
Error Estimation and Index Re�nement forDimension-Adaptive Sparse Grid Quadraturewith Appliations to the Computationof Path IntegralsTorsten Nahm

Diploma ThesisUniversity of BonnMarh 2005





ContentsContents1 Introdution 51.1 Multi-Dimensional Integrals of Real Funtions . . . . . . . . . . . . . 51.2 The Curse of Dimensionality . . . . . . . . . . . . . . . . . . . . . . . 51.3 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61.4 Outline of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . 71.5 Aknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 Multi-Dimensional Quadrature Methods 92.1 A Sketh of History . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92.2 De�nitions and notations . . . . . . . . . . . . . . . . . . . . . . . . 102.3 Sampling Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122.3.1 Monte Carlo quadrature . . . . . . . . . . . . . . . . . . . . . 122.3.2 Quasi-Monte Carlo quadrature . . . . . . . . . . . . . . . . . 142.4 Interpolation Methods . . . . . . . . . . . . . . . . . . . . . . . . . . 152.4.1 General interpolation . . . . . . . . . . . . . . . . . . . . . . . 152.4.2 One-dimensional quadrature on R . . . . . . . . . . . . . . . 172.4.3 Convergene results for Ω = [0, 1], µ = λ1 ([0, 1]) and C∞ ([0, 1]) 192.4.4 The tensor produt . . . . . . . . . . . . . . . . . . . . . . . . 202.4.5 Multi-Dimensional quadrature . . . . . . . . . . . . . . . . . . 212.4.6 Convergene results for Ω = [0, 1]d and µ = λd
(
[0, 1]d

) . . . . 232.5 Nested quadrature . . . . . . . . . . . . . . . . . . . . . . . . . . . . 232.6 Comparisons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 252.7 On the questionable signi�ane of asymptoti behavior . . . . . . . 263 Hierarhies and the Method of Sparse Grids 293.1 De�nitions and notations . . . . . . . . . . . . . . . . . . . . . . . . 293.2 The method of sparse grids . . . . . . . . . . . . . . . . . . . . . . . 303.3 Estimates for ∆α(f) for Ω = [0, 1]d and µ = λd
(
[0, 1]d

) . . . . . . . . 323.4 General error bounds . . . . . . . . . . . . . . . . . . . . . . . . . . . 344 Index Re�nement and Error Estimates 414.1 Introdution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 414.2 Index re�nement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 414.2.1 Estimation using the diret predeessors . . . . . . . . . . . . 414.2.2 Estimation by evaluation . . . . . . . . . . . . . . . . . . . . 424.2.3 Trivial estimation . . . . . . . . . . . . . . . . . . . . . . . . . 434.3 Error estimates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 434.3.1 Estimates using the index struture . . . . . . . . . . . . . . . 434.3.2 Blak box estimates . . . . . . . . . . . . . . . . . . . . . . . 464.4 Hybrid algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . 483



Contents5 The Implementation 515.1 Introdution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 515.2 The ore algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . 515.3 The quadrature formulas . . . . . . . . . . . . . . . . . . . . . . . . . 545.4 The applet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 555.5 Visualization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 555.5.1 The Grid window . . . . . . . . . . . . . . . . . . . . . . . . . 565.5.2 The Extent window . . . . . . . . . . . . . . . . . . . . . . . 565.5.3 The Result window . . . . . . . . . . . . . . . . . . . . . . . . 565.5.4 The Contribution window . . . . . . . . . . . . . . . . . . . . 585.6 Data strutures and omplexity . . . . . . . . . . . . . . . . . . . . . 585.6.1 Multi-indies . . . . . . . . . . . . . . . . . . . . . . . . . . . 585.6.2 The index set . . . . . . . . . . . . . . . . . . . . . . . . . . . 595.6.3 Queues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 595.6.4 The omplete algorithm . . . . . . . . . . . . . . . . . . . . . 596 The Genz Test Suite 636.1 Introdution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 636.2 The Genz test funtions . . . . . . . . . . . . . . . . . . . . . . . . . 636.3 Finding good parameters for the algorithm . . . . . . . . . . . . . . . 666.3.1 The hoie of index re�nement strategy . . . . . . . . . . . . 666.3.2 The hoie of quadrature rules . . . . . . . . . . . . . . . . . 686.3.3 The hoie of the simpliial ratio . . . . . . . . . . . . . . . . 686.4 Comparisons with the standard methods . . . . . . . . . . . . . . . . 706.4.1 d=8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 706.4.2 d=4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 736.4.3 d=16 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 736.5 Dimension-adaptive vs. simpliial methods . . . . . . . . . . . . . . . 756.6 Error estimates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 776.7 Conlusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 797 Path integrals for quantum mehanis 817.1 Introdution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 817.2 The disretized measure . . . . . . . . . . . . . . . . . . . . . . . . . 827.3 The harmoni osillator . . . . . . . . . . . . . . . . . . . . . . . . . 837.4 The anharmoni osillator . . . . . . . . . . . . . . . . . . . . . . . . 867.5 Conlusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 888 Conlusion 89
4



1 Introdution1.1 Multi-Dimensional Integrals of Real FuntionsIntegrals are a fundamental part of mathematis, with appliations in a wide rangeof sienes. Among others, they feature prominently in physis, statistis, physialhemistry and �nanial mathematis. The most important ase are integrals forfuntions with a domain that lies within R
d for some dimension d, and with valuesin R. We shall over only these funtions in this thesis, but we note that the extensionto C-valued funtions requires only slight modi�ations.Path integrals are a partiularly notable soure of high-dimensional integrationproblems. They play an important role in �nanial mathematis and in statistialmehanis. Path integrals also arise as an alternative and omplementary representa-tion of ertain partial di�erential equations. In partiular, these path integrals allowfor a simple representation of the Green funtion for the time evolution operator. Weexamine this relationship for the Shroedinger equation in quantum mehanis. Pathintegrals are in�nite-dimensional by nature, and to approximate them numerially,we need to perform a temporal disretization. Sine the error from disretization de-reases with the number of time steps, we need high-dimensional integrals to obtainaurate results.1.2 The Curse of DimensionalityThe following observation is of partiular relevane to this thesis. If we want tointegrate a funtion f in the interval [0, 1], we might go ahead by taking its value atequidistant points, and alulating the mean of the funtion values on these points.This means evaluating f at N points. If we naively try to sale up this method to

d dimensions, and similarly subdivide [0, 1]d equidistantly into d-dimensional hyper-ubes, we �nd we need to evaluate f at Nd points. That is, the amount of workneeded to attain a given re�nement level 1
N and a orresponding level of aurayinreases with the exponent d, and quikly grows beyond the apaity of today'somputers for high dimensions d.The �urse of dimensionality� is the olorful moniker used to desribe this help-lessness in the fae of high dimensions. If we want to perform quadrature for high-dimensional funtions, we need to �nd some way to avoid the urse of dimensionality.The sampling methods Monte Carlo and Quasi Monte-Carlo aomplish this feat.The onvergene of Monte Carlo quadrature is fully independent from the dimensionof the problem, avoiding the urse of dimensionality. In many ases, Quasi Monte-5



1 IntrodutionCarlo quadrature is a good alternative to Monte Carlo. Although unlike Monte Carloit does su�er to some extent from the urse of dimensionality, it has a better on-vergene rate, whih may outweigh this de�it in pratie. However, the respetiveonvergene rates of 1
2 for Monte Carlo and at most 1 for Quasi-Monte Carlo makethem ill-suited for problems that require high numerial auray.Classial interpolation quadrature exploits the higher degrees of smoothness o�eredby many funtions of interest and is able to attain muh higher onvergene rates. Ifit is saled up to higher dimension using a tensor produt approah, it does howeversu�er fully from the urse of dimensionality. The sparse grid method o�ers a way ofretaining the advantages of interpolation quadrature while mitigating the e�ets ofthe urse of dimensionality. In reent years, adaptive sparse grid methods [17, 16℄have been proposed in an e�ort to fully exploit the possibilities of the sparse gridmethod. Questions remain as to what strategies for adaptivity should be hosen.Also, the estimation of the error of quadrature is di�ult for these methods, andrequires further investigation.1.3 ContributionsThis thesis represents an appliation of the method of dimension-adaptive sparsegrids [17℄ to the problem of quadrature. In partiular, it extends the work on aorresponding algorithm proposed in [16℄. The major ontributions of the thesis areas follows.

• We suggest several di�erent strategies for dimension-adaptive re�nement basedon a theoretial analysis of optimal onvergene.
• We propose a hybrid strategy that ombines the advantages of both onven-tional non-adaptive sparse grid quadrature [15℄ and of adaptive sparse gridquadrature, and obtain theoretial results for its onvergene.
• We examine the problem of estimating the error of quadrature. We give theo-retial results for the method proposed in [16℄, and suggest a new alternativemethod.
• The di�erent strategies proposed in this thesis are implemented on the om-puter. The implementation is realized in an objet-oriented, modular fashionthat supports a mix-and-math approah for the various strategies. The imple-mentation also inludes several tools for visualizing the proess of integrationonline. We analyze the run time omplexity of the algorithm.
• Using the omputer implementation and the Genz test suite, we ompare theperformane of the di�erent re�nement strategies, error estimators and quadra-ture rules with eah other, and identify a set of parameters that performs welloverall for the examined test ases.6



1.4 Outline of the Thesis
• We ompare the performane of the algorithm with established methods formulti-dimensional quadrature for the Genz test suite.
• We onsider the problem of path integrals for two examples from quantummehanis. We examine how the dimension-adaptive algorithm may be appliedin this ase, and ompare its performane to that of the established methods.Numerial mathematis is a �eld that some may desribe as laking mathematialstringeny. This thesis makes an e�ort to present all results in a preise fashion,and to use modern mathematial struture to give onise proofs. We have alsoavoided the terms �trivial�, �of ourse� and the big-O notation in proofs throughoutthis thesis, as we feel they may over up problems [10℄.1.4 Outline of the ThesisThe thesis starts o� in hapter 2 with a review of several established approahes formulti-dimensional quadrature. The sampling methods Monte Carlo and Quasi-MonteCarlo are ompared to the interpolation methods. We plae partiular emphasis onthe performane of the di�erent methods for high-dimensional problems. Chapter 3reviews the sparse grid method for numerial quadrature, and examines its adaptiveand non-adaptive versions. We also give some theoretial results for the onvergeneof the non-adaptive version, and show in partiular that asymptotially, non-adaptivesparse grid methods fully break the urse of dimensionality. For atual omputation,adaptive sparse grids may perform far better than non-adaptive methods. Theirsuess depends on the quality of the adaptation strategy. In hapter 4, we onsiderthe problem of adaptive re�nement, and the related problem of error estimation.The omputer implementation of the proposed algorithms, requisite data struturesand questions of run time omplexity are onsidered in hapter 5.In hapter 6, we ompare the di�erent strategies proposed in earlier hapters witheah other using the Genz test suite. Of the strategies and parameters ompared,we identify the ombination with the best overall harateristis. We then omparethis algorithm with the established quadrature methods reviewed in hapter 2. Inhapter 7, we examine the path integral representation of the harmoni osillator andthe anharmoni osillator as examples of quantum mehanial problems. As in theprevious hapter, we ompare the performane of the adaptive sparse grid algorithmwith the other quadrature methods. The thesis loses in hapter 8 with a disussionof the results obtained and of the questions and problems that remain.1.5 AknowledgementsI would like to thank Prof. Mihael Griebel for sponsoring this thesis and Dr. ThomasGerstner for his many helpful suggestions in developing the algorithm and in prepar-ing this doument. I would also like to thank Jörg Zimmermann for the many7



1 Introdutioninsightful disussions on mathematis in general that sustained me throughout thework on this thesis.
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2 Multi-Dimensional QuadratureMethodsThis hapter gives an overview on the major established methods for the quadratureof multi-dimensional funtions. Most of the results are standard material and maybe found in any textbook on quadrature, although for reasons of onsisteny wehave given in them in the form of trivial generalizations to arbitrary measures. Wehave paid speial attention to show not only the apaities but also the limits of thedi�erent methods, in asymptoti theory as well as in pre-asymptoti pratie. Atthe end of the hapter, we give a systemati omparison between the methods.2.1 A Sketh of HistoryThe modern theoretial foundation of integration theory dates bak to Riemann inthe 19th and Lebesgue in the early 20th entury, and allows for the integration oflarge lasses of funtions. The integral values of funtions of interest an often not beobtained analytially, i.e. by evaluating elementary funtions. Instead, the integralvalues are approximated by numerial means (a proess alled numerial quadrature,or simply quadrature1).The onept and �rst methods for numerial quadrature date bak to the anientGreeks. These approahes were geometrial in nature and are today desribed as themethod of exhaustion (a prime example is Arhimedes' approximation of π[1℄). Themethod of exhaustion works by approximating a omplex 2- or 3-dimensional shapeby polygons and polyhedrons, respetively, whih have a known area or volume.During the late 17th entury, the development of alulus by Leibniz and Newtonallowed for a wholly new approah to integrals. Their realization that di�erentiationtheory also allowed for the solution of integrals by reversing the proess of derivationopened the new �eld of analytial integration. It allowed for the symboli integrationof many simple funtions by �nding their �anti-derivative�.This disovery quikly fed into approximative integration theory, and by the end1Several authors use the term �ubature� for multi-dimensional numerial integration, and reservesthe term �quadrature� for univariate integrals. However, this hardly improves terminology, sinethe �ubature� as opposed to �quadrature� would at best suggest integrating over a 2-dimensionaldomain to obtain a 3-dimensional (ubi) volume. Furthermore, in the ontext of measuretheory, integration is indeed a 2-dimensional proess analogous to quadrature, sine the valueof the integral is obtained by multiplying the value of the funtion with the measure of the set(whih may not even have a dimension) on whih it has this value, thus (by abuse of abstration)yielding a (2-dimensional) area. For these reasons, the term �quadrature� is used throughoutthe manusript to desribe the numerial approximation of integrals. 9



2 Multi-Dimensional Quadrature Methodsof the 17th entury alulus had been used to generalize the Greek approah fromgeometri objets to general funtions. For this, a given integrand is approximatedby funtions whose integrals are well known analytially (usually polynomials). Thisis known as quadrature by interpolation.It was not until the 20th entury that a wholly new lass of quadrature methods,the sampling methods, was developed. Of these, Monte Carlo integration is themost prominent. Sampling methods are based on piking random or at least highlydispersive series of points, and taking the arithmeti mean of the funtion valuesobtained at these points as result for the quadrature. Their properties are quitedi�erent from interpolation methods, as we shall see later.In reent deades, interest in numerial quadrature has surged, due mainly to theubiquity of powerful omputers that for the �rst time allow the omputation of manyquadrature values to high preision. Indeed, the problem of the quadrature of one-dimensional funtions may be regarded as solved for the majority of funtions ofinterest. For funtions of higher dimensions, numerial quadrature still poses a hugehallenge, and is an ative area of urrent researh. The reason that quadrature forhigher dimensions is so di�ult is outlined in the next setion.2.2 De�nitions and notationsWe will use the following notation:
Ω denotes the domain of integration; often, we have Ω ⊂ R

d for some d
µ denotes the measure on Ω over whih the funtion is to be integrated;often, µ will be the d-dimensional Lebesgue-measure λd

‖µ‖ denotes the weight of the measure, i.e. ‖µ‖ := µ(Ω)

f denotes the integrand, with f ∈ L1(µ)

I(f) denotes the integral of f over the measure µ, that is I(f) :=
∫

Ω fdµ

QN (f) denotes the result of numerial quadrature for the funtion f after eval-uating f at N funtion points
ǫ(N) denotes the error of quadrature after evaluating N funtion points; it isde�ned as ǫ(N) = |QN (f) − I(f)|

ǫmax(N) denotes an upper bound for the error ǫ(N), as obtained from theoretialresults
ρ(N) denotes the onvergene rate obtained from theory, de�ned as ρ(N) :=

−N d
dN

ǫmax(N)

ǫmax(N) . This orresponds to the slope of ǫmax(N) in a bilogarith-mi plot. The minus sign in the de�nition make ρ(N) satisfy the intuitionthat higher onvergene rates are better. If lim
N→∞

ρ(N) exists, we all itthe asymptoti (logarithmi) onvergene rate.10



2.2 De�nitions and notationsWe will now formalize what we mean by a quadrature method (quadrature algo-rithm) for a given domain Ω and a measure µ. We will only onsider the ase of�nite measures, i.e. we require ‖µ‖ < ∞. We also require ‖µ‖ > 0. This is neededfor some tehnial onsiderations, and the ase ‖µ‖ = 0 is uninteresting anyhow.De�nition 2.2.1 We say that QN is a deterministi quadrature method i�there exist funtions
pN,k : R

k−1 → Ω for k,N ∈ N, k ≤ Nand
rN : R

N → R for N ∈ Nso that
QN (f) = rN (f(xN,1), . . . , f(xN,N ))with
xN,k = pN,k (f(xN,1), . . . , f(xN,k−1))

pN,k is said to be the point generator, and rN the result generator.This de�nition formalizes the idea that for any given N only information gleanedfrom the funtion so far may be used to alulate the result and to deide whihpoint to evaluate next (ompare [34℄). An example for this de�nition will be givenin the next setion.De�nition 2.2.2 We say that QN is a probabilisti quadrature method i� thereexist funtions pN,k and rN as above, but these funtions and QN itself are understoodto have an additional argument from a probability spae (S,S, P ). That is, we have
QN : S × L1(Ω) → R, pN,k : S × R

k−1 → Ω, rN : S × R
N → R. As is onvention inprobability theory, this argument is usually not expliitly listed.The two properties given in the next de�nition will often be of use.De�nition 2.2.3 QN is alled positive semi-de�nite i� we have QN (f) ≥ 0 forall f ≥ 0. QN is alled linear i� QN is linear for all N (and for a probabilis-ti quadrature method for all probabilisti arguments s ∈ S), i.e. QN (λf + µg) =

λQN (f) + µQN (g) for all integrands f and g and all λ, µ ∈ R.Finally, we give several de�nitions relating quadrature to the integral.De�nition 2.2.4 A quadrature method QN is alled onsistent i� for all onstantfuntions c · 1Ω, c ∈ R the equality
QN (c · 1Ω) = I(c · 1Ω) = c ‖µ‖holds. I� for a set G ⊂ L1(µ) and a spei� N we have

QN (g) = I(g) 11



2 Multi-Dimensional Quadrature Methodsfor all g ∈ G, we say that QN is exat for G. Finally, i� for a set G ⊂ L1(µ) wehave
lim

N→∞
QN (g) = I(g)for all g ∈ G we say that QN is limes-exat for G.We see that the onsisteny of QN is simply a speial ase of exatness for G =

{c · 1Ω : c ∈ R}. We will now examine the properties of the most ommon methodsfor multi-dimensional quadrature.2.3 Sampling Methods2.3.1 Monte Carlo quadratureNot all quadrature algorithms su�er from the urse of dimensionality enounteredby the primitive approah given in setion 1.2. Monte Carlo quadrature espeially istotally oblivious to dimension, and in fat any ontinuous struture at all. Monte-Carlo quadrature is a probabilisti quadrature method de�ned by
QMC

N (f) :=
1

N
‖µ‖

N∑

i=1

f(Xi) (2.3.1)where the Xi are independent random variables with the distribution µ
‖µ‖ .Formalized aording to de�nition 2.2.2, QMC

