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We present a new method to identify and track intrinsic point defects in a silicon crystal in a
molecular dynamics simulation. If the canonical ensemble is employed, the resulting trajectory can
be used to compute the diffusion coefficients of defects for a prescribed temperature. A fit of these
values for different temperatures to an Arrhenius–type function gives the temperature dependence of
the diffusion coefficient over the whole range of interest. For this purpose, we performed simulations
employing the Stillinger–Weber potential as well as the Tersoff potential. We were able to improve
the accuracy of the approximation of the diffusion coefficients for self-interstitials and vacancies
computed by Sinno [2] and Tang et al. [5].
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I. INTRODUCTION

Industrial fabrication of semiconductor devices re-
quires a high quality of the base material. Hence, the
growth process of crystalline silicon has to be improved
continuously. During the growth process, the formation
of the crystal is influenced by the appearance of point
defects in the lattice. These point defects can develop
into microdefects during the annealing process which af-
fect the quality of the crystal. Thus, the aim is to avoid
the formation of such defects already during the crys-
tal growth process. This can be achieved by optimizing
the temperature distribution in the furnace and the pull
velocity of the growing crystal. Both parameters affect
the defect distribution. However, their optimal control
is a very difficult task. To this end, simulations of the
whole crystal growth process for various parameter sets
are necessary. This is subject to current research. Such
simulations compute the defect distribution in the grow-
ing crystal as a measure of the crystal quality. First at-
tempts in this direction were made by Brown et al. [1, 2].
Here, stationary results for the defect distribution were
computed. Recent simulations [3, 4] are also able to in-
vestigate the evolution of the defect distribution during
the growth process.

Such macroscopic simulations of the growth process
highly depend on the parameters which describe the ma-
terial properties of silicon. Here, the most important
parameters are the diffusion and the concentration coef-
ficients of the point defects. However, due to the high
temperatures in the furnace, it is very difficult to mea-
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sure them experimentally. Reliable experimental data
only exist for the product of diffusivity and concentra-
tion. Hence, one might resort to atomistic simulations
in order to determine the temperature dependence of the
specific material properties. To this end, long time inter-
vals and large system sizes are required for a microscopic
molecular dynamics simulation. These are necessary to
ensure statistical convergence of any macroscopic param-
eter to be derived. The computational costs for such sim-
ulations still are very high, even with up-to-date parallel
computers. Here, since the use of ab initio methods is
not affordable yet, simpler but faster approximations to
the forces in the crystal are applied. First attempts using
the tight-binding molecular dynamics (TBMD) method,
where the forces are calculated by directly diagonaliz-
ing the one-electron Hamiltonian matrix, were made with
promising results [5]. But this method still is restricted
to short time intervals. Molecular dynamics simulations
with semi-empirical potentials are able to provide longer
time intervals up to several nanoseconds. Here, analytic
potential functions are fitted to reproduce specific prop-
erties of the material. It is unclear to what extent such
potentials can yield reasonable results for other proper-
ties, and corresponding results have to be used with care.

In this paper we describe a new method to identify and
track intrinsic point defects in a silicon crystal during a
molecular dynamics simulation. Here, we compute the
bond order of each atom and test it for a criterion that
distinguishes lattice atoms from interstitials and vacan-
cies. We apply the method to determine the temperature
dependence of the diffusion coefficients of the point de-
fects. To this end, trajectories of the point defects are
calculated for different temperatures. From these trajec-
tories the diffusion coefficients for the respective tempera-
ture can be computed. To obtain the temperature depen-
dence continuously over the whole range of interest, an
Arrhenius–type function is fitted to the computed data.
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This result can then be used in a macroscopic simulation
of the whole growth process with the aim to improve the
industrial fabrication of silicon crystals [6].

The remainder of this paper is organized as follows: In
Section II, we describe our method to identify and track
point defects during the simulation and explain how the
diffusion coefficients can be computed from the point de-
fect trajectories. In Section III, we present the results
obtained with our method and compare it to the results
found in the literature. Finally, we present some conclu-
sions and discuss open questions in Section IV.

II. METHOD

A. Point Defects

Let us consider a silicon crystal on the atomistic scale.
There are two types of intrinsic point defects: Self-
interstitials and vacancies. Self-interstitials are addi-
tional silicon atoms which are not located at a crystal
lattice point. Vacancies are defined by a missing lat-
tice atom. The identification of these defects during an
atomistic simulation is a challenging task since they can-
not be identified by single particles which would be easy
to track. Interstitials often exchange their place with a
lattice atom, hence any atom can become an intersti-
tial during a simulation and vice versa. Vacancies are
not particles in the classical sense, since they are defined
by the absence of a lattice atom. This characterization
makes a check of the whole lattice inevitable; i.e., the
only possibility to detect these defects is by testing all
atoms in the simulation domain for errors of the lattice
structure. To this end, one needs a description of the
lattice on the atomistic level.

