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Summary. We present a dimension adaptive sparse grid combination technique
for the machine learning problem of regression. A function over a d-dimensional
space, which assumedly describes the relationship between the features and the
response variable, is reconstructed using a linear combination of partial functions;
these may depend only on a subset of all features. The partial functions, which are
piecewise multilinear, are adaptively chosen during the computational procedure.
This approach (approximately) identifies the anova-decomposition of the underlying
problem. We introduce two new localized criteria, one inspired by residual estimators
based on a hierarchical subspace decomposition, for the dimension adaptive grid
choice and investigate their performance on real data.

1 Introduction

Sparse grids are an approach for efficient high dimensional function approx-
imation. They were introduced under this name for the numerical solution
of partial differential equations, although the underlying idea was used first
for numerical integration. These approaches are based on a multiscale tensor
product basis where basis functions of small importance are omitted. In the
form of the combination technique, sparse grids have successfully been ap-
plied to the machine learning problems of classification and regression using
a regularization network approach [2, 3]. Here the problem is discretized and
solved on an a priori chosen sequence of anisotropic grids with uniform mesh
sizes in each coordinate direction. The sparse grid solution is then obtained
from the solutions on these different grids by linear combination. This results
in a non-linear function, while the computational complexity scales only lin-
ear in the number of data. The main difference in comparison to many other
machine learning approaches is the choice of basis functions whose anchoring
position is independent of the locations of the data.

Although sparse grids cope with the curse of dimensionality to some extent
the approach still has high dependence on d, the number of dimensions. But
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typically the importance of and variance within a dimension vary in real ma-
chine learning applications. This can exploited by different mesh resolutions
for each feature. The degree of interaction between different dimensions also
varies; the usage of all dimensions in each partial grid might be unnecessary.

In this spirit a so-called dimension adaptive algorithm [5, 7] to construct a
generalized sparse grid was recently used for regularized least squares regres-
sion [4]; the idea is to choose the grids for the combination technique during
the computation instead of defining them a priori. The aim is to attain a
function representation for f(x), with x = (x1, . . . , xd), of the anova type

f(x) =
∑

{j1,...,jq}⊂{1,...,d}

cj1,...,jqfj1,...,jq (xj1 , . . . , xjq ),

where each fj1,...,jq (xj1 , . . . , xjq ) depends only on a subset of size q of the
dimensions and may have different refinement levels for each dimension. The
computational complexity now depends only on the so-called superposition
(or effective) dimension q.

Originally the overall error reduction was used as an adaptation criteria [4],
but the computational effort of this criteria grows quite significantly with the
number of grids. In this paper we introduce and investigate two different
error indicators which are localized in some sense since one considers the
improvement using subsets of all grids employed, and whose computational
effort grows less with the number of partial grids.

In the following we describe the regularized regression approach, present
the dimension adaptive combination technique, introduce the two new error
indicators, and show results on machine learning benchmarks.

2 Dimension adaptive combination technique for

regression

We assume that the relation between predictor and response variables can
be described by an (unknown) function f which belongs to some space V of
functions defined over the range of the predictor variables. To get a well-posed,
uniquely solvable problem we use regularization theory and impose additional
smoothness constraints on the solution of the approximation problem. In our
regularized least squares approach this results in the variational problem

argmin
f∈V

1

M

M∑

i=1

(f(xi)− yi)
2 + λ||∇f ||2, (1)

for a given a dataset S = {(xi, yi) ∈ [0, 1]d × R}Mi=1. Note that using the
following semi-definite bilinear form

〈u, v〉rls :=
1

M

M∑

i=1

u(xi)v(xi) + λ〈∇u,∇v〉2
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corresponding to (1), the Galerkin equations are

〈f, g〉rls =
1

M

M∑

i=1

g(xi)yi, (2)

which hold for the solution f of (1) and all g ∈ V .
The discretization to a finite dimensional subspace VN of the function

space V is achieved by the sparse grid combination technique [6]. To get a
solution defined on a sparse grid we discretize and solve the problem (1) on
a suitable sequence of small anisotropic grids Ωl = Ωl1,...,ld , characterized by
an index set I, i.e. l ∈ I. These are grids which have different but uniform
mesh sizes ht in each coordinate direction with ht = 2−lt , t = 1, . . . , d. The
grid points are numbered using the multi-index j, jt = 0, . . . , 2lt and have the
coordinate jt · ht in dimension t. A finite element approach with piecewise
d-linear functions φl,j(x) :=

