a Cauchy sequence in L1. Consequently, it converges in probability and
almost surely along the dyadic sequence ε = 2k.

Proof. By triangle inequality:

E[|Iε − I ε
2
|] ≤ E[|Iε − Jαε |] + E[|Jαε − J

′α
ε
2
|] + E[|I ε

2
− J ′αε

2
|]

where each term converges to zero thanks to the results just proved.

Summing up, in this section we have successfully proved the almost surely weak
convergence of the family of random measures µε, depending on a fixed parameter γ ∈
[0, 2). This is a key central result, on which is based the main notion of this master’s
thesis:

Definition 2.2.2 (Liouville Quantum Gravity). Under the conditions above, the
random probability measure µ(dz) ω-almost surely defined as the weak limit of µ(dz)(ω)

.
=

limε→0 µε(dz)(ω) is called Liouville Quantum Gravity (abbreviated LQG).

In other words, almost surely for every ω ∈ Ω we have an object µ(ω) measuring
Borelian subsets of the plane (null on ∅, σ-countable and positive), s.t. if A ⊆ D is
measurable, then µ(ω)(A) = limε→0 µε(A)(ω) and s.t. µ(D) < ∞ a.s. (so can be nor-
malized obtaining a random probability measure). LQG is sometimes formally written
as ”µ(dz) = eγh(z)dz”, despite there is no ”meaning” for the point evaluation of a GFF
(compare to the end of section 1.8).

Sometimes Liouville Quantum Gravity will be written by the symbol ”µh” rather
than just ”µ”, when it is convenient to point out its dependency from the random
Gaussian Free Field h.

2.3 Rooted probability measure

Let (H−1,B, dh) be the probability space defined in section 1.4, where H−1 = H−1(D)
is the space of distributions over D and a natural identification for B ⊇ H(D) (section
1.5); B the σ-algebra generated by certain class of functionals; dh the law of a Gaussian
Free Field h̃, i.e. an ”infinite-dimensional Gaussian” over H−1. Let now (D,D, dz)
be the probability space where D ⊆ C is a standard subset (section 1.1), D the Borel
σ-algebra and dz the normalized Lebesgue measure. Let h ∈ H−1 (in this section h̃
is the GFF, and we think of h ∈ H−1 as a realization h = h̃(ω)) and z ∈ D. The
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function H−1 × D → R, (h, z) 7→ ε
γ2

2 eγ(h,ρεz) is measurable so it is legitimate to define

the weighted measure Θε(dh, dz)
.
= Z−1

ε ε
γ2

2 eγhε(z)dhdz on H−1 × D where dhdz is the
product measure and Z−1

ε a normalizing constant (see below). The meaning of such a
construction will be clearer later, meanwhile we investigate some basic features.

Recall from section 1.3 that since E[eN ] = ea+ b
2 when N ∼ (a, b), then E[eγhε(z)] =

eV ar[γhε(z)]/2 = (R(z;D)
ε )

γ2

2 thanks to the work done in section 1.9. Then by impos-

ing 1 =
∫
D

∫
B Z

−1
ε ε

γ2

2 eγhε(z)dhdz =
∫
D Z

−1
ε R(z;D)

γ2

2 dz we immediately deduce Zε =∫
D R(z;D)

γ2

2 dz <∞. Since it doesn’t depend on epsilon, we define Z
.
= Zε. So our new

probability measure can be explicitly formulated as:

Θε(dhdz) = (

∫
D
R(z;D)

γ2

2 dz)−1ε
γ2

2 eγhε(z)dhdz

The knowledge of its marginals and conditional distributions will be of great help in
many various situations:

z-marg.:

Θz
ε (dz) =

∫
H−1

Θε(h, z)dh = Z−1

∫
H−1

eγhε(z)ε
γ2

2 dhdz = Z−1R(z;D)
γ2

2 dz

h-marg:

Θh
ε (dh) =

∫
D

Θε(h, z)dz = Z−1

∫
D
eγhε(z)ε

γ2

2 dzdh = Z−1µε(D)dh

z-cond:

Θε(dh|z) =
Θε(dhdz)

Θz
ε (dz)

= R(z;D)−
γ2

2 ε
γ2

2 eγhε(z)dh = Eh[eγhε(z)]−1eγhε(z)dh =
eγhε(z)∫

H−1 eγhε(z)dh
dh

h-cond:

Θε(dz|h) =
Θε(dhdz)

Θh
ε (dh)

=
µε(dz)

µε(D)

It is from the decomposition Θε(dhdz) = Θε(dh|z)Θε(dz) that we deduce very important
ideas:

Meaning The ”sampling procedure” of a point (h, z) according to Θε can be done in two
steps. First, extract a point z ∈ D by following Θε(dz), actually proportional to
the Lebesgue measure. Then extract h, according to Θε(dh|z), which is basically
a weighted infinite Gaussian. In other words, the functionality of this measure Θε

is now supported by an intuitive interpretation.
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Convergence The first factor in the product above is Θε(dh|z) = Eh[eγhε(z)]−1eγhε(z)dh (*), whose
formula resembles Girsanov theorem in section 1.3. If it is true that the theorem
holds for the finite dimensional case, it can actually be extended under this setting
with scalar product given by (·, ·)∇. It means that if h̃ is our original GFF with law
dh, then under the measure (*), i.e. dh weighted by eγhε(z) = e−2πγ(h,∆−1ρzε )∇ , the
law of h̃ becomes h̃− γ2π∆−1ρzε . But this family of random variables converges in
law, as ε→ 0, to h̃− γ2π∆−1δz(·) = h̃+ γG(z, ·), where G(z, ·) is the usual Green
function on D and where we used properties shown in section 1.7. Consequently,
the measures Θε(dh|z) admits a weak ε→ 0 limit to a final measure, call it Θ(dh|z),
characterized by the just stated drifting property. On the other hand, dealing with
the second factor of the product, observe how it is given by Θz

ε (dz) which does not
depend on ε, allowing to define Θz(dz)

.
= Θz

ε (dz) and trivially obtain the weak
convergence Θz

ε (dz)→ Θz(dz).

As the title suggests, the goal of the current section is to define the following object:

Definition 2.3.1 (Rooted Probability Measure). We call Rooted probability measure
the probability measure on H−1(D)×D defined as Θ(dh, dz)

.
= Θ(dh|z)Θz(dz).

By using the other probability decomposition Θε(dhdz) = Θε(dz|h)Θh
ε (dh) it is pos-

sible to reach the same final result, since actually the measures Θε(dz|h) = µε(dz)
µε(D) weakly

converge to µ(dz)
µ(D) , and the same behavior happens for Θh

ε (dh) = Z−1µε(D)dh
ε→ 0−−−−→

Z−1µ(D)dh. There is therefore no problem in writing:

Θ(dh, dz) = Z−1µh(dz)dh

by using uniqueness of the limit. This result is remarkable, since by comparing the two
possible forms for Θ a very nice natural interpretation arises: to sample a GFF h and
then extract a point from the determined Liouville Quantum Gravity, is the same of
sampling a point according to (essentially) the Lebesgue measure and then extract a
shifted GFF.

It is possible to reveal more about the constant Z, as a result of the following pro-
positions.

Proposition 2.3.1 (An uniform integrability result). Let S ⊆ D measurable. Then the
random variables Mε = µε(S) are uniformly integrable as ε→ 0.

Proof. The proof makes use of the measure Θ (in the form here defined), but is rather
long, very specific and technical. We prefer to directly refer to [2] (pages 24,25,26).

