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Zusammenfassung
In der vorliegenden Arbeit werden Regressionsverfahren zur Anpassung von Funktionen
an gegebene Daten analysiert. Hierbei legen wir den Fokus auf eine Variante der Methode
der kleinsten Fehlerquadrate, welche auf einer Teilmenge eines endlich-dimensionalen
Vektorraums operiert.
Wir rekapitulieren in dieser Arbeit zunächst die wichtigsten Eigenschaften von Räu-

men vektorwertiger Funktionen. Insbesondere betrachten wir die Lebesgue-Bochner-
und Sobolev-Bochner-Räume und geben eine Kurzeinführung in reproduzierende Kern-
Hilberträume und reelle Interpolationsskalen. Um unsere theoretischen Resultate für
die Regression immer wieder an konkreten Beispielen veranschaulichen und verdeut-
lichen zu können, stellen wir des Weiteren auch Fourier-Polynomräume auf hyperbo-
lischen Kreuzen vor und geben einen Überblick über die wichtigsten Eigenschaften line-
arer Splineräume auf dünnen Gittern. Für Letztere liefern wir dabei auch einen Beweis
für die Abschätzung der L2-Bestapproximationsrate.
Im ersten Hauptteil der Arbeit widmen wir uns der Analyse des Regressionsprob-

lems unter Nebenbedingungen. Hierzu stellen wir zunächst die Minimierungsaufgabe
vor, welche der vektorwertigen Regression zu Grunde liegt. Wir untersuchen Exis-
tenz und Eindeutigkeit entsprechender Minima und beschäftigen uns ausführlich mit
der Minimierung über beschränkten Bällen in reproduzierenden Kern-Hilberträumen.
Um den Fehler eines Regressionsverfahrens über einem endlich-dimensionalen Suchraum
abschätzen zu können, teilen wir diesen in zwei Summanden auf: den Diskretisierungs-
fehler und den Datenfehler. Wir präsentieren eine neue, auf geeigneten Jackson- und
Bernstein-Ungleichungen basierende Methode, um den Diskretisierungsfehler durch den
L2 Bestapproximationsfehler zu beschränken. Des Weiteren verallgemeinern wir die ex-
istierenden Abschätzungen für den Datenfehler auf den vektorwertigen Fall. Zur Illus-
tration unserer Resultate, ziehen wir ein Dünngitterregressionsverfahren sowie eine auf
dem hyperbolischen Kreuz beruhende Methode heran. Nach geeigneter Balancierung
der beiden Fehlerterme für diese Beispiele, zeigt sich, dass die zugrundeliegenden Dis-
kretisierungen in der Lage sind, den Fluch der Dimension weitestgehend zu brechen.
Im zweiten Teil der Arbeit legen wir den Fokus auf die Regression mit Strafterm,

welche dual zur Regression unter Nebenbedingungen ist. Die numerische Behandlung
dieses dualen Regressionsproblems ist nun wesentlich einfacher als die entsprechende
Minimierung unter Nebenbedingungen. Wir beschäftigen uns zunächst mit der Her-
leitung des korrespondierenden linearen Gleichungssystems und diskutieren die Vor-
und Nachteile einer gitterbasierten Diskretisierung gegenüber einem kernbasierten Ver-
fahren. Anschließend präsentieren wir eine Abschätzung für die Kondition des lin-
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earen Gleichungssystems, welche für beliebige Basen des Suchraums gültig ist. Im
Anschluss betrachten wir das unregularisierte Regressionsproblem unter der Annahme,
dass die Eingangsdaten unverrauschte Auswertungen einer unbekannten Funktion sind.
Für diesen speziellen Fall präsentieren wir eine neue obere Schranke für den zu er-
wartenden Fehler, welche ein deutlich besseres Abfallverhalten bezüglich der Menge der
Datenpunkte aufweist als die im ersten Teil bewiesene Abschätzung. Mit Hinblick auf
diesen Spezialfall untersuchen wir erneut das Verhalten des Dünngitterverfahrens und
der hyperbolischen Kreuz-Methode und berechnen die optimale Kopplung zwischen dem
Diskretisierungslevel und der Anzahl der Datenpunkte.
Im Anschluss zeigen wir, dass die von uns bewiesenen Abschätzungen nicht nur theo-

retische Relevanz haben, sondern oftmals auch die in der Praxis real zu beobachtenden
Konvergenzraten widerspiegeln. Des Weiteren, stellen wir einen dimensionsadaptiven
Dünngitteralgorithmus zur effektiven Behandlung anisotroper Probleme vor. Zum Ab-
schluss präsentieren wir die Resultate, die dieser Algorithmus für Data-Mining Probleme
aus realen Anwendungsgebieten erzielt.
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1 Introduction
Data regression

In most branches of science, economy and also industry, the amount of available data has
become immense during the recent years. Most of these data do not contain any valuable
information at all. However, the differentiation between useful data compared to mean-
ingless “data waste” is seldom straightforward. Prof. Dr. Johanna Wanka, Germany’s
Federal Minister for Education and Research, declared

“Die Datenmengen wachsen in unserer digitalen Gesellschaft rasant.
Wir müssen daher lernen, wie wir mit ihnen richtig umgehen können.”

at the CeBIT exhibition in 2014.1 This could be roughly translated to “The amount of
data is rapidly growing in our digital society. Therefore, we have to learn how to deal
with it correctly.” The phenomenon of the availability of enormous amounts of data and
the consequential tasks and problems arising from this are commonly summarized by
the term Big Data.
To meet the different challenges of Big Data, such as describing the useful information

in a more compact format or making predictions on future data, many ideas and ap-
proaches have emerged in the fields of machine learning, data mining and dimensionality
reduction, see e.g. [16, 55, 87].
One of the most common tasks in Big Data is regression, i.e. the determination of a

mapping f : T → E which describes the input data (ti,xi) ∈ T × E, i = 1, . . . , n and
allows for the prediction of the so-called data label x ∈ E of an arbitrary point t ∈ T
under the assumption that (t,x) is generated by the same process that created the input
data. Usually, T is an open domain in Rm for an m ∈ N and E is a Hilbert space.
An illustrative example can be found in figure 1.1. Note that regression is also closely
related to classification, see e.g. [48], and density estimation, see e.g. [40, 88].
Regression problems appear in many fields, ranging from economic time series predic-

tion, where one looks for the prospective behavior of a time-dependent financial product,
see [49], over medical causal analysis, where the correlation between specific genetic pre-
dispositions and certain clinical conditions is analyzed, see [77], to speech recognition,
where audio data is parsed and interpreted, see [6]. In all of these fields, recent develop-
ments in mathematical learning theory [23, 46, 85] have led to sophisticated regression
algorithms such as generalized clustering methods, radial basis function neural networks
or support vector machines, see e.g. [4, 47, 50, 74].

1http://www.bmbf.de/press/3580.php

1

http://www.bmbf.de/press/3580.php


2 1 Introduction

ti ∈ (0, 1)2 i = 1, . . . , n xi ∈ R3 i = 1, . . . , n

g:(0,1)2→R3
−−−−−−−→

Fig. 1.1: A specific sampling, where the ti are drawn uniformly in T = (0, 1)2 and xi =
g(ti) ∈ E = R3 for a vector-valued map g : T → R3. In this case the sought
regressor mapping needs to be a good approximation to g.

Solving the regression problem

Given a specific method, it is desirable to make reliable estimates on its error or even on
the rate of the error decay with respect to the number of data n. For certain methods,
such as least-squares regression based on reproducing kernel Hilbert spaces (RKHS), such
error estimates can be derived by the approximation properties of the underlying function
spaces, see [22, 75]. The main advantage of reducing the so-called search set, i.e. the set of
candidates for f , to a subset of an RKHS is the resulting well-posedness of the underlying
minimization problem for a bounded domain T and a finite-dimensional image space E.
This is due to the compactness of the employed subsets in the space of continuous
functions. Furthermore, estimates for bounds on the sampling error, which accounts for
the finite sampling process, are available in terms of covering numbers. Note, however,
that compactness is sufficient but not necessary for bounds on rates of convergence of
the sampling error. Thus, there are also approaches based on non-compact function sets
that fulfill the uniform Glivenko-Cantelli property, see e.g. [69, 89], which characterizes
sets with uniform sampling error convergence. While there exist universal methods and
error bounds for which the associated search set also contains non-continuous functions,
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cf. [8, 9, 54], most theory and algorithms rely on minimization problems over subsets of
RKHS. A thorough discussion of the error behavior in this case can be found in [23].
When dealing with an RKHS, the so-called representer theorem, see e.g. [58], allows to

recast the regression problem into a finite system of linear equations, which can be solved
in a straightforward manner. Here, the solution lies in the span of the so-called kernel
translates K(ti, ·), where K is the reproducing kernel of the search space. However, the
involved computational complexity usually scales at least quadratically, or even cubically,
in the amount of data n. Therefore, this approach is infeasible for problems with large
input data sets, which regularly appear in Big Data applications. This is the reason
why more sophisticated methods have to be developed in order to cope with this non-
beneficial scaling in n, see e.g. [74]. Besides the problem of large sample sizes, there is
also another difficulty in applying the representer theorem: If we do not have access to
a closed form of the corresponding kernel function K, e.g. for infinite series kernels, a
discretized version of the kernel must be used for solving the regression problem. Then,
we naturally encounter the task of determining a suitable discretization accuracy for the
kernel function. Usually, this requires a careful consideration of the kernel structure at
hand. We refer the interested reader to [43, 44], where the truncation of series kernels is
considered which stem either from tight frames in Hilbert spaces or, in the more general
setting, from multiscale expansions in certain Besov spaces.
One way to circumvent the above-mentioned problems is to consider a discretization

of the search space where the position and the shape of a basis function are independent
of the data points in contrast to the basis K(ti, ·). Probably the most common examples
for such a discretization are ansatz spaces based on (tensor product) grids. Here, the
size of the resulting system of equations does no longer depend on the amount of data n,
but scales directly with the grid level k and, thus, the size of the grid. It can be shown
straightforwardly that the computational costs of such an approach scale only linearly
in n, see e.g. [31, 35]. Since we can no longer rely on the representer theorem, the usage
of such a discretization directly implies an additional error which has to be controlled.
This is in general not an easy task, especially for norm-regularized regression problems.
Despite getting rid of the computational complexity problem with respect to n, there

is still a limiting factor when considering the performance of regression algorithms on
a grid space: the dimension m of the domain T . This is due to the fact that, for
standard tensor product grids, the degrees of freedom Nk of a grid space Vk have to
scale exponentially in m, e.g. Nk ' 2km, to achieve (roughly) the same approximation
error as in the case of univariate regression (m = 1) and 2k degrees of freedom. This
phenomenon is known as the so-called curse of dimensionality, see [5]. It prevents us
from applying full tensor-product grid approaches in multivariate settings with m > 3.
However, if the problem at hand fulfills certain additional regularity assumptions, such

as mixed Sobolev smoothness of the solution for instance, the curse of dimensionality
can be broken to some extent by using sparse ansatz spaces based on e.g. sparse grids or
hyperbolic crosses, see [14, 78]. For these spaces, the curse of dimensionality only appears
in the logarithm of the basis size, i.e. Nk ' 2kkm−1 guarantees the same discretization
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error - up to logarithms - as taking 2k degrees of freedom in the univariate case. This
allows us to use sparse grids and hyperbolic crosses to interpolate and approximate
functions on domains with dimension m > 3. Naturally, the question arises if this
beneficial behavior in approximation problems carries over to sparse grid and hyperbolic
cross regression algorithms as introduced in [11, 35, 68].

Error analysis

The main goal of this thesis is to provide an error analysis of the regression problem
over finite-dimensional search spaces such as sparse grid or hyperbolic cross spaces.
Furthermore, we aim to show that an appropriate coupling between the discretization
scale k and the number of data n leads to convergence results for which the curse of
dimensionality is indeed broken for sparse ansatz spaces if certain smoothness conditions
are met. To this end, we investigate two different approaches to analyze the regression
problem over finite-dimensional search spaces.
First, we consider the behavior of the constrained least-squares regression error in a

very general setting. Here, each data point (ti,xi) is assumed to be drawn according to
some compactly supported measure ρ. The regressor function f from the search set Vk,b,
which is a centered ball of radius b in the finite-dimensional search space Vk, is now the
solution of the minimization problem

f := arg min
h∈Vk,b

1
n

n∑
i=1
‖h(ti)− xi‖2

E.

Thus, a minimizer f not only needs to be a good fit for the data, but it also has to be
smooth enough to have a Vk norm smaller than the parameter b. Based on the additive
splitting of the overall regression error into a bias part and a sampling error part, as it
is done in [22, 23, 75, 79], each part of the error can be considered separately. When
dealing with finite-dimensional search spaces, the bias is also called discretization error.
However, the techniques which are commonly used to deal with the bias in the infinite-
dimensional case, see [23], cannot simply be applied to the discretization error. Although
there exist first estimates on the discretization error in dependence on k in special cases,
see e.g. [36, 53, 61, 92], there is not yet a result which is applicable for a broader choice
of search spaces Vk.
In a second step, we focus on a penalized regression problem, which can be shown

to be dual to the constrained problem. Furthermore, we have a closer look at noiseless
function regression in the limit case of unregularized regression, where the penalty term
vanishes. Here, the data points are assumed to be evaluations of an unknown function
g : T → E, i.e. (ti,xi) = (ti, g(ti)) for each i = 1, . . . , n. In unregularized regression, the
search set equals the search space and the corresponding minimization problem becomes

f := arg min
h∈Vk

1
n

n∑
i=1
‖h(ti)− g(ti)‖2

E.
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Here, it is possible to achieve higher-order convergence rates than for the more general
regularized problem above. First results for regression with orthonormal basis sets of
Vk can be found in [19, 21, 60, 61]. However, a similar result for arbitrary bases is not
available yet.

Contributions of this thesis

In this thesis, we provide upper bounds on the overall error for both regularized and
unregularized regression and apply them to finite-dimensional grid spaces. For a con-
strained regression method based on sparse grids, for instance, we show that the error
with respect to the number of sample points n is bounded by

O
(
n−

2s
2s+1 log(n)m

)
under certain conditions. Here, 0 < s ≤ 2 denotes the Sobolev degree of mixed smooth-
ness of the space in which the true solution resides. In the unregularized case, we even
obtain the bound

O
(
n−2s log(n)(2s+1)m−1

)
for noiseless function regression. Both of these results are the first of their kind for
sparse grids. Our own contributions in the context of regression error estimates and
convergence analysis can be summarized as follows:

• For the constrained problem, we provide a coupling between the search set radius
b, which controls the regularization, and the number of degrees of freedom Nk of a
finite-dimensional search space Vk such that the discretization error is proportional
to the L2 best approximation error in Vk. With the help of this result, we present
error bounds for the sparse grid-based and the hyperbolic cross-based constrained
regression methods and their full grid counterparts.

• We extend the analysis of the unregularized problem from [21] to the penalized
problem and to arbitrary basis sets of Vk in order to obtain a stability result
which ensures the numerical solvability of the corresponding system of equations
in dependence on the regularization parameter and the condition number of the
stiffness matrix.

• With the help of the above-mentioned stability result, we derive an upper bound
on the error of the unregularized regression problem for arbitrary basis sets. Our
results are applied to full grids, sparse grids and hyperbolic crosses to analyze the
behavior of these spaces for noiseless function regression.

• Since the discretization error and the sampling error need to be balanced to obtain
optimal convergence rates in terms of the number of samples n, we derive an
appropriate coupling between k and n to achieve these optimal rates.
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• We complement our theoretical analysis by numerical experiments and observe the
behavior of a dimension-adaptive sparse grid algorithm in practical applications.
To this end, we enhanced the C++ sparselib code developed in [30] to (adaptively)
solve the (un)penalized regression problem.

Outline

The remainder of this thesis is organized as follows: In chapter 2, we introduce some
notations which we frequently use. Furthermore, we briefly comment on some notational
peculiarities which appear in the course of this thesis, e.g. our formal restriction to real
vector spaces.
As certain vector-valued function spaces appear throughout the thesis, we give a

proper definition of them in chapter 3. Here, we start with the basics on Lebesgue
and Sobolev spaces before considering the concept of reproducing kernel Hilbert spaces
and real interpolation scales. Furthermore, we also provide the necessary details on the
finite-dimensional grid spaces which serve as examples in the later chapters.
In chapter 4, we present the constrained regression problem in a very general setting

and hint at its basic properties. We provide proofs on the existence and uniqueness of its
solutions under specific conditions. After introducing the bias/sampling error splitting,
we derive upper bounds on each part of the error and apply them to full grid, sparse
grid and hyperbolic cross examples. We also present a comparison of our results to the
ones of other researchers.
The penalized regression problem, which stems from the Lagrangian dual formulation

of the constrained problem, is investigated in chapter 5. After relating the primal and
the dual formulation, we discuss how to recast the regression problem into a system of
linear equations in order to solve it algorithmically. We derive a probabilistic stability
result which paves the way for our convergence analysis in the case of unregularized,
noiseless regression. Again, we consider how these results can be applied to our example
settings and discuss how they relate to recent research.
To support our theoretical results, we provide numerical examples on the behavior of

the regression error in chapter 6. Besides investigating convergence rates for smooth toy
problems, we also discuss an adaptive sparse grid algorithm, which reduces the computa-
tional costs when dealing with anisotropic regressor functions significantly compared to
the standard approach. Furthermore, we have a look at the performance of the adaptive
algorithm for real world problems.
Finally, we conclude this thesis in chapter 7 by giving a summary and an outlook on

the next steps regarding the analysis of finite-dimensional regression algorithms.



2 Notation

We now give a few details on the notation we use throughout this thesis and hint at
peculiarities in this context. An overview of the most important variables, functions,
spaces, etc. which we deal with when analyzing the regression problem can be found in
the introduction of chapters 4 and 5.

Vectors, multiindices and norms

We use the bold face notations l ∈ Nm,x ∈ Rm for multidimensional indices or vec-
tors. Unless stated otherwise, the elements of an index or vector are then denoted by
l1, . . . , lm ∈ N and x1, . . . , xm ∈ R (analogously for different letters). This must not be
confused with the bold-face notation for a collection of vectors x1, . . . ,xn for instance.
Sometimes, we also use the arrow-notation ~α to denote a vector. This is of special im-
portance when dealing with vectors of vectors, e.g. ~x = (x1, . . . ,xn)T . Inequalities of
type l ≤ k or l ≥ k have to be understood componentwise. The vector ej ∈ Rm denotes
the j-th unit vector, i.e. ej = 1 and ek = 0 for all k ∈ {1, . . . ,m} \ {j}.
The expression |a| stands for the absolute value of a scalar a ∈ R,C or Z. Analogously,

we write |A| for the cardinality of a set A. The `p vector and index norms are denoted
by ‖x‖`p := (∑m

i=1 x
p
i )

1
p or simply by ‖x‖p for 1 ≤ p < ∞ and ‖x‖`∞ := maxi=1,...,m |xi|

or ‖x‖∞ for p =∞.

Asymptotics and constants

Although we only present asymptotic rates in our main results, the behavior of the
involved constants can often be derived easily by a detailed investigation of the proofs
which we provide. Throughout this thesis, we use the Landau symbol f(a) = O(g(a)) for
a→∞ to denote that there exist constants a0, c > 0 such that f(a) ≤ cg(a) for all a > a0.
Similarly, we use f(a) . g(a) to denote that there exists a c > 0 such that f(a) ≤ cg(a)
for all a. Furthermore, f(a) ' g(a) means f(a) . g(a) and g(a) . f(a). Finally, if
the functions f and g depend on different parameters a and b, we write f(a) . g(b) to
denote that a := a(b) is coupled to b such that f(a(b)) . g(b). Furthermore, we write
f(a)� g(b) if the coupling between a and b fulfills a(b)→∞ and f(a(b)) = o(g(b)) for
b→∞. Here, the little-o Landau symbol is used, i.e. for all c > 0 there exists a b0 > 0
such that f(a(b)) ≤ cg(b) for all b > b0.

7



8 2 Notation

Notational ambiguousness

We try to avoid ambiguous notation wherever possible. However, some characters can
have a different meaning depending on the context they appear in. Take L for instance:
Throughout this thesis, we use ΣL to denote the Lebesgue σ-algebra. Furthermore,
L(A;B) denotes the space of bounded linear operators from A to B and LZn,b denotes
the Lagrangian functional in chapter 5. Even though the character L is used multiple
times here, it is directly clear from the context how it has to be understood.

Variable dependencies

For the ease of notation, we sometimes use variable names which do not automatically
reveal on what parameters the variable might depend, such as the cost function bound
Mψ introduced in section 4.4, which might depend on the search set radius b. Another
example is the mass matrix M of the space Vk. It should be clear that it depends on
the specific choice of the basis ν1, . . . , νNk . Hence, we use M as a short notation for
M(ν1, . . . , νNk).
In the case of the bound K(Nk) introduced in chapter 5, we employ this specific

notation to be consistent with the notation from [19, 21, 60]. A more precise notation
in this case would be K(ν1, . . . , νNk) since the size of this bound does not only depend
on the number of basis functions but also on the specific choice of the basis in our case.

Complex image spaces E = Cd

Throughout this thesis we consider vector-valued mappings f : T → E, where T ⊂
Rm is a bounded, open domain and (E, 〈·, ·〉E) is a Hilbert space. Although all of
our results in chapters 4 and 5 are stated only for the case where E is a vector space
over R, the corresponding variants for the complex Hilbert spaces E = C

d, d ∈ N,
can usually be derived analogously by using the isomorphy C ∼= R2 and changing the
scalar product of E accordingly. For the sake of brevity and readability, we omit the
complex versions throughout the thesis. Nevertheless, when dealing with E = Cd for the
study of Fourier polynomials and when referring to our results from the corresponding
chapters, we implicitly mean the complex version of the corresponding result. We refer
the interested reader to [66] for a thorough discussion of vector-valued reproducing kernel
Hilbert spaces in the case of complex E. A detailed explanation on how to derive the
matrix vector equations for the dual regression problem which we deal with in chapter
5 can be found in [62] for the case of complex-valued functions.

The terms “constrained”, “penalized” and “regularized”

Since we often use the terms (un)constrained, (un)penalized or (un)regularized regression,
let us shortly clarify what we mean by that. By “constrained regression”, we refer to
a problem where the search set, i.e. the set of all functions which are considered in the
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corresponding minimization problem, implicitly carries a norm constraint. This means
that only functions f which fulfill ‖f‖ ≤ b for some norm ‖ · ‖ and some 0 < b < ∞
are taken into account. The term “penalized” refers to a problem, where the norm
bound is not forced onto the search set, but a penalty term µ‖f‖ with µ > 0 is added
to the minimization functional to obtain a minimizer with small norm. Under certain
assumptions, the constrained and the penalized regression problem are dual to each other,
see section 5.1. This is also the reason why the constrained problem is often referred to as
the primal problem and the penalized problem is called the dual problem. “Regularized”
can mean either the constrained problem or the penalized problem. By “regularized” we
just mean that the original regression problem is altered in such a way that the existence
of a solution is guaranteed. This also clarifies that the term “regularization parameter”
refers to the norm bound b when talking about the constrained problem and it refers to
the (Lagrange) parameter µ when we investigate the penalized problem. Note, finally,
that “unconstrained”, “unpenalized” and “unregularized” refer to the same problem,
where no regularization is done, i.e. there is no constraint and no penalty term in the
problem formulation.

Search spaces H and Vk
When considering the search space of a regression problem, we use either H or Vk,
depending on the specific situation. If not explicitly stated otherwise, H can refer to
either an infinite- or a finite-dimensional space. However, Vk is always finite-dimensional.
Therefore, if we want to emphasize that we are working in a finite-dimensional setting
or if we deal with a whole scale of search spaces, we will always use the notation Vk for
k ∈ N. If the dimension of the search space is irrelevant, we use H.





3 Function spaces
In this chapter we will briefly recapitulate the most important function spaces which are
relevant for the remainder of this thesis. Note that this is by no means a complete and
profound analysis but rather serves to give a short overview and illustrate important
properties of these spaces.
First, we introduce the Lebesgue spaces Lp,ω for generic positive measures ω and

1 ≤ p ≤ ∞ in section 3.1. Furthermore, we generalize this concept to vector-valued
functions and consider the corresponding Bochner spaces. Then, we have a look at
the Bessel potential Sobolev spaces Hs

p with respect to the Lebesgue measure and with
1 ≤ p ≤ ∞ and s ≥ 0 in section 3.2. Also in this case, we consider the vector-valued
variants of these spaces. In section 3.3, we present a short introduction to vector-valued
reproducing kernel Hilbert spaces and their basic properties. Subsequently, we present
the K-functional and real interpolation scales in section 3.4. Finally, we consider finite-
dimensional discretization spaces based on full grids, sparse grids and hyperbolic crosses
in section 3.5.

3.1 Lebesgue spaces
The definitions and concepts introduced here are based on [1, 3]. We assume that the
reader is already familiar with the notion of σ-algebras and (positive) measures thereon.
For a formal definition of generic σ-algebras and measures we refer to [1, 3].
Definition 3.1 [Lebesgue σ-algebra and Lebesgue measure]
Let the σ-algebra ΣL = ΣL(Rm) over Rm and the measure λ over ΣL have the following
properties:

• If X ⊂ Rm is open, then X ∈ ΣL.

• For each Y ∈ ΣL with λ(Y ) = 0, it holds that each subset X ⊂ Y is an element of
ΣL and λ(X) = 0.

• For the hyperrectangle R := ∏m
i=1[ai, bi] with bi ≥ ai for all i = 1, . . . ,m, it holds

R ∈ ΣL and λ(R) = ∏m
i=1(bi − ai).

• Let X ∈ ΣL. Then for each t ∈ Rm we have X + t := {s + t | s ∈ X} ∈ ΣL and
λ(X + t) = λ(X).

We call ΣL Lebesgue σ-algebra and λ Lebesgue measure on Rm.

11
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Note that we determined both ΣL and λ by the above definition. Another important
σ-algebra is the Borel algebra.

Definition 3.2 [Borel σ-algebra]
Let S be a separable normed space. The smallest σ-algebra ΣB = ΣB(S) which contains
all open subsets of S is called Borel σ-algebra.

In the following, we consider the pair (S,Σ) of a separable normed space S and a
σ-algebra Σ on it. We assume that either Σ = ΣB holds or S = Rm and Σ = ΣL hold.
However, note that most of the considerations below are valid also for other choices of
S and Σ.

3.1.1 Lebesgue spaces of scalar-valued functions
First we introduce the concept of measurability.

Definition 3.3 [Measurable Function]
Let T ∈ Σ. A function f : T → [−∞,∞] is called measurable if

{t ∈ T | f(t) > a} ∈ Σ ∀ a ∈ R.

It is easy to see that a so-called simple function

s(t) =
N∑
j=1

ajχTj(t) (3.1)

is measurable for arbitrary N ∈ N with aj ∈ R, Tj ∈ Σ and

χTj(t) :=
{

1 if t ∈ Tj
0 else

for all j = 1, . . . , N . Furthermore, it can be shown that, for each measurable function
f : T → R, there exists a sequence of simple functions fi : T → R which converge to f
pointwise. If f is non-negative, the fi can be chosen monotonically increasing in each
point t ∈ T . With these results at hand, we can finally define the Lebesgue integral of
a measurable function.

Definition 3.4 [Lebesgue integral]
Let T ∈ Σ and let (T,Σ(T ), ω) be a measure space, where Σ(T ) := {X ∈ Σ | X ⊆ T}.
Let aj ≥ 0 and Tj ⊂ T for all j = 1, . . . , N for the simple function s in (3.1). We define
its Lebesgue integral by ∫

T
s dω :=

N∑
j=1

ajω(Tj),

where we set 0 · ∞ = 0. Now let f : T → [0,∞) be measurable with respect to Σ(T ) and
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let (fi)∞i=1 be a monotonically (in each point) increasing sequence of non-negative simple
functions which converges to f pointwise. Then, the Lebesgue integral of f is defined by∫

T
f dω := lim

i→∞

∫
T
fi dω.

For a measurable function f : T → R, we define the Lebesgue integral by∫
T
f dω :=

∫
T

max(f, 0) dω −
∫
T

max(−f, 0) dω

if at least one of the terms on the right hand side is finite.

Definition 3.5 [Lebesgue spaces Lp,ω(T )]
Let (T,Σ(T ), ω) be as above and let 1 ≤ p ≤ ∞. The space

Lp,ω(T ) := {f : T → R measurable | ‖f‖Lp,ω(T ) <∞}

with
‖f‖Lp,ω(T ) :=

(∫
T
|f |p dω

) 1
p

if 1 ≤ p <∞ and

‖f‖L∞,ω(T ) := ess sup
t∈T

|f(t)| = inf {a ≥ 0 | ω({t ∈ T | |f(t)| > a}) = 0}

if p =∞ is called Lebesgue space. If ω = λT := λ|T , i.e. we deal with the restriction of
the Lebesgue measure to T , we write Lp(T ) for Lp,λT (T ). We often also write

∫
T f(t) dt

instead of
∫
T f dλT in this case.

Note that functions which only differ on a nullset, i.e. a set A ∈ Σ(T ) such that
ω(A) = 0, have the same Lp,ω(T ) norm. Therefore, we identify such functions with each
other. In a strict sense, the elements of Lp,ω(T ) are only equivalence classes with respect
to this identification. However, in this thesis, we ignore this formal detail when talking
about elements of the Lebesgue spaces and consider functions instead of equivalence
classes.

The Lebesgue spaces Lp,ω(T ) are Banach spaces for all 1 ≤ p ≤ ∞. Additionally,
L2,ω(T ) is a Hilbert space with the inner product

〈f, g〉L2,ω(T ) =
∫
T
f · g dω.

