
Wegelerstraße 6 • 53115 Bonn • Germany
phone +49 228 73-3427 • fax +49 228 73-7527

www.ins.uni-bonn.de

P. Diehl, M. A. Schweitzer

Efficient Neighbor Search for Particle Methods on
GPUs

INS Preprint No. 1405

June 2014

Efficient Neighbor Search for Particle
Methods on GPUs

Patrick Diehl1 and Marc Alexander Schweitzer2

Abstract
In this paper we present an efficient and general sorting-based approach

for the neighbor search on GPUs. Finding neighbors of a particle is a common
task in particle methods and has a significant impact on the overall compu-
tational effort–especially in dynamics simulations. We extend a space-filling
curve algorithm presented in [13] for its usage on GPUs with the parallel
computing model Compute Unified Device Architecture (CUDA). To eval-
uate our implementation, we consider the respective execution time of our
GPU search algorithm, for the most common assemblies of particles: a reg-
ular grid, uniformly distributed random points and cluster points in 2 and
3 dimensions. The measured computational time is compared with the the-
oretical time complexity of the extended algorithm and the computational
time of its reference single-core implementation. The presented results show
a speed up of factor of 4 comparing the GPU and CPU run times.

Key words: Neighbor search, GPU, meshfree methods and particle meth-
ods

1 Introduction

Particle methods are widely used today, especially in fluid dynamics. One of
the earliest particle methods, smoothed-particle hydrodynamics (SPH) [9],
was already developed in 1977 to simulate astrophysics problems and is ap-
plied today in many others areas of application. Other prominent examples of

Institute for Numerical Simulation, Wegelerstr. 6, 53115, Bonn, Germany
diehl@ins.uni-bonn.de · Institute for Numerical Simulation, Wegelerstr. 6, 53115,
Bonn, Germany schweitz@ins.uni-bonn.de

1

2 Patrick Diehl and Marc Alexander Schweitzer

particle methods, are e.g. Molecular Dynamics (MD) [10] and Peridynamics
(PD) [21], which are typically used in material science problems.

A common task in particle methods is the search for neighboring parti-
cles, since the discretization depends on the interactions of particles inside
an interaction sphere or so-called horizon. Finding the neighborhood of each
particle accounts for a large part of the overall computational time and due
to the often weak convergence properties of particle methods, very large par-
ticle clouds need to be employed in high fidelity simulations. To overcome
the computational complexity O(n2) of the naïve neighbor search, where we
compute distances ||xi − xj || of each particle xi to all other particles xj , a
number of approaches and numerical libraries exist.

One of the most renowned single-core libraries is ANN [14]. However, to
deal with very large particle clouds, necessary for accurate simulations results
today, the particle neighborhoods need to be computed in parallel. Here, also
a number of libraries exist for shared-memory [2, 15, 24] and distributed-
memory [13, 17] parallel computers. On Graphics Processing Units (GPU),
however, this task is essentially an open question. Some algorithms [7, 11]
and the “knn Cuda” [8] library is available for General Purpose Computation
on GPU(GGPU). This library supports GGPU using the Compute Unified
Device Architecture (CUDA), but is limited to 65535 particles, which renders
the library essentially useless in our setting, where we are concerned with
particle numbers of O(106).

In this paper we present a generic GPU accelerated nearest neighbor search
algorithm, which can be utilized in any particle method. Our algorithm rests
upon the approach presented in [13]. According to [13] the algorithm is de-
signed for better efficiency on multi-core machines, due to low memory usage
and good cache efficiency. For GGPU low memory usage and good cache
efficiency are important indicators of the performance on the GPU. These
benefits of the algorithm and its complexity O(dnp em log(m)), where n de-
notes the number of particles, p the number of threads and m the number of
neighbors, offers a good initial situation for an implementation on the GPU.

