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Abstract

We introduce a dimension adaptive sparse grid combination tech-
nique for the machine learning problems of classification and regres-
sion. A function over a d-dimensional space, which assumedly de-
scribes the relationship between the features and the response vari-
able, is reconstructed using a linear combination of partial functions
that possibly depend only on a subset of all features. The partial
functions are adaptively chosen during the computational procedure.
This approach (approximately) identifies the anova-decomposition
of the underlying problem. Experiments on synthetic data, where the
structure is known, show the advantages of a dimension adaptive com-
bination technique in run time behaviour, approximation errors, and
interpretability.
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1 Introduction

Sparse grids are the basis for efficient high dimensional function approxi-
mation. This approach is based on a multiscale tensor product basis where
basis functions of small importance are omitted. In the form of the combi-
nation technique, sparse grids have successfully been applied to the machine
learning problems of classification and regression using a regularisation net-
work approach [3]. Here the problem is discretised and solved on a chosen
sequence of anisotropic grids with uniform mesh sizes in each coordinate di-
rection. The sparse grid solution is then obtained from the solutions on these
different grids by linear combination.

Although sparse grids cope with the curse of dimensionality to some ex-
tent the approach still has high dependence on d, the number of dimensions.
But typically the importance of and variance within a dimension vary in real
machine learning applications which can exploited by different mesh resolu-
tions for each feature. The degree of interaction between different dimensions
also varies; this makes the usage of all dimensions in each partial grid unnec-
essary.

A large reduction in complexity in regard to d is obtained if one uses a
hierarchy starting with a constant together with so-called generalised sparse
grids to exploit the above observations. A dimension adaptive algorithm to
construct a generalised sparse grid is necessary; one now chooses the grids
used in the combination technique during the computation instead of defining
them a priori. The aim is to attain function representations for f(x), where
x denotes the d-dimensional vector (x1, . . . , xd), of the anova type

f(x) =
∑

{j1,...,jq}⊂{1,...,d}
cj1,...,jqfj1,...,jq(xj1 , . . . , xjq),

where each fj1,...,jq(xj1 , . . . , xjq) depends only on a subset of size q of the
dimensions and may have different refinement levels for each dimension. One
especially assumes here that q < d, so that the computational complexity
depends only on the so-called superposition (or effective) dimension q. Such
an approach was first introduced in a proof-of-concept way for the case of
interpolation [6]; here only function evaluations are needed. This was adapted
for numerical quadrature and data structures for the efficient handling of the
index sets are available [4]. We extend this approach to the case of regularised
least squares regression.

In the following we first describe the problem of regression and the ap-
proach of regularised least squares. We introduce the dimension adaptive
combination technique for this problem and show results on machine learn-
ing benchmarks.
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2 Regularised least squares regression

In the following we treat regression as a regularisation problem and use sparse
grids to discretise the feature space. We consider a dataset of the form

S = {(xi, yi) ∈ Rd ×R}M
i=1,

and assume that the relation between these data can be described by an
unknown function f which belongs to some space V of functions defined
over Rd. The aim is now to recover the function f from the given data as
accurately as possible. To get a well-posed, uniquely solvable problem we
use regularisation theory and impose additional smoothness constraints on
the solution of the approximation problem. In our approach this results in
the variational problem

fV = argmin
f∈V

R(f) = argmin
f∈V

1

M

M∑
i=1

(f(xi)− yi)
2 + λ||∇f ||2, (1)

where we use the squared error to enforce closeness of f to the data; the
second term, called the regularisation term, enforces smoothness of f , and
the regularisation parameter λ balances these two terms. Other error mea-
surements or regularisation terms are also suitable.

We now restrict the problem to a finite dimensional subspace VN ⊂ V .
Using basis functions {ϕj}N

j=1 of the function space VN we represent f as

f =
N∑

j=1

αjϕj(x). (2)

Note that the restriction to a suitably chosen finite-dimensional subspace
involves additional regularisation (regularisation by discretisation) which de-
pends on the choice of VN .

After inserting (2) into (1) and differentiating with respect to the αj we
get the linear equation system [3]

(λC + B · BT )α = By. (3)

Here C has entries Cj,k = M · (∇ϕj,∇ϕk)L2 , j, k = 1, . . . , N , and Bj,i =
ϕj(xi), i = 1, . . . , M ; j = 1, . . . , N . The vector y contains the data labels yi.