Two very important properties of the Lebesgue integral are the inequality∣∣∣∣∫
T
f dω

∣∣∣∣ ≤ ∫
T
|f | dω. (3.2)
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and the Hölder inequality ∫
T
|f · g| dω ≤ ‖f‖Lp,ω(T )‖g‖Lq,ω(T ), (3.3)

which holds for all Lebesgue measurable f, g and for all 1 ≤ p, q ≤ ∞ with p−1 +q−1 = 1.
In the case p = q = 2, this becomes the Cauchy-Schwarz inequality for Hilbert spaces.
Since we are mostly dealing with probability measures on T ⊂ S in this thesis, we

shortly examine the special case ω(T ) = 1. Here, the inequality (3.2) can be generalized
to Jensen’s inequality, which states

g
(∫

T
f dω

)
≤
∫
T
g ◦ f dω (3.4)

for each g : R→ R which is convex on the image of f . From this, one obtains

‖f‖Lp,ω(T ) ≤ ‖f‖Lq,ω(T ) (3.5)

for every f ∈ Lq,ω(T ) and 1 ≤ p ≤ q ≤ ∞, which shows that Lq,ω(T ) is continuously
embedded into Lp,ω(T ).

3.1.2 Lebesgue-Bochner spaces of vector-valued functions
In this subsection, we deal with an extension of the concepts of subsection 3.1.1 to
vector-valued function spaces. For a thorough consideration of Bochner integrability and
Bochner integrals, we refer to [3], on which our review is based. As in subsection 3.1.1,
let S be a separable normed space and let Σ ∈ {ΣB,ΣL}, where S = Rm if Σ = ΣL.
For T ∈ Σ, we let ω be a measure defined on the restriction Σ(T ). Furthermore, let
(E, ‖ · ‖E) be a separable Hilbert space1 for which the norm ‖ · ‖E is induced by the
scalar product 〈·, ·〉E. We define measurability analogously to the scalar-valued case.
Definition 3.6 [Lebesgue measurable function]
A function f : T → E is called (Bochner) measurable if f−1(A) ∈ Σ(T ) for every
open set A ⊆ E.

It can be shown that this implies that there exists a sequence (fi)∞i=1 of E-valued
simple functions which converge to f pointwise almost everywhere. To this end, let

fi(t) :=
Ni∑
j=1

ai,jχTi,j(t)

for i ∈ N, where Ni ∈ N, ai,j ∈ E and Ti,j ∈ Σ(T ). If these simple functions can be
1Note that the whole Lebesgue-Bochner theory also holds for separable Banach spaces instead of
Hilbert spaces. However, when considering Sobolev-Bochner spaces and reproducing kernel Hilbert
spaces later on, it makes sense to restrict ourselves to the case where E is a Hilbert space.
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chosen such that ω(Ti,j) <∞ whenever ai,j 6= 0, we call them integrable.

Definition 3.7 [Bochner integrability and Bochner integral]
Let f : T → E be measurable and let there exist a sequence of integrable step functions
(fi)∞i=1 which converge to f pointwise almost everywhere. If

lim
i→∞

∫
T
‖f − fi‖E dω = 0,

where the integral has to be understood in the Lebesgue sense, we call f (Bochner)
integrable. The corresponding Bochner integral of f is defined by

∫
T
f dω = lim

i→∞

Ni∑
j=1

ai,jω(Ti,j).

It can easily be verified that the integral operator f → ∫
T f dω is linear. Due to

the definition of Bochner integrability, it can be shown that f : T → E is Bochner
integrable with respect to ω if and only if ‖f(·)‖E : T → R is Lebesgue integrable with
respect to ω. This leads to the definition of the (Lebesgue-)Bochner spaces, which are
the vector-valued analogue to the scalar-valued Lebesgue spaces Lp,ω(T ) from subsection
3.1.1.

Definition 3.8 [(Lebesgue-)Bochner space]
Let T ∈ Σ and let 1 ≤ p ≤ ∞ be fixed. We define the (Lebesgue-)Bochner space
Lp,ω(T ;E) with respect to the measure ω by

Lp,ω(T ;E) :=
{
f : T → E Bochner integrable | ‖f‖Lp,ω(T ;E) <∞

}
.

Here, the Bochner norm is defined as

‖f‖Lp,ω(T ;E) :=
(∫

T
‖f(t)‖pE dω(t)

) 1
p

if 1 ≤ p <∞ and as

‖f‖L∞,ω(T ;E) := ess sup
t∈T

‖f(t)‖E = inf {a ≥ 0 | ω({t ∈ T | ‖f(t)‖E > a}) = 0}

if p =∞. Analogously to the scalar-valued case, we write Lp(T ;E) for Lp,λT (T ;E).

As in the scalar-valued case, all Bochner spaces are Banach spaces and L2,ω(T ;E) is a
Hilbert space since E is also a Hilbert space. Let us shortly review the most important
properties which carry over from Lebesgue integrals to Bochner integrals. Similar to
(3.2), we have ∥∥∥∥∫

T
f dω

∥∥∥∥
E
≤
∫
T
‖f‖E dω (3.6)
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also in the Bochner case. Secondly, for any continuous linear operator P : E → F which
maps into a separable Hilbert space F , we obtain

P
(∫

T
f dω

)
=
∫
T
P (f) dω (3.7)

which is analogous to the linearity of the integral operator in the scalar-valued case,
where this observation is trivial. If ω is a probability measure, i.e. ω(T ) = 1, we obtain

‖f‖Lp,ω(T ;E) ≤ ‖f‖Lq,ω(T ;E) (3.8)

for f ∈ Lq,ω(T ) and 1 ≤ p ≤ q ≤ ∞ in analogy to (3.5).

3.2 Sobolev spaces

For Sobolev spaces, we restrict our short recapitulation to the measure space (Rm,ΣL, λ),
where λ is the Lebesgue measure on Rm. Therefore, in the notation of section 3.1, we have
S = Rm, Σ = ΣL and ω = λ. Our review of definitions and results for isotropic Sobolev
spaces is based on [1, 7, 80]. For the case of Sobolev spaces of mixed smoothness, we refer
to [52, 76, 84]. The special case of Sobolev-Bochner spaces of vector-valued functions
follows [72, 76, 81].
Since we consider the Fourier transform to define the Bessel potential Sobolev spaces,

we need to deal also with complex-valued functions. For ease of notation, we write Lp(T )
for the Lebesgue space on the domain T regardless of whether we deal with real-valued
or complex-valued functions.2

3.2.1 Sobolev spaces of scalar-valued functions

In this thesis, we are mainly interested in the so-called Bessel potential Sobolev spaces
Hs
p(T ) ⊂ L2(T ) for s > 0 defined on an open domain T ∈ ΣL with Lipschitz boundary.
We now briefly review the definition of tempered distributions and the concepts of the

Fourier transform and weak derivatives. We refer the interested reader to [1, 7, 80] for
details. For a sufficiently smooth complex-valued f : Rm → C, let

Dif = ∂|i|`1

∂i1t1 · · · ∂imtm
denote the differentiation operator with respect to the multiindex i ∈ Nm.

2Formally, one has to consider the space Lp(T ;C) ∼= Lp(T ;R2) for complex-valued functions.
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Definition 3.9 [Schwartz space and tempered distributions]
The space of all infinitely differentiable functions f : Rm → C for which

sup
t∈Rm

(1 + ‖t‖2)k|Dif(t)| (3.9)

is finite for all k ∈ N and i ∈ Nm is called the Schwartz space S := S(Rm). The
topology on S is defined by the seminorms (3.9). Its continuous dual space S ′ := S ′(Rm)
is called the space of tempered distributions.
It can be shown that, for each f ∈ Lp(Rm), the functional

g ∈ S →
∫
Rm

f · g dλ

is a tempered distribution and, in this sense, we obtain Lp(Rm) ⊂ S ′(Rm) for every
1 ≤ p ≤ ∞.
Definition 3.10 [Weak derivatives]
The weak derivative Dif ∈ S ′ of f ∈ S ′ is given by

Dif(g) := f
(
Dig

)
(3.10)

for any g ∈ S. For f ∈ Lp(Rm) and Dif ∈ Lp(Rm), this leads to the common notation∫
Rm

Dif · g dλ :=
∫
Rm

f ·Dig dλ.

Furthermore, we also need the Fourier transform to define the Bessel potential Sobolev
spaces.
Definition 3.11 [Fourier transform]
For g ∈ S, the Fourier transform F : S → S is defined by

F(g)(ξ) :=
∫
Rm

g(t) exp(−itTξ) dt, (3.11)

where i ∈ C denotes the imaginary unit. For a tempered distribution f ∈ S ′, the Fourier
transform F : S ′ → S ′ is defined via F(f)(g) := f(F(g)).
It can be shown that F defines an isomorphism on S ′ and the inverse Fourier transform
F−1 : S ′ → S ′ also exists.

Sobolev spaces of isotropic smoothness

The Sobolev norm is given by

‖f‖Hs
p(Rm) :=

∥∥∥F−1
(
(1 + ‖ξ‖2

`2) s2Ff
)∥∥∥

Lp(Rm)
, (3.12)
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where ξ is used instead of t as coordinate vector to indicate that we are in the frequency
domain. A detailed analysis of the above expression, including the fact that it is well-
defined for arbitrary f ∈ S ′, can be found in [7].

Definition 3.12 [Bessel potential Sobolev space]
Let 1 ≤ p ≤ ∞ and s ≥ 0. The (Bessel potential) Sobolev space of isotropic
smoothness of order s on Rm is defined by

Hs
p(Rm) := {g ∈ Lp(Rm) | ‖g‖Hs

p(Rm) <∞}. (3.13)

With the restriction
‖f‖Hs

p(T ) := inf
g∈Hs

p(Rm),g|T=f
‖g‖Hs

p(Rm) (3.14)

for an open bounded domain T ⊂ Rm, we define the Sobolev space of isotropic smoothness
of order s on T by

Hs
p(T ) := {g ∈ Lp(T ) | ‖g‖Hs

p(T ) <∞}.
Alternatively to this definition, the Bessel potential Sobolev spaces can also be defined

by complex interpolation of Sobolev-Slobodeckij spaces, see [80] for details. In the special
case s ∈ N and 1 < p <∞, the original Sobolev norm

‖f‖W s
p (T ) :=

 ∑
i∈Nm,‖i‖`1≤s

‖Dif‖pLp(T )

 1
p

(3.15)

is equivalent to ‖ · ‖Hs
p(T ). Here, Dif ∈ S ′ has to be understood in the sense of (3.10).

Thus, the norm is finite if and only if Dif ∈ Lp(T ) ⊂ S ′. For p = 2 and any s ≥ 0,
Hs

2(T ) is a Hilbert space and we commonly write Hs(T ) for Hs
2(T ).

Sobolev spaces of mixed smoothness

Besides the Sobolev spaces of isotropic smoothness, also the Sobolev spaces of (domi-
nating) mixed smoothness Hs

mix,p(T ) will be used in this thesis. On Rm, their norm is
defined via

‖f‖Hs
mix,p(Rm) :=

∥∥∥∥∥F−1
(
m∏
i=1

(1 + |ξi|2) s2Ff
)∥∥∥∥∥

L2(Rm)
, (3.16)

where ξi denotes the i-th coordinate in the frequency domain. By restriction to T , the
corresponding norm ‖ · ‖Hs

mix,p(T ) is defined analogously to (3.14).

Definition 3.13 [Bessel potential Sobolev space of mixed smoothness]
Let 1 ≤ p ≤ ∞ and s ≥ 0. The (Bessel potential) Sobolev space of mixed
smoothness of order s on Rm is defined by

Hs
mix,p(T ) := {f ∈ Lp(T ) | ‖f‖Hs

mix,p(T ) <∞}.



3.2 Sobolev spaces 19

With the restriction

‖f‖Hs
mix,p(T ) := inf

g∈Hs
mix,p(Rm),g|T=f

‖g‖Hs
mix,p(Rm)

for an open bounded domain T ⊂ Rm, we define the Sobolev space of mixed smoothness
of order s on T by

Hs
mix,p(T ) := {g ∈ Lp(T ) | ‖g‖Hs

mix,p(T ) <∞}.

Similar to Hs
p(T ), we observe that, for the case s ∈ N and 1 < p <∞, the norm

‖f‖W s
mix,p(T ) :=

 ∑
i∈Nm,‖i‖`∞≤s

‖Dif‖pLp(T )

 1
p

(3.17)

is equivalent to ‖ · ‖Hs
mix,p(T ), see e.g. [76]. Note that, differently to the norm (3.15), all

multiindices i which fulfill ‖i‖`∞ ≤ s instead of ‖i‖`1 ≤ s are considered. Again, in the
case p = 2, the space Hs

mix(T ) := Hs
mix,2(T ) is a Hilbert space for arbitrary s ≥ 0.

3.2.2 Sobolev-Bochner spaces of vector-valued functions

Similar to the vector-valued Lebesgue spaces in subsection 3.1.2, we now consider Sobolev
spaces of vector-valued functions. As in the scalar-valued case in subsection 3.2.1, we
restrict ourselves to ω = λ. We are particularly interested in domains T ⊂ Rm with
Lipschitz boundary. In principle, the definitions work completely analogously to the
scalar-valued case. The only difference is that the Lp(T ;E) norms are used instead of
the Lp(T ) norms, where E denotes a separable Hilbert space. Formally, one has to
consider the Schwartz space S(Rm;E) of E-valued functions and the space of E-valued
tempered distributions. However, we will neglect most technical details here and just
present the definitions in terms of bounds on Lp(T ;E) norms of vector-valued Gâteaux
derivatives. For details on the vector-valued variants of the Schwartz space and the
tempered distributions, we refer the reader to [81].
Note that, in the vector-valued case, the norm equivalence between the Bessel potential

space and the Slobodeckij space is only valid if E fulfills certain conditions3, see e.g. [72,
81]. However, these conditions are automatically fulfilled if E is a Hilbert space.

3If E has the so-called unconditionality of martingale differences property (UMD-property), i.e. if the
Hilbert transform is bounded in L2(Rm;E), most of the results from the scalar-valued case carry
over to the case of vector-valued functions.
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Sobolev-Bochner spaces of isotropic smoothness

Analogously to (3.12), the Sobolev-Bochner norm for a Hilbert space E is given by

‖f‖Hs
p(Rm;E) := ‖F−1

(
(1 + ‖ξ‖2

`2) s2Ff
)
‖Lp(Rm;E),

where F now denotes the Fourier transform for functions in L2(Rm;E). The formula
reads the same4 as in (3.11). However, the corresponding integral has to be understood
as a Bochner integral now. Then, the norm on an open T ⊂ Rm is defined by restriction

‖f‖Hs
p(T ;E) = inf

g∈Hs
p(Rm;E),g|T=f

‖g‖Hs
p(Rm;E) (3.18)

as in (3.14).

Definition 3.14 [Bessel potential Sobolev-Bochner space]
Let 1 ≤ p ≤ ∞ and s ≥ 0. The (Bessel potential) Sobolev-Bochner space is
defined via

Hs
p(T ;E) := {f ∈ Lp(T ;E) | ‖f‖Hs

p(T ;E) <∞}.
For s ∈ N and 1 < p < ∞, we again obtain the norm equivalence between the Bessel

potential norm of Hs
p(T ;E) and the Sobolev-Slobodeckij norm

‖f‖W s
p (T ;E) :=

 ∑
i∈Nm,‖i‖`1≤s

‖Dif‖pLp(T ;E)

 1
p

,

where the weak partial derivatives Di on elements from the vector-valued Schwartz space
S(Rm;E) have to be understood in the Gâteaux-sense. For p = 2, the space Hs(T ;E) :=
Hs

2(T ;E) is a Hilbert space for any s ≥ 0.

Sobolev-Bochner spaces of mixed smoothness

The Sobolev-Bochner spaces of mixed smoothness are also treated similarly as in the
scalar-valued case. We define the corresponding Sobolev-Bochner norm for a Hilbert
space E by

‖f‖Hs
mix,p(Rm;E) :=

∥∥∥∥∥F−1
(
m∏
i=1

(1 + |ξi|2) s2Ff
)∥∥∥∥∥

L2(Rm;E)
,

where ξi represents the i-th coordinate. The norm on an open domain T ⊂ Rm with
Lipschitz boundary is then defined by the restriction

‖f‖Hs
mix,p(T ;E) = inf

g∈Hs
mix,p(Rm;E),g|T=f

‖g‖Hs
mix,p(Rm;E).

4Formally, one has to work with the complexification of the vector space E.
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Definition 3.15 [Bessel potential Sobolev-Bochner space of mixed smooth-
ness]
Let 1 ≤ p ≤ ∞ and s ≥ 0. The (Bessel potential) Sobolev-Bochner space of
mixed smoothness is defined by

Hs
mix,p(T ;E) := {f ∈ Lp(T ;E) | ‖f‖Hs

mix,p(T ;E) <∞}.

As in the scalar-valued case, cf. (3.17), the norm

‖f‖W s
mix,p(T ;E) :=

 ∑
i∈Nm,‖i‖`∞≤s

‖Dif‖pLp(T ;E)

 1
p

is equivalent to ‖ · ‖Hs
mix,p(T ;E) for s ∈ N and 1 < p < ∞, see [76]. Similar to the case

of isotropic smoothness spaces, Hs
mix(T ;E) := Hs

mix,2(T ;E) is a Hilbert space for p = 2
and arbitrary s ≥ 0.

3.3 Vector-valued reproducing kernel Hilbert spaces
As before, let T ⊂ Rm be an open Lipschitz domain and let (E, 〈·, ·〉E) be a real Hilbert
space. Many statements of the later chapters of this thesis are valid for function spaces
H which are continuously embedded into C(T ;E), the space of continuous E-valued
functions on T equipped with the norm

‖f‖C(T ;E) := sup
t∈T
‖f(t)‖E. (3.19)

A so-called reproducing kernel Hilbert space (RKHS) H is one of the most important
valid candidates. Therefore, we shortly review the definition of an RKHS and state
relevant properties of such a space. To this end, we follow the lines of [58, 63].

3.3.1 RKHS and continuous embeddings into C(T ;E)
First, we need to consider a kernel function with image in the space L(E,E) of bounded
linear operators from E to E.

Definition 3.16 [Kernel Function]
A function K : T×T → L(E,E) is called a kernel function if the following conditions
are fulfilled:

1. Symmetry: For each s, t ∈ T it holds K(s, t) = K(t, s)∗, where the latter denotes
the adjoint operator of K(t, s).
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2. Non-negativity: For any n ∈ N and arbitrary points ti ∈ T , xi ∈ E, i = 1, . . . , n,
it holds

n∑
i,j=1
〈xi, K(ti, tj)(xj)〉E ≥ 0.

In the scalar-valued case E = R, condition 2 implies the positive semidefiniteness of
the kernel.

Definition 3.17 [(Vector-valued) Reproducing Kernel Hilbert Space]
Let (H, 〈·, ·〉H) be a Hilbert space of functions from T to E. We call H a reproducing
kernel Hilbert space if, for any t ∈ T and x ∈ E, the point evaluation functional
It,x : H → R defined by

It,x(f) := 〈x, f(t)〉E
is continuous.

Note that, due to the Riesz representation theorem, there exists a linear operator
Kt : E → H such that

It,x(f) = 〈x, f(t)〉E = 〈Ktx, f〉H . (3.20)
It is straightforward to see that the function K : T × T → L(E,E) defined by

K(s, t)(x) := (Ktx)(s) ∈ E (3.21)

is a kernel function, see e.g. [58] for details. Therefore, each reproducing kernel Hilbert
space admits a kernel K defined by the Riesz representer of the point evaluation func-
tional It,x. Conversely, every kernel K characterizes the corresponding RKHS uniquely
by completion of

span{K(·, t)(x) | t ∈ T,x ∈ E} (3.22)
with respect to the inner product

〈f, g〉H :=
n1∑
i=1

n2∑
j=1
〈xi, K(ti, sj)(yj)〉E

for arbitrary n1, n2 ∈ N, f(·) = ∑n1
i=1K(·, ti)(xi) and g(·) = ∑n2

j=1K(·, sj)(yj), see
e.g. [58, 63] for details. This one-to-one relationship between the kernel and the RKHS
allows us to prove the following important proposition.

Proposition 3.18
Let (H, 〈·, ·〉H) be a reproducing kernel Hilbert space of functions from T to E with con-
tinuous kernel K : T × T → L(E,E). Let there exist a continuous extension of K to
the closure T̄ × T̄ of T × T . Then the embedding (H, 〈·, ·〉H) ↪→ (C(T ;E), ‖ · ‖∞) is
continuous.
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Proof. For every f ∈ H, t ∈ T and x ∈ E we obtain

〈x, f(t)〉E
(3.20)= 〈Ktx, f〉H ≤ ‖Ktx‖H‖f‖H =

√
〈Ktx, Ktx〉H ‖f‖H

(3.20)=
√
〈x, (Ktx)(t)〉E ‖f‖H

(3.21)=
√
〈x, K(t, t)(x)〉E ‖f‖H

≤
√
‖K(t, t)‖L(E,E) ‖x‖E ‖f‖H ,

where
‖L‖L(X,Y ) := sup

‖y‖X=1
‖L(y)‖Y (3.23)

denotes the standard operator norm for linear operators L : X → Y . Since there exists a
continuous extension K̃ : T̄× T̄ → L(E,E) of K and since ‖K̃(·, ·)‖L(E,E) is a continuous
function on the compact domain T̄ × T̄ , there exists a c > 0 such that

sup
t∈T

√
‖K(t, t)‖L(E,E) ≤ max

t∈T

√
‖K̃(t, t)‖L(E,E) = c <∞.

Therefore, we obtain

‖f(t)‖2
E = 〈f(t), f(t)〉E ≤

√
‖K(t, t)‖L(E,E) ‖f(t)‖E ‖f‖H ≤ c‖f(t)‖E ‖f‖H ,

and thus
‖f‖∞ = sup

t∈T
‖f(t)‖E ≤ c‖f‖H . (3.24)

This shows that convergence with respect to ‖ · ‖H implies convergence with respect to
‖ · ‖∞. Since the latter coincides with uniform convergence, a converging sequence of
functions from span{K(·, t)x | t ∈ T,x ∈ E} has a continuous limit function. This is
due to the fact that K(·, t)x is a continuous function for every t ∈ T and x ∈ E because
of the continuity of K. Therefore, all functions in H are elements of C(T ;E) and the
embedding (H, 〈·, ·〉H) ↪→ (C(T ;E), ‖ · ‖∞) is continuous by (3.24).

3.3.2 Examples
We conclude our review on vector-valued reproducing kernel Hilbert spaces with two
examples.

Componentwise RKHS

Let H be an RKHS of functions from T to E = Rd. In this case, the space L(E,E)
consists of all quadratic matrices in Rd×d. Furthermore, if each component function of the
RKHS H additionally belongs to a scalar-valued RKHS, the standard theory for scalar-
valued reproducing kernel Hilbert spaces directly carries over to the vector-valued case.
To this end, let K1, . . . , Kd : T × T → R be d scalar-valued kernels. The corresponding
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matrix-valued kernel is given by

K(s, t) = diag (K1(s, t), . . . , Kd(s, t)) . (3.25)

Indeed, a straightforward evaluation of (3.22) shows that the space corresponding to K
is given by the completion of

span



K1(·, t)x1

...
Kd(·, t)xd


∣∣∣∣∣∣∣∣ t ∈ T,x ∈ Rd

 = span {K1(·, t)e1, . . . , Kd(·, t)ed|t ∈ T}

= span {K1(·, t)e1 | t ∈ T} ⊕ . . .⊕ span {Kd(·, t)ed | t ∈ T} .

Sobolev spaces

Let m = 1, T = (0, 1) and E = R. The Sobolev space H1(T ) is a reproducing kernel
Hilbert space. However, the closed form expression of the kernel function of H1(T ) is
quite involved. If we restrict ourselves to the space H1

2,0(T ) = {f ∈ H1(T ) ∩ C(T̄ ) |
f(0) = f(1) = 0}, the kernel corresponding to the norm (3.15) is given by

K(s, t) = sinh(min(s, t)) sinh(1−max(s, t))
sinh(1) .

For the derivation of this expression and other kernel formulas for certain Sobolev spaces,
we refer to [18]. Details on the spacesH1

2,0(T ), which can be defined via the trace operator
in the higher-dimensional case, can be found in [1].
In the multivariate case, the Sobolev spaces Hs(T ) with T = (0, 1)m, s > 0,m ≥

1 are reproducing kernel Hilbert spaces only if s > m
2 . This is due to the Sobolev

embedding theorem, see e.g. theorem 4.6.1 of [80]. Since the Sobolev spaces of dominating
mixed smoothness Hs

mix(T ) can be defined as a tensor product of m univariate spaces
Hs((0, 1)), see [52] for details, it can be shown in a straightforward manner that Hs

mix(T )
is a reproducing kernel space for all s > 1

2 , independent of the dimension m. The
corresponding kernel is the product of m kernels of the univariate space Hs((0, 1)). It is
noteworthy that the extension of this kernel to T̄ = [0, 1]m is continuous and therefore
proposition 3.18 can be applied.
The vector-valued Sobolev-Bochner spaces Hs(T ;Rd) for s > m

2 and Hs
mix(T ;Rd) for

s > 1
2 are then constructed as componentwise reproducing kernel Hilbert spaces as

explained above.

3.4 Interpolation spaces
When we discuss vector-valued regression in infinite-dimensional function spaces in chap-
ter 4, interpolation theory will play an important role, see e.g. [7, 24, 67] for an overview.
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Therefore, we provide a short introduction into real interpolation theory based on the
so-called K-functional.

3.4.1 Interpolation spaces and the K-functional
The following definition is according to [7, 23].
Definition 3.19 [Real Interpolation Space and K-functional]
Let (X, ‖ · ‖X) and (Y, ‖ · ‖Y ) be Banach spaces and let Y ⊂ X. We define the (real)
interpolation space (X, Y )σ for σ ∈ (0, 1) by

(X, Y )σ := {f ∈ X | ‖f‖σ <∞}

with
‖f‖σ := sup

t>0

K(f, t)
tσ

,

where the so-called K-functional K : X × R→ R is given by

K(f, t) := inf
g∈Y

(‖f − g‖X + t‖g‖Y ). (3.26)

Note that K(f, t) is essentially the best approximation error to f by a function from
Y for small t > 0. If ‖f‖σ < ∞, the decay rate of this best approximation error is at
least tσ.
The following theorem describes how fast the error of the best approximation by

a norm-bounded function decays. It will prove to be very helpful when dealing with
constrained regression.
Theorem 3.20 [Best Approximation in Norm Balls]
Let (X, ‖ · ‖X) and (Y, ‖ · ‖Y ) be Banach spaces with Y ⊂ X. Let, furthermore, the
embedding Y ↪→ X be continuous. If f ∈ (X, Y )σ for a σ ∈ (0, 1), then

inf
‖g‖Y ≤b

‖f − g‖X ≤ b−
σ

1−σ · ‖f‖ 1
1−σ
σ

for all b > 0.

Proof. See theorem 4.16 in [23].

A slightly more general statement and the corresponding proof can also be found in
[23].

3.4.2 Examples
To illustrate the concept of real interpolation spaces, we now provide an example in
terms of interpolation scales of Sobolev spaces. The resulting function spaces are certain
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Besov spaces. To define them, let Φ ∈ S(Rm) be a function from the Schwartz space
such that Φ(t) = 1 for all ‖t‖`2 ≤ 1 and Φ(t) = 0 for all ‖t‖`2 ≥ 3

2 . Let furthermore

Φ0 = Φ, Φ1(t) = Φ
(t

2

)
− Φ(t) and Φk(t) = Φ1

(
21−kt

)
∀ k ≥ 2

hold for all t ∈ Rm. It is easy to see that these functions fulfill
∞∑
k=0

Φk(t) = 1 ∀ t ∈ Rm.

Therefore, they are called dyadic resolution of unity.
Definition 3.21 [Besov spaces of isotropic smoothness]
Let E be a separable Hilbert space and let (Φk)∞k=0 be the dyadic resolution of unity from
above. Let furthermore s > 0 and 1 ≤ p < ∞ and 1 ≤ q ≤ ∞. The Besov space
Bs
p,q(Rm;E) is defined by

Bs
p,q(Rm;E) :=

{
f ∈ Lp(Rm;E) | ‖f‖Bsp,q(Rm;E) <∞

}
,

where
‖f‖Bsp,q(Rm;E) :=

∥∥∥∥(2sj‖F−1 (Φj · Ff) ‖Lp(Rm;E)
)∞
j=0

∥∥∥∥
`q

.

The Besov spaces on a domain T ⊂ Rm are defined by

Bs
p,q(T ;E) :=

{
f ∈ Lp(Rm;E) | ∃ g ∈ Bs

p,q(Rm;E) such that f = g|T
}

with norm
‖f‖Bsp,q(T ;E) := inf

g∈Bsp,q(Rm;E),f=g|T
‖g‖Bsp,q(Rm;E).

For details on Besov spaces and vector-valued distributions, see e.g. [7, 64, 72, 80, 82].
In the special case p = q = 2, one can show that Bs

2,2(T ;E) = Hs
2(T ;E), see e.g. [80].

We can now state the result on the interpolation between Sobolev-Bochner spaces.
Theorem 3.22 [Interpolation between Sobolev-Bochner spaces]
Let 0 < σ < 1, let s2 > s1 ≥ 0 and let 1 < p < ∞. For an open Lipschitz domain
T ⊂ Rm and a separable Hilbert space E, we obtain(

Hs1
p (T ;E), Hs2

p (T ;E)
)
σ

= B(1−σ)s1+σs2
p,∞ (T ;E),

where the equality has to be understood in the sense of equal sets and norm equivalence
of the corresponding spaces.

Proof. See e.g. section 4.3.1 of [80] for the scalar-valued case. For the vector-valued case,
combine theorems 6 and 8 of [64] with the norm equivalences for Besov spaces in [82].
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Although the resulting spaces in theorem 3.22 are no longer Sobolev-Bochner spaces,
we have Hs

2(T ;E) ⊂ Bs
2,∞(T ;E) for all s > 0 in the special case p = 2. This shows that

(Hs1
2 (T ;E), Hs2

2 (T ;E))σ ⊃ H
(1−σ)s1+σs2
2 (T ;E). (3.27)

We refer to [64] and section 4.6 of [80] for more details.
It is noteworthy that there exist canonical definitions for Besov spaces of dominating

mixed smoothness, see [82]. Furthermore, there are similar interpolation results for these
spaces if the domain is Rm, see theorem 3.9 of [73]. However, the question whether or
not these results are also valid on bounded Lipschitz domains has only been answered for
very specific choices of parameters up to now. The main reason for this is that one has to
ensure the existence of a so-called common extension operator. We refer the interested
reader to section 1.17 of [80] and to sections 1.2.8 and 3.2.4 of [82], where several special
cases are considered and a conjecture for the Sobolev-Bochner spaces can be found.

