
Dimension–Adaptive Tensor–Product
Quadrature

Thomas Gerstner and Michael Griebel

Department for Applied Mathematics
University of Bonn

{gerstner,griebel}@iam.uni-bonn.de

Abstract

We consider the numerical integration of multivariate functions defined over
the unit hypercube. Here, we especially address the high–dimensional case, where
in general the curse of dimension is encountered. Due to the concentration of
measure phenomenon, such functions can often be well approximated by sums
of lower–dimensional terms. The problem, however, is to find a good expansion
given little knowledge of the integrand itself.

The dimension–adaptive quadrature method which is developed and presented
in this paper aims to find such an expansion automatically. It is based on the sparse
grid method which has been shown to give good results for low- and moderate–
dimensional problems. The dimension–adaptive quadrature method tries to find
important dimensions and adaptively refines in this respect guided by suitable error
estimators. This leads to an approach which is based on generalized sparse grid
index sets. We propose efficient data structures for the storage and traversal of the
index sets and discuss an efficient implementation of the algorithm.

The performance of the method is illustrated by several numerical examples
from computational physics and finance where dimension reduction is obtained
from the Brownian bridge discretization of the underlying stochastic process.

AMS Subject Classification:65D30, 65C20, 65U05, 65Y20
Keywords: multivariate numerical quadrature, adaptivity, curse of dimension

1 Introduction

The computation of high-dimensional integrals is a central part of computer simula-
tions in many application areas such as statistical mechanics, financial mathematics,
and computational physics. Here, the arising integrals usually cannot be solved analy-
tically and thus numerical approaches are required. Furthermore, often a high accuracy
solution is needed and thus, such problems can be computationally quite challenging
even for parallel supercomputers.

The main reason for this difficulty is the so–calledcurse of dimension[2], which
can be understood in two ways. First, one observes that in classical numerical quadra-
ture methods (e.g. based on product rules) the amount of workN required in order to

1

achieve a prescribed accuracyε grows exponentially with the dimensiond,

ε(N) = O(N−r/d),

for functions with bounded derivatives up to orderr [7]. Thus, already for moderate
dimensions the order of convergence is so slow that a high accuracy cannot be obtained
in practice. The situation gets worse as the dimension increases.

The curse of dimension can also be approached from the point of numerical com-
plexity theory. There it has been shown that for some integration problems (i.e. for
integrand functions from certain function spaces) even the minimum amount of work
in order to achieve a prescribed accuracy grows exponentially with the dimension [34].
These lower bounds hold for all algorithms from a specific algorithmic class (i.e. those
using linear combinations of function evaluations). Such problems are therefore called
intractable. However, application problems are often in a different (or smaller) prob-
lem class and thus may be tractable, although the correct classification can be difficult.
In addition, there may exist (e.g. non-linear or quantum) algorithms which stem from
a different algorithmic class and thus may be able to break the curse of dimension.

Randomized algorithms of whose the Monte Carlo method is probably the best–
known representative is one such class of algorithms. Here, the integrand is evaluated
at a set of (pseudo-)randomly chosen points and the integral is computed approximately
as the average of these function values. Then, the average amount of work in order to
reach an accuracyε (for integrands with bounded variance) is

ε(N) = O(N−1/2),

and is thus independent of the dimension. Nevertheless, the convergence rate is quite
low and a high accuracy is only achievable with a tremendous amount of work (that is
function evaluations). Indeed, more than half of the computing time of today’s super-
computers is used just for the generation of random numbers.

Therefore, so–called Quasi-Monte Carlo algorithms have attained much attention
in the last years. Here, the integrand is evaluated not at random but at structurally
determined points such that the discrepancy of these points is smaller than that for
random points. Then, for functions with bounded (mixed) variation, the complexity is

ε(N) = O(N−1(logN)d),

and is thus almost half an order better than the complexity of the Monte Carlo approach
[25]. In addition, the bounds are deterministic. However, the dimension enters through
a logarithmic term and this dependence on the dimension therefore causes problems
for high dimensions.

Note that in both cases the convergence rate does not depend on the smoothness.
Thus, smoother integrands are not computed more efficiently than non–smooth ones
(which is already true for the Monte Carlo approach). The first method which makes
use of the smoothness of the integrand and at the same time does not suffer from
the curse of the dimension is the so–called sparse grid method [41] which dates at
least back to the Russian mathematician Smolyak [33]. In this approach, multivariate
quadrature formulas are constructed by a combination of tensor products of univariate
formulas. Of all possible combinations of one–dimensional quadrature formulas only

2

those are considered whose corresponding indices are contained in the unit simplex.
This way, the complexity becomes

ε(N) = O(N−r(logN)(d−1)(r+1)),

for functions from spaces with bounded mixed derivatives up to orderr. Thus, for
r > 1 a better convergence rate than for Quasi–Monte Carlo can be expected. For very
smooth integrands (r →∞) the convergence will even be exponential.

Despite the large improvements of the Quasi–Monte Carlo and sparse grid methods
over the Monte Carlo method, their convergence rates will suffer more and more with
rising dimension due to their respective dependence on the dimension in the logarith-
mic terms. Therefore, one aim of recent numerical approaches has been to reduce the
dimension of the integration problem without (too great) affection of the accuracy.

In some applications, the different dimensions of the the integration problem are
not equally important. For example, in path integrals the number of dimensions corre-
sponds to the number of time–steps in the time discretization. Typically the first steps
in the discretization are more important than the last steps since they determine the
outcome more substantially. In other applications, although the dimensions seem to be
of the same importance at first sight, the problem can be transformed into an equivalent
one where the dimensions are not. Examples are the Brownian bridge discretization or
the Karhunen–Loewe decomposition of stochastic processes.