FIG. 1: Unit cell of the diamond structure of silicon.

Silicon crystallizes in the so-called diamond structure;
i.e., the four nearest neighbors of each atom form the
vertices of a tetrahedron, see Fig. 1. As can be seen
in Fig. 2, the radial distribution function of this type
of lattice structure has a distinct peak around the dis-
tance of adjacent atoms. This property can be used for
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FIG. 2: Radial distribution of particles in a perfect silicon
crystal.

a simple but efficient test for errors in the local struc-
ture: In the faultless crystal, each atom should have ex-
actly four neighbors within the characteristic distance of
rnb = 0.29 nm. The number n of neighbors within this
distance is the so-called bond order. A deviation of this
bond order from the value gives a hint on a defect.

Since we want to identify special intrinsic point defects
we need to specify which deviations will be caused by the
different defects. To this end, the following holds: A self-
interstitial is an additional silicon atom which does not
belong to the lattice. Hence, the bond order of all lat-
tice atoms which are direct neighbors of this interstitial
is increased by one. The interstitial itself then typically
has six or more neighbors within the sphere of radius rnb.
It therefore can efficiently be identified by this property.
Vacancies cause deformations of the local structure, since
the neighboring atoms tend to move towards the empty
space. Thus, they can be localized by looking at the bond
orders of neighboring atoms. If at least two neighbor-
ing atoms with a significant deviation (larger than one)
of their bond order are found, then there is a vacancy
present. Its position is approximated by averaging the
locations of the respective neighboring atoms. In sum-
mary, all atoms (lattice, interstitials) can be classified by
their bond order n:

n = 4 : lattice atom

n > 5 : interstitial (1)

at least 2 neighbors with n > 5 : vacancy

This criterion makes an identification of point defects
possible for each single time step. The aim, however, is to
track a defect during the whole simulation. To this end,
it is helpful that the defect concentrations in crystalline
silicon are very low at the temperatures of interest. Thus,
simulations with more than one point defect are not nec-
essary. It is sufficient to identify a single point defect and
localize it at each time step. This directly leads to a tra-
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jectory of the defect. In principle, more than one defect
of the same type can be treated in one simulation as well.
Problems only occur when two defects cross each others
trajectory. Then, the defects might mutually be assigned
to the wrong trajectory. But due to the stochastic na-
ture of the defect movement and the indistinguishability
of defects of the same type, this has no effect on the
computation of macroscopic values.

How can the above described procedure for detecting
and tracking intrinsic point defects during an atomistic
simulation be efficiently implemented? First, one has to
determine the bond order of each atom in the simulation
domain at each time step. For this purpose, all neigh-
bors of an atom within a sphere of radius rnb have to be
found and counted. The naive approach of checking the
distance between all possible pairs of atoms would be of
order O(N2), if N denotes the total number of atoms.
However, one can use the well-known linked-cell tech-
nique [7, 8] in order to reduce the complexity to O(N).
To this end, one divides the domain into cubic cells of
side length L ≥ rnb and assigns all particles to their as-
sociated cells. In order to find all neighbors of an atom
within the prescribed distance rnb it is then sufficient to
consider only the particles which lie in the same or ad-
jacent cells. After the bond order is determined for all
particles, the point defect criterion (2) is used to iden-
tify interstitials and vacancies for the current time step.
Due to thermal fluctuations in the crystal, sometimes
also lattice atoms are wrongly classified as interstitials
or vacancies. But these cases are rare and of stochastic
nature. They are easily eliminated by verifying whether
the detected position can belong to the traced trajectory
or not. To this end, simply the distance to the position
of the defect at the last time step is checked.

A simulation of a silicon crystal with a point defect
then leads to the trajectory of this defect. Fig. 3 shows
an example of such a trajectory over a period of 2.5 ns.
Since the molecular dynamics simulation uses periodic

FIG. 3: X-coordinate of computed trajectory and periodically
corrected and smoothed trajectory of a vacancy.

boundary conditions, a point defect can leave the do-
main at one side and reenters it at the opposite side.
In order to use such a trajectory for the computation of
macroscopic diffusion coefficients it first has to be cor-
rected with respect to this boundary conditions as fol-
lows: If the point defect leaves the domain at one side
and reenters it at the opposite side this has to be ac-
counted for by adding/subtracting one side length of the
domain to/from the respective coordinate. The result-
ing trajectory is then smoothed by a low-pass filter in
order to reduce the effects of the small spatial fluctua-
tions of the point defect, see Fig. 3. This continuous and
smooth trajectory can then be used to compute the diffu-
sion coefficient of the point defect by means of statistical
mechanics.