Corollary 2.3.1 (Expectation of Liouville Quantum Gravity). Let S ⊆ D meas-

urable. Then we have Eh[µ(S)] =
∫
S R(z;D)

γ2

2 σ(dz)

Proof. From section 2.2 we know µε(S) → µ(S) in probability. Since we also have
uniform integrability, we deduce convergence in L1 (this is a standard theorem) and

so the claim because E[µε(S)] =
∫
S R(z;D)

γ2

2 σ(dz) by use Fubini on the equality

E[eγhε(z)] = (R(z;D)
ε )

γ2

2 recalled at the beginning of the section 2.3 before.
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And here there is a very nice consequence: the corollary implies that the value of

Z, that we recall to be the integral
∫
D R(z;D)

γ2

2 σ(dz), is actually exactly the gravity
expectation Eh[µh(D)]. For avoiding any kind of doubt, the author would like to stress
how µ(D) (the Liouville measure of the whole space) is not equal to 1: it is a.s. finite,
but we normalize it explicitly only when advantageous.

Summing up, all the results cam be patched together in claiming: the Rooted prob-
ability measure is the measure on H−1 ×D defined as

Θ(dh, dz) = E−1
h [µh(D)]µ(dz)dh

having then the following decompositions (deduced with the help of the ε-approximation):

z-marg:

Θz(dz) =
R(z;D)

γ2

2

Eh[µh(D)]
dz

h-marg:

Θh(dh) =
µh(D)

Eh[µh(D)]
dh

z-cond:

Θ(dh|z) =
eγh(z)∫

H−1 eγh(z)dh
dh

h-cond:

Θ(dz|h) =
µ(dz)

µ(D)

In the previous formulas, some terms must be intended to be a formal writing (like
the pointwise evaluation h(z)), but the work done makes everything completely math-
ematically meaningful and avoid any kind of ambiguity. Consequently, as a result of
their severe construction, these formulas can now be used as the intuition suggests and
we can peacefully proceed.

Let Ah be a random subset of D, i.e. a random variable such that a.s. for each
ω ∈ Ω, Ah(ω)(ω) ⊆ D is measurable (not important in which way this random variable
is distributed, the only things we require is the a.s. mapping into measurable subsets).
We will have a concrete example soon, but for the moment we focus on a preliminary
useful lemma:

Lemma 2.3.1 (Mean proportionality). Θ({(h, z) : h ∈ H−1, z ∈ Ah}) = Z−1Eh[µh(z ∈
Ah)].

Proof. For simplicity we still use the symbol Z and we proceed by using the formulas
above: Θ({(h, z) : h ∈ H−1, z ∈ Ah}) =

∫
H−1 Θ({(h, z) : h ∈ H−1, z ∈ Ah}|h)Θh(dh) =

=
∫
H−1 Z

−1µh(Ah)dh = Z−1Eh[µh(Ah)] as claimed.
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Finally, it’s time to introduce and prove a statement concerning thick points, i.e.
points around which circle averages behave in a controlled way. It’s here that all the
results done reveal a great power.

Definition 2.3.2 (Thick points). Let α > 0. A point z ∈ D is said to be α-thick w.r.t.

a GFF realization h = h̃(ω) iff limε→0
h̃ε(z)(ω)
− log ε = α.

We define various different subsets like Tα(ω) = {z ∈ D : z is α-thick w.r.t. h̃(ω)}
or Th

α = {z ∈ D : z is α-thick w.r.t. h} or also Tz
α = {h ∈ H−1 : z is α-thick w.r.t.

h} that will be used according the necessity. Recall γ ∈ [0, 2) to be the constant in the
LQG definition, and consider the subset {(h, z) : h ∈ H−1, z ∈ Th

γ} ⊆ H−1 ×D.

Proposition 2.3.2. γ-thick points are Θ-everywhere: Θ({(h, z) : h ∈ H−1, z ∈ Th
γ}) =

1.

Proof. We have that Θ({(h, z) : h ∈ H−1, z ∈ Th
γ}) = Θ({(h, z) : z ∈ D,h ∈ Tz

γ}) =∫
D Θ({(h, z) : z ∈ D,h ∈ Tz

γ}|z)Θz(dz) =
∫
D Θz(dz) = 1 since Θ({(h, z) : z ∈ D,h ∈

Tz
γ}|z) = 1 thanks to the reasoning explained in the following lines.

Under the probability measure Θ(dh|z), if h is a realization of our original GFF, its
law is updated into h+ γG(z, ·) and so for concluding the proof, we have then to check
the limit for this shifted law. By taking the scalar product, circle averages have now law
hε(z)− 2πγ(G(z, ·),∆−1ρzε )∇, but by using exactly the same computation that we have
already done in section 1.8, when we studied circle averages and V ar[hε(z)], we know
that the second part of the formula equals γ(− log ε + R(z;D)). In other words, under
this probability measure our limit becomes

lim
ε→0

hε(z)− γ log ε+ γR(z;D)

− log ε
= lim

ε→0

hε(z)

− log ε
+ γ = lim

t→∞

he−t(z)

t
+ γ = γ

recalling that after the time change ε = e−t circle averages behaves like a Brownian
Motion (section 1.9).

This results implies that LQG is actually supported by thick points.

Proposition 2.3.3 (LQG lives on think points). γ-Liouville Quantum Gravity is sup-
ported by the set of γ-thick points, i.e. µh̃(ω)(Tγ(ω)) = µh̃(ω)(D) a.s. for every ω ∈ Ω.

Proof. From lemma 2.3.1 and the theorem above, we obtain 1 = Z−1Eh[µh(T hγ )] which

implies Z = Eh[µh(T hγ )]. By using the explicit form of Z, we have Eh[µh(D)] =

Eh[µh(T hγ )] and so the claim by using positivity of both integrands.

Proposition 2.3.4 (The set of think points is a fractal). We have dim(Tγ) = (2− γ2

2 )
a.s., where the dimension is intended to be Hausdorff. Furthermore, the set Tγ is empty
for γ > 2.

Proof. This is a long work cited in [3].
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In other words, we discovered how Liouville Quantum Gravity lives almost surely on
a fractal-shaped space 1. This surely happens for every γ ∈ [0, 2), coherently with our
construction. It is natural to ask what about other setting: the case γ = 2 is considered
to be the critical one, while for higher values LQG is believed to collapse to the zero
measure because there are no more thick points that can support the gravity.

2.4 Approximation of µ as limit of µN

As usual, we assume to have µ a Liouville Quantum Gravity on a standard2 subset
D ⊆ C. The goal of this section is to prove how µ can be approximated with a new fam-
ily of measures µN that we are going to introduce. This fact is remarkable because, while
the convergence of µε is useful mainly for proving the LQG existence, this alternative
approach will help for understanding other properties, for instance how to deal with con-

formal changes of coordinates. Recall that we defined the measure σ(dz) = R(z;D)
γ2

2 dz,

and that if X is a centered Gaussian, then we have E[eγX−
γ2

2
V ar[X]] = 1 by an immediate

application of what studied in section 1.3.

Definition 2.4.1 (the family {µN}N∈N). For eachN ∈ N, we define the random measure
µN (dz) as:

µN (S)
.
=

∫
S

exp(γhN (z)− γ2

2
VarhN (z))σ(dz)

for each Borel measurable set S ⊆ D. Due to positivity the integral always exists, and
since D is bounded normalization into a probability measure is guaranteed.

Theorem 2.4.1 (Convergence µN → µ). The measure µ is the almost surely weak limit
of µN , i.e. for each S ⊆ D measurable, a.s. for each ω ∈ Ω, µN (S)(ω) → µ(S)(ω) as
N →∞.

Proof. The proof of this theorem is subdivided into many steps.

