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Abstract

The concept of covariate shift in supervised data analysis describes a difference between
the training and test distribution while the conditional distribution remains the same. To
improve the prediction performance one can address such a change by using individual
weights for each training datapoint, which emphasizes the training points close to the test
data set so that these get a higher significance. We propose a new method for calculating
such weights by minimizing a Fourier series approximation of distance measures, in partic-
ular we consider the total variation distance, the Euclidean distance and Kullback-Leibler
divergence. To be able to use the Fourier approach for higher dimensional data, we employ
the so-called hyperbolic cross approximation. Results show that the new approach can
compete with the latest methods and that on real life data an improved performance can
be obtained.

Keywords: Covariate Shift, Fourier Series Approximation, Hyperbolic Cross, Curse of
Dimensionality

1. Introduction

In a standard machine learning setting it is assumed that the test data is essentially drawn
from the same distribution as the training data, i.e.

p(x, y) = p(y|x)p(x) and p(x) = ptr(x) = pte(x).

In practice, however, the training distribution ptr can differ significantly from the test
distribution pte, while the functional relationship p(y|x) remains the same. Such a situation,
where ptr(x) 6= pte(x), is known as covariate shift and can arise from several circumstances.
For example, in non stationary cases the distribution of the covariate might change over
time. In parameter optimization scenarios a good extrapolation into before unseen regions
of the parameter domain is often needed. Or the actual (geographical) location of some
measurements may have an impact, as is the case for the earthquake dataset considered in
this paper.

The covariate shift is the result of some kind of bias that influences the input variables
x. Hence, the test datapoints are drawn from regions that are not covered, or by far not
as densely, by the training samples. Therefore, a model learned on the training data might
not be well suited for prediction of the test labels. To rectify this problem one can put
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more weight on training datapoints that lie close to the test data Xte, assuming that these
better represent the structure of the test data. Note that in supervised learning such a
situation where, besides the training data, additional samples are available for whose only
the locations x are given is known as semi-supervised learning (Chapelle et al., 2006).

A common approach to handle such a situation is importance sampling. If one knew the
training and test distribution one could give weights directly by calculating the importance
sampling weight function

w(x) =
pte(x)

ptr(x)
. (1)

Since this information is unavailable it is necessary to estimate these weights.
Several methods have recently been proposed for inferring individual weights for each

training datapoint. Bickel et al. (2009) proposed a kernel logistic regression classifier for
covariate shift. Another method is the so-called Kernel Mean Matching (KMM) (Huang
et al., 2007) algorithm, where all moments in the original space are mean matched. KLIEP
(Kullback Leibler Importance Estimation Procedure) has been put forward by Sugiyama
et al. (2008), it minimizes the Kullback Leibler divergence for retrieving optimal weights.
Furthermore this procedure was extended by Tsuboi et al. (2009) to large-scale problems.
Least-squares importance fitting (uLSIF) is another recent method which was stated by
Kanamori et al. (2009). For recent surveys on the state of the art on covariate shift as
well as the more general dataset shift see Quionero-Candela et al. (2009); Sugiyama and
Kawanabe (2012); Moreno-Torres et al. (2012). All these methods assume some overlap of
the samples from the two distributions ptr and pte. In cases where the training and test
distribution have nothing in common, i.e. the samples are disjunct, it will not be possible
to derive reasonable information for the calculation of the weights just from the samples
without strong additional assumptions about the type of distributions involved.

In this paper we propose a new approach for estimating the weights. We use a Fourier
approximation of a distance measure to estimate the divergence of distributions. In a cer-
tain sense the measuring of the divergence becomes less data centered since an explicit
discretization of the underlying error function is involved. The Fourier based approach does
not depend on a specific distance measure, nor on a specific point set for empirically esti-
mating the distance measure. We will minimize the total variation distance, the Kullback-
Leibler divergence and the Euclidean distance. The training and test data are then used
during the estimation of the Fourier coefficents of the resulting distance function. It can be
seen that the resulting constrained optimization problem is convex and can be solved with
standard methods. Furthermore, we give some evidence that under certain circumstances
the application of the Fourier series will lead to a better weight estimation in comparison to
other approaches. Note that a Fourier series approximation for high dimensional functions
quickly runs into the curse of dimensionality due to the exponential growth of the number of
coefficients. To overcome this we will apply the hyperbolic cross approach (Babenko, 1960;
Smolyak, 1963; Knapek, 2000) which enables us to apply a Fourier series approximation to
high dimensional functions by simultaneously keeping an acceptable degree of accuracy.

