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Abstract

In neutral atom lithography, a collimated beam of atoms is sent through a region of
standing light waves created by interfering laser beams. The intensity distribution
of the light field modulates the density distribution of the atoms transversal to the
beam direction. The atomic beam materializes on a substrate, and the atoms are
deposited in a pattern which mimics the intensity distribution of the light. It is
thus possible to create nanostructures by a suitable adjustment of the light field.
While the computation of the pattern of atoms generated by any given setup of laser
beams with known amplitudes and phases is straightforward, the inverse problem
of deducting the appropriate amplitude and phase of each single beam to create a
prescribed pattern has to our knowledge not yet been addressed.

We propose a numerical method to derive these values for a fixed setup of laser
beams. We consider first the general case of unrelated beam directions and then spe-
cialize to setups which induce periodic patterns. The solution of the inverse problem
is a two-step process: We use Fourier techniques to compute a set of characteristic
amplitude values which enter the right hand side of a nonlinear system of equations.
This system is then solved iteratively by a coordinate descent method.

Key words: Atom lithography, nanostructures, light masks, nonlinear inverse
problem, Fourier transform.
2000 MSC: 65T50, 78M25, 78A60.

1 Introduction

Neutral atom lithography is a method in atomic nanofabrication to generate
structures by the modulation of atomic beams with optical dipole forces. This
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has become possible by the combination of laser cooling and atom optics.
The control of the transversal intensity distribution of the atoms permits the
deposition of atomic patterns at the nanometer scale. In contrast to classical
lithography, where light is sent through thin films and masks for projection
on a substrate, here the roles of light and matter are in a way interchanged.
The light field takes the role of an immaterial mask. Atoms are sent through
a two-dimensional region of standing light waves, whose intensity distribution
is transformed to an atomic image on a substrate. An overview on this topic
can be found in [11, 15].

The basic concept of neutral atom lithography can be summarized as follows:
An atomic beam is collimated by transversal laser cooling and then passes
through an area of standing light waves created by the superposition of laser
beams. When the frequency of the laser is near an atomic resonance, optical
dipole forces arise. These tend to push the atoms towards local intensity max-
ima for red detuned light, and towards local minima for blue detuned light.
For a detailed analysis of this effect, see e. g. [9, 12, 14]. Hence, after passing
through the light field, the density distribution of the atoms orthogonal to
the beam direction is altered by the inhomogeneous intensity distribution of
the light field. Finally, all atoms condense on the surface of a substrate. After
chemical postprocessing of the substrate, the density distribution of the atoms
is materialized.

The simplest way of correlating the light intensity with the atom density
would be an affine-linear dependence with constant positive (red-detuned) or
negative (blue-detuned) slope. However, the trajectory of each atom through
the light field depends on several parameters in a rather complex way. For
example, the distance of the light field to the substrate, the absolute value of
its intensity, the velocity of the atoms, the thickness of the optical lense (i.e.,
the diameter of the laser beams), and frequency and line width of the atomic
resonance all play a role in this interaction. An important notion in this context
is the so-called channeling regime, where the atoms are unable to cross the
potential walls of the light field. The interplay between the physical parameters
mentioned above is subject to many theoretical and experimental studies (see
e.g. [1,7,11] and the references therein). Though a linear dependence is hard to
achieve, experiments show that it is possible to make the maxima and minima
of the atom distribution correspond to the maxima and minima of the light
field (for red, or vice versa for blue detuning).

While the characteristics of the atomic density profile on the substrate are
subject to experimental conditions, the wave form of a coherent laser beam is
generally sinusoidal. A well-defined mathematical question is thus to ask for
an appropriate setup of laser beams, given a target light intensity pattern (ob-
viously including target maxima and minima). The structure of these maxima
and minima can then be replicated on the substrate by the lithography pro-
cess described above. The type of functional dependence of the atom pattern
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on the light intensity may be adressed seperately and afterwards by design-
ing appropriate experimental conditions. We focus here on the mathematical
question which is substantial to all experimental steps which may follow to
further refine the result.

A practical strategy to generate the light field determined by the mathematical
process to be described in this paper is to first split one laser beam with a
specific frequency into multiple beams and let them interference afterward
with different directions and phases. This can be done by holographic elements,
which are capable of simultaneously diffracting an incoming laser beam into
multiple beams that may be very narrowly spaced [12]. As the construction
of such holographic elements is rather complicated, an a priori investigation
of the required beam characteristics is necessary. These characteristics can
be identified as the number of beams as well as the direction, phase and
amplitude of each individual beam. The problem arising in this context is the
determination of a beam setup that produces a pattern on the substrate with
a prescribed structure. We consider here the case of a fixed number of beams
with given directions. This corresponds to the situation of a given physical
setup with installed beam splitters, and that amplitudes and phases can be
influenced by filters. Likewise when using a holographic crystal, it may not be
practicable to change the beam setup itself, although a continuous selection
of directions is theoretically possible. The remaining degrees of freedom are
thus the amplitudes and phases of the single beams.

The fundamental problem discussed here can hence be formulated as follows:
Given a specific target pattern, find the amplitudes and phases for an array of
N laser beams with default directions, to induce an intensity pattern on the
substrate which matches this pattern or approximates it sufficiently well.