Step0 : Definition of µ∗

Let S ⊆ D a Borel measurable subset. Recall by definition that hN (z) =
∑N

i=1 αifi(z)
where αi are i.i.d ∼ N(0, 1) and {fi}i∈N is a basis for H(D). Define the filtra-
tion FN

.
= σ(αN ). Then hN is a martingale w.r.t FN , and the same holds for

eγh
N− γ

2

2
VarhN . The latter is usually called the exponential martingale, and the

required properties are clear via short routine computations. If we now consider

the integral µN (S) =
∫
S e

γhN (z)− γ
2

2
VarhN (z)σ(dz), it continues to be a martingale

thanks to Fubini’s theorem. Consequently since the family µN (S) is non-negative,
it must admit an almost surely limit N → ∞ as stated by the usual Martingale
Convergence Theorem. We call this limit µ∗(S). Observe that, in other words
what remains to prove is just the almost surely equality µ∗(S) = µ(S).

1in the literature the word ”fractal” seems to be referred to spaces with non-integer Hausdorff measure,
differently from other formal definitions when further properties are usually required.

2more precisely, to be open, bounded and with smooth boundary is enough.
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Step1 : Varhε(z) = Varh′ε(z) + VarhNε (z)

We define h′ε(z) = hε(z) − hNε (z). Intuitively speaking, h′ε(z) is the usual series
starting from the index N + 1 rather than 0. We need to prove it well: let’s define
hN<m≤kε (z)

.
=
∑k

m>N αi(fi, ρ
z
ε ) for k enough large. Recall that we have the limit

hkε (z)
k→∞−−−→ hε(z) both a.s. and in L2(P) (it’s the Martingale Convergence The-

orem for the L2 case). By rewriting hkε (z) = hNε (z) + hN<m≤kε (z) and taking the
limit, we formally obtain h′ε(z) = hε(z)−hNε (z) = limk→∞ h

N<m≤k
ε (z) as intuitively

expected. We are interested in knowing more about the variance. Starting from
hε(z) = hNε (z) + h′ε(z) we have: V ar[hε(z)] = V ar[hNε (z) + h′ε(z)] = V ar[hNε (z) +
limk→∞ h

N<m≤k
ε (z)]. Since the previous convergence happens also in L2, and

since we sum over a finite number of independent Gaussians (and so the variance
”splits”), it’s equal to limk→∞[V arhNε (z) + V arhN<m≤kε (z)]. Finally, this term
is the same of V ar[hNε (z)] + limk→∞ V ar[h

N<m≤k
ε (z)] = V ar[hNε (z)] + V ar[h′ε(z)]

again by using the convergence in L2(P), concluding Step1.

Step2 : More information about E[µε(S)|FN ]

By definition:

µε(S) =

∫
S
eγhε(z)−

γ2

2
Varhε(z)σ(dz) =

∫
S
eγh

N
ε (z)− γ

2

2
VarhNε (z)eγh

′
ε−

γ2

2
Varh

′
ε(z)σ(dz)

where the equality is justified by the splitting proved in the section before. Take
now the conditional expectation E[·|FN ] on both sides. By using: Fubini (surely
working due to the integrands positivity), the independence of h′ w.r.t FN and the
measurability of hN w.r.t. FN (both immediate by construction) we obtain:

E[µε(S)|FN ] =

∫
S
eγh

N
ε (z)− γ

2

2
VarhNε (z)E[eγh

′
ε−

γ2

2
Varh

′
ε(z)]σ(dz)

and the term under the expectation is equal to 1 thanks to the observation before
definition 2.4.1. We can finally conclude this section with the equality:

E[µε(S)|FN ] =

∫
S
eγh

N
ε (z)− γ

2

2
VarhNε (z)σ(dz)

Step3 : Taking the limit for ε→ 0.

We already know (proved at the end of the previous chapter), that hNε (z)→ hN (z)
a.s. as ε → 0 (note that the limit is w.r.t ε, not N). We check now that such a
convergence happens also in L2(Ω). Indeed |hNε (z)| = |

∑N
i=1 αi

∫
fi(y)ρzε (dy)| ≤

K
∑N

i=1 |αi|, where since each fi ∈ C∞c (D) we can bound |fi| ≤ Ki and choose K
.
=

maxKi. Finally, since K
∑N

i=1 |αi| is in L2(Ω) we conclude by using the dominated
convergence theorem. In particular, what we deduce is that VarhNε (z)→ VarhN (z)
as ε→ 0 , very important for concluding that:

eγh
N
ε (z)− γ

2

2
VarhNε (z) → eγh

N (z)− γ
2

2
VarhN (z)

as ε→ 0.
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Step 4 : The convergence holds also in L1(S, σ(dz))

In this section we show how the convergence in the previous line happens also in

L1(S, σ(dz)). Set φε
.
= eγh

N
ε (z)− γ

2

2
VarhNε (z), and φ

.
= eγh

N (z)− γ
2

2
VarhN (z). For this

purpose we define µNε (S) =
∫
S φ(z)σ(dz) (completely coherent with the notation

before), consequently what we claim is that the family µNε (S) a.s. converges to
µN (S). But we already know a more general property, i.e. that µε(S) → µ(S)
and so by adapting the previous reasoning (but truncating the series rather than
considering the limit) we can obtain the needed property.

Step 5 : Use Fatou’s lemma in our two different limits.

All the steps done lead a very remarkable property: limε→0 E[µε(S)|FN ] = µN (S)
(compare 2+4). By using Fatou on this approximation we see:

lim
ε→0

E[µε(S)|FN ] ≥ E[lim
ε→0

µε(S)|FN ]

implying
µN (S) ≥ E[µ(S)|FN ]

Taking now the limit N → ∞ to both sides and by using F∞ measurability of
µ(S) (clear by construction), we deduce a first key inequality: µ∗(S) ≥ µ(S). Let’s
prove the other way around. The idea is to use Fatou again, but rather on the
other (almost surely) limit µN (S)→ µ∗(S). By definition

E[µ∗(S)] = E[ lim
N→∞

µN (S)] ≤ lim
N→∞

E[µN (S)] =

∫
S
R(z,D)

γ2

2 σ(dz)

A very crucial point is that he last quantity is exactly the same as E[µ(S)] as shown
in the section 2.3 and so, since µ∗(S) − µ(S) ≥ 0, the only possibility is to have
µ∗(S) = µ(S) a.s.

A concrete useful consequence of this theorem is explained in the following corollary.

Corollary 2.4.1 (Conditional expectation of LQG). For each n ∈ N, A ⊆ D measurable,
we have E[µ(A)|hN ] = µN (A).

Proof. Since in the previous proof we checked µ∗ = µ, it suffices to verify E[µ∗(A)|hN ] =
µN (A). But the property E[µ∗(A)|FN ] = µN (A) is a standard well-known fact in mar-
tingale theory, and since FN = σ(hN ) the claim follows.

This corollary can be used for computing conditional expectation w.r.t. other ran-
dom variables. Recall that we have hN =

∑N
i=1 αifi =

∑N
i=1(h, fi)∇fi by construction of

h and continuity (see section 1.4). Let Y be a random variable and suppose we are inter-
ested in the random quantity E[µ(A)|Y ]. This problem can be solved by finding (when
possible) a g1 ∈ H(D) s.t. Y = (h, g1)∇g1 and (choosing N = 1 and assuming WLOG
g1 to be normalized) using the just studied corollary: E[µ(A)|Y ] = E[µ(A)|(h, g1)∇g1] =

E[µ(A)|h1] = µ1(A), where now µ1(A) =
∫
A e

γY (z)− γ
2

2
V arY (z)σ(dz) is a quantity that

can be explicitly computed.
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2.5 Random surfaces and conformal covariance

In this section we study how LQG behaves w.r.t conformal change of coordinates, al-
lowing finally a formal definition of random surface. Recall that we call a subset D ⊆ C
to be a standard set if bounded, open, simply connected and with smooth boundary.
We have already worked and introduced this notion (section 1.1), but we recall it here
for sake of clarification3.

