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| Identifier | Problem description

PE2 2D Poisson equation

PE3 3D Poisson equation

EB2 2D elliptic problem with variable coefficients

EB3 3D elliptic problem with variable coefficients

Dp2 2D pressure equation with discontinuous coefficients
HE2 2D heat conduction equation

Wa?2 2D nonlinear water wave equation

Wa3 3D nonlinear water wave equation

Ap3 3D linear advection-diffusion equation

REl 1D Richard’s equation

Table 0.1: Identifiers for the test problems.

Solution method Identifier Diffpack name Reference(s)
basic method | matrix type

Gauss elim.; banded matrix BG GaussElim MatBand [15]
Gauss elim.; sparse matrix SG GaussElim MatSparse [12], [14]
Jacobi iterations J Jacobi MatSparse | [18], [25], [26]
Gauss-Seidel iterations GS SOR MatSparse | [18], [25], [26]
Conjugate Gradient CG ConjGrad MatSparse [13], [19]
PCG + RILU prec. (w=10.97) | RPCG ConjGrad MatSparse [3], [16]
PCG + Fast Fourier prec. FPCG ConjGrad MatSparse [24]
Nested Multi-grid cycles NMG DDSolver MatSparse [17]

Table 0.2: Identifiers for all the solution methods included in the report and Diffpack
names used in connection with MenuSystem.

1 Introduction

The purpose of the report is to gain some information about the CPU consumptions
in a series of applications based on solving partial differential equations. Our aim
is to be able to indicate suitable performance models for a number of methods
and problems. For almost all of the applications involved, the simulation programs
have been developed using Diffpack [11], which is a generic C++ library based on
object-oriented programming techniques.

We first present the mathematical formulations of a series of model problems.
Then we describe briefly the numerical methods to be used. Thereafter we list for
each application the total CPU consumptions in the simulation. We also analyze the
CPU data in detail by examining the two major parts of each simulation: The time
for constructing the linear system of equations and the time for solving it. Later
we discuss some implementation issues that are of importance for the efficiency of
simulation programs.

2 Model problems

In this section we present the mathematical formulations of a collection of model
problems. For each model problem, one or several test problems are specified.



2.1 The elliptic boundary value problem

We consider the second order boundary value problems of the form

-V (KVu) = f inQ,
u = up only, (2.1)
ou
n = uy onlTy,

where Ty UTy = 9Q and Ty NTy = (. Usually we have K = K I where I denotes
the identity (unity tensor) and K > 0 is a scalar function defined in Q.

We begin with the simplest case, namely the Poisson equation with homogeneous
Dirichlet boundary conditions,

—Vu

u

f in Q,
0 on 09.

The 2D Poisson equation (PE2): For this 2D application the solution domain
Q is the unit square, i.e. Q = [0, 1]%. The source term is of the form

f(a:, y) — 6sin(2ﬂ'zy)‘

The 3D Poisson equation (PE3): The solution domain €2, in the 3D applica-
tion, is the unit cube, i.e. @ = [0, 1]3. The source term is of the form

sin(2nzyz)

flz,y,2) = e .

The 2D elliptic problem with variable coefficients (EB2): The solution
domain Q and the source term f(z,y) are the same as in the PE2 problem. Homo-
geneous Dirichlet boundary conditions up = 0 are given on the entire boundary.
The scalar function K (z,y) is given by

K(z,y) = 1+zy+ (zy)

The 3D elliptic problem with variable coefficients (EB3): The boundary
condition, the solution domain Q and the source term f(z,y, z) are the same as in
the PE3 problem. The scalar function K(z,y, z) has the following expression:

K(z,y,2) = 14+zyz+ (zyz)*

The 2D pressure equation with discontinuous coefficient (Dp2): The orig-
inal two-dimensional solution domain € (see Figure 2.1) has curved boundaries. In
addition the coefficient K of problem (2.1) contains discontinuities. More precisely,
we have

. B 51 for (l’,y) c Qi, 1= 172737
K(z,y) = { 1.0 for (z,y) € 2 —Qy — Qy — Q.

Here §; = 107%, i = 1,2,3. The boundary condition valid on the whole boundary
is homogeneous Neumann, i.e. we have du/dn = 0 on 9%2. The source term f is of
the form

1 for (z,y) € [0.1625,0.2] x [0.2375, 0.275],
flzy) = —1 for (z,y) € [0.8,0.8375]?,

0 elsewhere,
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Figure 2.1: A non-rectangular solution domain after domain imbedding.

/ﬂfd:c:(].

By a domain imbedding technique (see [1, 22]), we introduce a regularization
parameter € such that we solve

which satisfies the condition

-V (K. Vu,) = f
in a larger and regular domain Q. = [-0.1, 1.1]? where
. _ K(z,y) for (z,y) € Q,
Ke(z,y) = { P for (z,y) € Q. — Q.

For this application we have chosen ¢ = 107°. In order to get a unique solution, we
introduce the additional requirement fﬂ ue = 0.

2.2 The parabolic problem

We consider a parabolic initial-boundary value problem,

u = up onT x(0,7T], (2.2)
0
a_z = uy on dQ\T x (0,77,
u(z,0) = u%(x) inQ.

The 2D heat conduction equation (HE2): The system (2.2) is to be solved
in the spatial domain Q = [0, 1]? and in the time interval from 0 to 7' = 1. Using
K =1, the governing equation takes a simpler form:

ou

E = V2U+f,
and we use
flz,y,t) = et(:Eg] + 2z + 2y),
=zl -z, 7=yl —y),



and
uo(m, y) = zy(l—2z)(1—y).

In addition, we assume that Dirichlet boundary conditions, v = 0, apply on the
entire boundary.

2.3 The nonlinear water wave problem

Fully nonlinear free surface waves can be modelled by standard potential theory. We
introduce the velocity potential ¢(Z, y, z,t) and the free surface elevation 5(z, y,t)
as the primary unknowns. The mathematical model consists of a coupled system of
partial differential equations. Under the standard assumption that ¢ is divergence
free and irrotational, the most important system takes the following form,

V3¢ = 0 in the water volume, (2.3)
N + @z + gy — ¢z = 0 on the free surface, (2.4)
1 . .
e + _—(QD% + gofj + sOé) +gn = 0 on the free surface. (2.5)

2

Here (2.3) is the Laplace equation and equations (2.4) and (2.5) are referred to as the

kinematic boundary condition and the dynamic boundary condition, respectively.