N is given by the point generator pN,n :

(s, (yi)i=1,...,n−1) 7→ sn and the result generator rn : (s, (yi)i=1,...,n) 7→ ‖µ‖
N

∑n
i=1 yi.The probability spae (S,S, P ) is given by (ΩN,A⊗N,

(
µ

‖µ‖

)⊗N
), where A denotesthe σ-algebra on whih µ is de�ned. As an be seen from de�nition, Monte Carloquadrature is onsistent, positive semi-de�nite and linear.Sine the random variables Yi = f (Xi) are independent and have idential dis-tribution, by Etemadi's theorem[11℄ we have lim

N→∞
QMC

N (f) = E (‖µ‖ · f) = I(f)almost surely in P , that is, for any funtion f ∈ L1(µ) we know that QMC
N islimes-exat with probability 1. However, Etemadi's theorem does not give us anyinformation about the rate of onvergene.To make a statement about the rate of onvergene we need the additional ondi-tion that f ∈ L2(µ). An elementary result from probability theory is the following:Proposition 2.3.1 Let f ∈ L2(µ). For all η > 0, we have P {ǫ(N) ≥ 1√

N
c (η)

}

≤ ηwith c (η) = 1
η

√

‖µ‖ ‖f‖L2.Proof. Let f̃ = ‖µ‖ · f . Take η > 0. Using Chebyshev's inequality for theexponent 2, we have
P

{
∣
∣QMC

N (f) − I(f)
∣
∣ ≥ 1√

N
c (η)

}

≤ N
c(η)2

E
((
QMC

N (f) − I(f)
)2
)

12



2.3 Sampling MethodsBy de�nition of f̃ and QMC
N , it follows that

E
((
QMC

N (f) − I(f)
)2
)

= E





(

1

N

N∑

i=1

f̃ (Xi) − E
(

f̃
)
)2


 (2.3.2)Beause E ( 1
N

∑N
i=1 f̃ (Xi) − E

(

f̃
))

= 0, we obtain
E





(

1

N

N∑

i=1

f̃ (Xi) − E
(

f̃
)
)2


 = V

(

1

N

N∑

i=1

f̃ (Xi) − E
(

f̃
)
)

=

N∑

i=1

V

(
1

N
f̃ (Xi)

)using the equality of Bienaymé for the last step. Finally,
N∑

i=1

V

(
1

N
f̃ (Xi)

)

= N · V
(

1

N
f̃ (X1)

)

≤ 1

N
E
(

f̃ (X1)
2
)

=
1

N

∫

Ω
(‖µ‖ · f)2

1

‖µ‖dµ

=
1

N
‖µ‖ ‖f‖2

L2In onlusion, we have E ((QMC
N (f) − I(f)

)2
)

≤ 1
N ‖µ‖ ‖f‖2

L2 . This ombined withequation 2.3.2 yields the desired result. �The proposition states that for any number η the error ǫ(N) is smaller than 1√
N
c(η)with probability 1 − η, giving us a onvergene rate of 1

2 in a statistial sense. Forexample taking η = 1
100 , we know that ǫ(N) ≤ 1√

N
· 100

√

‖µ‖ ‖f‖L2 with 99% prob-ability. We see further see from the proposition that c (η) and therefore the onstantof onvergene only depends on the L2 norm of f . This means that Monte Carloquadrature performs equally well whether the funtion is smooth, only ontinuous,or in fat only measurable.Due to the probabilisti nature of Monte Carlo quadrature, it is impossible to givea deterministi guarantee of onvergene even for very good-natured funtions.Proposition 2.3.2 Let Ω = [0, 1], µ = λ1 ([0, 1]). Then there exists f ∈ C∞(Ω) sothat for all N , P{∣∣QMC
N (f) − I(f)

∣
∣ ≥ 1

}
> 0.Proof. Take f (x) = 10x. We have I(f) = 5. Let AN =

{
Xi ≤ 1

5 ; i = 1, . . . ,N
}.We have

QMC
N (f) =

1

N

N∑

i=1

f (Xi) ≤ 10 · 1

5
= 2 13



2 Multi-Dimensional Quadrature Methodson AN , so that
{∣
∣QMC

N (f) − I(f)
∣
∣ ≥ 1

}
⊃ ANSine P (AN ) = 1

4N > 0, this proves the proposition. �On the other hand, also due to its probabilisti struture, Monte Carlo quadraturehas the unique property mentioned above that we have almost sure onvergenefor N → ∞. All deterministi quadrature methods need stronger requirements toguarantee onvergene. This is formulated in the following proposition.Proposition 2.3.3 If QN is a deterministi quadrature method for Ω = [0, 1] and
µ = λ1([0, 1]). Then there exists a funtion f ∈ L1(µ) so that QN (f) does notonverge to ∫Ω fdµ.Proof. Take g = 0 onstant. LetMN be the set of points used for the evaluationof QN (g). Let M =

⋃∞
i=1MN . Sine the MN are �nite it follows immediately that

M is ountable. Now let h = 1Ω\M be the indiator funtion for Ω\M . Sine M isountable, it is also Lebesgue-measurable and therefore h is a measurable funtion on
Ω. Sine QN is deterministi, and therefore depends only on the results of funtionevaluations, we have QN (g) = QN (h) for all N , sine g and h are equal on all possiblepoints of evaluation M . Sine I(g) = 0 and I(h) = 1, at least one of the statements
lim

N→∞
QN (g) = I(g) and lim

N→∞
Q(h) = I(h) must be false. �2.3.2 Quasi-Monte Carlo quadratureQuasi-Monte Carlo quadrature presents a better alternative to Monte Carlo quadra-ture for many funtions. Instead of hoosing random points, the points are generateddeterministially. We have

QQMC
N (f) :=

‖µ‖
N

N∑

i=1

f(xi) (2.3.3)where the xi are a deterministi sequene in Ω. Quasi-Monte Carlo quadrature is,just as Monte Carlo quadrature, onsistent, positive semi-de�nite and linear.For Ω = [0, 1]d and µ = λd(Ω), the onvergene rate for the Quasi-Monte Carlomethod is given by the inequality of Koksma-Hlawka[18℄:
ǫ(N) ≤ V (f)D∗

N (x1, . . . , xN )where V (f)is the bounded variation of f in the sense of Hardy and Krause[28℄, and
D∗

N (x1, . . . , xN ) is the star disrepany of the family (x1, . . . , xN ) (also [28℄).Commonly, so-alled low-disrepany sequenes are used for Quasi-Monte Carloquadrature. These sequenes are de�ned by having a star disrepany
D∗

N (x1, . . . , xN ) ≤ C (d)
(logN)d

N14



2.4 Interpolation Methodsfor some onstants C (d). The Halton sequene and the Sobol sequene are examplesof suh sequenes. For their onstrution, see [30℄.For suh a low disrepany sequene and an integrand with bounded variationin the sense of Hardy and Krause, we therefore obtain an error bound of ǫ(N) ≤
V (f)C (d) (log N)d

N . Calulating the onvergene rate aording to the de�nition insetion 2.2, we obtain ρQMC(N) = 1 − d
log N . The asymptoti onvergene rate is

limN→∞ ρQMC(N) = 1.2.4 Interpolation Methods2.4.1 General interpolationWe now turn to a wholly di�erent lass of quadrature methods, the interpolationmethods. Although (as noted in setion 2.1) historially older, these methods aremore involved and harder to implement than the Quasi-Monte Carlo and MonteCarlo sampling methods. The general idea is to �nd a quadrature method QN thatis limes-exat for a ertain lass of funtions G ⊂ L1(Ω) (often the polynomials),whih is in some way dense within the set of funtions of interest. To formalize thisidea, the de�nition of a distane between a funtion and suh a lass is helpful.De�nition 2.4.1 Let G ⊂ L1(Ω) be a set of funtions. We de�ne the distane of
f to G by dist (f,G) := inf

g∈G

‖f − g‖∞.Note that the distane may be in�nite. We now give a small lemma.Lemma 2.4.2 Let QN be linear and positive semi-de�nite. Then QN is monotonous,i.e. if f ≤ g then QN (f) ≤ QN (g). If additionally QN is onsistent, then in parti-ular |QN (f)| ≤ ‖µ‖ · ‖f‖∞.Proof. We have QN (g−f) ≥ 0 beause QN is positive semi-de�nite. By linear-ity QN (g) ≥ QN (f) follows immediately. IfQN is onsistent, we have QN (1Ω) = ‖µ‖.Beause −‖f‖∞ · 1Ω ≤ f ≤ ‖f‖∞ · 1Ω , it follows that −‖µ‖ · ‖f‖∞ ≤ QN (f) ≤
‖µ‖ · ‖f‖∞. �In partiular, this leads to the following estimate.Lemma 2.4.3 For h ∈ L1(Ω), we have

|QN (h) − I(h)| ≤ 2 ‖µ‖ · ‖h‖∞Proof. We have
|QN (h) − I(h)| ≤ |QN (h)| + |I(h)|By lemma 2.4.2

|QN (h)| ≤ ‖µ‖ · ‖h‖∞ 15



2 Multi-Dimensional Quadrature Methodsand
|I(h)| ≤ ‖µ‖ · ‖h‖∞by similar properties of the integral. �These results allow us to immediately relate the distane of f to G to the error ofquadrature (see [4℄):Proposition 2.4.4 Let QN be linear, onsistent and positive semi-de�nite. Let QNbe exat on G. Then

ǫ(N) ≤ 2 ‖µ‖ · dist(f,G)Proof. For all g ∈ G, we have QN (g) − I(g) = 0 by de�nition. Beause QN islinear, this implies
ǫ(N) = |QN (f) − I(f)|

= |QN (f) − I(f) +QN (g) − I(g)|
= |QN (f − g) − I (f − g)|
≤ 2 ‖µ‖ · ‖f − g‖∞by the above lemma. Sine this is true for any g ∈ G, we have
ǫ(N) ≤ 2 ‖µ‖ · inf

g∈G

‖f − g‖∞

�We an extend this result to quadrature methods that are only limes-exat on G.Proposition 2.4.5 Let QN be linear, onsistent and positive semi-de�nite. Let QNbe limes-exat on G. Then
lim sup
N→∞

ǫ(N) ≤ 2 ‖µ‖ · dist(f,G)Proof. Let ǫ > 0. Let g ∈ G. Then
|QN (f) − I(f)| = |QN (f) −QN (g) − I(f) + I(g) +QN (g) − I(g)|

≤ |QN (f − g) − I (f − g)| + |QN (g) − I(g)|
≤ 2 ‖µ‖ · ‖f − g‖∞ + |QN (g) − I(g)|Sine

lim
N→∞

|QN (g) − I(g)| = 0this means
lim sup
N→∞

|QN (f) − I(f)| ≤ 2 ‖µ‖ · ‖f − g‖∞Sine g ∈ G was arbitrary, this proves the proposition. �16



2.4 Interpolation MethodsOur main result on quadrature by interpolation follows as orollary.Corollary 2.4.6 Let QN be linear, onsistent and positive semi-de�nite. Let QN belimes-exat for G. Then QN is limes-exat on G, where G denotes the losure of Gwith respet to the topology of uniform onvergene.Proof. We simply note that for f ∈ G we have dist(f,G) = 0 by de�nition. �2.4.2 One-dimensional quadrature on RIn this setion, we examine the important ase Ω ⊂ R. In this ase, beause theyare espeially amenable to analytial integration, Gis usually taken to be the set ofpolynomials. We denote the polynomials2 of order m or less by Pm, that is,
Pm := spanR

{
1, x, x2, . . . , xm

}and the set of all polynomials simply by P. For the following onsiderations, werequire that P ⊂ L1(µ). This is the ase for instane if Ω is bounded. From thisfollows that P ⊂ L2(µ), sine the squares of polynomials are themselves polynomials.This allows us to de�ne the standard L2(µ) bilinear form 〈f, g〉 :=
∫

Ω f · gdµ.We now proeed to �nd quadrature formulas that are limes-exat on the polyno-mials. We will examine formulas of the type
QN (f) =

N∑

i=1

wN,if(xN,i) (2.4.1)with wN,i ∈ R and xN,i ∈ Ω. Obviously, QN is linear. We note that QN is onsistenti�
N∑

i=1

wN,i = ‖µ‖ (2.4.2)and that the ondition
wN,i ≥ 0 (2.4.3)for all N and i = 1, . . . , N is su�ient (but not always neessary) for QN to bepositive semi-de�nite.It is an elementary result that for any given set of absissas xN,1, . . . , xN,N , weights

wN,1, . . . , wN,N (alled Newton-Cotes weights) an be hosen so that QN is exaton PN−1. These may be obtained for example by integrating the Lagrange basispolynomials [9℄.Remark 2.4.7 Any quadrature formula QN that is exat on P0 is automatially on-sistent beause P0 = {c · 1Ω : c ∈ R} (ompare de�nition 2.2.4). It is not, however,2By abuse of notation, we do not distinguish the polynomials per se as elements of R
⊗N from theirinarnation as elements of map (Ω, R). 17



2 Multi-Dimensional Quadrature Methodsneessarily positive semi-de�nite, so if we need this property, we have to establish itfor the given measure and nodes.For the Newton-Cotes weights, the absissas xN,i ould be hosen arbitrarily (as longas no two are the same). This gives us a quadrature formula that is exat on PN−1.For so-alled Gauss formulas, speial points (the nodes of orthogonal polynomials)are hosen as the absissas, leading to formulas that are exat P2N−1 [9℄. Gaussformulas do not always exist. However, it an be shown that if the bilinear 〈., .〉 formis positive de�nite on P and if Ω is an interval, then for eah N we have a positivesemi-de�nite Gauss formula QN .Remark 2.4.8 Gauss formulas exist and are well-known for many important ases:
Ω = [−1, 1] , µ = λ1 ([−1, 1]) Gauss-Legendre rules
Ω = [−1, 1] , µ = 1√

1−x2
λ1 ([−1, 1]) Gauss-Chebyshev rules

Ω = [0,∞[, µ = e−xλ1 ([0,∞[) Gauss-Laguerre rules
Ω =] −∞,∞[, µ = 1√

π
e−x2

λ1 (] −∞,∞[) Gauss-Hermite rulesAll these formulas are linear, onsistent and positive semi-de�nite.If we have a quadrature method QN that is exat for inreasing polynomial degreeswith N , this in partiular implies that QN is limes-exat for P. This gives us animportant result on onvergene.Proposition 2.4.9 Let QN be linear, onsistent and positive semi-de�nite. If QN islimes-exat for P and Ω is ompat, then QN is limes-exat for C0(Ω), where C0(Ω)denotes the ontinuous funtions on Ω.Proof. This follows immediately form the theorem of Stone-Weierstrass[13℄ andfrom proposition 2.4.6. �This result answers the question of onvergene only for ompat Ω. However, manyfuntions of interest are not de�ned on a ompat domain, for example beausethey have a singularity. Empirially, we observe that the method of quadratureby polynomial interpolation given in this hapter still works quite well in manyases. Unfortunately, the theory of onvergene for quadrature on non-ompatdomains is far less developed than that for ompat domains and losed intervalsin partiular, so that we have only a few results for small and poorly haraterizedfuntions spaes. For Gauss-Hermite quadrature, for example, we obtain onvergeneif all derivatives have a ommon bound (ompare [9℄). Given the good onvergene18



2.4 Interpolation Methodsattained on non-ompat domains in pratie, this gulf between pratie and theoryis quite unsatisfatory.2.4.3 Convergene results for Ω = [0, 1], µ = λ1 ([0, 1]) and C∞ ([0, 1])We now give results for a ase for whih detailed analysis does exist, and whihnonetheless enompasses many important problems. Spei�ally, we take Ω = [0, 1]and µ = λ1 ([0, 1]), and an integrand f ∈ C∞ ([0, 1]). For this setion, we assumethat QN is exat on PN−1 (quadrature methods of this kind are sometimes alledinterpolatory).For the base point x0 = 1
2 , the Taylor interpolation polynomial is
p (x) =

M∑

k=0

∂kf
(

1
2

)

k!

(

x− 1

2

)kThis means that we have
f (x) = p (x) +

∂M+1f (τ)

(M + 1)!

(

x− 1

2

)M+1for some τ ∈ [0, 1]. Beause p ∈ PM , this impliesdist (f,PM) ≤ ‖f − p‖∞ ≤ 1

2M+1 (M + 1)!

∥
∥∂M+1f

∥
∥
∞ (2.4.4)Sine QN is exat on PN−1, we an now use proposition 2.4.4 to obtain the estimate

ǫ(N) ≤ 2

2NN !

∥
∥∂Nf

∥
∥
∞Unfortunately, this generally allows no predition about how fast ǫ(N) onverges to 0with inreasing N , beause ∥∥∂Nf

∥
∥
∞ an inrease rapidly with N . Indeed, if f is notanalytial in [0, 1], we know the remainder term of the Taylor series does not onvergeto 0. To give estimates of onvergene for general funtions f ∈ C∞ ([0, 1]), we needa di�erent approah. Here the theory of approximation with algebrai polynomialsomes into play [4℄. Indeed, from approximation theory we have the estimatedist (f,PM ) ≤ π

2r+1 (M − r + 2) · · · (M + 1)
‖∂rf‖∞for a �xed r ≥ 1 and M ≥ r − 1 for any f ∈ Cr ([0, 1]) [32℄. Sine

lim
M→∞

(M + 1)r

(M − r + 2) · · · (M + 1)
= 1this means we have onstants cr <∞ withdist (f,PM ) ≤ cr

2
(M + 1)−r ‖∂rf‖∞ 19



2 Multi-Dimensional Quadrature MethodsNow we an again use proposition 2.4.4 to obtain
ǫ(N) ≤ 2 ‖µ‖ · dist (f,PN−1) ≤ crN

−r ‖∂rf‖∞for M ≥ r − 1.This gives us a onvergene rate of ρ(N) = r for N ≥ r. For our funtion f ∈
C∞ ([0, 1]), this means that we atually have an asymptoti onvergene rate ofin�nity. While this sounds rather tantalizing, we must always remember that thealulations our omputers are able to perform stop far short of in�nity (we willreturn to this point in setion 2.7). For �nite N , we have the estimate

ǫ(N) ≤ min
r=1,...,N

crM
−r ‖∂rf‖∞Eah one of the terms crM−r ‖∂rf‖∞ will eventually overtake all previous terms

csM
−s ‖∂sf‖∞, s < r and beome the dominant term for the minimum. When thistransition happens depends on the size of cr ‖∂rf‖∞. In pratie therefore we doexpet the observed onvergene rate to atually speed up with inreasing N , buthow slowly or quikly this speed-up ours is strongly dependent on the funtion fand its derivatives.Remark 2.4.10 The onstants given in the estimates for dist (f,PM ) above an bedrastially improved with additional results (for example [3℄). However, the qualita-tive nature of the results remains the same.Remark 2.4.11 We have examined only funtions of the lass C∞ ([0, 1]). As wean see from the results above, we in fat have ǫ(N) ≤ crM

−r ‖∂rf‖∞ for any f ∈
Cr ([0, 1]).2.4.4 The tensor produtWe now need to �nd a way to translate our one-dimensional interpolation quadratureformulas to the multi-dimensional ase. The natural approah is to use some sort oftensor produt of our one-dimensional operators. The history of the tensor produtis omplex, and it has been notoriously di�ult to formalize. The formalizationfound in the ontext of algebra and ategory theory[20, 24℄ is mathematially exat,but is usually insu�ient for analytial questions. This is due to the fat that forthe algebrai tensor produt, all tensors are �nite sums of deomposable elements
a ⊗ b. However, to give an example, in general a ontinuous funtion f ∈ C

(
Ω2
)annot be written as a sum f (x, y) =

∑n
i=1 gi (x)hi (y) with gi, hi ∈ C(Ω). Tooverome this limitation, some sort of ompletion proess has to be performed, withareful thought to the proper norm for ompletion. For operators (like the QN ), thesituation beomes even more di�ult, sine we need to �nd onditions to make surethe operators an be properly extended onto the ompleted spae. An overview ofthe required mathematis is given for example in [23℄.20



2.4 Interpolation MethodsSine none of these di�ult onepts are atually needed for this thesis, we willsidestep the problem by de�ning the tensor produt only for a very limited spae ofoperators, whih, however, is su�ient for our further onsiderations. Indeed, whenwe use the tensor produt during this thesis, we always mean the tensor produt ofvetor spaes from algebra.De�nition 2.4.12 We de�ne the Dira form δx for x ∈ Ω by δx(f) = f (x). Wede�ne the spae of Dira sums DΩ by DΩ := spanR {δx : x ∈ Ω}.This lass D orresponds exatly to the lass of quadrature formulas used in thissetion, as given in equation 2.4.1. We now take the d-fold algebrai tensor produtof DΩ with itself:
D⊗d

Ω := DΩ ⊗ . . .⊗DΩ
︸ ︷︷ ︸

d timesWe de�ne a multi-linear mapping
E : (DΩ)d → DΩdby de�ning it on the basis elements of DΩ by

E (δx1
, . . . , δxd

) = δ(x1,...,xd)By the universal property of the tensor produt, this gives us a linear isomorphismof D⊗d
Ω into DΩd , so that we an naturally take DΩd as the tensor produt D⊗d

Ω .2.4.5 Multi-Dimensional quadratureWe an now translate the results from setion 2.4.2 to the multi-dimensional ase bytaking the Dira formula Q⊗d
N , yielding a quadrature formula for µ⊗d on Ωd. Writtenexpliitly by expanding the terms and using the multi-linearity of Q⊗d

N , we have
Q⊗d

N (f) =

N∑

i1=1

. . .