3 Dimension adaptive combination technique

For the discretisation of the function space V we use a generalisation of the
sparse grid combination technique [5]. We discretise and solve the prob-
lem (1), after rescaling the data to [0, 1]d, on a suitable sequence of small
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anisotropic grids Ωl = Ωl1,...,ld , that is grids which have different but uniform
mesh sizes in each coordinate direction with ht = 2−lt , t = 1, . . . , d. The grid
points are numbered using the multi-index j, jt = 0, . . . , 2lt .

A finite element approach with piecewise d-linear functions

φl,j(x) :=
d∏

t=1

φlt,jt(xt), jt = 0, . . . , 2lt (4)

on each grid Ωl, where the one-dimensional basis functions φl,j(x) are the
so-called ‘hat’ functions

φl,j(x) =

{
1− |x/hl − j|, x ∈ [(j − 1)hl, (j + 1)hl]
0, otherwise,

(5)

now results in the discrete function space Vl := span{φl,j, jt = 0, . . . , 2lt , t =
1, . . . , d} on grid Ωl. A function fl ∈ Vl is represented as

fl(x) =
2l1∑

j1=0

· · ·
2ld∑

jd=0

αl,jφl,j(x).

Each d-linear function φl,j(x) is one at the grid point j and zero at all other
points of grid Ωl.

In the original combination technique [5] one considers all grids Ωl with

|l|1 := l1 + · · ·+ ld = n− q, q = 0, . . . , d− 1, lt ≥ 0 (6)

and uses combination coefficients to add up the partial solutions fl to get
the solution f c

n on the corresponding sparse grid in the following way

f c
n =

d−1∑
q=0

(−1)q

(
d− 1

l

) ∑

|l|1=n−q

fl. (7)

Hegland generalised the choice of grids used in the combination tech-
nique [6]. Instead of using grids which are below a hyperplane after (6) one
considers a generalised index set I which fulfils the following admissibility
condition [4]

k ∈ I and j ≤ k ⇒ j ∈ I. (8)

In Figure 1 we show examples in two dimensions for such index sets,
starting with the grids used by the original combination technique (6), then
with some anisotropy, and finally with the extreme case where no real cou-
pling between the dimensions exists. In higher dimensions such effects are
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Figure 1: Index sets, where each cell corresponds to an index (i1, i2), for the
original combination technique (6) and two generalised cases; the employed
indices are in grey.

more common and easily achieved and allow a much greater flexibility in the
choice of grids than observed in the simple two-dimensional case.

Most important is the choice of a suitable index set I. One might be
able to use external knowledge of the properties and the interactions of the
dimensions which would allow an a priori choice of the index set. In general
the algorithm should choose the grids automatically in a dimension adaptive
way during the actual computation. We therefore start with the smallest
grid with index 0 = (0, . . . , 0) (i.e., I = {0}). Step-by-step we add additional
indices such that:

(i) the new index set remains admissible;

(ii) the partial result corresponding to the additional index provides a large
contribution to the solution of the problem.

To check the admissibility of a new index it is necessary to consider the
outer layer of the indices under consideration. We denote by A the set of
active indices which consists of elements of I, whose forward neighbours have
not been considered till now. The set O of old indices contains all other
elements of I (i.e., O := I\A). An index can only be added to the active set A
if all backward neighbours are in the old index set O. We denote here by the
backward neighbourhood of an index k the set {k − et, 1 ≤ t ≤ d}; the set
{k + et, 1 ≤ t ≤ d} is called the forward neighbourhood.

In Figure 2 a few adaptation steps for the two dimensional case are pre-
sented. We assume there that, according to suitable error indicators, the
indices (1,1), (2,1), (0,3) and (3,1) are chosen in succession. In each case
their forward neighbours are considered: in the first step both are admissible
and added to A; in the second and third only one each; and in the last step
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Figure 2: A few steps of the dimension adaptive algorithm. Active indices
i ∈ A are shown in dark grey and old indices i ∈ O in light grey. The chosen
active index (with the largest error indicator) is shown striped. The arrows
indicate the admissible forward neighbours which are added to A.

no forward neighbour is admissible since their backward neighbours are not
in O.

For the second point we need to measure the contribution of a grid to
the overall solution. As an error indicator we compute for each newly added
grid the reduction in the functional (1) in comparison to the current solution.
Note that although the expression (1) has to be computed in the additive
space of all partial grids, its value can still be computed by using just the
partial grids [2]. For the data dependent part one computes for each partial
function its value on a given data point and adds these using the combination
coefficients. The smoothing term of the discrete Laplacian can be expressed
as a weighted sum over expressions of the form 〈∇fi,∇fj〉 which can be
computed on-the-fly via a grid which includes both Ωi and Ωj.