B. Diffusion Coefficient

The aim is now the computation of temperature-
dependent macroscopic material properties like the diffu-
sion coefficients of self-interstitials and vacancies. Since
we perform atomistic simulations, we have to use meth-
ods from statistical mechanics in order to compute
macroscopic parameters from microscopic values. All
simulations are performed in the canonical ensemble, i.e.
at constant temperature. Here, macroscopic values can
be obtained by averaging the microscopic values with the
Boltzmann factor, i.e.

〈A〉 :=

∫
A(x,p)e−βH(x,p)dx dp∫

e−βH(x,p)dx dp
with β :=

1

kBT
, (2)

where A is the microscopic value, H denotes the micro-
scopic energy of the system, x and p are the positions and
momenta of the particles, T is the temperature and kB
denotes the Boltzmann constant. In this sense, the dif-
fusion coefficient is directly related to the spatial motion
of the particles or point defects. Einstein first derived
that the diffusion coefficient DI,V (I for interstitial, V
for vacancy) can be written as

DI,V =
1

6

∂

∂t
〈|xI,V (t)− xI,V (t0)|2〉 (3)

where xI,V (t) is the position of a interstitial or vacancy
at time t. From this equation it follows that

〈|xI,V (t)− xI,V (t0)|2〉 ∝ t, (4)

since DI,V is a constant. Hence, we can write

〈|xI,V (t)− xI,V (t0)|2〉 = c0 + d · t (5)

with constants c0 and d. The diffusion coefficient can
then be calculated as D = d/6.

Since the computation of the associated high dimen-
sional integral in (5) is not possible in appropriate run
time, one has to resort to an approximation. This can be
done as follows: A molecular dynamics simulation results
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in a discrete trajectory of the respective point defect, i.e.
a discrete set of locations xmI,V (t0),xmI,V (t1), . . . ,xmI,V (tn)
at times ti, i = 1, . . . n. From these locations the discrete
function

rmI,V (ti) :=
∣∣xmI,V (ti)− xmI,V (t0)

∣∣2

can be calculated. This function deviates from the ex-
pected values

〈|xI,V (ti)− xI,V (t0)|2〉 = c0 + d · ti

by a stochastic error. Using the Ergoden hypothesis,
equation (3) is equivalent to

DI,V = lim
t→∞

1

6(t− t0)
|xI,V (t)− xI,V (t0)|2. (6)

Of course, this expression cannot be computed either.
But for the discrete function rmI,V

lim
n→∞

rmI,V (tn)

tn − t0
= d.

holds. If we now fix t to a large value and thus ne-
glect the limes we obtain an approximation of the dif-
fusion coefficient. Due to the stochastic nature of the
point defect movement, the error of this approximation
is quite large for computationally achievable values of
t. Instead, we use the computed time-discrete function
rmI,V (ti), i = 1, . . . n, to approximate the line c0 +d · t by a
least square fit. Then the stochastic errors are eliminated
if the computed trajectory is long enough. The result is
an approximated slope d̃ and an approximative diffusion
coefficient D̃ = d̃/6. In practice, time intervals of sev-
eral nanoseconds have shown to give acceptable results.
However, more accurate predictions — supposing that
the potential correctly describes the investigated prop-
erty — will require simulation times of some picoseconds
in the case of point defect diffusion.

Now, each of the molecular dynamics runs leads to a
trajectory of a point defect and to a value for the dif-
fusion coefficient at a prescribed temperature. In order
to use the computed diffusion coefficients in macroscopic
process simulations their values are needed at arbitrary
temperatures. To this end, we have to provide an analyt-
ical function which then is fitted to the computed values
at the respective temperatures.

We proceed as follows: Experimental methods only al-
low the measurement of the product of the equilibrium
defect concentration CI,V and the diffusivities DI,V [9].
Gösele et al. [9] specify these quantities as

CIDI = 914 exp

(
−4.84 eV

kBT

)
cm2/s

CVDV = 0.6 exp

(
−4.03 eV

kBT

)
cm2/s.

These formulae are rather reliable in the case of intersti-
tials whereas they are still controversial in the vacancy
case. The individual values for the concentrations and
diffusivities are not known. But these experimental re-
sults together with further theoretical assumptions sug-
gest an Arrhenius behavior of the point defect diffusion
coefficients, i.e.

