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Abstract
Peridynamics is an accepted method in engineering for modeling crack

propagation on a macroscopic scale. However, the sensitivity of the method
to two important model parameters – elasticity and the particle density – has
not yet been studied. Motivated by [11,25] we use Peridynamics to simulate
a high-speed projectile impacting a plate and study the overall damage on
the plate. We have extended the setting by the magnitude of the force of the
indenter and selected the parameter range such that a sharp transition in the
response function occurs.

We describe the simulation setting as an uncertainty quantification prob-
lem and use a non-intrusive stochastic collocation method based on spatially
adaptive sparse grids to propagate the uncertainty. We show first convincing
results of its successful application to Peridynamics and compare to Monte
Carlo sampling. If the magnitude of the force is deterministic, a strong sensi-
tivity of the damage in the plate with respect to the elasticity factor can be
shown for the 2-dimensional setting. If it is non-deterministic, it dominates
the simulation and explains most of the variance of the solution. The error
of the expectation value estimation reaches an early saturation point for the
studied collocation methods: We found parameter ranges where the quan-
tity of interest oscillates. Moreover, faster convergence and higher robustness
than for the Monte Carlo method can be observed.

Key words: uncertainty quantification, sparse grids, Peridynamics, sensi-
tivity analysis, ANOVA
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1 Introduction

Most simulations depend on certain parameters, such as material parameters
or model parameters. Frequently, the exact values of parameters are not given,
and the effect of uncertainty in the choice of parameters on certain output
values are of interest. In plenty of applications, the influence of parameters to
the simulation results are of high relevance. In this paper, we present a non-
intrusive method for a d-dimensional parameter study for simulations, both
to estimate the influence of parameters and to quantify uncertainties. To this
end, we consider the peridynamic theory [24, 25], a non-local particle-based
theory in continuum mechanics with a focus on discontinuous functions as
they arise in fracture mechanics.

Silling and Askari used in their publication about Peridynamics [25] the
impact of a spherical indenter on a cylindrical plate to show the method’s
capability to model complex fractures. Kidane et al. [11] employed a similar
setting. They simulated the impact of steel projectiles with ballistics speed on
aluminum plates, with regard to a data-on-demand uncertainty quantification
(UQ) protocol.

Motivated by their work, this paper brings together these two aspects, Peri-
dynamics and UQ, using stochastic collocation based on spatially adaptive
sparse grids, a numerical scheme for higher-dimensional discretizations [4].
Our simulation setting is the impact of a high-speed projectile of steel on a
ceramic plate. The aim of this paper is to quantify the sensitivity of the dam-
age in the plate with regard to three relevant model parameters. First, we
consider a scaling factor for the elasticity in the Prototype Brittle Material
(PMB) model, which is used to model the ceramic material of the plate. The
second one is the density of particles in the plate, which we model by the
initial distance between two particles, and the third one is a scaling factor
for the magnitude of the force of the indenter. We formulate the parameter
study as a UQ problem and interpret these parameters as uncertain, i.e., as
random variables.

Due to the uncertainty of the inputs, the model’s outcome becomes uncer-
tain as well, but neither statistical moments nor a probability distribution are
known a priory. They depend on the uncertainty of the parameters, which
have to be propagated through the simulation. We consider non-intrusive
UQ, sample the stochastic space on so-called collocation nodes, compute the
outcome of interest and analyze the effects. The most common method based
on this principle is Monte Carlo sampling. It is independent of the dimen-
sionality of the stochastic space, easy to implement, and it is guaranteed to
converge to the true solution in the limit of infinitely many samples. Its main
drawback is a rather slow convergence rate.

In a simulation context each collocation node requires a full-scale sim-
ulation and is often very costly. This motivated us to use the knowledge
about the solution, namely the simulation results at the collocation nodes,
and interpolate between them. A very common approach to construct such
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an interpolant is the non-intrusive generalized polynomial chaos expansion
(gPC), presented in [29, 30]. The expansion is based on the Askey Scheme,
which assigns parameter distributions to optimized orthogonal bases. The
corresponding coefficients are computed by spectral projection, which leads of
course to a possibly high-dimensional quadrature problem. However, the basis
functions have global support and suffer therefore Gibb’s phenomenon when
sharp transitions occur [29]. Therefore, [28] introduced the multi-element
gPC, which decomposes the stochastic space adaptively using an Analysis-
of-Variance (ANOVA) based decomposition criterion. Oladyshkin extended
the polynomial chaos expansion to arbitrary parameter distributions, which
is known as the arbitrary polynomial chaos method [14].

However, we propose a different approach, which is called adaptive sparse
grid collocation (ASGC) method in [7]. It is based on standard spatially adap-
tive sparse grids [4,18,19] and expands the stochastic space using a hierarchi-
cal basis. It can cope with the curse of dimensionality to a large extent per
construction, which gPC methods can not. Moreover, the sparse grid method
provides, due to its hierarchical approach, a direct estimate for the interpola-
tion error for free, which allows one to adaptively refine to peculiarities of the
underlying function. This grid-based approach scales linearly in the number
of collocation nodes and then allows the efficient estimation of the statistical
moments. The basis functions have local support and can thus resolve sharp
transitions without suffering a lot from Gibb’s phenomenon. Moreover, we
consider several strategies for adaptive refinement and are able to further
reduce the number of samples. Sparse grid collocation is a highly active field
of research in the context of UQ: Jakeman et al. worked on the detection
of discontinuities in high-dimensional stochastic spaces [10], Archibald et al.
extended it to hybrid parallel architectures [2], and Zhang et al. used it to
improve Bayesian inference in UQ settings [31], to name but a few.

In this work, we employ the ASGC method to simulations with Peridy-
namics as a first, still low-dimensional proof of concept for its efficiency and
robustness in a real-world example. To keep the number of simulation runs
small we propose a new refinement criterion. Having the explicit function
representation of the solution in hand, we estimate global sensitivity values
by variance decomposition based on [26].

In the next section we introduce the UQ problem formally, and describe
how we compute global sensitivity values. In Sect. 3 we present the adaptive
sparse grid collocation method in detail. In Sect. 4, we introduce the peri-
dynamic model. The simulation setting is described in Sect. 5. We present
numerical results in Sect. 6 for a two- and three-dimensional setting that can
explain properties of the underlying simulations, and conclude this work with
some remarks in Sect. 7.
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2 Problem Setup

The task we address in this paper is to estimate sensitivity values of peridy-
namic parameters with respect to some quantity of interest we compute out
of the results of peridynamic simulations. We describe the variation of the
input by probability density functions, which we propagate through the sim-
ulation. In this section we discuss first the forward propagation of uncertainty
and second the sensitivity analysis based on ANOVA.