Intuitively, problems where the different dimensions are not of equal importance
might be easier to solve. Numerical methods could concentrate on the more important
dimensions and spend more work for these dimensions than for the unimportant ones.
Interestingly, also complexity theory reveals that integration problems with weighted
dimensions can become tractable even if the unweighted problem is not [39]. Unfortu-
nately, classical adaptive numerical integration algorithms [13, 35] cannot be applied
to high–dimensional problems since the work overhead in order to find and adaptively
refine in important dimensions would be too large.

To this end, a variety of algorithms have been developed which try to find and
quantify important dimensions. Often, the starting point of these algorithms is Kol-
mogorov’s superposition theorem [22, 23]. Here, a high–dimensional function is ap-
proximated by sums of lower–dimensional functions. A survey of this approach from
the point of approximation theory is given in [21]. Further results can be found in
[29, 32]. Analogous ideas are followed in statistics for regression problems and den-
sity estimation. Here, examples are so–called additive models [16], multivariate adap-
tive regression splines (MARS) [11], and the ANOVA decomposition [37, 40], see also
[19]. Other interesting techniques for dimension reduction are presented in [17].

In case the importance of the dimensions is known a priori, techniques such as
importance sampling can be applied in Monte Carlo methods [20]. For the Quasi–
Monte Carlo method already a sorting of the dimensions according to their importance
leads to a better convergence rate (yielding a reduction of the effective dimension).
The reason for this is the better distributional behaviour of low discrepancy sequences
in lower dimensions than in higher ones [6]. The sparse grid method, however, treats
a priori all dimensions equally and thus gains no immediate advantage for problems
where dimensions are of different importance.

The aim of this paper is to develop a generalization of the conventional sparse
grid approach [33] which is able to adaptively assess the dimensions according to their

3

importance and thus reduces the dependence of the computational complexity on the
dimension. The dimension–adaptive algorithm tries to find important dimensions auto-
matically and adapts (places more integration points) in those dimensions. To achieve
this efficiently, a data structure for a fast bookkeeping and searching of generalized
sparse grid index sets is proposed as well. We will show the performance of the new
algorithm in a series of moderate and high–dimensional numerical examples from com-
putational physics and finance. Thereby, the Brownian bridge discretization for the
underlying stochastic processes is used advantageously.

The outline of this paper is as follows. In Section 2 we will shortly review the
conventional sparse grid approach for multivariate integration. In Section 3 we will
then illustrate the dimension–adaptive algorithm. Data structures and implementation
details are the subject of Section 4. Numerical examples are presented in Section 5.
The remarks of Section 6 conclude the paper.

2 Sparse Grids

Let us briefly review the conventional sparse grid method and indicate some basic
properties of sparse grid quadrature formulas. For more information on the method
itself and the previous literature see [14].

In the following, boldface letters indicated–dimensional vectors or multi–indices.
Let us consider the numerical integration of functionsf (d)(x) from a function classF
over thed–dimensional hypercubeΩ := [−1, 1]d,

If (d) :=
∫

Ω

f (d)(x) dx,

by a sequence ofn(d)
l –point quadrature formulas with levell ∈ IN andn(d)

l < n
(d)
l+1,

Qlf
(d) :=

n
(d)
l∑
i=1

wli · f (d)(xli).

using weightswli and abscissasxli. The quadrature error is defined byElf (d) :=
|If (d) −Qlf (d)|.

The sparse grid construction starts with a series of one–dimensional quadrature
formulas for a univariate functionf (1),

Qlf
(1) :=

n
(1)
l∑
i=1

wli · f (1)(xli).

Now, consider the difference formulas defined by

∆kf
(1) := (Qk −Qk−1)f (1) with

Q0f
(1) := 0.

Then, fork ∈ INd, the conventionalsparse gridquadrature method ford–dimensional
functionsf (d) is for a given levell ∈ IN

Qlf
(d) :=

∑
|k|1≤l+d−1

(∆k1 ⊗ . . .⊗∆kd)f (d). (1)

4

Here, of all possible product combinations of one–dimensional quadrature formulas
only those are considered whose indices are contained in the unit simplex|k|1 ≤ l +
d − 1. The collection of alln(d)

l pointsxli ∈ Ω generated in this way is called a
(conventional) sparse grid of levell. Note that if the univariate quadrature formulas are
nested, then∆kf

(1) requires the same number of function evaluations asQlf
(1) and

also the resulting sparse grids are nested.
We will now take a look at the integration error of the sparse grid method. Let us

consider the class of functionsWr
d with bounded mixed derivatives of orderr,

Wr
d :=

{
g : Ω −→ IR,

∥∥∥∥ ∂|s|1g

∂xs11 . . . ∂xsdd

∥∥∥∥
∞
<∞, si ≤ r

}
.

Let us further assume that the underlying one–dimensional quadrature formula satisfies
the error bound

|Elf (1)| = O((n(1)
l)−r).

for functionsf (1) ∈ Wr
1 . This bound holds, for example, for all interpolatory quadra-

ture formulas with positive weights, such as the Clenshaw–Curtis, Gauß–Patterson
and Gauß–Legendre formulas [7]. If such a quadrature formula is taken as the one–
dimensional starting point and ifn(1)

l = O(2l), then the error of the conventional
sparse grid quadrature formula is of the order

|Elf (d)| = O((n(d)
l)−r(log n(d)

l)(d−1)(r+1)),

for f ∈ Wr
d [38].

We see that the convergence rate depends only weakly on the dimension but strongly
on the smoothnessr. However, the conventional sparse grid method treats all dimen-
sions equally (because this is also true for unit simplex) and thus the dependence of
the quadrature error on the dimension in its logarithmic term will cause problems for
high–dimensional integrands.

3 Dimension–Adaptive Quadrature

In order to be able to assess the dimensions differently, it is necessary to modify
the original sparse grid construction. Note that conventional adaptive sparse grid ap-
proaches [3, 4, 9] merely tackle a locally non–smooth behaviour of the integrand func-
tion and usually cannot be applied to high–dimensional problems.