N∑

id=1

wN,i1 · · ·wN,idf (xN,i1 , . . . , xN,id)

Q⊗d
N is linear, and it inherits the harateristis of QN : It is onsistent if QN isonsistent, and positive semi-de�nite if QN is positive semi-de�nite.Proposition 2.4.13 If QN is onsistent, then Q⊗d

N is onsistent.Proof. Q⊗d
N (c · 1Ωd) =

∑N
i1=1 . . .

∑N
id=1wN,i1 · · ·wN,idc = c

(
∑N

i=1wN,i

)d
=

c · ‖µ‖d. �Proposition 2.4.14 If QN is positive semi-de�nite, then Q⊗d
N is positive semi-de�nite. 21



2 Multi-Dimensional Quadrature MethodsProof. We will �rst examine the ase of d = 2. Let f ≥ 0 and g (x) =

QN (f (x, .)). Beause f (x, .) ≥ 0 for all x and beause QN is positive semi-de�nite,we obtain g (x) ≥ 0. Beause QN ⊗ QN (f) = QN (g), we obtain QN ⊗ QN (f) ≥ 0,whih proves the proposition for d = 2. We an extend this proof to higher dimen-sions by iteration. �In analogy to the last setion, let Pd
M denote the d-dimensional polynomials of atmost maximum degree M , i.e.

Pd
M := spanR

{
1, x1, . . . xd, . . . , x

M
1 , . . . , x

M
d

}and let Pd =
⋃

M

Pd
M denote all d-dimensional polynomials.We an now transfer the results about polynomial exatness from the last setionto the multi-dimensional ase. First, we prove a more general proposition.Proposition 2.4.15 If QN is exat on G, then Q⊗d

N is exat on G⊗d.Proof. Let h (x1, . . . , xd) = g1 (x1) · · · gd (xd), gi ∈ G be a deomposable ele-ment of G. We have
Q⊗d

N (h) =

N∑

i1=1

. . .

N∑

id=1

wN,i1 · · ·wN,idh (xN,i1 , . . . , xN,id)

=
N∑

i1=1

. . .
N∑

id=1

wN,i1 · · ·wN,idg1 (xN,i1) · · · gd (xN,id)

=
N∑

i1=1

wN,i1g1 (xN,i1) . . .
N∑

id=1

wN,idgd (xN,id)

= QN (g1) · · ·QN (gd) =

∫

Ω
g1dµ · · ·

∫

Ω
gddµ

=

∫

Ωd

g1 (x1) · · · gd (xd) dµ
⊗d (x1, . . . , xd)

=

∫

Ωd

hdµ⊗dSine any element of G⊗d an be written as �nite sum of deomposable elements, theproposition follows from the linearity of Q⊗d
N and ∫Ω dµ. �Corollary 2.4.16 If QN is exat on PM , then Q⊗d

N is exat on Pd
M .Proof. This follows immediately by noting that Pd

M = (PM )⊗d. �In analogy to the last setion, we therefore know that if QN is exat for inreasingpolynomial degrees with larger N , then Q⊗d
N is limes-exat on Pd. Therefore, inanalogy to proposition 2.4.9, we know that Q⊗d

N is limes-exat on C (Ωd
) if Ω (andtherefore Ωd) is ompat.22



2.5 Nested quadratureIn this way, we have found a very straightforward approah to saling up ourquadrature formulas to higher dimensions. The bad news is that this approah su�ersfrom the urse of dimensionality (see setion 1.2). Calulating Q⊗d
N (f) requires Ndfuntion evaluations, making numerial evaluation impossible for larger N in highdimensions. We will return to this problem and an approah for its mitigation in thenext hapter.2.4.6 Convergene results for Ω = [0, 1]d and µ = λd

(
[0, 1]d

)In analogy to setion 2.4.3, we now give estimates for onvergene for funtions on themulti-dimensional ube [0, 1]d with µ = λd
(
[0, 1]d

). We take a funtion f ∈ Cd(Ω)and a quadrature formula QN that is exat on PN−1. We introdue the norm
‖f‖Cr := max

i1=0,...r
. . . max

id=0,...r
max
x∈Ω

∣
∣
∣
∣
∣

(
∂

∂x1

)i1

· · ·
(

∂

∂xd

)id

f

∣
∣
∣
∣
∣It an be shown that ǫ(N) ≤ cd,rN

− r
d ‖f‖Cr for some onstants cd,r and for N ≥ rd,with the orresponding onvergene rate of r

d [8℄. Important for our onsiderationsis the fat if we have a one-dimensional onvergene rate of s, then the multi-dimensional onvergene rate an, due to the urse of dimensionality, be only asgood as s
d . Indeed, for a one-dimensional funtion g ∈ L1

(
λ1 ([0, 1])

), we only needtake f ∈ L1
(
λd
(
[0, 1]d

)) with f (x) = g (x1). We then have
Q⊗d

N (f) = QN (g) ·QN (1Ω) · · ·QN (1Ω) = QN (g)beause QN is exat on 1Ω. Therefore, we attain exatly the same onvergene as wedid in the one-dimensional ase, however using Nd points for alulating Q⊗d
N insteadof only N points for QN . In the bilogarithmi plot of ǫ(N) over N , the absissa istherefore strethed by the fator d, turning a onvergene rate of s into only s

d . Forthis funtion, we are in e�et wasting many evaluations N for the dimensions 2 to dwhere nothing is going on.2.5 Nested quadratureSo far, we have not given onsideration to the spei� nature of the points where thefuntion is evaluated. Of speial interest is the question whether the points used toalulate QN (f) are reused for higher values of N . The de�nitions 2.2.1 and 2.2.2allow for both possibilities, beause the point generator pN,i depends expliitly on
N . This means that the points of evaluation may be di�erent for every N . However,not all quadrature formulas make use of this freedom. For both Monte Carlo andQuasi-Monte Carlo, the points sequene is independent of N . This is in ontrast tothe quadrature formulas of setion 2.4.2, where the nodes for the Gaussian formulasgenerally hange ompletely with every N . We all formulas of the �rst kind nested,beause new points are always added to (nested within) the old points. 23



2 Multi-Dimensional Quadrature MethodsThis di�erene is important for open-ended (online) integration, where the valueof N is not predetermined, but is ontinually inreased until some sort of onditionis met. In this ase, nested quadrature formulas have the advantage that we onlyhave one new funtion evaluation when going from QN to QN+1, whereas in thegeneral ase we would need to evaluate the funtion N + 1 times. For example, weuse open-ended integration if we want to obtain a quadrature value for a given errorthreshold. In this ase, we inrease N until the integration error (as estimated bysome part of our algorithm) falls below the given threshold.At �rst glane, it would seem that nested quadrature formulas have a large advan-tage in this ase, beause the number of funtion evaluations for Q1, . . . , QN is N .In the ase of a quadrature formula that is not nested, we have instead 1
2N (N + 1),so that the evaluation omplexity is of the order N2instead of N . With a di�erentstrategy, we an however redue this di�erene in degree to only a di�erene in on-stants. We ahieve this by not evaluating QN for every N , but instead using theseries Ni = 2i, i = 0, 1, . . . If M is the minimum number of evaluations for whihthe ondition is ful�lled, we have Ni ≥ M for some minimal r. For this r, we have

Nr ≤ 2M . The total number of evaluations is then
r∑

i=0

Ni =

r∑

i=0

2i ≤ 2r+1 = 2Nr ≤ 4MThus for a non-nested formula, we need at most 4 times as many evaluations to reaha given ondition. Thus, the di�erene between nested and non-nested quadratureboils down to a di�erene in onstants. This espeially entails that the onvergenerate for open-ended integration is always the same as for predetermined N , irrespe-tive of whether QN is nested or not nested.Remark 2.5.1 Calulation shows that the same qualitative result is obtained for
Ni = eil (bi) for some b > 1, where eil (x) := min {n ∈ N : n ≥ x} is the smallestinteger at least as large as x, albeit with a di�erent onstant. We alulate theasymptoti onstant c (b) using the notation from above

c (b) = lim sup
M→∞

∑r(M)
i=0 Ni

M

= lim sup
M→∞

1

M

br(M)+1 − 1

b− 1

= lim sup
M→∞

1

M

b · br(M) − 1

b− 1

= lim sup
M→∞

1

M

b · bM − 1

b− 1

=
b2

b− 1

c (b) has a minimum of 4 at b = 2 in the interval ]1,∞[, showing that our hoie of24



2.6 Comparisonsbase 2 is optimal.2.6 ComparisonsIn summary, we have the following results from the last setion on the quadraturemethods and their onvergene.Quadraturemethod Funtion lass Error bound AsymptotionvergenerateMonte Carlo L1(Ω) ǫ(N) ≤ 100√
N

√

‖µ‖ ‖f‖L2with at least probability0.99 1
2 (in astatistialsense)Quasi-MonteCarlo Funtion on [0, 1]dwith boundedvariation ǫ(N) ≤ V (f)C (d) (log N)d

N 1Polynomialinterpola-tion Cr
(

[0, 1]d
)

ǫ(N) ≤ crN
−r ‖∂rf‖∞ for

N ≥ r

rTensorprodutpolynomialinterpola-tion Cr
(

[0, 1]d
)

ǫ(N) ≤ cd,rN
− r

d ‖f‖Cr for
N ≥ rd

r
d

We see that the smaller the funtion lass for the quadrature (from top to bottom),the better the onvergene rate is. This is not surprising: The higher the degree ofsmoothness, the less erratially the funtion an behave, and the quadrature methodsan take advantage of this information.Monte Carlo quadrature an be used for any funtion in L1(Ω), and does not makeuse of any di�erentiable or even ontinuous struture at all, working just as well for
R as for R

1000 or indeed any measure, whether it even has a dimension or not. Onthe other hand, it is also unable to take advantage of the smoothness o�ered by manyof the problems of interest, always having the same statistial onvergene rate of 1
2 .This means that for eah further deimal digit of the integral we want to obtain, weneed to evaluate 100 times as many points. For this reason, Monte Carlo quadratureis unsuitable for results that demand a high preision.Quasi-Monte Carlo quadrature o�ers a good alternative to Monte Carlo for inte-gration on [0, 1]d for all but the most ill-natured funtions, but is not able to makeuse of the additional information o�ered by di�erentiable funtions. Also, the pre-asymptoti guaranteed onvergene rate may be far lower than the asymptoti rateof 1, as we will see in the next setion. 25



2 Multi-Dimensional Quadrature MethodsHigh degrees of smoothness are well exploited for 1-dimensional funtions by in-terpolation quadrature. While tensor produt interpolation quadrature also makesuse of higher smoothness, it does so to a muh lesser extent, having only a onver-gene rate of r
d . Even if, as is ommonly the ase, our funtion is of lass C∞(Ω),simply taking a very high r for a �xed dimension d to obtain a large onvergenerate r

d is not an option, beause this onvergene rate only kiks in for N ≥ rd, againre�eting the urse of dimensionality.In the next hapter, we will see that sparse grid methods allow us to avoid theurse of dimensionality for interpolation quadrature, signi�antly improving uponthe onvergene for multi-dimensional interpolation methods.2.7 On the questionable signi�ane of asymptotibehaviorWe onlude this hapter by some remarks on the value of asymptoti analysis forpratial omputation, using the example of Quasi-Monte Carlo and Monte Carloquadrature. As we have seen above, Quasi-Monte Carlo is half an order betterthan Monte Carlo asymptotially for funtions with bounded variation. However,this is not true pre-asymptotially. Comparing the pre-asymptoti statistial rateof ρ(N) = 1
2 for Monte Carlo and the pre-asymptoti rate of ρ(N) = 1 − d

log N forQuasi-Monte Carlo, we see that we need N > e2d, or about N > 4.8 · 108 for d = 10,for Quasi-Monte Carlo to have a better rate than Monte Carlo. For d = 32, we have
N > 6.3 · 1027, plaing the turnaround point �rmly beyond the limits attainable bytoday's omputers.However, even these theoretial pre-asymptoti onvergene rates may be quitemisleading in pratie, sine they give only upper bounds whih may be far toopessimisti. Taking the moderate dimension of d = 10, we have ǫQMC

max (N) =

c1N
−1(logN)10 and ǫMC

max(N) = c2N
− 1

2 . For c1
c2

= 1, we obtain the graph for ǫQMC
max (N)
ǫMC
max(N)shown in �gure 2.7.1 (p. 27). If c1

c2
< 1 or c1

c2
> 1, the graph is shifted up or down,respetively.Let us examine how well this theoretial graph relates to pratie for the simpletest funtion f (x1, . . . , x10) = e−

∑
10

i=1
xi . The plot for the atual error quotientobtained for this funtion by numerial quadrature with a omputer algorithm forone run eah of Quasi-Monte Carlo and Monte Carlo an be seen in �gure 2.7.2, p.27. The same sale as for �gure 2.7.1 was used. This makes for easy omparisonof the two �gures. Moreover, the white spae to the right, for whih omputationalresults were not obtained due to run-time limitations, drastially illustrates the limitsof numerial omputability ompared to theoretially required large Ns.When omparing the two �gures, we see immediately that they are qualitativelydi�erent. Espeially, the atual onvergene rate of Quasi-Monte Carlo seems tobe better than that of Monte Carlo diretly from the start, instead of worse for

N < 4.8 · 108 as suggested by theory. Indeed, the relative advantage seems to be26



2.7 On the questionable signi�ane of asymptoti behavior
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2 Multi-Dimensional Quadrature Methodslose to 1
2 , whih would only be expeted asymptotially for very large N .In summary, these omparisons show that the upper bounds o�ered by theory maybe all but useless for pratial onsiderations, and need always to be taken with atleast several grains of salt.

28



3 Hierarhies and the Method ofSparse GridsThis hapter forms the oneptual ore of this work. We have seen in the lasthapter that we an obtain a multi-dimensional quadrature formula by ombiningone-dimensional formulas. While this method leads to orret results, it is also veryine�ient, sine it su�ers from the urse of dimensionality. In 1963, Smolyak gave amethod to avoid the urse of dimensionality [33℄. This method has beome knownunder several di�erent names, inluding �sparse grid method�, �Boolean method� and�disrete blending method�. In all these ase, the �blending� that is performed followsa �xed predetermined sheme. This hapter departs from traditional approahes bybeginning with a generalized sparse grid method, whih by nature turns out to beadaptive[17℄. In this setting, the onventional predetermined sparse grid methodsan be seen to arise as a speial ase. Spei�ally, we apply this adaptive method ofsparse grids to the problem of quadrature. In this, we extend the dimension-adaptivesparse grid approah proposed in [16℄.We give the standard results for onvergene of non-adaptive sparse grid quadra-ture. We use a new approah for error estimation, whih allows for a rather simpleproof. This proof has the advantage that it is not limited to predetermined (simpli-ial) index sets, but an also be used for adaptive algorithms.3.1 De�nitions and notationsWe will use the following notation:
N denotes the natural numbers inluding 0

α, β, γ, . . . denote multi-indies, i.e. elements of N
d for some dimension d

αi denotes the i-th omponent of the multi-index α, where i = 1, . . . , d

|α|1 denotes the total length of the multi-index α, de�ned by |α| =
∑d

i=1 αi

|α|∞ denotes the maximum length of the multi-index α, de�ned by |α| =

max
i=1,...,d

αi

ei denotes the multi-index with a 1 at the i-th position and 0 otherwise, i.e.
(ei)j = δij 29



3 Hierarhies and the Method of Sparse Grids
α ≤ β we delare a partial order on the multi-indies of a given dimension d byde�ning that α ≤ β i� αi ≤ βi for i = 1, . . . , d, i.e. we use omponentwiseomparison. If α ≤ β and α 6= β, we say1 that α is a predeessor of β,and that β is a suessor of α.Eval(A) denotes the number of funtion evaluations needed to ompute A(f) fora Dira sum A for any funtion f ; Eval is a measure of omputationalomplexity
Aα for a family of Dira sums (Ai)i∈N0

on Ω we de�ne the Dira sum Aα on
Ωd by Aα = Aα1

⊗ . . .⊗Aαd
(see setion 2.4.4 for the de�nition of Dirasums and their tensor produt)3.2 The method of sparse gridsTo apply the method of sparse grids to numerial quadrature, we de�ne a re�ne-ment hierarhy of Dira sums (Ul)l∈N

with Ul = QN(l), where the stritly inreasingmapping N (l) orrelates the level l of the hierarhy with the number of nodes ofthe quadrature formula QN . Often, N (l) will inrease exponentially with l. Thisimmediately gives us a re�nement hierarhy for the d-dimensional ase. We needsimply take (U⊗d
l

)

l∈N

.We de�ne the family (∆l) of Dira sums based on Ul by ∆0 := U0, ∆l := Ul −Ul−1for l ≥ 1. We thus have Ul =
∑l

i=0 ∆i. We now rewrite U⊗d
l in terms of ∆l. Bymulti-linearity of the tensor produt of Dira sums, we have

U⊗d
l =

(
l∑

i=0

∆i

)

⊗ . . .⊗
(

l∑

i=0

∆i

)