The remainder of this paper is structured as follows: In section 2 we shortly
introduce our reference particle method, peridynamics (PD), to describe the
problem setting considered in this study. Note however that our approach is
not restricted to PD simulations, but rather is applicable in general particle
methods. In section 3, we introduce the fundamental algorithm and discuss
challenges in its extension to GPUs. Then, we present the measured run time
of the GPU accelerated algorithm and compare these with the run time of the
CPU implementation of the algorithm and our GPU accelerated implementa-
tion in section 4. We conclude with the comparison of these implementations
and a suggestion for use cases of the different implementations in section 5.

Efficient Neighbor Search for Particle Methods on GPUs 3

2 Neighbors in particle methods

Figure 1 shows sketches of reference particle clouds considered in this paper.
Initial particle configurations in simulations are often uniformly distributed.
Thus, we consider a regular particle arrangement and a uniformly distributed,
but irregularly spaced particle cloud. These initial particle clouds are re-
distributed at later time steps of the simulation by the respective particle
method. Thus, we may encounter particle clouds with large variations in the
particle density. Throughout this paper we consider these reference cases, see
also Figure 1, for the evaluation of our search algorithm.

(a) X1 (b) X2

(c) X3 (d) X4

Fig. 1 Sketch of reference particle clouds: graded point cloud of a regular grid X1 (a),
points of the Halton sequence X2 (b), graded Halton sequence X3 (c) and uniformly
distributed random points X4 (d). Both point clouds were graded with g(x) = ||x||2x.

As a reference particle method we consider peridynamics (PD) [16,21,22],
which is a non-local generalization of continuum mechanics, with a focus on
discontinuous solutions as they arise in fracture mechanics. The principle of
this theory is, that particles interact with other particles at a finite distance
by exchanging forces – very similar to SPH and MD.

4 Patrick Diehl and Marc Alexander Schweitzer

We present briefly the essential ingredients of the simple bond-based PD,
which are important for the neighbor search algorithm. For further details
see [16, 21, 22]. The PD equation of motion for the displacement field u is
given by the integral equation

%(x)ü(x, t) =

∫
Bδ(x)

f(u(x′, t)− u(x, t), x′ − x)dx′ + b(x, t), (1)

with mass density %(x), f as the kernel function modeling the interaction of
particles x and x

′
in the initial reference configuration and b(x, t) denotes the

external force. Here Bδ(x) denotes the radial interaction zone, with the cut-off
radius δ for the internal forces, see Figure 2. As usual the deformed material
configuration and instantaneous particle cloud Y = {yi} are obtained by
yi(t) = xi+u(xi, t). Discretizing (1) in space by a collocation approach using

Fig. 2 Shows the reference configuration R of the particle cloud X := {xi|i = 1, . . . n}.
All particles inside the interaction zone Bδ(xi) of the particle xi are connect with bonds
to exchange forces.

the particle cloud X = {xi} yields

%(xi)ü(xi, t) =
∑
j∈Fi

f(u(xj , t)− u(xi, t), xj − xi)Ṽj + b(xi, t), (2)

with Fi = {j | ||xj − xi|| ≤ δ, i 6= j}, f as the kernel function and Vj as the
volume associated with the particle xj . We determine Fi in the reference
configuration R, see Figure 2. All particles inside Bδ(xi) are connected with
an bond to xi and they exchange forces through the kernel function f , which
depends on the stretch of these bonds. Ṽj denotes the scaled volume of particle
xj which is the intersection of Vj∩Bδ(xi). This set depends only on the initial
positions of the point cloud and can be precomputed.

To prevent particle contact and overlap an additional force term fs is
introduced in the discrete model [16]. An example for the force term fs is a
“hard” potential, e.g. the repulsive part of the Lenard-Jones potential. The
overall discrete PD model then reads as

Efficient Neighbor Search for Particle Methods on GPUs 5

%(xi)ü(xi, t) =
∑
j∈Fi

fb(u(xj , t)− u(xi, t), xj − xi)Ṽj (3)

+
∑
j∈Fsi,t

fs(u(xj , t)− u(xi, t), xj − xi)Vj + b(xi, t).