The paper is structured in the following way: In section 2 we introduce our new method
and section 3 gives insights why the new method is beneficial. The extension to higher
dimensional data based on the hyperbolic cross approximation is given in section 4. Finally,
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sections 5 and 6 state the employed weighted regression and classification algorithms, the
experimental setup and the results obtained on diverse datasets.

2. New Fourier Based Approach

We will now motivate and derive our new approach for the calculation of importance weights
for the training data. Mathematically speaking we would like to minimize the distance of
the test distribution pte and the training distribution ptr which is reweighted by w

min
w
D(pte(x)‖w(x)ptr(x)). (2)

Expression (2) can be minimized using different distance measures. Typically one chooses
divergence measures from the classes of Csiszár or Bregman divergences, which are then
empirically evaluated on some points {xi}Ni=1. Here one often uses training {xtri }

Ntr
i=1 or test

datapoints {xtei }
Nte
i=1 for the evaluation points in the distance estimation.

Let us consider the class of Csiszár divergences, defined as Dh(p||q) =
∑N

i=1 qih(piqi ),
where h is a real-valued convex function satisfying h(1) = 0 and we define pi := p(xi),
qi := q(xi). Different h yield different divergences. For the following exposition we set
h(u) = |u− 1| and considering that qi > 0 ∀i we get the total variation distance

Dh(p||q) =

N∑
i=1

qi

∣∣∣∣piqi − 1

∣∣∣∣ =

N∑
i=1

|pi − qi|. (3)

Substituting (3) into (2) we get

min
w
Dh(pte(x)‖w(x)ptr(x)) = min

w

N∑
i=1

|pte(xi)− w(xi)ptr(xi)|. (4)

Note that in contrast to many other approaches, our methodology does not depend on a
specific choice of the points {xi}Ni=1 and we are able to use any point set in the distance
estimation (4). Nevertheless, for the sake of comparison with other approaches, we use
either training or test datapoints in (4) for our experiments in Section 6.

Observe that the Fourier based approach which we will describe in the following can be
directly applied to different divergence measures. For example, a generalisation of the total

variation distance, the so called Matsusita or Hellinger distance, i.e. h(u) = |uγ−1|
1
γ which

yields
∑N

i=1 |p
γ
i −q

γ
i |

1
γ , could be used. We later state our approach with the Kullback-Leibler

divergence and the Euclidean distance, respectively.

2.1. Choice of the Weight Function

The optimization problem (2) states the problem of finding an optimal weight function w(x)
which minimizes the distance of the two functions pte and w · ptr. The exact solution would
be the quotient of the density functions, i.e. w(x) = pte(x)

ptr(x)
, which of course is not available.

Therefore one can only compute an approximation ŵ of w. For the discrete representation
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of ŵ we will, as in Sugiyama et al. (2008); Kanamori et al. (2009), use a linear combination
of Gaussian kernels

ŵ(x, α) =

Z∑
j=1

αj exp

(
−‖x− ζj‖

2

2σ2

)
. (5)

It is comprised of Z ∈ N exponential functions each of which centered at a ζj . In our
experiments we will use the test data as the center points ζj , as in Sugiyama et al. (2008);
Kanamori et al. (2009). There it is argued that using test points as the Gaussian centers
is preferable, since kernels may be needed where the target function w(x) is large, which
is the case where the training density ptr(x) is small and the test density pte(x) is large.
Note that the ratio (1) implies positive weights, which is the case for any x and any α ≥ 0
in ŵ(x, α). Other weight function representations are possible, but to concentrate on the
effect of the new Fourier based distance estimation and to be able to better compare with
other approaches we consider the linear combination of Gaussian kernels in this work.

Inserting (5) into (4) now yields

min
w
Dh(pte(x)‖w(x)ptr(x)) ≈ min

α≥0

N∑
n=1

|pte(xn)− ŵ(xn, α)ptr(xn)|. (6)

Note that this minimization problem still employs the probability densities directly. In the
next step we will now approximate this term using a Fourier series approximation.

2.2. Fourier Series Approximation

Our new approach makes use of Fourier series approximation, with which we discretize the
employed distance measure, taking a more function centric view as opposed to the more
common data centric view. Section 3 provides a discussion of the advantages of this new
approach, while section 4 explains the case of more than one dimension.

Let now f be a continuous periodic function with period T > 0 and partially continuous
derivatives; then the Fourier series is defined as

f(x) =
∞∑

k=−∞
cke

i 2πk
T
x, ck =

1

T

∫ t+T

t
f(x)e−i

2πk
T
xdx, (7)

where i denotes the imaginary unit and t ∈ R is an arbitrary point. For a suitably smooth
function we can approximate this expression in a controlled fashion by a truncated Fourier
series with |k| ≤ K

f(x) ≈
K∑

k=−K
cke

i 2πk
T
x, (8)

where K is chosen to achieve a given error, see section 4 for more details on the approxi-
mation properties.