For detailed mathematical description we refer to [7] and the references therein.
The water volume of interest can be written on the form

Q(t) ={(2,9,2)[(2,y) € Qy,—H <z <n(z,9,t)}, (2.6)

where dp/8n = 0 on dQ except on the free surface. The time dependency of Q
means that the Laplace equation (2.3) has to be solved in a dynamic computational
domain. However, by introducing a time dependent transformation

z+ H
r ==z, =y, =zZz= — 1) H, 2.7
y=1 <77+H ) (2.7)

we can instead solve a new boundary value problem on the form of (2.1) in a fixed
computational domain at each time step. The time dependent coefficient matrix K
of the new problem reads

n+ H 0 —(z+ H)ng
, 1 0 n+ H —(z + H)ny o
K(I,?,Z,t) - E H2+(Z+H)2(7712;+775) . (28)

— H — H

(z+ H)ne (z+ H)ny n+ H
Note that K is symmetric, positive definite. It is well-defined provided that the
condition |n| < H is satisfied. Because the Z- and y-coordinates are the same as
the z- and y-coordinates after the transformation, we will drop notations z,y and
use z,y instead. Thus the new system takes the following form:

V- (KVy¢) = 0 inQ=Q, x[-H,0],
H
xzliz - S — = 0 th f f s
Nt + PaeNe + LyNy — ¢ Sy on the free surface
1, . L HN\?
P+ 3 (Sﬁi + 805 + <7;0+ H) ) +¢gn = 0 on the free surface.



The 2D nonlinear water wave equation (Wa2): In this 2D application the
wave motion is to be simulated in the (Z, Z) spatial coordinates. We solve the 2D
wave system in the time interval 0 < ¢t < T, T = 8 in the computational domain

(z,2) €[0,L] x [-H,0], L =160, H = 70,

which is bounded by the free water surface on the top and solid walls (d¢/dn = 0)
on the rest part of the boundary. The initial conditions on the free surface are

77(:6,0) = 770(:5)7
o(z,n°(x),0) = ¢ (z,7°(=),0) 0,

where the initial form of the wave is given by
- . 4
oy = T[(zy(2r)
m) = 16[L [ 105 | °

The 3D nonlinear water wave equation (Wa3): The 3D wave system is to
be solved in the time interval 0 < ¢ < T, T'= 4 in the computational domain

(z,y,2) €[0,L4] x [0, L] x [-H,0], Ly =Ly=280, H=50

which is bounded by the free water surface on the top and solid walls on the rest
part of the boundary. The initial conditions on the free surface are

n(z,y,0) = n%z,y),
o(z,y,7°(2,),0) = ¢.(z,y,7°(z,y),0) = 0,

where the initial form of the wave can be expressed by

O(z,y) = (- T 2mz _ it 2y
n(z,y) = < 0.9cos<L1> + cos ( T )) (1 0.9 cos <L2> + cos ( T ))

2.4 The species transport problem

Consider the following advection-diffusion-reaction equation with initial and bound-
ary conditions:

oC

5 = V- (DVC)—v-VC —kC? inQx (0,7, (2.9)
C = Cp onTyx(0,T], (2.10)
aC
5, = 0 onTax (0,77, (2.11)
C(x,0) = 0 inQ. (2.12)

Here C(x,t) is a solute concentration in a flow field with velocity v, D is the
hydrodynamic diffusion tensor, €2 is the domain of interest, and I'y and T's denote
the partition of the boundary: 9 = T'; U Ty, with Ty N Ty = (.

The 3D linear advection-diffusion equation (ADp3): With & = 0 equation
(2.9) transforms into a linear equation. In this application we simply prescribe a
constant velocity v = (1,0,0)7. The anisotropic D tensor is taken to be constant,
more precisely,
0.01 0 0
D= 0 0.001 0
0 0 0.001

Moreover, T = 1 and € is a hypercube (z,y, z) € [0,1] x [0,0.2] x [0,0.1] and Ty is
the plane z = 0 where Cy = 100.



2.5 Richard’s equation in 1D (RE1)

We consider a special case of the general multiphase flow and transport equations:
The case of aqueous movement in a porous media system initially containing both
a gas phase and an aqueous phase. For the limiting case of negligible changes
in gas-phase pressure, Richard’s equation (RE) [10] is applied as a mathematical
model. RE is a single equation description of aqueous flow in a two-fluid porous
media. It preserves many of the features of the general multiphase equations: severe
nonlinearity, relatively complex constitutive relationships, and sharp-front solutions
in space and time for certain sets of auxiliary conditions.
The compressible form of the one-dimensional RE considered here is

g—f+53588—1f - (;?—Z[I( (Z—f+1>] in Q x (0,7,
p = 0 forz=0,0<t<T, (2.13)
v = Y forz=I1,0<t<T,
P(z,0) = —z inQ,

where Q = [0, L] is the spatial domain of interest, 6 is the volume fraction of the
aqueous phase, 1 is the aqueous-phase pressure head, S is the aqueous-phase satura-
tion, S is the specific storativity of the porous media resulting from compressibility
of the aqueous phase, and z is the vertical coordinate. The unsaturated hydraulic
conductivity K is a property of the porous media and a function of S, which in
turn depends upon . The quantities 8, S, and K can be related to the pressure
through constitutive relations.

As a specific application we choose L = 10, T' = 0.002 and vy = 0.1. The
constitutive relations used to close the equations are

_0—0, _{ (L+lag), for g <0, -
Se = 9.0, { 1, for ¢» > 0, (2-14)
and
K = K,SM?[1 = (1= Set/meyme]t/2, (2.15)

where m, = 1 — 1/n,. The quantities «, n,, and K, are physical parameters of a
porous medium.

3 Numerical methods

In this section we first briefly describe the numerical discretization of the model
problems mentioned above. Thereafter we concentrate on the solution of the linear
systems of equations involved in the applications. It is known that the choice of the
solution method is important for the efficiency of simulations. Therefore different
solution methods, essentially those falling into the category of iterative methods,
will be considered. Finally we also discuss some implementation issues of Diffpack.

3.1 Discretization of the problems

The finite element discretization (see [2]) is applied for all the model problems. This
involves primarily numerical calculation of the integrals of the weak formulation on
the element level. The contributions are then added in the assembly process to
construct a linear system of equations. For the PE2, PE3, EB2 and EB3 problems
the discretization results in

Ax =b, (3.1)



where A is a sparse, symmetric and positive definite matrix. The vector x contains
the unknown values at the grid points. For the Dp2 problem A is in fact only
defined up to a constant because of the boundary condition. However, the additional
requirement Y z; — 0 is introduced in order to get a unique solution. Uniform
grids have been applied. Linear triangular elements are used in the two-dimensional
applications, while trilinear elements are used in the three-dimensional applications.

3.1.1 The HE2 problem

For the HE2 problem we apply the finite element method for the spatial discretiza-
tion and the fully implicit Euler scheme in the temporal discretization. At each time
level, the computational task is nevertheless to solve a linear system of equations

Au? = b(u™1). (3.2)

Here u is the vector of nodal values of the approximate solution u. The superscript
p denotes the time level. In the HE2 problem, A is independent of u and ¢ and thus
needs only to be computed once. We refer to section 6 for the computational details.
Linear triangular elements in 2D are used in the finite element discretization.