The most straightforward way to generalize the conventional sparse grid with re-
spect to differently important dimensions is to consider a different index set than the
unit simplex|k|1 ≤ l + d − 1. For example, one could consider the class of general
simplicesa · k ≤ l + d − 1 wherea ∈ IRd

+ is a weight vector for the different di-
mensions [12, 14, 30]. A static strategy would be to analyse the problem and then to
choose a suitable vectora. Such a strategy has two drawbacks, though. First, it is hard
to a–priori choose the optimal (or, at least, a good) weight vectora, and second, the
class of general simplices itself may be inadequate for the problem at hand (e.g. more
or less points in mixed directions may be required).

Instead, we will allow more general index sets [18, 28, 39] in the summation of
(1) and try to choose them properly. To this end, we will consider the selection of the

5

whole index set as an optimization problem, i.e. as a binary knapsack problem [5, 15],
which is closely related to bestN–term approximation [8]. A self–adaptive algorithm
can try to find the optimum index set in an iterative procedure. However, not all index
sets are admissible in the generalized sparse grid construction and special care has to
be taken during the selection of indices, as we will see.

In the following, we will take a look at the general sparse grid construction and
the required conditions on the index set. After that, we will present the basic iterative
algorithm for the selection of an appropriate index set. Then, we will address the
important issue of error estimation.

3.1 Generalized sparse grids

We will start with the admissibility condition on the index set for the generalized sparse
grid construction. An index setI is calledadmissibleif for all k ∈ I,

k− ej ∈ I for 1 ≤ j ≤ d, kj > 1,

holds. Here,ej is thej–th unit vector. In other words, an admissible index set con-
tains for every indexk all indices which have smaller entries thank in at least one
dimension. Note that the admissibility condition on the index set ensures the validity
of the telescope sum expansion of the general sparse grid quadrature formulas using
the difference formulas∆1

kj
.

Now we are able to define thegeneral sparse grid construction[14]:

Q
(d)
I f (d) :=

∑
k∈I

(∆1
k1
⊗ . . .⊗∆1

kd
)f (d),

for an admissible index setI ∈ INd.
Note that this general sparse grid construction includes conventional sparse grids

(I = {k : |k|1 ≤ l + d − 1}) as well as classical product formulas (I = {k :
max{k1, . . . , kd} ≤ l}) as special cases. Unfortunately, little is known about er-
ror bounds of quadrature formulas associated to general index setsI (see [28, 39]).
However, by a careful construction of the index setsI we can hope that the error for
generalized sparse grid quadrature formulas is at least as good as in the case of con-
ventional sparse grids. Furthermore, the algorithm allows for an adaptive detection of
the important dimensions.

3.2 Basic algorithm

Our goal is now to find an admissible index set such that the corresponding integration
errorε is as small as possible for a given amount of work (function evaluations). The
procedure starts with the one–element index set{1},1 = (1, . . . 1) and adds indices
successively such that

• the resulting index sets remain admissible, and

• possibly a large error reduction is achieved.

To this end, an estimated errorgk callederror indicator is assigned to each indexk
which is computed from the differential integral

∆kf
(d) = (∆k1 ⊗ · · · ⊗∆kd)f (d), (2)

6

Algorithm:

integrate(f)
i := (1, . . . , 1)
O := ∅
A := {i}
r := ∆if
η := gi
while (η >TOL) do

selecti fromA with largestgi
A := A \ {i}
O := O ∪ {i}
η := η − gi
for k := 1, . . . , d do

j := i + ek
if j− eq ∈ O for all q = 1, . . . , d then
A := A ∪ {j}
s := ∆jf
r := r + s
η := η + gj

endif
endfor

endwhile
return r

Symbols:

O old index set
A active index set
∆if integral increment

⊗d
k=1 ∆ikf

gi local error indicator
η global error estimate

∑
i∈A gi

ek k–th unit vector
TOL error tolerance
r computed integral value

∑
i∈O∪A

⊗d
k=1 ∆ikf

Figure 1: The basic dimension–adaptive algorithm.

7

and from further values attributed to the indexk like the work involved for the compu-
tation of∆kf . Let us remark here that the exact integration error is unknown since the
integrand itself is unknown. We will address error estimation in the next section.

In our algorithm always the index with the largest error indicator is added to the
index set. Once an index is added, its forward neighbourhood is scanned for new
admissible indices and their error indicators are computed. Here, theforward neigh-
bourhoodof an indexk is defined as thed indices{k + ej , 1 ≤ j ≤ d}. Conversely,
thebackward neighbourhoodis defined by{k− ej , 1 ≤ j ≤ d}. Altogether, we hope
to heuristically build up an optimal index set in the sense of [5, 15] or [8] this way.

Recall that the computed total integral is just the sum over all differential integrals
within the actual index setI. Now as soon as the error indicator for a new index is
computed, the index can in fact already be added to the index set since it does not
make sense to exclude the just computed differential integral from the total integral.
Therefore, when the error indicator of an index is computed, the index is put into the
index setI (but its forward neighbours in turn are currently not considered).

To this end, we partition the current index setI into two disjoint sets, calledac-
tive andold indices. The active index setA contains those indices ofI whose error
indicators have been computed but the error indicators of all their forward neighbours
have not yet been considered. The old index setO contains all the other indices of the
current index setI. The error indicators associated with the indices in the setA act as
an estimateη =

∑
i∈A gi for the global error.

Now, in each iterative step of the dimension–adaptive algorithm the following ac-
tions are taken: The index with the largest associated error indicator is selected from
the active index set and put into the old index set. Its associated error is subtracted
from the global error estimateη. Also, the error indicators of the admissible forward
neighbouring indices of this index are computed and their indices are put into the ac-
tive index set. Accordingly, the corresponding values of the differential integral (2) are
added to the current quadrature result and the corresponding values of the error indi-
cators are added to the current global error estimate. If either the global error estimate
falls below a given threshold or the work count exceeds a given maximal amount, the
computation is stopped and the computed integral value is returned. Otherwise, the
index with the now largest error is selected, and so on (see Figure 1).