We consider now the error function between the two densities

f(x) := pte(x)− ŵ(xn, α)ptr(x).
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We assume that the given data is bounded to a certain region, i.e. Xtr∪Xte ⊂ [t, t+T ] ⊂ R,
for suitable chosen t, T . Assuming periodicity of f on that interval implies that we make
the same small error on the boundary, which is our aim in the minimization. Furthermore,
the interesting region is the inner part where the two samples overlap, near the boundary of
the domain the densities will be small in any case, which, if necessary, can even be enforced
by having a reasonable gap between the given data and the actual boundary of the interval.
Therefore we can reasonably assume a continuous periodic extension of the Fourier series
of f and avoid the Gibbs phenomen, i.e. potential overshoots on the boundary, in practice.

We now apply the Fourier series approximation to our problem (6). Due to its definition
we can replace the densities by the empirical samples in the formula (7) for the coefficients
ck after splitting the integral into two

ck(α) =
1

T

∫ t+T

t
pte(x)e−i

2πk
T
xdx− 1

T

∫ t+T

t
ŵ(x, α)ptr(x)e−i

2πk
T
xdx (9)

≈ 1

TNte

Nte∑
l=1

e−i
2πk
T
xtel − 1

TNtr

Ntr∑
l=1

ŵ(xtrl , α)e−i
2πk
T
xtrl . (10)

In the last part of this equation we approximate the two integrals by taking the empirical
expectation based on the training and test data, respectively. Therefore, we no longer
explicitly need the unknown densities but use their known samples.

2.3. Optimization Problem

The original problem (2) is about finding an appropriate weight function. Employing (5)
for given parameter σ and center points (ζj)

Z
j=1 and using the Fourier approximation (8)

for a suitably chosen K we obtain the following optimization problem

min
α≥0

N∑
n=1

|pte(xn)− ŵ(xn, α)ptr(xn)| ≈ min
α≥0

N∑
n=1

∣∣∣∣∣
K∑

k=−K
ck(α)ei

2πk
T
xn

∣∣∣∣∣ . (11)

Due to the linearity of this problem we can express it in matrix notation. Defining the
matrix A ∈ RN×Z as A = [A1| . . . |AN ], where the An ∈ RZ are column vectors comprised,
after inserting (5) for ŵ, of the entries

(An)j =

K∑
k=−K

1

TNtr

Ntr∑
l=1

e−
‖xtrl −ζj‖

2

2σ2 e−i
2πk
T
xtrl ei

2πk
T
xn , j = 1, . . . , Z.

Additionally we get a vector b ∈ RN , defined as

bn =
K∑

k=−K

Nte∑
l=1

1

TNte
e−i

2πk
T
xtel ei

2πk
T
xn , n = 1, . . . , N.

The problem (11) can now be stated as a L1 minimization problem with side conditions in
a compact notation by employing A and b

min
α≥0
‖Aα− b‖1 .
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2.4. Normalization Constraints

It is possible that a solution to the optimization problem (11) might not yield appropriate
weights. Often only a small fraction of αs will be larger than zero, which leads to a situation
where only a few training datapoints will get importance. To compensate, we employ an
approach which is similar to the one introduced in Sugiyama et al. (2008). From (1) we have
pte(x) = w(x)ptr(x), and taking the integral on both sides yields the natural side condition

1 =

∫
pte(x)dx =

∫
w(x)ptr(x)dx ≈ 1

Ntr

Ntr∑
n=1

ŵ(xtrn , α),

again using the empirical samples and the approximation ŵ. We augment (11) and get a
new constrained optimization problem1

min
α≥0
‖Aα− b‖1 s.t.

1

Ntr

Ntr∑
n=1

ŵ(xtrn , α) = 1. (12)

2.5. Kullback-Leibler Divergence

An advantage of the Fourier approach is that it can directly be applied to different divergence
measures. To demonstrate this flexibility we will use as a second Csiszár divergence the
Kullback-Leibler divergence, which also allows us to compare with KLIEP (Sugiyama et al.,
2008). Roughly following the KLIEP derivation gives

KL(pte‖wptr) =
N∑
n=1

pte(xn) log

(
pte(xn)

w(xn)ptr(xn)

)

=

N∑
n=1

pte(xn) log

(
pte(xn)

ptr(xn)

)
−

N∑
n=1

pte(xn) log (w(xn)) .