3.1.2 The nonlinear wave problem

The free surface boundary conditions are discretized by the standard centered finite
difference scheme. The values of 7 and ¢|z=,, which will be used in the solution
of the governing Laplace equation, are updated for each time level in a leapfrog
manner. However, most of the computational effort is spent on the solution of the
mapped Laplace equation, which is discretized by the finite element method. This
means that a linear system of equations on the form (3.1) needs to be solved at each
time level. The (banded) Gauss elimination or preconditioned conjugate gradient
(PCG) method have been chosen as the solution method. In the PCG method the
solution from the previous time level is used as the start vector, and the iteration is
stopped when the L?-norm of the residual is less than 10~®. For the WA2 and WA3
problems, the new solution domain for the mapped Laplace equation is a rectangle
or a hypercube, respectively. This enables a uniform partition, such that every
finite element is of the same size. To be more specific, we use linear elements in 2D
and trilinear elements in 3D. Note, however, that due to the mapping, a variable
coefficient (2.8) is introduced and thus the element matrices differ.

3.1.3 The AD3 problem

For the AD3 application, we use the finite element method with trilinear elements
of the uniform size. The discretization in time is based on backward (fully implicit)
Euler scheme. The resulting discrete equations take the form

Acl = b(cp_l)

on each time level. Here, ¢ is the vector of nodal values of C'. The superscript p
denotes the time level. The coefficient matrix A is independent of ¢ and ¢ such that
it needs not be recomputed at every time level. Thus the CPU-time will virtually
be spent on the solution of the linear system .We apply the Bi-Conjugate Gradient
(BiCGstab) method with Jacobi (diagonal) preconditioning. The result from the
previous time level is used as the start vector. The iteration is stopped when the
L?-norm of the preconditioned residual divided by the L2-norm of b is less than a
prescribed tolerance 10~ 1°.



3.1.4 The REl problem

The formulation described in (2.13) is termed a mixed form Richard’s equation
(MFRE), since both 6 and 1 appear as dependent variables. In our context, we
expand the 6-term around the iteration level, m, in terms of v, followed by solution
using Picard iteration [9]. By the truncated Taylor series approximation, we have

+1,m+1 +1,m +1,m+1 +1,my 00k pm
6 =G0 (PETTITE — phT) Fm fork=1,...,N,

(3.3)
where NN is the number of nodes in the system.

The initial-boundary value problem is solved using the finite element method
with linear elements and a backward Euler scheme in time. This yields a set of
discrete nonlinear algebraic equations that are solved by Picard iteration (also called
the method of successive substitution here). The mass matrix terms are lumped,
and the iteration is terminated when the L?-norm of the difference of the solution
from two successive iterations, divided by the norm of the most recent solution,
is less than a prescribed tolerance 10~%. The coefficient matrices are formed at
each iteration using three-point Gauss quadrature. Banded Gauss elimination is
used to solve the tridiagonal linear system at each stage of the nonlinear iteration.
The solution for the current time level is used as the initial guess for the nonlinear
iteration at the next time level.

3.2 Solution of the linear system of equations

Linear systems of equations arise in the solution process of all the applications.
However, different methods result in different computational behaviours. Table 3.1
contains a heuristic comparison of several “standard” methods, in respect of the
computational cost, when applied to the elliptic model problem.

Method 2D 3D
Banded Gauss Elim. O(N?) (’)(N7/3)
Nested Dissection (’)(NS/Z) O(N?)
Jacobi O(N?) O(N?)
Gauss-Seidel O(N?) O(N?)
Conjugate Gradient ~ O(N37?) O(N*73)
CG + MILU O(N°7%) O(N7/5)
CG + FFT O(NlogN) O(NlogN)
Multigrid O(N) O(N)

Table 3.1: Comparison of different methods in respect of computational cost; N
denotes the number of unknowns. These bounds apply to regular grids.

Generally, the solution methods can be divided into two categories: the direct
methods and the iterative methods. However, the direct methods, with the banded
Gauss (BG) elimination as a classical example, are rarely suitable for our appli-
cations. As an alternative we may apply iterative solution methods. For recent
surveys of these iterative methods we refer to [5] for detailed explanations. In these
methods, we start with an initial guess x° and generate a sequence of approxima-
tions {x*} which converge to the solution x. Traditional iterative methods based
on splittings of the coefficient matrix A can be represented by the Jacobi (J) and
the Gauss-Seidel (GS) methods, while for a symmetric and positive definite A the
conjugate gradient (CG) method (as one of the Krylov methods) is more appro-
priate. Krylov methods can be preconditioned to speed up the convergence. One



particularly simple scheme is known as “incomplete LU-factorization” (ILU) [3, 16].
On hypercubes direct fast Poisson solver (FFT) are available. Used as more robust
preconditioners (or iterative methods themselves) new methods such as domain
decomposition [23] and multigrid [17] are under implementation in Diffpack.

The stopping criterion is another important part of the iterative methods. In
other words, we continue the iterations until a prescribed tolerance of e.g. the resid-
ual is reached. There are several choices such as

e ScO(e): The relative stopping criterion for the deviation from the reference

[l — x|

solution < e.
||a:||

[[b— Azy||

e Scli(e): The relative stopping criterion for the residual
[/ — Awol|

e Sc2(e): The absolute stopping criterion for the residua relating to the quasi
L%-norm

||b— Azp||,. <e€, where ||g||;.=

Ideally, the chosen stopping criterion and tolerance level should be related to
the size of the discretization error which only depends on grid and ansatz, in other
words, the error caused by an incomplete solution of the system of equations should
be negligible compared to the discretization error. In general the stopping criterion
would therefore be problem dependent. For simplicity we have in the following
experiments used a fixed tolerance level well below the discretization error.

We have observed from experiments that for most of our applications, the above
stopping criteria behave similarly. Table 3.2 demonstrates the results concerning
the number of iterations of the CG method when applied in the EB2 application.
Tt should be noted here that Sc0(¢) is of little practical interest since it requires the
solution we are seeking. The problem with Sc3(e) is that it does not mimic a norm
for continuous functions. Thus we regard Sc(¢) and Sc2(¢) as the most appropriate
alternatives. We apply Scli(e) for stationary problems: PE2, PE3, EB2, EB3, DP2;
and Sc2(¢) for dynamic problems: HE2, Wa2, Wa3. The reason for not applying
Scl(e) for dynamic problems is that it will grow stricter as time increases and better
start vectors are available.