3.5 Full grids, sparse grids and hyperbolic crosses
For many applications, such as solving partial differential equations, uncertainty quan-
tification and machine learning, grid-based discretizations are commonly used. In data
mining for instance, they have proven to be a good alternative to data-based approaches
such as support vector machines, see [74], where the number of degrees of freedom -
and often also the shape and location of the corresponding basis functions - is coupled
to the input data. Most notably, if the number of data is large, as in most Big Data
applications, see e.g. [11, 15, 35], grid-based methods prevail. We will comment on the
drawbacks of data-based approaches in this situation in more detail in section 5.1.2.
If the dimension of the space from which the data stems is larger than 3, conventional

full grid tensor-product methods are no longer feasible since they suffer from the curse
of dimensionality, see [5], i.e. the exponential growth of the degrees of freedom with
increasing dimension. To overcome this curse, at least to some extent, we can employ
hyperbolic crosses, see [78], and sparse grids, see [14].
Based on [14] and [78], we briefly review the concepts of sparse grids and hyperbolic

crosses, which will serve as examples to illustrate our results in the later chapters. For
reasons of clarity and comprehensibility, we restrict ourselves to linear splines on sparse
grids and Fourier polynomials on hyperbolic crosses. Note, however, that these con-
structions work analogously for different bases such as higher order splines or global
polynomials for instance, see also [14, 27].

3.5.1 Linear prewavelet splines on full grids and sparse grids
We now introduce the so-called piecewise linear prewavelet basis, see [41]. In contrast
to the hat function basis, which is commonly used in sparse grid applications because of
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its simplicity, see e.g. [11, 15, 31], the main advantage of the prewavelet basis is that it
forms a Riesz frame with respect to the L2(T ) norm, which we will exploit several times.

The prewavelet basis

We define the univariate hat function φ : R→ R by

φ(t) :=
{

1− |t| if t ∈ [−1, 1],
0 else

and its translations and dilations φl,i : [0, 1]→ R by

φl,i(t) := φ(2l · t− i)|[0,1] (3.28)

for l ∈ N and i ∈ {0, 1, . . . , 2l − 1, 2l}. The univariate prewavelets γl,i : [0, 1] → R can
now be constructed as in [41]:

γ0,0 := 1, γ0,1 := φ0,1, γ1,1 := 2 · φ1,1 − 1.

For l ≥ 2, let Il :=
{
i ∈ N | 1 ≤ i ≤ 2l − 1, i odd

}
and let

γl,i := 2 l
2 ·
( 1

10φl,i−2 −
6
10φl,i−1 + φl,i −

6
10φl,i+1 + 1

10φl,i+2

)
for i ∈ Il, i /∈ {1, 2l − 1} and

γl,1 := 2 l
2 ·
(
−6

5φl,0 + 11
10φl,1 −

3
5φl,2 + 1

10φl,3
)
, γl,2l−1(t) := γl,1(1− t).

A depiction can be found in figure 3.1. The m-variate prewavelet functions are then
defined by a tensor product approach

γl,i(t) :=
m∏
j=1

γlj ,ij(tj) (3.29)

with the multivariate level index l = (l1, . . . , lm) ∈ Nm and the multivariate position
index i = (i1, . . . , im) ∈ Nm.

Full grids and sparse grids

We define

Il :=
{

i ∈ Nm

∣∣∣∣∣ 0 ≤ ij ≤ 1, if lj = 0,
1 ≤ ij ≤ 2lj − 1, ij odd if lj > 0 for all 1 ≤ j ≤ m

}
. (3.30)
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Fig. 3.1: Different univariate piecewise linear prewavelets.

With this, we are able to write the so-called hierarchical increment space (or detail space)
of level l as

Wl := span {γl,i | i ∈ Il} . (3.31)
In the particular case of the prewavelet basis, the spaces Wl are orthogonal to each other
in L2((0, 1)m), i.e.

Wl ⊥L2 Wk ∀ l 6= k.

The multivariate prewavelet space of functions up to level l is defined by

Vl :=
⊕
k≤l

Wk = span {Bl} (3.32)

with the hierarchical basis

Bl := {γk,i | i ∈ Ik,k ≤ l} .

Here, k ≤ l is meant elementwise. The full grid space of level k > 0 can now be written
as

V full
k :=

⊕
l∈Nm
|l|`∞≤k

Wl. (3.33)
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Fig. 3.2: Full and sparse grids of level k = 4 in dimensions m = 2, 3 (top) and their
corresponding index sets (bottom).

Finally, we define the corresponding sparse grid space of level k > 0 by

Vsparse
k :=

⊕
l∈Nm
ζm(l)≤k

Wl (3.34)

with ζm(0) := 0 and
ζm(l) := |l|`1 −m+ |{j | lj = 0}|+ 1

for every non-zero l ∈ Nm. Our specific choice of ζm(l) ensures that the maximum level of
sub-grids on the boundary is the same as the maximum level of sub-grids in the interior
of the domain. The grids Ωfull

k and Ωsparse
k , i.e. the centers of the support of the basis

functions belonging to the full grid space and the sparse grid space, can be found in
figure 3.2. The corresponding pictures also illustrate the curse of dimensionality for full
grids.
Note, that our definitions above only cover the case of scalar-valued functions so far.

In the Rd-valued case, we just construct the grid spaces componentwise, i.e. the vector-
valued grid space of level k ∈ N is defined by

V∗,dk := span {γl,iej | γl,i ∈ V∗k , j = 1, . . . , d} , (3.35)

where ∗ stands for either “full” or “sparse”. Analogously, one can define vector-valued
grids where the image space E is an arbitrary separable Banach space by replacing ej
in the above definition by a basis of that space.
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As we mentioned earlier, full grid spaces suffer from the curse of dimensionality. This
is reflected in the degrees of freedom

dim
(
V full,d
k

)
= d · (2k + 1)m = d · O

(
2km

)
,

which depend exponentially on the dimension m of the domain. The O-notation has to
be understood for k →∞ here, i.e. there exists a (possibly m-dependent) constant c > 0
such that dim

(
V full,d
k

)
≤ dc2km. Conversely, we have

dim
(
Vsparse,d
k

)
= d · O

(
2kkm−1

)
(3.36)

for Vsparse,d
k , see e.g. [30]. Thus, the curse of dimensionality only appears with respect to

k instead of 2k. Therefore, sparse grids are a suitable discretization also for m > 3.

Norm equivalences and inverse inequalities

Let T = (0, 1)m. An important property which is inherent to the multilevel decomposi-
tion of the prewavelet basis is the following norm equivalence for Sobolev spaces:

‖f‖2
Hs(T ;Rd) '

∑
l∈Nm

22s|l|`∞‖wl‖2
L2(T ;Rd) '

∑
l∈Nm

22s|l|`∞
∑
i∈Il

d∑
j=1
|αl,i,j|2 ∀ 0 ≤ s <

3
2 (3.37)

holds for all f ∈ Hs(T ;Rd), where f = ∑
l∈Nm wl is the unique decomposition of f with

respect to the L2(T ;Rd)-orthogonal subspace system given by {⊕d
j=1Wlej}l∈Nm and we

have
wl =

∑
i∈Il

(αl,i,1 γl,i, . . . , αl,i,d γl,i)T .

For the case of mixed Sobolev-Bochner spaces, we have

‖f‖2
Hs

mix(T ;Rd) '
∑

l∈Nm
22s|l|`1‖wl‖2

L2(T ;Rd) '
∑

l∈Nm
22s|l|`1

∑
i∈Il

d∑
j=1
|αl,i,j|2 ∀ 0 ≤ s <

3
2 . (3.38)

The Rd-valued case we treated here is a trivial consequence of the scalar-valued case of
these results, which can be found in [41] and [42]. Note that we directly obtain that the
prewavelet basis is a Riesz basis of L2(T ;Rd) by taking s = 0 in the above equations.
Another direct consequence of the norm equivalences above are the corresponding

inverse, Bernstein-type inequalities

‖f‖2
Hs(T ;Rd)

(3.37)'
∑
|l|`∞≤k

22s|l|`∞‖wl‖2
L2(T ;Rd) . 22sk ∑

|l|`∞≤k
‖wl‖2

L2(T ;Rd)
(3.37)' 22sk‖f‖2

L2(T ;Rd)

(3.39)
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for all f ∈ V full,d
k and

‖f‖2
Hs

mix(T ;Rd)
(3.38)'

∑
ζm(l)≤k

22s|l|`1‖wl‖2
L2(T ;Rd) . 22sk ∑

ζm(l)≤k
‖wl‖2

L2(T ;Rd)
(3.38)' 22sk‖f‖2

L2(T ;Rd)

(3.40)
for all f ∈ Vsparse,d

k , where 0 ≤ s < 3
2 . Here, . means ≤ up to a constant which does not

depend on k.

Best approximation error

As we will see in the later chapters, the best approximation error measured in the
L2(T ;Rd) norm will be of special interest to derive estimates for the regression error. In
the full grid case, we have

inf
f∈Vfull,d

k

‖f − g‖2
L2(T ;Rd) . d · 2−2sk‖g‖2

Hs(T ;Rd) if g ∈ Hs(T ;Rd) with 0 < s ≤ 2, (3.41)

where the constant involved in the . estimate only depends on s and m. The prefactor
d shows up because one needs to employ the upper bound for the scalar-valued case d
times to obtain the vector-valued estimate. In the case of sparse grids, we only obtain

inf
f∈Vsparse,d

k

‖f − g‖2
L2(T ;Rd) . d · 2− 2sk

m ‖g‖2
Hs(T ;Rd) if g ∈ Hs(T ;Rd) with 0 < s ≤ 2,

i.e. although the curse of dimensionality only has a mild effect on the size of the sparse
grid, the rate of convergence of the best approximation error deteriorates exponentially
with increasing dimension m. For more details on these results, we refer to [42, 52].
However, if additional smoothness is present, i.e. in the case of mixed Sobolev regularity,
the exponential dependence on m in the upper bound on the best approximation error
is again only present with respect to the level k. To prove this, we first need two
combinatorial lemmata.

Lemma 3.23
Let i,m ∈ N such that i > m. The size of the set {l ∈ Nm | |l|`1 + |{j | lj = 0}| = i} is

m−1∑
n=0

(
i− 1− n
m− 1− n

)(
m

n

)
.

Proof. Let N+ = N \ {0}. Note that the size of the set
{
l ∈ Nk

+ | |l|`1 = l
}
is
(
l−1
k−1

)
for

all choices of k, l ∈ N+. Therefore, we have

|{l ∈ Nm | |l|`1 + |{j | lj = 0}| = i}| =
m−1∑
n=0
|{l ∈ Nm | |l|`1 = i− n ∧ |{j | lj = 0}| = n}|
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=
m−1∑
n=0

∣∣∣{l ∈ Nm−n
+ | |l|`1 = i− n

}∣∣∣ · (m
n

)

=
m−1∑
n=0

(
i− n− 1
m− n− 1

)(
m

n

)
,

which concludes the proof.

Lemma 3.24
Let 0 < x < 1 and let k,m ∈ N+. It holds

∞∑
i=0

xi
(
k + i+m− 1

m− 1

)
=

m−1∑
i=0

(
k +m− 1

i

)(
x

1− x
)m−1−i

· 1
1− x.

Proof. The derivation of this result can be found in the proof of lemma 3.7 of [14].

With these auxiliary results, we are able to prove the following theorem on the best
approximation error.

Theorem 3.25 [Best approximation error of sparse grids]
For k ≥ 1, it holds

inf
f∈Vsparse,d

k

‖f − g‖2
L2(T ;Rd) . d · 2−2skkm−1‖g‖2

Hs
mix(T ;Rd) if g ∈ Hs

mix(T ;Rd) with 0 < s ≤ 2.

(3.42)

Proof. Since we deal with componentwise approximation, the vector-valued result follows
directly from the special case d = 1. To this end, note that the slightly larger bound with
2−2skk2(m−1) for the rate has already been proven in [42]. To prove (3.42), we essentially
follow the lines of the proof of Proposition 6 of [42] but improve on the estimate in the
very last step. To this end, let 0 < s ≤ 2 and let g ∈ Hs

mix(T ). Note that

inf
f∈Vsparse

k

‖f − g‖2
L2(T )

(3.38)' inf
f∈Vsparse

k

∑
ζm(l)≤k

‖w(f)
l − w(g)

l ‖2
L2(T ;Rd) +

∑
ζm(l)>k

‖w(g)
l ‖2

L2(T ;Rd),

where f = ∑
ζm(l)≤k w

(f)
l and g = ∑

l∈Nm w
(g)
l . Thus, by choosing w(f)

l = w
(g)
l for all l

with ζm(l) ≤ k and applying

‖w(g)
l ‖L2(T ) . 2−s|l|`1‖g‖Hs

mix(T ) ∀ l ∈ Nm,

which has been proven in [42] for example, we obtain

inf
f∈Vsparse

k

‖f − g‖2
L2(T ) . ‖g‖2

Hs
mix(T )

∑
ζm(l)>k

2−2s|l|`1 .
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Estimating the sum on the right hand side gives∑
ζm(l)>k

2−2s|l|`1 =
∑

|l|`1+|{j|lj=0}|>k+m−1
2−2s|l|`1

=
∑

|l|`1+|{j|lj=0}|>k+m−1
2−2s(|l|`1+|{j|lj=0}|) · 22s|{j|lj=0}|︸ ︷︷ ︸

≤22sm

.
∞∑

i=k+m
2−2si ∑

|l|`1+|{j|lj=0}|=i
1

Lemma 3.23=
∞∑

i=k+m
2−2si

m−1∑
n=0

(
i− 1− n
m− 1− n

)(
m

n

)

= 2−2s(k+m)
∞∑
i=0

2−2si
m−1∑
n=0

(
k +m+ i− 1− n

m− 1− n

)(
m

n

)

. 2−2sk
∞∑
i=0

2−2si
(
k +m+ i− 1

m− 1

)
m−1∑
n=0

(
m

n

)
︸ ︷︷ ︸

<2m

. 2−2sk
∞∑
i=0

2−2si
(
k +m+ i− 1

m− 1

)

Lemma 3.24= 2−2sk
m−1∑
i=0

(
k +m− 1

i

)(
2−2s

1− 2−2s

)m−1−i

· 1
1− 2−2s

. 2−2sk
m−1∑
i=0

(
k +m− 1

i

)

= 2−2sk
m−1∑
i=0

i∏
j=1

k +m− j
j

. 2−2sk
m−1∑
i=0

i∏
j=1

k +m− 1

. 2−2skkm−1.

The . constant only depends on s and m. Now, (3.42) follows by using the scalar-valued
estimate for every component function.

Note that similar results have already been proven in [52, 84] for the periodic case.

3.5.2 Fourier polynomials on full grids and hyperbolic crosses
In the last subsection, we examined the so-called h-version of sparse grids. This means
that the degree of the piecewise polynomials is fixed and their support is refined with
increasing level. In the following, we instead consider a type of spectral/p-version ap-
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proach, where we increase the maximum frequency of global Fourier polynomials. In
particular, we are interested in polynomials on hyperbolic crosses. Throughout this sub-
section, let T = (−π, π)m. We identify opposite hyperplanes, i.e. we deal with functions
which are 2π-periodic in every coordinate.

Periodic Sobolev spaces

Since we deal with complex-valued Fourier polynomials in this subsection, our corre-
sponding function spaces also have to be complex-valued. If we restrict the Sobolev
spaces Hs(T ;Cd) and Hs

mix(T ;Cd) to periodic functions, we obtain the periodic Sobolev
spaces on H̄s(T ;Cd) and H̄s

mix(T ;Cd). For convenience, we also make a slight change
of the norms for these periodic Sobolev spaces compared to their non-periodic originals.
The reason is that we can consider Fourier series instead of Fourier transformations for
periodic functions. To this end, we set

‖f‖H̄s(T ;Cd) :=
∥∥∥∥∥∥
∑

k∈Zm
ck(f)(1 + ‖k‖2

`2) s2 eikT t

∥∥∥∥∥∥
L2(T ;Cd)

and

‖f‖H̄s
mix(T ;Cd) :=

∥∥∥∥∥∥
∑

k∈Zm
ck(f)

m∏
j=1

(1 + |kj|2) s2 eikT t

∥∥∥∥∥∥
L2(T ;Cd)

,

where t ∈ T is the spatial variable and

ck(f) := 1
(2π)mF(f)(k) = 1

(2π)m
∫
T
f(t)e−ikT tdt

denotes the k-th Fourier coefficient. For more details on these norms, we refer to [52, 84].

Full grids and hyperbolic crosses

The space of trigonometric/Fourier polynomials on a full grid of level k ∈ N is defined
similarly to the full grid space for piecewise linear functions, which we introduced in the
previous subsection. To this end, let

T full,d
k := span

{
exp

(
ilT t

)
· ej | l ∈ Zm, |l|∞ ≤ 2k and j = 1, . . . , d

}
, (3.43)

where i is the imaginary unit. Another way to interpret this is that T full,d
k contains all

those periodic L2 functions for which cl(f) = 0 ∈ Cd for all l ∈ Zm with |l|∞ > 2k.
Following [78], the space of Fourier polynomials on the so-called hyperbolic cross of level
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(a) m = 2, |l|`∞ ≤ 23
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Fig. 3.3: Full grid and hyperbolic cross index sets for k = 3 in dimensions m = 2, 3. We
set Ihyp(k) := {l ∈ Zm | ∑m

n=1 log2(max(|ln|, 1)) ≤ k}

k ∈ N can be written as

T hyp,d
k := span

{
exp

(
ilT t

)
· ej | l ∈ Zm,

m∏
n=1

(max(|ln|, 1)) ≤ 2k
}
. (3.44)

Note that the inequality
m∏
n=1

(max(|ln|, 1)) ≤ 2k ⇔
m∑
n=1

log2(max(|ln|, 1)) ≤ k,

which defines the multilevel indices contained in the hyperbolic cross, can be interpreted
as an analogue to the condition ζm(l) ≤ k for sparse grids. An illustration of the
hyperbolic cross index sets in contrast to full grid index sets can be found in figure 3.3.
As we already mentioned for the vector-valued sparse grid spaces, we could also define
the Fourier polynomial spaces for functions with image in any separable Banach space
E by substituting ej by a suitable basis.
We directly observe that the dimension of the full grid space is

dim(T full,d
k ) = d · O

(
2km

)
.

The number of degrees of freedom of the hyperbolic cross space can be bounded from
above by

dim(T hyp,d
k ) = d · O

(
2kkm−1

)
, (3.45)

see [78]. This is analogous to the sparse grid space Vsparse,d
k .

Norm equivalences and inverse inequalities

To obtain norm equivalences similar to (3.37) and (3.38), we first need to introduce a
decomposition of the spaces T full,d

k and T hyp,d
k . To this end, let Par0 := {−1, 0, 1} and
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let Parl := {z ∈ Z | 2l−1 < |z| ≤ 2l} for all l ∈ N+ = N \ {0}. Let furthermore

Parl := Parl1 × . . .× Parlm

for l ∈ Nm. Then, we can decompose a periodic function f ∈ L2(T ;Cd) by f = ∑
l∈Nm w̄l

with
w̄l(t) =

∑
k∈Parl

ck(f)e−ikT t.

This decomposition, together with Parseval’s identity, gives us the desired norm equiv-
alences for the periodic Sobolev spaces:

‖f‖2
H̄s(T ;Cd) '

∑
l∈Nm

22s|l|`∞‖w̄l‖2
L2(T ;Cd) =

∑
l∈Nm

22s|l|`∞
∑

k∈Parl

‖ck(f)‖2
`2 ∀ s ≥ 0 (3.46)

and

‖f‖2
H̄s

mix(T ;Cd) '
∑

l∈Nm
22s|l|`1‖w̄l‖2

L2(T ;Cd) =
∑

l∈Nm
22s|l|`1

∑
k∈Parl

‖ck(f)‖2
`2 ∀ s ≥ 0. (3.47)

For details on these results, see [84]. Taking the definition of w̄l into account, we observe
that w̄l = 0 for all l ∈ Nm with

2|l|`∞ > 2k ⇔ |l|`∞ > k

if f ∈ T full,d
k . Analogously, we obtain w̄l = 0 for all l ∈ Nm with

m∑
n=1

log2(max(2ln , 1)) > k ⇔ |l|`1 > k

if f ∈ T hyp,d
k . With the above results, we can again easily derive the inverse, Bernstein-

type inequalities for s ≥ 0. We have

‖f‖2
H̄s(T ;Cd)

(3.46)'
∑
|l|`∞≤k

22s|l|`∞‖wl‖2
L2(T ;Cd) . 22sk ∑

|l|`∞≤k
‖wl‖2

L2(T ;Cd)
(3.46)' 22sk‖f‖2

L2(T ;Cd)

(3.48)
for f ∈ T full,d

k and

‖f‖2
H̄s

mix(T ;Cd)
(3.47)'

∑
|l|`1≤k

22s|l|`1‖wl‖2
L2(T ;Cd) . 22sk ∑

|l|`1≤k
‖wl‖2

L2(T ;Cd)
(3.47)' 22sk‖f‖2

L2(T ;Cd)

(3.49)
for f ∈ T hyp,d

k . For more inverse inequalities of spaces of Fourier polynomials, we refer
to [78].
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Best approximation error

The rate of the L2 best approximation error behaves similarly as for the piecewise linear
prewavelets. However, due to the usage of the Fourier polynomials, we can exploit
additional smoothness of the approximated function and derive results also for Sobolev
smoothness s > 2. In the full grid case, we obtain

inf
f∈T full,d

k

‖f − g‖2
L2(T ;Cd) . d · 2−2sk‖g‖2

H̄s(T ;Cd) if g ∈ H̄s(T ;Cd) with s > 0. (3.50)

The best approximation error for the hyperbolic cross behaves like

inf
f∈T hyp,d

k

‖f − g‖2
L2(T ;Cd) . d · 2−2sk‖g‖2

H̄s
mix(T ;Cd) if g ∈ H̄s

mix(T ;Cd) with s > 0. (3.51)

Here, the . constants only depend on s and m. For the proofs, we refer to theorems
II.3.2 and III.3.2 of [78]. Note, to this end, that the function classes SWs

2 and MWs
2

considered in [78] correspond to the unit balls of our spaces H̄s(T ) and H̄s
mix(T ). For

details on this equivalence, we refer to theorem 2.7 of [84].



4 Constrained regression
The problem of regression has a long history in mathematics going back to the first
years of the 19th century, when the method of least-squares regression was introduced
by Legendre [56] and Gauß [37]. However, the name “regression” was unconventional
until 1886, when Galton described the regression of the average height of an offspring
with respect to the height of its tall parents, see [34]. Ever since, the term “regression
analysis” described the estimation of the relationship between two or more variables.
Due to many different underlying model assumptions, a vast amount of different meth-

ods for regression analysis exist. The model is usually fitted to a specific field of applica-
tion or to the computational infrastructure at hand. The resulting algorithms range from
simple linear function regression to complex non-linear Bayesian maximum a-posteriori
estimators, support vector machines and artificial neural networks, see [17, 26, 46] for
an overview.
In this chapter, we focus on constrained vector-valued least-squares regression. Here,

the term constrained refers to the fact that we only consider functions which fulfill a
certain norm bound. The problem of finding the optimal regression function translates
to a quadratic functional minimization problem over a fixed search set. Due to its
benign nature, error estimates and convergence rates for the corresponding algorithm
already exist for many choices of the search set, see e.g. [23, 46]. However, for the
case of constrained regression in a finite-dimensional search space, the known theoretical
results cannot be applied to obtain a non-trivial upper bound on the regression error.
Therefore, we introduce a technique relying on Jackson- and Bernstein-type inequalities
to treat the finite-dimensional setting. Our result can then be applied to any finite-
dimensional constrained regression problem, such as sparse grid-based regression, see
[11, 15], for example.
This chapter is structured as follows: In section 4.1, we discuss the general framework

of vector-valued regression and focus on the common case of least-squares regression in
Bochner spaces. In section 4.2, we investigate the solvability of the constrained regression
problem and present a splitting of the overall error into the bias and the sampling error
term. We proceed with well-known techniques from interpolation theory to derive upper
bounds on the bias in section 4.3. Furthermore, we deal with the finite-dimensional
case separately and establish bounds based on given Jackson and Bernstein estimates.
In section 4.4, we review the concept of covering numbers to determine probabilistic
bounds for the sampling error. We apply the results from sections 4.3 and 4.4 to obtain
estimates on the overall regression error for several examples in section 4.5. Finally, we
conclude this chapter with a short summary in section 4.6. To give a brief overview on

39
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the most relevant functions and spaces/sets in this chapter, we included table 4.1.

4.1 The regression functional
In this section, we introduce the general vector-valued regression problem. We define the
so-called regression functional and formulate our task as a minimization problem over a
suitable set of functions. Let us emphasize that we deal with multivariate regression of
vector-valued functions and, thus, we have to carefully distinguish between the dimension
m ∈ N of the domain and the dimension d ∈ N ∪ {∞} of the image of a vector-valued
function. The proofs in this section are essentially adjusted versions of the proofs in [23],
where the scalar-valued case d = 1 is treated.

Regression with given measure

Let T ⊂ Rm be a bounded, open domain and let (E, 〈·, ·〉E) be a separable real Hilbert
space1. Let Σ(T × E) be the smallest σ-algebra which contains

{A×B | A ∈ ΣL(T ), B ∈ ΣB(E)} ,

i.e. Σ(T ×E) is the product algebra of the Lebesgue algebra ΣL(T ) on T and the Borel
algebra ΣB(E) on E. Let ρ be a probability measure on T ×E with respect to Σ(T ×E)
such that the marginal measure

ρT (·) := ρ(·, E)

on T is a non-degenerate probability measure with respect to ΣL(T ), i.e. ρT (T ) = 1 and

ρT (U) > 0 (4.1)

for each non-empty open set U ∈ ΣL(T ). Moreover, we assume that the conditional
measures ρ(·|t) with respect to t ∈ T , which fulfill∫

T×E
G(t,x) dρ(t,x) =

∫
T

(∫
E
G(t,x) dρ(x|t)

)
dρT (t) (4.2)

for all integrable functions G : T × E → R, are probability measures on ΣB(E). A
general multivariate vector-valued regression problem reads

Find f̂ := arg min
f∈L2,ρT (T ;E)

E(f) with E(f) :=
∫
T×E

ψ(f(t),x) dρ(t,x). (A)

1Note that some of our results also hold in the more general case where E is a Banach space. However,
since the most important statements are only valid if E is a Hilbert space, we will focus on this case
only.
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Table 4.1: Overview on relevant functions, sets and variables for constrained regression.
T ⊂ Rm open and bounded domain
(E, 〈·, ·〉E) separable Hilbert space

ρ : Σ(T × E)→ [0, 1] probability measure on the product algebra of
ΣL(T ) and ΣB(E)

ρT : ΣL(T )→ [0, 1] marginal measure of ρ with respect to the first co-
ordinate

L2,ρT (T ;E) L2 Bochner space (with respect to ρT ) of functions
with domain T and image in E

C(T ;E) Banach space of continuous functions from T to E
equipped with the sup-norm

H ⊂ C(T ;E) search space, a reflexive Banach space continu-
ously embedded into C(T ;E)

Hb ⊂ H search set, a closed ball of radius b in H centered
at 0 w.r.t. the norm ‖ · ‖H

Vk ⊂ C(T ;E) finite-dimensional search space, continuously em-
bedded into C(T ;E)

Vk,b ⊂ Vk
finite-dimensional search set, a closed ball of radius
b in Vk centered at 0 w.r.t. the norm ‖ · ‖Vk

r ∈ (0,∞) radius of a bounding ball of the support of ρ(T, ·)
Zn ∈ (T × E)n n i.i.d. samples (ti,xi)ni=1 drawn according to ρ

Nk ∈ N degrees of freedom of the search space, Nk =
dim(Vk)

ψ : E × E → [0,∞) cost function, measures how close the arguments
are to each other

Mψ ∈ (0,∞) upper bound on ψ(f(t),x) for all f in the search
set and almost every t ∈ T,x ∈ E

E : L2,ρT (T ;E)→ [0,∞] the target functional for the regression problem

EZn : L2,ρT (T ;E)→ [0,∞] the target functional for the finite sample regres-
sion problem

f̂ ∈ L2,ρT (T ;E) minimizer of E in L2,ρT (T ;E)
fρ ∈ L2,ρT (T ;E) f̂ for the special case ψ(x,y) = ‖x− y‖2

E

fX ∈ X ⊂ L2,ρT (T ;E) minimizer of E over X
fZn,X ∈ X ⊂ L2,ρT (T ;E) minimizer of EZn over X
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The function ψ : E × E → [0,∞) is called cost function. It penalizes large distances
between the two input vectors and it fulfills ψ(x,x) = 0 for every x ∈ E. An example
for ψ would be a metric, however many commonly used cost functions are no metrics.
The so-called ε-insensitive loss function

ψ(x,y) =
{

0 if ‖x− y‖E ≤ ε,
‖x− y‖E − ε else ,

for instance is a well-known example which does not fulfill the properties of a metric
since the triangle inequality does not hold, see [74, 85] for details.

We will solely focus on the squared distance

ψ(x,y) = ‖x− y‖2
E (4.3)

for most parts of this thesis because of its strict convexity and its relation to the
L2,ρT (T ;E) Bochner norm, which we will explore in the following. Nonetheless, many
results - such as the existence and the uniqueness of minimizers - can easily be extended
to a more general type of cost functions.

Definition 4.1 [Qualified cost function]
A positive cost function ψ : E × E → [0,∞) which fulfills

ψ(x,y) = ψ̃(x− y) (4.4)

with even, continuous and convex ψ̃ which fulfills ψ̃(0) = 0 is called qualified cost
function.

Trivially, ψ(x,y) = ‖x−y‖2
E from (4.3) and the ε-insensitive loss function are qualified

cost functions. For our further analysis, we assume that there exists an r > 0 such that2

ρ(T × Ur(0)) = 1,

where Ur(0) denotes the closed ball of radius r in E with center 0, i.e.