2.1 Forward Propagation of Uncertainty

Let the system be driven by some model M = (θ, p(θ), F (θ), u) which de-
pends on a finite number of random parameters θ = (θ1, θ2, . . . , θd) ∈ Γ
with a given joint probability density function p(θ) and cumulative distri-
bution function F (θ), and a response function u : Γ → R for some quantity
of interest. So we seek a functional representation of u(θ) under the model
M in order to extract its probabilistic characterization introduced by the
probabilistic inputs θ. Knowledge of the probability laws of θ leads to the
probability laws of u.

However, the model can be arbitrarily complex and an analytical solution
might not even exist. To overcome this problem we replace the real solution
by some suitable approximation f such that

f(θ) ≈ u(θ) . (1)

Once we have an approximation f we can give estimates of the probabil-
ity density function (risk analysis), statistical moments (expectation value,
variance), confidence intervals of u, and even do a sensitivity analysis.

However, computing global sensitivity values based on ANOVA includes
computing multi-dimensional variances of f . Motivated by Lemma 1, we can
neglect the probability density function p(θ) for the computation of these
variances due to a suitable transformation of the stochastic space to the unit
hypercube, as long as the random variables are independent.

Lemma 1. Let θ = (θ1, . . . , θd) ∈ Γ be a multivariate random variable from
which its components θi are arbitrarily distributed but independent. They have
a continuous and differentiable cumulative function F (θ) and a continuous
probability density function p(θ). Then it holds that ξ := F (θ) ∈ [0, 1]d is
uniformly distributed under F and the expectation value for some function
u : Γ → R is

E(u) =
∫

Ω

u(θ)p(θ)dθ =

∫

[0,1]d
u(F−1(ξ))dξ . (2)
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Proof. Due to the independence of θi and θj for i 6= j we can define ξi
component-wise as

ξi = F (θi) for 1 ≤ i ≤ d . (3)

Standard statistics secures that each ξi is uniformly distributed in [0, 1]. In
order to proof Eq. (2) we just substitute θ by F−1(ξ). According to the
substitution theorem for integrals we need to transform the ranges of the
integral and insert a volume correction factor to the integral, i.e.,

dθ
dξ

= |det JF−1(ξ)| , (4)

where JF−1(ξ) is the Jacobian matrix of F−1. Moreover, we know that F−1(ξ)
is bijective, Lebesgue-measurable and differentiable, and therefore the trans-
formation theorem for probability densities [27] holds, and thus

p(ξ) = |det JF−1(ξ)|p(F−1(ξ)) = |det JF−1(ξ)|p(θ) = 1 . (5)

Inserting Eq. (4) and (5) in the definition of the expectation value leads to
the general calculation rule for the expectation value under F

E(u) =
∫

Γ

u(θ)p(θ)dθ

=

∫

[0,1]d
u(F−1(ξ))

|det JF−1(ξ)|
|det JF−1(ξ)|p(ξ)︸ ︷︷ ︸

=1

dξ

=

∫

[0,1]d
u(F−1(ξ))dξ .

(6)

ut

For the more general case where no independence assumption of the
marginal distributions can be made, we want to refer the reader to other, more
elaborate statistical transformations, for example the Rosenblatt-transfor-
mation [21] or the Nataf-transformation.

However, we approximate the variance of u by the variance of f using
Steiner’s translation theorem V(f) = E(f2)− E(f)2 and estimate each term
with Eq. (2).

With respect to Peridynamics, we consider a model M(θ, p(θ), F (θ), u)
with the uncertain parameters θ = (θ1, θ2, θ3). With θ1 as a material pa-
rameter, θ2 as a discretization parameter and θ3 as the external force. The
response function u maps the uncertain parameters via simulation to the
damage of the material, our quantity of interest. The model is formally in-
troduced in Sect. 4 and 5.
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2.2 Global Sensitivity Analysis

For the global sensitivity analysis we use the unanchored ANOVA decompo-
sition [26] of the surrogate f . In general, this would require 2d − 1 integra-
tions. For large d this is often unfeasible. To overcome this, one can employ
the anchored ANOVA approach where the integrals are replaced by function
evaluations at some anchor point [8]. As we deal with rather low dimensional-
ities so far, the unanchored approach is sufficiently efficient for the purposes
of this paper. To be specific, we compute the ANOVA representation of f as

f(θ1, . . . , θd) = f0+

d∑

i=1

fi(θi)+

d∑

i=1

d∑

i<j

fi,j(θi, θj)+ · · ·+f1,2,...,d(θ1, . . . , θd) .

(7)
This decomposition is unique if each member fi1,...,ik 6= f0 has zero mean,
i.e., ∫

Γi1×···×Γik
fi1,...,ik(θi1,...,ik)p(θi1,...,ik)dθi1,...,ik = 0 (8)

for some uncorrelated and independent probability measure p(θi1,...,ik) =∏k
j=1 p(θij ) [8, 26]. In total we have 2d members, which we identify in the

following by P(D) being the power set over D := {1, . . . , d}. On this set of
sets we introduce a total order J ≺ K ⇔ |J | < |K|, J ,K ∈ P(D) and can
now write Eq. (7) in a compact form (notation adapted from [9]) as

f(θ1, . . . , θd) = f∅ +
d∑

k=1

∑

J∈P(D)

fJ (θJ ) . (9)

where f∅ = f0. To guarantee orthogonality, we obtain the constant term f∅
from

f∅ = E(f) =
∫

Γ

f(θ)p(θ)dθ , (10)

and the higher-order terms from

E(fJ ) =
∫

ΓD\J

f(θ)p(θ)dθD\J = f∅ +
∑

K≺J
fK + fJ , (11)

where we integrate with respect to all θk, k ∈ D \ J . Note, that as f is a
function, E(fJ ) is as well a function that depends on θJ .

If we insert the recursive definition of the lower order terms fK we obtain
fJ as a linear combination of the fK with K ≺ J ,

fJ = E(fJ ) +
∑

K≺J
(−1)|J |−|K|E(fK) . (12)
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Having the ANOVA decomposition at hand we can compute global sensitivity
values for the input parameters. We want to know the contribution of the
variance of each combination of parameters to the variance of the solution.
We decompose the variance of the solution by writing it as a sum of individual
variances using the ANOVA representation and obtain

V(f) =
∑

J∈P(D)

V(fJ ) (13)

if the random variables are independent. Due to the linearity of the variance
operator and Eq. (12) we can write the variance of each member as

V(fJ ) = E(f2J ) +
∑

K≺J
(−1)|J |−|K|E(f2K) (14)

taking into account that each member has zero mean.
The ratio

SJ =
V(fJ )
V(f)

(15)

is now a global sensitivity measure called the main effect. Certainly, all SJ
are non-negative, and they sum up to 1. The main effect describes how much
of the total variance can be explained by one parameter combination. For
the untruncated ANOVA decomposition one has 2d combinations covering
interactions up to dth order. This might get confusing for higher-dimensional
problems. Hence we want to introduce another sensitivity measure, which
describes the overall contribution of one single parameter to the variance of
the solution. It is called the total effect and is computed by summing up all
the main effects where the parameter is involved, i.e.,

Sθk =
∑

J∈D:k∈J
SJ . (16)

A total effect Sθk = 1 means that the whole variance in the solution is caused
by θk, a total effect of Sθk = 0 that θk is irrelevant.