Thus, a second set of interacting particles

Fsi,t = {j | ||yj(t)− yi(t)|| ≤ min(0.9||xi − xj ||, 1.35ri), i 6= j} , (4)

which employs that the instantaneous particle positions y(t) = x + u(x, t)
needs to be computed. This set denotes all particles which are around the
particle xi with the radius ri, due to deformation with respect to the instan-
taneous configuration and is at time t = 0 the empty set.

This set depends on the current time and must be updated in every time
step during the simulation. Remember the computational complexity O(n2)
of the naïve approach, which would dominate the overall computational effort
of most particle methods. Thus, this step must be realized in an extremely
efficient way to allow for the simulation of large particle clouds.

3 Neighbor search

In this section we shortly review the fundamental algorithm presented in [13]
which will serve as the basis for our massive parallel implementation using
CUDA. The basic idea is to sort the points with respect to a space–filling
curve (SFC). This is a very successful and widely used approach for sorting
multidimensional data with respect to topological information [1, 3, 4, 12, 19,
20, 25]. Such a sorting strategy is essentially realized via the following four
steps (see also Algorithm 1).

1. Generating keys: The multidimensional point cloud X is transformed
with T : Rd → R, which is the inverse of a SFC. Thus, a one dimensional
key ki = T (xi) is assigned to every particle xi ∈ X.

2. Sorting keys: These one-dimensional keys ki can easily be sorted and
induce a respective ordering of the particles xi ∈ X.

3. Range scan: Moreover it is easy to identify “neighbor keys” in one dimen-
sion to obtain a good initial guess Ñ(xi) for the geometric neighbors in
multidimensions of a particular particle xi.

4. Geometrical validation: Finally, we need to check if all geometrical neigh-
bors xj ∈ X of particle xi ∈ X are already found.

In the following we review this approach in more detail and discuss its imple-
mentation on a GPU. In a SFC-method, a multidimensional point x ∈ Rd is
transformed to a (large) integer value T (x) = k ∈ N, which can then be easily
sorted. Thus, the transformation T : Rd → N is essentially influencing the

6 Patrick Diehl and Marc Alexander Schweitzer

Data: Morton order compare operator ≤M and Point cloud P
Result: m-nearest neighbors ∀pi ∈ P
P ← ParallelSort(P,≤M);
for pi ∈ P do

Ai ← nnm(pi, {pi−m, . . . , pi+m});
if pdrad(Ai)ei < pi+m then

u← i
else

I ← 1; while pdrad(Ai)ei < pi+2i do ++I; u← min(i+ 2I , n);
end
if p−drad(Ai)ei > pi−m then

l← i;
else

I ← 1; while p−drad(Ai)ei > pi−2i do ++I; l← min(i− 2I , n);
end
if l 6= u then

CSEARCH(pi, l, u);
end

end

Algorithm 1: Origin algorithm described in [13]. The steps highlighted in
blue are discussed in this section, because these need to be adapted for the
implementation on the GPU.

quality of the resulting ordering of the data. There exists many different space
filling curves, e.g. the Hilbert curve, the Peano curve, the Lebesgue curve,
also referred to as Morton order, which can in principle be employed. One
early application of the Morton order is efficient range searching of multidi-
mensional data in dynamically balanced trees [24]. Using the Morton order,
the transformation T : Rd → N is computationally cheap, but provides some
sub–optimal locality. To clarify this let us consider the generation and com-
parison of keys for the Morton order in the following.

x =

(
0
3

)
b=10

=

(
000
0111

)
b=2

T (x):R2→N−−−−−−−→ (000101)b=2 (5)

Equation (5) shows the generation of the key T (x) for the point x = (0, 3)T .
First the coordinates of the point in base 10 are converted to base 2 and then
mapped to the scalar key (x0y0x1y1x2y2)b=2 in base 2 by bit-interleaving.
Equation (6) shows the comparison of two points x1 = (0, 3)T and x2 =
(1, 2)T using the Morton order compare operator ≤M .