‖x‖E ≤ r for ρ-almost every (t,x) ∈ T × E. (4.5)

2Note that it would be sufficient if the milder assumption∫
E

‖x‖E dρ(x|t) ≤ r <∞

held for ρT -almost every t ∈ T in order to derive most of our results. However, when considering
the sampling error in section 4.4, the almost surely bound of ‖x‖E is an essential requirement to
obtain the necessary uniform bound on the cost function (4.3).
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Regression with given samples

In real-world applications, the measure ρ is unknown and we only have access to a finite
set Zn of n sample points

Zn := ((ti,xi))ni=1 ∈ (T × E)n (4.6)

which we assume to be drawn independently of each other and to be distributed according
to ρ. This means that Zn ∼ ρn. For a given sample set Zn, we define the empirical
measures on T × E and T , respectively, by

δZn := 1
n

n∑
i=1

δti,xi and δt1,...,tn := 1
n

n∑
i=1

δti .

Here, δti,xi is the Dirac measure centered in (ti,xi) ∈ T ×E and δti is the Dirac measure
centered in ti ∈ T . Instead of considering (A) directly, we now substitute ρ by δZn to
obtain the regression problem for the finite sample set Zn:

Find arg min
f∈L2,ρT (T ;E)

EZn(f) with EZn(f) := 1
n

n∑
i=1

ψ(f(ti),xi). (B)

Note that the point evaluation f(ti) is not necessarily defined for L2,ρT functions. How-
ever, when we are dealing with continuous functions later on, we automatically circum-
vent this problem.

Properties of E and EZn
First, let us consider the function fρ, which will be of importance when analyzing the
error made by a regression algorithm.
Lemma 4.2
Let fρ : T → E be defined by

fρ(t) :=
∫
E

x dρ(x|t). (4.7)

Then fρ ∈ L∞,ρT (T ;E) ⊂ L2,ρT (T ;E).

Proof. Applying the norm inequality (3.6) for Bochner integrals, we obtain

‖fρ‖L∞,ρT (T ;E) = ess sup
t∈T

∥∥∥∥∫
E

x dρ(x|t)
∥∥∥∥
E
≤ ess sup

t∈T

∫
E
‖x‖E dρ(x|t)

(4.5)
≤ ess sup

t∈T
r = r <∞.

Since ρT is a probability measure, L∞,ρT (T ;E) ⊂ L2,ρT (T ;E) holds, see (3.5).
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For the further analysis of the behavior of E and EZn , the Lipschitz regularity of these
error functionals will be crucial. Therefore, we provide the following lemma for the
quadratic distance function (4.3), see also [23].

Lemma 4.3
Let f1, f2 ∈ L∞,ρT (T ;E) with ‖fi‖L∞,ρT (T ;E) ≤M for i = 1, 2. Let furthermore ψ(x,y) =
‖x− y‖2

E. Then, E and EZn fulfill the Lipschitz conditions

|E(f1)− E(f2)| ≤ C‖f1 − f2‖L1,ρT (T ;E) ≤ C‖f1 − f2‖L2,ρT (T ;E) (4.8)

and

|EZn(f1)− EZn(f2)| ≤ C‖f1 − f2‖L1,δt1,...,tn
(T ;E) ≤ C‖f1 − f2‖L2,δt1,...,tn

(T ;E) (4.9)

with C := 2(M + r), where r stems from (4.5).

Proof. Since E is a Hilbert space, we obtain

|ψ(f1(t),x)− ψ(f2(t),x)| = ‖f1(t)− x‖2
E − ‖f2(t)− x‖2

E

= 〈f1(t)− f2(t), f1(t) + f2(t)− 2x〉E
≤ ‖f1(t)− f2(t)‖E · (‖f1(t)‖E + ‖f2(t)‖E + 2‖x‖E)
≤ 2(M + r)‖f1(t)− f2(t)‖E (4.10)

for almost every (t,x) ∈ T × E. With this, we obtain

|E(f1)− E(f2)| ≤
∫
T×E
|ψ(f1(t),x)− ψ(f2(t),x)| dρ(t,x)

≤ C
∫
T
‖f1(t)− f2(t)‖E

∫
E

1 dρ(x|t) dρT (t)

= C
∫
T
‖f1(t)− f2(t)‖E dρT (t)

= C‖f1 − f2‖L1,ρT (T ;E).

From (3.8), we obtain ‖f1−f2‖L1,ρT (T ;E) ≤ ‖f1−f2‖L2,ρT (T ;E) for all f1−f2 ∈ L2,ρT (T ;E),
which finally shows (4.8).
The proof for the inequality (4.9) works analogously: We have

|EZn(f1)− EZn(f2)| ≤ 1
n

n∑
i=1
|ψ(f1(ti),xi)− ψ(f2(ti),xi)|

≤ C

n

n∑
i=1
‖f1(ti)− f2(ti)‖E = C‖f1 − f2‖L1,δt1,...,tn

(T ;E).

Again, applying (3.8) to ‖f1 − f2‖L1,δt1,...,tn
(T ;E) gives the final result (4.9).
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We conclude this subsection with an important property of the functional E and the
function fρ.

Lemma 4.4
Let f ∈ L2,ρT (T ;E) and let ψ(x,y) = ‖x− y‖2

E, see (4.3). Then, we obtain

E(f)− E(fρ) = ‖f − fρ‖2
L2,ρT (T ;E) (4.11)

for fρ from (4.7).

Proof. It holds

E(f) =
∫
T×E
‖f(t)− fρ(t) + fρ(t)− x‖2

E dρ(t,x)

=
∫
T×E
‖f(t)− fρ(t)‖2

E dρ(t,x) +
∫
T×E
‖fρ(t)− x‖2

E dρ(t,x)

+
∫
T×E

2〈f(t)− fρ(t), fρ(t)− x〉E dρ(t,x)

= ‖f − fρ‖2
L2,ρT (T ;E) + E(fρ) + 2

∫
T×E
〈f(t)− fρ(t), fρ(t)− x〉E dρ(t,x)

Note that the last summand is zero because of the definition of fρ. Indeed, we have∫
T×E
〈f(t)− fρ(t), fρ(t)− x〉E dρ(t,x)

=
∫
T

∫
E
〈f(t)− fρ(t), fρ(t)− x〉E dρ(x|t) dρT (t)

=
∫
T
〈f(t)− fρ(t), fρ(t)−

∫
E

x dρ(x|t)〉E dρT (t)

=
∫
T
〈f(t)− fρ(t), fρ(t)− fρ(t)〉E dρT (t) = 0,

where we used the commutativity of the Bochner integral and the scalar product, see
(3.7). Therefore, (4.11) is proven.

As a direct consequence of lemma 4.4, we obtain that fρ is the unique solution to (A)
for the cost function (4.3).

Summary
We shortly summarize the results from this section:

• Our goal is to minimize (A). However, usually the measure ρ is unknown and the
evaluation of E is not possible. Therefore, we rely on a finite sample variant of the
minimization problem, namely (B).
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• The error which is made by computing an approximation f to f̂ from (A) is given
by E(f)− E(f̂).

• For the cost function ψ(x,y) = ‖x − y‖2
E, we obtain that f̂ = fρ is the unique

minimizer of the regression problem (A). Lemma 4.4 shows us that the overall
error can be written as

E(f)− E(fρ) = ‖f − fρ‖2
L2,ρT (T ;E).

This relation allows us to employ bounds on the L2,ρT (T ;E) approximation error
to estimate the regression error.

4.2 Solutions to the regression problem and the overall
error

In this section, we discuss the overall error that is made by a regression algorithm in
terms of the value of the functional E , i.e. the difference E(f)−E(f̂) for an (approximate)
solution f to the regression problem. First, we need to discuss under which conditions
the problems (A) and (B) are well-defined in the sense that there exists a (unique)
minimizer. Subsequently, we have a look at the overall regression error in more detail.
In (A), we considered the original task of solving the minimization problem for f ∈

L2,ρT (T ;E). However, since we deal with point evaluations of functions in (B), it makes
sense to restrict our search to a set which consists of point evaluable functions. To this
end, we consider a Banach space (H, ‖ · ‖H), which we refer to as search space from now
on. We assume that the search space is continuously embedded into the space C(T ;E)
of vector-valued continuous functions equipped with the maximum norm

‖f‖∞ := sup
t∈T
‖f(t)‖E. (4.12)

The most important candidates for such a space H are vector-valued reproducing kernel
Hilbert spaces, which we studied in section 3.3. Note however, that also more general
Banach spaces can be considered here. Usually, we restrict the minimization problem
(A) or (B), respectively, to a subset of the search space, e.g. a bounded ball in H, which
we refer to as search set.
We study the existence and uniqueness of minimizers over bounded balls in H in

subsection 4.2.1. Subsequently, we introduce the overall error for regression over the
search set in subsection 4.2.2, where we also consider a decomposition of this error into
the so-called bias part and the sampling error part.
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4.2.1 Existence and uniqueness of minimizers

In section 4.1, we defined the functional EZn by substituting the unknown measure ρ
by independent, identically distributed samples Zn, see also (4.6). Subsequently, we
obtained the finite sample regression problem (B). The minimization of (B) is obviously
ill-posed in the sense that infinitely many minimizers exist if the whole space L2,ρT (T ;E)
is taken as search set. Therefore, it makes sense to consider a more restrictive search
set. At the beginning of this section we already motivated why it makes sense to deal
with functions which are at least continuous. We now go into more detail and discuss
which search sets are suitable to obtain a finite sample minimization problem which is
uniquely solvable. To this end, we study the case where the search set is a bounded
ball in a specific Banach space H instead of the whole space L2,ρT (T ;E). Most concepts
introduced in this section are based on the ideas in [22],[23], where the scalar-valued case
E = R is treated.

Bounded search sets

Let (H, ‖ · ‖H) be a reflexive, real Banach space of functions mapping from T to E. We
assume that H is continuously embedded into (C(T ;E), ‖ · ‖∞), where the ‖ · ‖∞ norm
is defined as in (4.12). We denote by

cH := ‖id : H ↪→ C(T ;E)‖L(H,C(T ;E)) (4.13)

the corresponding embedding constant, where ‖ · ‖L(H,C(T ;E)) is the standard norm for
linear operators, see (3.23). Since ρT is a probability measure, the embedding from
C(T ;E) into L2,ρT (T ;E) is naturally continuous with embedding constant 1, see also
(3.8). Therefore, the resulting chain of continuous embeddings can be written as

(H, ‖ · ‖H) ↪→ (C(T ;E), ‖ · ‖∞) ↪→ (L2,ρT (T ;E), ‖ · ‖L2,ρT (T ;E)). (4.14)

As we showed in proposition 3.18, a vector-valued reproducing kernel Hilbert space is a
possible candidate for the search space H if its kernel function K : T × T → L(E,E)
can be continuously extended to T̄ × T̄ .
For the minimization of (A) or (B), respectively, we now restrict ourselves to functions

from the bounded ball
Hb := {f ∈ H | ‖f‖H ≤ b}

for a b > 0. Therefore, our setting reads

Hb ⊂ H ⊂ C(T ;E) ⊂ L2,ρT (T ;E), (4.15)

where H is the search space and Hb is the search set for the regression problem.
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Existence of minimizers

For the existence of a minimizer, it would suffice to prove the compactness of Hb in
C(T ;E). In the case where H is a Hilbert space and E is finite-dimensional, the com-
pactness of Hb can be proven analogously to the scalar-valued case, see section 2.6 of
[23]. To this end, one applies the Arzela-Ascoli theorem for vector-valued functions,
see e.g. theorem 17 of chapter 7 in [51], and exploits the fact that weak convergence
and strong convergence in H coincide if E is finite-dimensional. However, in general
the requirement of compactness of Hb in C(T ;E) is too restrictive if H is a reflexive
Banach space and E is infinite-dimensional. Therefore, we employ a simplified version of
the generalized Weierstrass theorem instead. We begin with the definition of sequential
lower semicontinuity.
Definition 4.5 [Sequential lower semicontinuity]
Let M ⊂ X be a subset of the real Banach space X. A function F : M → R is called
sequentially lower semicontinuous in u ∈M if

F (u) ≤ lim inf
n→∞

F (un)

holds for each sequence (un)n∈N ⊂ M converging to u. We call F sequentially lower
semicontinuous on M if it is sequentially lower semicontinuous in every u ∈M .

Note that continuity obviously implies sequential lower semicontinuity.
Theorem 4.6 [Generalized Weierstrass theorem]
Let ∅ 6= M ⊂ X be a subset of the real, reflexive Banach space X. The minimization
problem

F (u)→ min
u∈M

! (4.16)

has a solution if M is bounded, closed and convex and if F : M → R is convex and
sequentially lower semicontinuous.

Proof. See theorem 38.A of [90] in combination with proposition 38.7 and corollary 38.8
of [90].

More general versions of this theorem are stated in chapter 38 of [90]. The existence
of minimizers for the regression problems (A) and (B) with search set Hb now follows
directly from the generalized Weierstrass theorem.
Corollary 4.7 [Existence of Minimizers of (A) and (B) in Hb]
Let b > 0 be arbitrary, let H be a real, reflexive Banach space which is continuously
embedded into C(T ;E) with embedding constant cH and let ψ(x,y) = ψ̃(x − y) be a
qualified cost function. Then, the minimization problems

Find arg min
f∈Hb

E(f) (4.17)
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and
Find arg min

f∈Hb
EZn(f) (4.18)

have a minimizer in Hb.

Proof. We apply the generalized Weierstrass theorem 4.6 with M = Hb, X = H and
F = E or F = EZn , respectively. To this end, we check that all prerequisites are fulfilled.
Trivially, Hb is non-empty, bounded, convex and closed for any b ≥ 0 and by definition
H is a real, reflexive Banach space.
We now prove the continuity of EZn on H and the sequential lower semicontinuity of
E on Hb. Since the embedding H ↪→ C(T ;E) is continuous, the linear point evaluation
functionals

δt : H → E, δt(f) = f(t)
are (Lipschitz) continuous on H for every t ∈ T . Indeed, we obtain

‖δt(f)− δt(g)‖E ≤ ‖f − g‖L∞(T ;E) ≤ cH‖f − g‖H

for all f, g ∈ H. Together with the continuity of ψ̃, we directly conclude that EZn is
continuous on H and, therefore, also on Hb for every b > 0. For the sequential lower
semicontinuity of E , let fn ∈ Hb, n ∈ N converge to f ∈ Hb for n → ∞. The functions
Gn : T × E → R defined by

Gn(t,x) := ψ̃(fn(t)− x)

are continuous and, therefore, also ρ-measurable for every n ∈ N. Furthermore, they
are non-negative. Hence, by the continuity of the Gn and Fatou’s lemma for Lebesgue
integrals, see e.g. [3], we obtain

E(f) =
∫
T×E

ψ̃(f(t)− x) dρ(t,x) =
∫
T×E

lim
n→∞

Gn(t,x) dρ(t,x)

≤ lim inf
n→∞

∫
T×E

Gn(t,x) dρ(t,x) = lim inf
n→∞

E(fn).

Finally, the convexity of E and EZn follows from the linearity of the integral and the
point evaluations and from the convexity of ψ̃, i.e. for τ ∈ [0, 1] and f1, f2 ∈ H, we have

E(τf1 + (1− τ)f2) =
∫
T×E

ψ̃ (τ(f1(t)− x) + (1− τ)(f2(t)− x)) dρ(t,x)

≤
∫
T×E

τ ψ̃(f1(t)− x) + (1− τ)ψ̃(f2(t)− x) dρ(t,x) (4.19)

= τE(f1) + (1− τ)E(f2).
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The same reasoning holds for EZn and we obtain

EZn (τf1 + (1− τ)f2) = 1
n

n∑
i=1

ψ̃ (τ(f1(ti)− xi) + (1− τ)(f2(ti)− xi))

≤ 1
n

n∑
i=1

τ ψ̃(f1(ti)− xi) + (1− τ)ψ̃(f2(ti)− xi) (4.20)

= τEZn(f1) + (1− τ)EZn(f2).

So, both E and EZn are convex on H and thus also on Hb. Therefore, the existence of a
minimizer of (4.17) and (4.18) follows from the generalized Weierstrass theorem.

Uniqueness of minimizers

To derive uniqueness of a minimizer of (4.17) for a qualified cost function ψ(x,y) =
ψ̃(x − y), we additionally have to assume that ψ̃ is strictly convex. However, for the
minimization of (4.18), this does not suffice since only the point evaluations in t1, . . . , tn
are relevant to determine the value of EZn .
Proposition 4.8 [Uniqueness of Minimizers of (A) over Hb]
Under the prerequisites of corollary 4.7, the minimizer of (4.17) is unique if ψ̃ is strictly
convex on E. Furthermore, under these conditions, there exist ci ∈ E, i = 1, . . . , n such
that every minimizer g of (4.18) fulfills g(ti) = ci.

Proof. Due to the strict convexity of ψ̃, the inequality (4.19) becomes strict for every
τ ∈ (0, 1) and all f1, f2 ∈ Hb for which there exists an A ⊂ T with ρT (A) > 0 such
that f1(t) 6= f2(t) for all t ∈ A. Since all functions in Hb are continuous and ρT is
non-degenerate, see (4.1), the latter holds for all f1, f2 ∈ Hb with f1 6= f2. Now, assume
that f1, f2 ∈ Hb are two minimizers of (4.17). Then, because of the convexity of Hb, we
obtain τf1 + (1 − τ)f2 ∈ Hb. Therefore, f1 = f2 has to hold because otherwise (4.19)
would give the strict inequality

E (τf1 + (1− τ)f2) < τE(f1) + (1− τ)E(f2)

which would contradict the fact that f1 and f2 are minimizers. Thus, the uniqueness of
the minimizer of E over Hb follows.
Now let us consider EZn . Due to the strict convexity of ψ̃, the inequality (4.20) is

strict for every τ ∈ (0, 1) and all f1, f2 ∈ Hb for which there exists an i ∈ {1, . . . , n} such
that f1(ti) 6= f2(ti). Thus, by an analogous argumentation as for (4.17), the convexity of
Hb implies the existence of ci ∈ E such that two minimizers f1, f2 ∈ Hb of (4.18) fulfill
f1(ti) = f2(ti) = ci for all i ∈ {1, . . . , n}.
Although (4.18) does not necessarily employ a unique minimizer, the following corol-

lary shows that the minimizer with the smallest H norm exists and is unique if, addi-
tionally, H is a Hilbert space.
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Corollary 4.9 [Uniqueness of minimal norm minimizers of (B) over Hb]
Let the conditions of corollary 4.7 and proposition 4.8 hold. Furthermore, let H be a
Hilbert space. Then, the problem

Find arg min
g∈
{

arg min
f∈Hb

EZn (f)
} ‖g‖H (4.21)

has a unique minimizer.

Proof. To prove the existence of a minimizer of (4.21), we again use the generalized

Weierstrass theorem 4.6 with M =
{

arg min
f∈Hb

EZn(f)
}
, X = H and F (·) = ‖ · ‖H.

Indeed, the prerequisites of theorem 4.6 are met. To this end, note that M ⊂ Hb is
bounded in H. Furthermore, it is convex due to the convexity of Hb and (4.20). Since
the embedding (4.14) holds, convergence in H implies uniform convergence. Using this,
together with the fact that

M = {f ∈ Hb | f(ti) = ci ∀ i = 1, . . . , n}

holds for the ci from proposition 4.8, the closedness of M follows. By definition, F is
continuous inH and it is also a convex functional. Therefore, the existence of a minimizer
of (4.21) follows from theorem 4.6.
Let us now assume that f1, f2 ∈ M are both minimizers of F over M . If f1 = 0, we

trivially obtain f2 = 0 since 0 = ‖f1‖H = ‖f2‖H has to hold. Therefore, we may assume
that f1, f2 6= 0. Note that this implies the existence of an i ∈ {1, . . . , n} such that ci 6= 0
because otherwise 0 ∈ Hb would be the unique solution to 4.21. Due to the convexity
of M and F , τf1 + (1 − τ)f2 is also an element of M and a minimizer of F for every
τ ∈ [0, 1]. Thus, we obtain

‖τf1 + (1− τ)f2‖H = ‖f1‖H = ‖f2‖H = τ‖f1‖H + (1− τ)‖f2‖H.

Since H is a Hilbert space, it is a strictly convex space, which implies the existence of
an α ∈ R such that f1 = αf2, see e.g. [45]. Therefore, we have αf2(ti) = f1(ti) =
f2(ti) = ci 6= 0, which can only be fulfilled if α = 1. Thus, f1 = f2, which proves the
uniqueness.

Choosing Hb as search set and solving (4.21) corresponds to a specific regularization
of the ill-posed problem (B). Note that the minimization of E over L2,ρT (T ;E) is already
well-posed for the cost function ψ(x,y) = ‖x− y‖2

E because fρ is the unique minimizer
according to lemma 4.4. In this case, only the minimization of EZn has to be regularized.
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4.2.2 The error splitting
Definition 4.10 [Notation of minimizers]
For a set X ⊂ C(T ;E) over which minimizers of E and EZn exist, e.g. X = Hb, we
denote by fX ∈ X a minimizer of (A) over X. Analogously, we denote by fZn,X ∈ X a
minimizer of (B) over X.
As we saw in proposition 4.8, the functions fX and fZn,X do not have to be unique

in general. However, when we use this notation, the function will either be unique or it
does not matter which minimizer is taken.
Definition 4.11 [Overall Error]
For a solution f̂ of (A) over L2,ρT (T ;E), we call

E (fZn,Hb)− E(f̂)

the overall error of the regression problem for the search set Hb and the sample Zn.
The overall error measures how much the functional value of E differs when we take a

minimizer of (B) over Hb instead of considering a direct solution to (A) over L2,ρT (T ;E).
If the minimizer fZn,Hb is computed by an algorithm, the overall error measures how close
the result of the algorithm comes to the true solution in terms of E . Note that this is
of course without considering any numerical instabilities, e.g. due to badly conditioned
equation systems.
To derive an upper bound for the overall error, we introduce an error splitting into

the so-called bias and the sampling error.
Definition 4.12 [The Bias]
Let b > 0 be arbitrary. We call

E(fHb)− E(f̂) (4.22)
the bias of the regression problem.
The bias is a measure for the error that occurs due to the restriction of the search set

from the whole space L2,ρT (T ;E) to Hb, i.e. it indicates how much the minimum of (A)
over Hb, cf. (4.17), differs from the minimum of (A) over L2,ρT (T ;E).
Definition 4.13 [The Sampling Error]
Let b > 0 be arbitrary and let Zn ∈ (T × E)n be n samples which are drawn according to
ρ independently. We call

E(fZn,Hb)− E(fHb) (4.23)
the sampling error of the regression problem.
The sampling error measures how close a solution of the finite sample regression prob-

lem is to a solution of the integral variant of the regression problem in terms of values of
the functional E . More precisely, the sampling error is given by the difference between
the minimum of (B) over Hb, cf. (4.18), and the minimum of (A) over Hb, cf. (4.17).
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The splitting of the overall error into the non-sample-dependent bias and the sampling
error for the search set Hb can be written as

E (fZn,Hb)− E(f̂)︸ ︷︷ ︸
overall error

= E(fHb)− E(f̂)︸ ︷︷ ︸
bias

+ E(fZn,Hb)− E(fHb)︸ ︷︷ ︸
sampling error

. (4.24)

More details on the actual computation of fZn,Hb in terms of solving the Lagrangian dual
formulation of (4.18) will be discussed in the next chapter.

Summary
In this section, we derived the existence and uniqueness of solutions to the regression
problem under certain prerequisites. Furthermore, we defined the overall error and
presented a splitting into bias and sampling error. The most important results can be
summarized as follows:

• Since we cannot compute a solution f̂ to (A) directly, we focus on minimizing (B)
over the search set Hb instead. Here, Hb ⊂ H is a bounded ball in the search
space H, for which the embedding (4.14) is continuous. A common example for H
would be a reproducing kernel Hilbert space with continuously extendable kernel
function onto T̄ × T̄ .

• There exist minimizers fHb of E over Hb and fZn,Hb of EZn over Hb for qualified
cost functions such as ψ(x,y) = ψ̃(x− y) = ‖x− y‖2

E.

• If ψ̃ is strictly convex, fHb is unique. fZn,Hb is not necessarily unique, but if H is
a Hilbert space, then the fZn,Hb with the smallest H norm is unique.

• The overall error E (fZn,Hb) − E(f̂) can be split into the sum of the bias and the
sampling error, see (4.24).

4.3 The bias
We now focus on establishing upper bounds on the bias

E(fHb)− E(f̂).

First, we consider an infinite-dimensional search space H which is dense in L2,ρT (T ;E).
In this case, we are able to employ approximation results from real interpolation theory.
Based on [23] and our introduction in interpolation theory from section 3.4, we show
how the bias can be bounded in this case in subsection 4.3.1. Subsequently, we deal with
a finite-dimensional search space Vk instead of H in subsection 4.3.2. Here, we explain
why the known results from subsection 4.3.1 cannot be applied in this case. Afterwards,
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we introduce an alternative way to establish an upper bound on the bias by means of
Jackson- and Bernstein-type inequalities for the embedding Vk ↪→ L2,ρT (T ;E).
While the existence and uniqueness results we presented so far hold for arbitrary

qualified cost functions, we focus on ψ(x,y) = ‖x − y‖2
E from now on. Therefore, we

have f̂ = fρ, see Lemma 4.4.

4.3.1 Infinite-dimensional search spaces
We rely on the results on interpolation spaces from section 3.4. In particular, theorem
3.20 leads to the following bound on the bias.
Corollary 4.14 [Bias Bound for squared norm costs]
Let b > 0 and let H be a reflexive Banach space which fulfills (4.14). Let, further-
more, ψ be the squared norm cost function (4.3) and let σ ∈ (0, 1) be such that fρ ∈
(L2,ρT (T ;E),H)σ. Then, the bias can be bounded by

E(fHb)− E(fρ) ≤
(
‖f‖σb−σ

) 2
1−σ . (4.25)

Proof. Since H is reflexive and continuously embedded into C(T ;E), the function fHb
exists due to corollary 4.7. The identity E(fHb)− E(fρ) = inff∈Hb ‖f − fρ‖2

L2,ρT (T ;E), see
also (4.11), and the application of theorem 3.20 yield the result.

We observe that the upper bound on the convergence rate of the bias with respect to b
is determined by the largest σ ∈ (0, 1) such that fρ ∈ (L2,ρT (T ;E),H)σ. For reproducing
kernel Hilbert spaces H of scalar-valued functions for example, the largest such σ is
determined by the decay of the eigenvalues of the integral operator which is defined by
the kernel function, see e.g. [23] for details.
To illustrate how the above result can be applied, let us consider the example H =

H2((0, 1);Rd) and fρ ∈ H1((0, 1);Rd) with ρT = λT being the Lebesgue measure on
T = (0, 1). Then,

fρ ∈
(
L2((0, 1);Rd),H

)
1
2
,

see (3.27). Therefore, according to corollary 4.14, the bias decays like E(fHb)− E(fρ) =
O (b−2) for b→∞.
Apart from the bound (4.25) for the search set Hb, there also exist results for more

general search sets in L2,ρT , see e.g. [8] and [54] for examples in the case E = R. However,
we restrict ourselves to the more practical situation where the search set is a bounded
ball in H in this thesis.

4.3.2 Finite-dimensional search spaces
In this section, we point out why we cannot work with the bound (4.25) when dealing with
finite-dimensional search spaces. Subsequently, we present a framework which allows to



4.3 The bias 55

establish upper bounds on the bias in this case.

Notation for finite-dimensional search spaces

To emphasize that we are dealing with a finite-dimensional search space now, we write
Vk for k ∈ N instead of H. We denote by Nk := dim(Vk) < ∞ the dimension of Vk.
Here, the subscript k refers to the approximation properties of the finite-dimensional
space, i.e. the resolution or a comparable quantity. One can think of a chain of finite-
dimensional spaces

V0 ⊂ V1 ⊂ V2 ⊂ · · · (4.26)
as for Finite-Element discretizations or approximation scales such as wavelet spaces.3
The larger k gets, the larger Nk becomes. This means that the corresponding spaces Vk
are “finer” for larger k. To be precise, we denote by

(Vk, ‖ · ‖Vk) , k ∈ N

a sequence of finite-dimensional normed subspaces of C(T ;E). Although ‖ · ‖Vk could
depend on the parameter k, we will neglect this case in this thesis and assume that the
norm is fixed for all k ∈ N. Since all norms on a finite-dimensional vector space are
equivalent, we are free to make an adequate choice here. However, the norm serves to
regularize the minimization problem in the sense that the search set will be a bounded
ball in Vk with respect to this norm. Therefore, it should reflect the regularity assump-
tions we pose on a minimizer of (4.18). The rest of our notation is completely analogous
to the previous sections, i.e. we only substitute H by Vk. Therefore, all the results from
the previous sections, such as statements on existence and uniqueness of solutions of the
underlying regression problem for example, are still valid.
To complete the analogy to the notation from the previous sections, we denote the

ball of radius b in Vk by
Vk,b = {f ∈ Vk | ‖f‖Vk ≤ b}.

We assume that the embedding Vk ↪→ C(T ;E) is continuous with embedding constant

cVk := ‖id : Vk ↪→ C(T ;E)‖L(Vk,C(T ;E)).

Thus, Vk,b fulfills the same prerequisites as Hb and we have

Vk,b ⊂ Vk ⊂ C(T ;E) ⊂ L2,ρT (T ;E)

in analogy to (4.15). As in the infinite-dimensional case, we call Vk search space and Vk,b
search set. In accordance with definition 4.10, we denote the minimizer of (A) over Vk,b
by fVk,b and we denote a minimizer of (B) over Vk,b by fZn,Vk,b .

3Note that we do not necessarily have to follow (4.26), but could also consider non-nested spaces
Vk, k ∈ N.
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Interpolation theory and the discretization error

Definition 4.15 [Discretization Error]
Let b > 0 be arbitrary. In the case of finite-dimensional search spaces Vk for k ∈ N, we
call the bias

E(fVk,b)− E(fρ) (4.27)
the discretization error of the regression problem for resolution k.