=
l∑

i1=0

. . .
l∑

id=0

∆i1 ⊗ . . . ⊗ ∆id

=
∑

|α|
∞
≤l

∆αwith the de�nition of ∆α given above. We thus have
U⊗d

l (f) =
∑

|α|
∞
≤l

∆α(f)If U⊗d
l is limes-exat on a set of funtions F, we have for f ∈ F

I(f) = lim
l→∞

U⊗d
l (f) (3.2.1)1While the notation α < β would of ourse be equivalent to α ≤ β and α 6= β with the partial ordergiven, we avoid this notation lest it be onfused with the omponentwise omparison αi < βifor i = 1, . . . , d.30



3.2 The method of sparse grids
= lim

l→∞

∑

|α|
∞
≤l

∆α(f)

=

∞∑

l=0

∑

|α|
∞

=l

∆α(f)We see that approximating I(f) by tensor produt formulas of the type U⊗d
l thusorresponds to adding the terms ∆α(f) in order of inreasing size of |α|∞.The entral insight on whih the method of sparse grids is based omes from thefat this ordering is not neessarily the best for ensuring quik onvergene to I(f).This is due to two omplementary onsiderations:

• The evaluation omplexity Eval (∆α(f)) is the produt of the omplexitiesof Eval (∆αi
), i = 1, . . . , d. It thus depends on all the omponents of α,not just on the maximum omponent. To give an example: If d = 10 andEval (∆i) = 2i, using |α|∞ means giving the multi-indies α = (2, 0, 0, . . . 0) and

β = (2, 2, . . . , 2) the same preedene for evaluation, even though Eval (∆α) =

4, whereas Eval (∆β) = 410 ≈ 106.
• The operator ∆α represents a mixture of re�nements in the di�erent dimen-sions. Again, it depends on all omponents of α, not just on the maximumomponent.To maximize the rate of onvergene, we use the following general strategy:Algorithm 3.2.1 Let

rα :=
|∆α(f)|Eval (∆α(f))be the ratio of the ontribution for α and the number of funtion evaluations requiredto alulate the ontribution. Add the ontributions ∆α(f) in order of dereasing rα.Note that this strategy involves a reordering of the indies. We will assume for themoment that this reordering is possible without hanging the limit. A su�ientriterion for this is the absolute onvergene of the series, whih holds for manyimportant ases, as we will show later.This strategy is optimal in reduing the integration error ǫ(N) with respet to Nif all ontributions are positive. It may not be optimal for ontributions of mixedsigns, as these an anel eah other out to produe a smaller error term. We willmake no attempt to predit the sign of ontributions in this thesis, and thereforetake the given algorithm as optimal under these irumstanes.Of ourse, we generally do not know the values of ∆α(f) without alulating them.The algorithm however would require us to know all the values in advane. Instead,we use heuristis to estimate the ontributions from previous alulations, muh asany adaptive algorithm does. We further assume that in general |∆α(f)| ≥ |∆β(f)|for α ≤ β, sine for α ≤ β the Dira sum ∆β represents a higher level of re�nement31



3 Hierarhies and the Method of Sparse Gridsthan ∆α for all dimensions. Sine we generally have Eval (∆α) ≤ Eval (∆β) in thisase, we expet that mostly rα ≥ rβ for α ≤ β. Sine we want to evaluate in orderof dereasing rα, this leads to the stipulation that we do not evaluate ∆β(f) unlesswe have �rst evaluated ∆α(f) for all α ≤ β. This leads us to the following de�nition(ompare [15℄).De�nition 3.2.2 We all a set of indies A ⊂ N
d valid i� for eah index in A, allpredeessors are also in A, i.e. i� ∀α ∈ A : ∀β ≤ α : β ∈ A. We say that an index αis valid (with respet to A) i� α /∈ A and A ∪ {α} is valid.We onsolidate our onsiderations in the following algorithm (ompare [16℄). Thealgorithm is the one entral to this thesis, and the one on whih the omputerimplementation is based. The result of quadrature is stored in the variable s.Algorithm 3.2.3 Start with A := ∅, s := 0.Repeat until a spei�ed ondition is reahed:From the set of indies valid with respet to A, pik an index α with the highestestimate for rαSet A := A ∪ {α}Set s := s+ ∆α(f)End RepeatRemark 3.2.4 Note that the one-dimensional re�nement hierarhy ∆l(g) representsa re�nement of the integral for the omplete funtion g : Ω → R. Aordingly, ifa multi-index α has a omponent αi = l, this means that the ontribution ∆α(f)represents a re�nement level of l for the whole dimension i. This is in ontrast tothe possibility of loal re�nement, where auray is inreased seletively for partsof the domain of integration [2℄, and whih we do not onsider in this thesis. Tomake the distintion to loally adaptive quadrature lear, the term dimension-adaptivequadrature is used.Remark 3.2.5 The onstrution given in this hapter is not limited to quadratureformulas. Indeed, we an use sparse grid methods for any kind of multi-dimensionalobjets that an be de�ned as a tensor produt of one-dimensional objets, and forwhih there exists a one-dimensional hierarhy of re�nement. Some examples are�nite elements for partial di�erential equations or oe�ient tensors for lossy dataompression [17, 5℄.3.3 Estimates for ∆α(f) for Ω = [0, 1]d and µ = λd

(
[0, 1]d

)We take a positive semi-de�nite linear quadrature formula QN of Dira sums so that
QN is exat on PN−1 for eah N (for onstrution of suh formulas, see setion 2.4.2).Note that beause 1Ω ∈ P0 and QN linear, QN is already onsistent. We use the32



3.3 Estimates for ∆α(f) for Ω = [0, 1]d and µ = λd
(
[0, 1]d

)hierarhy Ul = QN(l) with N (l) = 2l. For a one-dimensional funtion g ∈ C∞ ([0, 1])and µ = λ1 ([0, 1]), we have
|∆0(g)| = |Q1(g)| ≤ ‖g‖∞ (3.3.1)and for l ≥ 1

|∆l(f)| ≤ |Q2l(f)| + |Q2l−1(f)| ≤ 2 ‖g‖∞ (3.3.2)Alternatively for l ≥ 1, we have
|∆l(f)| = |Ul (f − p) − Ul−1 (f − p)|for all p ∈ Pk with k := 2l−1 − 1, beause Ul and Ul−1 are exat for p. Realling thede�nition of dist (f,G) from setion 2.4.1, this gives us the estimate

|∆l(f)| ≤ inf
p∈Pk

(|Ul (f − p)| + |Ul−1 (f − p)|)

≤ inf
p∈Pk

(‖µ‖ · ‖f − p‖ + ‖µ‖ · ‖f − p‖)

= 2 · dist (f,Pk)In analogy to setion 2.4.3, this leads to the estimates
|∆l(f)| ≤ cr (k + 1)−r ‖∂rf‖∞ = cr2

−r(l−1) ‖∂rf‖∞for 2l−1 − 1 = k ≥ r − 1. With p = 2−r, we therefore have
|∆l(f)| ≤ cr2

rpl ‖∂rf‖∞for 2l ≥ r. For those l for whih 2l−1 < r, we an use equations 3.3.1 and 3.3.2 tosubsume the terms pl under a onstant. Taken together, this yields
|∆l(g)| ≤ a · pl ‖g‖Crfor some onstant a and the norm ‖g‖Cr = max

i=0,...,r

∥
∥∂ig

∥
∥
∞.We now translate this one-dimensional result for the onvergene of ∆i(g) to themulti-dimensional ase. For this, we need the norm ‖.‖Cr for multi-dimensionalfuntions, whih we already enountered in setion 2.4.6.We now give the main result of this setion, following [29℄. We use the notation

∂i = ∂
∂xi

to denote the derivate with respet to the i-th omponent of a funtion.Proposition 3.3.1 For f ∈ C∞ ([0, 1]d
), we have |∆α(f)| ≤ adp|α|1 ‖f‖Cr .Proof. We �rst examine the 2-dimensional ase. Let f ∈ C∞ ([0, 1]2

). Let
g : x 7→ ∆l (f (x, .)) 33



3 Hierarhies and the Method of Sparse Grids
∆l is a Dira sum, and an therefore be written as

∆l =

m∑

i=1

aiδyifor some ai and yi. We have for any s ∈ N0:
∂sg (x) = ∂s

1

m∑

i=1

aif (x, yi) =
m∑

i=1

ai∂
s
1f (x, yi) = ∆l (∂

s
1f (x, .))From the third term we an see that ∂sg exists and is ontinuous. Furthermore,

‖g‖Cr = max
s=0,...,r

max
x∈Ω

|∆l (∂
s
1f (x, .))|

≤ max
s=0,...,r

max
x∈Ω

a · pl ‖∂s
1f (x, .)‖Cr

≤ a · pl max
x∈Ω

max
s=0,...,r

‖∂s
1f (x, .)‖Cr

= a · pl ‖f‖CrCombining these two statements yields
|∆k ⊗ ∆l(f)| = |∆k(g)| ≤ a · pk ‖g‖Cr ≤ a2 · pk+l ‖f‖CrWe obtain the proposition by iterating over d. �3.4 General error boundsWe generalize the results from the last setion with the following de�nition.De�nition 3.4.1 We say that the ontributions ∆α(f) are exponentially onver-gent to the base p < 1 with the onstant c i� |∆α(f)| ≤ c · p|α|1 for all α.Proposition 3.4.2 Let ∆α(f) be exponentially onvergent. Then the series∑α ∆α(f)onverges absolutely.Proof. We need to show that ∑α |∆α(f)| <∞. We have

∑

α

|∆α(f)| =

∞∑

k=0

∑

|α|
1
=k

|∆α(f)|

≤
∞∑

k=0

∑

|α|
1
=k

c · pk

= c
∞∑

k=0

# {α : |α|1 = k} pk

34



3.4 General error boundsUsing the fat that # {α : |α|1 = k} =

(

k + d− 1

d− 1

), this implies2
∑

α

|∆α(f)| ≤ c
∞∑

k=0

(

k + d− 1

d− 1

)

pkWe now apply the ratio test for this series:
lim

k→∞

(

k + 1 + d− 1

d− 1

)

pk+1

(

k + d− 1

d− 1

)

pk

= lim
i→∞

k + d

k + 1
· p = pSine we have p < 1 by assumption, this proves the proposition. �For this setion, we assume that QN (f) onverges to I(f). With this assumption,proposition 3.4.2 allows us to write the error of quadrature as

ǫ(N) =
∑

α/∈A

|∆α(f)|where A is the set of indies whose ontributions form the result QN (f). Corre-spondingly, we have inequality
ǫ(N) ≤

∑

α/∈A

|∆α(f)| (3.4.1)To �nd an estimate for this series, the following lemma is helpful.Lemma 3.4.3 Let p < 1, l ∈ N. Then we have
∞∑

k=l+1

(

k + d− 1

d− 1

)

pk = pl
d−1∑

s=0

(

l + d

s

)(
p

1 − p

)d−sProof. Let F (p) =
∑∞

k=l+1 p
k+d−1. F is a power series in p with a 1 as radiusof onvergene. Beause p < 1 by assumption, we an we an swap summation anddi�erentiation:

∂d−1F (p) = ∂d−1
∞∑

k=l+1

pk+d−12It is easy to remember the formula for the number of indies of a given length k by imagining thatwe have k entries to distribute among our d dimensions (for example • • •• for k = 4). We nowinsert d−1 partitions between these entries (for example •|•|•• , (1, 1, 2) or •••||• , (3, 0, 1) for
k = 4 and d = 3). By basi ombinatoris, the number of possibilities is then just ( k + d − 1

d − 1

).35



3 Hierarhies and the Method of Sparse Grids
=

∞∑

k=l+1

∂d−1pk+d−1

=

∞∑

k=l+1

(k + d− 1) · · · (k + 1) pk

= (d− 1)!
∞∑

k=l+1

(

k + d− 1

d− 1

)

pkOn the other hand, we an evaluate F (p) as a geometri series, obtaining
∂d−1F (p) = ∂d−1

∞∑

k=l+1

pk+d−1

= ∂d−1 p
l+d

1 − p

=

d−1∑

s=0

(

d− 1

s

)

∂s
(

pl+d
)

· ∂d−1−s

(
1

1 − p

)

=

d−1∑

s=0

(

d− 1

s

)

(l + d) · · · (l + d− s+ 1) pl+d−s ·

1 · · · (d− s− 1)
1

(1 − p)d−s

= (d− 1)!pl
d−1∑

s=0

(

l + d− 1

s

)(
p

1 − p

)d−sThis leads to the equality
(d− 1)!

∞∑

k=l+1

(

k + d− 1

d− 1

)

pk = (d− 1)!pl
d−1∑

s=0

(

l + d− 1

s

)(
p

1 − p

)d−swhih proves the proposition. �We will use this inequality to obtain error bounds for sparse grid quadrature. First,we review Smolyak's original onept of predetermined non-adaptive sparse gridquadrature. In this ase, we only allow index sets of the type Sl := {α : |α|1 ≤ l},where Sl denotes the simplex of indies of depth l. This orresponds to evaluatingindies in the order of inreasing |α|1 in an online-line algorithm. Looked at in yetanother way, it is equivalent to taking c · p|α|1 as an estimate for rα in algorithm3.2.3, whih establishes the link between non-adaptive sparse grid quadrature andthe onept of exponentially onvergent ontributions.Beause of the shape of the index set, we will also use the name of simpliialsparse grid quadrature for these this non-adaptive algorithm, and all indiesordered by inreasing |α|1 simpliial indies.We now give estimates for the simpliial method.36



3.4 General error boundsProposition 3.4.4 Let ∆α(f) be exponentially onvergent to the base p < 1 withthe onstant c and let
QN (f) =

∑

α∈Sl

∆α(f)Then we have
ǫ(N) ≤ c · pl

d−1∑

s=0

(

l + d

s

)(
p

1 − p

)d−sProof. Using equation 3.4.1, we have
ǫ(N) ≤

∑

α/∈A

|∆α(f)|

≤
∑

α/∈Sl

|∆α(f)|

=

∞∑

k=l+1

∑

|α|
1
=k

|∆α(f)|

≤
∞∑

k=l+1

∑

|α|
1
=k

c · pk

= c
∞∑

k=l+1

(

k + d− 1

d− 1

)

pkUsing lemma 3.4.3, we obtain the desired result. �We now give an exeedingly simple orollary, whih will nonetheless prove to be veryimportant for general onvergene theory of sparse grid methods, espeially withregard to the hybrid algorithms that we will introdue in setion 4.4.Corollary 3.4.5 Let ∆α(f) be exponentially onvergent as above. LetA ⊂ N
d be theset of multi-indies evaluated for QN . Then if A ⊃ Sl, the estimate in the propositionfor ǫ(N) also holds.Proof. We note simply that

ǫ(N) ≤
∑

α/∈A

|∆α(f)| ≤
∑

α/∈Sl

|∆α(f)|

�For l ≥ d, we an give the following simpler estimate
ǫ(N) ≤ c ·

d−1∑

s=0

(

l + d

s

)(
p

1 − p

)d−s

≤ c ·
d−1∑

s=0

(2l)s

s!

(
p

1 − p

)d−s
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3 Hierarhies and the Method of Sparse Grids
≤ c · ld−1

d−1∑

s=0

2s

s!

(
p

1 − p

)d−s

= a · plld−1with a = c ·∑d−1
s=0

2s

s!

(
p

1−p

)d−s. By adjusting the onstant to over the ases l < d,this orresponds to the estimate already given by Smolyak [33℄
ǫ(N) ≤ a′ · plld−1for some a′ and l ≥ 1, noting that p orresponds to 2−α in Smolyak's paper.We now proeed to determine the relationship between N and l. For this, assumethat Eval (∆i) ≤ b · qi for some onstant b and q > 1. Note that this is followsfrom the ondition Eval (Ui) ≤ q

q+1b · qi. This means that for a quadrature formulahierarhy Ul = Q2l , we have b ≤ 3
2 and q = 2. For the multi-dimensional ase, weobtain Eval (∆α) ≤ bdq|α|1The number of evaluations needed for Sl is then for l ≥ d

N =
∑

α∈Sl

Eval (∆α)

=

l∑

k=0

(

k + d− 1

d− 1

)

bdql

≤ bd
l∑

k=0

(2l)d−1 ql

≤ bd2d−1ld−1 q
l+1 − 1

q − 1This gives us
N ≤ b̃ · ld−1ql (3.4.2)for some onstant b̃. On the other hand, we have

N =
∑

α∈Sl

Eval (∆α) =

l∑

k=0

(

k + d− 1

d− 1

)

bdql ≥ bdqland therefore
logN ≥ b̂ · l (3.4.3)for some onstant b̂.Now let QN be the simpliial sparse grid quadrature for the index set Sl. Sinewe have p < 1 and q > 1, there exists s > 0 with p = q−s. Using equation 3.4.2, we38



3.4 General error bounds
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ǫ(N) ≤ a · plld−1

= a · b̃s ·
(

b̃qll(d−1)
)−s

· l(d−1)(s+1)

≤ a · b̃sN−s · l(d−1)(s+1)Using equation 3.4.3, we obtain
ǫ(N) ≤ c ·N−s · (logN)(d−1)(s+1)for some onstant c and N ≥ 2.The quadrature formula used in the last setion has q = 2 and p = 2−r, so in thisase we simply have s = r. The result in this ase orresponds to that given in [29℄.With this formula, we see that simpliial sparse grid quadrature has an asymptotionvergene rate of r, whereas the standard produt quadrature has r

d . Reallingthat standard produt quadrature was equivalent to adding the ontributions in or-der of inreasing |α|∞, we see that the simple hange from |α|∞ to |α|1 makes all thedi�erene between the extremely bad onvergene of r
d due to the urse of dimension-ality, and a asymptoti onvergene rate r that is as good as for a one-dimensionalfuntion. Again, this is a very satisfying theoretial result. The logarithmi termin N and the onstants involved are so large for high dimensions d however that weannot hope to get near to asymptoti behavior in any atual alulations. We willsee in the empirial data in hapter 6 however that adaptive sparse grid quadraturedoes far better than tensor produt quadrature pre-asymptotially as well, as thegeneral arguments given at the beginning of setion 3.2 are generally valid.Remark 3.4.6 We lose with a remark on the origin of the name �sparse grid� [35℄.If we plot the points at whih the funtion is evaluated for simpliial quadrature on39