Proposition 2.5.1 (conformal covariance of LQG). Let D̃,D ⊆ C two standard subsets
of the plane. Let h be a GFF on D, ψ : D̃ → D a conformal map. Let h̃ be the (random)
distribution on D̃ given by h̃ = h ◦ ψ + Qlog|ψ′|, where Q = 2

γ + γ
2 . Then, ∀Ã ⊆ D̃

measurable, µh̃(Ã) = µh(ψ(Ã))

Remark 2.5.1. Note how it is generally not true ”µh◦ψ(Ã) = µh(ψ(Ã))”, a property
that would have been called conformal invariance.

Remark 2.5.2. We know well that given a GFF, it is possible to construct a LQG.
But what happens if the GFF is perturbed by a deterministic function, as in the case
of h̃? There are definitely no problems at all, and the random measure µh̃ is defined as
the intuition suggests. Indeed, all the computation and properties studied before hold
exactly in the same way.

Proof. Thanks to the previous section we know:

µh(ψ(Ã)) = lim
N→∞

µNh (ψ(Ã))

where:

µNh (ψ(Ã)) =

∫
ψ(Ã)

eγh
N (z)− γ

2

2
VarhN (z)R(z;D)

γ2

2 dz

(for this proof it is better to write the measure σ(dz) = R(z;D)
γ2

2 dz explicitly). Consider
now the change of variables z̃ = ψ−1(z). By using properties of the conformal radius

(section 1.1) we see that the term R(z;D)
γ2

2 dz becomes:

R(z̃; D̃)
γ2

2 |γ′(z̃)|
γ2

2 |γ′(z̃)|2dz̃ = R(z̃; D̃)
γ2

2 |γ′(z̃)|γQ

On the other hand, the exponential term is replaced by:

eγh
N (ψ(z̃))− γ

2

2
VarhN (ψ(z̃)) = eγ(h◦ψ)N (z̃)− γ

2

2
Var(h◦ψ)N (z̃)

by using the conformal change of variables for Gaussian Free Fields (section 1.5). Fur-
thermore:

Var(h ◦ ψ)N (z̃) = Var((h ◦ ψ)N (z̃) +Qlog|ψ′(z̃)|) = Varh̃N (z̃)

3technically, not all the hypothesis are truly needed, but they help to avoid too long discussions.
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where the former equality holds since the variance of a random variable does not change
by adding a deterministic function, while the latter follows directly from the definition
of h̃. By patching these results all together we obtain:

µNh (ψ(Ã)) =

∫
Ã
eγ[(h◦ψ+Qlog|ψ′|)(z̃)]− γ

2

2
Var[(h◦ψ+Qlog|ψ′|)N (z̃)]R(z̃; D̃)

γ2

2 dz̃

But the last term, directly by definition of h̃, is actually the same of:∫
A
eγh̃

N (z̃)+ γ2

2
Varh̃N (z̃)R(z̃, D̃)

γ2

2 dz̃ = µN
h̃

(Ã)

In other words, we have:
µNh (ψ(Ã)) = µN

h̃
(Ã)

for each N ∈ N and so the claim follows by taking the limit N →∞.

We consider now all the pairs (D,h) where D ⊆ C is standard and h is a GFF on D.
On this set, we consider the relation: (D1, h1) ∼ (D2, h2) iff ∃f : D1 → D2 conformal
such that h1 = h2 ◦ f +Qlog|f ′|.

Proposition 2.5.2. The previous is actually an equivalence relation.

Proof. For reflexivity, it’s enough to choose f = Id. Concerning symmetry, it can be
checked by using f−1. Indeed, if h1 = h2 ◦f+Qlog|f ′|, then h1 ◦f−1 = h2−Qlog|(f−1)′|
by using the derivative of the inverse function. Finally, transitivity is proved, as the
intuition suggests, via the usual composition. Indeed, if (D1, h1) ∼ (D2, h2) via f , and
(D2, h2) ∼ (D3, h3) via g, then h1 = h2 ◦ f + Qlog|f ′| and h2 = h3 ◦ g + Qlog|g′|.
Consequently h1 = h3 ◦ g ◦ f +Qlog|g′(f)|+Qlog|f ′| = h3 ◦ g ◦ f +Qlog|(g ◦ f)′|.

Definition 2.5.1 (Random Surface). A couple (D, f) considered up to the previous
equivalence class is called a random surface.

Directly by construction and by using the conformal covariance just proved, it is clear
that on every random surface the notion of Liouville Quantum Gravity is well-defined.
According to [3], very interesting examples arise by ”zooming” near appropriate sampled
points, as in the case of quantum cones or quantum wedges, actually not included in this
master’s thesis.

The work done here concludes the second chapter, where the author hopes to have
given a good overview of Liouville Quantum Gravity and related concepts like thick
points, conformal covariance and the notion of random surface. Let X be a subset of D.
A very natural question that arises is the following one: what is the ”difference” between
X seen from the euclidean metric, and X from the LQG-viewpoint? How does X change
under the influence of gravity? In the next chapter we are going to investigate a geometric
property concerning this problem and offer an answer known as ”KPZ relation”.
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Chapter 3

KPZ relation

3.1 Expected quantum areas

In order to reach the final KPZ relation, we would like to increase our knowledge about
”quantum balls” (the definition will be given later), but in particular to know more
about expected quantum areas of euclidean balls will be of great help.

Let’s fix z ∈ D and 0 < ε < ε0 s.t. Bε0(z) ⊆ D, Q = γ
2 + 2

γ . We want to efficiently
compute E[µh(Bε(z))|hε(z)− hε0(z)] and we try to reach this goal by using the strategy
explained at the end of section 2.4. Therefore we need a good function as g1, and for this
purpose define/recall ξzε (y)

.
= −2π∆−1ρzε (y). By doing explicit computations exactly in

the same style of the variance estimation, section 1.9 we obtain ‖ξzε ‖
2
∇ = (ξzε , ξ

z
ε )∇ = ξzε (z)

and (ξzε , ξ
z
ε0)∇ = ξzεo(z) from which one can deduces

∥∥ξzε − ξzε0∥∥2
= − log (ε/ε0). The

interest on this arises from the choice g1(y)
.
=

ξzε (y)−ξzε0 (y)

‖ξzε−ξzε0‖
2 , which implies:

h1(y) = (h, g1)∇g1(y) = (hε(z)− hε0(z))
(ξzε − ξzε0)(y)

− log ε/ε0

and

V arh1(y) =
(ξzε − ξzε0)2(y)

− log (ε/ε0)

from the fact that V ar[hε(z)− hε0(z)] = − log (ε/ε0).
Since the final measured set is Bε(z), we can safely assume to work with points y

inside such a ball, so both the formulas strongly simplify into h1(y) = hε(z) − hε0(z)
and V arh1(y) = − log (ε/ε0) thanks to spatial properties of ξzε (y) − ξzε0(y) for the case
y ∈ Bε(z). Indeed, we know that ξzε (y) − ξzε0(y) = ... exactly 0 when ε0 ≤ |y − z|, the

quantity − log |y−z|ε0
for ε ≤ |y− z| ≤ ε0 and finally − log ε/ε0 for the case 0 ≤ |y− z| ≤ ε

(as seen, it’s essentially the mean value theorem for harmonic functions). By computing
µ1(dy) as described in section 2.5, for our case y ∈ Bε(z) we obtain

µ1(dy) = µ0(dy)(
ε

ε0
)
γ2

2 eγ(hε(z)−hε0 (z))
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where µ0(dy)
.
= [R(y;D)]

γ2

2 dy (not to be confused with µ0, symbol that we’ll usually
use for the Lebesgue measure). In order to make the notation still more compact we

introduce [Rε(z;D)]
γ2

2
.
= µ0(Bε(z))

µ0(Bε(z))

.
= 1

πε2

∫
Bε(z)

[R(y;D)]
γ2

2
dydy.