Since the first part does not depend on w, it suffices to minimize

arg min
w

KL(pte‖wptr) ≈ arg min
α≥0

−
N∑
n=1

pte(xn) log (ŵ(xn, α)) , (13)

where we employ the approximation ŵ of w. Using the same normalization approach as
above, the final optimization problem becomes

min
α≥0

N∑
n=1

K∑
k=−K

ck(α)ei
2πk
T
xn s.t.

Ntr∑
n=1

ŵ(xtrn , α)

Ntr
= 1, (14)

where

ck(α) =
1

T

∫ t+T

t
−pte(x) log (ŵ(x, α)) e−i

2πk
T
xdx ≈ −1

TNte

Nte∑
l=1

log
(
ŵ(xtel , α)

)
e−i

2πk
T
xtel .

1. We used the YALL1 Basic solver from http://yall1.blogs.rice.edu/.
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Although the approach is very similar to the one suggested by Sugiyama et al. (2008), we
get a different optimization problem2 due to the Fourier approximation and also estimate
the divergence in a different fashion. Note that the KL divergence is a special case of the
generalized KL divergence or I-Divergence which is from the class of Bregman divergences.
The Fourier approach could also be applied for these.

2.6. Euclidean Distance

The third distance measure that we will investigate is the Euclidean distance, which belongs
to the class of Bregman divergences, and was also used for uLSIF (Kanamori et al., 2009).
Bregman divergences are defined by

Dφ(p‖q) = φ(p)− φ(q)− φ′(q)(p− q),

where φ is a strictly convex real-valued function and φ′(q) denotes the derivative with
respect to q. Setting φ(·) = || · ||22 we get

D||·||22(p‖q) = ||p||22 − ||q||22 − 2q(p− q) = ||p− q||22.

Employing the data, the weight function ŵ and applying the Fourier approximation we get
the following optimization problem:

min
α≥0
‖Aα− b‖22 s.t.

1

Ntr

Ntr∑
n=1

ŵ(xtrn , α) = 1, (15)

where A and b are defined as in (2.3).

3. Benefits of the Fourier Approximation

The following illustrative example shows the behavior of our approach. The weight function
ŵ is chosen according to (5). For the sake of comparison, we use the Kullback-Leibler
divergence and the Euclidean distance here.

We note that by estimating the divergence measure using the Fourier approximation
we achieve a smoothing of the weights. This becomes especially useful when a small band-
width parameter σ is chosen for the weight function ŵ. As Figure 1 illustrates the weights
learned by the Fourier methods are much smoother and stable than the weights learned
by KLIEP (Sugiyama et al., 2008) or uLSIF (Kanamori et al., 2009) which involve a much
higher volatility. In the case of Figure 1 we applied the bandwidth parameter σ that was
chosen by KLIEP also to the Fourier methods for the sake of comparison. Although we did
not apply our method of parameter selection, the Fourier methods outperform KLIEP, in
the sense of a less volatile weight function. Note that the parameters for uLSIF have been
determined by its own parameter estimation method.

The comparison of KLIEP and KL-Fourier is of special interest here because this is a
direct comparison of two very similar methods which clearly shows the advantages of the

2. We here used IPOpt from https://projects.coin-or.org/Ipopt, which is also used for the Euclidean dis-
tance.
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Figure 1: Plot of the learned weight functions ŵ for a 1D toy example. Regions of low test
data (magenta) density imply small weights while high density regions imply large
weights. KLIEP (green) and uLSIF (blue) compute much more volatile weight
functions than the Fourier methods. Total variation Fourier was omitted in this
plot for clarity of the diagram and due to similarity to the other shown Fourier
results.

smoothing of the Fourier approximation method. The reason for this smoothing is that
the Fourier approximation only takes low frequencies into account that contain the relevant
information for learning good weights. High frequencies are ignored, which usually pay
more attention to noisy data that does not positively contribute to the learning of weights.
Therefore we are able to learn more appropriate weights.

Another property of our approach is that we are able to estimate the distance measure
on any point set. The training or the test data are just one way, and not the only set of
locations where to estimate the distances (12), (14), or (15). Merely the computation of
the Fourier coefficients requires the training and test data. This is possible since we firstly
empirically estimate the distance and secondly apply the Fourier approximation. This is
for example different to KLIEP where the error is calculated on the test data and cannot
be straightforwardly computed on the training data, or uLSIF where the training and test
data points need to be employed in a specific way. One can argue, that to compute suitable
weights for the purpose of weighted regression, a divergence estimation on the training data
is beneficial since the weights are employed for the training data in the regression algorithm
and therefore for those points the distance should be small. This hypothesis is supported
in section 6, where we calculated the distance using the training or the test data for each
Fourier method.