The structure of this paper is the following. After introducing the mathemati-
cal basics for the intensity distribution of the standing light waves in Section 2,
we formulate the arising nonlinear inverse problem in Section 3 and provide
a characterization of the given wave vectors. The ansatz for the numerical
solution of the inverse problem will be a Fourier decomposition. For this rea-
son, we introduce in Section 3.2.1 the discrete Fourier transform and review
some basic properties. Since for general choices of wave vectors the discrete
Fourier transform does not directly apply, as the original problem is contin-
uous, we propose a method that interpolates the values of the coefficients in
the continuous setting from the values of the discrete Fourier transform on a
grid. This is first done in one dimension and extended to two dimensions by
a tensor product ansatz (Section 3.2.2 and Section 3.2.3). In Section 3.3, we
specialize to a class of wave vectors corresponding to periodic patterns which
directly delivers the discrete information by proper scaling. The final step of
the reconstruction consists in the solution of an over-determined, highly non-
linear problem for the complex coefficients, containing phase and amplitude
of the single laser beams as unknowns. A least-squares ansatz leads to a cost
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Region Ω

Fig. 1. Schematic view of the interfering light waves. The arrows indicate the di-
rections of propagation of the individual waves, and the parallel lines symbolize the
wave fronts. They interfere with each other in the region Ω, which is drawn as a
circle for illustrative purposes. The atomic beam passes this region perpendicular
to the paper plane.

functional which is minimized by a coordinate descent method in Section 3.4.
Additionally, we apply the Nelder and Mead simplex method for minimization
in the periodic case. In Section 4, we present numerical results for both classes
of beam setups, and a selection of different patterns and the reconstructions
computed with our method.

2 Mathematical Basics

We begin with the mathematical formulation of the problem, which is derived
from the physical situation. Figure 1 schematically displays a laser setup. The
plain light waves interfere in a region Ω ⊂ R

2, where the prescribed pattern
has to be approximated. The N single waves with index j ∈ I := {1, . . . , N}
are conveniently modeled as complex-valued functions yj(x, t; kj , aj, ϕj). The
real part can be interpreted as the electric field. Its value at a given space point
x ∈ Ω and time t depends on three parameters: the direction of propagation
kj ∈ R

2 (the wave vector), the amplitude aj ∈ R≥0 and the phase ϕj ∈ [0, 2π).
Thus, a single wave is of the form

yj(x, t; kj , aj, ϕj) = aj exp
(
i (〈kj,x〉+ ϕj − ωt)

)

= cj exp (i〈kj,x〉) exp (−iωt)

with complex-valued coefficients

cj := aj exp (iϕj) .

Here the angular frequency ω is fixed by the properties of the laser. By 〈·, ·〉
we denote the Euclidean inner product in R2. Each wave can be adjusted to
an individual amplitude and phase. The direction of each beam is fixed by
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the experimental setup, and its modulus is a constant because of the fixed
frequency of the laser, i. e., |kj| = K = ω

c
, where c denotes the speed of light.

In the remainder of the paper, we denote by

K :=
{
kj ∈ S1

K : j ∈ I := {1, . . . , N}; kj 6= kl for j 6= l
}

(1)

the set of all N wave vectors. The superposition of N waves is just the sum
of the single functions yj,

y(x, t) =
N∑

j=1

yj(x, t) =
N∑

j=1

cj exp (i〈kj,x〉) exp(−iωt) .

Setting

ỹ(x) :=
N∑

j=1

cj exp (i〈kj ,x〉) , (2)

y can be decomposed in space and time according to y(x, t) = ỹ(x) exp(−iωt).
According to the physical model, the created pattern is equivalent to the
intensity of the electric field, namely,

fN (x) = |y(x)|2 = |ỹ(x)|2 =

∣∣∣∣∣∣

N∑

j=1

cj exp
(
i〈kj ,x〉

)
∣∣∣∣∣∣

2

, x ∈ Ω . (3)

This function can easily be evaluated, if the number of beams N , the directions
kj and the coefficients cj are known. It directly relates to the chemical pattern
which manifests on the substrate, which is our quantity of interest.

3 The Inverse Problem

In contrast to the easy task of evaluating the function fN for given parameters
N , kj and cj , we devote our further studies to the inverse problem, namely the
computation of the coefficients cj. From now on, we denote by f an arbitrary
but fixed pattern. We aim at the approximation of the given function f by
the intensity realized with N beams of appropriate amplitude and phase. This
means that a function f∗ has to be found with

f∗ = arg min
g∈SN

‖g − f‖Ω (4)

over the space

SN = SN(k1, . . . ,kN) :=





g =

∣∣∣∣∣∣

N∑

j=1

cj exp
(
i〈kj, · 〉

)
∣∣∣∣∣∣

2

: cj ∈ C





, (5)

where the involved norm ‖·‖Ω still has to be chosen in accordance with the
physical requirements. The so defined space contains all physically realizable
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patterns under the parameters N and kj ∈ K, j ∈ I. The degrees of freedom
in the space SN are the complex coefficients cj.

Remark 3.1. SN is a nonlinear space over the variables cj . The sum of two
elements is generally not an element of SN ; the set of solutions can, therefore,
not be easily decomposed.

3.1 Characterization of Wave Vectors

The nonlinearity caused by the square in expansion (3) is much easier to
understand if the elements of SN are written in a slightly different form which
hides the square and the modulus.

For a detailed analysis, it is therefore convenient to expand the sum in (3)
yielding

fN(x) =
N∑

j=1

|cj |
2 +

N∑

j, l=1
j<l

(
cj c̄l exp

(
i〈kj,l,x〉

)
+ c. c.

)
(6)

where c. c. denotes the complex conjugate of the previous term, and the dif-
ferences of wave vectors are denoted by kj,l := kj − kl. They will play a key
role for the whole procedure, as they correspond to the basis vectors of the
pattern in k-space. At this point, one has to distinguish two elementary cases:
we separate the set

Kd := {kj,l = kj − kl : kj ,kl ∈ K ; j, l = 1, . . . , N ; j 6= l} (7)

of all possible differences into the two disjoint sets

Kd,1 := {kj,l ∈ Kd : kj,l 6= km,n for all (m, n) 6= (j, l)} (8)

and

Kd,2 := {kj,l ∈ Kd : kj,l = km,n for (m, n) 6= (j, l)} . (9)

It holds that Kd = Kd,1 ∪ Kd,2, and each element in Kd,2 appears twice by
different combinations of indices. In order to get rid of this redundancy, we
discard each duplicate in Kd,2 and keep in mind that to each combination
of indices (j, k) there exists exactly one matching combination (m, n) with
kj,l = km,n. This situation is depicted in Figure 2.