A two–dimensional example for the operations of the algorithm is shown in Figure
2. Whenever an active index is selected and put into the old index set (in this example
the indices(2, 2), (1, 5), and(2, 3)) its two forward neighbours (indicated by arrows)
are considered. If they are admissible, they are inserted in the active index set. In the
example the forward neighbour(2, 5) of (1, 5) is not inserted since it is not admissible
(its backward neighbour(2, 3) is in the active index set but not in the old index set).

3.3 Error estimation

Error estimation is a crucial part of the algorithm. If the estimated error for a given
index k happens to be very small, then there may be no future adaptive refinement
in its forward neighbourhood. Now, this behaviour can be good or bad. If the errors
of the forward neighbours ofk are smaller or of the same magnitude as the error of
k, then the algorithm has stopped the adaption properly. But, it might be that one or
more forward neighbours have a significantly larger error and thus the algorithm should

8

Figure 2: A few snapshots of the evolution of the dimension–adaptive algorithm.
Shown are the sparse grid index sets (upper row) together with the corresponding sparse
grids using the midpoint rule (lower row). Active indices are dark–shaded, old indices
are light–shaded. The encircled active indices have the largest error indicators and are
thus selected for insertion into the old index set.

refine there. Unfortunately, there is usually no way to know the actual magnitude
beforehand (besides by a close a–priori analysis of the integrand function, which is
usually not available). The problem could of course be fixed by actually looking at the
forward neighbours and the computation of their error indicators. But, this just puts the
problem off since we encounter the same difficulty again with the neighbours of the
neighbours.

We will here attack this problem through additional consideration of the involved
work. The number of function evaluations required for the computation of the differ-
ential integral (and thus also for the error estimation) for a given indexk is known
beforehand. If we assume that the univariate quadrature formulas are nested, then the
number of function evaluationsnk related to an indexk is given by

nk := n
(1)
k1
· . . . · n(1)

kd
,

and thus can be computed directly from the index vector. Now, in order to avoid a too
early stopping it makes sense to consider the forward neighbourhood of an index with
a small error if the work involved is small – especially in comparison to the work for
the index with the current largest error. Let us therefore consider a generalized error
indicatorgk which depends both on the differential integral and the number of function
evaluations,

gk := q(|∆kf |, nk),

with a yet to be specified functionq which relates these two numbers. Clearly, the
functionq should be increasing with the first and decreasing with the second argument.

As a possible choice forq we will consider the following class of generalized error
estimators

gk = max
{
w
|∆kf |
|∆1f |

, (1− w)
n1

nk

}

9

wherew ∈ [0, 1] relates the influence of the error in comparison to the work (we
assume that∆1f 6= 0). Let us remark that usuallyn1 = 1.

By selection ofw = 1 a greedy approach is taken which disregards the second
argument i.e. when the function is known to be very smooth (e.g. strictly convex or
concave) and thus the error estimates would decay with increasing indices anyway.
Classical sparse grids are realized byw = 0 where only the involved work is counted.
Values ofw in between will safeguard against both comparatively too high work and
comparatively too small error.

Note that in general we have to assume that the integrand function fulfills a certain
saturation assumption, compare also [1, 10, 36] for the case of adaptive finite elements.
This means that the error indicators roughly decrease with the magnitude of their in-
dices. This condition would not be true for example for functions with spikes on a
very fine scale or large local discontinuities. Let us remark here, that we believe it
impossible to search such spikes or discontinuities in high–dimensional space unless
the integrand function has special properties (for example, convexity). Note that such
functions would practically not be integrable by Monte Carlo and Quasi–Monte Carlo
methods as well.

Note furthermore that the global error estimateη typically underestimates the er-
ror. But, η and the true integration errorε are proportional to each other if the error
indicators decrease with the magnitude of their indices. Therefore, the error tolerance
TOL is only achieved up to a constant. In our experiments of Section 5 this constant
was of moderate size (up to 10).

4 Data Structures

The number of indices in the index sets can become very large for difficult (high–
dimensional) problems. For the performance of the overall dimension–adaptive algo-
rithm it is necessary to store the indices in such a way that the operations required by
the algorithm can be performed efficiently.

In view of Section 3.2 these operations are

• to insert and remove indices from the active index setA,

• to insert indices into the old index setO,

• to find the index in the active index set with the largest error,

• to check if an index is admissible.

In this section we will describe the data structures which allow a fast execution of these
operations. We will use relative addressing for the storage of the indices, a heap for
the active indices, a linear array for the old indices, and linked neighbour lists for the
admissibility check.

4.1 Relative addressing

In contrast to classical numerical algorithms the dimensiond of the problem at hand
is highly variable and cannot be neglected in the space and time complexity of the
algorithm. In application problems this dimension can readily range up to 1000 and,

10

unsigned char I[m][d] entries of all indices
int A[m] active indices
int O[m] old indices
double G[m] error estimates
int N[m][2*d] neighbours
int ni number of elements in I
int na number of elements in A
int no number of elements in O

Figure 3: The data types and memory requirements for the dimension–adaptive algo-
rithm.

for example, already a cubic dependence on the dimension can render an algorithm
impractible.

This easily overlooked problem becomes visible when for example a multi–index of
dimensiond has to be copied to a different memory location or when two indices have
to be checked for identity. A straightforward approach would requireO(d) operations
(to copy or compare all the single elements). If these operations are performed within
an inner loop of the algorithm, complexities multiply and the total dependence ond is
increased.

Therefore, we use relative addressing here. We allocate one two–dimensional array
I for all (active and old) indices which contains the elements of the current index set
I = A ∪ O . This array has dimensionm × d wherem is the maximum number of
generated indices. The sizem can be chosen statically as the maximum amount of
memory available (or that one is willing to spend). Alternatively,m can be determined
dynamically and the whole array is reallocated (e.g. with size2m) when the current
number of elements denoted byni exceeds the available space. One byte per index el-
ement is sufficient for the storage. Indices which are newly generated (i.e. as a forward
neighbour of a previously generated active index) are inserted successively. Indices are
never moved within the array or removed from the array.