T (x1) = T

(
0
3

)
= (000101)b=2 ≤ (000110)b=2 = T

(
1
2

)
= T (x2) (6)

The computational effort of the comparison T (x1) ≤ T (x2) is small, since it
involves only 2 operations: the exclusive-or operation and the most signifi-

Efficient Neighbor Search for Particle Methods on GPUs 7

cant bit (MSB) operation delivers the result. Thus, the largest cost of the
computational work associated with the Morton order compare operator

x1 ≤M x2 ⇔ T (x1) ≤ T (x2) (7)

is associated with the respective computation of the respective keys T (x1)
and T (x2).

Applying the Morton order compare operator to the nodes of a uniform
4× 4 grid yields to the ordering depicted in Figure 3. From this plot we find

0 1 2 3

1

2

3

Fig. 3 The resulting space–filling curve with the Morton Order compare operator ≤M on
a uniform grid with 4× 4 points. Because of its shape, the curve is also called Z–Curve.

that we assign “adjacent” keys to the points (3, 1)T and (0, 2)T . Thus, these
points are “neighbors” with respect to the Morton order, but not with respect
to their euclidean distance. Other space-filling curves, e.g. the Hilbert curve,
may provide a better data locality but the computational costs associated
with the respective key generation or compare operator may be much larger.

We obtain an initial estimate of the m-nearest neighbors of a particle xi
by selecting m/2 particles xj with the largest keys kj = T (xj) ≤ ki = T (xi)
and m/2 particles with the smallest keys kj ≥ ki = T (xi) and collect these
keys in the set N̂(ki). This initial guess Ñ(xi) = {xj |T (xj) = kj , kj ∈ N̂(ki)}
then needs to be validated, i.e. we need to check if N̂(ki) in fact contains the
particles xj which are closest to xi.

To this end, the Morton order divides a d-dimensional unit cell recursively
in 2d sub cells. In each sub cell there exist two keys q = T (x) and p = T (x′),
so that all particles xl with q ≤ T (xl) < p are included in this sub cell. To
validate the initial guess Ñ(xi) , we have to check if the smallest key q and
the largest key p are included in N̂(ki). Otherwise the range of the set N̂(ki)
needs to be extended. Algorithm 2 describes the extension of the set using
some geometrical information about the sub cells. Note that we use υ = 4 as

8 Patrick Diehl and Marc Alexander Schweitzer

suggested in [13] and have not yet optimized this parameter for the GPU.

The described transformation T is so far suitable for point clouds with
integer values as coordinates. With the extensions, described in [5, 13], the
Morton Order ≤M compare operator handles floating point values and mul-
tidimensional input data with d > 3.

Thus, in summary we need to provide the operations to generate the
keys and handle recursiveness in Algorithm 2 on the GPU. To provide the
exclusive-or operation and the most significant bit (MSB) operation, because
on a GPU, these two operation are not available in the standard library, we
need to define a new data type for the IEEE 754 representation of float and
double, to access the exponent and the mantissa of the respective double or
floating values of the particles.

Another issue for the implementation on a GPU are the recursive calls of
Algorithm 2, because the programming model on the GPU does not support
“real” recursiveness in kernel functions. The kernel function is launched on
the device with a specified grid of blocks. Then, a device function is called,
recursively, within a kernel function. Thus, some recursive calls need to be
implemented with the help of device functions and the grid of blocks need
to be adjusted, because of the Single Instruction Multiple Threads (SIMT)
architecture, depending on the employed GPU.

CSearch(point pi, int l, int h) ;
if h-l < υ then

Ai = nnm(pi, {pi−m, . . . , pi−m}) ;
return

end
b = (h+l)/2 ;
Ai = nnm(pi, Ai ∪ pb) ;
if dist(pi,box(pl,ph)) ≥ rad(Ai) then

return
end
if pi < pb then

CSearch(pi, l, b-1);

if pb < p
dr(Ai)e
i then

CSearch(pi, b+1, h);
else

CSearch(pi, b+1, h);
end
if p−dr(Ai)ei < pb then

CSearch(pi, l, b-1);
end

end

Algorithm 2: Function CSearch(. . .) [13] extends the range of the set
{xi−ck, . . . , xi+ck} with using some geometrical information about the gen-
erated sub cubes.