4. Hyperbolic Cross Approximation

Until now, for a simplified exposition, we have only considered a one dimensional Fourier
series. The straightforward d-dimensional generalisation of a Fourier approximation for
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Figure 2: Used Fourier coefficients in a two dimensional example. Each point denotes a
frequency combination (k1, k2). Left: Standard Fourier series approximation for
|k| ≤ 20. Right: Hyperbolic cross approximation FI20.

f : Rd 7→ R by a tensor product approach

f(x) =

K∑
k1=−K

. . .

K∑
kd=−K

ck1,...,kde
i2π

∑d
l=1

kl
Tl
xl

ck1,...,kd =
1∏d

j=1 Tj

∫ t1+T1

t1

. . .

∫ td+Td

td

f(x)e
−i2π

∑d
l=1

kl
Tl
xldx,

with x = (x1, . . . , xd), runs into the curse of dimensionality: The number of ck1,...,kd terms
grows exponentially with the number of dimensions, i.e. one would have (1+K)d coefficients.
The direct application of a Fourier series approximation to higher dimensional problems is
infeasible.

We use instead the so-called hyperbolic cross approximation, where under certain as-
sumptions on f , coefficients that make a small contribution to the representation can be
identified and omitted (Babenko, 1960; Smolyak, 1963; Knapek, 2000).

Let us define sets of employed coefficients by

FIK :=

{
k ∈ Zd :

d∏
i=1

(1 + |ki|) ≤ (1 +K)

}
,

where k := (k1, . . . , kd), and K ∈ N. The resulting selection of Fourier coefficients is known
as the hyperbolic cross. For illustration we consider the two dimensional case and show for
K = 20 in Figure 2 the index set for the full Fourier series approximation, i.e. |k|∞ ≤ K,
and the hyperbolic cross for FI20. In higher dimension the reduction in the number of

9



Vanck Garcke

Fourier coefficients will be even stronger noticable and is of several orders of magnitude,
going from an impossible computation for the full Fourier approximation of degree K to a
possible one using the hyperbolic cross approximation based on the set FIK .

Looking at the number of coefficients in FIK the advantage in higher dimensions be-
comes clear:

|FIK | = O
(

(1 +K) (log(1 +K))d−1
)
,

instead of (1 +K)d for the standard Fourier approximation, see e.g. Zung (1983); Knapek
(2000).

To consider the approximation properties of the hyperbolic cross Fourier approximation
we need to introduce generalisations of Sobolev spaces. For −∞ < s <∞ we define

Hsmix(Td) :=

f(x) =
∑
k∈Zd

cke
ikx : ‖f(x)‖Hsmix <∞


‖f(x)‖2Hsmix :=

∑
k∈Zd

d∏
i=1

(1 + |ki|)2s|ck|2,

where Td := [0, 1]d is the n-dimensional torus which is the same as the n-dimensional
cube where opposite faces are identified. Therefore the space Hsmix is comprised of all
functions whose Fourier coefficients ck decay sufficiently fast in the prescribed manner.
The space Hsmix is called Sobolev space with dominating mixed smoothness. Note that

Hsmix ⊂ Hs ⊂ H
s/d
mix for s ≥ 0 and that Hsmix(Td) = Hs(T1) ⊗ · · · ⊗ Hs(T1), where Hs(T1)

is the standard Sobolev space.
We now can state the approximation properties (proof e.g. in Knapek (2000))

Lemma 1 Let t ∈ N, t < s, s ≥ 0, u ∈ Hsmix, f(x) =
∑

k cke
ikx and fK(x) =

∑
k∈FIK cke

ikx,
then it holds that

‖f − fK‖Ht ≤ (1 +K)t−s‖f‖Hsmix .

Using a hyperbolic cross we achieve for f ∈ Hsmix the same order of approximation as the
standard Fourier approximation. However, the number of coefficients is significantly reduced

from O(1 +K)d to O
(

(1 +K) (log(1 +K))d−1
)

, the use of a Fourier series approximation

in higher dimensions becomes feasible.
A question is if we can expect that p(x) − ŵ(x)q(x) ∈ Hsmix, which resolves to the

question of the smoothness of p and q, since ŵ is sufficiently smooth by definition. This is a
problem-specific question and in particular depends on the unknown quantities p and q, so
one can neither answer this in general, nor for a specific data set a priori. But we can give
indications that the assumption p, q ∈ Hsmix is warranted, if one expects reasonably smooth
probability distributions at all. Firstly, let us note that the mixed Sobolev spaces have
an intrinsic tensor product structure with distinguished dimensions, each of which we can
relate to a specific attribute of the data set in its d-dimensional domain. This is in contrast
to the standard Sobolev space Hs which only considers isotropic smoothness and has no
distinguished dimensions, e.g. the coordinate system could be rotated without changing the
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function space. Secondly, note that the spaces Hsmix are the underlying function spaces for
regression and classification approaches based on sparse grids, whose very good empirical
performance was shown in recent years (Garcke, 2006; Pflüger, 2010).