3.3 Diffpack implementation and notations

In Diffpack the management of the solution of the linear equation system can be
controlled by the class LinEqAdm which is an interface with access to different choices
of solution methods, stopping criteria, preconditioners etc.. On the other hand, the
class FEM offers the standard finite element algorithms. Therefore a simulator class
containing an object of LinEqAdm can be derived from FEM. The user can thus
redefine the corresponding inherited member functions from FEM while including
extra member functions suited for the specific problem. It is worth mentioning that
for the extensive usage of the Diffpack classes MenuSystem can help to simplify the
choice of algorithms and parameters.
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Method CG + fast Fourier transform CG + RILU (w = 0.9)
Criterion || Sc0(e) | Secl(e) | Se2(e) | Se3(e) || ScO(e) | Secl(e) | Se2(e) | Se3(e)
9x9 10 12 10 11 7 8 6 7
17 x 17 12 14 11 13 10 12 9 11
33 x 33 12 15 11 13 14 16 11 14
65 x 65 12 16 10 13 23 27 18 23
129 x 129 12 16 9 13 42 49 29 42
257 x 257 12 16 8 12 81 95 52 79
513 x 513 12 16 7 12 159 188 97 146

Table 3.2: An example demonstrating the effect of different stopping criteria on the
number of iterations for the EB2 application; e = 1078, The reference solution a is
gained by using the FPCG method with the Sc1(107'6) stopping criterion.

Criterion Diffpack name Comments
identifier

ScO(e) CMRelRefSolution

Scl(e) CMRelResidual(CMRelTrueResidual)

Se2(e) CMAbsResidual(CMAbsTrueResidual) | norm tp=L2
Se3(e) CMAbsResidual(CMAbsTrueResidual) | norm tp=12

Table 3.3: Identifiers of different stopping criteria and their Diffpack names.

4 Total CPU-time for the simulators

In this section we list for every application the total CPU consumptions in different
simulations. Based on the data we also try to establish a performance model for
the involved solution methods for almost all the applications. To be more specific,
we use the number of the grid points in one space direction n as the major input
parameter. For a particular solution method applied to a particular application we
choose different n for different simulations. Thereafter we establish the performance
model C'-n™, where the exponent m is known by theory, by the appropriate fitting
constant C. An example is depicted in Figure 4.1.

| Machine identifier || sgil | sgi2 |
Model sgi-R4400(250MHz) | sgi-R8000(75MHz)
Memory 320M bytes 512M bytes
Flops per second 100M* 300M
Operating system IRIX 5.3 IRIX 6.1
Compilation flags CC -mips2 -0 CC -mips4 -0

Table 4.1: Specifications of different machines used to execute simulation programs.
*) The number of flops per second displayed for sgil applies actually for the sgi-
R4400(200MHz) model.

11
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Figure 4.1: An example of establishing the performance model; the CG method is
applied to the PE2 problem, n has discrete values 17, 33, 65, 129 and 257. The
CPU measurements are marked by '+’ while the curve represents the estimated

performance model: 1.26 x 1075 - n3.

3

| Identifier | CPU-model | Method | Source |
PE2 6.0 x 107°-n?%logn | FPCG | Table 4.3
PE3 3.4x107*-n3logn | FPCG | Table 4.4
EB2 4.7x 107*. n? NMG Table 4.5
EB3 1.3x 1073 . n3 NMG Table 4.6
Dr2 1.6 x 10=*-n%logn | FPCG | Table 4.7
HE2 7.0x 1076.27/2 | RPCG | Table 4.8
Wa2 2.1 x 1075 -n3logn | FPCG | Table 4.9
Wa3 8.0x 1075 -n*logn | FPCG | Table 4.10

Table 4.2: Summary of the total CPU consumption for the test problems; the CPU
models are associated with the best solution method applied in the simulations.The
NMG method is applied only to the EB2 and EB3 problems.

n 17 33 65 129 257 513 CPU

N 172 332 652 1292 2572 5132 model
BG 0.03 | 0.23 2.72 36.81 1.3x 1077 n?
J 1.04 | 14.98 | 243.72 | 4239.72 1.5x 107° - n*
GS 0.56 | 7.74 | 132.47 | 2063.86 7.6 x 1076 . nt
CG 0.11 | 0.54 3.37 22.84 | 211.98 1.3x 107%.n3
RPCG || 0.10 | 0.41 1.99 10.66 70.18 | 492.17 6.0 x 1077 - n5/2
FPCG || 0.09 | 0.31 1.32 5.22 22.03 | 96.70 || 6.0 x 10=°-n%logn

Table 4.3: Total CPU-time (in seconds) measured for the PE2 problem run on sgii.
The stopping criterion Sc1(1078) is used by the iterative methods.
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n 9 17 33 65 CPU

N 93 173 333 653 model
BG 1.03 | 71.87 | 8981.96 2.1x10°7-n"
J 2.30 | 56.49 | 2199.73 1.7x 10°6. 7S
GS 1.26 | 30.98 | 1122.81 8.6x 10=7-nb
CG 0.67 | 6.56 | 749.44 | 1089.44 6.1 x 1075 - n*
RPCG || 0.67 | 5.97 | 57.52 | 645.33 3.1x 107%.n7/?
FPCG || 0.55 | 4.69 | 40.20 | 430.79 || 3.4x 10~*.n%logn

Table 4.4: Total CPU-time (in seconds) measured for the PE3 problem run on sgi2.
The stopping criterion Sc1(1078) is used by the iterative methods.

n 17 33 65 129 257 513 CPU

N 172 332 652 1292 2572 5132 model
BG 0.04 | 0.24 2.79 37.29 1.4x 10=7-n*
J 1.02 | 14.82 | 251.04 | 4192.30 1.5x 107° - n*
GS 0.57 | 8.00 | 136.89 | 2034.49 7.5x 107%.n?
CG 0.12 | 0.64 4.27 32.09 | 308.07 1.5 x 107° - p3
RPCG || 0.11 | 0.43 1.93 11.02 70.02 | 541.36 6.6 x 10=° . n5/2
FPCG || 0.11 | 0.43 1.83 7.66 32.56 | 182.63 || 1.1 x 10=*-n?logn
NMG 0.16 | 0.51 1.80 7.32 31.63 | 127.36 4.7x10~*. n?

Table 4.5: Total CPU-time (in seconds) measured for the EB2 problem run on sgii.
The stopping criterion Sc1(107®) is used by the iterative methods.

n 9 17 33 65 CPU

N 93 173 333 653 model
BG 1.10 | 72.71 | 8999.13 2.0x 107 7-n"
J 2.40 | 56.66 | 2168.64 1.7x 1076.n"
GS 1.53 | 31.94 | 1121.55 8.7x 1077 nS
CG 0.75 | 7.62 94.81 | 2039.58 1.1x 10~ n*
RPCG || 0.77 | 6.63 64.16 | 1307.90 3.3x 10~%. 0772
FPCG || 0.73 | 6.20 55.69 | 1170.64 || 5.0 x 10=*- n®logn
NMG 0.87 | 5.81 48.73 509.41 1.3x 1073 n3

Table 4.6: Total CPU-time (in seconds) measured for the EB3 problem run on sgi2.
The stopping criterion Sc1(1078) is used by the iterative methods.