DI,V = D0
I,V exp

(
−
EmI,V
kBT

)
, (7)

see also [5, 10, 11]. Here, D0
I,V denotes the diffusivity

prefactor and EmI,V the migration energy. These param-
eters can be determined by a least square method to fit
function (7) to the computed data points of the diffusion
coefficients.

III. RESULTS

A. Details of the molecular dynamics simulations

In order to determine the temperature dependence of
the diffusion coefficient of intrinsic point defects in a solid
material, molecular dynamics runs at constant tempera-
ture in a domain with periodic boundary conditions are
necessary. Since the temperature dependence of the den-
sity can be neglected for most solids, the (NVT)-ensemble
can be employed. To this end, we used the Nosé ther-
mostat [12] for the coupling to a heat bath. There exist
two potentials for the condensed phases of silicon: One
by Stillinger and Weber [13] and one by Tersoff [14–17].
A simple pair potential like the Lennard-Jones interac-
tion, which is typically used for liquefied noble gases,
is not sufficient for the simulation of covalent systems.
Hence, both, the Stillinger–Weber potential and the Ter-
soff potential, consist of two- and three-body terms. The
general form is

U(x1,x2, . . . ,xN ) =
N∑

i,j
i>j

f2(xi,xj) +
N∑

i,j,k
i>j>k

f3(xi,xj ,xk)

where f2 is a two-body function, f3 a three-body func-
tion and N the total number of atoms in the simulation
domain. The two potential forms differ, however, in their
exact definition of f2 and f3. Furthermore, these func-
tions are fitted to different properties of silicon. In the
case of the Stillinger–Weber potential the incorporated
parameters were chosen to stabilize the diamond struc-
ture at low pressure and to give good agreement with
experimental data for the melting point and the liquid
structure. The parameters of the Tersoff potential are
fitted to correctly reproduce cohesive energies, the bulk
modulus and the bond length in the diamond structure.
In [16] the parameter set was improved to give better re-
sults for the elastic properties of silicon. However, the
Tersoff potential does not reproduce the correct melt-
ing point [16]. Therefore, its use to determine tempera-
ture dependent properties is controversial. We used both
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FIG. 4: Function rmI,V (ti) of a trajectory of a vacancy and
fitted line.

potentials for both types of intrinsic point defects. A
comparison of the obtained results will be given in the
following subsections.

Both potentials are short-ranged. Hence, one can use
the linked-cell method for the efficient evaluation of the
forces. For the three-body terms one has to find all triples
of particles where at least two of the three possible dis-
tances between the three particles are smaller than the
potential-specific cut off. This triple search can be imple-
mented by an additional cycle through the neighboring
cells of the linked-cell structure for all pairs of particles.

Most of the computations concerning point defects in
the literature so far were performed using a periodic
supercell which contains 216 or less atoms [5, 10, 11].
Furthermore, the simulation times ranged from ps to
ns [5, 11]. We were able to increase the system size
to 1000 particles in a periodic box of 2.67 nm and
reached simulation times up to 27 ns. Our initial con-
figuration was always a perfect tetrahedral crystal with
a density of 2.44 g/cm3. The considered point defect
was introduced at the beginning of the simulation by
either adding a silicon atom randomly or by removing
one of the lattice atoms. All simulations were done
in the (NVT)-ensemble. The diffusion coefficients were
computed for interstitials and vacancies with both, the
Stillinger–Weber and the Tersoff potential.

B. Diffusion coefficients

Each molecular dynamics simulation at a prescribed
temperature results in a trajectory of the considered
point defect. Fig. 3 showed an example of a trajectory
of a vacancy for a small time period. Then, from each
trajectory the function rmI,V (ti) is computed, see Fig. 4.
Finally, a least square fit of this function gives a line
whose slope is directly proportional to the diffusion co-
efficient at the prescribed temperature. Table I shows
the results of this approach for both types of defects and

TABLE I: Computed diffusion coefficients.

T [K] DSW
I [ cm

2

s
] DTER

I [ cm
2

s
] DSW

V [ cm
2

s
] DTER

V [ cm
2

s
]

1258.9 1.535 · 10−5 − 0.461 · 10−5 0.043 · 10−5

1384.8 1.166 · 10−5 0.029 · 10−5 0.294 · 10−5 0.108 · 10−5

1435.1 − 0.190 · 10−5 − −
1510.7 3.100 · 10−5 0.046 · 10−5 0.587 · 10−5 0.273 · 10−5

1586.2 − 0.313 · 10−5 − −
1636.6 7.144 · 10−5 0.610 · 10−5 1.054 · 10−5 1.194 · 10−5

1762.4 8.678 · 10−5 1.038 · 10−5 0.346 · 10−5 1.745 · 10−5

1888.3 − − − 1.266 · 10−5

both types of potentials. These data points then were

TABLE II: Computed diffusivity prefactors and migration en-
ergies.