5. Weighted Support Vector Regression (WSVR)

The calculated weights assign each training datapoint an amount of importance. High val-
ues denote important datapoints, whereas low values stand for less important datapoints.
Classification and regression methods need to incorporate this information so that the pre-
diction in regions of heavily weighted training datapoints is more accurate. To make use
of this weighting, it is necessary to modify classification and regression methods such that
they can employ a weight for each given training datapoint. A modified support vector
machine for classification can be found in Huang et al. (2007).

Analogously, we state for regression problems a modified version of a support vector
regression (SVR) problem

min
θ,b,ξ,ξ∗

1

2
‖θ‖2 + C

N∑
n=1

ŵ(xn)(ξn + ξ∗n)

subject to: yn − θtφ(xn)− b ≤ ε+ ξn ξn ≥ 0

θtφ(xn) + b− yn ≤ ε+ ξ∗n ξ∗n ≥ 0.

Here θ and b denote the model parameters and ŵ(xn) are the estimated importance weights.
For each datapoint the slack variable ξ and ξ∗ is multiplied by ŵ(xn). This implies higher
values for large weights and lower values for small weights respectively. Therefore the slack
at datapoints with large weights will tend to be lower than those multiplied by small weights,
thus causing a lower tolerance to errors on important datapoints. The dual version is

max
a,a∗

yt(a− a∗)−ε
N∑
n=1

(an + a∗n)− 1

2
(a− a∗)tκ(a− a∗)

subject to: 0 ≤ a ≤ ŵ(xn)C a ≥ 0

0 ≤ a∗ ≤ ŵ(xn)C a∗ ≥ 0

where κ is the empirical kernel map. We will use the Gaussian kernel in the following.

6. Experiments

In the experimental section we are going to show that the new approach can compete with
current methods for compensating the covariate shift. First we compare the Fourier based
approach, where the distance is estimated either on the training (Tr) or the test data (Te), to
other methods on some benchmark datasets, and then show results on a real world dataset.
We use the total variation distance (TV), the Kullback-Leibler divergence (KL), and the
squared Euclidean distance (SE).
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6.1. Benchmark Datasets

For the datasets with a synthetically generated covariate shift we followed the dataset
creation approach described in Sugiyama et al. (2008) for reasons of comparison. We nor-
malized the dataset to [0, 1]d and created 100 datasets of 100 training datapoints and 500
test datapoints each.

The test samples are obtained by choosing a datapoint (xn, yn) randomly and accepting

it with a sampling factor of min(1, 4(x
(l)
n ))2, where x

(l)
n is the lth element of xn. For each

of the 100 datasets the dimension l ∈ {1, . . . , d} is chosen randomly but kept fixed. Every
randomly chosen xn is removed from the pool even if it was not accepted. The training
dataset is sampled uniformly from the remaining data. During the learning the methods will
only use the training data ({xtrn , ytrn }

Ntr
n=1) and the test datapoints without labels ({xten }

Nte
n=1).

The test labels (yn)Nten=1 are used for performance measurements.

6.2. Parameter Estimation

In our experiments we estimated a set of best parameters for a SVR and a SVM without
weights (uniform) with classic cross-validation. Then we calculated the weights once with
the Fourier based approach and once with the KLIEP, uLSIF and the Kernel Mean Matching
(KMM) method. We then employed these weights to the weighted SVR and weighted SVM
(as described in Huang et al. (2007)) with RBF kernels and estimated a new set of best
parameters by using IWCV (Importance Weighted Cross-Validaton) (Sugiyama et al., 2007).
IWCV works like classic cross-validation but additionally weights each fold, such that errors
in regions of importance get an higher impact on the cross-validation error.

Our new Fourier based method uses two types of parameters. The parameter K, which
denotes the length of the Fourier series, will be fixed to 10 here which gives a reasonable
approximation. In general K should be viewed as a hyperparameter to be suitably selected,
but note that in our experiments larger K did not result in significantly different perfor-
mance, whereas with smaller K the results degrade as one would expect. In other words,
our experiments indicate that a large enough K can be easily selected. The other param-
eter is σ, the kernel width in the weight function (5). We will now suggest a method for
estimating a good σ parameter.