In such a way (mean value theorem) limε→0Rε(z;D) = R(z;D). In other words we
proved the following proposition:

Proposition 3.1.1 (Expected quantum area given circle averages differences). Let z ∈
D, 0 < ε < ε0 s.t. Bε0(z) ⊆ D. Then

E[µ(Bε(z))|hε(z)− hε0(z)] = µ1(Bε(z))

where µ1(Bε(z)) = πεγQ(Rε(z;D)
ε0

)
γ2

2 exp(γ(hε(z)− hε0(z)) and, as always, Q = γ
2 + 2

γ .

We continue with a very similar reasoning as before, but on the quantity E[µh(Bε(z))|hε(z)]
instead. This variable has actually a more important role: in principle we could have
started directly from this case, but the example before strongly helps in understanding
the underlying technique.

This time we select g̃1(y)
.
= ξzε (y)
‖ξzε ‖∇

and since ‖ξzε ‖
2
∇ = (ξzε , ξ

z
ε )∇ = ξzε (z) we ob-

tain h̃1(y) = hε(z)
ξzε (y)
ξzε (z) . By using the already studied equality V arhε(z) = ξzε (z) =

− log (ε/R(z;D)), we deduce V arh̃1(y) = V arhε(z)(
ξzε (y)
ξzε (z) )2 = (ξzε (y))2

ξzε (z) .

The next step is to compute the quantity µ̃1(dy) = exp(γh̃1(y) − γ2

2 V arh̃
1(y) +

γ2

2 logR(y;D))dy. Differently from before, a good approximation is much longer (but not
deep) to achieve, and for sake of simplicity we prefer to leave the computation directly to
the reference [2] in favor of going directly to the point. This is: µ̃1(Bε(z)) ' µ�(Bε(z))
where ' means that the limit ε → 0 of their ratio tends to 1. The object µ� (which is
not required to be a measure) is defined as µ�(Bε(z))

.
= πεγQeγhε(z). In other words,

the following claim holds:

Proposition 3.1.2 (Expected quantum area given circle averages). Let z ∈ D, 0 < ε
s.t. Bε(z) ⊆ D. Then

E[µ(Bε(z))|hε(z)] ' πεγQeγhε(z)

where Q = γ
2 + 2

γ .

Note that the quantity µ� can also be used for reformulating the approximation

appearing in the first case: µ1(Bε(z)) = πε20Rε(z;D)
γ2

2
µ�(Bε(z))
µ�(Bε0 (z)) .

Moreover if we define (for ε ≤ ε0):

t
.
= − log(ε/ε0)

and
Vt

.
= hε(z)− hε0(z)

we can rewrite both the area expectations as

E[µ(Bε(z))|hε(z)− hε0(z)] = µ1(Bε(z)) = πε20Rε(z;D)eγVt−γQt
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and
E[µ(Bε(z))|hε(z)] ' µ�(Bε(z)) = µ�(Bε0(z))eγVt−γQt

In other words, see how both the expressions are product of two parts. The first
has not any deep consequence, but the key lies on the fact that the second factors are
exactly the same, and they are exponential of drifted Brownian motions independent of
the point z. This independence will play an important role soon (in the next section,
it is beyond the shift from Θ(dh|z) to Θ). In few words, the moral of this section is:
expected quantum areas w.r.t. circle averages are governed by Brownian motions.

3.2 A weak KPZ formula

This section starts with a new definition motivated by the construction done before.
As sometimes implicitly done before, if there is a quantity depending on many random
variables A,B, ..., we put subscripts on E, like EA for stressing w.r.t. which variable the
expectation is taken. As usual, the symbol µ0 refers to Lebesgue measure, i.e. Liouville
Quantum Gravity when γ = 0.

Definition 3.2.1 (Tilde-balls). We indicate with B̃δ(z) the random Euclidean ball
centered in z with radius e−TA , where A

.
= − logδ

γ and TA
.
= inf{t : −Vt + Qt = A}.

In other words, this is the largest z-centered euclidean ball contained in D for which
eγVt−γQt = δ.

Since the following will frequently appear it is convenient to define:

Definition 3.2.2 (KPZ relation for reals). Let α, β non-negative real numbers. We say

that they satisfy the KPZ relation iff α = γ2

4 β
2 +(1− γ2

4 )β. In such a case, we just write
KPZ(α, β). The quantity γ is intended to be the coefficient in [0, 2) appearing in the
LQG definition.

The just introduced Tilde balls are interesting since they allow to derive a ”weak”
version of the KPZ formula:

Theorem 3.2.1 (weak KPZ formula). Let X be a (possibly random) measurable
subset of D. Fix γ ∈ [0, 2), and let µ be a LQG on D. Suppose X and µ to be
independent. Then if we have:

lim
ε→0

logEX [µ0{z ∈ D : Bε(z) ∩X 6= ∅}]
log ε2

= x

then it follows that:

lim
δ→0

logEX,h[µh{z ∈ D : B̃δ(z) ∩X 6= ∅}]
log δ

= ∆

where KPZ(x,∆) is satisfied.
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Proof. The core quantity in the theorem is surely Eh[µh{z ∈ D : B̃δ(z) ∩X 6= ∅}]. Pro-
position 2.3.1 suggests the proportionality Eh[µh{z ∈ D : B̃δ(z)∩X 6= ∅}] = ZΘ{(z, h) :
B̃δ(z) ∩ X 6= ∅}, which means that by changing our working measure to Θ, we can
replace an expectation computation with a probability one.

Consider for the moment the conditioned measure Θ(dh|z). We already know that
under such a measure, original circle averages have now the law of hε(z) − γ(log ε −
R(z;D)) consequently the process Vt = hε(z)−hε0(z) is now in law equivalent to hε(z)−
hε0(z) − γ(log ( εε0 )) = Vt + γt since t was originally defined as t = − log ( εε0 ). All these
computations mean that under the probability measure Θ(dh|z) the law TA becomes the
same as TA = inf{t : Bt + at = A} where Bt is a standard Brownian motion in Θ(dh|z)
and a = Q − γ > 0. But since it happens independently on z ∈ D, the law of TA is
preserved if we work under the full unconditioned measure Θ(dhdz), and so we do.

Going further, by replacing ε = eTA in the assumed euclidean limit, we obtain

lim
TA→∞

logEX [µ0{z ∈ D : B̃δ(z) ∩X 6= ∅}]
−2TA

= x

so we deduce EX [µ0{z ∈ D : B̃δ(z) ∩X 6= ∅}] ' exp(−2xTA), in the sense that the
ratio of the log of these quantities tends to 1 as TA →∞.

Define now the quantity qA
.
= Θ{(h, z) : Be−TA (z) = B̃δ(z) ∩ X 6= ∅}, representing

the probability that tilde-balls hit the set X. But since these sets are governed by a
Brownian motion, whose related hitting time is in the definition of TA, it is possible to
approximate EX [qA] ' E[exp(−2xTA)], and actually this is the only step in which not
all details are specified; the author apologizes for this, and in case of big issues suggests
to relay on the main source [2].