3 Hierarhies and the Method of Sparse Grids
Sl as opposed to tensor produt quadrature of level l, the former grid appears thinnedout, or �sparse�. This an be seen in �gure 3.4.1 on the preeding page, whih showsthe plots example for the nested Clenshaw-Curtis[7℄ rules with the hierarhy Ul = Q2lfor d = 2 and l = 3.
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4 Index Re�nement and ErrorEstimates4.1 IntrodutionIn the last hapter, we gave algorithm 3.2.3 for dimension-adaptive sparse grid in-tegration. While good as it stands, it leaves many details to be worked out. Mostimportant of these, it begs the question of how the estimates for rα should be ob-tained. We also need to address another problem, whih arises for all numerialapproximation methods. It is the fat that simply returning a number for the in-tegral estimate is worthless unless some sort of error bound is also given. It makesquite a di�erene to reeive a quadrature value of 2.14892 with error bounds of 1e-5,1e-1 or 1e100. As we will see, the problems of estimating the rα and of estimatingthe error are intertwined. For this reason, we treat them both in the same hapter.4.2 Index re�nementWe use the term index re�nement to desribe the proess of suessively pikingindies for evaluation. As realized in algorithm 3.2.3, this orresponds to estimatingthe values rα for the valid indies at eah step, and piking the index α with thehighest estimate. We reall that
rα =

|∆α(f)|Eval (∆α)Sine Eval (∆α) is known, the problem boils down to estimating |∆α(f)|.4.2.1 Estimation using the diret predeessorsOne possibility for estimating |∆α(f)| is by using the values |∆β(f)| that we havealready obtained. We say that β is a diret predeessor of α if β = α− ei for some
i = 1, . . . , d. For a given α, let c1, . . . , ck be the values of |∆β(f)| for the diretpredeessors β of α. This leads us diretly to the following estimates for |∆α(f)|:
(
∏k

i=1 ci

) 1

k (the geometri mean estimator)
min

i=1,...,k
ci (the minimum estimator)

max
i=1,...,k

ci (the maximum estimator) 41



4 Index Re�nement and Error EstimatesNote that all these estimates are only de�ned if α has a least one diret predeessor,so that k ≥ 1. This does not pose a problem. The only index that does not havea diret predeessor is the zero index α = (0, . . . , 0). Sine the zero index is theonly index valid for the empty set, it is always the �rst index that is evaluated. Forthis reason, we an set the estimate rα for the zero index to an arbitrary value, forexample 0. Sine this estimate is not based on any information from the funtion,it annot be used for error estimation, so we start giving error estimates only whenthe �rst index (or better the �rst few indies) have atually been evaluated.Our hoie of the three estimates geometri mean, minimum and maximum raisesthe question of why the arithmeti average and the hyperboli mean were not on-sidered. The reason for this is pratial in nature. For many funtions, the values ciwill usually di�er by orders of magnitude. In this ase, the arithmeti average lieslose to the maximum, and the hyperboli average lies lose to the minimum. Wetherefore restrit our onsiderations to the three most salient possibilities.4.2.2 Estimation by evaluationAnother very diret way to estimate |∆α(f)| is to ompute it by evaluating ∆α(f)(note that the term estimate is used in a rather misleading sense here). Of ourse,sine eah evaluation ∆α(f) represents a further re�nement of the quadrature value,and having alulated the ∆α(f) for all valid indies anyway, we would be ill-advisednot to use these ontributions for the quadrature result. This leads to the following,somewhat modi�ed version of algorithm 3.2.3. This algorithm orresponds losely tothe one given in [16℄. The only di�erene is that in [16℄, instead of piking the indexwith the highest value for rα, the index with the highest value of |∆α(f)| is hosen;that is, the ontribution is not weighted by the evaluation omplexity.Algorithm 4.2.1 Start with A := ∅.Repeat until a spei�ed ondition is reahed:Let B be the set of valid indies with respet to A.Set s :=
∑

α∈A∪B ∆α(f).From the set of indies valid with respet to A, pik the index α with the highestvalue for rα.Set A := A ∪ {α}.End RepeatWe see that at any point of the algorithm, the result of quadrature s is the sum ofall ontributions from indies that are either in A or valid with respet to A. Theontribution ∆β(f) must be alulated as soon as β beomes valid. The assignment
s :=

∑

α∈A∪B ∆α(f) an be replaed by s := s+
∑

α∈C ∆α(f), where C is the set ofthose indies in A∪B whose ontributions have not yet been added to s. While thisapproah takes a little more work to implement, it should be used in pratie, sineit avoids adding all ontributions from srath for eah iteration.42



4.3 Error estimates4.2.3 Trivial estimationFinally we give a trivial ase. We simply estimate |∆α(f)| to be some onstant,for example 1 (again, using the word estimation in a rather loose sense). In thisase, we have rα = 1Eval(∆α)
, meaning that the indies are traversed in the order ofinreasing evaluation omplexity. In many ases, for example if Eval (∆i) = 2i, wehave Eval (∆α) > Eval (∆β) for |α|1 > |β|1. In these ases, the adaptive algorithmdefaults to the lassial simpliial method (with the addition that it is possible thatthe algorithm may �nish when only part of the last layer {α : |α|1 = l} of the simplex

Sl has been added, leaving us with an index shape in between Sl−1and Sl).4.3 Error estimatesWe now turn to the problem of error estimates. The most important property of anerror estimate η(N) is that it is valid, i.e. that we have ǫ(N) ≤ η(N) for all N .Put di�erently, η(N) should never underestimate the error ǫ(N), as this would leadto spurious results for all work depending on these quadrature results. On the otherhand, we also want to avoid a large degree of overestimation. Note that with thisde�nition, η(N) = 106 is a valid estimate if ǫ(N) = 2−N , but it is ertainly not avery good one. Therefore, while we always require our estimates to be valid, we alsowish for them to be e�ient for them to be useful, i.e. for η(N) generally to beonly slightly larger or at least of the same order of magnitude as ǫ(N).4.3.1 Estimates using the index strutureA �rst observation is that if at a given iteration of the algorithm we take the set Aof evaluated indies, the urrent result of quadrature is s =
∑

α∈A ∆α(f). The erroris then onstrained by
ǫ(N) = |s− I(f)|

=

∣
∣
∣
∣
∣
∣

∑

α∈A

∆α(f) −
∑

α∈Nd

∆α(f)

∣
∣
∣
∣
∣
∣

=

∣
∣
∣
∣
∣

∑

α/∈A

∆α(f)

∣
∣
∣
∣
∣

≤
∑

α/∈A

|∆α(f)|We now assume that ∆α(f) is exponentially onvergent to the base p < 1 (seede�nition 3.4.1). We further assume that this estimate is re�eted in the atualontributions, that is, that we have
|∆β(f)| ≤ p(|β|1−|α|

1) · |∆α(f)| 43



4 Index Re�nement and Error Estimatesfor all suessors β of α. This allows us to give a bound for the sum of the ontribu-tions of all these suessors:
∑

β ≥ α,

β 6= α

|∆β(f)| ≤ |∆α(f)| ·
∑

β ≥ α,

β 6= α

p(|β|1−|α|
1)

= |∆α(f)| ·








∑

γ∈Nd

p|γ|1



− 1





= |∆α(f)| ·





(
∑

i∈N

pi

)d

− 1



 (4.3.1)
= |∆α(f)| ·

((
1

1 − p

)d

− 1

)

= |∆α(f)| ·
((

1

1 − p

)d

− 1

)We now give a lemma and a proposition that turn this inequality for a single givenmulti-index into a global error estimator.Lemma 4.3.1 Let A be a valid set of indies. Let γ /∈ A. Then there exists β ≤ γso that β is valid with respet to A.Proof. We give a proof by indution.For d = 1, we take i = max {j : (k) ∈ A for all k < j}. The maximum existsbeause 0 is always a member of the set and the set is bounded by γ1. Let β = (i).By de�nition of i, all predeessors of β lie in A, therefore β is valid. Sine γ /∈ A,this also means that γ annot be a predeessor of β. Sine the partial order ofmulti-indies is a total order for dimension 1, we onlude β ≤ γ.For d > 1, we assume the proposition has already been proved for the dimension
d − 1. For any d-dimensional set of indies D we denote the (d− 1)-dimensionalsetion through D at the height s in the last omponent by D(s), i.e.

D(s) :=
{

α ∈ N
d−1 : (α1, . . . , αd−1, s) ∈ D

}Further, de�ne α̌ = (α1, . . . , αd−1) for any d-dimensional index α.Now take s = γd. The set A(s) is valid, beause for α′ ∈ A(s) and β′ ≤ α′, we knowthat (β1, . . . , βd−1, s) ≤ α and therefore β′ ∈ A(s) by de�nition. We have γ̌ /∈ A(s).This means that we an apply the indutive hypothesis to obtain a β′ ≤ γ̌ so that
β′ is valid with respet to A(s). In partiular, this means that β′ /∈ A(s). Now let
r = max

{
j : β′ ∈ A(k) for all k < j

}. As above, the maximum exists, and we have
r ≤ s = γd.Let β :=

(
β′1, . . . , β

′
d−1, r

). Beause β′ ≤ γ̌ and r ≤ γd, we have β ≤ γ, whihproves the �rst part of the lemma. Furthermore, we have β′ /∈ A(r), as otherwise r44



4.3 Error estimateswould not be maximum. By de�nition of A(r), this implies β /∈ A.Now let α be any predeessor of β. If αd = r = βd, then α̌ is predeessor of β̌and therefore (α1, . . . , αd−1, s) is predeessor of (β1, . . . , βd−1, s) = β′. Beause β′ isvalid with respet to A(s), we have (α1, . . . , αd−1, s) ∈ A and �nally α ∈ A beause
α ≤ (α1, . . . , αd−1, s) and A is valid. If on the other hand we have αd < r, thenbeause (β′1, . . . , β′d−1, αd

)
∈ A and α ≤

(
β′1, . . . , β

′
d−1, αd

), we also have α ∈ A.Sine α was an arbitrary predeessor of β, and β /∈ A, we know that β is valid withrespet to A. This proves the seond part of the lemma, and ompletes the proof. �Proposition 4.3.2 Let A be a valid set of indies and let B be the set of indiesvalid with respet to A. Assume that
|∆γ(f)| ≤ |∆β(f)| p(|γ|1−|β|

1) (4.3.2)for γ ≥ β and p < 1. Then
∑

γ /∈A∪B

|∆γ(f)| ≤ c ·
∑

β∈B

|∆β(f)|with c =
(

1
1−p

)d
− 1.Proof. Using inequality 4.3.1, we have

c ·
∑

β∈B

|∆β(f)| =
∑

β∈B

c · |∆β|

≥
∑

β∈B

∑

γ ≥ β,

γ 6= β

|∆γ(f)|

=
∑

β∈B

∑

γ∈Dβ

|∆γ(f)| with Dβ := {γ : γ ≥ β, γ 6= β}

≥
∑

γ∈D

|∆γ(f)| with D :=
⋃

β∈B

Dβ (4.3.3)Now let γ /∈ A ∪ B. By the preeding lemma, we know there exists a β ≤ γ sothat β ∈ B. Beause γ /∈ B, we even have γ 6= β. This means that γ ∈ Dβ ⊂ D.Sine γ /∈ A ∪ B was arbitrary, we have D ⊃ {γ : γ /∈ A ∪B}. Combining it withthe inequality above, we obtain
∑

γ /∈A∪B

|∆γ(f)| ≤
∑

γ∈D

|∆γ(f)| ≤ c ·
∑

β∈B

|∆β(f)|whih proves the proposition. �In this way, we have found a way to estimate ǫ(N) with the sum of ontributions of in-dies that are urrently valid with respet to A. Note that the sum c·∑γ /∈A∪B |∆γ(f)|45



4 Index Re�nement and Error Estimatesfor the quadrature error implies that we take s =
∑

α∈A∪B ∆α(f) and not only
s =

∑

α∈A ∆α(f) in the algorithm. This was exatly the ase for our modi�ed algo-rithm 4.2.1, so we an immediately use c ·∑γ /∈A∪B |∆γ(f)| as an error estimate forit. However, we have the problem that p is generally not known.The error estimate given in [16℄ orresponds to the estimate just given, with cheuristially set to 1. With the above onstraints and theory, we an predit thisestimator to only be valid if c ≤ 1, that is, if p ≤ 1 − 1
d
√

2
. Even if this is not thease, the estimator does seem to work reasonably well in pratie. This is due to thefat we have given inequalities and not equalities. Espeially in 4.3.3, many indies

β that our in several Dβ are now onsidered only one in D. Also, we have usedthe absolute value of ontributions throughout, and the anellation of ontributionsof opposing signs may also attenuate the atual quadrature error.There are other valid onerns, though. In partiular, it is not lear how well theassumption 4.3.2 holds. Obviously, sometimes the ontribution ∆γ(f) will have asmall absolute value simply by anellation. We an hope that these sorts of e�etsbeome statistially small if we have a large number of indies. However, there mayalso be strutural problems with 4.3.2, whih may invalidate this approah.We an modify this error estimate to work with our original algorithm 3.2.3. In-stead of the atual ontributions we have to take the estimates for the |∆β(f)|with β valid, sine the atual values are unknown. In this algorithm, we have
s =

∑

α∈A ∆α(f), so we need to add the estimate for ∑

β∈B

|∆β(f)| to the errorestimate. In this way, we arrive at the estimate (c+ 1) ·∑β∈B dβ, where eah dβ isthe estimate for |∆β(f)|. Again, we do not know the value of c, requiring us to takesome heuristi value.4.3.2 Blak box estimatesThe approah developed in the last setion is in a way very natural, as it takesknow loal ontributions and adds them to arrive at a global estimate, but we haveseen that it poses many problems. A totally di�erent approah ignores all thisinformation, treating the sequene of quadrature results QN (f) as a blak box. Thisapproah is suggested by the fat that for many funtions in pratie, we have arobust onvergene with a stable onvergene rate over large strethes of N , i.e.
ǫ(N) ≈ c ·N−r for some r > 1 and some range N ∈ [N0,N1]. As we have seen in thelast hapter, this sort of onvergene is also expeted from theoretial results.Viewed in a bilogarithmi plot, we have log (ǫ(N)) ≈ log c − r logN . Using asimply linear regression, we an estimate the onstants c and r, yielding an errorestimate of

η(N) = cest ·N−restThe problem is of ourse that we do not know ǫ(N) itself. All we have is thevalues QN (f) as a funtion of N . Sine QN (f) is an estimate for I(f), for agiven N and for M ≤ N we an estimate the error ǫ (M) = |QM (f) − I(f)| by
ζ1 (M,N) := |QN (f) −QM(f)|. Note that that the estimate ζ1 we have given for46



4.3 Error estimates
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Figure 4.3.1: ǫ (M)and ζ (M,N) for ǫ(N) = N−2 and N = 105

ǫ (M) is dependent on bothM and N . Indeed, for a �xed N , the estimate ζ1 (M,N)will generally beome more aurate with inreasing N , beause QN (f) → I(f) for
N → ∞.Note however that the loser M gets to N , the more we will underestimate theerror. To give an example, we take ǫ(N) = N−2. The resulting graphs for ǫ (M) and
ζ1 (M,N) are shown in �gure 4.3.1. We see that if M gets to lose to N , we losethe linearity of the funtion. If we want to get a good �t for our regression, we mustrestrit ourselves to those values for M that are suitably smaller than N .There is yet another onern. So far, we have assumed that ǫ(N) dereases with
N . But this is usually not the ase. Instead, ǫ (M) will often osillate around thevalue 0, with the osillations getting smaller with N . What we are interested in is notthe error per se, but rather the expeted degree of inexatness. Thus, our de�nitionof ζ1 does not really apture our intent. One way to deal with this problem is tosimply stipulate that ζ (M,N) be dereasing in M . This leads us to the de�nition

ζ2 (M,N) := max
M ′≥M

ζ1 (M,N)In this way, ζ2 (M,N) represents the maximum di�erene of QM ′(f) to QN (f) for
M ≤ M ′ ≤ M , apturing the intuition of the remaining inexatness or volatility of
QM (f) far better. We an see this di�erene in �gure 4.3.2.The problem of underestimating for ζ for M lose to N still persists, however. Wehave undertaken several attempts to overome this problem, but none have been verysuessful. An adaptive algorithm that attempts to lok in on the part of the urve47



4 Index Re�nement and Error Estimates
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Figure 4.3.2: ζ1 (M,N) vs. ζ2 (M,N) for N = 105 and a Genz osillatory funtionfor d = 8 and h = 18 (see hapter 6)where the ζ (M,N) deviates downward works in some ases, but goes wholly astray inothers. A more omplex approah, whih expliitly modeled this deviation, had thesame problem. In the end, we have settled to simply taking the interval [M
1

2 ,M
3

4 ],that is, the third quarter of value of M in the bilogarithmi representation. Thisseems to work reasonably well in pratie, but is unsatisfatory from a theoretialpoint of view.Yet another problem is that the exponent r used above is not really a onstant.Heuristially speaking, it may hange over time. For example for funtions of thelass C∞, r will inrease with N .In onlusion, the blak box estimate given in this setion is far more heuristithan the index-based estimate. Somewhat surprisingly, it often performs better inpratie, as we will see in hapter 6. Still, unsolved problems remain with thisapproah, espeially with the lower and upper uto� for M used in regression.4.4 Hybrid algorithmsIt is very di�ult to give error bounds for purely adaptive algorithms. The generalproblem is that the algorithm bases its deisions on where to perform further re�ne-ment on numerial values obtained at previous levels of re�nement. If these valuesare very small, the algorithm will not ontinue along this path of re�nement. Inalgorithm 3.2.3, for example, if an index α for some reason gets an rα that is verysmall, its ontribution will not be alulated for a long time (i.e. until all ompeting48



4.4 Hybrid algorithmsvalid indies β have even smaller values rβ). As long as α is not added to the indexset, it also bloks further re�nement past this index, as no β with β ≥ α, β 6= α anbeome valid as long as α /∈ A.For example, we an onstrut non-onstant funtions f of lass C∞ that have
∆e1

(f) = 0. Indeed, this is true for all f ∈ C∞ that have f (x) = 0 for all points
x evaluated for ∆e1

. As onsequene, the algorithms given in setion 4.2 will notevaluate ∆e2
(f), generally making onvergene impossible. Non-adaptive sparse gridquadrature does not su�er from this problem, and we have given onvergene resultsto this e�et in the last hapter.What we would wish for, then, is a sparse grid quadrature algorithm that is atleast as good as an adaptive version while retaining the guaranteed onvergene ofthe simpliial (stati) version. This is easier than it sounds. We need simply let theadaptive and the non-adaptive version run in parallel, i.e. alternating between thetwo with every evaluation and then seleting the better of the two results at eahstep. This would only mean a moderate inrease in evaluation omplexity for eahalgorithm by the onstant fator 2. We would, however, need to �gure out how tohoose whih of the two results is better at any given time.But this is not neessary, beause we an do even better. Instead of letting thetwo approahes, adaptive and stati, run independently, we merge them, letting theminform eah other. For this, we give a modi�ed hybrid version of our main algorithm3.2.3 .Algorithm 4.4.1 Start with A := ∅, s := 0, nadapt := 0, nstatic := 0.Repeat until a spei�ed ondition is reahed:From the set of indies valid with respet to A, pik an index α with the highestestimate for rαFrom the set of indies valid with respet to A, pik an index β with the smallestsize of |β|1If nadapt + Eval (∆α) ≤ nstatic set γ := α, nadapt := nadapt + Eval (∆α)otherwise set γ := β, nstatic := nstatic + Eval (∆β)Set A := A ∪ {γ}Set s := s+ ∆γ(f)End RepeatIn this way we alternate between adaptive and stati indies, giving eah an equalshare of the funtion evaluations. Of ourse, we annot always exatly have nadapt =

nstatic. Indeed, one we pik a simpliial index α for evaluation, nstatic inreases byEval (∆α), whih nadapt remains onstant, and vie versa for an adaptive index. Thealgorithm above resolves this problem in a very one-sided manner, ensuring that atany time we have nadapt ≤ nstatic, that is, it is biased towards preferring simpliialindies. This bias was hosen beause we have known onvergene results for thesimpliial algorithm, but none for the adaptive algorithm, and this bias allows usto have the same guaranteed onvergene rate for the hybrid algorithm by assuringthat at all times at least half the funtion evaluations have been used for simpliial49