A straightforward way to account for this discretization error would be to apply corol-
lary 4.14. Let us discuss this approach shortly: Since dim(Vk) < ∞ for every k ∈ N,
the search space Vk is not dense in L2,ρT (T ;E). Therefore, if the solution fρ to (A)
is not an element of Vk, the K-functional (3.26) for the pair (L2,ρT (T ;E), Vk) cannot
approach zero for t → 0. This means that fρ is not an element of the interpolation
space (L2,ρT (T ;E), Vk)σ for any σ > 0 and we cannot apply corollary 4.14 for a finite-
dimensional search space Vk. Therefore, the results on the bias which we presented in
subsection 4.3.1 are no longer useful in the case of finite-dimensional search spaces.
The reason why the above-mentioned method fails is quite obvious. We fixed k ∈ N

and expected to get a convergence of the discretization error to 0 for b→∞. However,
a small discretization error can only be achieved if we choose both b and k large enough.

Jackson- and Bernstein-type inequalities for the discretization error

We now give bounds on the discretization error in the case where certain Jackson and
Bernstein inequalities hold. As in (4.24), the overall error is now decomposed into

E(fZn,Vk,b)− E(fρ)︸ ︷︷ ︸
overall error

= E(fVk,b)− E(fρ)︸ ︷︷ ︸
discretization error

+ E(fZn,Vk,b)− E(fVk,b)︸ ︷︷ ︸
sampling error

. (4.28)

The basic idea of our approach is to choose the norm bound b such that

inf
f∈Vk,b

‖f − fρ‖2
L2,ρT (T ;E) = inf

f∈Vk
‖f − fρ‖2

L2,ρT (T ;E). (4.29)

Then, the discretization error equals the squared L2,ρT (T ;E) best approximation error
in Vk. Now, the norm bound b influences just the sampling error E(fZn,Vk,b) − E(fVk,b).
As we will see in section 4.4, this term grows if b increases. Therefore, we will choose
b as small as possible such that (4.29) is fulfilled. We first define an appropriate L2,ρT
projector.

Definition 4.16 [Orthogonal projection]
We denote the orthogonal projection onto Vk with respect to the L2,ρT (T ;E) norm by PVk ,
i.e.

PVk(f) := arg min
h∈Vk

‖h− f‖L2,ρT (T ;E).
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Now, we provide a lemma which shows how b has to be chosen with respect to the
L2,ρT norm of fρ.

Lemma 4.17
Let Vk be finite-dimensional search spaces for k ∈ N and let c : N→ (0,∞) be such that
the inverse (Bernstein) inequalities

‖f‖Vk ≤ c(k) ‖f‖L2,ρT (T ;E) (4.30)

hold for every f ∈ Vk and every k ∈ N. Then, the best approximation PVk(fρ) to fρ
fulfills

‖PVk(fρ)‖Vk ≤ c(k) · ‖fρ‖L2,ρT (T ;E).

Therefore, we obtain PVk(fρ) ∈ Vk,b if we choose

b := c(k) · ‖fρ‖L2,ρT (T ;E). (4.31)

Proof. Note that 〈fρ−PVk(fρ), PVk(fρ)〉L2,ρT (T ;E) = 0 since Id−PVk is L2,ρT (T ;E)-orthogonal
on Vk. Therefore, it holds

‖fρ‖2
L2,ρT (T ;E) = ‖fρ − PVk(fρ) + PVk(fρ)‖2

L2,ρT (T ;E)

= ‖fρ − PVk(fρ)‖2
L2,ρT (T ;E) + ‖PVk(fρ)‖2

L2,ρT (T ;E) ≥ ‖PVk(fρ)‖2
L2,ρT (T ;E)

and we get
‖PVk(fρ)‖L2,ρT (T ;E) ≤ ‖fρ‖L2,ρT (T ;E). (4.32)

Thus, we obtain the desired result

‖PVk(fρ)‖Vk ≤ c(k)‖PVk(fρ)‖L2,ρT (T ;E) ≤ c(k)‖fρ‖L2,ρT (T ;E).

using (4.30).

With the help of lemma 4.17, we can now express the discretization error in terms of
the L2,ρT (T ;E) best approximation error.

Theorem 4.18 [Discretization error for squared norm costs]
Let Vk be a finite-dimensional search space and let b > 0 be at least as large as in (4.31).
Let, furthermore, ψ(x,y) = ‖x − y‖2

E be the squared norm cost function (4.3). Then,
the discretization error fulfills

E(fVk,b)− E(fρ) = inf
f∈Vk
‖f − fρ‖2

L2,ρT (T ;E).

Proof. Since PVk(fρ) ∈ Vk,b for b greater or equal to (4.31), it obviously minimizes the



58 4 Constrained regression

L2,ρT (T ;E) distance to fρ among all functions from Vk,b. Therefore, we have

E(fVk,b)− E(fρ) lemma 4.4= inf
f∈Vk,b

‖f − fρ‖2
L2,ρT (T ;E)

lemma 4.17= ‖PVk(fρ)− fρ‖2
L2,ρT (T ;E) = inf

f∈Vk
‖f − fρ‖2

L2,ρT (T ;E).

We conclude this section with some remarks on theorem 4.18.

• We obtain that the discretization error is equal to the squared L2,ρT (T ;E) best
approximation error to fρ for functions in Vk. Therefore, the smoothness of fρ has
to be exploited by a suitable Jackson-type inequality. We will discuss this in detail
when considering several examples in section 4.5.

• The price we paid in theorem 4.18 is the coupling (4.31) between b and c(k). In
other words, our results are valid only if b is large enough. As we will see in the
next section, the sampling error increases when b becomes larger. Thus, the choice
(4.31) is optimal in the sense that b is chosen as small as possible such that theorem
4.18 is still valid.

• Although it might seem unsatisfying at first glance to have a result which only
holds under the prerequisite (4.31), we can look at this from a different point of
view: Considering a sequence of search spaces Vk for k ∈ N, the following question
arises: Which is the minimal b > 0 such that the rate of decay of the discretization
error E(fVk,b)− E(fρ) for k →∞ is optimal, i.e. when is it equal to the rate of the
L2,ρT (T ;E) best approximation error in Vk? The answer to this question is given
by (4.31).

Summary
Let us briefly summarize the results on the bias E(fHb)−E(fρ) or the discretization error
E(fVk,b)− E(fρ), respectively, which we provided in this section.

• If the search space H is infinite-dimensional and dense in L2,ρT (T ;E), we can
apply corollary 4.14 to obtain a bound on the bias which is governed by the largest
σ ∈ (0, 1) such that fρ ∈ (L2,ρT (T ;E),H)σ.

• For a finite-dimensional search space Vk, we cannot apply corollary 4.14 anymore
and need to take another path to derive a bound on the corresponding discretization
error.

• If the parameter b > 0 is large enough, theorem 4.18 shows that the discretization
error equals the squared L2,ρT (T ;E) best approximation error in Vk.
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4.4 The sampling error

In this section, we consider the sampling error

E(fZn,Hb)− E(fHb)

in more detail. Our considerations follow the lines of chapter 3 of [23], where most of
the results from this section can be found for the scalar-valued case E = R. Unless
explicitly stated otherwise, our results are valid for both finite-dimensional and infinite-
dimensional search spaces. Therefore, we will use the general notation H instead of Vk
for the search space again. As we already mentioned in the last section, we focus solely
on ψ(x,y) = ‖x− y‖2

E.
Up to now, our search sets did not necessarily need to be compact in C(T ;E) in order

to prove the existence and uniqueness of minimizers or the bounds on the bias or the
discretization error, respectively. To obtain bounds on the sampling error, however, we
will consider covering numbers of Hb, which are finite only if Hb is compact in C(T ;E).
As we already mentioned in subsection 4.2.1, the vector-valued Arzela-Ascoli theorem,
see theorem 17 of chapter 7 in [51], can be used to check for compactness in C(T ;E).
In particular, if H is a Hilbert space and E = Rd for a d ∈ N, the compactness of Hb in
C(T ;Rd) follows by the same arguments as in the scalar-valued case, see e.g. section 2.6
of [23] for details.
In subsection 4.4.1, we discuss upper bounds on the cost function ψ(x,y) = ‖x−y‖2

E.
We proceed by introducing covering numbers and a probabilistic Bernstein inequality in
subsection 4.4.2. Subsequently, we provide a lemma on convex search sets, which leads
to a theorem on a general upper bound on the sampling error in subsection 4.4.3. We
conclude in subsection 4.4.4 with an estimate for covering numbers of finite-dimensional
search spaces, which allows for a more detailed analysis of the upper bound derived in
4.4.3.

4.4.1 Bounds on the cost function

First, we need to establish an upper bound on the values which the cost function can
attain. To this end, let b > 0 be arbitrary. We choose Mψ ∈ (0,∞) such that

ψ(f(t),x) = ‖f(t)− x‖2
E ≤Mψ (4.33)

holds for ρ-almost every (t,x) and every f ∈ Hb. When the condition (4.33) holds, the
problem is usually called M-bounded, see e.g. [23]. For our specific cost function, we
can choose

Mψ = (cHb+ r)2 (4.34)
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with embedding constant cH, see (4.13), and r from (4.5) since

‖f(t)− x‖E ≤ ‖f‖∞ + ‖x‖E ≤ cH‖f‖H + r ≤ cHb+ r

for ρ-almost every (t,x) and every f ∈ Hb.

Absolute Bounds on Mψ

Note that Mψ from (4.34) depends quadratically on b. This will prove to be a severe
limitation when considering optimal convergence rates of the overall error. Therefore, it
is often postulated that Mψ can be chosen independently of b, i.e.

Mψ = (M + r)2

for an absolute constant 0 < M <∞. This would be equivalent to taking

{f ∈ Hb | ‖f‖∞ ≤M} = {f ∈ H | ‖f‖H ≤ b, ‖f‖∞ ≤M} (4.35)

as a search set. Although it is possible to do so, this significantly changes the corre-
sponding minimization procedure because of the additional constraint. Furthermore, we
would need results on the bias/discretization error for this particular search set which
cannot be derived that easily. We will neglect this strategy in the following. However, in
many situations the functions fZn,Hb will actually stem from a set of type (4.35) for any
b > 0 and almost every choice of Zn. The reason for this is the fact that ‖xi‖E ≤ r holds
almost surely for every i = 1, . . . , n, see (4.5). Thus, ‖f‖∞ ≤ r is a meaningful condition
for functions f from the search set. Therefore, without explicitly restricting the search
set, (4.35) with M = r is often implicitly incorporated as search set in the minimization
process of (B) over Hb. In summary, it can be stated that the choice (4.34) might be too
pessimistic in many situations. We will also observe this, when we consider numerical
experiments in chapter 6.

4.4.2 The probabilistic Bernstein inequality
In this subsection, we introduce the concept of covering numbers. Furthermore, we follow
the lines of [23] and provide a vector-valued version of theorem 3.3 specified therein using
a probabilistic Bernstein inequality. This Bernstein inequality must not be confused with
the inverse inequalities of Bernstein type on which subsection 4.3.2 is based on.

Covering Numbers

The covering number of Hb with respect to the L∞,ρT (T ;E) norm is a crucial ingredient
for an upper bound on the sampling error.
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Definition 4.19 [Covering numbers and coverings]
Let A be a compact subset of the Banach space (Y, ‖ · ‖Y ). The covering number
N (A, ε, Y ) of A for a radius ε > 0 with respect to Y is defined as the smallest number of
balls of radius ε with respect to ‖ · ‖Y which cover A and whose centers reside in A, i.e.

N (A, ε, Y ) := min
{
l ∈ N | ∃ a1, . . . , al ∈ A :

l⋃
i=1
{y ∈ Y | ‖y− al‖Y ≤ ε} ⊇ A

}
.

The points a1, . . . , al in the above equation are called an ε-covering of A with respect
to ‖ · ‖Y .
We could also omit the necessity of compactness in the definition above. However, since

the covering number N (A, ε, Y ) is finite for any ε > 0 if and only if A is compact with
respect to Y , it makes sense to already include it in the definition. As we mentioned
earlier, one can show that N (Hb, ε, L∞,ρT (T ;E)) is finite if H is a Hilbert space and
E = Rd for any fixed d ∈ N for example.

The probabilistic Bernstein inequality

General bounds on the sampling error can be derived by applying Markov’s inequality

P [ξ ≥ a] ≤ E[ξ]
a
∀a > 0,

for an appropriate choice of the non-negative random variable ξ, which leads to Bennett’s
inequality or Hoeffding’s inequality for example, see Proposition 3.5 of [23]. The direct
application of these inequalities then provides an upper bound on |EZn(f) − E(f)| for
f ∈ Hb, from which an upper bound on the sampling error can be derived. However,
in our specific situation, where we consider ψ(x,y) = ‖x − y‖2

E, the resulting bound is
not optimal in the sense that the convergence rate with respect to the number of sample
points n is n− 1

2 up to logarithms, see e.g. [12] for details. In [23], it is shown for scalar-
valued functions that a rate of n−1 up to logarithms can be achieved. We now introduce
the probabilistic Bernstein inequality which we employ to obtain this rate also in the
vector-valued case.
Lemma 4.20
Let S be a set of scalar-valued random variables on T ×E. Let there exist c, B > 0 such
that, for each ξ ∈ S, we have Eρ[ξ] ≥ 0, Eρ[ξ2] ≤ cEρ[ξ] and |ξ − Eρ[ξ]| ≤ B ρ-almost
everywhere. Here, the expectation has to be understood with respect to the measure ρ.
Then, for every η > 0 and 0 < α ≤ 1, we obtain

P

sup
ξ∈S

Eρ[ξ]− 1
n

∑n
i=1 ξ(ti,xi)√

Eρ[ξ] + η
> 4α√η

 ≤ N (S, αη, L∞,ρ(T × E)) exp
(
− α2nη

2c+ 2
3B

)
.

(4.36)
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Proof. The proof follows from the more general lemma 3.19 of [23].

4.4.3 A bound on the sampling error
We now provide a lemma which makes use of the convexity of the search set in order to
describe the behavior of E(f)− E(fHb) for an arbitrary f ∈ Hb. Subsequently, we prove
the main result of this section with the help of the probabilistic Bernstein inequality
(4.36).

Exploiting the convexity of the search set

Lemma 4.21
Let b > 0 and let f ∈ Hb be arbitrary. Let furthermore ψ(x,y) = ‖x− y‖2

E. It holds

‖f − fHb‖2
L2,ρT (T ;E) ≤ E(f)− E(fHb). (4.37)

Proof. The proof is just a vector-valued version of the proof of lemma 3.16 in [23]. To
this end, note that Hb is convex and we have τf + (1 − τ)fHb ∈ Hb for an arbitrary
f ∈ Hb and τ ∈ [0, 1]. Since fHb minimizes E over Hb, we obtain

‖fHb − fρ‖2
L2,ρT (T ;E)

lemma 4.4= E(fHb)− E(fρ)
≤ E(τf + (1− τ)fHb)− E(fρ)

lemma 4.4= ‖τf + (1− τ)fHb − fρ‖2
L2,ρT (T ;E)

= ‖fHb − fρ‖2
L2,ρT (T ;E)

+ 2τ〈f − fHb , fHb − fρ〉L2,ρT (T ;E) + τ 2‖f − fHb‖2
L2,ρT (T ;E).

Since τ can be arbitrarily close to 0, we obtain that K := 〈f−fHb , fHb−fρ〉L2,ρT (T ;E) ≥ 0
has to hold. This leads to

‖f − fρ‖2
L2,ρT (T ;E) = ‖f − fHb‖2

L2,ρT (T ;E) + 2K + ‖fHb − fρ‖2
L2,ρT (T ;E)

≥ ‖f − fHb‖2
L2,ρT (T ;E) + ‖fHb − fρ‖2

L2,ρT (T ;E).

Therefore, we have

‖f − fHb‖2
L2,ρT (T ;E) ≤ ‖f − fρ‖2

L2,ρT (T ;E) − ‖fHb − fρ‖2
L2,ρT (T ;E)

lemma 4.4= E(f)− E(fρ)− (E(fHb)− E(fρ)) = E(f)− E(fHb),

which concludes the proof.

The proof uses an idea akin to the one in the proof of lemma 4.17. However, there
we dealt with a subspace projection, whereas fHb can be interpreted as the result of an
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application of a convex projection onto Hb.
Note that lemma 4.21 represents a counterpart to lemma 4.3 for the specific choice

f2 = fHb . However, the square in (4.37) is crucial to obtain the result.

A bound on the sampling error

Using both lemma 4.20 and lemma 4.21, we are able to obtain a probabilistic upper
bound on the sampling error E(fZn,Hb)− E(fHb) for compact search sets.

Theorem 4.22 [Sampling error for squared norm costs]
Let Hb be a compact subset of C(T ;E) and let ψ(x,y) = ‖x− y‖2

E. We obtain

P [E(fZn,Hb)− E(fHb) > η] ≤ N
Hb,

η

12
√
Mψ

, L∞,ρT (T ;E)
 exp

(
− nη

300Mψ

)
(4.38)

for all η > 0.

Proof. The proof works essentially along the lines of the proof of theorem 3.3 of [23],
where H is a reproducing kernel Hilbert space and only scalar-valued functions are
considered. Let

S :=
{
ξ(t,x) := ‖f(t)− x‖2

E − ‖fHb(t)− x‖2
E | f ∈ Hb

}
.

We show that S fulfills the prerequisites of lemma 4.20. To this end, let ξ ∈ S be arbitrary
and let f ∈ Hb be the corresponding element of the search set. Then, Eρ[ξ] = E(f) −
E(fHb) ≥ 0 since fHb minimizes E over Hb. Furthermore, we have −Mψ ≤ ξ(t,x) ≤Mψ

for ρ-almost every t,x because of (4.33). Therefore, |ξ(t,x) − Eρ[ξ]| ≤ 2Mψ almost
everywhere and B = 2Mψ is a valid choice in lemma 4.20. Finally, note that

|ξ(t,x)| = |〈f(t)− fHb(t), (f(t)− x) + (fHb(t)− x)〉E| (4.39)
≤ ‖f(t)− fHb(t)‖E (‖f(t)− x‖E + ‖fHb(t)− x‖E)
≤ 2

√
Mψ‖f(t)− fHb(t)‖E

almost everywhere and, thus,

Eρ
[
ξ2
]

≤ 4Mψ

∫
T×E
‖f(t)− fHb(t)‖2

E dρ(t,x)
(4.2)= 4Mψ

∫
T
‖f(t)− fHb(t)‖2

E dρT (t)
lemma 4.21
≤ 4Mψ (E(f)− E(fHb)) = 4MψEρ[ξ].

Therefore, all prerequisites of lemma 4.20 are fulfilled and we take c = 4Mψ and B = 2Mψ
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there to obtain

P

 sup
f∈Hb

E(f)− E(fHb)− EZn(f) + EZn(fHb)√
E(f)− E(fHb) + η

> 4α√η
 (4.40)

≤ N (S, αη, L∞,ρ(T × E)) exp
(
− α

2nη
28
3 Mψ

)

≤ N
Hb,

αη

2
√
Mψ

, L∞,ρT (T ;E)
 exp

(
− α

2nη
28
3 Mψ

)
,

where the last inequality follows from the fact that each ε-covering of Hb with respect
to the L∞,ρT (T ;E) norm corresponds to a 2

√
Mψε-covering of S with respect to the

L∞,ρ(T × E) norm for an arbitrary ε > 0. Indeed, let f1, f2 ∈ Hb be arbitrary and let
ξ1, ξ2 ∈ S be the corresponding functions in S. Then, similarly as in (4.39), we obtain

‖ξ1 − ξ2‖L∞,ρ(T×E) = ess sup
t∈T,x∈E

|〈f1(t)− f2(t), (f1(t)− x) + (f2(t)− x)〉E|

≤ ess sup
t∈T,x∈E

‖f1(t)− f2(t)‖E (‖f1(t)− x‖E + ‖f2(t)− x‖E)

≤ 2
√
Mψ ess sup

t∈T
‖f1(t)− f2(t)‖E = 2

√
Mψ‖f1 − f2‖L∞,ρT (T ;E).

Now, choosing f = fZn,Hb and α =
√

2
8 in (4.40) and setting E := E(fZn,Hb)−E(fHb), we

observe

P
[
E >

√
η

2
√
E + η + EZn(fZn,Hb)− EZn(fHb)

]
(4.41)

≤ N
Hb,

√
2η

16
√
Mψ

, L∞,ρT (T ;E)
 exp

(
− 3nη

896Mψ

)

≤ N
Hb,

η

12
√
Mψ

, L∞,ρT (T ;E)
 exp

(
− nη

300Mψ

)
=: A

since reducing the radius increases the covering number. Note that EZn(fZn,Hb) −
EZn(fHb) ≤ 0 because fZn,Hb minimizes EZn over Hb. Thus, by omitting this term in
(4.41) the probability gets smaller. Therefore, P

[
E >

√
η
2
√
E + η

]
≤ A. Finally, note

that

E >

√
η

2
√
E + η ⇔ E2 >

η

2E + η2

2 ⇔
(
E − η

4

)2
>

9
16η

2

⇔ E − 1
4η >

3
4η or E − 1

4η < −
3
4η ⇔ E > η or E < −1

2η.
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Since E = E(fZn,Hb) − E(fHb) ≥ 0 by definition, we obtain P [E > η] ≤ A, which com-
pletes the proof.

Note that a result based on the covering number with respect to the L2,ρT (T ;E) norm
instead of the L∞,ρT (T ;E) norm would be more natural since this reflects the norm in
which the overall error is measured, see lemma 4.4. However, it has been shown in [54]
that such a result cannot hold in full generality. Note, furthermore, that lemma 4.21
and, therefore, also theorem 4.22 implicitly exploit the convexity of Hb. Nevertheless,
similar results also hold in the case of non-convex search sets under the premise that the
bias is small enough, see theorem 3.2 of [79].

4.4.4 The sampling error for finite-dimensional search spaces
For finite-dimensional search spaces H = Vk with k ∈ N, we can estimate the covering
number on the right-hand side of (4.38) directly, see also [12]. As mentioned before, we
will use Nk := dim(Vk) to denote the degrees of freedom of Vk.
Lemma 4.23
Let η, b > 0 and let Mψ > 0 fulfill (4.33). If b ≥ c1 > 0 and η ≤ c2 < ∞, there exists a
constant cN such that

N
Vk,b, η

12
√
Mψ

, L∞(T ;E)
 ≤

cN cVk
√
Mψb

η

Nk

for any finite-dimensional search space Vk.

Proof. Since Vk is continuously embedded into C(T ;E), we know that ‖ · ‖L∞,ρT (T ;E) ≤
cVk‖ · ‖Vk holds for all functions in Vk. Therefore, an ε-covering of Vk with respect to
‖ · ‖Vk is a cVkε-covering of Vk with respect to the L∞(T ;E) norm for an arbitrary ε > 0.
Thus, we have

N
Vk,b, η

12
√
Mψ

, L∞(T ;E)
 ≤ N

Vk,b, η

12cVk
√
Mψ

, Vk

 ≤
24cVk

√
Mψb

η
+ 1

Nk .
The last inequality is provided in theorem 5.3 of [23] and holds for any finite-dimensional
Banach space Vk. Since cVk ≥ 1 by definition and since Mψ and b

η
are bounded from

below, there exists a cN > 0 such that
24cVk

√
Mψb

η
+ 1

Nk ≤
cN cVk

√
Mψb

η

Nk ,
which completes the proof.
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Note that the prerequisites of lemma 4.23 are no restriction for our analysis since we
are interested in the case b→∞ and η → 0 anyhow. With the help of this result on the
covering number, we obtain the following estimate on the sampling error.
Theorem 4.24 [The sampling error for finite-dimensional search spaces]
Let the prerequisites of lemma 4.23 be fulfilled, let (Vk)∞k=1 be a sequence of finite-
dimensional search spaces and let ψ(x,y) = ‖x − y‖2

E. Let furthermore 0 < δ < 1
be fixed. Then, we have

E(fZn,Vk,b)− E(fVk,b) ≤
300MψNk

n
max

1, log
 cN cVkbn

300 δ
√
MψNk

 (4.42)

with probability at least 1− δ.
Proof. By equating

δ =
cN cVk

√
Mψb

η

Nk exp
(
− nη

300Mψ

)
, (4.43)

we know from lemma 4.23 and theorem 4.22 that

P
[
E(fZn,Vk,b)− E(fVk,b) ≤ η

]
≥ 1− δ.

Therefore, to complete the proof, it suffices to show that η is smaller or equal to the
right-hand side of (4.42) if (4.43) holds. To this end, note that we obtain

exp
(

nη

300Mψ

)
ηNk =

(
cN cVk

√
Mψ b δ

− 1
Nk

)Nk
⇔ exp (αη) η = β (4.44)

with α := n
300MψNk

and β := cN cVk
√
Mψ b δ

− 1
Nk by reformulating (4.43). Next, we mul-

tiply both sides of the equation by α and apply the monotone increasing Lambert W -
function W : [0,∞)→ [0,∞) defined by

W (t exp(t)) := t

on both sides of (4.44). Thus, we have4

αη = W (αβ)

⇔ η = 1
α
W (αβ) ≤ 1

α
max (1, log(αβ)) (4.45)

4Note that this also proves that the assignment (4.43) is valid because it is equivalent to (4.45), i.e. for
each δ there exists exactly one η and vice versa.
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since W (s) ≤ log(s) for all s ≥ exp(1). Writing out (4.45), we obtain that

E(fZn,Vk,b)− E(fVk,b) ≤
300MψNk

n
max

1, log

ncN cVk
√
Mψ b δ

− 1
Nk

300MψNk




holds with probability at least 1 − δ. To conclude the proof, note that δ−
1
Nk ≤ δ−1 for

all Nk since 0 < δ < 1 and Nk = dim(Vk) ≥ 1.

Summary
In this section, we presented probabilistic upper bounds on the sampling error E(fZn,Hb)−
E(fHb). We conclude with a summary of the obtained results.

• It is necessary to ensure that there exists Mψ > 0 which fulfills the so-called
M-boundedness condition (4.33) in order to work with covering number results
on compact search sets Hb. While absolute bounds which are independent of b,
i.e. Mψ ' 1, can usually not be obtained for every function from Hb, it can often
be observed that these absolute bounds are valid for the minimizers of (B) over Hb

for arbitrary b and Zn. This often leads to a favorable behavior of the convergence
rates of the sampling error in numerical experiments.

• With the help of the probabilistic Bernstein inequality (4.36) and the convexity of
the search set, we derived the bound (4.38) for the sampling error.

• For the special case of finite-dimensional search sets Vk, we obtain the upper bound
(4.42) with fixed confidence 1−δ. It depends on the sample size n, the cost function
barrier Mψ, the search set radius b and the dimension Nk of Vk.

4.5 Examples for constrained regression
We now consider four examples to demonstrate how the above results can be used to
obtain error bounds for constrained regression in specific settings. Since we focus on
regression over finite-dimensional search sets in this thesis, we will not discuss the infinite-
dimensional case. However, the recipe to deal with this case should be clear by now:
One needs an interpolation result of type fρ ∈ (L2,ρT (T ;E),H)σ to apply corollary 4.14
and obtain an estimate on the bias as we did in subsection 4.3.1. Subsequently, a bound
on the covering number for balls in the infinite-dimensional search set is needed. To
this end, we refer to [28, 86]. For a thorough analysis of examples for regression over
infinite-dimensional search spaces, we refer the interested reader to [23], which is devoted
solely to this topic.
In this section, we first deal with piecewise linear splines on full grids and sparse

grids as introduced in subsection 3.5.1. Furthermore, we consider Fourier polynomials
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on full grids and hyperbolic crosses, which we reviewed in subsection 3.5.2. Grid-based
algorithms are motivated by the fact that they can get rid of the cubic computational
costs with respect to the amount n of data points, which data-based approaches usually
suffer from, see e.g. chapter 10 of [74]. Therefore, grid-based search sets are a good
alternative to so-called kernel methods, especially if the dimension m of the problem is
low and the number of data n is quite large. We will have a more detailed look on this
issue in subsection 5.1.2. However, due to the curse of dimensionality, full grid methods
are no longer feasible if m > 3. Therefore, sparse grids and hyperbolic crosses need to be
employed for moderate-dimensional cases, i.e. up to m = 10. In recent years, regression
methods based on these spaces have been successfully applied, see e.g. [11, 68].
For our examples, we stick to E = Rd in the spline case and E = C

d in the Fourier
case, respectively, with d ∈ N. Furthermore, we use the squared norm cost function
ψ(x,y) := ‖x− y‖2

E. We consider scales of finite-dimensional search spaces (Vk)∞k=0 and
the corresponding balls Vk,b. As we already mentioned in subsection 4.4.1, it makes sense
to consider both cases

Mψ = (M + r)2 ' 1 and Mψ = (cVkb+ r)2 ' c2
Vk
b2,

for the cost function bound Mψ, see also (4.33). Here, the constants5 implied by ' do
not depend on k.
The regularization norm ‖ · ‖Vk is deliberately chosen to be the H1 norm in the full

grid case and the H1
mix norm for sparse grids and hyperbolic crosses because these norms

fit both the choice of our basis functions, see also [11], and the norm equivalences we
provided in section 3.5. For Fourier polynomials on hyperbolic crosses, one could also
consider higher degree Sobolev norms such as the H ŝ(T ;Cd) and H ŝ

mix(T ;Cd) norms
with ŝ ≥ 2. However, we focus on ŝ = 1 in our examples.
We explain our methodology in more detail for the first example and give a more brief

explanation for the subsequent ones. Although we do not discuss the constants in front
of the rates which we derive for the overall error, we show at least the explicit dependence
of the error on the confidence level 1− δ, which we keep fixed.
The general procedure is the same for all examples in the subsections 4.5.1 - 4.5.4:

• We determine the scaling of the embedding constant cVk .

• With the help of an inverse inequality of Bernstein type, we determine the growth
of the regularization parameter b.

• An application of theorem 4.18 to estimate the discretization error and theorem
4.24 to estimate the sampling error provides an upper bound on the overall error.

5Note that we implicitly assume that b is bounded away from zero, i.e. there exists a c > 0 such that
b > c. Otherwise (cVk

b + r)2 ' c2
Vk
b2 does not hold for b arbitrarily close to 0. However, this is no

restriction at all since we are interested in the case b→∞ anyhow.
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• We determine necessary conditions as well as sufficient conditions to obtain con-
vergence of the overall error.

• We discuss the optimal coupling between the number of sample points n and the
degrees of freedom Nk which balances the discretization error and the sampling
error and provide the corresponding convergence rate with respect to n.