For the description of the active and old index sets (A andO) we use one–dimensio-
nal arraysA andOof maximum sizem, respectively. Each entry in these arrays is the
position of the corresponding index in the arrayI . In addition, the current number of
indices inA andOdenoted byna andno are stored (see Figure 3). Now, when an index
is copied fromA to O, only the entry toI has to be copied and not all itsd elements.
This way, the total dependence ond of the algorithm is reduced.

4.2 Active indices

So far we have not illustrated how the indices inA andO are stored. The required
operations on the active and old index sets are quite different and therefore, we will
arrange the two sets differently.

Let us first look at the set of active indices. The necessary operations are fast
insertion and removal of indices. Furthermore, we have to be able to find the index
with the largest associated error indicator. For the latter operation one clearly does not

11

A

O

I

G

N

m

m

m

m

m

na

no

ni

ni

ni

d

d

d

Figure 4: A schematic representation of the data structures. Shown are the arrays for
the active and old indicesA andO, the index elementsI , the error estimatesG, and the
neighboursN.

want to search through all the indices in order to find the current maximum every time
(which would lead to a quadratic work complexity in the number of indices).

Let us first remark that we store the error indicators in an additional floating point
arrayGof sizem (with the same numbering asI , see Figure 3). We will here use a
(at least in the computer science literature) well–known data structure calledheap[31]
which supports the required operations in the most efficient way. A heap is an ordering
of the indices inA such that the error indicator for an index at positionp is greater
than (or equal to) the error indicators of the indices at positions2p and2p + 1. This
way, a binary tree hierarchy is formed on the set of indices where the index at the root
(position 1) has the largest error indicator.

When the root index is removed (i.e. by putting it into the old index set) then the
one of the two sons (at positions 2 and 3) with the larger error indicator is promoted as
the new root. The vacancy that arises this way is filled with the son which possesses
the larger error indicator and this scheme is repeated recursively until the bottom of the
tree is reached.

12

i

i
j

�
j

�

k

?

n

Figure 5: Indexn has just been generated as the forward neighbour in directioni of
indexk. The backward neighbour ofn in directionj 6= i can be found as the forward
neighbour in directioni of the backward neighbour in directionj of k.

4.3 Old indices

Similarly, when a new index is inserted (i.e. as the forward neighbour of the just re-
moved index) it is first placed at the last position in the tree (i.e. it is assigned the
highest positionna+1). Now, if the error indicator of the father of the new index is
smaller than its own error indicator then the two positions are swapped. This proce-
dure is repeated recursively until the error indicator of the current father is larger than
that of the new index. This way, insertion and removal are functions which can all be
performed inO(log(na)) operations.

The required operations on the old index set are the insertion of indices and the
checking if an index is admissible. Since indices are never removed from the old index
set, the indices are stored in order of occurrence and insertion is simply done at the
end ofO (at positionno+1). The check for admissibility is more difficult, though,
since it involves the location of the whole backward neighbourhood of a given index.
To this end, we explicitly store all the neighbours. For every index in both the active
and old index sets the positions inI of thed forward neighbours and thed backward
neighbours are stored. This requires an arrayNof sizem× 2d where the firstd entries
are the forward and the secondd entries the backward neighbours (see Figure 3). Note
that the indices inI themselves already requirem · d bytes. Thus, the overhead for the
new array is not large. Note also that indices in the active index have only backward
neighbours.

Now, let us discuss how the neighbour array is filled. Let us assume that a new
index is generated as the forward neighbour of an active indexk in directioni. The
backward neighbour of the new index in directioni is known (the previously active
indexk), but thed − 1 other backward neighbours are unknown. Let us consider the
backward neighbour in directionj 6= i. This backward neighbour can be found as
the forward neighbour in directioni of the backward neighbour in directionj of the
previously active index (see Figure 5). Put differently,

p̄j(pi(k)) = pi(p̄j(k)),

wherepi is the forward neighbour in directioni andp̄j is the backward neighbour in
direction j. In turn, when the backward neighbour in directionj is found, the new

13

index is stored as its forward neighbour in directionj. This way, all required forward
neighbours can be found and stored in the data structure. In summary, the construction
of the neighbour array is done in constant additional time.

A new index is admissible if all backwards neighbours are in the arrayO. Indices
in Ocan be distinguished from indices inN e.g. by looking at the first forward neigh-
bour. Recall that indices inN do not have any forward neighbours and thus a marker
(e.g.−1) may be used to identify them without additional storage. In summary, the
admissibility check can now be performed inO(d) operations.

4.4 Complexities

We will now discuss the space and time complexities of the algorithm. Concerning the
time complexity we will distinguish between the work involved for the computation of
the integral and the work overhead for the bookkeeping of the indices.

The memory requirement of the data types of Figure 3 is(9d + 16)m + 12 bytes.
Additionally, the nodes and weights of the univariate quadrature formulas have to be
stored (if they cannot be computed on–the–fly). This storage, however, can usually
be neglected. In our experience, 257 quadrature nodes have proved to be more than
enough for typical high–dimensional problems. In summary, the required memory is
O(d ·m) bytes (with a constant of about 9).

The amount of work required for∆kf is c · nk wherec is the cost of a function
evaluation (which is at leastO(d)). However, since the total cost depends on the size
and structure of the index set, which is unknown beforehand, bounds for the work re-
quired for the function evaluations can in general not be obtained. For the conventional
sparse grid of levell, we know that this work isO(2l · ld−1), but we hope that the
work for a dimension–adapted grid is substantially smaller (especially concerning the
dependence ond).

However, we can tell something about the work overhead for the bookkeeping of
the indices. In view of Figure 1 we see that for each index which is put intoO two
for loops (overk andq) of sized are performed. In the outer loop, the new index is
put into A which requiresO(log na) operations. So, the worst case time complexity
for bookkeeping isO(d2 + d log na). Note that the average case complexity is smaller
since the inner loop can be terminated early. In practice, the total overhead behaves
like O(d2).