The next move is to alternatively compute E[exp(−2xTA)] by using a classic stopping

time argument. Choose β as positive solution to 2x = βa+ β2

2 . For each t < TA we have
Bt+at ≤ A and so the exponential martingale exp(βBt−β2 t

2) is bounded by a constant

since the same happens for its exponent βBt − β2 t
2 ≤ βA − (βa + β2

2 )t ≤ βA. Since
δ can be chosen small enough to have A > 0, and since is the drift a > 0, the hitting
time is almost surely finite; so we use optimal sampling obtaining 1 = E[exp(βBTA −
β2 TA

2 )] = E[exp(−TA(aβ + β2

2 ) + Aβ)] since BTA + TAa = A, but the latest equality
implies, by recalling the relation between x and β, E[exp(−2TAx)] = exp(−Aβ). On

the other hand A = − log δ
γ and so exp(−Aβ) = δ

β
γ . Setting now ∆ = β

γ we deduce:

E[exp(−2xTA)] = δ∆.
The conclusion comes now naturally by direct computation:

lim
δ→0

logEX,h[µh{z ∈ D : B̃δ(z) ∩X 6= ∅}]
log δ

= lim
δ→0

logZEXΘ{(h, z) : B̃δ(z) ∩X 6= ∅}
log δ

=

= 0 + lim
δ→0

logEXΘ{(h, z) : B̃δ(z) ∩X 6= ∅}
log δ

= lim
δ→0

logEX [qA]

log δ
=
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= lim
δ→0

logE[exp(−2xTA)]

log δ
= lim

δ→0

log δ∆

log δ
= ∆

.
Finally, the property KPZ(x,∆) follows immediately by construction.

Before concluding this section, we would like to underline a key intuition learned
during the proof: very roughly speaking, for sets governed by Brownian motions (Tilde-
balls in this case), a KPZ relation seems reasonable to be expected.

3.3 KPZ relation: intuition

In this chapter we comment a final important result known as ”KPZ relation”, discovered
by Knizhnik, Polyakov and Zamolodchikov in the late ’80 in the Physics context of
conformal field theory. It is very close to the theorem explored in the section before,
except that instead of Tilde balls B̃δ(z) we use:

Definition 3.3.1 (Quantum balls). Let z ∈ D. We define Bδ(z) the quantum ball
of area δ, centered in z, as the euclidean ball Bε(z) with random radius ε = sup{k :
µ(Bk(z)) ≤ δ}. Observe that for the deterministic (Lebesgue) case γ = 0, we have
Bδ(z) = Bε(z) where δ = πε2.

Before introducing the main theorem it is nice to underline some geometrical intu-
ition. As always µ0 indicates the Lebesgue measure. For the whole section, we assume
the set X ⊆ D to be possibly random (it is not relevant according to which distribution),
always measurable and independent of the quantum gravity µ. We say that:

Definition 3.3.2 (Euclidean Scaling Exponent). The set X has euclidean scaling expo-
nent x, abbreviated with ESE(X) = x iff :

lim
ε→0

logEX [µ0{z ∈ D : Bε(z) ∩X 6= ∅}]
log ε2

= x

There is of course the quantum counterpart.

Definition 3.3.3 (Quantum Scaling Exponent). The set X ⊂ D has quantum scaling
exponent ∆, abbreviated with QSE(X) = ∆ iff it realizes the same limit in the setting
of Liouville:

lim
δ→0

logEX,µ[µh{z ∈ D : Bδ(z) ∩X 6= ∅}]
log δ

= ∆

Note how in the first limit the denominator refers to the area of an euclidean ball
Bε, evolving like ε2, while in the second it refers to δ, i.e. by construction the area
of quantum balls. Said that, the full KPZ formula can be simply interpreted as a
statement like ”ESE(X) = x =⇒ QSE(X) = ∆”, where x and ∆ are forced to respect
the KPZ formula introduced in the section before. It is therefore a relationship between
a geometric property of in the euclidean setting and a similar one under the influence
of gravity.
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Theorem 3.3.1 (Final theorem: KPZ relation for Liouville Quantum Gravity).
Let D ⊆ C a bounded, open subset with smooth boundary. Let γ ∈ [0, 2), and µ be the
Liouville Quantum Gravity associated to γ. If D̃ be a compact subset of D and X is a
(possibly random, but independent of µ) subset of D, the following equation holds:

ESE(X ∩ D̃) = x =⇒ QSE(X ∩ D̃) = ∆,KPZ(x,∆)

The proof of this theorem is reasonably long, consequently for the moment we briefly
give an intuitive idea of the used strategy, and try to fill in more details and explanations
in the next section.

Intuition. It is reasonable to follow the same pattern of what described in the section
before (”weak KPZ formula”), except for one important step. Indeed, if it is possible to
repeat such a proof in almost every detail, one must be careful because the quantum balls
Bδ(z) behave differently from the Brownian ones B̃δ(z). But on the other hand, Bδ(z)
can be approximated by the balls B̃δ(z), making so possible to reduce to the previous case
and concluding the proof (the compact set D̃ is required at this approximation stage).
Let’s try to understand why we could expect such an approximation. The key point is in
the fact that B̃δ(z) are quantities governed by a Brownian motion. Consequently, if we
managed to find a similar property for the quantum balls Bδ(z) too, it would be at least
reasonable to expect that. By definition, Bδ(z) strongly depends on µ(Bε(z)); on the
other hand (we’ll see how) such a quantity is very close to E[µ(Bε(z))|hε(z)]. But the
last entity is approximated by µ�(Bε(z)) (as studied in section 3.1). Since, as previously
pointed out, these are random variables strongly governed by a Brownian motion, the
reasoning actually finds a nice logical conclusion.

3.4 KPZ relation: more proofs

The aim of this section is to give a formal proof of theorem 3.3.1. The author must
apologize because not every detail is carefully explained (so almost all the proofs have
to be considered ”partial”), but the reached compromise is surely helpful for filling in
anyway a lot of skipped steps in the given references and for strengthening many intuitive
ideas. We start with some preliminary lemmas:

Lemma 3.4.1 (logLQG admits exponential tail). Let D = D = B1(0) be the unit disc
and fix γ ∈ [0, 2). Let µ = eγh(z)dz be the Liouville Quantum Gravity as before. Then
the real-valued random variable A = log µ(B 1

2
(0)) admits a superexponential decay.

More precisely, PA(η)
.
= P[A < η] < e−Cη

2
for some fixed constant C and sufficiently

negative values of η.

Proof (partial). The proof is based on a domain subdivision that will allow, at the end,
to use a recursive strategy. Let h′ be the projection of h onto the space Harm[B 1

4
(1

4) ∩
B 1

4
(−1

4)] of distributions on D which are harmonic when restricted on the union above.

By using the Spatial Markov Property (section 1.6 ) it is known its complementary to
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be H(B 1
4
(1

4) ∩ B 1
4
(−1

4)), i.e. the usual Sobolev space but with the two discs rather

than ”D”. Consequently h − h′ has the law of a Gaussian Free Field. More precisely,
h−h′ = h+ +h− where the former is a GFF on B1/4(1/4) and the latter on B1/4(−1/4).
They are independent by using the Markov property again.

Let’s define B−
.
= B 1

8
(−1/4), B+

.
= B 1

8
(1/4) and the real-valued random variable

h̄ : ω 7→ infρ∈C∞c (B−)∪C∞c (B+)(h
′(ω), ρ). In other words, h̄ is the inf of h′ over the union

of B+ and B− (being h′ a random distribution on the full set D, the evaluation (h′(ω), ρ)
is completely meaningful).

Note the existence of conformal functions Γ+ : B 1
4
(1/4) → D , z 7→ 4z − 1 and

Γ− : B 1
4
(−1/4) → D, z 7→ 4z + 1 mapping exactly B− and B+ to B1/2(0), respectively

(where the last is the quantity in the lemma’s description).
Define so A−

.
= logµh−h′(B−) and A+

.
= logµh−h′(B+). We would like to establish

a relation between the original case ”A” and the described quantities. The solution is to
use LQG conformal covariance (see section 2.5) with maps Γ+ and Γ−, obtaining directly
µ(B1/2(0)) = µh−h′(B−)eγQ log 4 which implies A = A−+γQ log 4 and A = A+ +γQ log 4
by taking the logarithm on both sides. The described equations represents the first key
point of the proof.