We use a greedy approach for the dimension adaptive grid choice; the
algorithm decides, depending on the error indicator (and possibly other val-
ues such as the complexity of the computation for a partial solution), which
grid provides the highest benefit. This grid is added to the index set and its
forward neighbourhood is searched for further candidates. This procedure
is followed until a suitable global stopping criterion is reached; currently we
stop when the reduction of the residual falls under a given threshold. There
is hope that an efficient dimension adaptive algorithm builds an optimal in-
dex set in a sense similar to best N -term-approximation. It would be an
interesting research topic to look into an underlying theory which could pro-
vide results over the quality of the error estimation and a suitable adaptive
procedure including bounds in regard to the real error, as is common in
the numerical treatment of partial differential equations by adaptive finite
elements.

If the computation of the error indicator for k ∈ A involves the partial
solution of the corresponding grid one could directly use this result for the
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Algorithm 1: The dimension adaptive algorithm

compute partial problem for index 0
A := {0} . active index set

O := ∅ . old index set

set ε0 to not fulfil global stopping criterion . for startup

while global stopping criterion not fulfilled do
choose i ∈ A with largest εi. index with largest contribution

O := O ∪ {i}
A := A\{i}
for t = 1, . . . , d do . look at all neighbours of i

j := i + et

if j − el ∈ O for all l = 1, . . . , d then . j admissible ?
A := A ∪ {j}
compute partial problem for index j

end

end
for all k ∈ A do

(re-)compute local error indicator εk . uses opticom

end

end

overall solution, as is the case for numerical integration [4]. But in our
experiments for regularised regression the algorithm behaved better when we
only used the indices of O for the combination technique.

This adaptive computational procedure is sketched in Algorithm 1.
Computing the sparse grid solution now involves solving the partial prob-

lems and combining them after (7). When one generalises the original combi-
nation technique with dimensional adaptivity the resulting coefficients, which
are related to the “inclusion/exclusion” principle from combinatorics, depend
only on the grids involved [6, 7]. But this ansatz leads to instabilities in our
machine learning application [2, 7]. Instead we use so-called optimal com-
bination coefficients cl; these now also depend on the function to be repre-
sented. They are optimal in the sense that the sum of the partial functions
minimises the error against the actual sparse grid solution computed directly
in the joint function space. We use the scalar product

〈u, v〉RLS =
1

M

M∑
i=1

u(xi)v(xi) + λ〈∇u,∇v〉2

corresponding to the variational problem (1) and compute the optimal coef-
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ficients according to




〈f1, f1〉RLS · · · 〈f1, fk〉RLS

〈f2, f1〉RLS · · · 〈f2, fk〉RLS
...

. . .
...

〈fk, f1〉RLS · · · 〈fk, fk〉RLS







c1

c2
...
ck


 =




‖f1‖2
RLS

‖f2‖2
RLS
...

‖fk‖2
RLS




using a suitable numbering of the fl [2, 7].
The regression function is now built via

f c
n(x) :=

∑

l∈O

clfl(x) (9)

using the above optimal coefficients.
A further generalisation of the original combination technique consists

in the use of a slightly different level hierarchy. Let us formally define the
one-dimensional basis functions φ̃l,j(x) as

φ̃−1,0 := 1,

φ̃0,0 := φ0,1,

φ̃l,j := φl,j for l ≥ 1,

with φl,j as in (5). Note that it holds φ0,0 = φ̃−1,0 − φ̃0,0. We build the
tensor product between a constant in one dimension and a (d − 1)-linear
function; the resulting d-dimensional function is still (d − 1)-linear, so we
gain no additional degrees of freedom. But formally introducing a level −1,
and using this as coarsest level in the dimension adaptive procedure, allows
us to build a combined function in the anova-style, in other words each
partial function possibly depends only on a subset of all features.