The first set of wave vectors inKd,1 does not affect the expansion (6). When the
second set Kd,2 is not empty, the contained wave vectors lead to a redundancy
as the same plane wave appears twice in the expansion (6). Mathematically,
the vectors from Kd,2 lead to pairs of linearly dependent objects. A general
expansion of (3) in terms of completely linearly independent basis functions
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kj,l kj

kl

km,nS1
K

km

kn

Fig. 2. The picture shows two elements kj,l := kj−kl and km,n := km−kl of the set
Kd,2 before the duplicates were discarded. One can see directly that each element
in Kd,2 appears exactly twice.

is thus given by

fN(x) =
N∑

j=1

|cj|
2 +

∑

kj,l ∈Kd,1

(
cj c̄l exp

(
i〈kj,l,x〉

))

+
∑

kj,l ∈Kd,2

(
(cj c̄l + cmc̄n) exp

(
i〈kj,l,x〉

))
,

(10)

where the indices m, n are to be understood in the sense of (9).

3.2 Fourier Analysis for General Wave Vectors

As we deal with linear combinations of plane waves, it appears natural to em-
ploy a Fourier decomposition. The two-dimensional continuous Fourier trans-
form of (10) is composed of Dirac δ-distributions in k-space: One peak appears
at the origin and one for each term in the second and third sum, i. e.,

f̂N (k) = F [ fN ](k) =
N∑

j=1

|cj |
2 δ(k− 0) +

∑

kj,l ∈Kd,1

(
cj c̄l δ(k− kj,l)

)

+
∑

kj,l ∈Kd,2

(
(cj c̄l + cmc̄n) δ(k− kj,l)

)
.

(11)

Under the assumption that f̂N(k) is composed of δ-peaks as well whose coef-
ficients C(f̂N(k)) are known for all k ∈ Kd, the complex numbers cj are the
unknowns of a system of nonlinear equations, which is written as

C(f̂N(kj,l)) =






cj c̄l if kj,l ∈ Kd,1

cj c̄l + cmc̄n if kj,l ∈ Kd,2
∑N

j=1 |cj|
2 if kj,l = 0

(12)

for all kj,l ∈ Kd.
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For numerical calculations however, we need to resort to the discrete version of
the continuous Fourier transform. This poses the problem that, in general, the
coefficient exactly at kj,l cannot be inferred directly from the discrete Fourier
transform, as kj,l is most probably located somewhere between the grid points
in the discrete k-space.

We will now shortly review the connections between the discrete and contin-
uous Fourier transform.

3.2.1 Discrete and Continuous Fourier Transform

We will formulate the connections between the discrete and continuous Fourier
transform on the basis of the one-dimensional case. The generalization to
higher dimensions is straightforward and completely analogous.

Let g : R→ C be a continuous function. We will only consider function values
over x ∈ [0, q), so strictly speaking, it needs to be defined and continuous only
on this interval. The value q characterizes the size of the observation window.
This range is sampled equidistantly with a resolution L ∈ N. The grid points
and the associated function values are defined as

xj = q
j

L
, gj = g(xj) , j = 0, . . . , L− 1 . (13)

The discrete Fourier transform of g is given by

ĝl =
1

L

L−1∑

j=0

gj exp
(
−2πi

jl

L

)
, l = 0, . . . , L− 1 , (14)

and its inversion formula reads

gj =
L−1∑

l=0

ĝl exp
(
2πi

jl

L

)
. (15)

Note that we have periodicity gj = gj+L. To establish the symmetry to the
sampling of function values in space, we search a continuous function ĝ(k)
defined on k ∈ [0, p), where p is left unspecified for the moment, which is also
sampled equidistantly,

kl = p
l

L
, ĝl = ĝ(kl) . (16)

Due to the periodicity, the window of definition of ĝ and the indices l can
be shifted arbitrarily, as long as the cardinality is exactly L. In our case, it
is most convenient to use the symmetric window k ∈ [p

2
, p

2
). By inserting the

definitions of xj and kl into (14), we can identify a suitable choice for p,

pq = 2πL ⇐⇒ ĝ(k) =
1

L

L−1∑

j=0

g(xj) exp(−ikxj) . (17)
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In the limit L→∞, which transforms the sum into an integral, ĝ(kl) converges
to the classical definition of the l-th coefficient in the Fourier series for q-
periodic functions.

3.2.2 Reconstruction of Subgrid Information

When only the values ĝl of the discrete Fourier transformation are available
(14) as usual in numerical applications, one needs to interpolate the values of
ĝ(k) from (17) for certain values of kd

i ∈ K
1
d, i ∈ I1

d, which may lie between
the sampling points kl. To suppress interference of multiple wave vectors, we
require that each cell between the grid points may only contain one such entry,
which is equivalent to requiring

kmin ≥
p

L
=

2π

q
⇐⇒ q ≥ λmax =

2π

kmin

. (18)

Here we have introduced a maximum wavelength λmax corresponding to the
minimal distance in the set K1

d defined by

kmin = min{|kd
i − kd

j | : i, j ∈ I1
d, i 6= j} . (19)

Remark 3.2. Condition (18) agrees with the physically obvious rule that
the frequency information can only be recovered if the window of observation
contains at least one full wavelength. This requirement is independent of the
sampling resolution L.