3 Adaptive Sparse Grid Collocation Method

Spatially adaptive sparse grids were first introduced to the setting of uncer-
tainty quantification in [7] and have been employed to both interpolation
and quadrature in various settings even before, see [4, 19] and the references
therein. The main idea of ASGC is to use an adaptively refined sparse grid
function as an approximation of u for the unknown functional dependencies
of the random input parameters θ, as described in Sect. 2, and extract statis-
tical quantities using the approximation. The approximation is constructed
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by interpolation, which means that every sparse grid point is a collocation
node in terms of UQ, and a parameter combination in terms of numerical
simulations.

3.1 Sparse Grids

To briefly recall the most important properties and to clarify our notation,
we describe the basic principles of sparse grids in the following; see, e.g.,
[4, 18–20] for further details. Sparse grids are based on a hierarchical (and
thus inherently incremental and adaptive) formulation of a one-dimensional
basis, which is then extended to the d-dimensional setting via a tensor product
approach.

As discussed in Sect. 2, we scale the stochastic parameter space Γ to
the unit-hypercube and restrict ourselves to piecewise d-linear functions fI :
[0, 1]d → R. They are defined on an equidistant mesh with N grid points and
mesh-width hlk := 2−lk in dimension k.

We denote l and i as multi-indices with level and index for each dimension,
|l|1 as the classical l1 norm for vectors, and comparison operators on multi-
indices component-wise. We can define grid points θl,i = (i12

l1 , . . . , id2
ld) ∈

[0, 1]d on a hierarchy of grids uniquely by the set Il of level-index tuples (l, i)
with

Il := {(l, i) : 1 ≤ ik < 2lk , ik odd, k = 1, . . . , d} ,
omitting even-indexed ones.

To obtain the space of piecewise d-linear functions, we first define one-
dimensional basis functions φl,i, depending on a level l and an index i, out of
the reference hat function φ(θ) := max(1− |θ|, 0) via translation and scaling
as φl,i(θ) := φ(2lθ−i), see Fig. 1 (left) for the basis functions up to level 3. We
then obtain d-dimensional basis functions φl,i as a product of the respective
one-dimensional ones,

φl,i(θ) :=

d∏

k=1

φlk,ik(θk) ,

which are centered at the grid points θl,i, see Fig. 1.
We then define hierarchical increment spaces Wl for which the grid points

are the Cartesian product of the one-dimensional ones on the respective one-
dimensional levels as Wl := span({φl,i : (l, i) ∈ Il}) and functions fIl(θ) ∈
Wl as a sum of basis functions weighted by hierarchical coefficients vl,i (so-
called surpluses),

fIl(θ) =
∑

(l,i)∈Il
vl,iφl,i(θ) . (17)
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Figure 1 (center) shows the grids of the two-dimensional hierarchical incre-
ments Wl up to level 3 in each dimension. Note that in each Wl, all basis
functions have supports with piecewise disjoint interiors.

.x1,1

.

.

x2,1 x2,3

x3,1 x3,3 x3,5 x3,7

1,1

2,1 2,3

3,1 3,3 3,5 3,7

l=1

l=3

l=2

l1=1 l1=2 l1=3 l1

l2=1

l2=2

l2=3

l2

Fig. 1 One-dimensional basis functions up to level 3 (left), and tableau of hierarchical
increments Wl up to level 3 in both dimensions (center). Leaving out the grayed-out Wl,
we obtain the sparse grid of level 3 (right).

The hierarchical representation now allows one to select only those sub-
spaces that contribute most to the overall solution. This can be done by an a
priori selection (see [4] for details). We then obtain a sparse grid space such
as

V (1)
n :=

⊕

|l|1≤n+d−1
Wl ,

which in this case is optimal with respect to both the L2-norm and the
maximum-norm for suitably smooth functions. In the example in Fig. 1, we
can neglect the gray Wl for n = 3, which leads to the regular (non adap-
tive) sparse grid in Fig. 1 (right). This reduces the number of collocation
or grid points significantly from O((2n)d) for full grids to O(2nnd−1) with
only slightly deteriorated accuracy if the function f under consideration is
sufficiently smooth, i.e., if the mixed second derivatives

∣∣D2f
∣∣ :=

∣∣∣ ∂2d

∂θ21 ···∂θ2d
f
∣∣∣

are bounded.
In general, sparse grids are more beneficial for higher-dimensional approxi-

mation problems. But the hierarchical approach is also beneficial when every
single collocation node is costly. Moreover, in their adaptive formulation,
sparse grids are often able to reduce the number of grid points even more,
especially when the function to be interpolated does not meet the smoothness
requirements. We present spatially adaptive sparse grids in the next section.
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3.2 Adaptive Refinement

We suggest to use adaptively refined grids to keep the number of collocation
nodes and thus costly simulation runs as small as possible, and to be able to
deal with sharp transitions in the quantity of interest. The main idea is to add
new collocation nodes where the local error with respect to some metric is
large. The optimal way would be to run the simulation for all new candidates
and select the one which contributes most with respect to the quantity one
wants to optimize. This is, of course, computationally not feasible in the
context of UQ. Therefore we exploit the hierarchical structure of the method
and use the hierarchical surpluses as an indicator for the local interpolation
error. We thus select the most promising nodes of the current grid and create
all their hierarchical descendants.

We propose three approaches to measure the contribution associated with
the collocation points, from which the first is designed to minimize the inter-
polation error, the second refines the grid due to a local variance measure,
and the third minimizes the error with respect to the expectation value. For
this purpose, let A ⊆ I be the admissible set of level index vectors (l, i) out of
all collocation nodes I, which are refinable, i.e. are leaf nodes in at least one
direction. With I we refer to an adaptively refined set of sparse grid colloca-
tion nodes and omit therefore the subscript used for regular (non-adaptive)
sparse grids in the previous section. Furthermore, note that we applied the
refinement criteria presented below individually and not sequentially.