n 33 65 129 257 513 CPU

N 332 652 1292 2572 5132 model
J 24.75 | 372.27 | 5930.47 2.1 x 107° - n*
GS 12.64 | 191.81 | 2957.34 1.2x 1075 - n*
CG 1.86 | 13.85 | 112.39 | 2165.23 5.2 x 107° . n3
RPCG || 0.52 2.28 11.40 71.12 | 493.05 6.7 x 1075 . n5/2
FPCG || 0.75 3.15 13.15 55.09 | 258.15 || 1.6 x 10=*-n?logn

Table 4.7: Total CPU-time (in seconds) measured for the DP2 problem run on sgii.
The stopping criterion Sc1(107%) is used by the iterative methods.
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n 17 33 65 129 257 CPU

N 172 332 652 1292 2572 model

At 274 | 275 26 277 2-8
7 steps 16 32 64 128 256
BG 0.25 2.06 25.73 317.22 1.2 x 106 . p*
J 6.81 | 115.78 | 1537.66 | 24346.28 8.8x 1075 .n*
GS 3.69 | 54.98 809.90 | 12281.75 45 % 1075 . n*
CG 0.71 6.70 63.81 896.47 3.2x10°%.n*
RPCG 0.48 3.72 26.53 238.43 1799.91 || 7.0 x 10=5 - n7/2

Table 4.8: Total CPU-time (in seconds) measured for the HE2 problem run on sgii.
The stopping criterion is Sc2(1071) is used by the iterative methods.

n 17 33 65 129 257 CPU

N 172 332 652 1292 2572 model

At 271 | 272 273 2-4 275
# steps 16 32 64 128 256
BG 0.36 | 6.02 | 165.84 | 4675.75 1.4x 1077 -n°
CcG 1.40 | 18.03 | 261.64 | 4817.26 1.7x 107° - n*
RPCG || 0.66 | 5.17 | 53.73 | 765.73 | 11637.98 4.0 x 1075 . n7/2
FPCG 0.54 | 3.70 | 27.77 | 223.05 | 1974.41 || 2.1 x 107° -n3logn

Table 4.9: Total CPU-time (in seconds) measured for the WA2 problem run on
sgil. The stopping criterion Sc2(1078) is used by the iterative methods.

n 9 17 33 65 CPU

N 93 173 333 653 model

At 2-1 272 2-3 2—4
# steps 8 16 32 64
BG 8.09 | 1147.40 1.6 x 10~7 - n?®
J 93.36 | 4483.06 | 291206.15 2.2x 10~*.nb
GS 48.52 | 2257.88 | 148243.08 1.1x 10=%.nb
CG 5.31 108.85 3205.19 8.2x 107°-nd
RPCG 3.76 58.34 1109.35 | 21495.91 1.5 x 104 n92
FPCG 2.22 28.13 407.96 5954.33 || 8.0 x 10~° - n*logn

Table 4.10: Total CPU-time (in seconds) measured for the WaA3 problem run on
sgi2. The stopping criterion Sc2(1078) is used by the iterative methods.
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Table 4.11: Total CPU-time (in seconds) measured for the AD3 problem run on

sgil.

Grid 101 x 21 x 11 | 201 x 21 x 11 | 501 x 11 x 11
At 102 102 10-2
# steps 100 100 100
CPU 862.0 1644.8 2116.0

Grid points || 801 | 1601 | 3201
At 1072 [ 1073 | 107°

# steps 20 20 20
CPU 18.4 | 56.9 | 182.3

Table 4.12: Total CPU-time (in seconds) measured for the REl problem run on
sgil.

5 Solving the linear system

5.1 Summary

Solution of the linear systems of equations is the core part of each simulation. As
discussed above, the choice of the solution method is important for the computa-
tional behaviour in each case. Therefore we investigate the CPU times spent on the

solution of the linear systems further in this section.

| Identifier | CPU-model | Method | Source
Pr2 3.2x107%-n?%logn | FPCG | Table 5.2
Pe3 1.1 x 107%-n3logn | FPCG | Table 5.4
EB2 9.2 x 1075 - n? NMG | Table 5.3
EB3 2.1 x10"%.n3 NMG | Table 5.5
Dr2 7.8 x 107%-n?logn | FPCG | Table 5.6
HE2 5.1x 10=%.7n%2 | RPCG | Table 5.7
Wa2 1.1 x 1075 -n%logn | FPCG | Table 5.8
Wa3 4.4 x 107%-n3logn | FPCG | Table 5.9

Table 5.1: Summary of the the solution of the linear systems for the test prob-
lems; the CPU models are associated with the best solution method applied in the
simulations. The NMG method is applied only to the EB2 and EB3 problems.
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n 9 17 33 65 CPU
N 93 173 333 65> model
CPU | #it. | CPU | #it. | CPU | #it. | CPU | # it.
BG 0.93 ~ 71.04 ~ 8972.41 ~ 2.1x 107 7-n"
J 1.76 | 231 | 51.96 | 940 | 2160.61 | 3770 1.6 x 1076 . 7nS
GS 0.92 | 117 | 26.35 | 472 | 1071.48 | 1888 8.1x 107 7.-nb
CG 0.14 27 2.04 57 40.32 118 | 617.51 | 241 3.8x 107° - nt
RPCG 0.13 8 1.43 12 18.61 18 | 224.91 | 31 1.1 x10~%. n7/2
FPCG* || 0.02 1 0.16 1 1.37 1 12.88 1 1.1x 10=°-n3logn
Table 5.4: Solution of the linear system in the PE3 problem run on sgi2; CPU-time
(in seconds) and number of iterations. The stopping criterion Sc1(1078) is used by
the iterative methods.
n 9 17 33 65 CPU
N 93 173 333 65> model
CPU | #it. | CPU | #it. | CPU | #it. | CPU | # it.
BG 0.94 ~ 71.33 | ~ 8982.24 | ~ 2.0x 107777
J 1.77 | 230 | 51.68 | 936 | 2113.73 | 3753 1.6 x 1076 . n®
GS 0.91 | 117 | 26.65 | 469 | 1067.04 | 1878 8.1x 107 7.-nb
CG 0.14 28 2.43 68 52.27 154 | 937.56 | 340 5.3 x 1077 - n*
RPCG || 0.15 8 1.47 12 21.45 18 | 228.15 | 31 LIx 10~%.n7/2
FPCG || 0.12 11 1.07 13 12.34 14 90.04 15 7.9x 107 -nlogn
NMG 0.30 5 0.97 5 7.66 5 59.41 5 2.1 x 10=%.n3
Table 5.5: Solution of the linear system in the EB3 problem run on sgi2; CPU-time
(in seconds) and number of iterations. The stopping criterion Sc1(1078) is used by
the iterative methods. The result of the NMG method is obtained by using the
Sc3(10~8) stopping criterion.
n 33 65 129 257 513 CPU
N 33 65 129? 257* 513* model
CPU | #it. | CPU | #it. CPU # it. CPU | #it. | CPU | #it.
J 24.37 | 5007 | 370.74 | 19619 | 5924.15 | 77666 2.0 x 107° - n*
GS 12.27 | 2497 | 190.25 | 9817 | 2950.74 | 38847 1.1x 1075 n*
CG 1.49 | 505 | 12.29 | 1091 | 106.03 | 2248 | 3138.55 | 9048 4.4 x107°.n3
RPCG || 0.14 21 0.74 30 5.00 51 44.03 95 | 366.68 | 186 6.2 x 1075 . n5/2
FPCG || 0.36 32 1.56 34 6.52 34 27.62 35 | 128.34 | 36 7.8 x 107 -n%logn