5 Numerical Examples

We will now study the performance of the dimension–adaptive algorithm in numerical
examples. First, we consider some two–dimensional test functions which allows us to
show the resulting grids and index sets. In these cases, the exact value of the integral is
known (or can be computed quickly). The second example is a path integral of 32 di-
mensions in which the integral value is also known beforehand. The third example is a
256–dimensional application problem from finance where the exact value is unknown.
As univariate quadrature formulas we use in all examples the well–known Patterson
formulas [27] which have shown to be a good choice for the sparse grid construction
[14].

14

10 · e−x2
+ 10 · e−y2

ex + ey + exy e−10x2−10y2

1

2

3

4

5

6

7

8

1 2 3 4 5 6 7 8

old
active

1

2

3

4

5

6

7

8

1 2 3 4 5 6 7 8

old
active

1

2

3

4

5

6

7

8

1 2 3 4 5 6 7 8

old
active

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Figure 6: The resulting index sets and corresponding sparse grids forTOL = 10−15 for
some isotropic test functions.

e−x
2

+ 10 · e−y2
ex + 10ey + 10exy e−10x2−5y2

1

2

3

4

5

6

7

8

1 2 3 4 5 6 7 8

old
active

1

2

3

4

5

6

7

8

1 2 3 4 5 6 7 8

old
active

1

2

3

4

5

6

7

8

1 2 3 4 5 6 7 8

old
active

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Figure 7: The resulting index sets and corresponding sparse grids forTOL = 10−15 for
some anisotropic test functions.

15

5.1 Test examples (2 dimensions)

Let us first consider simple combinations of exponential functions defined over[0, 1]2.
In Figures 6 and 7 we depict the old and active index sets as well as the resulting
dimension–adapted sparse grids for some isotropic and some anisotropic functions,
respectively. In these examples, the selected error threshold isTOL = 10−15. Note
that the integration error was of the same magnitude. As weighting parameter for
error estimation we usew = 1 since the functions are smooth. In all examples, the
computation took less than 0.01s on a Pentium II.

The first example is a sum of one–dimensional functions. The dimension–adaptive
algorithm correctly selects no indices in joint dimensions. Also, more points are placed
in x–direction than iny–direction in the anisotropic case. Clearly, here the conventional
sparse grid would spend too many points in joint directions. Although the function has
additive structure, the index (2,2) is selected as active by the algorithm (because (1,2)
and (2,1) are put into the old index set). Note that for ad–dimensional additive function
with non–constant directions alwaysd(d− 1) indices of this type are selected.

The second example is not separable nor has product structure. The resulting index
set is almost triangular, like the conventional sparse grid. However, the dimension–
adaptive algorithm chooses to select more points on the axes while the conventional
sparse grid would have spent too many points in the interior. In our experience, many
application problems fall in this category which we would call nearly–additive.

The third example is the well known Gaussian hat function and has product struc-
ture. In this example, many points in joint dimensions are required. Here, the con-
ventional sparse grid would have placed too few points there. This is an at first sight
surprising result, since product functions should be easier integrable by a tensor prod-
uct approach. However, the mixed derivatives of the Gaussian can get large even if they
are bounded which reduces the efficiency of both the conventional sparse grid and the
dimension–adaptive approaches.

5.2 Path integral (32 dimensions)

Let us now approach some higher–dimensional problems. We will first consider an
initial value problem given by the linear parabolic differential equation

∂u

∂t
=

1
2
· ∂

2u

∂x2
(x, t) + v(x, t) · u(x, t),

with initial conditionu(x, 0) = f(x). The solution of this problem can be obtained
with the Feynman–Kac formula as

u(x, t) = Ex,0

(
f(ξ(t)) · e

∫ t
0
v(ξ(r),t−r) dr

)
,

whereξ represents a Wiener path starting atξ(0) = x. The expectationEx,0 can be
approximated by a discretization of time using a finite number of time stepsti = i ·∆t
with ∆t = t/d. The integral in the exponent is approximated by a one–dimensional
quadrature formula such as a sufficiently accurate trapezoidal rule.

The most natural way to discretize the Wiener path is by a random walk, i.e. by the
recursive formula

ξk = ξk−1 +
√

∆t zk.

16

whereξ0 = x andzk are normally distributed random variables with mean zero and
variance one. The dimensions in the random walk discretization are all of the same
importance since all the variances are identical to∆t.

In the Brownian bridge discretization [6], however, the path is discretized using a
future and a past value

ξk =
1
2

(ξk−h + ξk+h) +

√
h ·∆t

2
· zk.

Starting withξ0 := x andξd := x +
√
t zd the subsequent values to be computed are

ξd/2, ξd/4, ξ3d/4, ξd/8, ξ3d/8, ξ5d/8, ξ7d/8, ξ1d/16, ξ3d/16, . . . with correspondingh =
1/2, 1/4, 1/4, 1/8, 1/8, 1/8, 1/8, 1/16, 1/16, The Brownian bridge leads to a con-
centration of the total variance in the first few steps of the discretization and thus to a
weighting of the dimensions.

Let us now consider the concrete example [24]

v(x, t) =
(

1
t+ 1

+
1

x2 + 1
− 4x2

(x2 + 1)2

)
,

with initial conditionu(x, 0) = 1
x2+1 . The exact solution is then

u(x, t) =
t+ 1
x2 + 1

.