1. Absolute surplus refinement: Let fI be the sparse grid function which in-
terpolates our solution. We use the coefficients vl,i as a local interpolation
error measure [19] and refine the grid according to the largest one,

max
(l,i)∈A

|vl,i| . (18)

2. Variance surplus refinement: As proposed in [12], we interpret the hi-
erarchical coefficients wl,i of the interpolant of the squared solution
f2I =

∑
(l,i)∈I wl,iφl,i as a measure for the local variance. By refining

the area where the local variance is large, we minimize the error in the
global variance of the solution. Thus, we refine the collocation node (l, i)
with the largest absolute coefficient

max
(l,i)∈A

|wl,i| . (19)

3. Expectation value refinement: The previous two are greedy criteria and
may get stuck in local extrema as they just consider hierarchical coef-
ficients for refinement. Moreover, since we want to assess a quadrature
problem one should consider the contribution of each refinable node to
it’s solution. Therefore, we propose a new refinement criterion, which re-
fines the grid according to the largest contribution of a collocation node
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to the expectation value, i.e.

max
(l,i)∈A

|E(fI\{(l,i)})− E(fI)| = max
(l,i)∈A

∫

Γ

|fI\{(l,i)}(θ)− fI(θ)|p(θ)dθ

= max
(l,i)∈A

∫

Γ

∣∣∣∣∣∣
∑

(̃l,ĩ)∈I\{(l,i)}

vl̃,ĩφl̃,ĩ(θ)−
∑

(̃l,ĩ)∈I

vl̃,̃iφl̃,̃i(θ)

∣∣∣∣∣∣
p(θ)dθ

= max
(l,i)∈A

|vl,i|
∫

Γ

φl,i(θ)p(θ)dθ . (20)

Observe that the integral
∫
Γ
φl,i(θ)p(θ)dθ reduces to 2−|l|1 if the random

variables are independent and uniformly distributed on the unit hyper-
cube. Thus, we refine the grid point (l, i) with maximum contribution

max
(l,i)∈A

|E(fI\{(l,i)})− E(fI)| = max
(l,i)∈A

|vl,i|2−|l|1 . (21)

This refinement criterion includes for each collocation node the volume
of the basis function’s support and describes therefore a local estimate
for the quadrature error.

The sensitivity analysis is a quadrature problem on a sparse grid. Therefore
we want to make two remarks here.

First, the sensitivity analysis described in Sect. 2.2 can be applied di-
rectly to sparse grids. Every ANOVA term but the constant one is a sparse
grid function, which is obtained by dimension-wise integration. For all one-
dimensional sub-grids, one just needs to sum over all hierarchical surpluses
multiplied by the volume of their respective one-dimensional basis functions.
The result is the coefficient of the lower-dimensional ANOVA term.

Second, Bungartz proposes in [3] to use balanced grids for quadrature.
This makes sure that every collocation node has none or both children in
every dimension, which balances the error cancellation. We therefore enforce
balanced grids for all the criteria by applying a balancing step after refine-
ment.

Finally, the complete ASGC pipeline for this task is shown in Fig. 2.

4 Peridynamics

The principle of this theory is that particles in a continuum interact with
surrounding particles in a finite distance by exchanging forces. Some of these
concepts are similar to concepts in molecular dynamics. We refer to the no-
tation, used in [25], to describe the Peridynamics.

Fig. 3 shows the body R of the continuum in a reference configuration
with particles P := {pi|i = 1, . . . ,m}. Each particle pi has an initial position
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Construct regular sparse grid

Simulation

Hierarchization

Select refinable collocation nodes

Maximum grid
size reached?

Refine sparse grid

simulation parameters

solutions

hierarchical coefficients

simulation
parameters

sparse grid function

Balancing

Sensitivity analyis
Moment estimation

Parameter description

Fig. 2 The ASGC pipeline for a forward propagation problem in UQ.

xi in the so-called reference configuration Ω and a neighborball Bδ(xi) with
the radius δ, in which the particles interact by forces. Literally speaking, the
particle does not “see” particles outside its own neighborball and is not in-
fluenced by them. Within the neighborball we consider the particles being
connected by virtual bonds which can break during the simulation due to
the displacement of the particles, i.e., when particle pj leaves the fixed neigh-
borball Bδ(xi). Computing the acceleration at position x in the reference
configuration Ω at time t yields the integral equation

%(x)ü(x, t) =

∫

Bδ(x)

g(x′, x,u(·, t))dx′ + b(x, t) . (22)

Eq. (22) contains the mass density %(x) of the material at position x in the
reference configuration Ω, u is the displacement vector field, b(x, t) denotes
the external force at position x at time t, and g is the so-called pairwise force
function.

Fig. 3 sketches the discretization in space by a collocation approach of the
continuum by P := {pi|i = 1, . . . ,m} particles on an equidistant lattice with
mesh-widths ∆x, ∆y, and ∆z. Each particle pi has a surrounding volume
Vi = ∆x ·∆y ·∆z. To discretize the equation of motion (22), the set

Fi = {j | ‖xj − xi‖ ≤ δ, j 6= i} , (23)
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Fig. 3 The body R of the continuum with particles P := {pi|i = 1, . . . ,m} at time
t = 0 (the reference configuration), particle pi at position xi with the neighborball Bδ(xi),
particle pj at position xj , the relative position xj − xi, and an exemplary surrounding
volume V = ∆x ·∆y ·∆z on an equidistant lattice with mesh-widths ∆x, ∆y, and ∆z.

is defined for each particle pi. The set Fi contains the indices of all particles,
which are in the neighborball Bδ(xi) of particle pi. This means that the
distance between particle pj and pi is less or equal than δ with respect to the
reference configuration Ω of the body.

We then obtain the semi-discrete Peridynamic equation,

%(xi)ü(xi, t) =
∑

j∈Fi
g(xj , xi,u(·, t))Ṽj + b(xi, t) , (24)

with %(xi) as the mass density function, g as the pairwise force function and
b the external force. The volume Ṽj is the scaled volume Vj of particle pj
with the linear dimensionless scaling function

ν(xj , xi) =





− 1
∆x‖xj − xi‖+

(
δ
∆x + 1

2

)
, δ − ∆x

2 ≤ ‖xj − xi‖ ≤ δ

1, ‖xj − xi‖ ≤ δ − ∆x
2

0, otherwise .
(25)

The scaling function ν is needed for particles pj which are bound to par-
ticle pi but are close to the neighborball Bδ(xi). A part of their volume is
outside the neighborball of particle pi. The influence of such a particle differs
from that of a particle, which lies completely within Bδ(xi). If the distance
‖xj − xi‖ = δ, then the volume Vj is simply scaled by 0.5, because nearly
one half of the volume is inside and one half of the volume is outside Bδ(xi).
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4.1 Material Model

Eq. (22) describes the interaction between the particles, but gives no explicit
information about the behavior of the simulated material. The modeling of
the material is hidden in the kernel function g. To simulate brittle material,
like ceramic or fused silica, the prototype microelastic brittle (PMB) material
model is used. In the PMB material model the assumption is made that the
pairwise force function for inner forces g depends only on the bond stretch s,
which is defined by

s(xj , xi,u(·, t)) :=
‖u(xj , t)− u(xi, t) + xj − xi‖ − ‖xj − xi‖

‖xj − xi‖
. (26)

The easiest way to model failure is to let bonds break when they are stretched
beyond a predefined constant value. The function s obviously attains positive
values if the bond is under tension. An isotropic material has the property
that it behaves identically in all directions.