Consider a function of the form

g(x) = c exp(ikx) (20)

for which we only know k ∈ K1
d and the values of the discrete Fourier transform

ĝl for a given observation window q and resolution L. The aim is to reconstruct
the value of its amplitude c. If incidentally k = kl for some l ∈ {0, . . . , L− 1},
the trivial solution is c = ĝl. Most probably, however, k lies between two grid
points. We denote these by k− and k+, according to

k− < k < k+ , k− + b̃0 := k =: k+ − b̃1 , b̃0 + b̃1 =
p

L
=

2π

q
. (21)

Note that b̃0 and b̃1 are independent of L. The value of the Fourier transform
immediately on the left of k is given by

ĝ− := ĝ(k−) =
c

L

L−1∑

j=0

exp (ikxj) exp (−ik−xj)

=
c

L

L−1∑

j=0

exp
(
i
q

L
b̃0j
)

=: c · ρ exp(iη) .
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The functions ρ(b̃0) ≥ 0 and η(b̃0) ≥ 0 can be derived by geometric arguments
according to

ρ =
1

L
sin

(
q

2
b̃0

)
sin

(
q

2

b̃0

L

)−1

, η =
q

2
b̃0

(
1−

1

L

)
.

A similar result holds for ĝ+ := ĝ(k+). In the limit L→∞, we use the identity
limx→0 sin(x)→ x and obtain

ĝ− = c sinc(b0) exp(iπb0) , (22a)

ĝ+ = c sinc(b1) exp(−iπb1) , (22b)

with the usual definition sinc(x) := sin(πx)/(πx) and the scaling

b0 :=
q

2π
b̃0 , b1 :=

q

2π
b̃1 . (23)

Note that this is equivalent to the transformation to a grid with unit spacing
because of b0 + b1 = q

2π
(b̃0 + b̃1) = 1.

¿From (22), we can now separately derive the absolute value and the argument
of c. The argument can be derived as

arg(c) = arg(ĝ−)− πb0 = arg(ĝ+) + πb1 . (24)

Likewise, its amplitude can be determined as

|c| = |ĝ−/sinc(b0)| = |ĝ+/sinc(b1)| . (25)

Remark 3.3 (Discretization errors). Since the limit L → ∞ cannot be
reached in reality, these relations hold only approximately. As a consequence,
an averaging process between the solutions obtained from ĝ− and ĝ+ needs to
be implemented which accounts for small deviations in the complex numbers
involved.

Remark 3.4 (Required resolution). The size of the observation window q
is arbitrary, under the condition that (18) is fulfilled. To be able to capture
all possible values of k, the maximum difference has to be contained in the
symmetric window in k-space,

kmax <
p

2
⇐⇒ L >

qkmax

π
(26)

with
kmax = max{|kd

i − kd
j | : i, j ∈ I1

d, i 6= j} .

This enforces a certain minimum resolution L. Combining (18) with (26), we
obtain

L ≥ 2
kmax

kmin
. (27)
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The minimal resolution necessary is thus a characteristic property of the set
of differences K1

d.

3.2.3 Extension to Two Dimensions

To capture the bivariate case in (10), we extend these observations by a tensor
product ansatz. To this end, we consider the function values of a function
g : R2 → C over the two-dimensional observation window [0, q)2. Using the
same relation pq = 2πL established in (17), the function ĝ(k) is defined over
the window [0, p)2. The two windows in real and k-space are again sampled
equidistantly by

xj,l =
q

L
(j, l)T , gj,l = g(xj,l)

kj,l =
p

L
(j, l)T , ĝj,l = ĝ(kj,l)

for j, l = 0, . . . , L− 1 . (28)

The two-dimensional discrete Fourier transform is given by

ĝj,l :=
1

L2

L−1∑

µ,ν=0

gµ,ν exp
(
−

2πi

L
〈(j, l)T , (µ, ν)T 〉

)
, j, l = 0, . . . , L−1 . (29)

As in the one-dimensional case, we shift the window in k-space such that
it is symmetric around the origin. The definitions of minimal and maximal
differences is generalized for elements kd

j ∈ Kd, j ∈ Id to the maximum norm
according to

kmin := min
{∥∥∥kd

j − kd
l

∥∥∥
∞

: j, l ∈ Id ; j 6= l
}

, (30a)

kmax := max
{∥∥∥kd

j − kd
l

∥∥∥
∞

: j, l ∈ Id
}

, (30b)

and we again require (18), (26) and consequently (27).

The function to consider is of the form g(x) = c exp(i〈k,x〉) and we again
only know k ∈ Kd and the values of the two-dimensional discrete Fourier
transform ĝj,l. We extend the one-dimensional strategy to get a reconstruction
of the coefficient c. The amplitude and argument of c are now determined by
the position of both the x and y components of k relative to the nearest grid
points. This leads to four values which can to be utilized. Figure 3 illustrates
one such tile. The four corner values ĝmn ∈ C, m, n ∈ {0, 1}, are indexed as

ĝmn := ĝ0

((
(1−m)⌊kx⌋+ m⌈kx⌉

)
+ i
(
(1− n)⌊ky⌋+ n⌈ky⌉

))
. (31)

The down and up brackets refer to the rounding operation to the next point
on the Fourier grid. The scaled distances to the nearest coordinate axes in the
second dimension are given analogously to (23) by

d0 :=
q

2π
d̃0 , d1 :=

q

2π
d̃1 . (32)
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⌈ky⌉

⌊ky⌋

⌊kx⌋ ⌈kx⌉

d̃1

d̃0

k

b̃0 b̃1

Fig. 3. A tile in two-dimensional Fourier space of width and height pL−1 = 2π/q
containing the fractional wave vector k. b̃0 + b̃1 = pL−1 and d̃0 + d̃1 = pL−1 are the
distances to the nearest coordinate lines in both directions.