The results ford = 32, t = 0.02 andx = 0 are shown in Figure 8 (left). We see
the integration error plotted against the number of function evaluations in a log–log
scale. Here, the conventional sparse grid method is compared with the dimension–
adaptive algorithm for the random walk and Brownian bridge discretizations. In this
example, the conventional sparse grid is for the random walk discretization obviously
close to the optimum since the dimension–adaptive method cannot improve on the
performance. The conventional sparse grid gains no advantage from the Brownian
bridge discretization, but the convergence rate of the dimension–adaptive algorithm
is dramatically improved. Note that the convergence rate of the Quasi–Monte Carlo
method (with Brownian bridge) is comparable to that of the conventional sparse grid
approach [24, 14]. In Figure 8 (right) we plot the maximum level per dimension of
the final index set of the dimension–adaptive method without and with the Brownian
bridge discretization. Here, the dimensions are sorted according to this magnitude.
For the Brownian bridge discretization, the maximum level decays with the dimension.
This shows that only a few dimensions are important and thus contribute substantially
to the total integral while the other dimensions add significantly less.

5.3 CMO problem (256 dimensions)

Let us now consider a typical collateralized mortgage obligation problem, which in-
volves several tranches which in turn derive their cash flows from an underlying pool
of mortgages [6, 26]. The problem is to estimate the expected value of the sum of
present values of future cash flows for each tranche. Let us assume that the pool of
mortgages has a 21 1/3 year maturity and cash flows are obtained monthly. Then, the

17

1e-08

1e-07

1e-06

1e-05

0.0001

0.001

0.01

0.1

1 10 100 1000 10000 100000 1e+06 1e+07 1e+08 1e+09

E
rr

or

Function Evaluations

Sparse Grid Random Walk
Sparse Grid Brownian Bridge

Dimension-Adaptive Random Walk
Dimension-Adaptive Brownian Bridge

0

1

2

3

4

5

6

7

0 5 10 15 20 25 30 35

Le
ve

l

Dimension

Maximum Level with Random Walk
Maximum Level with Brownian Bridge

Figure 8: Computational results for the path integral (d = 32): integration error
vs. number of function evaluations (left) and maximum level over all dimensions
(sorted) for the dimension–adaptive algorithm with Brownian bridge discretization
(right).

expected value requires the evaluation of an integral of dimensiond = 256 for each
tranche, ∫

IRd
v(ξ1, . . . , ξd) · g(ξ1) · . . . · g(ξd) dξ1 . . . dξd,

with Gaussian weightsg(ξi) = (2πσ2)−1/2e−ξ
2
i /2σ

2
. The sum of the future cash flows

v is basically a function of the interest ratesik (for monthk),

ik := K0e
ξ1+...+ξk i0

with a certain normalizing constantK0 and an initial interest ratei0 (for details see [6],
first example, and [14, 26]). Again the interest rates can either be discretized using a
random walk or the Brownian bridge construction. For the numerical computation, the
integral overIRd is transformed to an unweighted integral on[0, 1]d with the help of
the inverse normal distribution.

In Figure 9 we again compare the conventional sparse grid method with the dimen-
sion–adaptive method for the random walk and the Brownian bridge discretization.
The error is computed against an independent Quasi–Monte Carlo calculation. Note
that also in this example the convergence rate of the conventional sparse grid approach
is comparable to the Quasi–Monte Carlo method [14].

We see that again a weighting of the dimensions does not influence the conver-
gence of the conventional sparse grid method. But for the dimension–adaptive method
the amount of work is again substantially reduced (by several orders of magnitude) for
the same accuracy when the Brownian bridge discretization is used and thus higher
accuracies can be obtained. In this example the dimension–adaptive method also gives
better results than the conventional sparse grid method for the random walk discretiza-
tion. This implies that the conventional sparse grid spends too many points in mixed
dimensions for this problem. The problem seems to be intrinsically lower–dimensional
and nearly additive [6].

18

1e-08

1e-07

1e-06

1e-05

0.0001

0.001

0.01

1 10 100 1000 10000 100000 1e+06 1e+07 1e+08

E
rr

or

Function Evaluations

Sparse Grid Random Walk
Sparse Grid Brownian Bridge

Dimension-Adaptive Random Walk
Dimension-Adaptive Brownian Bridge

0

1

2

3

4

5

6

7

0 50 100 150 200 250 300

Le
ve

l

Dimension

Maximum Level with Random Walk
Maximum Level with Brownian Bridge

Figure 9: Computational results for the CMO problem (d = 256): integration er-
ror vs. number of function evaluations (left) and maximum level over all dimensions
(sorted) for the dimension–adaptive algorithm with and without Brownian bridge dis-
cretization (right).

6 Concluding Remarks

In this paper, we have presented a dimension–adaptive algorithm for the numerical in-
tegration of multivariate functions. The method which can be seen as a generalization
of the sparse grid method tries to find important dimensions automatically and places
more integration points there. We have also discussed the implementation of the al-
gorithm and proposed data structures which allow for the efficient bookkeeping of the
sparse grid index sets.

We have shown that this algorithm can substantially improve the convergence rate
of the conventional sparse grid method through a reduction of the dependence on the
dimension. This behaviour has been confirmed in numerical experiments and in ap-
plication problems from computational physics and finance. In these examples, the
dimension–adaptive algorithm was clearly superior to the Monte Carlo and Quasi–
Monte Carlo methods.

Let us finally remark that the whole approach is not restricted to integration prob-
lems but can also be used for interpolation, the solution of partial differential and inte-
gral equations, or eigenvalue problems for the high–dimensional case. There, the possi-
ble application areas include computer simulations in statistical physics and chemistry,
queueing theory, and data mining.

References

[1] R. Bank. Hierarchical bases and the finite element method.Acta Numerica, 5:1–
43, 1996.

[2] R. Bellman.Dynamic Programming. University Press, Princeton, 1957.

[3] T. Bonk. A new algorithm for multi–dimensional adaptive numerical quadrature.
In W. Hackbusch and G. Wittum, editors,Adaptive Methods: Algorithms, Theory
and Applications, volume 46 ofNotes on Numerical Fluid Mechanics. Vieweg,
Braunschweig, 1993.

19

[4] H.-J. Bungartz.Dünne Gitter und deren Anwendung bei der adaptiven Lösung
der dreidimensionalen Poisson–Gleichung. PhD thesis, Institut f̈ur Informatik,
TU München, 1992.