Table 5.6: Solution of the linear system in the DP2 problem run on sgii; CPU-time
(in seconds) and number of iterations. The stopping criterion Sc1(107%) is used by
the iterative methods.
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n 17 33 65 129 257 CPU
N 172 332 652 1292 2572 model
CPU | #it. | CPU | #it. | CPU # it. CPU # it. CPU | #it.
BG 0.00 ~ 0.02 ~ 0.16 ~ 1.24 ~ 5.8 x 1077 -n?
J 0.41 | 358.94 | 3.56 | 805.81 | 23.81 | 1546.22 | 189.41 | 2531.72 8.7x107%.n3
GS 0.21 | 180.87 | 1.66 | 404.37 | 12.45 | 774.83 | 95.15 | 1267.51 45%x 1077 . n3
CG 0.03 | 22.13 | 0.15 | 33.84 | 0.79 45.06 6.18 67.85 2.9 x 10=%.n3
RPCG | 0.01 7.00 0.06 7.94 0.21 7.20 0.97 6.46 3.92 | 5.23 [[ 5.1 x 10=6.n>/2
Table 5.7: Solution of the linear system in the HE2 problem run on sgii; averaged
CPU-time (in seconds) and number of iterations at each time level. The stopping
criterion Sc2(10719) is used by the iterative methods.
n 17 33 65 129 257 CPU
N 172 332 652 1292 2572 model
CPU | #1it. | CPU | #it. | CPU | #it. | CPU | #it. | CPU | #it.
BG 0.01 ~ 0.15 ~ 2.38 ~ 35.38 ~ 1.3x 1077 - n?
CG 0.07 | 109.81 | 0.51 | 203.37 | 3.87 | 384.39 | 36.78 | 729.51 1.4x 107> -n3
RPCG || 0.03 | 14.56 | 0.10 | 18.75 | 0.62 | 27.69 | 5.11 | 45.48 | 42.02 | 84.09 2.7 x 1075 . n5/2
FPCG || 0.02 7.69 0.06 6.97 0.22 6.69 0.91 6.07 3.97 | 5.87 || 1.1 x 107° -n?logn
Table 5.8: Solution of the linear system in the WA2 problem run on sgii; averaged
CPU-time (in seconds) and number of iterations at each time level. The stopping
criterion Sc2(10~8) is used by the iterative methods.
n 9 17 33 65 CPU
N 93 173 333 65> model
CPU # it. CPU # it. CPU # it. CPU | #it.
BG 0.94 ~ 71.01 ~ 1.8x 1077-n7
J 11.47 | 1518.23 | 279.04 | 5016.25 | 9092.16 | 16057.34 2.3x 107*.n°
GS 5.82 | 761.00 | 139.92 | 2500.50 | 4624.35 | 8055.25 1.2x 10~*.n°
CG 0.46 95.37 5.58 158.12 91.90 269.50 7.7x 1077 . n*
RPCG || 0.28 15.25 2.50 18.81 26.85 23.16 277.16 | 33.77 1.3x 10~%. n7/2
FPCG || 0.09 6.37 0.64 6.50 5.22 6.25 36.81 | 5.39 || 4.4x107°-n3logn

Table 5.9: Solution of the linear system in the WA3 problem run on sgi2; averaged
CPU-time (in seconds) and number of iterations at each time level. The stopping
criterion Sc2(10~8) is used by the iterative methods.
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5.2 Efficiency of the linear algebra in Diffpack

The linear algebra tools (see [6]) in Diffpack have a carefully designed structure.
By utilizing the object-oriented programming (OOP) techniques, Diffpack offers
the users with a rich collection of solution methods, preconditioners and stopping
criteria. The users are able to make flexible combinations at run time and the
process of parameter fit is therefore greatly simplified. The generality is, of course,
obtained at some cost of the computational efficiency. However, we will demonstrate
through the following example that the linear algebra tools in Diffpack maintain a
relatively high performance level.

As a competitor code, we study a specially coded C program CGmilu for the
solution of 3D elliptic equations on the unit cube, i.e. the PE3 and EB3 problems.
Here, CGmilu uses a very efficient finite difference method for the discretization
which means that the CPU time spent on the construction of the linear system in
CGmilu is almost negligible. We have thus found it fair to compare the CPU time
spent on the solution of the linear system by the Diffpack simulator with the total
CPU time consumed by the CGmilu program. Assuming homogeneous Dirichlet
boundary conditions on the entire boundary, CGmilu considers only the values on
the inner grid points as unknowns and therefore reduces the size of the resulting
linear system. For the solution method, CGmilu restricts to the (preconditioned)
CG method where a specially coded matrix-vector product routine guarantees the
extraordinary efficiency of the program. We also mention that the Diffpack sim-
ulator and CGmilu use the same stopping criterion Sc1(10~%), so both programs
converge under same number of CG iterations.

Solving the PE3 problem with CG (no prec.)

System size || 9x 9x 9 | 17x 17T x 17 | 33 x 33 x 33 | 65 x 65 x 65 CPU model
Diffpack 0.04 0.60 11.14 235.06 1.3x 107 - n*

System size || 7Tx 7x7 | 15x 15 x 15 | 31 x 31 x 31 | 63 x 63 x 63 CPU model
CGmilu 0.02 0.43 7.44 164.33 8.5x 1076 .n*

Solving the PE3 problem with CG+MILU prec.

System size || 9x 9 x9 | 17x 17 x 17 | 33 x 33 x 33 | 65 x 65 x 65 CPU model
Diffpack 0.04 0.46 6.40 97.58 4.4 x 107 - 35

System size || 7Tx 7x7 | 15x 15 x 15 | 31 x 31 x 31 | 63 x 63 x 63 CPU model
CGmilu 0.02 0.28 3.49 58.57 2.1 x 1075 .33

Solving the EB3 problem with CG (no prec.)

System size || 9x 9x 9 | 17x 17T x 17 | 33 x 33 x 33 | 65 x 65 x 65 CPU model
Diffpack 0.04 0.71 13.58 328.12 1.8 x 107° . n*

System size || 7Tx 7x7 | 15x 15 x 15 | 31 x 31 x 31 | 63 x 63 x 63 CPU model
CGmilu 0.02 0.52 9.65 231.29 1.0 x 107 - n*

Solving the EB3 problem with CG+MILU prec.