4 Index Re�nement and Error Estimatesindies. Indeed, if for some number of funtion evaluations M the non-adaptivealgorithm has ompleted the simplex Sl, then we have A ⊃ Sl for the hybrid versionat N = 2M . Using proposition 3.4.5, we see that ǫhybrid
max (N) ≤ ǫstatic

max

(
N
2

). In termsof onvergene rate, this translates to ρhybrid(N) = ρstatic
(

N
2

), in partiular givingus the same asymptoti onvergene rate. On the other hand, the algorithm stilluses half its evaluations for adaptive indies, so we an expet it to perform as wellas the fully adaptive algorithm (again, with the aveat of needing an N that is twieas large).With this hybrid algorithm, adaptive and stati methods work on the same indexset, ooperating and informing eah other, instead of only running in parallel. In-deed, some indies will be seleted by both the stati and the adaptive method. Byoperating on a shared set of evaluated indies, these indies are evaluated only one,in e�et halving the evaluation omplexity for these indies for eah omponent.Even more important is another result of this reiproal ooperativity. Returning tothe example above, where we had ∆e1
(f) = 0, we see that now the index e1 wouldsoon be evaluated as a stati index. In this way, all indies β ≥ e1, β 6= e1 are notonly evaluated by the stati method, but also opened up for the adaptive algorithm,whih so to speak is lifted over the road-blok of e1 by the stati method. We antherefore expet hybrid methods to attain better results than the optimum of thesolely stati or the solely adaptive methods together.Of ourse, the number of funtion evaluations allotted to the non-adaptive methodneed not be 1

2 , and we an easily modify the algorithm to support any ratio. For anyratio r > 0 of simpliial funtion evaluations out of all evaluations, we an give thesame guarantee on onvergene and asymptoti onvergene rate as above, notingthat in this ase the onvergene is slowed by the fator 1
r . For the speial ase of

r = 1, we get the non-adaptive version of the algorithm. On the other hand, forthe ratio r = 0, we get the fully adaptive version, and do not have a guarantee ofonvergene as above.
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5 The Implementation5.1 IntrodutionWe have implemented the dimension-adaptive algorithm of sparse grid integrationfor the omputer. Although the algorithm in its stated form seems simple enough,many di�ult hoies have to be made during implementation pertaining to problemssuh as estimation of the index ontribution, error estimation and data strutures.In many ases, it was not lear a priori what the best hoie would be. For thisreason, an objet-oriented programming language was hosen, whih allows for theeasy and robust design of the program in a modular fashion. For eah of thesemodules we an then program di�erent implementations, whih an be mixed andmathed seamlessly to �nd the optimal ombination.We have hosen Java as a programming language for several reasons. The mostimportant is its stringent objet-oriented design, whih allows for a learer stru-ture than C++. It provides a high level of safety mehanisms (for example arraybound enforement) and redues program omplexity (for example through auto-mati garbage olletion). It is also available for a wide variety of platforms, whereit an be run immediately without the need for error-prone reompilation. On theother hand, Java is not well respeted in the high performane ommunity beauseit is pereived as signi�antly slower than C/C++. While this was true for the very�rst Java versions, the use of just in time ompiler tehnology has signi�antly losedthe gap. Indeed, urrent versions of Java outperform C in several benhmarks[21℄.In any ase, the urrent implementation is intended to explore general possibilitiesof implementation, and to ompare the di�erent strategies and hoies for the di�er-ent modules, and not to give maximum performane. Java was hosen as the bestompromise for a programming language that is established, o�ers relatively highperformane, and allows for easy and robust development.In the following setions, we desribe the various modules that make up the im-plementation and ompare the di�erent options for their realization. We will onlyexplain the main ideas behind the ode, limiting disussion of the details of imple-mentation to the essentials. For details, we refer to the authors website[25℄, whereall ode and extensive doumentation are available.5.2 The ore algorithmIn the algorithm 3.2.3, we spei�ed no method by whih to arrive at an estimate forthe rα. We have developed several mehanism for estimation, whih are realized as51



5 The Implementationdi�erent lasses. All of these lasses implement the main interfaepubli interfae Integrator<Evaluator> {IntegrationResult integrate(Evaluator integrand,StopCondition ondition,List<Visualizer> visualizers)throws IntegrationFailedExeption;...}We will desribe the two major implementations of the this interfae. The lassEstimateIntegrator implements algorithm 4.4.1, supporting simpliial quotas be-tween 0 (fully adaptive) and 1 (non-adaptive). It an use the minimum, maximumand geometri estimate introdued in setion 4.2.1. The lass EvaluateIntegratorimplements a hybrid version of algorithm 4.2.1, and also supports simpliial quotasbetween 0 and 1.The method integrate forms the main entry point for quadrature. The integratorlasses all work the same way: They perform an open-ended quadrature until theondition spei�ed by the given StopCondition lass is reahed. At this point, themethod returns, giving an IntegrationResult return value. This lass gives theresult of quadrature, an error estimate and the number of times the funtion hasbeen evaluated during quadrature. It may also give supplemental information aboutthe quadrature proess, for example issuing a warning that the funtion behavederratially and that the results should therefore be treated with aution.The third argument gives a list of lasses that give visual feedbak about thequadrature proess. We will over this part of the implementation in detail in setion5.5.The most triky part of the implementation onerns the �rst argument. Whatmust be understood is that the algorithm as implemented never itself sees the fun-tion to be integrated. Indeed, suh a funtion must not even exist. Instead of afuntion, the �rst argument spei�es a more abstrat Evaluator:publi interfae Evaluator {int dimension();double deltaEvaluate(Index index)throws IntegrationFailedExeption;boolean anEvaluate(Index index);int pointsForIndex(Index index);}We �rst over the standard ase, where the Evaluator diretly ats on a funtion. Inthis ase, the �rst method returns the funtion dimension. The seond method takesa multi-index α (implemented as Index) and returns the value ∆α(f) for that index.The third method delares whether the Evaluator is able to evaluate the value for52



5.2 The ore algorithmthe given index. Evaluation may not be possible, for example, if the one-dimensionalquadrature formula used by the Evaluator only supports a limited number of nodes.If evaluation is possible, the last method returns the number of funtion evaluationsneed to perform evaluation and ompute the value ∆α(f) for the given index.This, as stated, is the standard ase. As we an see, the Evaluator makes noexpliit mention of a funtion anywhere. It is a blak box that only returns a di-mension, some value for eah index, and information on whether an index an beevaluated and how ostly this is. No restritions are made on where this informationomes from. We have implemented non-standard evaluators for in�nite-dimensionalintegrals and for virtual indies, where several indies are subsumed to one, reduingthe size of the index set. As of the writing of this thesis, both of these omponentsare still in early development, and are not overed further.Another feature of algorithm 3.2.3 that has to be ast into more onrete termsis the stopping ondition. We an easily ome up with several suh onditions thatmay be of use:
• Stop when the estimate for the error ǫ(N) falls below a given threshold
• Stop when the estimate for the relative error ǫ(N)

|QN (f)| falls below a given thresh-old
• Stop when the number of funtion evaluations N reahes a given thresholdAll of these are available in the implementation. They are realized as lasses imple-menting the interfae StopCondition:publi interfae StopCondition {boolean stop(IntegrationResult result);...}The main method is stop(IntegrationResult). It takes an IntegrationResultsupplied by the main algorithm, whih desribes the urrent state of integration.Based on this information, the method returns true if the ondition is satis�edand false otherwise. The lass MultipleStopCondition allows the ombinationof several stopping onditions, returning the signal to stop as soon as one of theonstituent onditions is satis�ed.Speial are needs to be taken with the stopping onditions based on the error esti-mate. This is beause the error estimate returned as part of the IntegrationResultmay underlie �utuations due to the sampling proess. If we poll the error estimateontinuously to see if it has fallen below a given threshold, these �utuations bias ustowards stopping too early. The reason for this one-sided bias is that stopping is aone-sided operation. If we stop, we don't ontinue to see if maybe the error estimategoes up again. If we don't stop, however, we simply ontinue, sampling the errorestimate until it does fall below the threshold. We have tried to mitigate this deision53



5 The ImplementationName Distribution Hierarhy Exat on NestedTrapezoidal λ1 ([0, 1])
N (0) = 1

N (l + 1) = 2l−1 + 1
n/a yesGauss-Legendre λ1 ([0, 1]) N (l) = 2l+1 − 1 P2N(l)−1 noClenshaw-Curtis λ1 ([0, 1]) N (l) = 2l+1 − 1 PN(l)−1 yesPatterson λ1 ([0, 1]) N (l) = 2l+1 − 1 P 3

2
N(l)+ 1

2

yesGauss-Hermite N (0, 1) N (l) = 2l+1 − 1 P2N(l)−1 noTable 5.1: Properties of the di�erent quadrature rulesbias at least somewhat by only sampling the error estimate at inreasing intervals.In the implementation, we have hosen the following strategy: if we sample the errorrate at N = M , we wait until N > 3
2M until sampling again.5.3 The quadrature formulasThe implementation supports a wide range of quadrature rules. For Ω = [0, 1] and

µ = λ1 ([0, 1]), we have trapezoidal rules, Gauss-Legendre rules, Clenshaw-Curtis[7℄rules and Patterson rules (a.k.a. Kronrod-Legendre rules)[31℄. The Patterson rulesare designed to attain a maximal level of polynomial exatness while retaining nodesfrom previous levels (i.e. being nested). Some of the rules given here originally referto an interval di�erent from [0, 1]. In this ase, they have been resaled aordingly.The ase of Ω = R and µ = N (0, 1), where N(0, 1) denotes the Gaussian normaldistribution, is supported by a resaled version of the Gauss-Hermite rules. Theproperties of the quadrature rules as implemented are summarized in table 5.1. Foreah of these quadrature rules, we have a hierarhy of quadrature formulas Ul (om-pare setion 3.2). The hierarhy olumn of the table gives the relationship betweenthe level l and the number of nodes N (l) for that level.The quadrature formulas Ul are Dira sums, and are modeled by thepubli lass QuadratureFormula {publi int getSize();publi double getNode(int index);publi double getWeight(int index);}These method getSize() returns the number of nodes of the Dira sum, and thusorresponds to N (l) (again using the notation from setion 3.2). The nodes andweights themselves are returned by the eponymous methods.In this way, eah quadrature rule an be implemented as a lass that returns aQuadratureFormula for eah level l. This idea is aptured in thepubli interfae Generator {QuadratureFormula getByLevel(int level);54



5.4 The appletint maxLevel();....}Most of the generators produe the requested quadrature formula on the �y. Thisauses a brief delay the �rst time a quadrature formula is requested for a given level.One it has been produed, however, the QuadratureFormula is stored in a aheand is available without any delay on subsequent request. In ontrast to this, thePatterson quadrature rule works with pre-spei�ed tables of values. In both ases,only levels up to the maximum supplied by the method maxLevel() are supported.This is either beause the algorithm for quadrature formula generation is numeriallystable only up to a ertain level and number of nodes, or, in the ase of the Pattersonrules, beause tabulated values are only available up to a maximum level.The lass DeltaGenerator is used to produe the ∆l that are needed for sparsegrid quadrature. It wraps around a Generator for a spei� quadrature rule, pro-duing the ∆l from the Ul produed by this Generator. The DeltaGenerator lassautomatially reognizes when some nodes used in Ul are present again in Ul+1, asin the Patterson formula. In these ases, it fuses the weights from Ul and Ul+1 toprodue only one node for the ombined weight, so that the total number of nodesand therefore Eval (∆l+1) is as small as possible.5.4 The appletThe implementation ontains a Java applet that serves as an interative front end forthe quadrature proess. It allows the user to selet from various funtion lasses andto set the stopping onditions. It supports dimension-adaptive sparse grid quadra-ture, non-adaptive sparse grid quadrature, Monte Carlo quadrature and Quasi-MonteCarlo quadrature. The quadrature rules an be spei�ed for both the adaptive andthe non-adaptive sparse grid quadrature method. For adaptive sparse grid quadra-ture, the user an also selet various re�nement and error estimation strategies.In �gure 5.5.1, we see some of these settings in the window at the top enter.Spei�ally, the adaptive sparse grid (�ASG�) quadrature is used with the Pattersonrules for the Genz osillatory funtion (see hapter 6) with dimension 8 and di�ulty18.5.5 VisualizationThe implementation supports a wide range of modules for visualizing the quadra-ture proess online. This has proved extremely helpful in the development of thealgorithms, as the graphi display of relevant data makes it far easier to analyzeand grasp intuitively why the algorithm is or is not working, and are more revealingthan only benhmark data on onvergene. In the same vein, hanges to the algo-rithm an immediately be assessed, and parameters an be tuned interatively. A55



5 The Implementationsreenshot of the implementation with several visualization modules ative is shownin �gure 5.5.1 on the next page.The �gure shows the results of a quadrature for a Genz osillatory funtion withdimension 8 and di�ulty 18. We used the fully adaptive approah with ontributionestimation by geometri average, and performed quadrature up to N = 104 evalu-ations. We will give a short desription of the omponents shown. For a detaileddesription of all the features, please refer to the online doumentation and ode at[25℄.5.5.1 The Grid windowThe grid window shows 2-dimensional slies through the index set. The top twosliders allow the user to selet the dimensions i and j of interest. The windowthen displays all indies α with αk = 0 for k 6= i, j. The sizes of the ontributions
∆α(f) are visualized in the left pane by olor sale. A blak dot signi�es a positiveontribution, otherwise we have ∆α(f) < 0. The slider on the right adjusts theolor sale. The slider on the bottom is used to retroatively analyze the quadratureproess. It allows the user to selet any M with 0 ≤M ≤ N , and show the state ofquadrature at this point in the proess. On the right pane, we see the ontributionsknown to the algorithm at this point as full squares. The valid indies and theurrent estimates for the size of their ontributions are shown as the smaller squares.A mouse-over funtion displays the numerial values of ∆α(f), its estimate andEval (∆α(f)) for the indies.5.5.2 The Extent windowThis visualization omponent display the maximum |α|1 enountered during quadra-ture as a red horizontal bar. The blak vertial bars display the maximum αi en-ountered for eah dimension i = 1, . . . , d. This allows the user to quikly appreiatehow important eah dimension was in the quadrature proess.5.5.3 The Result windowThe result window displays the quadrature error ǫ(N) and several related statistisover the ourse of quadrature. Of ourse, the atual error ǫ(N) an only be shown ifthe orret value for the integral I(f) is known. The main panel shows a bilogarithmiplot displaying the various statistis against the funtion alls N on the absissa. Thered and blak urve shows the absolute value of the error |ǫ(N)|; a blak segmentindiates that ǫ(N) is positive for this segment, and a red segment that it is negative.The pink urve displays the error estimate given by the quadrature algorithm withrespet to N .The error line starts at the �rst vertial grid line, whih orresponds to N = 1.The next gridlines are for N = 10, N = 100, et. The pink error urve only startsat N ≈ 300, beause for N < 300, the algorithm deemed the amount of information56



5.5 Visualization

Figure 5.5.1: The appliation
57



5 The Implementationaumulated too small to give a meaningful estimate. The di�erent sliders allow theuser to adjust the setion of the plot that is shown. This window also features amouse-over funtion that numerially displays the grid oordinates in the plot.5.5.4 The Contribution windowThe ontribution window shows the atual values of rα for evaluated and non-evaluated indies. The top pane shows rα for those indies α1, α2, . . . , αk that wereevaluated during quadrature. The sizesof the rα is plotted logarithmially againstthe non-logarithmi absissa i=1,. . .,k. Again, blak odes for positive and red fornegative ontributions. The lower pane shows the values for rβ for those indies βthat were not evaluated by the quadrature algorithm. These are sorted in order ofdereasing rβ. The values rβ are omputed in the bakground after the quadratureis �nished in an open-ended proess.The top pane of the window an be used to assess if the algorithm atually didmanage to trawl through the indies in order of dereasing rα. Any indies β withlarge rβ that the algorithm missed will be visible in the lower pane. In an idealworld, the top panel would show a graph of monotonously dereasing rα, and all rβin the lower pane would be smaller than the rightmost (lowest) rα of the top pane,meaning that the algorithm used the optimal set of indies.5.6 Data strutures and omplexityThroughout this thesis, we have used the evaluation omplexity N as basis for de-sribing the e�ieny of our algorithms. In this setion, we justify this hoie for ourmain algorithm 3.2.3. This is not trivial. We need ompliated data strutures formanaging the set of multi-indies, and we need to pay areful attention that thesestrutures are e�ient. Otherwise, we might spend more time managing ourselvesthan doing atual work1.5.6.1 Multi-indiesMulti-indies are modeled by the interfae Index. They onform to the immutablepattern, that is, the multi-index α they represent annot be modi�ed one they havebeen instantiated. This allows the indies to be freely used and exhanged in theprogram without extra logi to ensure that they are not modi�ed outside of theirurrent sope.The multi-index itself is oded in a sparse fashion, so that instead of all αi, theindex stores tuples (i, αi) for only those i where αi > 0. Let C (α) denote the numberof non-zero omponents for the index α, i.e. C(α) := #{i : αi > 0}. In this way, theamount of memory required to store an index is independent of the dimension of theproblem and is instead proportional to C(α). Beause C(α) ≤ d, the dimension d1Although tempted, the author refrains from any obvious jokes about bureauray58



5.6 Data strutures and omplexityforms an upper bound for C(α). Often, espeially for high d, C(α) will be far smallerthan d.The tuples (i, αi) are stored in order of inreasing i. This allows us to perform abinary searh on the tuples when a partiular omponent is aessed, with logarithmitime in C(α).5.6.2 The index setThe set of indies is stored by means of a hash table, whih allows fast randomaess. This is important beause the algorithm often needs to aess the diretpredeessors of a given index β, for example to alulate its expeted ontributionas per setion 4.2.1, or to determine if all diret predeessors of β are already in theset, and therefore β is valid. The lookup time of a hash table is of the order C(β).5.6.3 QueuesAn important part of the algorithm is �nding an index α with a maximum value of
rα. To aomplish this e�iently, the valid indies are stored in a priority queue.A priority queue of the size M takes time on the order of log2 (M + 1) for insertingelements and for removing a maximum element, whih is far more e�ient than thetime of the order M that would be used for trawling through all elements to �nd anelement with a maximum value.5.6.4 The omplete algorithmWe now give a step by step walk-through of the algorithm 3.2.3, listing all operationsthat have time dependent on d and N . For this setion, we assume that Eval (∆i) ≥
2i. This is the ase for all quadrature rules in the implementation.The following operations are performed for eah index in the index set:1. We evaluate ∆α(f) for the index. Beause Eval (∆i) ≥ 2i, this orrespondsto at least 2|α|1 evaluations of the d-dimensional funtion, giving a total timeorder of at least d · 2|α|1 .2. We add α to the index set. The time required is of the order C(α).3. We �gure out whih new indies have beome valid through the last step. Forthis, we hek eah of the forward neighbors α+ei, i = 1, . . . , d if it has beomevalid. The index α + ei has beome valid if all its bakward neighbors are inthe index set. Sine an index has C(α+ ei) ≤ C(α) + 1 bakward neighbors,and heking whether an index β = α+ei −ej is in the set requires C(β) timewith C(β) ≤ C(α), the total time is of the order d · (C(α) + 1)2.Adding these terms, the time for the management operations is of the order