Efficient Neighbor Search for Particle Methods on GPUs 9

3.1 Parallel Sorting

With the increasing popularity of GGPU many standard sorting algorithms
are available for GPU [18, 23]. The library Thrust [26], a powerful library of
parallel algorithms and data structures, was extended with CUDA support
and is now integrated in the CUDA SDK. The Thrust library contains the
data structure vector, to store the multidimensional input data, in our case
the particle locations xj , and an optimized parallel merge sort algorithm,
which utilizes a user defined StrictWeakOrdering comp which we realize with
the help of ≤M , see Equation (7).

4 Results and Discussion

To evaluate the implementation of the extended algorithm the measured com-
putational time is compared with its theoretical complexity and with the run
time of the C++ Library STANN [6], the reference implementation of our base
algorithm [13].

In all presented experiments we choose m = 168 (if not stated otherwise)
for 3D particle clouds which corresponds to the number of geometric neigh-
bors xj of a particle xi, i.e. ||xj − xi|| ≤ δ = 3a, on a regular lattice with the
lattice constant a. For 2D points clouds we choose m = 24, respectively. The
number of threads p per processor is determined by the available hardware.
The Nvidia K20c we used throughout this paper contains a Kepler GK110 G
chip set. The specification of the chip set describes 13 multiprocessors each
with 2048 threads. In a optimal case all 13 multiprocessor with all threads
can be executed in parallel. Thus, we use p = 13 · 2048 = 26624.

First we compare the measured run times with the theoretical complexity
O(dnp em log(m)) [13], where n denotes the number of particles of the point
cloud X, p the number of threads andm the number of neighbors. In Figure 4
we consider particle clouds X from n = 512 up to n = 221, which corresponds
to the memory limit of the GPU. From the depicted plots we can observe
that our implementation shows the theoretical complexity with respect to n
for most of the considered point clouds X: nodes of a regular grid X0, nodes
of a graded grid X1 (Figure 1(a)), Halton points X2 (Figure 1(b)), graded
Halton points X3 (Figure 1(c)) and uniformly distributed random points X4

(Figure 1(d)). For X0-X3 we find the expected linear asymptotic behavior.
Only or the uniformly distributed random points X4 we see, the influence
of the recursive calls in Algorithm 2 in the serrations of the computational
time up to n = 220. For small particle clouds X4 the particle density around
some particles is low and to find all m neighbors the range of the initial guess
Ñ(xi) needs to be extended.

10 Patrick Diehl and Marc Alexander Schweitzer

0

2

4

6

8

10

12

0 220 221

co
m
p
u
ta
ti
on

ti
m
e
[s
]

n

Runtime vs. complexity [n] (3D double precision)

O(c · n)
X0
X1
X2
X3
X4

Fig. 4 Comparison of the theoretical complexity O(c·n) with the measured computational
time on the GPU.

CPU GPU
Compiler g++ (4.6.3) nvcc (release 5.5, V5.5.0)

Compiler options -o3 -arch=sm_35

Hardware Intel Xeon 5500 (1 Core) NVIDIA Tesla K20c

Table 1 Build configuration of the libraries for the CPU and GPU.

To confirm this assertion we consider m = 24 up to m = 830 for the point
clouds X1-X4 with n = 9706 and n = 77672 in three dimensions. From these
plots given in Figure 5 we see for X1-X3 we attain the anticipated complexity
with a very small constant. Only for X4 we can again observe some oscilla-
tions. A more robust results is obtained with extending the initial estimate to
the range [−m,m] instead of [−m2 , m2]. For the point cloud X4 we see again
that the range need to be extended.