The phase of the coefficient c is determined first. To this end, we extract a
number c̃ ∈ C called the principal direction according to the following rule:

c̃ :=
1∑

m,n=0

(−1)m+nĝmn . (33)

This averaging process is introduced here to compensate for errors as stated
in Remark 3.3. The phase then follows from the difference between the angle
of the direction and the predicted phase π(b0 + d0) derived from (24):

arg(c) = arg(c̃)− π(b0 + d0) . (34)

In the next step, each of the four corner values is used to find an equation for
the modulus of c. We define

pmn := (−1)m+n〈ĝmn,
c̃

|c̃|
〉 , (35)

smn := sinc(bm) sinc(dn) . (36)

The pmn are the projections of the corner values onto the principal direction
with a sign correction applied. The complex numbers ĝmn and c̃ in (35) have
been interpreted as vectors in R2 ∼ C. The smn are the theoretical predictions
for the amplitudes inferred from (25). The modulus ideally fulfills each of the
four equations

|c| =
pmn

smn

, m, n ∈ {0, 1} .

To account for perturbations, we interpret these equations as an over-determined
problem. The optimal value for |c| is derived through a straightforward least-
squares ansatz leading to the formula

|c| :=




1∑

m,n=0

pmnsmn








1∑

m,n=0

s2
mn




−1

. (37)

12



Fig. 4. Setup of wave vectors creating a periodic pattern.

This formula completes the derivation of the coefficient c from the values of ĝ
at uniformly spaced grid points. We will use this procedure in Section 3.4 to
find the coefficients of the plane wave basis functions.

3.3 Specialization to Periodic Patterns

The reconstruction of the coefficient of one single plane wave alone already
requires a nontrivial computation. However, when the physical situation does
not provide a-priori information about the directions of the wave vectors, this
cannot be avoided.

Patterns arising from a random set of wave vectors are generally non-periodic,
as the ratios of any two difference vectors most probably lead to irrational
numbers. Therefore, the reconstruction can only be reasonably accurate in-
side the window of observation, and the quality deteriorates with increasing
distance from it. In other words, the method described here performs a de-
facto periodization of the target pattern restricted to the observation window.

In physical reality, periodic patterns are frequently needed, for example in the
design of optical grids. Considering the principal difficulties mentioned before,
it is reasonable to specialize to the case of periodic patterns. By a suitable
adjustment of the length of the observation window, the need for subgrid
approximation as detailed in the previous section disappears completely.

Periodic patterns are created when the projections of all differences of wave
vectors onto the x-axis are in rational relation, and likewise for the y-axis. We
write this as

kj,l ∈ kminZ
2 for all j, l ∈ I . (38)

As all wave vectors must have constant length K, the construction of an
adequate setup is nontrivial. As has been outlined in [4], the general problem
leads into the realm of number theory, but there are subclasses which can be
easily identified. An example is shown in Figure 4.

We assume from now on that fN fits into the observation window exactly once,
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i. e., , it is a q-periodic function. This leads to the identity q = 2π
kmin

. Provided

that L is chosen large enough, cf. (26), the discrete Fourier transform f̂N can
directly be evaluated at the points k ∈ Kd, and these values are at the same
time the coefficients of the plane wave basis functions. They are assigned as
follows,

f̂N(kj,l) =






cj c̄l if kj,l ∈ Kd,1

cj c̄l + cmc̄n if kj,l ∈ Kd,2
∑N

j=1 |cj |
2 if j = l

0 else.

(39)

Note that j = l implies kj,l = 0. Reading these equations from right to left,
we obtain a system of nonlinear equations, where the cj are the unknowns and
the values from the discrete Fourier transform constitute the right hand side,
which is the discrete analogon of (12).

3.4 Determination of the Coefficients

The procedure developed in the previous sections can be interpreted as an
approximation of a given function f by an element fd from the linear space

Sd :=




g : g =
∑

kj,l∈Kd

cj,l exp
(
i〈·,kj,l〉

)
; cj,l ∈ C




 . (40)

The coefficients cj,l can be computed approximately by the approach in Sec-
tion 3.2.3 for general beam setups, or directly by evaluation of the discrete
Fourier transform for specific beam setups, as explained in Section 3.3. The
choice of beam setup determines whether to employ the more general approx-
imative method or the simpler method for periodic patterns

This means, that we are now equipped with the values

cj,l := eval
(
f̂(kj,l)

)
, if kj,l ∈ Kd,1 (41a)

c̃j,l := eval
(
f̂(kj,l)

)
, if kj,l ∈ Kd,2 , (41b)

where the operator eval(·) performs the approximative evaluation of the dis-
crete Fourier transform between the grid points as described in previous sec-
tion Section 3.3.

The computed function has the form

fd(x) =
N∑

j=1

|cj|
2 +

∑

kj,l ∈Kd,1

(
cj,l exp

(
i〈kj,l,x〉

))
+

∑

kj,l ∈Kd,2

(
c̃j,l exp

(
i〈kj,l,x〉

))
.

(42)
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However, the task in (4) was, to approximate from the nonlinear space

SN =





g =

∣∣∣∣∣∣

N∑

j=1

cj exp
(
i〈kj , · 〉

)
∣∣∣∣∣∣

2

: cj ∈ C





,

defined in (5). The next step is now to compute the approximation f∗ ∈ SN of
fd ∈ Sd. Comparing the coefficients of fN and fd according to (10) and (42),
we arrive at the following remark.

Remark 3.5 (The relation between cj,l, c̃j,l and cj). The values cj,l and c̃j,l,
which are known at this point comprise the right hand side of the nonlinear
system of equations for the coefficients cj, cf. (39). The determination of the cj

from the cj,l and c̃j,l according to the equations cj c̄l = cj,l and cj c̄l +cmc̄n = c̃j,l

is a highly over-determined problem.