∏d

t=1 φlt,jt(xt), jt = 0, . . . , 2lt on each grid

Ωl, where the one-dimensional basis functions φl,j(x) are the hat functions

φl,j(x) =

{
1− |x/hl − j|, x ∈ [(j − 1)hl, (j + 1)hl]
0, otherwise,

now gives the function space Vl := span{φl,j , jt = 0, . . . , 2lt , t = 1, . . . , d}.
The sparse grid combination technique solution fI for a given index set I

is now built via [2, 3, 6, 8]

fI(x) :=
∑

l∈I

clfl(x), (3)

where fI is an element of a discrete function space defined on a sparse grid, the
fl are partial solutions and the cl are corresponding combination coefficients.

A general choice of grids was introduced in [7]. One considers an index set
I which only needs to fulfil the following admissibility condition [5]

k ∈ I and j ≤ k ⇒ j ∈ I, (4)

an index k can only belong to the index set I if all smaller grids j belong to
it. The combination coefficients, which are related to the inclusion/exclusion
principle from combinatorics, depend only on the index set [7, 8].

In the original combination technique one considers an a priori chosen
index set I consisting of all l with |l|1 := l1 + · · · + ld ≤ n. This results in a
sparse grid of refinement level n [2, 3, 6]. The size of an Ωl is here of order
O(2d·h−1

n ), while the total number of points used in the combination technique
is of order O(2d · h−1

n · log(h−1
n )d−1), the same as for a sparse grid.

The solution obtained this way is the same as the sparse grid solution
if the projections into partial spaces commute, or at least of the same ap-
proximation order O(h2

n · log(h−1
n )d−1) (if the function has bounded mixed

second derivatives) if a series expansion of the error of the form f − fl =
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Fig. 1. A few steps of the dimension adaptive algorithm. Active indices i ∈ A are
shown in dark grey and old indices i ∈ O in light grey. The chosen active index (with
the largest error indicator) is shown striped. The arrows indicate the admissible
forward neighbours which are added to A. The indexes go from −1 to 6.

∑d

i=1

∑
j1,...,jm⊂1,...,d cj1,...,jm(hj1 , . . . , hjm) ·h2

j1
· . . . ·h2

jm
exists [6, 8]. But for

the machine learning application this does not hold [8]. Instead combination
coefficients which also depend on the function to be represented are employed.
They are optimal in the sense that the sum of the partial functions minimizes
the error against the sparse grid solution computed directly in the joint func-
tion space [3, 8], this approach is valid for the machine learning setting as
well. Note that the approximation properties of the optimized combination
technique in relation to a sparse grid are currently unknown.

In any case we employ in (3) the optimal coefficients computed according
to 



〈f1, f1〉rls · · · 〈f1, fk〉rls
〈f2, f1〉rls · · · 〈f2, fk〉rls

...
. . .

...
〈fk, f1〉rls · · · 〈fk, fk〉rls







c1
c2
...
ck


 =




‖f1‖2rls
‖f2‖2rls

...
‖fk‖2rls


 , (5)

using a suitable numbering of the fl [3, 8].
A generalization of the original sparse grid combination technique consists

in the use of a slightly different level hierarchy. Let us formally define the one-
dimensional basis functions φ̃l,j(x) as φ̃−1,0 := 1, φ̃0,0 := φ0,1, and φ̃l,j :=

φl,j for l ≥ 1, with φl,j as before. Note that it holds φ0,0 = φ̃−1,0 − φ̃0,0.
If one builds the tensor product between a constant in one dimension and

a (d − 1)-linear function the resulting d-dimensional function is still (d − 1)-
linear, one gains no additional degrees of freedom. But formally introducing a
level −1, and using this as coarsest level in our adaptive procedure described
in the next section, will allow us to build a combined function in the anova-
style, in other words each partial function might only depend on a subset of
all features. The size of each grid Ωl is now of order O(2q(|l|1+(d−q)), where
q = #{li|li ≥ 0}.