Another important step is given by the upcoming inequality. Since B1/2(0) ⊇
B1/8(1/4) = B+ we have:

µh(B1/2(0)) ≥ µh(B+) =

∫
B+

eγh(z)dz
?
≥ eγh̄

∫
B+

eγ(h−h′)(z)dz = eγh̄µh−h′(B+)

where the step (?) needs a lot of attention. It would be spontaneous just to write
eγh(z) = eγ(h−h′)(z)eh

′(z) and then use the fact that h̄ ≤ h′, but the object ”h′(z)”
doesn’t actually exist! Recall that h′ is only a random distribution (a generic one, not
necessarily a GFF) and so there is no way to evaluate it punctually. This problem
doesn’t hold for (h− h′)(z), since (as seen) it has the law of a Gaussian Free Field.

To imitate the circle average technique helps in solving this issue. Let ρzε be the
normalized mass on ∂Bε(z). As well as Gaussians converges in distribution to Dirac
deltas, we can choose a family {ψn}n∈N of test functions converging to ρzε (think about
”bumps around the circle”). It’s consequently completely legitimate to write (h, ψn) =
(h − h′, ψn) + (h′, ψn) ≥ (h − h′, ψn) + h̄ since, by construction, h̄ ≤ (h′, ψn) for each
n ∈ N. By taking the limit n→∞ we obtain (h, ρzε ) ≥ (h−h′, ρzε ) + h̄, where everything
is justified by the same reasoning that is beyond proposition 1.8.2, where the main idea
(omitted in this work, but available from the reference [3]), is that when a measure is
Greenian (like ρzε ∈M), approximations with test functions are carried on with Gaussian
Free Field. At this point, circle averages allow to define respectively approximations µε
leading to the final desired inequality. Since by definition A+ = logµh−h′(B+) (and the
same with B−), we obtain A ≥ A+ + γh̄ and A ≥ A− + γh̄.

Summing up, in this first half of the proof we deduced:

� Property (∗): A− = A+ = γQ log 4−A
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� Property (∗∗): A ≥ max{A+, A−}+ γh̄

where the equalities must be intended to be in law. For reason of time we do not
manage to cover in details the second part of the proof, but we think it is very worthy to
intuitively understand why these formulas are useful and how the final claim can follow.

The strategy can be described as, first of all, use harmonicity of h̄ for showing that it
admits a superexponential decay. Then it can be shown how for a specific value, say η0,
the exponential inequality holds for PA(η0), too. But then it holds for A+ or A− by using
equation (∗) and so (∗∗) allows to ”convert” it for the full set A, obtaining a new suitable
value η1 < η0. The procedure repeats recursively giving rise to a sequence {ηn}n∈N for
which the superexponential decay of PA holds. Finally, by using monotonicity of PA
is clear that this decay must generally happen for every sufficiently negative value,
concluding the proof.

This lemma is used for proving the following result, which is the formal equivalent
of the approximation µ(Bε(z)) ≈ E[µ(Bε(z))|hε(z)] stated in the ”intuitive proof” of the
KPZ relation described at the end of the section before. This is obtained by recalling
how µ�(Bε(z)) ' E[µ(Bε(z))|hε(z)] and using the fact that:

Lemma 3.4.2 (Expected area is not far from actual area). Fix z and ε so that Bε(z) ⊆
D. Conditioned on hε′(z), for all ε′ ≥ ε, we have that:

P[
µ(Bε(z))

µ�(Bε(z))
< eη] ≤ C1e

−C2η2

for some positive constants C1 and C2 independent of η ≤ 0, z, D and the values of
hε′(z) for ε′ ≥ ε.

Sketch of the proof. Recall that µ�(Bε(z)) = πεγQeγhε(z), and so for a fixed ε we want
to show that the probability

A
.
= log

µ(Bε(z))

πεγQeγhε(z)
≤ η

for η ≤ 0 decays quadratically exponentially in η. This result can be obtained by
adapting the same reasoning in the proof before.

We continue by introducing a compacted-version of the Rooted Probability measure,
needed during the final approximation argument.

Definition 3.4.1 (The measure ΘD̃). Let D̃ be a fixed compact subset of D. We

define ΘD̃ to be the rooted probability measure Θ conditioned on D̃, i.e. ΘD̃(dh, dz) =
Θ(dh,dz∩D)

Θz(D̃)
.

Lemma 3.4.3 (To have tilda balls contained in quantum one is always not hopeless).
Let ε0

.
= sup{ε′ : Bε′(D̃) ⊂ D}, fix δ > 0 and consider the two balls Bδ(z) and B̃δ(z).

Then we have:
PR[B̃δ(z) ⊆ Bδ(z)] > c
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where c > 0 is a strictly positive constant independent of D, D̃ and δ. The measure
PR(·) = P(·|eTA) is the conditional probability given the radius of the tilde-ball B̃δ(z)
(recall it to be eTA by definition and/or construction).

At this point we are ready for giving a proof for the original KPZ relation.

Proof of theorem 3.3.1. There are many aspects we’d like to comment, but the easier
strategy is just to start with the limit computation. During the whole proof we mean by
P the original probability measure, by Θ the rooted one and ΘD̃ is the measure defined
some lines above. Important point: from now on all the expectations are intended to be
w.r.t. ΘD̃, if not differently specified (e.g. by the symbols EP, ...). Start directly with:

lim
δ→0

logEP
X,h[µh{z ∈ D : Bδ(z) ∩X ∩ D̃ 6= ∅}]

log δ
= lim

δ→0

log Θ((h, z) : Bδ(z) ∩X ∩ D̃ 6= ∅)
log δ

=

lim
δ→0

log ΘD̃((h, z) : Bδ(z) ∩X 6= ∅)
log δ

by using the proportionality ”Eh[µh] = Zθ” (proposition 2.3.1); Z is a constant vanishing
after the splitting in the limit, and the same happens for Θz(D̃) appearing from the

definition of ΘD̃. Let’s introduce ε̄
.
= radius of Bδ(z), i.e. ε̄ is the random variable

satisfying Bε̄(z) = Bδ(z). If T̄A
.
= − log(ε̄/ε0), then one can use again a similar argument

as before for checking the approximation ΘD̃((h, z) : Bε̄(z) ∩X 6= ∅) ≈ E[exp(−2xT̄A)]
(as described in the weak KPZ formula; this is the step where having the Euclidean
Scaling Exponent equal to x comes into play). Recall that A = − log /γ and so δ → iff
A→∞. Assume for a moment to have:

lim
A→∞

logE[exp(−2xT̄A)]

logE[exp(−2xTA)]
= 1

Call it equation (∗), and see how we can continue the limit computation as:

lim
δ→0

log ΘD̃((h, z) : Bδ(z) ∩X 6= ∅)
log δ

= lim
δ→0

logE[exp(−2xT̄A)]

log δ
=

lim
δ→0

logE[exp(−2xTA)]

log δ

logE[exp(−2xT̄A)]

logE[exp(−2xTA)]
= ∆

by using (∗) and the stopping time computation E[exp(−2xTA)] = δ∆ already done for
the weak formula case. As already pointed out, the expectations here are computed
w.r.t. ΘD̃ rather than Θ, but this is absolutely not a problem since the law of TA
(stopping time of a drifted Brownian Motion) didn’t depend on z, and so it remains
the same under the new setting allowing to justify the stopping time result. In other
words, in this step we learned an important key idea: for proving the full KPZ relation
is enough to check equation (∗).
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At this point we continue by checking (∗) but with an inequality instead, i.e.

lim
A→∞

logE[exp(−2xT̄A]

logE[exp(−2xTA)]
≤ 1

We start with ”approximated” stopping times TaA for 0 < a < 1 (where aA is literally
the product between the two numbers). It is useful because by observing the behavior
of quantum and tilde balls on the event T̄A < TaA, it’s possible to use technique like
lemma 3.4.1 for deducing that the probability of T̄A < TaA decays superexponentially
in A. In other words we have ΘD̃(T̄A ≥ TaA) ≥ 1− e−A2K , consequently ΘD̃(e−2xTaA ≥
e−2xT̄A) ≥ 1 − e−A2K and finally E[e−2xTaA ] ≥ E[e−2xT̄A ](1 − e−A2K) by using Markov
inequality. By taking the ratio of their logarithms we see:

lim
A→∞

logE[exp(−2xT̄A]

logE[exp(−2xTaA)]
≤ 1

and finally the required inequality with TA instead of TaA by taking the limit a→ 1 and
using continuity of coefficients.