In order to summarize the results, we give a comparison and an overview on the consid-
ered settings in subsection 4.5.5. In the final subsection 4.5.6, we relate our findings to
other research results in this direction.

4.5.1 Regression with piecewise linear basis functions on full grids

First, we consider multivariate regression on full grids with piecewise linear basis func-
tions, see also subsection 3.5.1. To this end, let T = (0, 1)m and let ρT = λT be the
Lebesgue measure. As already mentioned in chapter 3, we use the notation L2(T ;E) for
L2,ρT (T ;E) in this case. We assume that fρ ∈ Hs(T ;Rd) for a 0 < s ≤ 2. Let Vk = V full,d

k

be the prewavelet space on a full grid of level k, see (3.33). Note that a properly adjusted
ansatz space might be more appropriate if fρ stems from a Sobolev space with a higher
degree of smoothness. One can e.g. employ grids which are based on higher order splines
in such a case, see [13].
As mentioned above, we choose ‖ · ‖Vk = ‖ · ‖H1(T ;Rd). If m = 1, proposition 3.18

ensures that
∃ c > 0 : ‖f‖∞ ≤ c‖f‖H1(T ;Rd).

Thus, the embedding constant cVk = c ' 1 of

(Vk, ‖ · ‖Vk) ↪→
(
C(T ;Rd), ‖ · ‖∞

)
is bounded from above independently from k. If m ≥ 2, however, we know from sub-
section 3.3.2 that H1(T ;Rd) is not a reproducing kernel Hilbert space anymore and we
cannot assume that cVk is independent from k. To obtain a bound on cVk in this case,
let f ∈ Vk be given by

f =
d∑
j=1

∑
|l|`∞≤k

∑
i∈Il

αl,i,jγl,iej.

Let, furthermore, ~α ∈ RNk be the vector of all coefficients αl,i,j. Note that

sup
t∈T
|γl,i(t)| ≤

(6
5

)m
2 km

2

holds for each prewavelet basis function, which can easily be seen from their definition
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(3.29). Then, with Nk = d(2k + 1)m ' 2km, we obtain

‖f‖∞ ≤
d∑
j=1

∑
|l|`∞≤k

∑
i∈Il

|αl,i,j|‖γl,iej‖∞ ≤
(6

5

)m
2 km

2 · ‖~α‖`1

≤
(6

5

)m
2 km

2

√
Nk‖~α‖`2 . 2km‖~α‖`2 . 2km‖f‖L2(T ;Rd) ≤ 2km‖f‖H1(T ;Rd),

where we used the Riesz stability of the prewavelet basis functions, i.e. (3.37) with
s = 0, to obtain the relation ‖~α‖`2 . ‖f‖L2(T ;Rd), see also [41, 42]. Recall that x(k) .
y(k) indicates that there exists a constant c > 0, which is independent of k, such that
x(k) ≤ cy(k) for all k ∈ N. Therefore, we can choose cVk . 2km if m ≥ 2. Note, however,
that this might be a very crude estimate as we essentially used only a Nikolskii-type
inequality between the Nk-dimensional `1 and `2 spaces, which did not make use of the
smoothness implied by the H1 norm.
Because of our differentiation between m = 1 and m > 1 and also between Mψ '

1 and Mψ ' c2
Vk
b2, we would have to make a four-fold case analysis for our further

considerations. For the ease of notation and for the sake of readability, we omit the case
m = 1 in the following. Note, however, that this case coincides with m = 1 for sparse
grids, which we will deal with in our next example.

The overall error

To estimate the discretization error, we want to apply theorem 4.18 and need an appro-
priate inverse inequality. To this end, we use the Bernstein-type inequality (3.39), which
states that there exists an m-dependent constant c̃ > 0 such that

‖f‖H1(T ;Rd) ≤ c̃2k‖f‖L2(T ;Rd) ∀ f ∈ Vk.

Thus, b := c̃2kr ≥ c̃2k‖fρ‖L2(T ;Rd) with r from (4.5) is a valid choice in theorem 4.18,
which leads to

E(fVk,b)− E(fρ) = inf
f∈Vk
‖f − fρ‖2

L2(T ;Rd)
(3.41)= O

(
2−2sk

)
for full grids, where the O-term has to be understood for k → ∞ and the implicit
constant depends (exponentially) on s and m and (linearly) on d. Together with the
sampling error bound from theorem 4.24, we obtain the overall error

E(fZn,Vk,b)− E(fρ) . 2−2sk + MψNk

n
max

1, log
 cVkbn

δ
√
MψNk

 ,
with confidence 1− δ, where we already used the fact that cN from (4.42) is independent
of k and n. Since we only analyze the case m ≥ 2 here, we use cVk ' 2km, b ' 2k and
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Nk ' 2km to obtain

E(fZn,Vk,b)− E(fρ) . 2−2sk + 2km
n

max
(

1, log
(

2kn
δ

))

if Mψ = (M + r)2 ' 1 and

E(fZn,Vk,b)− E(fρ) . 2−2sk + 22k( 3
2m+1)

n
max

(
1, log

(
n

δ2km
))

if Mψ = (cVkb + r)2 ' 22k(m+1). Here, the constants which are implied by ' and .
depend on m, d and s.

The convergent case

Looking at the previous results in more detail, we see that the first summand in both
rates converges to 0 for k →∞. For the second summand, however, we have to impose
an additional condition on the coupling between n and k to obtain convergence. To this
end, note that n > 2km is necessary to obtain convergence for both choices of Mψ. This
implies that the max term evaluates to the second argument, i.e. if n > 2km, we get

E(fZn,Vk,b)− E(fρ) . 2−2sk + 2km
n

log
(

2kn
δ

)
. 2−2sk + 2km

n
log

(
n

δ

)
(4.46)

for Mψ ' 1, where we used log(2kn) ≤ log(n2) = 2 log(n) for the last inequality, and

E(fZn,Vk,b)− E(fρ) . 2−2sk + 22k( 3
2m+1)

n
log

(
n

δ2km
)

(4.47)

for Mψ ' 22k(m+1). Note that the sample size n implicitly suffers from the curse of
dimensionality due to the necessary condition n > 2km.
We now consider sufficient conditions for the convergence of (4.46) and (4.47). As

explained in chapter 2, we write x(k) � y(n) to state that k = k(n) is coupled to n
in such a way that k(n) → ∞ for n → ∞ and x(k(n)) = o(y(n)), where o denotes the
little-o Landau symbol. For fixed confidence 1− δ, we observe that

Nk �
n

log(n)

with Nk ' 2km is a sufficient condition to obtain convergence of the right-hand side of
(4.46) to 0. When considering (4.47), the condition for convergence to 0 becomes more
severe, i.e. here it suffices to ensure

22k (Nk)3 � n

log(n) .
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Balancing the error terms

To find the optimal scaling between the grid level k and the sample size n, we (ap-
proximately) balance the discretization error and the sampling error by equating the
summands in the error estimates from the last paragraph. With a fixed confidence 1− δ,
we obtain

2−2sk ' 2km
n

log
(
n

δ

)
for (4.46). This can be reformulated as n ' 2(2s+m)k log

(
n
δ

)
, which is essentially

n ' 2(2s+m)k ' 22skNk ' N
2s+m
m

k (4.48)

up to logarithms in n. Substituting 2k ' n
1

2s+m , which follows from (4.48), into (4.46),
we obtain

E(fZn,Vk,b)− E(fρ) . n−
2s

2s+m + n
m

2s+m

n
log

(
n

δ

)
= O

(
n−

2s
2s+m log(n)

)
(4.49)

for n → ∞. Therefore, for the coupling (4.48), our convergence rate estimate for mul-
tivariate regression on full grids with piecewise linear basis functions in the case of
M -boundedness with Mψ ' 1 is (4.49).
In the case Mψ ' (cVkb+ r)2, in which we have (4.47), we obtain the balanced scaling

2−2sk ' 22k( 3
2m+1)

n
log

(
n

δ2km
)
⇔ n ' 2(2s+3m+2)k log

(
n

δ2km
)
.

Substituting 2k = n
1

2s+3m+2 into (4.47), we finally get

E(fZn,Vk,b)− E(fρ) . n−
2s

2s+3m+2

(
1 + 2(s+m+ 1)

2s+ 3m+ 2 log(n)− log(δ)
)

= O
(
n−

2s
2s+3m+2 log(n)

)
. (4.50)

4.5.2 Regression with piecewise linear basis functions on sparse
grids

We now have a look at multivariate regression on sparse grids with the piecewise linear
prewavelet basis functions. We will see that, in contrast to full grids, the necessary
number of samples to obtain convergence does not suffer from the curse of dimensionality
(up to logarithms). As in the full grid case, let T = (0, 1)m and let ρT = λT be the
Lebesgue measure. However, we now assume that the true solution comes from a mixed
Sobolev space, i.e. let fρ ∈ Hs

mix(T ;Rd) for a 0 < s ≤ 2. We choose Vk = Vsparse,d
k from

(3.34). Note that - as in the full grid case - a properly adjusted sparse grid space might
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be more appropriate if the regression function is known to belong to H ŝ
mix(T ;Rd) with

ŝ > 2 or to a mixed smoothness class of varying degrees for different directions, see [39].
Furthermore, adaptive sparse grids can be employed to deal with non-smooth solutions,
see e.g. [15]. An exhaustive analysis of appropriate sparse grid spaces Vk is beyond the
scope of this thesis, but we refer the reader to [14] and [52] for details in this direction.
We choose ‖ · ‖Vk = ‖ · ‖H1

mix(T ;Rd). As we already mentioned in subsection 3.3.2, the
mixed space H1

mix(T ;Rd) is a reproducing kernel Hilbert space for which proposition 3.18
holds for every dimension m. Therefore, cVk ' 1 can be chosen independently of k ∈ N.
Note that, in the casem = 1, a sparse grid coincides with a full grid and Hs

mix(T ;Rd) =
Hs(T ;Rd). Hence, our following analysis complements the full grid study from the last
subsection, where we omitted the case m = 1.

The overall error

In (3.40), we provided the inverse inequality

‖f‖H1
mix(T ;Rd) ≤ c̃2k‖f‖L2(T ;Rd) ∀ f ∈ Vk

with m- and d-dependent constant c̃ > 0. Therefore, we can apply theorem 4.18 with
b := c̃2kr ≥ c̃2k‖fρ‖L2(T ;Rd) to obtain

E(fVk,b)− E(fρ) = inf
f∈Vk
‖f − fρ‖2

L2(T ;Rd)
(3.42)= O

(
2−2skkm−1

)
for sparse grids. Since cVk ' 1, b ' 2k and Nk ' 2kkm−1, we derive

E(fZn,Vk,b)− E(fρ) . 2−2skkm−1 + MψNk

n
max

1, log
 cVkbn

δ
√
MψNk


. 2−2skkm−1 + Mψ2kkm−1

n
max

1, log
 n

δ
√
Mψkm−1

 , (4.51)

with confidence 1− δ for the overall error by combining the result on the discretization
error with the sampling error bound from theorem 4.24. In the following, we will discern
the case Mψ ' 1 and the case Mψ ' (cVkb+ r)2 ' b2 ' 22k, where we used cVk ' 1.

The convergent case

Now, let us consider (4.51) in more detail. Similar to the full grid case, we obtain
that n > 2kkm−1 ' Nk is a necessary condition for convergence and that the maximum
function evaluates to its second argument regardless of the choice ofMψ. Thus, we derive
the rate

E(fZn,Vk,b)− E(fρ) . 2−2skkm−1 + 2kkm−1

n
log

(
n

δkm−1

)
(4.52)
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for constant Mψ and

E(fZn,Vk,b)− E(fρ) . 2−2skkm−1 + 23kkm−1

n
log

(
n

δ2kkm−1

)
(4.53)

for Mψ ' 22k. Furthermore, we observe that

Nk �
n

log(n)

is a sufficient condition for convergence in the first case Mψ ' 1 and

N3
k �

n

log(n)

is a sufficient condition for convergence in the second case Mψ ' 22k.

Balancing the error terms

We first examine the case where Mψ is constant and equate

2−2skkm−1 ' 2kkm−1

n
log

(
n

δkm−1

)
,

which leads to
n ' 2(2s+1)k(log(n)− (m− 1) log(k)).

Thus, up to logarithmic factors in Nk and n, the optimal scaling is

n ' 2(2s+1)k.

Note that this also implies log(n) ' k for n > 1. Substituting this relation into (4.52),
the overall rate can be bounded by

E(fZn,Vk,b)− E(fρ) . n−
2s

2s+1

( 1
2s+ 1 log(n)

)m−1

·
(

1 + log(n)− log(δ)− (m− 1) log
( 1

2s+ 1 log(n)
))

= O
(
n−

2s
2s+1 log(n)m

)
.

In the case Mψ ' (cVkb+ r)2 ' 22k, we have to balance

2−2skkm−1 ' 23kkm−1

n
log

(
n

δ2kkm−1

)
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and get
n ' 2(3+2s)k (log(n)− k log(2)− (m− 1) log(k)) ,

which essentially is
n ' 2(3+2s)k

up to logarithms. Employing this in (4.53), we obtain

E(fZn,Vk,b)− E(fρ) . n−
2s

2s+3

( 1
2s+ 3 log(n)

)m−1

·
(

1 + log(n)− log(δ)− 1
2s+ 3 log(n)− (m− 1) log

( 1
2s+ 3 log(n)

))
= O

(
n−

2s
2s+3 log(n)m

)
.

4.5.3 Periodic regression with Fourier polynomials on full grids

In the following, we consider regression of multivariate periodic functions. In this sub-
section we focus on Fourier polynomials on full grids, see also subsection 3.5.2. To this
end, let T = (−π, π)m and let ρT = 1

(2π)mλT be the rescaled Lebesgue measure. Let,
furthermore, fρ ∈ H̄s(T ;Cd) stem from a periodic Sobolev space6 of degree s > 0. In
contrast to the previous examples, we can now also exploit the case of higher smoothness
s > 2. We choose Vk = T full,d

k as the space of Fourier polynomials on a full frequency
grid of level k > 0, see (3.43). Therefore, Nk = dim(Vk) ' 2km.
As we mentioned above, we deliberately choose ‖ · ‖Vk = ‖ · ‖H̄1(T ;Cd) as regularization

norm. However, due to the smoothness of the Fourier polynomials, we could also consider
higher-order Sobolev norms. Similarly to the non-periodic case, the space H̄1(T ;Cd) is
not a reproducing kernel Hilbert space for m ≥ 2. Therefore, we cannot assume that the
embedding constant cVk is bounded independently of k ∈ N for m ≥ 2. Again, we lean
on a Nikolskii-type inequality to obtain

‖f‖∞ . 2 km
2 ‖f‖L2(T ;Cd) . 2 km

2 ‖f‖H̄1(T ;Cd) ∀ f ∈ Vk

in this case, see theorem II.2.2 of [78]. Thus, we have cVk ' 1 for m = 1 and we assume
cVk ' 2 km

2 for m ≥ 2. In the following, we will omit the analysis of the special case
m = 1 because it will coincide with the case m = 1 for the hyperbolic cross example in
the next section.

6Note that we use H̄s(T ;Cd) instead of the probability space H̄s
2,ρT

(T ;Cd). However, both spaces
contain the same elements and their norms only differ by the constant factor (2π)m. Since we are
only interested in convergence rates with respect to the grid level k and the number of samples n,
we can neglect this prefactor.
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The overall error

Let m ≥ 2. Because of the inverse inequality

‖f‖H̄1(T ;Cd) ≤ c̃2k‖f‖L2(T ;Cd) ∀ f ∈ Vk

with constant c̃ > 0, see (3.48), the application of theorem 4.18 with b := c̃2kr ≥
c̃2k‖fρ‖L2(T ;Cd) leads to

E(fVk,b)− E(fρ) = inf
f∈Vk
‖f − fρ‖2

L2(T ;Cd)
(3.50)= O

(
2−2sk

)
.

Combining this result with the sampling error rate from theorem 4.24, we obtain the
bound

E(fZn,Vk,b)− E(fρ) . 2−2sk + MψNk

n
max

1, log
 cVkbn

δ
√
MψNk


. 2−2sk + Mψ2km

n
max

1, log
 n

δ
√
Mψ

√
2k(m−2)

 ,
with confidence 1− δ for m ≥ 2, cVk ' 2 km

2 , b ' 2k and Nk ' 2km.

The convergent case

Since n > 2km ' Nk is again a necessary condition for convergence of the error to 0, the
rate becomes

E(fZn,Vk,b)− E(fρ) . 2−2sk + 2km
n

log
(

n

δ
√

2k(m−2)

)
(4.54)

for Mψ = (M + r)2 ' 1 and

E(fZn,Vk,b)− E(fρ) . 2−2sk + 22k(m+1)

n
log

(
n

δ2km
)

(4.55)

for Mψ = (cVkb + r)2 ' 2k(m+2). Since m ≥ 2, a sufficient condition for convergence of
the error to 0 is

Nk �
n

log(n)
if Mψ ' 1. In the case Mψ ' 2k(m+2), a sufficient condition is given by

(
Nk2k

)2 � n

log(n) .
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Note that the number of samples n suffers from the curse of dimensionality since -
regardless of the choice of Mψ - it has to grow faster than Nk ' 2km.

Balancing the error terms

Equating the discretization error and the sampling error in (4.54), we obtain

2−2sk ' 2km
n

log
(

n

δ
√

2k(m−2)

)
⇔ n ' 2(2s+m)k log

(
n

δ
√

2k(m−2)

)

and, thus, n ' 2(2s+m)k as the optimal coupling up to logarithms in n and Nk. Therefore,
for a fixed confidence 1− δ, we derive

E(fZn,Vk,b)− E(fρ) . n−
2s

2s+m

(
1 +

2s+ m
2 + 1

2s+m
log(n)− log(δ)

)
= O

(
n−

2s
2s+m log(n)

)
as the error rate for the optimal coupling if Mψ ' 1. If Mψ ' (cVkb + r)2 ' 2k(m+2), we
get

2−2sk ' 22k(m+1)

n
log

(
n

δ2km
)
⇔ n ' 22k(m+s+1) log

(
n

δ2km
)

by balancing the errors in (4.55) and, therefore, n ' 22k(m+s+1) up to logarithms. This
scaling leads to the rate

E(fZn,Vk,b)− E(fρ) . n−
s

s+m+1

(
1 + 2s+m+ 2

2(s+m+ 1) log(n)− log(δ)
)

= O
(
n−

s
s+m+1 log(n)

)
.

4.5.4 Periodic regression with Fourier polynomials on hyperbolic
crosses

Finally, we examine regression of multivariate periodic functions by Fourier polynomials
on hyperbolic crosses, see subsection 3.5.2. As in the last subsection, let T = (−π, π)m
and let ρT = 1

(2π)mλT . Let fρ ∈ H̄s
mix(T ;Cd) reside in the mixed Sobolev space of

smoothness s > 0. Our search sets are Vk = T hyp,d
k for k ∈ N with Nk ' 2kkm−1,

cf. (3.44) and (3.45).
We take ‖ · ‖Vk = ‖ · ‖H̄1

mix(T ;Cd) as regularization norm, which allows us to choose
cVk ' 1 independently of k since H̄1

mix(T ;Cd) is a reproducing kernel Hilbert space for
which proposition 3.18 applies. In the case m = 1, our setting is exactly the same as
for full grids. Therefore, our results here also complement our earlier full grid analysis,
where we omitted the case m = 1.
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The overall error

Taking the inverse inequality

‖f‖H̄1
mix(T ;Cd) ≤ c̃2k‖f‖L2(T ;Cd) ∀ f ∈ Vk,

with a constant c̃ > 0, into account, see (3.49), we obtain that b := c̃2kr ≥ c̃2k‖fρ‖L2(T ;Cd)
is a valid choice in theorem 4.18. Therefore, we get

E(fVk,b)− E(fρ) = inf
f∈Vk
‖f − fρ‖2

L2(T ;Cd)
(3.51)= O

(
2−2sk

)
.

Using cVk ' 1, b ' 2k and Nk ' 2kkm−1, we derive

E(fZn,Vk,b)− E(fρ) . 2−2sk + MψNk

n
max

1, log
 cVkbn

δ
√
MψNk


. 2−2sk + Mψ2kkm−1

n
max

1, log
 n

δ
√
Mψkm−1

 (4.56)

with confidence 1 − δ by summing up the discretization error and the sampling error
from theorem 4.24.

The convergent case

Since n > 2kkm−1 ' Nk is a necessary condition for convergence of (4.56) to 0 for
k, n→∞, we observe that

E(fZn,Vk,b)− E(fρ) . 2−2sk + 2kkm−1

n
log

(
n

δkm−1

)
(4.57)

for Mψ ' 1 and

E(fZn,Vk,b)− E(fρ) . 2−2sk + 23kkm−1

n
log

(
n

δ2kkm−1

)
(4.58)

for Mψ ' (cVkb + r)2 ' b2 ' 22k are the error bounds in the convergent case. Since the
sampling error term reads the same as for sparse grids in subsection 4.5.2, the sufficient
conditions for the error convergence can be inherited from there. We deduce

Nk �
n

log(n)
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if Mψ ' 1. For the case Mψ ' 22k, the condition becomes

N3
k �

n

log(n) .

Balancing the error terms

First, let us consider the case Mψ ' 1. To this end, we equate

2−2sk ' 2kkm−1

n
log

(
n

δkm−1

)
⇔ n ' 2(2s+1)kkm−1 log

(
n

δkm−1

)
.

Thus, the optimal scaling up to logarithmic factors in the basis size Nk and the sample
size n is n ' 2(2s+1)k. Rewriting (4.57) with the help of this relation gives

E(fZn,Vk,b)− E(fρ) . n−
2s

2s+1 + n−
2s

2s+1

( 1
2s+ 1 log(n)

)m−1

·
(

log(n)− log(δ)− (m− 1) log
( 1

2s+ 1 log(n)
))

= O
(
n−

2s
2s+1 log(n)m

)
for n→∞. Second, we have a look at the case Mψ ' 22k and consider the coupling

2−2sk ' 23kkm−1

n
log

(
n

δ2kkm−1

)
⇔ n ' 2(2s+3)kkm−1 log

(
n

δ2kkm−1

)
,

which results in n ' 2(2s+3)k up to logarithms. Substituting this into (4.58), we obtain

E(fZn,Vk,b)− E(fρ) . n−
2s

2s+3 + n−
2s

2s+3

( 1
2s+ 3 log(n)

)m−1

·
(

log(n)− log(δ)− 1
2s+ 3 log(n)− (m− 1) log

( 1
2s+ 3 log(n)

))
= O

(
n−

2s
2s+3 log(n)m

)
.

4.5.5 Overview

An overview on the results for our examples can be found in table 4.2. Note that the
full grid results are valid only if m ≥ 2. Note, furthermore, that the results for Fourier
polynomials on hyperbolic crosses read exactly the same as the results for piecewise linear
prewavelets on sparse grids. The only difference is that the smoothness s is constrained
to 0 < s ≤ 2 in the latter case because the piecewise linear prewavelets cannot exploit
higher orders of Sobolev smoothness of fρ.
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(a) Piecewise linear prewavelets on full grids and and sparse grids, 0 < s ≤ 2

Vk suff. cond. balanced n balanced rate

Mψ ' 1 V full,d
k Nk � n

log(n) n ' 2(2s+m)k n−
2s

2s+m log(n)
Vsparse,d
k Nk � n

log(n) n ' 2(2s+1)k n−
2s

2s+1 log(n)m

Mψ ' (cVkb+ r)2 V full,d
k 22kN3

k � n
log(n) n ' 2(2s+3m+2)k n−

2s
2s+3m+2 log(n)

Vsparse,d
k N3

k � n
log(n) n ' 2(2s+3)k n−

2s
2s+3 log(n)m

(b) Fourier polynomials on full grids and hyperbolic crosses, s > 0

Vk suff. cond. balanced n balanced rate

Mψ ' 1 T full,d
k Nk � n

log(n) n ' 2(2s+m)k n−
2s

2s+m log(n)
T hyp,d
k Nk � n

log(n) n ' 2(2s+1)k n−
2s

2s+1 log(n)m

Mψ ' (cVkb+ r)2 T full,d
k 22kN2

k � n
log(n) n ' 2(2s+2m+2)k n−

s
s+m+1 log(n)

T hyp,d
k N3

k � n
log(n) n ' 2(2s+3)k n−

2s
2s+3 log(n)m

Table 4.2: Results for constrained regression (B) over Vk,b for full grids (m ≥ 2, H1

regularization, fρ ∈ Hs, Nk ' 2km) and for sparse grids/hyperbolic crosses
(m ≥ 1, H1

mix regularization, fρ ∈ Hs
mix, Nk ' 2kkm−1). The scaling of the

regularization parameter is b ' 2k in all cases. The table contains a sufficient
condition for convergence of the overall error to 0, the behavior of n when the
discretization error and the sampling error are balanced (up to logarithms in
n and Nk) and the corresponding convergence rate in the balanced case.

The curse of dimensionality

For full grids, we directly observe how the curse of dimensionality affects both the number
of sample points n and the convergence rate of the regression error: Our conditions
for convergence imply that the sample size n has to grow faster than the size Nk of
the finite-dimensional search space Vk in all analyzed cases. In the full grid case, this
essentially means that we need at least Nk ' 2mk sample points. Here, the exponential
dependence with respect to m shows up. Another way to see the presence of the curse
of dimensionality is to investigate the convergence rate in the balanced case. Take for
instanceMψ ' 1. There, the rate of convergence in the balanced case reads n−

2s
2s+m log(n)

for full grids. Therefore, the sample size has to grow exponentially with respect to m in
order to achieve the same convergence rate as in the univariate case.
In the case of a sparse grid or hyperbolic cross discretization, the curse of dimension-

ality is present only in a weak form since it affects the logarithms in n and Nk. To this
end, note that the condition on the number of sampling points n is again stated with
respect to the basis size Nk, which scales like 2kkm−1 for sparse grids and hyperbolic
crosses. Therefore, even in the most restrictive case N3

k � n
log(n) for Mψ = (cVkb + r)2,
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the condition for convergence essentially reads 23kk3(m−1) � n
log(n) and the curse of di-

mensionality only affects the level k. Similarly, for the convergence rate in the balanced
case, the dimension m is present only in the factor log(n)m but not in the main term, as
it is the case for full grids.

Oversampling in the optimal/balanced case in dependence on Mψ

To achieve the optimal rate of convergence, we calculated the amount n of samples (up
to constants and logarithms) such that the discretization error and the sampling error
are approximately equal. We now want to illustrate how Mψ influences the amount of
samples in the balanced case. To this end, we consider the linear prewavelet basis. Note,
however, that an analogous analysis can also be done for Fourier polynomials.
Since we are interested in a result which relates the basis size Nk to the sample size

n, we express the number of samples in the balanced case (up to logarithms) in terms of
Nk. For Mψ ' 1, we obtain

n ' 2(2s+m)k = 2(2 s
m

+1)mk ' N
2s
m

+1
k

for the full grid space V full,d
k with Nk ' 2mk and

n ' 2(2s+1)k . N2s+1
k

for the sparse grid space Vsparse,d
k withNk ' 2kkm−1. Therefore, the larger the smoothness

index s is, the higher the oversampling has to be in terms of a power of the basis size
Nk. Note that for growing s, the oversampling power 2s+ 1 for sparse grids grows faster
than the oversampling power 2s

m
+ 1 for full grids. This, however, is of course only with

respect to the particular basis size. For s close to 0, the sampling relation approaches
n ' Nk for full grids and sparse grids, which essentially reflects the convergence condition
Nk � n

log(n) from table 4.2 (up to logarithms).
Now, we investigate the case Mψ = (cVkb+ r)2, for which we have

n ' 2(2s+3m+2)k ' 2( 2s
m

+3+ 2
m

)mk ' N
2s+2
m

+3
k ' N

2s
m

+1
k N

2
m

+2
k

in the balanced case for the full grid space V full,d
k . Analogously, we have

n ' 2(2s+3)k . N2s+3
k ' N2s+1

k N2
k

for the sparse grid space Vsparse,d
k . The qualitative behavior is the same as in the case

Mψ ' 1. However, regardless of s > 0, the optimal number of sample points n is always
larger than N

2
m

+3
k ' 22kN3

k for full grids and larger than N3
k for sparse grids. This

again represents the sufficient conditions for convergence of the error to 0, which we
provided in table 4.2. Generally, we see that the main difference in the oversampling for
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Mψ = (cVkb + r)2 in contrast to Mψ ' 1 is that we need an additional factor of at least
N2
k here. Depending on the level k and the dimension m, this can be a huge number.
As we mentioned in subsection 4.4.1, it is usually not easy to prove that one can work

withMψ = (M+r)2 ' 1 instead ofMψ = (cVkb+r)2. However, in many applications the
assumptionMψ ' 1 is reasonable since the L∞ norm of all functions under consideration
is bounded by an absolute constant. Our results in table 4.2 and the reasoning above
shows that the actual behavior ofMψ has a serious influence not only on the convergence
rate but also on the required oversampling.

Convergence with respect to n

The fastest convergence can be observed in the case of hyperbolic cross regression with
Mψ ' 1, where we have the rate

n−
2s

2s+1 log(n)m

in the balanced case. Assuming that fρ is smooth, i.e. fρ ∈ Hs
mix(T ;Cd) for all s > 0,

we obtain that the convergence rate is essentially n−1 up to logarithms since 2s
2s+1 → 1

for s→∞. Note that this is also the best we could expect for any example. This is due
to the fact that our results rely on theorem 4.24, where the decay of the sampling error
cannot exceed the rate n−1.
The main reason why we cannot derive improved results on the convergence of the

sampling error is the fact that we stated the regression problem (A) in a very general
manner. We did not pose restrictions on the measure ρ and we allowed for noisy samples
for instance. In the special case of noiseless function regression, however, we can achieve
better convergence rates than n−1. We discuss this in detail in section 5.4.