To solve this problem, we collect all coefficients in a complex vector c :=
(c1, . . . , cN)T ∈ CN and denote by Id,e ⊂ N × N the index set of Kd,e for
e ∈ {1, 2}. A generic least-squares ansatz leads to the definition of the cost
functional

J (c) :=
∑

(j,l)∈Id,1

|cj c̄l − cj,l|
2 +

∑

(j,l)∈Id,2

|cj c̄l + cmc̄n − c̃j,l|
2 (43)

which we seek to minimize.

Remark 3.6 (Singular value decomposition). In case of linearly independent
wave vectors, i.e., Kd,2 = ∅, the cj,l are the non-diagonal entries of a self-adjoint
matrix F. However, minimizing J is not equivalent to the minimization of
‖cc∗ − F‖2F , which could be solved exactly by a singular value decomposition
of F. The equivalence is destroyed by the diagonal entries of cc∗, which do
not appear in J . Neither does it make sense to include it in the functional, as
the diagonal contribution from (42) is of fundamentally different form.

A simple and efficient way to solve (43) is the coordinate descent method which
minimizes the functional with respect to each complex direction separately.
This strategy can be expressed by a sequence {ck} ⊂ CN of complex valued
vectors, defined by

ck+1
j := arg min

ξ∈C
J (ck+1

1 , . . . , ck+1
j−1 , ξ, c

k
j+1, . . . , c

k
N) ; j = 1, . . . , N , (44)

with any start vector c0. The index counter k identifies repeated rounds of
one sweep over all coefficients.
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The unique absolute minimum of J in the coordinate direction j0 is given by

cmin
j0

:=




∑

(j,l)∈Id,1

j=j0, l 6=j0

|cj c̄l − cj,l|
2 +

∑

(j,l)∈Id,2

j=j0, l 6=j0

|cj c̄l + cmc̄n − c̃j,l|
2








N∑

j=1
j 6=j0

|cj |
2





−1

.

(45)
We have thus an explicit formula for the minimization in one coefficient alone.
By minimizing for each coefficient in turn, we obtain a highly efficient numer-
ical scheme. It can be shown [3] that the sequence {ck} converges against a
local minimum of J . Implementing a straightforward choice of stopping cri-
terion, we formulate the algorithm which computes a local solution of (44) as
follows.

Algorithm 3.7. For a start value c ∈ CN , an appropriate stopping parameter
µ > 0 and a maximum number of iterations N0 ∈ N execute the following
steps:

m = 0

Jm(g) := J (c1, . . . , cN)

do

for (j = 1, . . . , N)

cj ← cmin
j

Jm+1(g) := J (c1, . . . , cN)

m← m + 1

while ( |Jm(g)−Jm−1(g)| > µ && m < N0 )

We provide numerical results for selected patterns and beam numbers N in
the next section. To verify our results obtained with the coordinate descend
method, we have additionally employed the Nelder and Mead simplex method

in the form of [3]. We will see below that our method yields results which are
better than the simplex method in terms of human perception and in concrete
error bounds.

4 Numerical Results

In this section, we will present numerical results addressing various aspects
of the reconstruction. We tested the coordinate descent method for different
beam setups, which cover both classes of beam vectors from Section 3.1 and
a collection of target patterns.

The complete process of reconstruction for a given f is made up of three main
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Fig. 5. Reconstruction of an image created with a randomly generated configuration
(N = 7). The original image is shown on the left, the reconstruction on the right.

phases. This can be schematically written as

f
(1)
−→ f̂

(2)
−→ fd

(3)
−→ f∗ . (46)

In the first step, the discrete Fourier transform is calculated. The second step
excludes all values in k-space which do not belong to the set of beam differences
Kd. The last step employs the coordinate descent method which computes the
appropriate values for the complex coefficients.

The following two sections will be slightly different in focus. First, we will dis-
cuss the quality of the general algorithm and provide examples which demon-
strate its robustness against noise. In the second section, we will concentrate
on the special case of periodic patterns. We will compare the results with the
simplex method of Nelder and Mead, and provide additional tables where we
examine the errors in the different steps of the reconstruction in detail.

4.1 General Setups of Beams

The first class of results deals with configurations of beams which have been
generated randomly. As stated before, this gives rise to generally non-periodic
patterns.

We begin with two examples, one with a small number of N = 7 beams, shown
in Figure 5, and the other with a comparatively large number of N = 101
beams, see Figure 6. The beam directions have been chosen randomly, as well
as the complex coefficients. Note that this implies that the random pattern is
contained in SN . While indications of pseudo-periodicity can be recognized in
the first case, this structure vanishes completely for 101 beams. For the human
eye, the reconstruction generally appears to be very good in both cases. The
resolution of finer structures survives even in the case of large N , although
the contrast of the image is clearly reduced.

In a second series of experiments, we tested the robustness of our method
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Fig. 6. Reconstruction of an image created with a randomly generated configuration
(N = 101).

Fig. 7. These images demonstrate the robustness against random noise for the case
N = 7. The original image is shown on the left, the state after the application of
noise can be seen in the middle, and the reconstructed image is displayed on the
right.

Fig. 8. We show a repetition of the above procedure for the case N = 101.

of reconstruction with noisy data. To this end, we added white noise to the
original image before applying the algorithm. Without any modifications, the
noise was filtered out completely, as can be seen in Figure 7 and Figure 8. An
explanation of this behavior can be given based on Fourier analysis: the Fourier
spectrum of white noise is concentrated at the origin and, consequently, the
value f̂(0) is modified, while all other Fourier coefficients are not changed
significantly. Reviewing (43) and (41a), we see that f̂(0) does not occur on
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Fig. 9. We display the original image with N = 101, created from a random config-
uration of beams, and its reconstruction using an equidistant beam setup with the
same number of beams.

Fig. 10. A photographic image (of dimensions 256×256) “reconstructed” with wave
lengths of 10 and 5 pixels, respectively, using an equidistant setup of N = 101
beams.

the right hand side of the nonlinear system of equations.