Secondly the extended algorithm for the GPU is compared with the
STANN library in the version 0.74 which does not support any parallel im-
plementation for finding the m-nearest neighbors. The configurations shown
in Table 1 were used to build the libraries. For the computation time on the
GPU we measured the full work flow. This means that the measured compu-
tation time includes the copying process of the point cloud to the device and
copying the resulting list of the m–nearest neighbors back to the host.
The neighborhoods for all point clouds X0, X1, X2, X3 and X4 were com-
puted in two dimensions (m = 24) and three dimensions (m = 168) with
double precision (double) floating point values. The computational time for

Efficient Neighbor Search for Particle Methods on GPUs 11

0

50

100

150

200

250

300

100 200 300 400 500 600 700 800

co
m
p
u
ta
ti
on

ti
m
e
[s
]

m

Runtime vs. complexity [m] (3D double precision)

O(cm logm)
X0 n = 77672
X1 n = 77672
X2 n = 77672
X3 n = 77672
X4 n = 77672
X0 n = 9706
X1 n = 9706
X2 n = 9706
X3 n = 9706
X4 n = 9706

Fig. 5 Comparison of the theoretical complexity O(cm logm) with the measured compu-
tational time on the GPU.

the STANN library was measured on 1 core of an Intel Xeon 5500 CPU. The
extended algorithm was executed on a Nvidia Tesla K20c GPU. The number
of multidimensional input points is limited by the memory of the GPU, since
our implementation of the presented algorithm does currently not support
streaming techniques and thereby only single-GPU computing.

Figure 6 shows the measured computational time for the nodes of a regular
grid X0 with n from 512 up to n = 221. The depicted plots show that the
search on the GPU is substantially faster than on a single core of the CPU.
Moreover, we find that the computational time in two and three dimensions
on the GPU are essentially identical which indicates that the additional op-
erations in three dimensions come for free.

Note however, that for this perfectly homogeneous node arrangement the
results are not very representative for the general case since here essentially
no (expensive) geometric validation of the initial guess is necessary. Thus
the initial guess Ñ(xi) contains all geometrical neighbors with respect to the
euclidean distance.

The plots in Figure 7 shows that for the graded nodes of a regular grid X
the asymptotic behavior holds1. The difference between the computational
time between the dimensions should be 24 log 24

168 log 168 ≈ 0.088, excluding the

1 Storing the graded nodes of the two dimensional regular grid in row-major order in a
thrust vector leads to some issues in the costs of the Merge sort algorithm. To avoid this
the nodes need to be stored randomized.

12 Patrick Diehl and Marc Alexander Schweitzer

0

2

4

6

8

10

12

14

16

18

0 220 221

T
im

e
[s
]

n [GPU K20 , CPU Xeon 5500]

Finding the nearest neighbors in X0 (double precision)

GPU (3D)
GPU (2D)
CPU (3D)
CPU (2D)

Fig. 6 Computational time for finding the nearest neighbor in the nodes of regular point
grid X0.

0

2

4

6

8

10

12

14

16

18

0 220 221

ti
m
e
[s
]

n [GPU K20 , CPU Xeon 5500]

Finding nearest neighbors in X1 (double precision)

GPU (3D)
CPU (3D)
GPU (2D)
CPU (2D)

Fig. 7 Computational time for finding the nearest neighbor in a graded point cloud of a
regular grid X1 1(a).

Efficient Neighbor Search for Particle Methods on GPUs 13

0

5

10

15

20

25

30

35

40

45

0 220 221

ti
m
e
[s
]

n [GPU K20 , CPU Xeon 5500]

Finding nearest neighbors in X2 (double precision)

GPU (3D)
CPU (3D)
GPU (2D)
CPU (2D)

Fig. 8 Computational time for finding the nearest neighbor in the Halton sequence
X2 1(b).

computational costs for the euclidean distance in three dimensions. On the
GPU we differ between the dimensions with the factor 0.01 in X2.

Figure 8 shows the computational time for the Halton sequence X2. Here
we see a difference of 2.18 in the computational time. Here we see the sub-
optimal locality of the curve for particles which are close in respect to the
Morton order but not with respect to their euclidean distances.