4.5.6 Relation to other results
In this subsection, we relate our results to the work of other researchers.

Convergence conditions and stability of unconstrained regression

First, we observe that our sufficient conditions for convergence directly correspond to
certain stability conditions for unregularized regression. To this end, recall that we en-
forced stability and well-posedness of the regression problem by introducing a constraint
on ‖ · ‖Vk . When omitting this constraint, one has to identify a coupling between n
and Nk for which stability and well-posedness of the regression problem is guaranteed
with high probability before convergence of the error can be obtained. This is essen-
tially the difference between well-posedness for a Tikhonov-regularized problem and for
a discretized problem without penalty term, see also [35] for a more detailed explanation.
Using a truncation operator, which enforces a similar condition as our assumption

Mψ ' 1, such couplings between n and Nk are determined e.g. in [19, 21, 61] for search
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spaces of global polynomials. Furthermore, in [21], we also find a result which states
that

Nk ≤
n

log(n)
is sufficient to get a well-posed and stable regression problem for orthonormal piecewise
constant basis functions, which can easily be extended to higher order bases. This
stability condition matches our sufficient conditions for convergence of prewavelet and
Fourier polynomial regression for Mψ ' 1, see table 4.2. Note, however, that the results
in [21] are valid only if the considered basis is orthonormal. We will discuss this issue in
more detail in the next chapter.

Regression on full grids with linear splines

Next, we have a look at a standard result from non-parametric regression on full grids:
Omitting the H1 regularization and considering a truncated variant of the scalar-valued
regression problem, the convergence rate for multivariate regression with splines on a
full grid has been provided in e.g. theorem 15.4 of [46]. There, the bound

2−2sk + 2km log(n)
n

for 0 < s ≤ 2 is obtained in the piecewise linear case, which reflects the rate7 we have
shown in (4.46). For a specific setting where the degrees of freedom Nk are coupled
to the smoothness s, they also obtained n−

2s
2s+m as the rate in the balanced case up to

logarithms. This coincides with the rate which we observed in (4.49).

Regression on sparse grids with linear splines

In [36], the limit behavior of the dual regression problem, which we consider in the next
chapter, is studied for the application of the so-called combination technique for linear
splines on sparse grids. There, the solution to the regression problem is computed on
smaller full grids and then combined linearly to obtain an approximate solution on the
sparse grid, see also [35]. Note that this method does not necessarily lead to the true
sparse grid solution of the regression problem. Note, furthermore, that [36] considers H1

regularization instead of H1
mix. Besides a thorough analysis in the case of fixed n, the

authors also give a conjecture on the overall error bound in the H1 norm, which can be
reformulated as

‖fρ − f sol‖H1(T ) . inf
f∈Vk
‖fρ − f‖H1(T ) +

√
dof(f sol)
√
n

,

7Note, that we have proven convergence in probability, whereas the statement in [46] is with respect
to L2(T ) convergence. However, since E(fZn,Vk,b

) is bounded from above for all n ∈ N, these notions
of convergence are equivalent.
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where f sol is the combination technique solution, which approximates fZn,Vk,b , and dof(f sol)
is the sum of the number of degrees of freedom which are employed on the full grids to
obtain the combined sparse grid solution. Apart from the fact that the H1 norm is es-
timated instead of the regression error (4.24), which corresponds to the L2 norm, (4.52)
can be seen as the analogous bound when directly working on the sparse grid instead
of considering the combination technique. Note that our estimate is for the squared L2
norm, see lemma 4.4, and we have to take the square root of the rate in (4.24). Then
our rate reflects the conjecture from [36] (up to logarithms) when substituting the H1

norm by the L2 norm. However, there might still be room for improvement since the
conjecture from [36] is essentially based on a central limit theorem estimate, which could
be improved for convex search sets by the techniques we have provided in section 4.4.

A different approach with Jackson and Bernstein inequalities

The authors of [75] present a result which is also based on Jackson and Bernstein in-
equalities to obtain an upper bound on the discretization error for regularized regression.
Therefore, their work comes close to the situation we have been dealing with in this chap-
ter. However, there are slight differences in their prerequisites and their results compared
to what we presented. We now state a version of their result which is adapted to our
notation.
Theorem 4.25 [Upper bound for the discretization error from [75]]
Let C > 0, let E be a separable Hilbert space and let (τk)k∈N be a decreasing sequence
of positive numbers which converges to 0. Let (H, ‖ · ‖H) be an infinite-dimensional
Banach space with continuous embedding H ↪→ L2(T ;E) and let the finite-dimensional
search spaces Vk ⊂ H be normed by ‖ · ‖Vk = ‖ · ‖H for k ∈ N. Furthermore, let
Pk : L2(T ;E)→ Vk be linear operators with ‖Pk‖L(L2(T ;E),L2(T ;E)) ≤ C for all k ∈ N. We
assume that the Jackson inequalities

‖Pk(f)− f‖L2(T ;E) ≤ Cτk+1‖f‖H ∀ f ∈ H

and the Bernstein inequalities

‖Pk(f)‖H ≤ Cτ−1
k ‖f‖L2(T ;E) ∀ f ∈ L2(T ;E) and ‖Pk(f)‖H ≤ C‖f‖H ∀ f ∈ H

hold for all k ∈ N. If fρ ∈ (L2(T ;E),H)θ for some 0 < θ < 1 and b = Cτ θ−1
k ‖fρ‖θ, the

discretization error is bounded by

E(fVk,b)− E(fρ) . b−
2θ

1−θ ' τ 2θ
k .

Proof. See theorem 4.1 of [75].

First of all, we observe that the growth of b in theorem 4.25 is now coupled also to
the smoothness, which is implicitly given by the interpolation parameter θ. For θ close
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to 1, the growth of b - and therefore also the regularization - is very mild. This is a
clear advantage in contrast to the choice from lemma 4.17, where we had to rely on
the Bernstein inequality with respect to the Vk norm to obtain b. However, the main
drawback in theorem 4.25 is that the Vk norm has to be the norm of the space for which
the Jackson inequalities are valid.
To illustrate the application of the above theorem, we consider regression with Fourier

polynomials on hyperbolic crosses as in subsection 4.5.4. Since the H norm in theorem
4.25 represents the regularization norm, we choose H = H̄1

mix(T ;Cd) to be consistent
with our example. If Pk is chosen to be the L2(T ;Cd)-orthogonal projection PVk , see
definition 4.16, the prerequisites of theorem 4.25 are fulfilled for τk = 2−k, cf. (3.49),
(3.51) and [78] for details. Therefore, we obtain

E(fVk,b)− E(fρ) . τ 2θ
k = 2−2θk

if we choose b = Cτ θ−1
k ‖fρ‖θ ' 2k(1−θ) and if fρ ∈

(
L2(T ;Cd), H̄1

mix(T ;Cd)
)
θ
for some

θ ∈ (0, 1). Clearly, the coupling b ' 2k(1−θ) is beneficial in contrast to b ' 2k, which
we had in subsection 4.5.4. However, because of the choice H = H̄1

mix(T ;Cd), the decay
rate of the discretization error cannot be better than 2−2k in contrast to subsection 4.5.4,
where we were able to exploit additional smoothness of fρ and obtain a rate of 2−2sk for
fρ ∈ H̄s

mix(T ;Cd) with s > 0. To exploit this additional smoothness, we would have to
change the regularization norm from the mixed Sobolev norm for smoothness index 1
to the mixed Sobolev norm for smoothness index s, which does not correspond to the
setting from subsection 4.5.4 anymore.
When considering the application of theorem 4.25 to the sparse grid regression example

with prewavelets from subsection 4.5.2, we encounter two additional problems. First, we
cannot simply use the Jackson and Bernstein inequalities (3.42) and (3.40) because of
the additional factor km−1 in (3.42). Furthermore, even if we provided valid Jackson and
Bernstein inequalities to apply theorem 4.25 and even if we changed the regularization
norm to a higher-order Sobolev norm as we discussed above, we would not be able to
benefit from fρ ∈ Hs

mix(T ;Rd) for 3
2 ≤ s ≤ 2 because Vk ⊂ H is a necessary condition

in theorem 4.25, i.e. the discretization needs to be conforming. However, the prewavelet
basis is only contained in Hs

mix(T ;Rd) for s < 3
2 . Therefore, in contrast to our analysis

in subsection 4.5.2, we cannot obtain the best possible rate 2−2skkm−1 with 3
2 ≤ s ≤ 2

for the decay of the discretization error by applying theorem 4.25.

4.6 Summary

We conclude this chapter with a brief recapitulation of the methodology and the most
important results which we have provided for the constrained regression problem in the
preceding sections:
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• We introduced the general vector-valued regression problem

Find f̂ := arg min
f∈L2,ρT (T ;E)

E(f) with E(f) :=
∫
T×E

ψ(f(t),x) dρ(t,x) (A)

and the finite sample problem

Find arg min
f∈L2,ρT (T ;E)

EZn(f) with EZn(f) := 1
n

n∑
i=1

ψ(f(ti),xi). (B)

For a qualified cost function ψ(x,y) = ψ̃(x− y) with strictly convex ψ̃, we proved
the existence and uniqueness of solutions of (A) if the search set is restricted to
a bounded ball Hb of a real, reflexive Banach space H. In the case of (B), we
deduced the existence and uniqueness of a minimal norm solution if H is a Hilbert
space.

• We decomposed the overall regression error into the sum of the bias and the sam-
pling error

E (fZn,Hb)− E(f̂)︸ ︷︷ ︸
overall error

= E(fHb)− E(f̂)︸ ︷︷ ︸
bias

+ E(fZn,Hb)− E(fHb)︸ ︷︷ ︸
sampling error

.

Subsequently, we focused on the case ψ(x,y) = ‖x − y‖2
E, where the solution of

(A) becomes f̂ = fρ. Since the interpolation approach for the bias estimation is
not applicable when dealing with finite-dimensional search spaces Vk with k ∈ N,
we considered a novel approach via Jackson and Bernstein estimates. Here, we
determined a coupling between the regularization radius b and the discretization
parameter k such that the regularization is mild enough to still obtain the optimal
(best approximation) rate for the bias/discretization error. Based on the results
for the scalar-valued case in [23], we derived estimates for the sampling error of
vector-valued regression with fixed confidence 1− δ.

• We rigorously analyzed the convergence of constrained regression on sparse grids
and hyperbolic crosses. In this generality, the results we obtained are the first of
their kind. We analyzed the derived error bounds and observed that the curse of
dimensionality only appears with respect to logarithms in n and the basis size Nk.
Due to the generality of ρ, we observed that the best possible convergence rate is
n−1 up to logarithms.



5 Penalized and unregularized
regression

In the previous chapter, we tackled the generic regression problem (A) and its finite sam-
ple counterpart (B). By restricting the search set to Hb or Vk,b, respectively, we obtained
a well-posed problem in the sense that a minimizer existed and is unique if one looks
for the minimal norm solution. However, we did not yet consider an actual algorithm to
solve the regression problem. Since the computational costs of running a constrained,
multivariate minimization algorithm are very high, it is usually infeasible to solve (B)
over Hb or Vk,b directly. Furthermore, apart from the purely qualitative assertion of well-
posedness, we have not made a quantitative statement on the stability of the regression
problem yet, which is crucial when considering actual regression algorithms.
Therefore, we introduce the so-called Lagrangian dual formulation of the regression

problem in this chapter and show how it is related to (B) and how it can be solved. The
dual problem is an unconstrained problem by nature, i.e. there is no fixed norm bound
incorporated into the search set. Here, regularization is done via an additional penalty
term in the minimization functional, which is the reason why it is often also called
penalized regression. We address the issue of quantitative stability analysis for finite-
dimensional search spaces Vk with k ∈ N for the penalized problem and the unpenalized
problem, where no norm regularization is performed.
One of the main issues when considering a specific regression algorithm, is the choice

of the basis of Vk for which the coefficients of the solution are determined. This choice
is crucial in the sense that it directly influences the coupling between the number of
data points n and the basis size Nk which is needed to obtain stability with high
probability. In this context, the works of [19, 21, 60, 61] provide stability and con-
vergence results for specific unregularized regression algorithms if the basis of the search
space is chosen to be L2,ρT (T ;E)-orthonormal. In this chapter, we extend the analysis
of [21] to obtain stability results also for non-orthonormal bases and for both the pe-
nalized and the unpenalized case. Subsequently, we provide an improved convergence
rate for unregularized, noiseless function regression, i.e. we assume that the data points
Zn = (ti,xi)ni=1 = (ti, g(ti))ni=1 ∈ T×E stem from the evaluation of a function g : T → E.
Note that this is a special case of the setting which we had in the last chapter, where Zn
was drawn according to a general measure ρ. Here, we now assume that ρ(x|t) = δg(t) is
the Dirac measure centered in g(t). The restriction to noiseless function regression leads
to faster convergence rates than n−1, which was the limit in the last chapter.
The remainder of this chapter is organized as follows: We introduce the Lagrangian

87
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Table 5.1: Overview on relevant functions, sets and variables for the analysis of the
Lagrangian dual problem.

LZn,b : H× [0,∞)→ R Lagrangian of (B) over Hb

µ ∈ [0,∞) Lagrange parameter
fZn,Vk,µ ∈ Vk minimizer of LZn,b(·, µ) over Vk
ν1, . . . , νNk ∈ Vk basis of Vk
G ∈ RNk×Nk empirical mass matrix of Vk with entries

Gij = 1
n

∑n
l=1〈νi(tl), νj(tl)〉E

M ∈ RNk×Nk mass matrix of Vk with entries
Mij = 〈νi, νj〉L2,ρT (T ;E)

C ∈ RNk×Nk regularization matrix of Vk with entries
Cij = 〈νi, νj〉Vk

B : En → RNk bounded linear operator which fulfillsG = n·B◦B∗

λmin(A), λmax(A) ∈ R maximum and minimum eigenvalues of a symmet-
ric matrix A

κ(A) ∈ [1,∞) condition number κ(A) = λmax(A)
λmin(A) of a positive def-

inite matrix A
c 1

2
∈ R constant factor c 1

2
= e0.5

(1.5)1.5 ≈ 0.8975

K(Nk) ∈ (0,∞) basis dependent value
K(Nk) = supt∈T

∑Nk
i=1 ‖νi(t)‖2

E

g : T → E
function from which Zn is sampled for noiseless
regression, i.e. Zn = (ti, g(ti))ni=1

τr : L∞,ρT (T ;E)→ L∞,ρT (T ;E) truncation operator with threshold r from (4.5)

dual formulation and its relation to the original regression problem (B) in section 5.1.
In section 5.2 we describe how the dual problem can be solved over finite-dimensional
search spaces Vk. The considerations in section 5.3 are based on the work of [21] and lead
to a stability result for function regression with arbitrary bases. Based on these results,
we derive an upper bound on the overall regression error for noiseless function regression
with finite-dimensional search sets in section 5.4, which complements the results of [21].
Section 5.5 deals with the examination of the examples we introduced in section 4.5.
However, this time, we have a look at unregularized noiseless function regression instead
of constrained regression. We conclude the chapter with a short summary in section 5.6.
A short overview on the new notation which we use in this chapter is given in table 5.1.

5.1 The Lagrangian dual problem
Since the results of this section hold for both infinite- and finite-dimensional search
spaces, we use the general notation H instead of Vk for the search space again. Naturally,
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the question arises how to compute the solution fZn,Hb for a given search space H, a ball
radius b > 0 and a sample Zn. Solving the constrained optimization problem (B) over
Hb directly is usually computationally intensive. Therefore, regression algorithms often
consider the so-called dual problem instead. To this end, we define the Lagrangian
LZn,b : H× [0,∞)→ R by

LZn,b(f, µ) := EZn(f) + µ
(
‖f‖2

H − b2
)

= 1
n

n∑
i=1
‖f(ti)− xi‖2

E + µ
(
‖f‖2

H − b2
)
. (5.1)

For a fixed Lagrange parameter µ > 0, the dual problem now reads

Find arg min
f∈H

LZn,b(f, µ). (5.2)

In subsection 5.1.1 we discuss how fZn,Hb , which is usually called the primal solution in
this context, is related to a solution of (5.2). Subsequently, following the lines of [58],
we present the representer theorem for RKHS and explain how a solution of (5.2) can
be computed in subsection 5.1.2.

5.1.1 Relation between the primal and the dual problem
To assure that a solution of (5.2) exists and in order to relate it to the primal solution
fZn,Hb , we apply the Kuhn-Tucker theorem - theorem 50.A of [90] - to our specific
situation. We remind the reader of definition 4.5, where we introduced the concept
of sequentially lower semicontinuity.
Theorem 5.1 [Generalized Kuhn-Tucker theorem]
Let A be a closed, convex and non-empty subset of the real, reflexive Banach space X and
let F,G : A → R be convex and sequentially lower semicontinuous functions. Assume
there exists an element g ∈ A such that G(g) < 0. Then the following are equivalent

(i) f̄ ∈ A is a minimizer of
inf

f∈A,G(f)≤0
F (f).

(ii) There exists a µ̄ ≥ 0 such that f̄ ∈ A fulfills

L(f̄ , µ̄) = min
f∈A
L(f, µ̄), G(f̄) ≤ 0 and µ̄ ·G(f̄) = 0,

where the Lagrangian is defined by L(f, µ) := F (f) + µG(f).

Proof. See proposition 50.2 of [90] in combination with proposition 38.7 of [90].

Corollary 5.2 [Regression by minimization of the Lagrangian]
Let H be a real, reflexive Banach space for which the embeddings (4.14) are continuous
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and let b > 0 be fixed. For a qualified cost function ψ(x,y) = ψ̃(x − y), the following
are equivalent:

(i) f̄ ∈ Hb solves the primal problem (B) over Hb, i.e. f̄ = fZn,Hb.

(ii) There exists a µ̄ ≥ 0 such that the dual problem (5.2) with Lagrange parameter
µ = µ̄ is solved by f̄ with ‖f̄‖H ≤ b and µ̄ ·

(
‖f̄‖H − b

)
= 0.

Proof. Let A = X = H and let furthermore

F (f) := EZn(f) = 1
n

n∑
i=1

ψ̃(f(ti)− xi)

and
G(f) := ‖f‖2

H − b2.

Note that
G(f) ≤ 0 ⇔ ‖f‖2

H ≤ b2 ⇔ ‖f‖H ≤ b

and also
µ̄ ·G(f) = 0 ⇔ µ̄(‖f‖H − b) = 0.

Therefore, with our definitions of A,X, F and G the statement of the corollary follows
directly from theorem 5.1.
It remains to show that the regression problem meets the prerequisites of theorem

5.1. By definition, A is closed, convex and non-empty because it is a vector space.
Furthermore, X is a reflexive Banach space. As we already showed in the proof of
corollary 4.7, F is continuous and convex on H. The continuity and convexity of G
follow from the corresponding properties of the norm ‖·‖H. Finally, note that g := 0 ∈ A
fulfills G(g) < 0. Therefore, all prerequisites of theorem 5.1 are met.

Instead of minimizing (5.2), we can also consider

Find arg min
f∈H

EZn(f) + µ‖f‖2
H, (C)

as a variant of the dual problem, where we omitted b2. Note that, for a fixed µ > 0, a
minimizer of (C) is also a minimizer of (5.2) and vice versa. It can be shown that the
minimizer of (C) is unique if the qualified cost function ψ(x,y) = ψ̃(x − y) is strictly
convex. This can be understood as an analogy to corollary 4.9, where we showed that
the minimizer of (B) over Hb with minimal norm is unique if H is a Hilbert space.
As mentioned above, considering the dual problem with Lagrange parameter µ > 0 is

often preferred over dealing with the primal problem because of the high computational
costs of solving the latter. Let us assume that we have computed a minimizer f̄ ∈ H to
the dual problem (C) for µ̄ > 0. Then, we observe that f̄ fulfills (ii) of corollary 5.2 if
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we set b := ‖f̄‖H. Therefore, f̄ also solves the primal problem (B) over Hb, i.e.

fZn,H‖f̄‖H
= f̄ .

In conclusion, whenever we have a solution f̄ ∈ H to the dual problem (C) with a
Lagrange parameter µ̄ > 0, we know that it also minimizes EZn over

H‖f̄‖H = {f ∈ H | ‖f‖H ≤ ‖f̄‖H}.

In the case where we are given a solution f̄ to the dual problem (C) with µ̄ = 0, the
statement of corollary 5.2 becomes trivial.

5.1.2 The representer theorem

Although we already discussed the Lagrangian dual problem (C) as an alternative to the
constrained minimization problem (B) over Hb, the question remains how a solution to
(C) can be computed by an actual algorithm. In the special case whereH is a reproducing
kernel Hilbert space, the solution of (C) can be computed by the representer theorem,
see also [58, 74].

Theorem 5.3 [Representer Theorem]
Let H be an RKHS which fulfills the prerequisites of proposition 3.18 and let Zn =
((ti,xi))ni=1 ∈ (T × E)n be n samples. Furthermore, let ψ be a qualified cost function.
Then, the solution f̄ ∈ H of (C) with Lagrange parameter µ̄ > 0 is unique and

f̄(t) =
n∑
i=1

K(ti, t)(ci), (5.3)

holds for certain coefficients ci ∈ E, i = 1, . . . , n. Here, K : T × T → L(E,E) denotes
the kernel of H.
For the special case ψ(x,y) = ‖x − y‖2

E, the coefficients in the representation (5.3)
are given as the solution of the system of linear equations

n∑
i=1

(K(ti, tj) + µ̄δij) ci = xj ∀ j = 1, . . . , n, (5.4)

where δij ∈ L(E,E) is defined as

δij(y) :=
{

y if i = j,
0 else. ∀y ∈ E

Proof. The statement of the theorem follows from the more general statements in theo-
rem 4.1 and 4.2 of [58].
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In the special case of squared norm costs (4.3) and an Euclidean image space E =
Rd, theorem 5.3 states that the solution to (C) can be computed by solving a system
of linear equations which involves an n × n block matrix with d × d matrix entries.
Writing down the kernel matrix with scalar entries, we result with an nd × nd matrix
consisting of the blocks K(ti, tj) ∈ Rd×d for every i, j = 1, . . . , n. If, additionally, each
component function belongs to a scalar-valued RKHS, each d × d block is a diagonal
matrix, see (3.25).
More generally, the representer theorem 5.3 tells us that the solution to (C), which is a

minimization problem over the possibly infinite-dimensional reproducing kernel Hilbert
space H, is contained in

span {image(Kt1), . . . , image(Ktn)} ,

where we interpret Kti : E → H as a linear functional from E to H, i.e.

Kti(ci) = K(ti, ·)(ci) ∈ H,

see also section 3.3. Therefore, if dim(E) <∞, the minimization problem (C) becomes
a finite-dimensional one - even for an infinite-dimensional search space H.
Although the representer theorem directly explains how the dual problem can be

solved in the case of quadratic norm costs (4.3), there are still some drawbacks from
the computational point of view: Generally, the kernel matrix is densely populated.
Therefore, the runtime for computing the solution of (5.4), e.g. by a QR-algorithm,
scales cubically in the number of samples n already in the scalar-valued case E = R.
Although there exist sophisticated methods to deal with certain types of kernels, see
e.g. [74], the computational complexity is worse than n2 in general. This makes the
kernel approach infeasible if n is large. Furthermore, in some cases a closed formula of
the kernel function is not accessible and K is only given by an infinite series expansion.
For instance, if E = R, we might have

K(s, t) =
∞∑
l=1

αlνl(s)νl(t)

for certain functions νl : T → R and coefficients αl ∈ R, see [43] for several examples.
Then, the evaluation of the kernel function at given points involves additional costs and
an appropriate truncation of the infinite series expansion has to be done.
The above considerations show that it is reasonable to use another approach than

employing the representer theorem in some situations. A more convenient way in such
cases is to directly choose finite-dimensional grid-based search spaces Vk for k ∈ N,
e.g. sparse grid spaces as introduced in subsection 3.5.1, and to derive the corresponding
system of equations without relying on the kernel representation (5.4). We discuss this
case in more detail in the next section.
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Summary
In this section, we introduced the dual problem (5.2) and related it to the primal problem
(B) over Hb. Furthermore, we considered the representer theorem in order to compute
a solution to the dual problem. Let us briefly mention the main results:

• We showed that a solution f̄ of the variant (C) of the dual problem (5.2) is also a
solution to the primal problem (B) over Hb with b = ‖f̄‖H.

• If H is a reproducing kernel Hilbert space, (C) can be solved with the help of the
representer theorem 5.3, which recasts (C) into a finite-dimensional optimization
problem.

• In certain situations, e.g. if the sample size n is large, it is very expensive to
compute a solution to the dual problem by solving the system of equations (5.4),
which results from the representer theorem for the cost function ψ(x,y) = ‖x−y‖2

E.

5.2 Solving the regression problem in finite-dimensional
search spaces

From now on, we again solely consider ψ(x,y) = ‖x − y‖2
E and we additionally assume

that the norm ‖ · ‖Vk of the search space Vk is induced by a corresponding inner prod-
uct 〈·, ·〉Vk . In the following, we have a look at the system of linear equations which
corresponds to the dual regression problem in finite-dimensional search spaces.

5.2.1 The regression problem for arbitrary bases
We consider the dual problem

Find fZn,Vk,µ := arg min
f∈Vk

EZn(f)+µ‖f‖2
Vk

= arg min
f∈Vk

1
n

n∑
i=1
‖f(ti)−xi‖2

E+µ‖f‖2
Vk
, (5.5)

i.e. (C) with H = Vk and ψ(x,y) = ‖x − y‖2
E. We already elaborated on solving this

problem with the help of the representer theorem in subsection 5.1.2. Now, we use the
fact that the Vk are finite-dimensional to obtain a different system of equations instead.
To this end, let k ∈ N be fixed and let ν(k)

j , j = 1, . . . , Nk be a basis of Vk. For the ease
of notation, we will omit the upper index (k) and write νj in the following.
Proposition 5.4 [System of linear equations for the dual problem]
The solution fZn,Vk,µ = ∑Nk

j=1 αjνj to (5.5) can be computed by solving the system of linear
equations

(G+ µC)~α = ~νx, (5.6)
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where G,C ∈ RNk×Nk and ~α, ~νx ∈ RNk are given by1

Gij = 1
n

n∑
l=1
〈νi(tl), νj(tl)〉E, Cij = 〈νi, νj〉Vk , ~αi = αi, (~νx)i = 1

n

n∑
l=1
〈νi(tl),xl〉E

for all i, j = 1, . . . , Nk.

Proof. The proof works analogously to the scalar-valued case E = R, which can be found
in e.g. [35]. To this end, note that a minimizer of (5.5) fulfills

0 = ∂

∂αi

 1
n

n∑
l=1

∥∥∥∥∥∥
Nk∑
p=1

αpνp(tl)− xl

∥∥∥∥∥∥
2

E

+ µ

∥∥∥∥∥∥
Nk∑
p=1

αpνp

∥∥∥∥∥∥
2

Vk


= ∂

∂αi

 1
n

n∑
l=1

 Nk∑
p,q=1

αpαq〈νp(tl), νq(tl)〉E − 2
Nk∑
p=1

αp〈νp(tl),xl〉E + 〈xl,xl〉E


+ ∂

∂αi

µ Nk∑
p,q=1

αpαq〈νp, νq〉Vk


= 1
n

n∑
l=1

2
Nk∑
p=1

αp〈νp(tl), νi(tl)〉E − 2〈νi(tl),xl〉E
+ µ

Nk∑
p=1

2αp〈νp, νi〉Vk

for all i = 1, . . . , Nk. This proves the assertion.

After assembling the vectors and matrices in (5.6), the coefficients of fZn,Vk,µ can be
computed by a direct (e.g. via QR-decomposition) or an iterative (e.g. via conjugate
gradients) system solver. The main difference in contrast to the system (5.4), which
results from the representer theorem, is that the assemblation of all matrices scales only
linearly in the number of sample points n. The choice of an appropriate solver depends
on the choice of the basis ν1, . . . , νNk in proposition 5.4. For localized basis functions,
such as the piecewise linear splines, the matrices in (5.6) are usually sparsely populated
and an iterative solver is able to compute fZn,Vk,µ with significantly lower computational
costs than a direct method, which scales like N3

k , see [70] for details.

5.2.2 Operator splitting
In the following, we will interpret the samples ~x := (x1, . . . ,xNk)

T as an element of the
product space En = E × . . .× E. To this end, let

〈~a, ~b〉En :=
n∑
i=1
〈ai,bi〉E,

1 This result has to be seen in analogy to (5.4): In the case E = R for example, the basis functions
can be chosen as νj(·) = K(tj , ·), where K is the kernel of Vk.
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such that En also becomes a Hilbert space with this specific inner product.

Proposition 5.5
For a fixed sample Zn, let the linear operator B : En → RNk be given by

B(~a) := 1
n

n∑
i=1


〈ν1(ti), ai〉E

...
〈νNk(ti), ai〉E

 . (5.7)

Then, B is bounded and the adjoint operator B∗ : RNk → En is given by

B∗(~β) := 1
n

Nk∑
j=1

βj


νj(t1)

...
νj(tn)

 . (5.8)

Furthermore, it holds G = n · B ◦ B∗ and ~νx = B(~x) in proposition 5.4 with ~x =
(x1, . . . ,xn)T . Therefore, (5.6) can be rewritten as

(n ·B ◦B∗ + µC)(~α) = B(~x). (5.9)

Proof. Let ~a ∈ En. Note that the triangle inequality and the Cauchy-Schwarz inequality
lead to

‖B(~a)‖RNk =

∥∥∥∥∥∥∥∥
1
n

n∑
i=1


〈ν1(ti), ai〉E

...
〈νNk(ti), ai〉E


∥∥∥∥∥∥∥∥
RNk

≤ 1
n

n∑
i=1

∥∥∥∥∥∥∥∥

〈ν1(ti), ai〉E

...
〈νNk(ti), ai〉E


∥∥∥∥∥∥∥∥
RNk

= 1
n

n∑
i=1

√√√√√Nk∑
j=1
〈νj(ti), ai〉2E ≤

1
n

n∑
i=1

√√√√√Nk∑
j=1
‖νj(ti)‖2

E‖ai‖2
E

≤ 1
n

 max
i=1,...,n

√√√√√Nk∑
j=1
‖νj(ti)‖2

E

 · n∑
i=1
‖ai‖E ≤ c · ‖~a‖En

with a prefactor c := 1√
n

maxi=1,...,n

√∑Nk
j=1 ‖νj(ti)‖2

E. Here, the 1√
n
in c appears be-

cause an additional factor of
√
n has to be introduced when bounding the `1-type norm∑n

i=1 ‖ai‖E by the `2-type norm ‖~a‖En . This proves the boundedness of B since c is
a constant for a fixed sample Zn and a fixed search space Vk. Now, let ~β ∈ RNk be
arbitrary. Since B is a bounded, linear operator between Hilbert spaces, the adjoint
operator B∗ : RNk → En exists and fulfills

〈~a, B∗(~β)〉En = 〈B(~a), ~β〉RNk = 1
n

Nk∑
j=1

n∑
i=1
〈νj(ti), ai〉E · βj.
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Because of the definition of 〈·, ·〉En , (5.8) follows immediately. Finally, note that ~νx =
B(~x) follows directly from the definition of B and we also have

B ◦B∗(~β) = B

 1
n

Nk∑
j=1

βj


νj(t1)

...
νj(tn)


 = 1

n

n∑
i=1


〈ν1(ti), 1

n

∑Nk
j=1 βjνj(ti)〉E
...