System size || 9x 9x9 | 17x 17 x 17 | 33 x 33 x 33 | 65 x 65 % 65 CPU model
Diffpack 0.04 0.46 6.35 95.18 4.3 x 107 - n35

System size || 7Tx 7x7 | 15x 15 x 15 | 31 x 31 x 31 | 63 x 63 x 63 CPU model
CGmilu 0.02 0.27 3.48 57.51 2.1 x 1075 .- n33

Table 5.10: Comparison between the Diffpack simulator and a specially coded C
program CGmilu for the PE3 and EB3 problems. The CPU time (in seconds) are
measured on sgi2.
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6 Constructing the linear system

The linear system arising from the finite element discretization is computed in an
element assembly process [21], i.e. looping through each element,

1. Calculate the element matrix and vector;
2. Enforce the essential boundary conditions;
3. Assemble the element contribution to the global linear system.

Steps 1 and 3 are the CPU-dominating parts of the whole assembly process. The
CPU-time consumed is proportional to the number of elements, therefore the CPU-
time for the whole assembly is proportional to the number of unknowns (grid points).
However, the matrix storage strategy does influence the actual CPU consumption
in step 3. Due to uniform grids A has a banded-structure where the bandwidth is
typically n in 2D and n? in 3D, respectively. Each entry of A is thus easily accessed
if a banded matrix storage strategy is used. But for each row of A there are only a
small number (independent of n) of nonzeros. This means that a band matrix may
waste too much storage on zero entries. To save the storage and the computational
cost of matrix-vector products, a compressed sparse row storage strategy which only
stores nonzero entries is preferable. In this case, the determination of the structure
of A (location of the nonzeros) requires more work and a relatively complicated
indexing procedure is needed to access each entry of A. Therefore the efficiency
of the assembly process will suffer. In the Diffpack context, for a matrix of type
MatSparse more CPU-time is spent on constructing the linear system than for a
matrix of type MatBand.

| Grid | 17 x 17 [ 33 x 33 | 65 x 65 | 129 x 129 |
MatBand 0.02 0.06 0.26 1.17
MatSparse 0.07 0.27 1.16 4.60

Table 6.1: The CPU-time (in seconds) spent on the makeSystem function in the PE2
problem; different matrix storage strategies result in different CPU consumptions.

It is not difficult to see, from further analysis of the CPU consumptions, that
the CPU-time spent on the construction of the linear system is often the domi-
nating part of the entire computation. However, under certain circumstances, it
is possible to improve the efficiency of the linear system construction process by
implementing a suitable makeSystem function which runs more efficiently than the
default FEM: :makeSystem. We will explain this in detail by looking at the following
examples.

6.1 Uniform grids

Uniform grids imply that every element is of the same shape. Accordingly, evalua-
tions of basis functions and their derivatives will give the same result for a specific
numerical integration point in any element. This means that we should avoid such
unnecessary re-evaluations. For this purpose the command-line option -~bfeopt ON
can be very helpful. In addition, the property of constant K or f should be utilized
such that recalculations of the element matrix/vector on every element are avoided.

6.2 The mapped Laplace equation in the WA3 problem

The special transformation (2.7) from the physical solution domain Q(t) (2.6) to a
stationary computational domain 2 produces a new elliptic boundary value prob-
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lem. The definition of K (2.8) indicates a relation between the element matrices for
elements which only differ by z-coordinates. More precisely, we have in the Wa3

problem
IN; ON; ON;
o (e G - G+ 52

o (% -, 52

ADIE

dy dy
ON; ON; ON; ON;
—(z+ H)n 0z Oz (= + Hny 0z B—y
[H? + (= + H)*(n2 + n2)] ON; ON;
+ 7 % s dzdydz

for each matrix A; ; on the element level.

Suppose we in this case give a tripled index to each element matrix and the
element size is Az in the z-direction. Then element matrlces with same I, J indices
will have such a resemblance that the difference between A S K and AI I consists
of two parts which only vary with respect to (K — 1)Az; one hnearly varymg part
and one quadratically varying part. More precisely,

LK _ 41, J1 1,J
AT = AT+ (K — 1)D + (K —1)? R”

where
1 ON; aNj ON; aNj
—Az///ﬁ[’” (EWJF 9z aT)
N H)(n; +1;) ON; ON;
ONi ON; | ONiON;\ _ (= + H)(m 4 ) ON ON; |
gy 0z ' 0z oy n+H 0z 02
and

Ny +1,) ON; ON;
= Az z L L dxdyd
///Hn+H E)zazlyz
This clearly can simplify the construction of the linear system since a 3D assem-

bly process is replaced by a 2D assembly process. In this way, major efficiency can
be gained just by utilizing the properties of the integrand.

| makeSystem | standard | special |

[ CPU [ 4144 [ 155 |

Table 6.2: An example demonstrating the different behaviours of the standard
FEM: :makeSystem and a specially coded makeSystem function in the Wa3 applica-
tion; the grid size is 17 x 17 x 21.

6.3 Parabolic problem

Let us consider a general parabolic problem on the form

(?)—7: = Lu)+f inQx][0,T],
u = up ondQx][0,T],
u(x,0) = u°(x) inQ,

21



where L is a linear elliptic operator.

As usual we apply the finite element method for the spatial discretization and
the f-rule for the temporal discretization. This results in a linear equation system of
equations on the form (3.2) that needs to be solved at each time level. However, the
time dependency of £, f and the essential boundary conditions up will determine
the computational cost of both the assembly and the solution processes. To clarify
this, it is beneficial to rewrite (3.2) in a different manner. Define

A=M+0AK+Aoqy, Ams=M+ (0 - 1)AIK, b=Au""'+c+byaq,

where M is the consistent mass matrix and K is the stiffness matrix relating to L.
Here, ¢ contains contributions from the f term, while both K and ¢ are constructed
by the standard integral process without regards to the essential boundary condi-
tions. A,,0q4 and by, q are modifications of the system matrix and the right hand
side vector respectively due to the essential boundary condition up.

Remark: Let I denote the set of degrees of freedom for which there are essential
boundary conditions. For a vector up containing the value of the essential boundary
condition for ¢ € I (and arbitrary values for i ¢ I), we have

b =AY up, forigl, (6.1)
where byoq = (b1, b2, ... ,bx)7 and qu)od denotes the ith-row of A, q-

The mass matrix M depends only on the grid and can thus be calculated once
and for all.

e For the simplest situation where £, f and up are all independent of time,
it is obvious that A remains the same for every time level. Moreover, only
a matrix-vector product (Mu”~1!) is needed to generate the right hand side
vector b (see [20]).

e However, for the situation where only f is time dependent, b, q will still be
the same for all time levels. This allows us to skip the recalculation of the
element matrix (and only recalculate the vector at the element level). Tn this
case A needs only to be calculated once and we obtain at the same time b,o4-

e When £ is time dependent and f is not time dependent, it is still possible to
achieve a slightly better performance by skipping the recalculation of c.

e For a special case where both £ and f are time independent while up is time
dependent, only two matrix-vector products are needed to construct the linear
system at all the time levels except the first one. This can be achieved by
utilizing the relation (6.1) between by,oq and A,o4.