Figure 9 shows the measured time for the graded Halton sequence X3.
Here we see a factor 0.77 between the computational time in two and three
dimensions which is a factor of 10 away of the theoretical value.

Figure 10 shows the results for the point cloud X4. Here we see artifacts
of the differing particle density up to particle clouds with n > 221. Here
the factor between the dimensions is 0.52. In this point cloud we see that
the computational time depends on the particle density. Particle clouds with
differing density has a enormous effect on the computational time.

5 Conclusion

We presented an efficient neighbor search for particle clouds on GPUs. As
a reference particle method we considered peridynamics. We used the basic
idea of sorting points with respect to a space-filling curve as a massive paral-
lel implementation on a GPU and described briefly the four steps essentially

14 Patrick Diehl and Marc Alexander Schweitzer

0

5

10

15

20

25

30

35

40

45

50

0 220 221

ti
m
e
[s
]

n [GPU K20 , CPU Xeon 5500]

Finding nearest neighbors in X3 (double precision)

GPU (3D)
CPU (3D)
GPU (2D)
CPU (2D)

Fig. 9 Computational time for finding the nearest neighbor graded Halton sequence
X3 1(c).

0

10

20

30

40

50

60

0 220 221

T
im

e
[s
]

n [GPU K20 , CPU Xeon 5500]

Finding nearest neighbors in X4 (double precision)

GPU (3D)
CPU (3D)
GPU (2D)
CPU (2D)

Fig. 10 Computational time for finding the nearest neighbor in a uniformly distributed
random points X4 1(d).

Efficient Neighbor Search for Particle Methods on GPUs 15

realizing such a sorting strategy. We validated our implementation against
the theoretical complexity of the algorithm and compared the measured run
times with the performance of the library STANN. We are in general faster by
a factor of 4. Only for very small particle clouds X4 we need more computa-
tional time. Using distributed points clouds, with a differing particle density,
influence the computational time enormous, because of the extension of the
range of the initial guess Ñ(xi). The costs for copying the multidimensional
point cloud X to the device and copying the resulting m neighbors back to
the host does not influences the overall computational time. Thus, the library
is suitable to update the neighborhood every time step in dynamic particle
clouds.

To make the algorithm applicable in uncertainty quantification the di-
mension d of the point should be enlarged to d > 3. Advanced techniques,
like data streaming or Multi-GPU computation, bypass the restriction of the
memory of the GPU.

References

1. Srinivas Aluru and Fatih E. Sevilgen, Parallel domain decomposition and load bal-
ancing using space-filling curves, in Proceedings of the 4th IEEE Conference on High
Performance Computing, 1997, pp. 230–235.

2. Sunil Arya, David M. Mount, Nathan S. Netanyahu, Ruth Silverman, and Angela Y.
Wu, An Optimal Algortihm for Approximate Nearest Neighbor Searching in Fixed
Dimensions, Fifth Annual ACM-SIAM Symposium on Discrete Algorithms 5 (1994),
573–582.

3. Michael Bader, Space-filling curves – an introduction with applications in scientific
computing, Springer Berlin Heidelberg, 2013.

4. C. Böhm, S Berchtold, and A. D. Keim, Searching in high-dimensional spaces: Index
strucutres for improving the performance of multimedia databases, ACM Computing
Sruveys, 33, 2001, pp. 322–373.

5. Timothy M. Chan, A minimalist’s implementation of an approximate nearest neighbor
algorithm in fixed dimensions, https://cs.uwaterloo.ca/ tmchan/sss.ps, May 2006.

6. Michael Connor and Piyush Kumar, Stann, https://sites.google.com/a/compgeom.com
/stann/.

7. Ali Dashti, Ivan Komarov, and Roshan M. D’Souza, Efficient Computation of k-
Nearest Neighbour Graphs for Large High-Dimensional Data Sets on GPU Clusters,
plosone.org, 2013.