The idea is that an appropriate parameter combination will minimize the expressions
(12), (14), and (15). For given σ the corresponding αs have been determined by minimizing
(12), (14), and (15). We will now choose the lowest value of the objective functions obtained
during the optimization for different σ parameters.

To get a more stable result, we use a method that is similar to cross-validation, but will
not use any label information. Given the original datasets, Xtrain and Xtest, we split the
test dataset into five parts, (Xj

test)
5
j=1. Each split Xj

test should contain enough samples of
test data since they can normally be obtained quite easily. Each of the j = {1, . . . , 5} folds is
constructed by Xj := Xtest\Xj

test. Now for a fixed parameter σ we will minimize expressions
(12), (14), and (15) for each dataset combination {Xtrain, Xj}. We will calculate the mean
of these five minima and choose the parameter that corresponds to the lowest average.

Minimizing the difference of the distribution of the covariates (12), (14), and (15) are
independent of the labels of the test data. Therefore, we can explicitly make use of the
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Table 1: Results for regression benchmark datasets. The results are obtained by taking the
average of 100 mean test errors. The values in the parentheses denote the standard
deviation. All errors have been normalized by the uniform result (no weights).

Dataset kin-8fh kin-8fm kin-8nh kin-8nm abalone avg
Dimension 8 8 8 8 7 -

Uniform 1.00 1.00 1.00 1.00 1.00 1.00
Fourier:TV (Tr) 0.93 (0.062) 0.93 (0.059) 0.95 (0.043) 0.91 (0.090) 0.94 (0.046) 0.93
Fourier:TV (Te) 0.95 (0.061) 0.94 (0.055) 0.95 (0.041) 0.93 (0.078) 0.94 (0.056) 0.94
Fourier:SE (Tr) 0.94 (0.077) 0.92 (0.055) 0.95 (0.047) 0.94 (0.081) 0.92 (0.091) 0.93
Fourier:SE (Te) 0.95 (0.063) 0.93 (0.061) 0.96 (0.051) 0.96 (0.090) 0.95 (0.072) 0.95
Fourier:KL (Tr) 0.93 (0.060) 0.94 (0.050) 0.95 (0.044) 0.95 (0.095) 0.91 (0.081) 0.93
Fourier:KL (Te) 0.94 (0.078) 0.96 (0.059) 0.95 (0.047) 0.95 (0.068) 0.93 (0.085) 0.94
KLIEP 0.92 (0.069) 0.92 (0.063) 0.95 (0.038) 0.97 (0.041) 0.94 (0.071) 0.94
uLSIF 0.98 (0.071) 0.94 (0.044) 0.96 (0.051) 0.96 (0.072) 0.95 (0.067) 0.95
KMM 0.97 (0.071) 0.94 (0.074) 0.96 (0.059) 0.95 (0.056) 0.93 (0.041) 0.95

Table 2: Results for classification benchmark datasets. As in table 1 results are obtained by
taking the average of 100 mean test errors. The values in the parentheses denote
the standard deviation. All errors have been normalized by the uniform result (no
weights).

Dataset twonorm waveform ringnorm image data average
Dimension 20 21 20 18 -

Uniform 1.00 1.00 1.00 1.00 1.00
Fourier:TV (Tr) 0.92 (0.079) 0.91 (0.055) 0.96 (0.091) 0.92 (0.092) 0.92
Fourier:TV (Te) 0.97 (0.072) 0.96 (0.061) 0.96 (0.081) 0.93 (0.080) 0.95
Fourier:SE (Tr) 0.89 (0.083) 0.90 (0.045) 0.95 (0.081) 0.90 (0.082) 0.91
Fourier:SE (Te) 0.93 (0.068) 0.95 (0.052) 0.98 (0.083) 0.94 (0.069) 0.95
Fourier:KL (Tr) 0.91 (0.067) 0.89 (0.056) 0.96 (0.096) 0.93 (0.076) 0.92
Fourier:KL (Te) 0.93 (0.089) 0.93 (0.045) 0.97 (0.074) 0.93 (0.079) 0.94
KLIEP 0.93 (0.069) 0.95 (0.033) 0.96 (0.077) 0.93 (0.064) 0.94
uLSIF 0.93 (0.076) 0.91 (0.048) 0.95 (0.071) 0.92 (0.079) 0.92
KMM 0.97 (0.045) 0.98 (0.040) 0.99 (0.071) 0.97 (0.083) 0.97

locality of the test data here. We therefore get a simple method for estimating adequate
parameters.
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Table 3: Results for the earthquake dataset (Allen and Wald, 2009). Weighted SVR signif-
icantly improves the prediction on the test data.