Therefore the bond stretch is independent of the direction of xj − xi, and
the pairwise force function g in a PMB material model is defined as

g(xj , xi,u(·, t)) = h(xj , xi,u(·, t))
u(xj , t)− u(xi, t) + xj − xi
‖u(xj , t)− u(xi, t) + xj − xi‖

, (27)

where h is a linear scalar-valued function which implements the behavior of
the material and the decision if the bond is broken or “alive”. It is defined as

h(xj , xi,u(·, t)) =
{
c · s(xj , xi,u(·, t)) · µ(xj , xi,u(·, t)), ‖xj − xi‖ ≤ δ
0, ‖xj − xi‖ > δ ,

(28)
with c being the material dependent stiffness constant of the PMB material
model and s the bond stretch (26). The function µ is an history dependent,
scalar-valued function that models the inability of the material to “heal”
broken bonds. It is defined as

µ(xj , xi,u(·, t)) =

{
1 s(xj , xi,u(·, t)) < s00 − αsmin(t

′), ∀ 0 ≤ t′ ≤ t,
0 otherwise ,

(29)
where s00 is the critical stretch for bond failure in the material and smin(t

′) is
the minimal bond stretch up to t′, i.e. smin(t

′) = minxj−xi s(xj , xi,u(·, t′)).
Hence the stiffness constant c and the critical stretch for bond failure s00 are
material parameters in the PMB material model. However, the factor α is
usually not considered as an material parameter, but fixed at 0.25 [25].

Nevertheless, α influences the elasticity of the material: increasing α leads
to a higher critical stretch for the bonds and keeps them alive longer. This,
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consequently, affects the local damage, which is defined at position x at time
t as

ϕ(x,u(·, t)) = 1− 1

VBδ(x)

∫

Bδ(x)

µ(x′, x, u(·, t))dx′ . (30)

This yields to the total damage, our quantity of interest

ct =
1

m

m∑

i=1

ϕ(xi,u(·, t)) , (31)

where ϕ(xi,u(·, t)) is the relative number of bond failures for particle i at
time t.

To study the influence of the uncertain parameters α =: θ1, ∆x =: θ2
and K =: θ3, the force the indenter exerts to the plate, to the total damage
ct =: u, our response function, we use a specific model MPeridynamics =
(θ, p(θ), F (θ), u).

5 Simulation

For the simulation we use a common peridynamic example which is described
in [16, 17]. Figure 4 shows the CAD model of this experiment. The target
is a homogeneous plate of fused silica with a diameter of 0.074 m and a
height of 0.0025 m. The Peridynamics material parameters for fused silica are
s00 = 6.99 · 10−6 and c = 2.19 · 1022. The indenter is a sphere with diameter
0.01 m and impacts the cylinder with a directed velocity of v = 100 m/s
perpendicular to the surface of the target, see Fig. 5. The properties of the
uncertain parameters we used for the simulations are shown in Tab. 1.

The particles are arranged in an equidistant grid with the same spacing∆x
in all three dimension, a first parameter. Increasing ∆x leads to a reduction
of the particle density in the plate. A standard value for ∆x in practice
is 0.5 mm, which leads to 876, 435 particles in the simulation and a total
of 102, 865, 590 bonds. Decreasing ∆x a lot gets very fast computationally
unfeasible. Here, we consider ∆x ∈ [0.4, 0.6]. Note, ∆x defines as well the
radius δ := 3∆x of the neighborball Bδ(xi) of each particle. This means

Table 1 Range of the parameters that define the stochastic input space for the quantifi-
cation of uncertainties.

Parameter Min Max Unit Distribution Description

∆x 0.4 0.6 mm U(0.4, 0.6) grid spacing
α 0 1 - U(0, 1) model parameter for bond stretch failure
K 1012 1020 N/m2 U(12, 20) magnitude of force on indenter
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that by varying ∆x the properties of the material of the plate vary as well.
However, this interplay has yet not been quantified in peridynamic theory
and is part of ongoing research.

The influence of the second parameter α has not yet been studied in detail.
It is by definition restricted to the unit interval, but literature suggests to
use α = 0.25 as this leads to somehow realistic fracturing behavior. We want
to especially study its influence on the peridynamic method in detail and set
therefore the parameter range to [0, 1].

For the external force K the fix indent command is used with a sphere
that has a constant diameter of 0.01 m. The magnitude of the force K, which
is exerted by the indenter, variates from 1012 up to 1020 on a logarithmic
scale. The parameter range of it is chosen such that there is no damage in
the plate for low K, and that the plate gets destroyed almost completely for
large K, see Fig. 6.

Fig. 4 CAD model of the simulation configuration.

Fig. 5 Setting of the experiment.

Fig. 6 Simulation runs for K = 1012 (left), K = 1016 (center), and K = 1020 (right) at
the same time step t = 300, α = 0.25, and ∆x = 0.0005
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Altogether, these three parameters define the stochastic space Γ :=
[0.4, 0.6]× [0, 1]× [12, 20] for the UQ-setting. They are independent and uni-
formly distributed by definition, which reduces the transformation F accord-
ing to Sect. 2 to be a linear scaling. As the peridynamic simulation framework
we use LAMMPS [16], and SG++ [18] for sparse grids and UQ.

6 Numerical Results

We have studied our approach for both an analytical example and the peridy-
namic simulation setting. The analytical example is close to the peridynamic
simulation with just the first two parameters, but does not exhibit the “real-
world” issues as we will observe for the peridynamic simulations. It validates
the ASGC method and shows its faster convergence with respect to the ab-
solute error of the expectation value compared to vanilla Monte Carlo and
quasi-Monte Carlo. For comparisons to polynomial chaos methods we refer
to [12].

In the following numerical examples we use the mean squared error with
respect to M uniformly drawn Monte Carlo samples as an error indicator for
the interpolation quality of an interpolant fI with |I| = N collocation nodes,
i.e.