8. Vincent Garcia, Eric Debreuve, and Michael Barlaud, kNN CUDA,
http://vincentfpgarcia.github.io/kNN-CUDA/.

9. R.A. Gingold and J.J. Monaghan, Smoothed particle hydrodynamics: theory and ap-
plication to non-spherical stars, Mon. Not. R. Astron. Soc. 181 (1977), 375–389.

10. M. Griebel, S. Knapek, and G. Zumbusch, Numerical Simulation in Molecular Dy-
namics, Springer, Berlin, Heidelberg, 2007.

11. Pedro Leite, JoãoMarcelo Teixeira, Thiago Farias, Bernardo Reis, Veronica Teichrieb,
and Judith Kelner, Nearest neighbor searches on the gpu, International Journal of
Parallel Programming 40 (2012), no. 3, 313–330 (English).

16 Patrick Diehl and Marc Alexander Schweitzer

12. J. Mellor-Crummey, D. Whalley, and K Kennedy, Improving memory hierarchy perfor-
mance fir irregular applications using data and computation reorderings, International
Journal of Parallel Programming, vol. 29, June 2001, pp. 217–247.

13. Michael Connor and Piyush Kumar, Fast construction of k-Nearest Neighbor Graphs
for Point Clouds, IEEE Transactions on Visualization and Computer Graphics, 2009.

14. David M. Mount and Sunil Arya, ANN: A Library for Approximate Nearest Neighbor
Searching, http://www.cs.umd.edu/ mount/ANN/.

15. S.A. Nene and S.K Nayar, A simple algorithm for nearest neighbor search in high di-
mensions, IEEE Transactions on Pattern Analysis and Machine Intelligence 19 (1997),
989 – 1003.

16. Michael L. Parks, Richard B. Lehoucq, Steven J. Plimpton, and Stewart A. Silling, Im-
plementing peridynamics within a molecular dynamics code, Computer Physics Com-
munications (EL, ed.), vol. 179, June 2008, pp. 777–783.

17. S. Plimpton, Fast Parallel Algorithms for Short-Range Molecular Dynamics, Journal
of Computational Physics, 117, 1995, pp. 1–19.

18. Nadathur Satish, Mark Harris, and Michael Garland, Designing Efficient Sorting Algo-
rithms for Manycore GPUs, IEEE International Symposium in Parallel & Distributed
Processing, 2009, pp. 1–10.

19. M. A. Schweitzer, A Parallel Multilevel Partition of Unity Method for Elliptic Par-
tial Differential Equations, Lecture Notes in Computational Science and Engineering,
vol. 29, Springer, 2003.

20. Yaroslav D. Sergeyev, Roman G. Strongin, and Daniela Lera, Introduction to global
optimization exploiting space-filling curves, Springer, 2013.

21. S. A. Silling, Reformulation of Elasticity Theory for Discontinuties and Long-Range
Forces, Sandia Report SAND98-2176, Sandia National Laboratories, 1998.

22. S. A. Silling and E. Askari, A meshfree method based on the peridynamic model of
solid mechanics, Computer & Structures, vol. 83, 2005, pp. 1526–1535.

23. Erik Sintorn and Ulf Assarsson, Fast parallel GPU-sorting using a hybrid algorithm,
Journal of Parallel and Distributed Computing, vol. 68, October 2008.

24. H. Tropf and H. Herzog, Multidimensional Range Search in Dynamically Balanced
Trees, Angewandte Informatik (Applied Informatics), Vieweg Verlag, February 1981,
pp. 71–77.

25. M. S. Warren and J. K. Salmon, A parallel hashed oct-tree n-body algorithm, Proceed-
ings of the 1993 ACM/IEEE Conference on Supercomputing (New York, NY, USA),
Supercomputing ’93, ACM, 1993, pp. 12–21.

26. Wen-mei W., GPU Computing Gems Emerald Edition (Applications of GPU Com-
puting Series), 1 ed., Morgan Kaufmann, February 2011.