Defect type Potential D0 [cm2/s] Em [eV ]

Interstitial Stillinger–Weber 1.45 · 10−2 0.78
Interstitial Tersoff 2.13 1.85
Vacancy Stillinger–Weber 1.26 · 10−4 0.12
Vacancy Tersoff 0.55 1.27

used to fit the parameters of the Arrhenius–type function
(7) to give the temperature dependence over the whole
range of interest. Fig. 5 and Fig. 7 show the data points
and the fitted line in a semi-logarithmic graph for self-
interstitials and vacancies, respectively. The resulting
values for the diffusivity prefactors and migration ener-
gies are given in Table II. A comparison with the values
found in the literature [5, 10, 11] shows good agreement,
see Fig. 6 and Fig. 8. The Stillinger–Weber potential
predicts a defect migration which is dominated by self-
interstitials for higher temperatures (> 1600 K), whereas
for lower temperatures the vacancy migration is larger.
We were able to improve the accuracy of the results ob-
tained by Sinno [2] with the Stillinger–Weber potential
by an increase of the system size of the molecular dy-
namics simulations and a larger number of simulations
at different temperatures. Compared to the results given
in [2], we obtained an overall higher migration for self-
interstitials and similar results for the migration energy
and diffusivity prefactor. In the vacancy case, the mi-
gration energy differs more significantly from [2]. Here,
our results are similar to those from Tang et al. [5].
The Tersoff potential, however, yields larger values for
both the migration energy and the diffusivity prefactor.
This is surprising since the Tersoff potential has a melting
point which is about twice as high as the experimental
value. Hence, the temperatures of our simulations, which
are near the experimental melting point of silicon, lie far
away from the melting temperature of the Tersoff po-
tential. Here, however, point defect migration should be
small. One can conclude that, although both potentials
result in comparable results, the use of the Tersoff po-
tential for measuring temperature-dependent properties
is at least questionable.
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FIG. 5: Temperature dependence of the diffusion coefficient
for self-interstitials.
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FIG. 6: Comparison of our results with the ones found in the
literature for self-interstitials.

The major problem of the determination of macro-
scopic quantities by atomistic simulations is the huge
computational effort which is necessary to get statisti-
cal reasonable results. Due to the stochastic nature of
the point defect movement, long simulation times are in-
evitable in order to reduce the error sufficiently. This
effect can clearly be seen in Fig. 4, where the mea-
sured function rmI,V (ti) shows large fluctuations around

the mean square displacement 〈(xV (t0)−xV (t))2〉. Such
long simulation times, however, cannot yet be reached.
Therefore, the existing methods today only allow for a
rough computation of the temperature dependence of the
diffusion coefficient and cannot yield more exact predic-
tions so far.
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FIG. 7: Temperature dependence of the diffusion coefficient
for vacancies.
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FIG. 8: Comparison of our results with the ones found in the
literature for vacancies.

IV. CONCLUSIONS

To improve the quality of semiconductor base mate-
rial, macroscopic simulations of the whole silicon crys-
tal growth process are necessary. For these simula-
tions, information on the properties of silicon are needed
which cannot be gained from experimental measure-
ments. Therefore, we have to resort to atomistic sim-
ulations to compute these properties.

In this paper we computed the temperature depen-
dence of the diffusion coefficients of intrinsic point defects
in a silicon crystal. We presented a new method to iden-
tify the defects during the simulation. To this end, we
test the bond orders of all atoms in the simulation domain
for specific criterions. This enables us to track the point



7

defects during the simulation in a completely automatic
way. From the resulting point defect trajectories we then
compute the diffusion coefficient at a specific tempera-
ture. Finally, an Arrhenius–type function is fitted to the
diffusion coefficients obtained for different temperatures.

The major problem of this procedure is the long time
interval of the simulation necessary to get reliable re-
sults from the statistical data and, thus, the computa-
tional effort involved. So far, only simulations with semi-
empirical potentials are capable to reach sufficiently large
time intervals. Ab initio calculations for computing point
defect diffusivities are out of question by today. Anyway,
our approach allows in principle to derive macroscopic

quantities in sufficient quality as long as an appropriate
potential function is available and a large and fast com-
puter is used.
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