C(α) + d · (C(α) + 1)2 59



5 The ImplementationOn the other hand, the time for funtion evaluations is at least
d · 2|α|1Beause C(α) ≤ |α|1, this shows that management time is at most of the same orderas the time for funtion evaluations.We need also examine the operations related to the index queue. Here, the sit-uation is more ompliated. We �rst examine the simpliial ase. For this, let βi,

i ∈ N be a list of all indies in order of inreasing length |βi|1. We give the followingproposition.Proposition 5.6.1 Let S ∈ N, and let A = {βi : i ≤ S}. Let N(S) be the orre-sponding number of funtion evaluations. Then we have
S∑

k=1

log2(k + 1) ≤ max(3, d) ·N(S)Proof. Let a = max(3, d). We use the fat that
a ·N(S) = a ·

S∑

k=1

Eval(∆βk
) ≥

S∑

k=1

a · 2|βk|1and perform a omponentwise omparison of the two sums
S∑

k=1

log2(k + 1) and S∑

k=1

a · 2|βk|1For a given k, let
l = max{r : #Sr ≤ k}be the level of the largest simplex with less or equal than k elements. Beause theindies βi are arranged in simpliial order, this means that |βk| ≥ l and therefore

2l ≤ 2|βk|1 (5.6.1)We have
k < #Sl+1 =

(

d+ l + 1

l + 1

)

≤ (d+ l + 1)l+1and therefore
log2(k + 1) ≤ (l + 1) log2(d+ l + 1) (5.6.2)We now want to prove that for l ≥ 1

(l + 1) log2(d+ l + 1) ≤ a · 2l (5.6.3)60



5.6 Data strutures and omplexityBy de�nition of a, this holds for l = 1. It also holds for l > 1 beause
∂

∂l

(

a · 2l − (l + 1) log2(d+ l + 1)
)

= a · (log 2) · 2l − log2(d+ l + 1) +
l + 1

d+ l + 1

≥ 2

3
d · 2l − log2(d+ l + 1) + 1

> 0Combining equation 5.6.3 with equations 5.6.1 and 5.6.2 yields
log2(k + 1) ≤ a · 2|βk|1whih ompletes the proof. �Corollary 5.6.2 Let A be an arbitrary index set, and S = #A. Let N the numberof funtion evaluations. Then

S∑

i=1

log2(k + 1) ≤ max(3, d) ·NProof. We need simply arrange the elements α1, . . . , αs in order of inreasinglength. Beause the β1, . . . , βs have minimal length, we have 2|αi|1 ≥ 2|βi|1 for i =

1, . . . , S and therefore N ≥ N(S). �For algorithm 4.2.1, the indies in the queue are always a subset of the index set A.At the time that we evaluate index αk, there an therefore be at most k indies inthe queue. A queue operation then needs time of the order log2(k + 1). For eahindex, we have one insertion and at most one removal. Therefore the total time forqueue operations is
2 ·

S∑

k=1

log2(k + 1)whih by the orollary is of the same order as the time d ·N used for evaluating thefuntion.The situation is less favorable for algorithm 3.2.3. Here, for eah index in the indexset, up to d forward neighbors may be plaed in the queue along with an estimate fortheir ontribution without any time being spent for evaluation of the ontributionof these indies. Indeed, we an onstrut index sets for whih the amount of timefor queue operations is larger by the order of d than the amount of time spent onfuntion evaluations. In this respet, algorithm 4.2.1 is preferable to algorithm 3.2.3for large dimensions d, as the latter may then spend the larger amount of time withmanagement instead of atual evaluation work.
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6 The Genz Test Suite6.1 IntrodutionThe theoretial results available for the onvergene of a spei� quadrature methodonly give some indiation to its utility. For one, theoretial results are usually onlyavailable for spei� ases. In pratie, we often observe that a quadrature methodperforms quite well for many funtions for whih no theoretial error bounds areknown. Even where theoretial results are available, they generally give only upperbounds for a whole lass of funtions, and are valid for the worst ase performanewithin this lass, even though performane may be muh better for the majority offuntions. For this reason, a omputer-based benhmark that gives real-world per-formane onstitutes a valuable omplement to the onvergene results from theory.6.2 The Genz test funtionsGenz [14℄ proposed a test suite for benhmarking multi-dimensional quadraturemethods in 1984. The suite is omposed of six di�erent funtions lasses, eah repre-senting an aspet or problem typial for multi-dimensional integration. All funtionlasses have been designed to be used on the multi-dimensional unit ube [0, 1]d withthe measure λd
(
[0, 1]d

):
f1 (x) := cos

(

2πu1 +
d∑

i=1

aixi

)

f2 (x) :=
d∏

i=1

(

a−2
i + (xi − ui)

2
)−1

f3 (x) :=

(

1 +
d∑

i=1

aixi

)−(d+1)

f4 (x) := exp

(

−
d∑

i=1

a2
i (xi − ui)

2

)

f5 (x) := exp

(

−
d∑

i=1

ai |xi − ui|
)

f6 (x) :=







0 for x1 > u1 or x2 > u2

exp

(
d∑

i=1
aixi

)

otherwise 63



6 The Genz Test Suite
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6.2 The Genz test funtionsThese funtions are given the names �osillatory�, �produt peak�, �orner peak�,�Gaussian�, �ontinuous� and �disontinuous�, respetively, re�eting their salientharateristis. Illustrations of these funtions for d = 2 are given in �gure 6.2.1 onthe faing page.Eah funtion is dependent on a set of parameters ai and ui. The parameters
a1, . . . , ad an take values in R>0 and re�et the di�ulty of quadrature, for exam-ple determining how quikly the funtion osillates or how sharp the peak is. Theparameters u1, . . . , ud take values in [0, 1] and are more or less independent of thedi�ulty, instead shifting the funtion in spae. For example, they determine theposition of the wave rests for f1 or of the disontinuity for f6. In this way, eah fun-tion lass has many di�erent representatives. We an therefore run our benhmarkwith a large number of funtions for eah lass, and give statistial omparisons forthe di�erent funtion lasses.The Genz funtions were designed in suh a way that their integrals an be easilydetermined analytially. We have

I (f1) = 2d cos

(

1

2

(

4πu1 +

d∑

i=1

ai

)
d∏

i=1

sin
(ai

2

)
)(

d∏

i=1

ai

)−1

I (f2) =

d∏

i=1

ai (arctan (ai (1 − ui)) + arctan (aiui))

I (f3) =

(

d!
d∏

i=1

ai

)−1
∑

α∈{0,1}d

(−1)|α|1

1 +
∑d

i=1 αiai

I (f4) =
d∏

i=1

√
π

2ai
(erf (aiui) − erf (ai (ui − 1)))

I (f5) =
d∏

i=1

a−1
i

(

2 − e−aiui − e−ai(1−ui)
)

I (f6) =

min(2,d)
∏

i=1

eaiui − 1

ai

d∏

i=3

eai − 1

aiwhere erf (x) := 2√
π

∫ x
0 e

−t2dt is the error funtion.When generating test funtions, we hoose the ai and ui pseudo-randomly withuniform distribution on [0, 1]. The ai are then resaled to a′i := hk·ai

‖a‖
1

for a givennumber hk for eah funtion lass. This hk then re�ets the di�ulty level of thefuntion fk that is generated. The di�ulty levels hk, k = 1, . . . , 6 must be deter-mined in advane for eah dimension d examined. They should be hosen in suh away that the di�erent funtions lasses have omparable di�ulty in some sense. 65



6 The Genz Test Suite6.3 Finding good parameters for the algorithmIn the last hapter we have seen that the implementation of the dimension-adaptivesparse grid quadrature algorithm is omposed of many di�erent modules, eah ofwhih has di�erent realizations. In this setion, we will use the Genz test suite as abenhmark to selet whih ombination of realizations for these modules works best.Beause of the large set of parameters, we do not attempt an optimization on the fullparameter spae. Rather, we only modify one parameter at a time, holding the otherparameters �xed, and hoping that the optimum found then is also the optimum inother ases. Indeed, the modules are to a large part independent of one another, andthe results rather lear, so that this assumption gains redibility.We have performed the benhmarks in dimension d = 8, using the di�ulties
h1 = 9

h2 = 19

h3 = 2.1

h4 = 12

h5 = 15

h6 = 2.9We used the Monte Carlo method as a baseline for determining these values. Speif-ially, we hose hi so that for N = 104 funtion evaluations, the relative error ofquadrature for the Monte Carlo method was about 10−2. We have alulated theresults of quadrature QN (f) for N = 100, 200, 400, . . ., 102400. In some ases, theatual values are slightly higher due to the fat that alulating the ontribution foran index is an atomi operation for the algorithm. For eah benhmark, we evaluated100 randomly generated funtions from eah lass.6.3.1 The hoie of index re�nement strategyWe ompared the following index re�nement strategies:Algorithm DesriptorAlgorithm 4.2.1 EvaluateAlgorithm 3.2.3 with minimum estimator Estimate MinAlgorithm 3.2.3 with maximum estimator Estimate MaxAlgorithm 3.2.3 with geometri estimator Estimate GeomIn eah ase, we use a hybrid version of the algorithm with a simpliial quota of 0.5,and the Gauss-Legendre quadrature rules. The results are shown in �gure 6.3.1 onthe next page. Here and in all subsequent �gures of this type, we plot the averagenumber of orret digits (that is − log10
ǫ(N)
|I(f)| ) against log10N . We see the di�erenesbetween the various re�nement strategies are not very large, showing that the general66
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Figure 6.3.1: Comparison of di�erent re�nement strategies with �xed quadrature rule(Gauss-Legendre) and simpliial quota (0.5) 67



6 The Genz Test Suitestrategy of the algorithm is only in�uened little by the spei� form of the estimate.Of the all strategies, �Estimate Min� seems to perform best overall by a little bit, sowe have hosen it for further testing.6.3.2 The hoie of quadrature rulesTaking the �Estimate Min� algorithm with a simpliial ratio of 0.5, we now omparedi�erent quadrature rules:Quadrature Rule CommentPatterson Nested rule with optimal degree of polynomial exatness(of the order 3
2N)Clenshaw-Curtis Nested rule with suboptimal polynomial exatness (of theorder N)Gauss-Legendre Non-nested rule with optimal degree of polynomial exat-ness (of the order 2N)Trapezoidal Nested rule for pieewise linear interpolationThe results are shown in 6.3.2 on the faing page. We see that that the Pattersonrules perform best, losely followed by Gauss-Legendre. It seems that the higherpolynomial exatness a�orded by Gauss-Legendre loses out to the fat that it requiresmore evaluations beause it is not nested. The Clenshaw-Curtis rules are struturallyinferior to the Patterson rules, and perform notieably worse. The trapezoidal rules,whih do not use di�erentiable struture muh, unsurprisingly ome in last.There is however a surprise: Looking at the results for the Continuous lass, wesee that the polynomial interpolation rules perform quite a bit better than the trape-zoidal rule. This is unexpeted, beause in the Continuous ase, no derivative exists,so there is no theoretial reason to expet polynomial interpolation to perform bet-ter than trapezoidal quadrature. Indeed, looking at the results of the Disontinuouslass, this is exatly what we see. There is no smoothness to be taken advantage of,and all quadrature formulas perform equally.6.3.3 The hoie of the simpliial ratioSo far, we have established the �Estimate Min� algorithm with a simpliial rationof 0.5 and the Patterson rules to be the best hoie for our partiular Genz benh-mark. We now vary the simpliial ratio, to see in what way the adaptive algorithmperforms better than simpliial quadrature, and whether the ombination betweenthe two does indeed exhibit synergisti e�ets, as speulated in setion 4.4. We testthe following simplex ratios:

68
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6 The Genz Test SuiteSimpliial ratio Comment0.0 Fully adaptive0.1 Adaptive with small non-adaptive omponent0.5 Half-half hybrid1.0 Classial non-adaptive quadratureThe results are shown in 6.3.3 on the next page. We see that for the smooth Genzfuntions, full adaptivity works best, and additional simpliial omponents simplyslow down the algorithm in �nding the best indies. The situation is quite di�erentfor the Disontinuous lass. Here, the adaptive algorithm fails ompletely to identifythe best indies. However, neither does the fully non-adaptive algorithm performbest. Here we indeed have the ase that the two omponents inform eah other, andthe half-half hybrid omes out on top. It seems that the less smooth a problem is,the more irregular is the index struture. In these ases, the adaptive method goesawry, and should be supported by a strong non-adaptive omponent.In onlusion, we hoose the ratio of 0.5 for our algorithm. As seen in �gure 6.3.3 onthe faing page, the onvergene is only slightly worse, but we gain a great deal ofrobustness.6.4 Comparisons with the standard methods6.4.1 d=8We are now ready to ompare the adaptive sparse grid method with the establishedmulti-dimensional quadrature methods desribed in hapter 2. Spei�ally, we om-pare the following methods:Method DesriptorAdaptive sparse grid, minimum estimator, 0.5 simpliial ratio,Patterson rule AdaptiveNon-adaptive sparse grid with Patterson rule SimpliialTensor-produt quadrature with Gauss-Legendre rule ProdutQuasi-Monte Carlo quadrature with Halton sequene QMCMonte Carlo quadrature MCThe �Produt� quadrature was introdued in hapter 2 to be of the form Q⊗d
M .This would allow only the numbers Md, M = 1, 2, . . . for the number of funtionevaluations. For d = 8, this orresponds to the integers 1, 256, 6561, 65536, . . . whihare spaed apart too far to �t in with our sequene 100, 200, 400, . . . of evaluations.We have mitigated the problem by mixing formulas of the type QM and QM−1 togive a produt quadrature formulas of the type Q⊗k

M ⊗Q⊗(d−k)
M−1 for k = 1, . . . , d, whihallows a better approximation of the given values.70



6.4 Comparisons with the standard methods
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6.4 Comparisons with the standard methodsThe results of the omparison are shown in 6.4.1 on the preeding page. We see thatthe �Adaptive� method does well for the smooth Genz funtions, although it loses outto �QMC� for the Corner Peak. It should be noted that, in ontrast to expetationsbased on logarithmi onvergene rates (see 2.6) , the �Produt� quadrature does notdo too badly, although the �Adaptive� quadrature has overall better performane.For the Continuous and Disontinuous lasses, we see that �QMC� is the method ofhoie. For these lasses, interpolation methods annot make use of any smoothness,and therefore show slow onvergene.6.4.2 d=4To see to what extent the relative advantages of the algorithms depend on the di-mension of the funtion, we have also performed benhmarks for the ases d = 4 and
d = 16 (next setion). The alibration of the di�ulties for the Genz lasses wasperformed as in setion 6.3, yielding:

h1 = 8

h2 = 18

h3 = 3

h4 = 10

h5 = 17

h6 = 3The results are shown in �gure 6.4.2 on the following page. We see that fordimension 4, standard tensor produt quadrature performs well for the smooth Genzlasses, overall being on par with the adaptive sparse grid approah. Simpliial sparsegrids perform only a little worse than the adaptive version. For the Continuous andDisontinuous lasses, again the sampling methods dominate. Note that due to thelimitations of �oating point arithmeti, an auray of about 14 digits is the highestattained.6.4.3 d=16In this ase, the di�ulties obtained from alibration were:
h1 = 8

h2 = 20

h3 = 1.5

h4 = 16

h5 = 26 73
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6.5 Dimension-adaptive vs. simpliial methods
h6 = 5In order to re�et the higher di�ulty of quadrature in high dimensions, we inreasedthe maximum number of funtion evaluations, so that now N = 100, 200, . . ., 100 ·

216 ≈ 6.6 · 106.The results are shown in �gure 6.4.3 on the next page. We see that �QMC�performs best for the Produt Peak and Gaussian lasses. For the non-smooth lasses,the sampling methods and �QMC� in partiular win hands down. We see that forhigh dimension, the �Adaptive� method loses auray in relation to the samplingmethods. For the Corner Peak and Osillatory lasses, it is still overall the bestmethod. It performs very well for the Osillatory lass, whih also judging by theprevious results seems espeially amenable to interpolation quadrature.6.5 Dimension-adaptive vs. simpliial methodsFrom the results of the benhmark in �gure 6.4.1 on page 72 we see that thedimension-adaptive sparse grid method always performs better than the simpliialnon-adaptive method in terms of auray. In this setion, we relate this observationto the struture of the Genz funtions and examine the impliation for the indexset and index ontributions. For eah Genz lass, we show a salient index grid asprodued by the visualization omponent of the algorithm (see setion 5.5).These grids are shown in �gure 6.5.1 on page 77. We have hosen dimension 2to reate the results. The struture of the 2-dimensional setions through grids forthe higher dimensional representatives of eah Genz lass look similar, beause a2-dimensional setions in e�et represents the grid of a 2-dimensional funtion dueto the tensor produt nature of the sparse grid. In eah ase, we delineate the indiesseleted by the adaptive method by a red line, and those hosen by the simpliialmethod by a dashed line. Quadrature was performed for N = 300 evaluations withthe Patterson rule. To emphasize the di�erene between the methods, we havenot used the hybrid method here, and ompared the fully adaptive �Estimate Min�method to the simpliial sparse grid. We used the di�ulties 8, 4, 4, 4, 4, 4.As we an see in the graphs, there are two fators that ontribute to the betteronvergene of the adaptive method. The �rst is that the dimensions itself may be ofvarying importane. In the ase of the Genz funtions, the di�ulty of the dimension
i inreases with the size of the parameter ai (ompare setion 6.2). Sine theseparameters are hosen randomly, some will be larger than others. For the Osillatoryand Produt Peak funtions, for example, the dimension in vertial diretion is moreimportant, whereas for the Corner Peak funtion, the horizontal dimension has higherontributions. The simpliial method is not able to take advantage of this fat, andtreats all dimensions equally. The seond fator onerns the shape of the indexset. For the Produt Peak lass, the optimal index set is more square (onvex) thanthe simpliial triangle, whereas for the Continuous lass, it is more hollowed out(onave). 75
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6.6 Error estimates
Osillatory Produt Peak Corner Peak
Gaussian Continuous DisontinuousFigure 6.5.1: Typial index ontributions for the Genz lasses, alulated for d = 2.The red line and dashed blak line delimit the ontributions seleted bythe adaptive and the simpliial method for N = 300 points, respetivelyFor the most ase, the di�erenes between the adaptive and the simpliial indexset appear small. However, the ontributions of diretly neighboring indies oftendi�er by an order of magnitude, so missing only a few important indies an resultin a large di�erene in auray, as evidened by the graphs in the last setion.The piture for the Disontinuous funtion demonstrates niely why the fully adap-tive algorithm fails in this ase. In the beginning, it enounters only ontributionsof 0. When it �nally hits upon a non-zero ontribution, it expands along this path,and never goes bak to expand from the other indies with 0 ontribution.6.6 Error estimatesWe onlude this hapter by examining the quality of the error estimate. In setion4.3, we had given two di�erent estimation strategies, the ontribution-based estimateand the blak box estimate. We evaluated both methods for d = 8 and the �EstimateMin� hybrid algorithm with 0.5 simpliial ratio and the Patterson rule.The results for the blak box estimate are given in �gure 6.6.1 on the followingpage. This error estimate only beomes available for N ≥ 103 (ompare setion 5.5),so we start the absissa there. The left graph shows the error reliability, that is, theproportion of test funtions for whih the atual error was less or equal to the givenestimate, and the estimate was therefore valid. A value of 1 is optimal and meansthat for all 100 test funtions of this lass, the given estimate was valid. The rightgraph shows the error e�ieny, that is, the ratio of the atual error to the error77
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Figure 6.6.1: Blak-box error estimate for the �Estimate Min� algorithmestimate. For this ratio, we onsider only those estimates that are valid. The reasonfor this is that otherwise, invalid estimates would spuriously lead to a seeminglybetter e�ieny.A value of r for the error e�ieny means that the error was overestimated by thefator 1
r . Note that while higher values for the error e�ieny are better, we annothope for an optimum of 1, as this would mean that we would know the exat distaneto the orret result. In fat, if we assume that the error is distributed randomlyaording to a Gaussian distribution with mean 0, and we require an error reliabilityof at least 99%, the optimal e�ieny we an hope for is about 0.3. Indeed, taking

a so that
N(0, 1)([−a, a]) = 0.99for the normal distribution N(0,1), we have

1

0.99

∫ a

−a

|x|
a
dN(0, 1)(x) = 0.3015 . . .as the average e�ieny for the valid error estimates.We see that with inreasing N , the blak box estimator beomes more reliable,but also less e�ient. Whereas there is always a trade o� between reliability ande�ieny, we would like this trade o� to be independent of N , whih the algorithmdoes not satisfy well.This e�et is even more pronouned for the ontribution-based estimate, as seenin �gure 6.6.2 on the next page. Here, the error estimate is very reliable, but thee�ieny is extremely low. In the ase of the �Estimate Geom� and �Estimate Max�algorithms, this e�et is even stronger, beause the higher individual estimates forthe index ontributions lead to a higher total error estimate (results not shown).In both ases, the error estimator does not work well for the Disontinuous lass,whih is not surprising onsidering that both error estimators were based on assump-tions of a regular ontribution struture and onvergene.Although none of the error estimators is fully satisfatory, the blak box estima-tor seems the better hoie overall beause of the extremely low e�ieny of the78