εI :=
1

M

M∑

i=1

(fI(θi)− u(θi))2 . (32)

The error in the expectation value is computed as

εE := |E(fI)− Er(u)| , (33)

where the reference value Er(u) is either the analytical solution of the quadra-
ture problem or obtained by the sample mean over all Monte Carlo observa-
tions, i.e.

Er(u) =
1

M

M∑

i=1

u(θi) . (34)

The respective reference value for the variance Vr(u) is computed accordingly.
We compared the convergence of the ASGC method with three other non-

intrusive forward propagation methods: Monte Carlo with uniformly drawn
samples, quasi-Monte Carlo with Sobol-sequences, and a full-grid interpolant
with hierarchical basis where the collocation nodes are equidistantly dis-
tributed over the complete stochastic space. With respect to Monte Carlo,
we generated a training set, from which we generated 20 Monte Carlo paths
by permutation. We estimated different expectation values for each path by
adding samples iteratively to it. By averaging over all paths we reduce the
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variance of Monte Carlo and get one sufficiently smooth Monte Carlo path,
which we used for comparison.

6.1 Analytical Example

We consider the function

u(θ1, θ2) = arctan(50(θ1 − 0.35)) +
π

2
+ 4θ32 + eθ1θ2−1 (35)

with two stochastic parameters θ1, θ2 ∼ U(0, 1). A graphical representation
is given in Fig. 7. The function u is designed to represent the characteristics

0.0
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0.0
0.2

0.4
0.6

0.8
1.0

2

4

6

8

θ1

θ2

u(θ1, θ2)

Fig. 7 3-dimensional plot of u(θ1, θ2).

of the peridynamic simulation just after the indenter has hit the plate. We
can think of the parameters θ1 and θ2 as representatives for 1 − α and ∆x.
Their functional dependencies are motivated as follows:

1. For high α the damage will be low, as the modeled material is rather
hard compared to the softer material for lower α. In-between we expect
a sharp transition at θ1 = 0.35, which we model with a shifted and steep
arctan function depending on θ1.
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2. The term depending just on θ2 is motivated by the fact that a particle-
based numerical simulation should converge to the true solution when
one increases the number of particles in the plate. Increasing the number
of particles means decreasing the initial distance ∆x between them. We
want to reach convergence with θ2 → 0. We expect to overestimate the
damage for too few particles and use therefore a cubic dependence on θ2.

3. The last term in u models an unknown dependency between the two
parameters.

We first construct 4 interpolants of u: the regular sparse grid interpolant,
and the adaptively refined sparse grid interpolants using the three refinement
strategies of Sect. 3.2. Considering the refinement strategies, we just refined
collocation nodes with a hierarchical surplus larger than ε := 10−10, per
iteration we refined min{10, N 5

100} of the collocation nodes with the largest
contribution and stopped if either there were no more points to be refined
or the upper limit of 3000 collocation nodes was reached. To estimate their
interpolation quality we used 106 Monte Carlo test samples. The error in
the expectation value is computed as the absolute difference to the up to
14 digits exact reference value Er(u) = 3.51449126644638. For the Monte
Carlo method we computed 214 training samples, and the same number of
quasi-Monte Carlo samples.

With respect to the mean squared interpolation error εI , as shown in
Fig. 8, we can observe that the full grid method converges as expected with
O(N−2). The regular sparse grid method shows almost the same error as
the full grid method on the same discretization level. And as it requires less
grid points per level, it converges therefore faster with an upper bound of
O(N−5 log(N)6) [4]. The adaptive methods converge with the same speed as
the regular sparse grid method. However, the absolute interpolation error is
three orders of magnitude lower compared to the regular sparse grid after
the fourth refinement iteration with 20 collocation nodes. The surplus and
the expectation value refinement approaches show similar behavior while the
variance-based approach is one order of magnitude worse.

For the absolute error in the expectation value estimation, Fig. 9, we
observe two important things: First, even though the interpolation error is
monotonically decreasing, the error in the expectation value is not. Between
the regular sparse grid of level 2 (25 collocation nodes) and level 3 (81) the
error grows and cannot be fully recovered by the grid of level 4. The rea-
son is cancellation of the integral around the steep transition in direction
of θ1. A level 2 grid is too coarse to represent the transition well, but due
to cancellation, the error in the expectation value is low. This cancellation
effect is destroyed on the next level because of a better approximation of
the steep transition on just one side, which is once more compensated on
the next level. This effect is known [3, 19] and a major problem for adap-
tively refined grids. To overcome it to some extent we introduced a balancing
step after refinement. But as we can see from the convergence plots it does
not solve the problem completely. However, the expectation value refinement
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Fig. 8 Interpolation error measured by the
mean squared error at 106 Monte Carlo test
samples. The black lines in the right upper
corner show the slopes for the regular sparse
grid and the full grid [4].
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Fig. 9 Absolute error of the estimated ex-
pectation value for different methods. The
black lines in the upper part of the figure
show the slopes for Monte Carlo and quasi-
Monte Carlo [5].

strategy reaches an accuracy of at least one order of magnitude higher than
the other grid-based methods. The Monte Carlo methods show a significantly
slower convergence. For 20 collocation nodes the accuracy of the grid-based
methods is already one and for 2000 collocation nodes four order of mag-
nitudes higher. The quasi-Monte Carlo method converges as expected with
O(N−1 log(N)d) [5], which is still significantly slower than the sparse grid
methods.

With respect to the global sensitivity values we computed main effects of
Sθ1 = 0.577934314364, Sθ2 = 0.421292846812, and Sθ1,θ2 = 0.0007728388246,
which sum up to 1. Hence, most of the variance of u is explained by the
arctan and the cubic term. The interactive term has almost no influence on
the variance.

Starting with these promising results we assess the peridynamic example
in the following section.

6.2 Peridynamic Example

For this example we use the simulation described in Sect. 5. We split the
analysis in two parts. First we assess the 2-dimensional example where we
vary α and ∆x. After that we add the magnitude of force K to the setting
and discuss the resulting 3-dimensional setting.

Both of the simulations are, of course, time dependent. Hence, we have
for each time step a different sparse grid interpolant. For the 2-dimensional
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setting we restrict ourselves to the study of the uncertainty at time step
t = 300 of the simulation, at which the variance is largest, see Fig. 10. The
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Fig. 10 The expectation value and the standard deviation over time, estimated using the
ASGC method.

Monte Carlo and the quasi-Monte Carlo training sets for comparison contain
2500 samples each.