2.1 Adaptive grid choice

Most important is the choice of a suitable index set I. One might be able to use
external knowledge of the properties and the interactions of the dimensions
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which would allow an a priori choice of the index set. In general the algorithm
should choose the grids automatically in a dimension adaptive way during
the actual computation. We therefore start with the smallest grid with index
−1 = (−1, . . . ,−1) (i.e., I = {−1}) which is just a constant function. Step-by-
step we add additional indices such that:

(i) the new index set remains admissible;
(ii) the grid corresponding to the index provides a large reduction in (1).

During each adaptation step one has an outer layer of indices under con-
sideration for inclusion in the sequence, the set of active indices denoted by
A. Furthermore there is the set O = I\A of old indices which already belong
to the sequence of grids, O needs to fulfil (4). The backward neighbourhood
of an index k is defined as the set B(k) := {k − et, 1 ≤ t ≤ d}; the set
F(k) := {k + et, 1 ≤ t ≤ d} is the forward neighbourhood, with et the unit
vector in the t-th dimension. To limit the search range we restrict the active
set A to only include indices whose backward neighbours are in the old index
set O, in other words for k ∈ A it holds that O ∪ k fulfils (4). Note that A

cannot be empty since, at least, an index of the form (−1, . . . , k, . . . ,−1) for
each coordinate direction is active.

In Figure 1 a few adaptation steps for the two dimensional case are pre-
sented. We assume here that the indices (0, 0), (1, 0), (−1, 2) and (2, 0) are
chosen in succession. In each case their forward neighbours are considered: in
the first step both are admissible and added to A; in the second and third
step both are admissible, but one is not used since the backward neighbour
is not in O; in the last step one forward neighbour is not admissible and the
other is not used since the backward neighbour is not in O.

In [4] for each candidate index k from A one computes ‖fO∪{k}−fO‖rls to
measure the contribution of this grid to the overall solution, i.e., the reduction
in the functional (1) for the solution using the set O ∪ {k} in comparison
to the current solution using O. Although ‖ · ‖rls has to be computed in
the additive space of all partial grids, its value can still be computed by
using just the partial grids [3]. For the data dependent part one computes
for each partial function its value on a given data point and adds these using
the combination coefficients. The smoothing term of the discrete Laplacian
can be expressed as a weighted sum over expressions of the form 〈∇fi,∇fj〉
which can be computed on-the-fly via a grid which includes both Ωi and
Ωj [3]. This approach was shown to recover the anova-decomposition for

synthetic problems [4] but can be computationally expensive. This is due to
the necessary recomputation of the error indicators for all remaining grids in
A after a grid is added to O since the reference solution for the error indicator
of the candidate grids changes in each adaptation step. If this recomputation
does not take place the adaptive procedure tends to converge to less suitable
solution or stops too early.
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2.2 Localized adaptation criteria

In this paper we investigate two different error indicators, which are localized
in some sense. First, we propose to use ‖f{k} − fB(k)‖rls, the difference in the
functional (1) between the solution of the candidate grid k added to A and
the optimized combination solution of its backward neighbourhood B(k).

This value will not change during the computation since the backward
neighbourhood B(k) will not change; candidate grids can only be added to
A if all backward neighbours are already in I. This is a big reduction in the
computational complexity in comparison to the original approach since no
recomputation is necessary. But it is also has the potential for a good error
indicator. The combined solution from its backward neighbours lives in the
same (small) discrete function space as the candidate grid. If the solution
on the new candidate grid shows no improvement in regard to the combined
solution from its backward neighbours no large gain in the representation of
the overall function can be expected.

Second, we propose an error indicator inspired by the residual estimator
based on a hierarchical subspace decomposition used for the finite element
approach, see e.g. [1]. For a candidate grid k we consider the set O \B(k), i.e.
the old indices without the indices from the backward neighbourhood of k.
The solution fO\B(k) for this index set is now computed according to (3) using
the optimal coefficients (5) and considered as the reference solution. As an
error indicator we new compare the difference in the solutions of the residual
problems

〈eI, fl〉rls =
1

M

M∑

i=1

fl(xi)yi − 〈fO\B(k), fl〉rls ∀l ∈ I

for I = B(k) and I = B(k) ∪ k, that is we use ‖eB(k) − eB(k)∪k‖rls as an
error indicator. It measures the additional improvement k can provide for
the solution of the overall problem. This error indicator is localized, since it
measures the improvement of k compared against its backward neighbourhood
B(k), but it also takes the global problem into account since we compute the
residual solutions, we measure the improvement in addition to the solution
provided by fO\B(k).