We verify now that the inequality cannot be strict, leading to the desired equation
(∗). From lemma 3.4.3 we have that conditioned on e−TA (the radius of the tilde-ball

B̃δ(z)), the ΘD̃ probability that T̄A < TA is at least c > 0. Of course we obtain the same

result if we condition w.r.t TA and so: ΘD̃(T̄A < TA|TA) > c, implying ΘD̃(e−2xT̄A >
e−2xTA |TA) > c. By using the Markov inequality again: E[e−2xT̄A |TA] ≥ e−2xTAc and
finally E[e−2xT̄A ] ≥ cE[e−2xTA ] by taking expectation again in a way to eliminate condi-
tioning. At this point, two are the possible cases:

� we have c = 1, concluding the proof immediately;

� we have 0 < c < 1. If we assume the starting inequality to be strict, we obtain:

1 > lim
A→∞

logE[exp(−2xT̄A]

logE[exp(−2xTA)]
≥ log c

logE[exp(−2xTA)]
+ 1

implying:
log c

logE[exp(−2xTA)]
< 0

and so E[e−2xTA ] strictly less than one for every x > 0, which cannot be true
because x can be chosen arbitrarily small.

We conclude this section by remarking how the KPZ relation can be slightly gener-
alized. Instead of choosing a random subset X ⊆ D and then consider balls intersecting
with it, one could choose a collection X of balls with centers in D̃, and then count
the points that are centers of balls contained in this set. In other words, the following
theorem holds:
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Theorem 3.4.1 (Extended KPZ relation). Let X be any random measurable set of the
set of balls of the form Bε(z) for ε > 0 and z in a fixed compact subset D̃ of D. Fix
γ ∈ [0, 2). Then if:

lim
ε→0

EX [µ0{z ∈ D : Bε(z) ∈ X}]
log ε2

= x

then it follows that, when X and µ are chosen independently, we have:

lim
δ→0

EX ,h[µh{z ∈ D : Bδ(z) ∈ X}]
log δ

= ∆

with KPZ(x,∆).

The proof of this result follows literally exactly the same steps of what already done
previously (use the mean proportionality for switching to the probability measure ΘD̃,
approximate the probability with an expectation of a stopping time, and finally compute
it via martingale sampling theorem). We chosen to point out the first formulation rather
than this one, reachable by choosing the family X = {Bε(z) : Bε(z) ∩X}, because the
former has a more clear intuition beyond and, since it deals with ”areas scaling”, also a
more understandable geometrical meaning.

3.5 Conclusions and further developments

It is possible to develop very similar results in a range of different settings and ideas. For
instance, in the notes [3], a KPZ formula concerning Minkowski dimension is proposed.
We can have a quick overview of that. The hypothesis remain the same of what generally
assumed in this work. Let A ⊆ D be a Borelian subset of the LQG domain, and Sn the
n-th level of the dyadic covering of D. Let Si be the squares belonging to Si, for each
i ∈ N. As usual µ0 denotes the Lebesgue measure. First, we define the:

� Minkowski content of A: Mδ(A; 2−n)
.
=
∑

i∈N 1{Si∩A 6=∅}µ
0(Si)

δ

� Euclidean Minkowski dimension: dM (A)
.
= {δ : lim supn→∞Mδ(A; 2−n) <∞}

� Minkowski scaling exponent: xM (A)
.
= 1− dM (A)

On the same fashion, one introduces the quantum counterparts. Here γ is the coefficient
in the definition of µ:

� Quantum (random) Minkowski content: Mγ
δ (A; 2−n)

.
=
∑

i∈N 1{Si∩A 6=∅}µ(Si)
δ

� Expected quantum dimension: qM (A)
.
= {δ : lim supn→∞ E[Mδ(A; 2−n)] <∞}

� Minkowski scaling exponent: ∆M (A)
.
= 1− qM (A)

The KPZ formula is given in the following theorem:

Theorem 3.5.1 (Minkowski KPZ formula). For each A ⊆ D measurable, we have

xM = (γ
2

4 )∆2
M + (1− γ2

4 )∆M (i.e. KPZ(xM ,∆M )).

47



As said, the proof of this result as well as further comments are available in the notes
[3]. It is not discussed here for the following reasons. If one assumes the ”multifractal
principle of LQG” (proposition 3.4 in [3]), then it is completely straightforward. But
this principle is entirely based on ”Kahane’s convexity inequality”, whose proof is very
long and in French, so the author prefers to refer to the original source.

Other interesting cases are for instance studied in [2], sections 5,6,7. We would like to
point out how, if it is true that circles have always had a key role in the whole construction
(e.g. we computed GFF on circle averages, considered expectation of quantum balls,
etc...), on the other hand it is possible to completely replace the whole structure with
the use of proper squares rather than disks. Briefly speaking, all the properties remains
the same, including a final ”Box-formulation” of the KPZ relation. The reason for
using boxes rather than circles has very pragmatic roots, since the former are easier to
implement into numerical simulations allowing a solid heuristic support to the elegant
theoretical analysis.

Another aspect we would like to underline is that we have always worked with points
z ∈ D, for an open subset D ⊆ C. We managed in some way to give a meaning to
the symbol ”h(z)”, and once we proved properties like the covariance structure, the
spatial Markov property and the relationship with the inverse Laplacian, all the other
results logically followed (of course that’s not completely true, but good enough for
underlining the key structure). It is spontaneous to ask if a similar theory can be
developed for points z ∈ ∂D, this time involving e.g. line measures and analogue objects.
The answer is partially positive: in principle the same strategy used for defining our
random measures on D, can be adapted for random measures on ∂D, but unfortunately
the new construction usually requires additional assumptions. For instance, ∂D must
contain a linear piece ∂D ⊆ ∂D (the case ”=” is allowed) making possible to ”define”
the object h(z) only for points z ∈ ∂D by using averages on (complete or partial)
semicircles (whose existence is actually guaranteed). Analytic challenges involving the
Laplacian operator have now to take into account also Neumann boundary conditions,
but all the efforts are compensated: at the end, an analogue to the KPZ formula can be
deduced, too.

There are many other interesting ways for producing alternatives KPZ relations, for
instance the one in the paper [8] where an heuristic heat-kernel approach is used. In
the paper [9] a ”Quantum Brownian Motion” is defined and then used for developing
stochastic calculus under Liouville Quantum Gravity.

The fact that KPZ relations appear in so many variants and situations is well dis-
cussed in the very nice paper [4], where an attempt for a conceptual generalization
is offered. Moreover, links to Statistical Physics and crucial connections with ”true”
Quantum Gravity are pointed out.

Dealing with the former, the idea is that many models are easier to study under
the LQG setting (i.e. by using the metric eγh(z)dz rather than dz), and KPZ relations
might so be used for coming back to the original euclidean case after that the interesting
quantities have been computed.

Finally, dealing with the latter, it seems that LQG could lead to a surface-generalization
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of the famous Feynman path integral. It would be great to explore more in this direction,
but unfortunately the author has to stop here for mere reason of time, hoping that it
could only be the starting point towards a fascinating journey. Thanks very much for
your attention!
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