We determine the reference expectation value Er(u) measured with M =
6000 Monte Carlo test samples as the exact value is unknown. The Monte
Carlo samples have been drawn uniformly according to the distribution of the
uncertainty in the parameters. However, the quality of this estimation clearly
affects the convergence with respect to the expectation value of the compared
methods. The evolution of the estimated reference expectation value Er(u) of
the Monte Carlo test set is shown in Fig. 11. We assume that the variance of u
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Fig. 11 The Monte Carlo simulation confidence interval obtained with the central limit
theorem with a confidence level of β = 0.1.
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exists and apply the central limit theorem to estimate an upper bound for the
error of Er(u) [5] for the most common confidence levels β ∈ {0.1, 0.05, 0.01}
given the empirical variance Vr(u) = 0.06304, i.e.,

|Er(u)− E(u)| ≤ Φ1− β2

√
Vr(u)
M

(36)

The resulting upper bounds are shown in Tab. 2. In these circumstances
we can not expect that the accuracy of expectation value estimates of the
competing methods to be reliable beyond 5.33 · 10−3.

Table 2 Upper bound for the error of Er(u) for different confidence levels, M = 6000 test
samples, which have an empirical variance of Vr(u) = 0.06304.

confidence level β = 0.1 β = 0.05 β = 0.01

upper error bound 5.33 · 10−3 6.35 · 10−3 8.35 · 10−3

With this in mind, we focus now on the convergence of the expectation
value at time step t = 300, shown in Fig. 12, and investigated the absolute
error in the expectation value, see Eq. (33).
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Fig. 12 Absolute error of the estimated ex-
pectation value for different methods. The
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the error of the reference value at a confi-
dence level of β = 0.1.
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Fig. 13 Interpolation error measured at t =
300 by the mean squared difference at 6000

Monte Carlo test samples (uniformly dis-
tributed). The error has a local minimum
between 300 and 1000 collocation nodes.

The error convergence of the expectation value estimation for most of the
sparse grid methods is, in contrast to the analytical example, similar to that
of the Monte Carlo results, while showing a lower error. The regular sparse
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grid approach performs even a bit better than the adaptively refined ones for
level 2, which is the same behavior as we have seen for the analytical example.
The results for the adaptive sparse grids show that the criterion for adaptive
refinement is very critical up to 200 collocation nodes. While the strategy
based on the optimization of the expectation value performs best, its greedy
counterparts, the absolute surplus and the variance surplus, cannot keep up
and get stuck in local features.

However, the sparse grid methods, independent of the refinement criteria,
reach a saturation point at about 110 collocation nodes. Runs with quasi-
Monte Carlo samples using Sobol sequences show the same behavior, though
reaching the trusted accuracy earlier at about 70 collocation nodes but oscil-
lating more around the saturation value until 200 nodes. The Monte Carlo
method reaches it with more than 1000 nodes, too. In contrast to the regular
sparse grid and the ASGC methods, the Monte Carlo methods keep oscillat-
ing in a range of two order of magnitudes around the saturation point even for
large numbers of collocation nodes without reducing the error. Furthermore,
the hierarchical representation of sparse grids provides the means to easily
detect the early saturation here, which is much more costly for the Monte
Carlo approaches due to the highly oscillating behavior.

The early saturation point is also visible in the convergence plot of the
interpolation error, see Fig. 13. We can observe a saturation for the error
convergence, now for around 300 collocation points, which is much too early
to be credited to numerical issues. Admittedly, we did not expect this be-
havior beforehand. The quantity of interest we study is the mean over the
damage of each particle, which we expected to be smooth. Furthermore, the
interpolation error should not increase spending more samples as it is the
case for all grid-based methods. These observations suggest noise or at least
high frequency oscillations in the quantity of interest. This would also ex-
plain why the Monte Carlo approaches stagnate with large oscillations, and
why the error is smallest for grids, which cover the parameter range more
regularly.

To support this suggestion we studied the hierarchical surpluses of the
regular sparse grid and the full grid, see Fig. 14. For sufficiently smooth func-
tions the hierarchical surpluses converge to zero with increasing level. This
behavior can be exploited to find non-smooth dependencies in individual di-
mensions [3]. In the peridynamic simulation the interquartile range of the
hierarchical surpluses decreases as expected up to level 6 for regular sparse
grids and up to level 5 for the full grid. However, the hierarchical surpluses
explode for higher levels and the interpolation error increases. These collo-
cation nodes with the largest hierarchical surpluses lie mostly on the border
of the domain and have a high level in at least one dimension. We investi-
gated the collocation node with the highest hierarchical surplus 0.6397 added
in the 8th iteration of the regular sparse grid. It is located at α = 1 and
∆x = 0.76953125. Its left and right neighbor in direction of ∆x are spatially
very close, i.e. 2−8, due to the full grid resolution of the sparse grid on the
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Fig. 14 Box plot of the hierarchical surpluses which are added when incrementing the
level for the regular sparse grid (left) and the full-grid (right). The gray boxes mark the
interquartile range, the black line within the boxes is the median, the so called “whiskers”
mark the range where surpluses are located, which do not differ more than 1.5 times the
interquartile range from the median. The surpluses, which lie outside of these ranges, are
marked as circles. Note the exploding values of the hierarchical surpluses for increment
iteration 7–8 for the regular sparse grid method, and on level 1 and 6 for the full grid
method.

border. The quantity of interest, the average damage on the plate, for the
left neighbor is approximately 0.2, for the right one is 0.21, while for the
node itself is roughly 0.85. This explains the large hierarchical surplus and
supports the statement of, at least, local high-frequency oscillations or, in
other words, instabilities for extreme parameter combinations. The expecta-
tion value estimation is not influenced by these oscillations as the support of
these high-level basis functions is rather small.

To investigate this behavior further, we show the adaptively refined sparse
grid with 207 collocation nodes using the expectation value refinement strat-
egy and the corresponding sparse grid function in Fig. 15 and 16, respectively.
In Fig. 15 we can observe that most of the collocation nodes are spent in the
regime α ∈ [0.25, 0.75]. In between there is a transitional phase where the
total damage decreases from 0.9 to 0.2. This is also the range in which most
oscillations or noise occur, see the test samples with the highest errors in
Fig. 17. The two steep slopes of the interpolant at about ∆x = 0.1 and 0.5
have been successfully identified and resolved by the refinement strategy.

We furthermore investigated the interpolant and the error for three non-
adaptive, regular sparse grids of level 1, 3 and 5, which are shown in Fig. 18.
In the top left, the piecewise linear interpolant for a sparse grid of level 1
which consists of 9 collocation nodes is shown. As the real function varies
much less in ∆x compared to α, it can be much better approximated by a
linear function in the ∆x direction. This is directly reflected by the region in
which most of the error occurs (bottom left).
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Fig. 15 An adaptively re-
fined sparse grid with expec-
tation value optimization re-
finement strategy. Color and
radius of the collocation nodes
represent the hierarchical co-
efficients. The corner nodes
have the highest contribution
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for the collocation nodes in
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Fig. 17 The plot rep-
resents the largest local
errors of the sparse grid
interpolant represented in
Fig. 16, using the 993 test
samples, which explain
53% of the interpolation
error εI . Plenty of samples
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The transition in the α-direction is far from linear in the lower third of
the parameter space. With a level 3 grid, however, the transition can now
be better represented (center column). There remain mainly two vertical
clusters, in the middle and on the left, and a horizontal region of large error.
These are exactly the bends that can be seen for a higher sampling resolution
on level 5 in the upper right plot. The remaining region of large error is spread
out throughout vast parts of the domain.