The last point which we wish to make in this section deals with the importance
of matching beam differences. We tried to reconstruct the random configura-
tion from Figure 6 with a different setup of beams. To this end, we used 101
beams which were equidistantly distributed around the circle. We chose an odd
number because this leads to a linearly independent set of beam differences.
Regarding the results in Figure 9, we must say that the reconstruction with a
different beam setup fails completely. We can see that the structures on the
small scales conserve their character, while no similarity survives on the global
scale. This is however not surprising, as the entries in Fourier space of both
distributions of beam differences generally do not have many common points.
We demonstrate in Figure 10 that it is even more beyond the capabilities of
our algorithm to reconstruct arbitrary images, such as photographs. Besides
purely imaginary resemblances, the image is clearly outside the class of recon-
structible patterns. This is caused by the principal discrepancy between the
set Kd of reachable differences in Fourier space and the set of Fourier values
of large amplitude in the original picture.
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4.2 Reconstruction of Periodic Patterns

In view of the observation that the class of reconstructible patterns is rather
limited, we now choose the target pattern outside of the set SN , but with a
simple structure, and turn our point of interest to periodic beam setups. As
already stated in Section 3.3, the choice of such setups renders the approxi-
mative calculation of the coefficients cj,l and c̃j,l in (42) unnecessary. They can
directly be derived from the discrete Fourier transform, namely by taking its
values at the appropriate elements k ∈ Kd according to (39). By choosing the
norm

‖f‖Ω := ‖f‖ℓ2 :=

√√√√√
L−1∑

j, l=0

∣∣∣ f̂j,l

∣∣∣
2

for any grid size L of the discrete Fourier transform, fd is the best approxima-
tion from Sd to the given function f /∈ Sd. The only numerical approximation
therefore needs to be performed in step (3) of the reconstruction (46). This is
done by an application of the coordinate descent method in order to minimize
the cost functional J from (43). As already mentioned, the Nelder and Mead

simplex method was also applied to minimize the cost functional. A compari-
son of the results of both methods below shows the good performance of the
coordinate descend method and demonstrate that it is well suited for this type
of optimization problem.

In order to compare the influences of the a priori choice of beam setup, we
reconstruct three different images of a simple structure with two beam setups,
each with a different number of beams. The resolution of the discrete Fourier
transform has been fixed at L = 256. The resolution of the images is in all
cases set to 256 × 256 pixels. Their intensity values range from 0.0 (black) to
1.0 (white).

The first applied beam setup consists of eight beams, located such that their
differences, i.e., the elements k ∈ Kd, all lie on grid points close to the origin.
This seems to be a reasonable choice, as the most important Fourier coeffi-
cients of a typical image appear at low frequencies. Recall that the failure of
reconstruction of arbitrary patterns in Section 4.2 was explained by the fact
that the entries in Fourier space of the beam differences and the given pattern
had no common points. Hence, one expects here at least the coincidence of
the most significant points in Fourier space. The positions of the wave vectors
and their differences are shown in Figure 11, Figure 13 and Figure 14 show
the original image as well as the approximations fd and f∗, reconstructed
once with the coordinate descent method and with the Nelder and Mead sim-
plex method. These graphics as well as all subsequent ones always display
the results in the same order. For periodic setups, the linear approximation
fd depends only on the choice of the beam setup. All linear approximations
attain the structure of the original image, which permits to state that these
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Fig. 11. A beam setup, with eight wave vectors kj ∈ K for a periodic setup. The
resulting differences in Kd with kmin = 2K√

10
are shown in the right image.

Fig. 12. A simple structure, that was reconstructed by the set K, as it is sketched
in Figure 11. The two left images show the original structure f (leftmost) and
its best approximation fd from Sd. On the right, two nonlinear approximations
f∗ ∈ SN are displayed which were calculated by the Nelder and Mead simplex
method (rightmost) and the coordinate descent method.

Fig. 13. Here, a different structure was reconstructed. The displayed order is again
from left to right: original structure f , best approximation fd, nonlinear approxi-
mations f∗ calculated by the coordinate descent method and the Nelder and Mead
simplex method.

eight beams form an appropriate setup for the reconstruction. The nonlinear
approximations f∗ ∈ SN also reconstruct the structure of the respective fd

for both numerical methods. In fact, the results of the methods differ only in
intensity, not in structure. The structure of the letter ”S” is preserved well.
Here, both iteration schemes deliver almost the same visual result. We con-
clude that the reconstructions are satisfactory and the performances of the
iteration schemes are of the same quality in all cases.
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Fig. 14. One more reconstruction with the periodic setup from Figure 11. The images
are ordered as in Figure 12 and Figure 13.

Fig. 15. An alternative periodic beam setup with twelve laser beams (left image).
For kmin = 2K√

50
all elements in Kd lie on the grid in Fourier space, as shown in the

right image. The period of fN is q =
√

50
K

π.

The good results of the approximation with eight beams motivate an extension
of the number of beams. To ensure that we can still achieve differences on
the grid, i.e., that we obtain in a periodic setup, twelve beams are suitably
arranged. Figure 15 shows the distribution of the wave vectors on the circle.
The resulting differences are now partly located close to the origin, and partly
separated by a considerable distance. One can see directly the relation Kd ∋
k = kminZ

2 for periodic setups from Section 3.3. Thus fN is a periodic function
with period q =

√
10

K
π. The sets Kd,1 and Kd,2 are both not empty. This leads

to gaps in the distribution of the k ∈ Kd on the grid. Altogether the grid
points directly around the origin are not as densely occupied as in the setup
with eight beams from Figure 11.

In order to compare the influence of the choice of beam setup, we consider the
same examples as treated previously with eight beams. The results are shown
in Figure 16, Figure 17 and Figure 18.