Using this hierarchy we now start in Algorithm 1 with the constant func-
tion of grid Ω−1 (i.e., start with A := {−1}) and look in the first step at
all grids which are linear in only one dimension, that is all Ω−1+ej

with
j = 1, . . . , d. After one of these one-dimensional grids is chosen in the adap-
tive step the algorithm starts to branch out to grids which can involve two
dimensions. Since each partial grid is now much smaller it allows us to treat
even higher dimensional problems than before. Furthermore, the informa-
tion about which dimensions are refined and in which combination allows an
interpretation of the combined solution by the end-user, for example one can
easily see which input dimensions are significant.
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Table 1: Results for the synthetic Friedman data sets using the dimension
adaptive combination technique (below) in comparison with the optimised
combination technique, svm, and mars. Given is the mean squared error
(mse) on the test data, the timings are in seconds.

opticom svm mars
level mse time mse time mse time

Friedman1 3 1.340 2872 1.148 23604 1.205 10.4
Friedman2 (×103) 3 15.46 35 15.40 3151 15.77 16.9
Friedman3 (×10−3) 4 13.33 89 27.47 16862 14.45 3.6

dimension adaptive combination technique
tol. mse time max. level per dim of i ∈ A

Friedman1 0.001 1.035 68.1 3 3 4 1 1 0 0 0 0 0
Friedman2 (×103) 0.0025 15.39 12.2 2 1 3 1
Friedman3 (×10−3) 0.0001 11.57 35.9 2 4 6 0

4 Numerical experiments

For our experiments we use the well known synthetic data sets Friedman1
to Friedman3 [1]. We randomly generate 100,000 data points for training
and another 10,000 for testing, where the positions are uniformly distributed
over the domain. For the optimised combination technique (opticom) and
the dimension adaptive combination technique (using optimal combination
coefficients and starting with constants in each dimension) we employ a 2:1
split of the data for the parameter fitting of λ and n or the threshold of the
stopping criterion, respectively. We compare with ε-support vector regression
(svm) as a state-of-art method using a Gaussian-rbf-kernel and perform a
grid search over its parameters on a small subset of the training data. As
a simple and fast baseline method we use multivariate adaptive regression
splines (mars) with the highest degree of interaction useful. Results are
shown in Table 1, we compare the mean squared error (mse) on the test
data.

First let us look at the four dimensional data sets Friedman2 and Fried-
man3 which have data in 0 ≤ x1 ≤ 100, 40π ≤ x2 ≤ 560π, 0 ≤ x3 ≤ 1,
and 1 ≤ x4 ≤ 11. The outputs for Friedman2 are created according to the
formula y = (x2

1+(x2x3−1/(x2x4))
2)0.5+e where e is the normal distribution

N(0, 125). We achieve with the new method more or less the same results as
the other algorithms, but reduce the time in comparison with the opticom
approach resulting in the fastest method for this data set. For Friedman3
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one has y = atan((x2x3 − 1/(x2x4))/x1) + e where e is N(0, 0.1). Here we
significantly improve, both in run time and accuracy, relative to the opticom
approach, which before gave the best accuracy of the three compared rou-
tines. Note that here the fourth dimension is not refined and therefore can
be viewed as not significant although it is used in the generating formula.

The data set Friedman1 is generated with y = 10 sin(πx1x2) + 20(x3 −
0.5)2 + 10x4 + 5x5 + e where e is N(0, 1) and all ten variables, including five
as noise, are in [0, 1]d. On this benchmark the standard opticom method
is negatively affected by the five noise variables. The dimension adaptive
approach perfectly captures the behaviour of the data, all five noise vari-
ables are considered not significant, the fourth and fifth are refined once and
therefore recognised as having a linear contribution, the first two variables
are refined jointly and the third variable is highly refined. The run time
for the dimension adaptive approach is about 40 times smaller than that
for opticom; furthermore we achieve the best testing accuracy with our new
method.

5 Conclusions

The dimension adaptive combination technique for regression is an approach
to achieve good approximation results in high dimensions with small compu-
tational effort. It results in a non-linear function describing the relationship
between predictor and response variables and (approximately) identifies the
anova-decomposition of the problem. We currently employ a simple greedy
approach in the adaptive procedure. More sophisticated adaptation strate-
gies and error estimators are worthwhile investigating, especially in regard
to an underlying theory which could provide robustness and efficiency of the
approach similar to the numerical solution of partial differential equations
with adaptive finite elements. Note that the concept of weighted Sobolev
spaces H(ka) with weights of finite order [8] could be used as a theoretical
framework in this context.

The dimension adaptive procedure allows an interpretation of the results,
especially important for real data. By examining which dimensions are not
refined, one can pick out features which are not significant for the prediction.
Studying which dimensions are chosen for concurrent refinement on partial
grids gives information on which features interact in some way. Depending on
the application from which the data stems, this can be fruitful information.
Investigations on real life data in more than 15 dimensions (the limit of the
normal combination technique) are being planned.
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