With respect to the peridynamic theory and the sensitivities we want to
study, several areas with different influence of ∆x for fixed α can be roughly
classified in Fig. 16. First, there are two regimes, ∆x ≈ 0.5 and ∆x ≈ 0.1,
where the total damage changes rapidly with varying ∆x. Increasing the par-
ticle density (reducing∆x) starting from∆x = 1, we observe similar behavior
of the damage until about ∆x = 0.5. One would expect that increasing the
density leads to a convergence of the damage behavior (propagation of the
displacement waves and cracks, amount of damage). This can be observed in
simulations for ∆x < 0.5, but fails for very high particle densities (∆x ≈ 0.1),
which is also reflected in simulations where the damage propagation changes
significantly for very high particle densities. The latter effect is yet to be
investigated further.

Considering α, there are two regions with less sensitivity on ∆x. For
0.1 ≤ α ≤ 0.35 and α ≥ 0.85, the sensitivity on the particle density is
very small, and the overall damage in the simulation during the penetration
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Fig. 18 Sparse grid functions for sparse grids with boundary points for levels 1, 3 and
5 (top), and the Monte Carlo test samples which cause at least 50% of the interpolation
error (978, 743 and 784, bottom).

of the indenter varies very little. Silling and Askari proposed in [25] to choose
α = 0.25, for which the sensitivity on ∆x is relatively small. In other regions
of α, the influence of the particle density is significant, leading to variations of
up to more than 15% of the total damage. The typical value α = 0.25 delivers
a relatively stable behavior of the damage with respect to ∆x. Considering
peridynamic simulations, this analysis enables us to derive some heuristics
about appropriate ranges of the particle density for chosen values of α.

The standard deviation of the solution was already shown in Fig. 10. It
reaches it’s maximum in the penetration phase of the projectile. In this phase
(0 < t < 400) 96–99% of the total variance is explained by the variance of α,
see the left part of Fig. 19. For t ≥ 400 the second-order interactions between
∆x and α become more important and explain up to 10% of the variance.
The main effect of ∆x has its maximum of 5% at time step 500. However, the
sensitivity values do not show the oscillating behavior of the solution. This
is not surprising, as they are comparatively small in the global context.

In the three-dimensional setting we observe similar behavior with respect
to the convergence. Concerning the sensitivity analysis, the dominant param-
eter is the force parameter K as its total effect is SK = 0.995580573617. The
total effects Sα = 0.0135270393259 and S∆x = 0.0021731614627 are rather
small in comparison. This is not surprising considering the choice of the pa-
rameters and their ranges. The force on the indenter must have the highest
influence. However, the main effect of α has an impact of 12.9% at time step
100 when the indenter hits the plate. After the impact the sensitivity with
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Fig. 19 Main effects and higher-order interactions of α, ∆ and K for the 2-dimensional
(left) and the three-dimensional (right) peridynamic UQ-setting.

respect to α reduces almost linearly until it vanishes after time step 800.
Therewith the main effect of α directly depicts the behavior of the indenter
itself. We want to recall that this values have been computed without ad-
ditional samples and without introducing additional numerical errors. This
is a great advantage over Monte Carlo since to obtain sensitivity values one
would need M(d+2) number of samples [22]. Every sample is costly in Peri-
dynamics and therefore it is unfeasible to do Monte Carlo based sensitivity
analysis.

7 Conclusions

In this paper we have shown the first application of adaptive sparse grids for
uncertainty quantification and sensitivity analysis in a peridynamic simula-
tion setting. We have simulated the impact of a high-speed projectile on a
ceramic plate using the PMB model of Peridynamics with two and three un-
certain model parameters. The first two parameters were α, which describes
the elasticity of the material, and ∆x, which models the particle density in
the plate. As a third parameter, we have considered the force K exerted by
the projectile.

With regard to the adaptive sparse grid collocation method, we have in-
troduced a new refinement criterion that is motivated by the UQ setting,
and we have shown that it can be very effective compared to traditional and
more greedy strategies. For the peridynamic setting, adaptivity did not pay
off as much in terms of the number of collocation nodes as we expected, as
it is known from other scenarios, and as the analytical example with simi-
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lar behavior suggested. This was due to unexpected noise in the quantity of
interest.

For both the 2- and the 3-dimensional simulation setting, the sparse grid
methods outperformed vanilla Monte Carlo in terms of moment estimation
by up to one order of magnitude for small numbers of collocation nodes.
For the analytical example, this holds for quasi-Monte Carlo based on Sobol-
sequences, too. For the peridynamic setting the accuracy was similar than
that of quasi-Monte Carlo while oscillating much less. This is promising for
UQ settings where the number of costly simulation runs has to be kept low.

In the simulation setting, we have observed an early saturation of the
error convergence for the expectation value, which is due to noise or highly
frequent oscillations in the transition phase between high and low damage on
the plate with respect to changes in the particle density. Our approach allows
us to identify parameter regions that show high sensitivity to the choice of
parameters, which means unstable behavior from a simulation point of view.
Furthermore, we have successfully computed reliable global sensitivity values
for the uncertain parameters using the unanchored ANOVA decomposition
method on sparse grids. We did this without increasing the number of samples
and without introducing additional numerical errors through binning.

In contrast to stochastic approaches, sparse grids have several advantages.
The hierarchical surpluses can be directly used to detect outliers or insta-
bilities in the simulation, to detect an early saturation, and for adaptive
refinement. Having constructed the sparse grid interpolant, it can be used to
compute moments and sensitivity values without introducing further errors.

Considering adaptivity, the effects of the different refinement strategies
have to be studied in more detail, especially for higher-dimensional settings.
To overcome the problem of non-smooth dependencies in the UQ context as
observed for peridynamic simulations, we propose to use a regression-based
reconstruction of the response function instead of interpolation which has
shown promising results in first tests. Another important point of future
work will be to extend the current scenario to a higher-dimensional setting.
We aim to add the bulk modulus and the critical stress intensity factor to
study material properties of solids. Especially from an engineering point of
view such a setting would be of major interest because the studied materials
do not need to exist. Moreover, connecting the material properties with the
initial mesh width would allow to study their relationship in detail.
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