[5] H.-J. Bungartz and M. Griebel. A note on the complexity of solving Poisson’s
equation for spaces of bounded mixed derivatives.J. Complexity, 15:167–199,
1999.

[6] R. Caflisch, W. Morokoff, and A. Owen. Valuation of mortgage backed securities
using Brownian bridges to reduce effective dimension.J. Comput. Finance, 1,
1997.

[7] P. Davis and P. Rabinowitz.Methods of numerical integration. Academic Press,
1975.

[8] R. DeVore. Nonlinear approximation.Acta Numerica, 7:51–150, 1998.

[9] S. Dirnstorfer. Adaptive numerische Quadratur höherer Ordnung auf d̈unnen Git-
tern. Master’s thesis, Institut für Informatik, TU München, 2000.

[10] W. Dörfler. A robust adaptive strategy for the nonlinear Poisson equation.Com-
puting, 55:289–304, 1995.

[11] J. Friedman. Multivariate adaptive regression splines.Annals of Statistics, 19:1–
141, 1991.

[12] J. Garcke and M. Griebel. Classification with anisotropic sparse grids using sim-
plicial basis functions.Intelligent Data Analysis, 6(5), 2002. to appear.

[13] A. Genz and A. Malik. An adaptive algorithm for numerical integration over an
n-dimensional rectangular region.J. Comp. Appl. Math., 6:295–302, 1980.

[14] T. Gerstner and M. Griebel. Numerical integration using sparse grids.Numer.
Algorithms, 18:209–232, 1998.

[15] M. Griebel and S. Knapek. Optimized tensor-product approximation spaces.Con-
structive Approximation, 16(4):525–540, 2000.

[16] T. Hastie and R. Tibshirani.Generalized additive models. Chapman and Hall,
London, 1990.

[17] T.-X. He. Dimensionality reducing expansion of multivariate integration.
Birkhäuser, 2001.

[18] M. Hegland. Adaptive sparse grids. InProceedings of CTAC, Brisbane, July
16–18, 2001, 2001.

[19] M. Hegland and V. Pestov. Additive models in high dimensions. Technical Report
99–33, School of mathematical and computing sciences, Victoria University of
Wellington, 1999.

[20] M. Kalos and P. Whitlock.Monte Carlo Methods. John Wiley & Sons, 1986.

20

[21] S. Khavinson.Best approximation by linear superposition (approximate nomog-
raphy). AMS Translations of mathematical monographs vol. 159. AMS, Provi-
dence, 1997.

[22] A. Kolmogoroff. On the representation of continuous functions of several vari-
ables by superpositions of continuous functions of fewer variables.Dokl. Akad.
Nauk SSSR, 108:179–182, 1956. (in Russian, Engl. Transl.: Amer. Math. Soc.
Transl. (2) 17:369–373, 1961).

[23] A. Kolmogoroff. On the representation of continuous functions of several vari-
ables by superpositions of continuous functions of one variable and addition.
Dokl. Akad. Nauk SSSR, 114:953–956, 1957. (in Russian, Engl. Transl.: Amer.
Math. Soc. Transl. (2) 28:55–59, 1963).

[24] W. Morokoff and R. Caflisch. Quasi–monte carlo integration.J. Comp. Phys.,
122:218–230, 1995.

[25] H. Niederreiter. Random number generation and quasi–Monte Carlo methods.
SIAM, Philadelphia, 1992.

[26] S. Paskov and J. Traub. Faster valuation of financial derivatives.J. Portfolio
Management, 22:113–120, 1995.

[27] T. Patterson. The optimum addition of points to quadrature formulae.Math.
Comp., 22:847–856, 1968.

[28] L. Plaskota. The exponent of discrepancy of sparse grids is at least 2.1933.Adv.
Comp. Math., 12:3–24, 2000.

[29] T. Rassias and J. Simsa.Finite sums decompositions in mathematical analysis.
John Wiley & Sons, Chichester, 1995.

[30] D. Röschke.Über eine Kombinationstechnik zur Lösung partieller Differential-
gleichungen. Master’s thesis, Institut für Informatik, TU München, 1991.

[31] R. Sedgewick.Algorithms in C. Addision Wesley, 1990.

[32] J. Simsa. The bestL2-approximation by finite sums of functions with separable
variables.Aequationes Mathematicae, 43:284–263, 1992.

[33] S. A. Smolyak. Interpolation and quadrature formulas for the classesW a
s and

Eas . Dokl. Akad. Nauk SSSR, 131:1028–1031, 1960. (in Russian, Engl. Transl.:
Soviet Math. Dokl. 4:240–243, 1963).

[34] J. Traub, G. Wasilkowski, and H. Woźniakowski.Information–based complexity.
Academic Press, New York, 1988.

[35] P. Van Dooren and L. De Ridder. An adaptive algorithm for numerical integration
over ann–dimensional cube.J. Comp. Appl. Math, 2:207–217, 1976.

[36] R. Verführt. A review of a posteriori error estimation and adaptive mesh–
refinement techniques. Teubner, 1996.

21

[37] G. Wahba.Spline models for observational data. SIAM, Philadelphia, 1990.

[38] G. W. Wasilkowski and H. Wózniakowski. Explicit cost bounds of algorithms for
multivariate tensor product problems.J. Complexity, 11:1–56, 1995.

[39] G. W. Wasilkowski and H. Wózniakowski. Weighted tensor product algorithms
for linear multivariate problems.J. Complexity, 15:402–447, 1999.

[40] R. Yue and F. Hickernell. Robust designs for smoothing spline ANOVA models.
Metrika, 2001. to appear.

[41] C. Zenger. Sparse grids. In W. Hackbusch, editor,Parallel Algorithms for Par-
tial Differential Equations, volume 31 ofNotes on Numerical Fluid Mechanics.
Vieweg, Braunschweig, 1991.

22