6.7 Conlusion
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Figure 6.6.2: Contribution-based error estimate for the �Estimate Min� algorithmontribution-based estimator.6.7 ConlusionBased on the Genz test suite for d = 8, we identify the following ombination ofparameters as the overall best hoie:
• The hybrid algorithm 4.4.1 with the minimum estimator and a simpliial ratioof 0.5
• The Patterson quadrature rule
• The blak box error estimatorFor the Genz test suite, this algorithm performs very well for the smooth funtions.In many ases, espeially for the Osillatory lass, it gives results that are orders ofmagnitude better than those available with the sampling methods. These bene�tsare espeially prominent for low and medium dimensions, and begin to diminish withhigher dimensions. On the other hand, beause Monte Carlo and Quasi-Monte Carlohave maximum onvergene rates of 1

2 and 1 respetively, they will usually not su�eif we need high auray for a given problem. In this ase, it seems advisable to atleast try out the adaptive algorithm.The adaptive hybrid algorithm always performs better than the non-adaptive sim-pliial quadrature, and should therefore replae it for all appliations where theadditional memory demands of the index management allow it.
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7 Path integrals for quantummehanis7.1 IntrodutionThe entral tenet of quantum mehanis is the Shroedinger equation[27℄, a partialdi�erential equation with values in C whose solutions represent possible wave fun-tions. In this hapter, we examine the simple ase of a single partile with mass min one spatial dimension for a given time-independent potential V (x). In this ase,the Shroedinger equation for the wave funtion φ(t, x) of the partile is given by
i~
∂

∂t
φ(x, t) = − ~

2

2m

∂2

∂x2
φ(x, t) + V (x)φ(x, t)For numerial omputation, the time t is substituted by the negative imaginary time

τ , i.e. t = −iτ . Also, we hoose units so that ~ = 1, and set m = 1. In this way, weobtain the di�usion-type equation
− ∂

∂τ
ψ(x, τ) = −1

2

∂2

∂x2
ψ(x, τ) + V (x)ψ(x, τ) (7.1.1)The original solution φ is obtained by analytial ontinuation of ψ into the omplexplane (orresponding to the original real time values).Sine this thesis deals with integration and not partial di�erential equations, we usethe Feynman-Ka formula [12, 22℄. Given a spei�ed initial ondition (i.e. ψ(x, 0) =

u(x)), the formula gives a solution of equation 7.1.1 by
ψ(x, τ) =

∫

u(Wτ ) · exp

(

−
∫ τ

0
V (Ws)ds

)

dPx(W )where W on the probability measure Px is the Brownian motion starting in x at time0 [19℄. Of partiular interest are the orresponding Green funtions. Mathematially,they an be represented by taking Brownian paths with �xed start and end points.We use the notation Px,τ,y to denote the measure for Brownian paths that start at
x at time 0 and end in y at time τ . We then have

K(x, y, τ) :=

∫

exp

(

−
∫ τ

0
V (Ws)ds

)

dPx,τ,y(W ) (7.1.2)In this notation, y → K(x, y, t) is the Green funtion for a given time t and startingpoint x. In physis, K is sometimes alled the transfer matrix or transition matrix.81



7 Path integrals for quantum mehanisThe Brownian paths W in the equations above are in�nite-dimensional objets.To ompute the elements K(x, y, τ) numerially, we use a disretized approximationof equation 7.1.2. Let M be the number of time steps, and τk = k
M · τ the disretetimes. For W we de�ne

πM (W ) = (Wτ0 , . . . ,WτM
)to be the projetion of the proess W to its values at the times τ0, . . . , τM . Approx-imating the integral ∫ τ

0
V (Ws)dsby the trapezoidal sum

M∑

i=0

wM,iV (Wτi
)with

wM,i =

{
1
2

τ
M
τ
M

for i = 0,Motherwiseand using the transformation formula, we obtain
K(x, y, τ) ≈

∫

u(ξM ) · exp

(

−
M∑

k=0

wM,kV (ξk)

)

d(πM )∗Px,τ,y(ξ) (7.1.3)Remark 7.1.1 It is of ourse also possible to use a di�erent quadrature formula, forexample the Gauss-Legendre rule, to approximate the integral ∫ τ
0 V (Ws)ds. However,beause the underlying Brownian motion is not di�erentiable, the same is generallytrue for the integrand V (Ws), so we do not expet there to be any additional smooth-ness to be exploited. We obtained preliminary results using interpolatory formulas,whih indeed did not show to any improvements in onvergene.7.2 The disretized measureThe measure

ν := (πM )∗Px,τ,yis a M -dimensional Gaussian measure given byEν(ξk) = EPx,τ,y(Wτl
) = x+

k

M
(y − x)Covν(ξk, ξm) = CovPx,τ,y(Wτk

,Wτm) =
τ

M

(

min(k,m) − km

M

)Gaussian measures of this kind an easily be onstruted using the Brownian bridgemethod [6℄. The idea of the Brownian Bridge is to begin with �xed start and endpoints, and then suessively interalate the remaining points. For any two points
ξr and ξt at times r < t, and for a time s with r < s < t, the interalated point ξs is82



7.3 The harmoni osillatoronstruted by
ξs =

(t− s)ξr + (s− r) ξt
t− r

+

√

(t− s)(s− r)

t− r
· Zsfor a random variable Zs obeying the normal distribution. In this way, for any Mwe have a linear mapping

BM : R
M−1 → R

M+1that desribes a onstrution of the measure ν from independent Gaussian randomvariables. We need M − 1 of these variables beause the start ξ0 = x and the end
ξM = y of the Brownian bridge are �xed, leaving ξ1, . . . , ξM−1 to be determined.Altogether, we have

(BM )∗N(0, 1)⊗(M−1) = νwhere N(0, 1) is the Gaussian normal distribution. The funtion BM an be imple-mented on a omputer so that the time used is of the orderM . The Brownian bridgeonstrution thus o�ers a quik method to implement the desired measure ν. It iseasiest to implement ifM is a power of 2, i.e. M = 2k for k ∈ N, beause in this waywe an simply hoose s = r+t
2 for the interalation times. We will limit ourselves tothis ase. Using the results above for equation 7.1.3 gives us the formula

K(x, y, τ) ≈
∫

u(ξM ) · exp

(

− τ

M

M∑

k=1

V (ξk)

)

d(BM )∗N(0, 1)⊗(M−1)(ξ)We have now redued the problem of alulating K(x, y, τ) to an integral over themeasure N(0, 1)⊗(M−1). In the notation of setion 2.4, we have µ = N(0, 1) and
d = M −1. This immediately suggests using the Gauss-Hermite rule for quadrature.Alternatively, we an use the umulative distribution funtion

FN(0,1)(x) := N(0, 1)(] −∞, x])to generate the measure N(0, 1) from λ1([0, 1]), using the fat that
(FN(0,1))

∗λ1([0, 1]) = N(0, 1)In summary, we an alulate the integral 7.1.3 as a (M − 1)-dimensional integral,using either the measure N(0, 1) or the measure λ1([0, 1]) by applying the appropriatetransformation.7.3 The harmoni osillatorThe harmoni osillator is a lassial problem in quantum mehanis, and we havehosen it as an example to explore adaptive sparse grid integration for path integrals.83



7 Path integrals for quantum mehanisThe harmoni osillator is given by the potential
V (x) =

ω2

2
x2where ω is the osillation frequeny.Of partiular interest is the fat that analytial solutions are known for the Shroe-dinger equation itself as well as for the disretized problem, allowing omparisonsagainst the true value and the exat time-disrete value. The analytial result forthe Green funtion is

K(x, y, τ) =

√
ω

2π sinh(ωτ)
· exp

(

− ω

2 sinh(ωτ)

(
(x2 + y2) cosh(ωτ) − 2xy

)
)We obtained the result of the disretized integral 7.1.3 by writing the measure ν asa weight on λM−1(RM−1). This leads to the Gauss-type integral

(
mM

2πτ

)M
2

∫ ∞

−∞
. . .

∫ ∞

−∞
exp(−ω

2

2

M∑

k=0

wM,kξ
2
k)·exp(

m

2

M

τ

M∑

k=1

(ξk−ξk−1)
2)dξ1 . . . ξM−1(7.3.1)with ξ0 = x and ξM = y. By indution over M , we obtain a reursion formulathat an be used to quikly alulate the orret value (see the ode for details [25℄).Alternatively, we an write the integral 7.3.1 in the form

∫

. . .

∫

eξ
T Aξdξ1 . . . ξM−1with a symmetrial matrix A ∈M(n+ 1, n+ 1), and solve the integral by diagonal-ization of the matrix.We have evaluated the terms K(x, y, τ) for the times τ = 0.1, τ = 1 and τ = 10.We used M = 128 time steps, beause a plot of the orret disrete vs. ontinuousresults suggested that for this number of time steps, we have a good trade o� betweenthe size of the disretization error and number of dimensions. Of ourse, for realproblems we do not have analytial results to work with, and a suitable number oftime steps must be determined from experiene and by trial and error.For eah hoie of τ , the average number of orret digits for 25 runs was omputed.For eah run, the parameters x and y were hosen with uniform probability from theinterval [−1, 1]. The results of quadrature were ompared to the value of the disreteintegral 7.1.3 and to the orret value of the stohasti integral 7.1.2. The resultsare shown in �gure 7.3.1 on the faing page.We see that the disrete interval is solved best by the adaptive algorithm for

τ = 0.1 and τ = 1, but better by the sampling methods for τ = 10. For τ = 0.1 and
τ = 1, the Gauss-Hermite rule performs notieably better than the Patterson rule.We onjeture that the transformation from distribution λ1([0, 1]) to N(0, 1) via thefuntion FN(0,1) makes the funtion less smooth and therefore slows down onver-gene. The Gauss-Hermite rules are naturally adapted to the Gaussian distribution,84
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Figure 7.3.1: Quadrature results for the Green funtion K(x,y,t) vs. the orret dis-rete (left) and ontinuous (right) results for the harmoni osillator85



7 Path integrals for quantum mehanis
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Figure 7.3.2: Error reliability and e�ieny for the Adaptive Hermite algorithm forthe harmoni osillator vs. the orret disrete valueand better suited to the problem. The good performane of the Patterson rules for
τ = 1 between N = 103 and N = 104 is due to a pass through zero at this point,that ours independently of the start and end points x and y (results not shown).We did not investigate this further.In the right graphs, whih plot the error against the ontinuous result, we see thatfor τ = 0.1, some of the additional auray of the adaptive algorithms is spurious,and represents re�nement past the error of disretization. Even with this taken intoaount, the adaptive methods give far better results than the sampling methods.The error of disretization does not ome into play for the times τ = 1 and τ = 10.The reliability and e�ieny of the error estimator for quadrature against theorret time-disrete value are shown in 7.3.2. We see that the estimator fails om-pletely in this ase. In many instanes, the reliability was 0, so the e�ieny ratingis not available. As we an see from the left graph for τ = 0.1 in �gure 7.3.1 on thepreeding page, onvergene seems very errati for this path integral problem. Thisprobably throws the blak box estimator o� ourse, sine it depends on a steadyonvergene rate. We show the estimator only for the runs performed against thedisrete value, as the algorithm has no mehanism for judging the result against theontinuous value.7.4 The anharmoni osillatorAs a seond example, we onsider the anharmoni osillator, given by

V (x) =
1

2
ω2x2 + λ(x2 − f2)2We hose ω = 0, λ = 1 and f = 1
2 to obtain a two well potential with wells at

−1
2 and 1

2 (see �gure 7.4.1 on the next page). Beause of this, it is onsidered tobe more di�ult to solve omputationally than the harmoni osillator. Again wealulate the Green funtion K(x, y, τ) for x and y hosen uniformly from [−1, 1]86



7.4 The anharmoni osillator
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Figure 7.4.2: Quadrature results for the Green funtion K(x,y,t) for the anharmoniosillator 87



7 Path integrals for quantum mehanisfor the times τ = 0.1, τ = 1 and τ = 10. Sine no analytial solutions for theanharmoni osillator are known, we do not have any analytial referene values.Instead, we determined preliminarily whih algorithm works best for eah time τ ,and approximated the true result by performing quadrature with 20 times as manyevaluations as the maximum used in the benhmark.The results for the anharmoni osillator are qualitatively similar to those forharmoni osillator. However, while the sampling methods attain about the sameauray as for the harmoni osillator, the adaptive methods perform by more thanan order of magnitude.The results for error estimation are similar to those for the harmoni osillator,and are not shown.7.5 ConlusionThe adaptive sparse grid algorithm works well for alulating the green funtion
K(x, y, τ) for the time τ = 0.1, is a little better (harmoni osillator) or a littleworse (anharmoni osillator) for τ = 1 and fails for τ = 10 as ompared to thesampling methods. The Gauss-Hermite rule performs better than the Pattersonrule, beause it is better suited to the Gaussian noise underlying the generation ofthe path. The error estimator goes fully astray, and annot be used for these pathintegrals.Compared to the simpliial sparse grid, the adaptive method bene�ts from thefat that the Brownian bridge method introdues a hierarhy between the di�erentdimensions. Due to the method of onstrution by interalation, the Gaussian ran-dom variables used �rst in�uene the shape of the path to a greater degree. Theadaptive method an then re�ne spei�ally for these dimensions, whih leads to anoverall better auray (ompare [16, 6℄).While the results are enouraging for short times, many problems in quantum me-hanis require the omputation for long time intervals. Also, instead of a pure MonteCarlo method, modi�ed versions with importane sampling, like the Metropolis al-gorithm [26℄ are employed, that improve performane onsiderably. Loally adaptivere�nement might yield similar gains for the adaptive sparse grid methods, but wasnot onsidered in this thesis. Further investigation is needed to determine if and howadaptive sparse grid quadrature an provide e�ient solutions for quantum mehan-ial questions and other problems from physis.
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8 ConlusionDimension-adaptive sparse grid quadrature o�ers an interesting approah to omput-ing integrals of moderate and high dimensions. In ontrast to the sampling methods,whih are the main quadrature methods used for high dimensional integrals today,the sparse grid method is interpolatory and an therefore exploit high degrees ofsmoothness of the integrands. Dimension-adaptive sparse grids improve the methodof sparse grids by taking into aount the di�erent importane of dimensions. Thisdi�erene may be a oinidental property of the funtion, as for the Genz test fun-tions. It may also arise from purposeful design, as for the Brownian Bridge [6℄. Forthe latter ase, adaptive sparse grids onstitute a good method for exploiting thishierarhy, from whih simpliial sparse grids annot pro�t. This leads to an overallbetter onvergene [16℄.In this thesis, we have introdued a new blak box method of error estimationand established theoretial results for ontribution-based error estimation. Neitherof these methods works very well, however.We have also examined several di�erent methods of index re�nement. All arebased on some sort of estimate of the size of additional index ontributions. Thesemethods work well in �nding an index set suited to the funtion. We have seen thatthe di�erent methods of estimation lead to very similar onvergene, showing thatindex seletion by estimation is a robust proess that does not depend greatly on thedetails of the estimation strategy itself.We have ompared the performane of di�erent quadrature rules for the sparsegrid method. The Patterson rule represents a good hoie for many integrands.However, for funtions based on Gaussian noise, the Gauss-Hermite formulas seemto be partiularly well suited and perform better than the Patterson rule.We have implemented the di�erent strategies proposed in this thesis on the om-puter in the objet-oriented language Java. The implementation delivers on the goalof a modular design, and allows for the e�ortless mixing and mathing of di�erentstrategies. As suh, it presents a good base for further exploration of adaptive sparsegrid methods for quadrature.Although theoretial results show that asymptotially, the sparse grid methodbreaks the urse of dimensionality, the pre-asymptoti pratie is more ambivalent,as evidened by the Genz benhmarks and the quantum mehanial path integrals.Some types of integrands, notably the Genz Osillatory funtion and the path inte-grals for short times, yield a high onvergene, and the adaptive sparse grid algorithmthen performs several orders of magnitude better than both simpliial sparse gridsand the sampling methods. For other integrands, and notably those with a low89



8 Conlusiondegree of smoothness, adaptive sparse grid quadrature does not perform well. Asexpeted from theory, Monte Carlo performs truly independently of dimension inpratie, whereas onvergene for the sparse grid methods is notieably slowed forhigher dimensions in the settings of the Genz benhmark.The new hybrid method introdued in this thesis appears to be a suitable om-bination of adaptive and simpliial sparse grids. It has the same onvergene ratein theory and the same robust behavior in pratie as the non-adaptive sparse gridmethod, but also inorporates the improvements of the adaptive method. Indeed,for di�ult funtions, the hybrid method even shows synergisti e�ets between thetwo approahes. With regard to these results, and to the fat that index seletion byestimation is a robust, the hybrid approah o�ers a good standard with no immediateneed for improvement.Further researh is required on lassifying the types of problems for whih adap-tive sparse grids work well, and on how to employ the adaptive method to obtainhighly aurate results. In partiular, for the path integral problem from quantummehanis, we see that adaptive sparse grids may be a good hoie for short times.Unfortunately, many problems in physis require the integration over large times,for whih the adaptive method is inferior to the established Monte Carlo and Quasi-Monte Carlo approahes. Further exploration will be needed to determine whetherthere is a nihe in physis where adaptive sparse grids present an improvement overtraditional sampling methods.Path integrals our naturally in �nanial mathematis in the form of stok priesand for other values. Sine the Brownian Bridge onstrution allows for a hierarhybetween the dimensions from whih the dimension-adaptive algorithm an bene�t,it will be worthwhile to examine the utility of the adaptive method for this domain.First results [16℄ look enouraging.No satisfatory solution has been found for the estimation of the quadrature error.This is unfortunate and requires further e�ort, beause a quadrature value by itselfwithout a quali�ed estimate of its auray holds only little value.
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