Uniform 1.00 uLSIF 0.96 Fourier: TV (Tr) 0.91 Fourier: KL (Tr) 0.87 Fourier: SE (Tr) 0.93
KLIEP 0.96 KMM 0.93 Fourier: TV (Te) 0.92 Fourier: KL (Te) 0.92 Fourier: SE (Te) 0.93

6.3. Experimental Results

For the experiments we created artificial covariate shift data as described in section 6.1.
We used data from the DELVE repository and the abalone dataset for regression. For
classification experiments we obtained the IDA datasets available on mldata.org. For each
of the datasets we created 100 subdatasets and set the test data as the center points of the
weight function (5). For all datasets we calculated the mean test error and normalized it
by the mean test error of the uniform SVR or SVM, respectively. Note that the computing
times of the Fourier methods and KLIEP were roughly the same, whereas uLSIF was slightly
faster.

The results in Tables 1 and 2 show that employing weights improves the prediction
performance. Observe that the Fourier approach measuring the distance on the training
data is always better than the corresponding one using the test data. A reason for the
slightly poorer results on the test data might be due to the fact that for SVR and SVM
we are interested in calculating weights for the training data. Therefore it seems to be
preferable to use the training data for the distance estimation to achieve on these a small
distance between the test and reweighted training distribution.

The best method varies over the data sets, but on average the Fourier based approaches
measuring the distance on the training data are better than KLIEP, uLSIF, and KMM for
both the regression and the classification data. When one compares the results using KL,
one observes that the Fourier based approach when measuring the distance (13) on the test
data is on average comparable to KLIEP, which also estimates the distance on the test data,
whereas measuring the distance on the training data slightly improves the results.

The second experiment is performed on a real world dataset (Allen and Wald, 2009).
The dataset is again a regression dataset and it is comprised of measurements recorded
during earthquakes in California and Japan. The features describe values such as magnitude
or distance to the center. A categorical feature describes the type of the earthquake, we
augmented the dataset and assigned a separate dimension for each category, which turns one
dimension into three. The label to predict is the so called PGA (Peak Ground Acceleration)
value.

We learned on the California data and applied the achieved model for prediction on
the Japan earthquake data. Again we used Gaussian kernels in the normal SVR with
no weights (uniform) and the weighted SVR method described in section 5. As in the
previous experiments we normalized the results by the normal unweighted (or uniform)
result. For the Fourier approach, the chosen weight parameters have been estimated by the
modified cross validation procedure described in section 6.2. It turns out that learning a
weighted SVR improves the prediction result on the Japan dataset, as shown by Table 3. It
seems natural to assume that due to the geographical differences, especially location of the
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measurements, there occurs a natural shift in the data, but that the implications remain
the same for the PGA value. Our experiments show that the application of weights to the
regression method considerably improves the results, where the Fourier based approaches
show even more error reduction than the uLSIF, KMM, and KLIEP methods.

7. Conclusion

In this work we introduced a new method for measuring and compensating the covariate
shift. We derived a new formulation for finding appropriate importance weights by using
a Fourier approximation of the divergence measure between the test distribution and the
reweighted training distribution which does not make explicit use of the density functions
and takes a more function centric view than other data centered approaches. Higher dimen-
sional problems can be treated by using a hyperbolic cross approximation in Fourier space.
An advantage is that it enables the calculation of less volatile and therefore better weights
especially in cases of small bandwidth parameters σ. Furthermore, the new approach gives
a flexible framework since it can handle different divergence measures and can use any point
set for the empirical estimation of the divergence. Besides investigating further divergence
measures we in particular are interested in the influence of the choice of the points where
the divergence is measured, besides training and test points one here could also think about
using Smolyak quadrature points (Smolyak, 1963) or Quasi-Monte-Carlo sequences (Dick
et al., 2013).

Note that currently all attributes are treated equally, but the hyperbolic cross approach
can be extended to have different resolutions in each dimension, which corresponds to
dimension-dependent smoothness properties. In such a case a dimension-adaptive choice of
the Fourier resolution in the different dimensions can be achieved in a similar fashion to that
described in Gerstner and Griebel (2003). Such an approach would allow the treatment of
even higher dimensional problems.

Finally, the approach for compensating covariate shift is not limited to the current
choice of a linear combination of (Gaussian) kernels for the weight function. An interesting
possibility would be the use of a sparse grid-based approach (Garcke, 2006; Pflüger, 2010),
where the same underlying idea of a sparse tensor product construction and Sobolev spaces
with dominating mixed smoothness as for the hyperbolic cross approximation exists.
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