Assume that we create a common simulator class for a parabolic problem. Based
on the discussion above, we find it convenient to introduce three flags concerning
the time-dependency of the linear operator £, the source term f and the essential
boundary condition up, respectively. We should redefine the makeSystem function
accordingly aiming at improved efficiency.

Remark: In Table 6.3, the relations between different CPU consumptions for
different situations of time dependency are rather of importance. For an application
carried out on a non-uniform grid, the actual CPU-time will surely differ from
the numbers listed in Table 6.3. However, the user will notice similar relations
between different situations of time dependency, provided that the implementation
idea concerning the construction of the linear system at each time level is applied.
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time-dependency CPU on makeSystem

L | f | up | first call | other calls
NO | NO | NO 5.49 0.05
NO | NO | YES 5.45 0.09
NO | YES | NO 5.36 0.67
NO | YES | YES 5.45 0.71
YES | NO 5.15 1.69
YES | YES 5.16 2.06

Table 6.3: Analysis of the specially implemented makeSystem function in a heat
conduction simulator class; the CPU-times (in seconds) are measured on sgil for
applications on a uniform 129 x 129 grid.

7 CPU-measurements for PLTMG

PLTMG [4] is a program for solving boundary value problems in two-dimensional
space. The equation is given in the form

—Va(z,y,u, Vu, \) + f(z,y,u, Vu,A) = 0 in Q,
with boundary conditions

u = g1(l‘,y,)\) OHFl,
a-n = gaz,y,u,A) on Ty,

where T'y UTy = dQ and Ty N Ty = @. Here a is the vector (aj,az)’ and X is a
continuation parameter (not used here).

PLTMG is a public domain software and is available at the file archive system
Netlib. We have here used version 7.1 with double precision. PLTMG features mesh
generation, adaptive refinement, error estimation and solution of the piecewise linear
finite element equations with a hierarchical basis multigrid method.

We will here use PLTMG for solving three of the model problems solved by
Diffpack in earlier sections: the 2D Poisson equation (PE2), the 2D elliptic boundary
value problem (EB2), and the 2D pressure equation with discontinuous coefficient
(Dp2). The problems (PE2) and (EB2) will be solved with uniform meshes to
ease comparison with the Diffpack computations. The problem Dpr2 will be solved
with both uniform and adaptive refinement. For elliptic problems of (generalized)
Poisson type, adaptivity may be important if the coefficients are strongly varying
or the if the domain has reentrant corners. This is not the case for PE2 and EB2.

7.1 Numerical results

The triangulations used for PE2 and EB2 are constructed by dividing the unit
square into 9 triangles of equal size. This initial mesh is then uniformly refined, the
first entry in Table 7.1 with N = 92 corresponds to 2 refinements.

The fictitious domain method applied by the experiments with Diffpack is not
appropriate for computations with PLTMG. It is better to directly approximate
the non-rectangular outer domain with edges. Furthermore, it is advantageous to
place edges along the internal edges where the coefficient K (z,y) is discontinuous,
cf. Figures 2.1 and 7.1.

Implementation of the boundary conditions are straightforward for PE2 and
EB2. For Dr2, with Neumann conditions on all boundaries, uniqueness of the
solution is obtained by using Dirichlet boundary conditions on one edge of length
0.001 in the lower left corner, cf. Figure 7.2.
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Remark: The refinement criterion used for DP2 is not the standard one in
PLTMG, instead the minimization of the error of the quantity |[K (z,y)Vul|r,@q)
is the goal for the adaptivity. (This is implemented by a change in the subroutine
energy.f of PLTMG.)

Parameters for solution of PE2 and EB2:

s ir=3, f=1, 11=2, i=1

Explanations of the PLTMG parameters: s, the solver; ir=3, refine uniformly 3
times; £=1, solving first time; 11=2, use level 2 as coarsest level in multigrid solver;
i=1 symmetric matrix. For a detailed explanation of the parameters see [4].

n 9 17 33 65 129 257 CPU
N 92 172 332 652 1292 2572 model

Pr2 0.11 | 0.44 | 1.73 | 6.97 31.45 | 143.63 || 1.02 x 10=*. n%13

EB2 0.11 | 0.43 | 1.67 | 5.73 30.27 | 140.42 || 1.02 x 10=*. n%12

Nunt 245 | 903 | 3461 | 13545 | 53585

Dr2uN1 0.11 | 1.11 | 4.89 | 20.99 | 100.77 6.17 x 10~%. y1.10
NADAP 245 | 1005 | 4043 | 16189 | 53587
Dpr2apap || 0.11 | 1.85 | 8.59 | 28.00 | 109.43 1.80 x 1073 . N1.01

Table 7.1: Total CPU-time (in seconds) measured for the PLTMG simulations on
sgil; The meshes are uniformly or adaptively refined.

The number of multigrid iterations for PE2, EB2 and DP2UNT are 6-8, where
about half is required to reach a residual corresponding to the stopping criterion
Sc1(1078) used in the Diffpack experiments. In experiment DP2UNI the mesh in
Figure 7.2 is used, the first mesh has 245 degrees of freedom, each uniform refinement
increases the unknowns approximately by a factor of 4. In experiment DP2ADAP
the mesh is adaptively refined where the meshes contains approximately the same
number of degrees of freedom as in the uniformly refined case. Only two multigrid
iterations are here performed by PLTMG.

Remarks: From Table 7.1 it is seen that the time consumption is essentially the
same for all the model problems. PLTMG does not use that the problem is linear.
The convergence rate of the multigrid iterations depends on the conditioning of the
problem. Approximately 50% of the CPU-time is used for assembling the system
of equations.

dp2mod

1A 2 A
3 A 2 A

Figure 7.1: Skeleton for input of DP2 problem in PLTMG.
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245 nodes

>p

44

Figure 7.2: Mesh for the DP2 problem in PLTMG generated from skeleton with
mesh size parameter h=0.08.

3461 nodes
.222e-02

192e-02
162e-02
132e-02
102e-02
719¢-03
.419e-03
119e-03
-.180e-03

Figure 7.3: Solution for the Dp2 problem with PLTMG. The mesh is uniformly
refined two times and has 3461 degrees of freedom.

The results show that for the DP2 problem there is not much extra cost in in-
creased CPU-time for using the adaptivity compared with uniformly refined meshes
with the same number of degrees of freedom. But note that the uniformly refined
meshes are solved to a higher accuracy. This accuracy is higher than that is neces-
sary.
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