Solving for eI amounts to nothing else as computing the optimal combina-
tion coefficients for the modified right hand side

L(g) :=
1

M

M∑

i=1

g(xi)yi − 〈fO\B(k), g〉rls,

using a suitable numbering of I. Then eI =
∑

l∈I
clfl(x) and one can compute

the error indicator ‖eB(k) − eB(k)∪k‖rls.
Both these error indicators can be viewed as a local criteria since only

the difference between the candidate grid and its backward neighbours are
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Algorithm 1: The dimension adaptive algorithm

compute partial problem for index −1
A := {−1} ⊲ active index set

O := ∅ ⊲ old index set

while stopping criterion not fulfilled do

choose k ∈ A with largest εk ⊲ largest indicator

O := O ∪ {k}
A := A\{k}
for t = 1, . . . , d do ⊲ look at neighbours of k

j := k + et
if j − el ∈ O∀ l = 1, . . . , d then ⊲ admissible

A := A ∪ {j}

compute partial problem for index j

compute local error indicator εj

considered, we call them local change and local residual, respectively.
In comparison the original indicator, where all grids from O are taken into ac-
count, can be regarded as a global error indicator, we call it global change

in the following.
The overall procedure is sketched in Figure 1. Given the sets O and A

the algorithm uses a greedy approach for the dimension adaptive grid choice.
Depending on one of the above error indicators (and possibly other values
such as the complexity of the computation for a partial solution) the grid in
A which provides the highest benefit is chosen and added to the index set O.
Its forward neighbourhood is searched for admissible grids to be added to A,
for these the solution and error indicator are computed. Then the outer loop
restarts and the procedure continues until a suitable global stopping criterion
is reached; typically when the reduction of the residual falls under a given
threshold. Note that for global change additionally the error indicators for
all j ∈ A need to be recomputed after an index k is added to O.

Note that we start in the algorithm with the constant function of grid
Ω−1 (i.e., A := {−1}) and in the first step look at all grids which are linear
in only one dimension, that is all Ω−1+e

j
with j = 1, . . . , d. Once two of these

one-dimensional grids were chosen in successive adaptive steps, the algorithm
starts to branch out to grids which can involve two dimensions and later more.
Since each partial grid is small and depends in its complexity not on d, the
total number of dimensions, but q, the number of dimensions which are not
treated as constant, it allows us to treat higher dimensional problems than
before with the original combination technique. Furthermore, the information
about which dimensions are refined and in which combinations attributes are
used allows an interpretation of the combined solution, for example one can
easily see which input dimensions are significant.
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Table 1. Results for several real life data sets using the dimension adaptive combi-
nation technique with the three different error criteria. Given is the mean squared
error (mse) on the test data (with order of magnitude in the subscript), the used
tolerance for stopping criteria, the number of grids in I, and the run times in seconds.

global change local change local residual

tol mse grid time tol mse grid time tol mse grid time

census 55 7.857 5477 2796 2.57 6.617 5215 1413 2.55 4.367 9883 2463
cpu activity 1

−2 4.96 291 15 5
−1 5.27 2251 260 5

−2 5.30 1674 83
elevators 1

−9 6.37
−6 450 157 1

−8 8.48
−6 998 110 1

−10 5.98
−6 2674 1011

helicopter 5
−9 5.69

−5 1584 22565 7.5
−5 2.71

−4 909 8550 5
−10 3.74

−5 3573 6636
pole 1

−2 7.951 1785 7946 1
−1 9.881 3133 13690 5

−3 7.291 5016 2500

3 Numerical experiments

The following experiments were done on a machine with an Opteron (2.6 GHz)

CPU. We measure the mean squared error mse = 1
M

∑M

i=1(f(xi) − yi)
2 and

the normalized root mean square error nrmse =
√
mse/(max yi).

Note that for global change after each addition of an index k to O

we only recompute the criteria for the 25% of the indices k ∈ A with the
currently largest criteria, the values for all indices in A are only recomputed
after every 10th add, this is to reduce the computational effort.

We consider several real life data sets:

1. Census housing1 consists of 22,784 instances with 121 attributes.
2. Computer activity2 consists of 8,192 instances in 21 dimensions.
3. Elevators2 consists of 16,599 instances in 18 dimensions.
4. Helicopter flight project3, with 13 attributes and 44,000 instances.
5. Pole2 consists of 15,000 instances in 26 dimensions.