Although we have increased the number of beams and hence the number of
beam differences, the results are now inferior in quality. The linear approx-
imations fd ∈ Sd in Figure 16 and Figure 17 show some similarities in the
raw structure, however, no detailed reconstruction could be achieved. This is
due to the characteristics of the beam setup. We reason that fd is a linear
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Fig. 16. The original image is the same as in Figure 12, however this image is recon-
structed with the beam setup from Figure 15. The images show from left to right
the original image, the best approximation fd for this setup and the reconstruction
of f∗ with the coordinate descent method respectively with the Nelder and Mead
simplex method (rightmost).

Fig. 17. In this reconstruction with the setup from Figure 15, a likewise effect occurs
as in Figure 16. The displayed order is again from left to right: f , fd and f∗ calculated
with the coordinate descent method and the Nelder and Mead simplex method.

Fig. 18. Here, the beam setup from Figure 15 is applied to the same image as in
Figure 14. The images are ordered as in all previous figures.

combination of plane waves with wave vectors k ∈ Kd. If too few elements
k ∈ Kd are located close to the origin, the lower frequencies are badly repre-
sented. In addition to that, the gaps in the distribution of differences and the
lack of these frequencies in the spectrum of fd cause the poor reconstructions.
As a further consequence of these poor reconstructions fd, the final nonlinear
approximations f∗ ∈ SN are unsatisfactory.

The computed results for the two setups show the performance of the numer-
ical iteration methods applied to the minimization of the cost functional, i.e.,
the calculation of the nonlinear approximations f∗. The results for the first
eight-beam setup (Figure 11) are all very similar for both methods. They only
differ in the intensity of the created image, However, as the cost functional
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ignores any reference to the average intensity of the image, this is no valid
criterion concerning the quality of any method. For the second twelve-beam
setup (Figure 15) this is different. Here, the results of the coordinate descend
method and of the Nelder and Mead simplex method do not only differ in
intensity, but also in the structure of the reconstructions. For this setup, the
results of the simplex method are inferior to those of the coordinate descend
method, in the sense that the reconstructions with the latter method show
more similarities to the respective fd than the first. The result f∗ ∈ SN of
the coordinate descend method could attain the raw structure of fd, while
the Nelder and Mead simplex method failed in that task. In general, the re-
construction is, even for the numerically better method, not satisfactory. The
approximation fd ∈ Sd achieves the main structure of the original image, but
also shows some additional artifacts. This function is shown next to the origi-
nal image on the left. The final approximations f∗ ∈ SN , shown in the images
on the right (same order as in previous images), have no more similarity to the
original image. The Nelder and Mead simplex method delivers a very ”bright”
result, such that no more structure is recognizable. As for the last reconstruc-
tion example, though the linear approximation fd ∈ Sd shows again some
little artifacts, it can be taken as a very good first approximation. This good
approximation fd could, however, not be approximated well by the respec-
tive final nonlinear approximations f∗ ∈ SN for both methods. The original
structure becomes completely lost in this numerical reconstruction step.

5 Conclusion

In this article we presented a method for the calculation of beam coefficients
from a given target pattern. The coefficients represent the phases and ampli-
tudes for the individual beams of a given laser setup. The directions of the
beams have been considered as fixed parameters of the problem.

The initial mathematical model has been investigated by means of Fourier
analysis. The nonlinear approximation space SN gives rise to an overdeter-
mined system of nonlinear equations for the complex-valued coefficients.

The right hand side of this system is derived from the expansion coefficients
of the best approximation from a linear space Sd, which is spanned by the
basis functions occurring already in the definition of the nonlinear space SN .
This basis consists of plane wave functions, whose coefficients can be directly
identified as the values of the Fourier transform of the pattern at specific points
in Fourier space determined by the mutual differences of beam directions. For
a numerical solution of the problem, the continuous Fourier transform needs
to be replaced by the discrete Fourier transform. A minimum resolution of
the discrete Fourier transform depending on the given wave vectors can be
derived based on the characteristics of the beam setup. As the beam differences
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in general do not lie on the discrete Fourier grid, the values at intermediate
points have to be derived from their neighbours on the grid. A method was
proposed to interpolate the coefficients from the values of the discrete Fourier
transform on the grid.

Turning to a special subclass of beam setups that give rise to periodic patterns,
we showed that the grid can be scaled in such a manner that all desired
coefficients are delivered directly by the discrete Fourier transform.

To solve the over-determined system of nonlinear equations, we minimized a
cost functional by applying a coordinate descend method. Additionally, the
general Nelder and Mead simplex method was applied in the periodic case. In
general, we can say that our method delivered good results in all cases which
we examined, as it reconstructs only the best approximation from the linear
space Sd, which is the right hand side of the cost functional. Therefore, this
best approximation is the optimal result that can be achieved in any case and
the quality of the complete process of reconstruction is determined by the
distance of the Fourier transformation of the target pattern to the space Sd.

Thus, the quality of reconstruction is principally determined by the choice of
an appropriate setup for any given pattern. This can be reconstructed well
only if the most significant Fourier coefficients of the pattern are captured by
the differences of beam directions from the setup. In this case which arises, in
particular, when the pattern f lies in SN , the reconstruction is good. However,
in the general case that f /∈ SN , the beam setup should meet most of the
significant Fourier coefficients which are usually located close to the origin, to
produce an acceptable image. This explains why the setup with N = 8 beams
proves superior to the setup with 12 beams.

Of course, the quality of the reconstructions would be improved further if
we could formulate an algorithm to automatically choose beam setups Kd of
relatively large N , which are densely populated near the origin and are ideally
matched to the characteristics of the target image in Fourier space. This,
however, leads to the problem to approximate an object from an extremely
complicated nonlinear space for which it is likely that concepts from number
theory and combinatorial optimization would come into play. As mathematical
results are not yet available, the development of deterministic algorithms with
reasonable complexity for the most general problem are currently out of reach.
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