For the following experiments 90% of each data set are used for training and
10% for evaluation. We further use a 2:1 split of the training data to tune the
parameters λ and the stopping criteria, i.e. learning on 2 parts and evaluating
on 1 part. With the λ and tolerance resulting in the lowest mse we then
compute on all training data and evaluate on the before unseen test data.
These are the results given in Table 1.

The first observation is that the two local criteria involve more grids, but
the used run time does not increase as much, which was the aim. The global
change is good for data which do not need many grids for the representation.
Overall the best performance achieved the local residual criteria, while the
local change criteria produced the worst results. Just using the localized

1 Available at http://www.cs.toronto.edu/~delve/data/census-house
2 Available at http://www.liaad.up.pt/~ltorgo/Regression/
3 from Ng et.al., Autonomous inverted helicopter flight via reinforcement learning
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Table 2. Comparison of our results using the global change and local residual

criteria against results from [9], time is in seconds. The mse results of the local

residual adaptive criteria scale accordingly to nrmse.

svr global change local residual

nrmse time nrmse time nrmse time

census > 0.015 > 400 0.017 2796 0.013 2463
cpu activity > 0.04 > 100 0.022 15 0.023 83
elevators > 0.08 > 200 0.043 157 0.042 1011
pole > 0.09 > 100 0.089 7946 0.085 2500

information from the comparison of the solution from grid k against the one
from its backward neighbours B(k) often results in the use of grids with large
refinement per dimension and therefore large computational effort. The lack
of information from the other grids in O also leads to early overfitting.

The run time depends on the number of grids, but also on the kind of grids
which are being used. Grids which depend on a small number of dimensions
but are highly refined, i.e. for a few but large entries in k, are worse in this
regard than grids which depend on more dimensions, but only have a small
level, i.e. many, but small entries in k.

For the considered data sets all dimensions were used at least in one grid,
although the number of grids can depend largely for the different attributes.
We observed up to 5 non-constant dimensions per grid. How often a dimension
is used and the size of the error indicators for these grids are information about
the importance of attributes and can be derived from the final results. If this
information is worthwhile in practise needs to be investigated on real life data
sets together with specialists from the application area.

Only on the helicopter data set with just 13 dimensions the non-adaptive
optimized combination technique [3] could be used. It achieves a mse of 3.26−5

in 18,280 seconds using level 3. Level 4 was not finished after 5 days.
Finally a comparison with results using cvr, a special form of support

vector regression, is given in Table 2. For all data sets our method achieves
better results, but might need more, in one case quite significant, run time.
On the other hand, using a smaller tolerance a somewhat worse result could
be achieved by our approach in less time. Note that for a larger synthetic data
set a quite significant run time advantage of the dimension adaptive approach
in comparison to cvr can be observed [3, 9].

4 Conclusions and Outlook

The dimension adaptive combination technique for regression shows good re-
sults in high dimensions and breaks the curse of dimensionality of grid based
approaches. It gives a non-linear function describing the relationship between
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predictor and response variables and (approximately) identifies the anova-
decomposition. Of the three different refinement criteria, global change is
best suited for applications using a small number of partial grids, otherwise
local residual performed best. It is known that error estimators which
use the difference between two approximations of different resolution, i.e. of
extrapolation type, have weaknesses. For example the error estimator can be
small, although the actual error is still large [1]. Furthermore, the combina-
tion technique can also be derived as an extrapolation technique, therefore a
thorough investigation of the observerd behaviour in this context is warranted.

We currently employ a simple greedy approach in the adaptive procedure.
More sophisticated adaptation strategies and different error indicators, for ex-
ample taking computational complexity of a grid into account, are worthwhile
investigating, especially in regard to an underlying theory which could provide
robustness and efficiency of the approach similar to the numerical solution of
partial differential equations with adaptive finite elements [1].

The original approach scales linear in the number of data [2, 3]. In the
dimension adaptive approach at least the computational effort for each partial
grid scales linear in the number of data. Since the value of the adaption and
stopping criteria depends on the number of data, the number of partial grids
might change with a different number of data for a given stopping tolerance.
Although we did not observe such unwanted behaviour in our experiments,
it has to be seen if in a worst case scenario the dimension adaptive approach
could result in a non-linear scaling in regard to the number of data.
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