〈νNk(ti), 1
n

∑Nk
j=1 βjνj(ti)〉E



= 1
n2

Nk∑
j=1

βj
n∑
i=1


〈ν1(ti), νj(ti)〉E

...
〈νNk(ti), νj(ti)〉E

 = 1
n
G · ~β,

which proves G = n ·B ◦B∗.

Summary
The main results of this section can be summarized as follows:

• We provided an alternate approach to the representer theorem in order to recast
the dual regression problem (C) into a system of linear equations if the search
space is finite-dimensional. The corresponding Nk × Nk system is given by (5.6).
The computational costs for assembling and solving this system scale only linearly
in n.

• With the help of the linear operators B and B∗ from (5.7) and (5.8), we deduced
the different notation (5.9) for the linear equation system (5.6).

5.3 Stability analysis
With the help of the results from the previous section, we now analyze the stability of the
regression problem in finite-dimensional search spaces. To this end, we build our analysis
on a result of [83], which provides a probability bound for the deviation from the mean
for eigenvalues of random matrices. Here, we mainly follow the lines of [21], which first
used the bounds of [83] to establish stability and convergence results for scalar-valued,
unregularized regression, i.e. µ = 0 and E = R. The analysis in [21] is restricted to an
L2,ρT (T )-orthonormal basis ν1, . . . , νNk . We extend their results to the vector-valued case
and obtain estimates also for regularized regression with arbitrary basis.

5.3.1 A Chernoff inequality for random matrices
We recapitulate the matrix Chernoff bound given in [83]. To this end, we denote by
λmax(X) and λmin(X) the maximum and minimum eigenvalue of a symmetric matrix X.
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Theorem 5.6 [Chernoff inequality for random matrices]
Let D ∈ N and let X1, . . . , Xn ∈ RD×D be a collection of independent, symmetric,
positive semidefinite matrices with random entries. Let, furthermore, R > 0 be such that
λmax(Xi) ≤ R for all i = 1, . . . , n. Then, for δ ∈ [0, 1), it holds

P
[
λmin

(
n∑
i=1

Xi

)
≤ (1− δ)cmin

]
≤ D

(
e−δ

(1− δ)1−δ

) cmin
R

and

P
[
λmax

(
n∑
i=1

Xi

)
≥ (1 + δ)cmax

]
≤ D

(
eδ

(1 + δ)1+δ

) cmax
R

with cmin := λmin (E [∑n
i=1Xi]) and cmax := λmax (E [∑n

i=1Xi]).

Proof. The proof can be found in section 5 of [83].

In the following, we consider the spectral norm for matrices induced by the Euclidean
vector norm, i.e. we write

‖A‖2 := ‖A‖L(RNk ,RNk)
(3.23)= max

‖x‖2=1
‖Ax‖2 =

√
λmax(ATA),

which is equal to λmax(A) for symmetric, positive semidefinite A. Therefore, we addi-
tionally have ‖A−1‖2 = λmin(A)−1 if A is positive definite.
Corollary 5.7
With the notation of proposition 5.4, let X,M ∈ RNk×Nk be defined by

Xij := 1
n
〈νi(t), νj(t)〉E ∀ i, j = 1, . . . , Nk,

where t is drawn according to ρT and let

Mij := 〈νi, νj〉L2,ρT (T ;E) ∀ i, j = 1, . . . , Nk.

If R > 0 fulfills R ≥ λmax(X) almost surely, we obtain

P := P
[
‖G‖2 ≥

3
2λmax(M) or ‖G−1‖2 ≥

2
λmin(M)

]
≤ 2Nkc

λmin(M)
R

1
2

with c 1
2

:= e0.5

(1.5)1.5 ≈ 0.8975.

Proof. Note that X is positive semidefinite since

~βTX~β = 1
n

〈
Nk∑
i=1

βiνi(t),
Nk∑
i=1

βiνi(t)
〉
E

= 1
n

∥∥∥∥∥∥
Nk∑
i=1

βiνi(t)
∥∥∥∥∥∥

2

E

≥ 0



98 5 Penalized and unregularized regression

for all ~β ∈ RNk . Note, furthermore, that the so-called mass matrix M is positive definite
because we have

~βTM~β =
〈
Nk∑
i=1

βiνi,
Nk∑
i=1

βiνi

〉
L2,ρT (T ;E)

=
∥∥∥∥∥∥
Nk∑
i=1

βiνi

∥∥∥∥∥∥
2

L2,ρT (T ;E)

≥ 0,

which is 0 if and only if ~β = ~0 since the νi are linearly independent. We now take
X1, . . . , Xn to be independent drawings of the random matrix X. Then, with D = Nk,
the prerequisites of theorem 5.6 are fulfilled. Note that G = ∑n

i=1Xi if the samples are
taken to be Zn. Furthermore, we have M = E [∑n

i=1Xi]. Since M is positive definite,
we obtain

λmin (G) > 1
2λmin (M)⇔ G−1 exists and ‖G−1‖2 = 1

λmin(G) <
2

λmin(M) .

Therefore, choosing δ = 1
2 , we obtain

P ≤ Nk

(
e0.5

(1.5)1.5

)λmax(M)
R

+Nk

(
e−0.5

(0.5)0.5

)λmin(M)
R

from theorem 5.6. Since 1 > c 1
2

= e0.5

(1.5)1.5 >
e−0.5

(0.5)0.5 ≈ 0.858 > 0 and since λmax(M) ≥
λmin(M), we finally obtain

P ≤ Nkc
λmax(M)

R
1
2

+Nkc
λmin(M)

R
1
2

≤ 2Nkc
λmin(M)

R
1
2

,

which concludes the proof.

Corollary 5.7 tells us that the spectral norms of both G and G−1 are bounded with high
probability. However, we still need an adequate bound R for the maximum eigenvalue
of the random matrix X. To this end, let us define a characteristic number, which will
be useful in the following.

Definition 5.8 [The bound K(Nk)]
Let the basis ν1, . . . , νNk of Vk be fixed. We define the number K(Nk) by

K(Nk) := sup
t∈T

Nk∑
i=1
‖νi(t)‖2

E. (5.10)

Now, we relate K(Nk) to R from corollary 5.7. To this end, we decompose X into
two linear operators. This is similar to the decomposition of G into B∗ and B from
proposition 5.5.
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Lemma 5.9
Let X ∈ RNk×Nk be defined by

Xij := 1
n
〈νi(t), νj(t)〉E.

as in corollary 5.7. Then, λmax(X) = ‖X‖2 ≤ 1
n
K(Nk).

Proof. Let t ∈ T be randomly drawn according to ρT . Let A : E → RNk be the bounded2,
linear map defined by

A(x) := 1
n


〈ν1(t),x〉E

...
〈νNk(t),x〉E


T

.

Since 1
n

∑Nk
i=1 βi〈νi(t),x〉E = 〈A(x), ~β〉RNk = 〈x, A∗(~β)〉E for all ~β ∈ RNk and all x ∈ E,

the adjoint operator A∗ : RNk → E is given by

A∗(~β) := 1
n

Nk∑
i=1

βiνi(t).

Furthermore, we have

A ◦ A∗(~β) = A

 1
n

Nk∑
i=1

βiνi(t)
 = 1

n2

Nk∑
i=1

βi


〈ν1(t), νi(t)〉E

...
〈νNk(t), νi(t)〉E

 = 1
n
X~β

for all ~β ∈ RNk . Therefore, we can estimate the spectral norm of X by

‖X‖2 = ‖nA ◦ A∗‖2 = n‖A‖2
L(E,RNk) = n max

‖x‖E=1
‖A(x)‖2

2

= 1
n

max
‖x‖E=1

Nk∑
i=1
〈νi(t),x〉2E ≤

1
n

max
‖x‖E=1

Nk∑
i=1
‖νi(t)‖2

E‖x‖2
E ≤

1
n
K(Nk),

which proves the assertion.

Lemma 5.9 states that R = 1
n
K(Nk) is a valid choice in corollary 5.7. Note that the

size K(Nk) generally depends on the choice of the basis ν1, . . . , νNk in contrast to the
special case, where only orthonormal bases are allowed, see [21] for details. To apply
corollary 5.7, we need to fix a basis and estimate K(Nk). We conclude this subsection
with a reformulation of the Chernoff matrix bound in terms of a condition on K(Nk).

2The fact that A is bounded can be seen easily by analogous arguments as in the proof of proposition
5.5.
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Lemma 5.10
Let the prerequisites of corollary 5.7 be fulfilled, let n ≥ Nk and let σ > 0 be such that

K(Nk) ≤
λmin(M)| log(c 1

2
)|

(1 + σ) · n

log(n) . (5.11)

Then
P := P

[
‖G‖2 ≥

3
2λmax(M) or ‖G−1‖2 ≥

2
λmin(M)

]
≤ 2n−σ.

Proof. Using the fact that log(c 1
2
) < 0 and combining corollary 5.7 and lemma 5.9, we

obtain with R := K(Nk)
n

P ≤ 2Nkc
nλmin(M)
K(Nk)

1
2

= 2Nk exp
( log(c 1

2
)nλmin(M)
K(Nk)

)
≤ 2Nk exp (−(1 + σ) log(n)) = 2Nkn

−(1+σ) ≤ 2n−σ

since we assumed Nk ≤ n.

Note that n ≥ Nk is a necessary prerequisite in lemma 5.10. This can be seen in
analogy to the necessary conditions for convergence in section 4.5. Note that n is coupled
to Nk also via (5.11). As we will see, this automatically implies the restriction n ≥ Nk

for our examples.

5.3.2 Stability of the regression problem
We now combine the results of the previous two subsections to obtain a statement on
the stability of the least-squares regression problem in finite-dimensional search spaces.
Theorem 5.11 [Stability of least-squares regression]
Let n ≥ Nk and let K(Nk) fulfill (5.11). Then, the solution fZn,Vk,µ = ∑Nk

j=1 αjνj of (5.6)
fulfills

‖fZn,Vk,µ‖L2,ρT (T ;E) ≤
√

6λmax(M)
λmin(M) + µ · λmin(C) ·

1√
n
‖~x‖En

with probability at least 1− 2n−σ, where we denote ~x := (x1, . . . ,xn)T .

Proof. By lemma 5.10, we have

P
[
‖G‖2 <

3
2λmax(M) and ‖G−1‖2 <

2
λmin(M)

]
≥ 1− 2n−σ.

Let S := n · B ◦ B∗ + µC ∈ RNk×Nk be the system matrix. Since G = n · B ◦ B∗, see
proposition 5.5, and since M resembles the mass matrix for the basis ν1, . . . , νNk , we
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obtain

‖fZn,Vk,µ‖2
L2,ρT (T ;E) = ~αTM~α

(5.9)= B(~x)TS−1MS−1B(~x)
≤ ‖B‖2

L(En,RNk)‖S
−1‖2

2‖M‖2‖~x‖2
En

= 1
n
‖G‖2‖S−1‖2

2‖M‖2‖~x‖2
En

≤ 3
2nλmax(M)2‖S−1‖2

2‖~x‖2
En

with probability greater or equal to 1−2n−σ. Therefore, it suffices to show that ‖S−1‖2 ≤
2

λmin(M)+µ·λmin(C) to complete the proof. To this end, note that G is positive definite with
probability at least 1 − 2n−σ since M is positive definite. Furthermore, C is positive
definite by definition. Therefore, S = G+ µC is invertible and we obtain

1
‖S−1‖2

= λmin(S) ≥ λmin(G) + µ · λmin(C) ≥ 1
2λmin(M) + µ · λmin(C)

≥ λmin(M) + µ · λmin(C)
2 ,

which concludes the proof.

Theorem 5.11 gives us an upper bound on the L2,ρT (T ) norm of the solution of the
regularized regression problem (C) in terms of a prefactor and the En norm of the input
data ~x. Since 1√

n
‖~x‖En =

√
1
n

∑n
i=1 ‖xi‖2

E ≤ r almost surely with r from (4.5), the
regularized regression problem is stable with high probability if the factor

λmax(M)
λmin(M) + µ · λmin(C)

is small or at least bounded from above for k → ∞. There are two different ways to
ensure this:

1. The mass matrixM is such that its condition number κ(M) := λmax(M)
λmin(M) is bounded

from above for the whole scale (Vk)∞k=1 of search spaces. In this case, the problem
is stable with high probability also without regularization (µ = 0). Recall that
Mij = 〈νi, νj〉L2,ρT (T ;E). Therefore, we have κ(M) = 1 for orthonormal bases,
e.g. for the Fourier basis, which we considered in subsection 3.5.2. This case is
essentially covered also by the analysis of [21]. However, the mass matrix condition
number is bounded from above also for Riesz bases, e.g. for the prewavelet basis,
which we introduced in subsection 3.5.1. The Riesz property can be written as

‖~α‖2
2 '

∥∥∥∥∥∥
Nk∑
i=1

αiνi

∥∥∥∥∥∥
2

L2,ρT (T ;E)
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for all Vk with k ∈ N, where the equivalence constants implied by ' do not depend
on k. Since we have ∥∥∥∥∥∥

Nk∑
i=1

αiνi

∥∥∥∥∥∥
2

L2,ρT (T ;E)

= ~αTM~α,

these equivalence constants are exactly λmax(M) and λmin(M). Therefore, also
Riesz bases can be employed in theorem 5.11 to obtain a stable regression problem.

2. The regularization is chosen such that µ · λmin(C) compensates the degeneration
of the condition number κ(M) of the mass matrix. An example, where the mass
matrix condition becomes worse with k →∞ but the regularization matrix stabi-
lizes this effect, is the case of H1 regularized regression with hat functions. To this
end, we take m = 1, d = 1, T = (0, 1) and consider the space of piecewise linear
splines V full

k . However, instead of taking the hierarchical prewavelet basis γl,i with
|l|`1 ≤ k, i ∈ Il, which we introduced in subsection 3.5.1, we take the hierarchical
hat function basis, i.e. we substitute γl,i by φl,i, see (3.28). Since the unscaled hat
functions do not form a Riesz basis of Vk, the condition number of the mass matrix
is not bounded from above uniformly in k ∈ N. To see this, let ρT = λT be the
Lebesgue measure. Since the diagonal entries of the mass matrix are∫

T
φ2
l,i(t) dρT (t) = 1

3 if l = 0 and
∫
T
φ2
l,i(t) dρT (t) = 2

3 · 2
−l if l > 0,

we obtain that λmax(M) ≥ 1
3 and λmin(M) ≤ 2

3 · 2−k. Thus, we have 2k . κ(M)
and the mass matrix condition number deteriorates for k → ∞. However, the
regularization matrix C, which corresponds to the H1 norm, is a sum of M , which
accounts for the L2 part of the H1 norm, and an almost3 diagonal scaling matrix
with entries 2l+1 for the basis functions on level l ∈ {0, . . . , k}. The latter resem-
bles the derivative term of the H1 norm. It can easily be seen that the smallest
eigenvalue λmin(C) is bounded from below independently of k ∈ N. Thus,

λmax(M)
λmin(M) + µ · λmin(C)

can be controlled by the size of the regularization parameter µ > 0. For more details
on this specific regularization and variants thereof as well as the corresponding
numerical treatment, we refer the interested reader to [35, 36, 68].

Summary
In this section, we investigated the stability of the penalized regression problem (C) in
dependence on the coupling between n and Nk, the choice of the basis ν1, . . . , νNk of the

3The only non-diagonal non-zero entries are the ones for the basis functions on level 0.
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search space Vk and the choice of the regularization parameter µ > 0. We summarize
the most important results.

• We used the matrix Chernoff inequality derived in [83] to get probabilistic bounds
on the condition number of the empirical mass matrix G, which converges to the
mass matrix M when the number of samples n tends to ∞.

• Based on the techniques of [21], we derived a stability result for solving the system
of equations corresponding to the dual least-squares regression problem (C). We
extended the results of [21] in the sense that theorem 5.11 can also be applied in
the vector-valued case and also with non-L2,ρT (T ;E)-orthonormal bases for both
regularized and unregularized regression.

• If the size of K(Nk) can be bounded by (5.11), the least-squares regression problem
is stable with high probability if we are dealing with a Riesz basis ν1, . . . , νNk or if
the regularization parameter µ is chosen large enough.

5.4 Noiseless function regression
In order to derive convergence rates which exceed the ones from chapter 4, we now
consider the case of noiseless function regression over finite-dimensional search spaces Vk
for k ∈ N. Here, we restrict ourselves to the unregularized case, i.e. µ = 0. For noiseless
function regression, there exists a point-evaluable g ∈ L∞,ρT (T ;E) with xi = g(ti)
and, thus, Zn = (ti, g(ti))ni=1. Then, we directly obtain ρ(x|t) = δg(t)(x) and fρ = g.
Therefore, the regression problem (C) becomes

Find fZn,Vk = arg min
f∈Vk

EZn(f) = arg min
f∈Vk

1
n

n∑
i=1
‖f(ti)− g(ti)‖2

E. (D)

Note that this is exactly (B) with search set Vk, ψ(x,y) = ‖x − y‖2
E and xi = g(ti).

Since µ = 0, the corresponding system of linear equations can be written as

G~α = B
(−−→
g(t)

)
(5.12)

with
−−→
g(t) = ~x = (g(t1), . . . , g(tn))T , cf. (5.6), (5.9). The solution to the regression

problem can then be written as fZn,Vk = ∑Nk
i=1 αiνi. Note, however, that - depending

on the samples Zn - the problem (5.12) might not have a unique solution, i.e. G is not
always invertible. In this case, we simply set fZn,Vk(t) := 0 for all t ∈ T .
Our goal is to provide a more refined result than the general estimates from chapter

4. To this end, we consider a truncated version of the regression problem. This can be
seen as a substitute for the constant M -boundedness condition (4.35), which we used
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for the constrained problem. Additionally, it is crucial to consider the unregularized and
noiseless case to obtain a better rate than n−1 with respect to the number of samples.
First, we introduce the truncation operator and investigate its properties. Subse-

quently, we investigate the truncated version of the unregularized, noiseless regression
problem (D) and derive upper bounds on the overall error in expectation.

5.4.1 The truncation operator

Definition 5.12 [Truncation Operator]
Let ω > 0. We define the truncation operator τω : L∞,ρT (T ;E) → L∞,ρT (T ;E) by
τω(f) = Pω ◦ f , where Pω : E → E is given by

Pω(x) :=
{

x if ‖x‖E ≤ ω,
x
‖x‖E
· ω else. (5.13)

Note that the image of the restriction of τω to the C(T ;E) is a subset of C(T ;E).

The connection to M-boundedness

Let r be the bound from (4.5). Then, r ≥ ‖g‖L∞,ρT (T ;E). Employing the truncation
operator on functions from the search set Vk and considering τr(f) instead of f ∈ Vk
can be seen as a substitute for the constant M -boundedness condition Mψ ' 1, see also
(4.35), which was crucial to derive the optimal error bounds in section 4.5. To this end,
note that

‖τr(f)(t)−x‖2
E = ‖Pr(f(t))−x‖2

E ≤ (‖Pr(f(t))‖E + ‖x‖E)2 ≤ (r+r)2 = 4r2 ' 1 (5.14)

holds for ρ-almost every (t,x) and every f ∈ Vk. Therefore, employing the truncation
operator τr on the search set Vk can be seen as a way to enforce Mψ ' 1. However, it is
noteworthy that τr(Vk) is not necessarily a subset of Vk.
We could also consider a truncated version of the more general constrained regression

problems we tackled in chapter 4. However, the proofs for the estimates on the sampling
error, which we provided in section 4.4, do not carry over to these truncated versions and
we would have to come up with a different approach to establish theoretical convergence
results there.

Contractiveness of the truncation operator

An important property of the truncation operator τω is its contractiveness with respect
to the Lp,ρT (T ;E) norm.
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Lemma 5.13
Let ω > 0, p ∈ [1,∞]. The operator τω is a contraction on Lp,ρT (T ;E), i.e. we have

‖τω(f1)− τω(f2)‖Lp,ρT (T ;E) ≤ ‖f1 − f2‖Lp,ρT (T ;E)

for f1, f2 ∈ L∞,ρT (T ;E).

Proof. Note that Pω defined in (5.13) is the unique projection onto the convex ball of
radius ω centered around 0 in E. Indeed, if there existed x,y ∈ E with ‖x‖E > ω and
‖y‖E ≤ ω such that ‖x− y‖E < ‖x− Pω(x)‖E, then

‖x‖E ≤ ‖x− y‖E + ‖y‖E < ‖x− Pω(x)‖E + ω =
(

1− ω

‖x‖E

)
‖x‖E + w = ‖x‖E,

which would be a contradiction. Therefore, Pω is a contraction on E, see e.g. theorem
6.9 of [33] for details and a thorough proof of this fact. Since

‖τω(f)− τω(g)‖pLp,ρT (T ;E) =
∫
T
‖Pω(f(t))− Pω(g(t))‖pE dρT (t)

≤
∫
T
‖f(t)− g(t)‖pE dρT (t) = ‖f − g‖pLp,ρT (T ;E)

holds for p ∈ [1,∞), τω is also a contraction on Lp,ρT (T ;E). For the remaining case
p =∞, we have

‖τω(f)− τω(g)‖L∞,ρT (T ;E) = ess sup
t∈T

‖Pω(f(t))− Pω(g(t))‖E
≤ ess sup

t∈T
‖f(t)− g(t)‖E = ‖f − g‖L∞,ρT (T ;E),

which completes the proof.

5.4.2 An upper bound on the overall error
We now present an upper bound on the overall error for unregularized, noiseless function
regression with finite-dimensional search spaces. To this end, we remind the reader of
the L2,ρT (T ;E)-orthogonal projector PVk : L2,ρT (T ;E)→ Vk, see definition 4.16. Besides
PVk , we also need the projector P n

Vk
defined below.

Definition 5.14 [Orthogonal projection onto Vk with respect to ‖ · ‖Zn]
We define the seminorm ‖ ·‖Zn on the space of all functions from T to E which are point
evaluable in Zn via the data-dependent scalar product

〈f1, f2〉Zn := 1
n

〈
f1(t1)

...
f1(tn)

 ,

f2(t1)

...
f2(tn)


〉
En

= 1
n

n∑
i=1
〈f1(ti), f2(ti)〉E.
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If Zn is such that the orthogonal projection onto Vk with respect to the ‖ · ‖Zn seminorm
is well-defined, we denote this projection by P n

Vk
, i.e.

P n
Vk

(f) := arg min
h∈Vk

‖h− f‖Zn = arg min
h∈Vk

1
n

n∑
i=1
‖h(ti)− f(ti)‖2

E.

Note that P n
Vk

is well-defined if G is invertible. To see this, we just need to replace g
by f on the right hand side of the least-squares regression problem (5.12) to obtain the
coefficients of P n

Vk
(f). Indeed, considering the system

G~β = B(
−−→
f(t)) (5.15)

for a point-evaluable function f : T → E with
−−→
f(t) := (f(t1), . . . , f(tn))T , we obtain

P n
Vk

(f) = ∑n
i=1 βiνi. Note, furthermore, that fZn,Vk = P n

Vk
(g). We are now in the

position to formulate our theorem on the convergence of unregularized, noiseless function
regression.
Theorem 5.15
Let n ≥ Nk and let fZn,Vk be the solution to (D) - or fZn,Vk = 0 if there is no unique
solution to (D). Let K(Nk) and n be coupled such that they fulfill (5.11) for all k ∈ N,
i.e.

K(Nk) ≤
λmin(M)| log(c 1

2
)|

(1 + σ) · n

log(n) .

Then,

EρnT [E (τr (fZn,Vk))− E (g)] ≤
(

1 +
4λmax(M)| log(c 1

2
)|

(1 + σ)λmin(M) log(n)

)
inf
f∈Vk
‖f − g‖2

L2,ρT (T ;E)

+ 8r2n−σ, (5.16)

where the expectation has to be understood with respect to the product measure ρnT :=
ρT × . . .× ρT .

Proof. The general idea for the proof stems from [21]. However, we need to generalize
it to the vector-valued setting and account for non-orthonormal bases. First, note that

E (τr (fZn,Vk))− E (g) = ‖τr (fZn,Vk)− g‖2
L2,ρT (T ;E)

since g = fρ, see also lemma 4.4. Let T n = T × . . . × T be the domain from which the
n sample points ti, i = 1, . . . , n stem from. We distinguish two cases for the samples
Zn = (ti, g(ti))ni=1. To this end, we split T n into two parts: Let

T n+ :=
{

(t1, . . . , tn) ∈ T n | ‖G‖2 ≤
3
2λmax(M) and ‖G−1‖2 ≤

2
λmin(M)

}



5.4 Noiseless function regression 107

and let T n− := T n \T n+. Note that T n− and T n+ are ρnT measurable since G and G−1 depend
continuously on t1, . . . , tn. Due to lemma 5.10, we know that PρnT (T n−) ≤ 2n−σ. Now, let
E := EρnT

[
‖τr (fZn,Vk)− g‖2

L2,ρT (T ;E)

]
. Because of (5.14), we have

E =
∫
Tn
‖τr (fZn,Vk)− g‖2

L2,ρT (T ;E) dρnT

=
∫
Tn+

‖τr (fZn,Vk)− g‖2
L2,ρT (T ;E) dρnT +

∫
Tn−

‖τr (fZn,Vk)− g‖2
L2,ρT (T ;E) dρnT

≤
∫
Tn+

‖τr (fZn,Vk)− g‖2
L2,ρT (T ;E) dρnT +

∫
Tn−

4r2 dρnT

≤
∫
Tn+

‖τr (fZn,Vk)− g‖2
L2,ρT (T ;E) dρnT + 8r2n−σ. (5.17)

To estimate the first summand, note that τr(g) = g since ‖g‖L∞,ρT (T ;E) ≤ r holds by
definition of r. Therefore, we have

‖τr (fZn,Vk)− g‖2
L2,ρT (T ;E) = ‖τr (fZn,Vk)− τr(g)‖2

L2,ρT (T ;E) ≤ ‖fZn,Vk − g‖2
L2,ρT (T ;E) (5.18)

because τr is a contraction on L2,ρT (T ;E), see lemma 5.13. Furthermore, G is invertible
on T n+ and P n

Vk
is well-defined. Therefore, fZn,Vk = P n

Vk
(g) solves (D). Note that P n

Vk
◦

PVk = PVk since the image of PVk is already an element of Vk. Thus, we have

‖fZn,Vk − g‖2
L2,ρT (T ;E) = ‖P n

Vk
(g)− P n

Vk
◦ PVk(g) + PVk(g)− g‖2

L2,ρT (T ;E)

= ‖P n
Vk

(g − PVk(g)) ‖2
L2,ρT (T ;E) + ‖g − PVk(g)‖2

L2,ρT (T ;E) (5.19)

because P n
Vk

is a linear operator and g − PVk(g) is L2,ρT -orthogonal on Vk. Using f =
g − PVk(g) in (5.15), we obtain P n

Vk
(g − PVk(g)) = ∑Nk

j=1 βjνj for ~β = G−1~ξ with

ξj := B(
−−−−−−−−−−→
g − PVk

(g)(t))j = 1
n

n∑
i=1
〈νj(ti), (g − PVk(g))(ti)〉E

for each j = 1, . . . , Nk. Therefore, we get

‖P n
Vk

(g − PVk(g)) ‖2
L2,ρT (T ;E) = ~βTM~β = ~ξTG−1MG−1~ξ ≤ ‖M‖2 ‖G−1‖2

2 ‖~ξ‖2
2

≤ 4λmax(M)
λmin(M)2 ‖~ξ‖

2
2 (5.20)

on T n+. To summarize what we have so far, we combine (5.17), (5.18), (5.19) and (5.20)
to obtain

E ≤
∫
Tn+

(
4λmax(M)
λmin(M)2 ‖~ξ‖

2
2 + ‖g − PVk(g)‖2

L2,ρT (T ;E)

)
dρnT + 8r2n−σ,
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which leads to

E ≤ 4λmax(M)
λmin(M)2 · EρnT

[
‖~ξ‖2

2

]
+ ‖g − PVk(g)‖2

L2,ρT (T ;E) + 8r2n−σ (5.21)

since ρnT (T n+) ≤ 1. Because of the independence of t1, . . . , tn, we observe that

EρnT
[
‖~ξ‖2

2

]
=
∫
Tn

Nk∑
j=1

(
1
n

n∑
i=1
〈νj(ti), (g − PVk(g))(ti)〉E

)2

dρnT (t1, . . . , tn)

= 1
n2

Nk∑
j=1

n∑
i,l=1

∫
T×T
〈νj(ti), (g − PVk(g))(ti)〉E

· 〈νj(tl), (g − PVk(g))(tl)〉E d(ρT × ρT )(ti, tj)

= 1
n2

Nk∑
j=1

(n2 − n)


∫
T
〈νj(t), (g − PVk(g))(t)〉E dρT (t)︸ ︷︷ ︸

= 0


2

+ 1
n2

Nk∑
j=1

n
∫
T
〈νj(t), (g − PVk(g))(t)〉2E dρT (t)

= 1
n

Nk∑
j=1

∫
T
〈νj(t), (g − PVk(g))(t)〉2E dρT (t),

where the last step follows from the L2,ρT -orthogonality of g − PVk(g) on Vk. By the
definition of K(Nk), we obtain

EρnT
[
‖~ξ‖2

2

]
≤ 1
n

∫
T

Nk∑
j=1
‖νj(t)‖2

E‖g − PVk(g)(t)‖2
E dρT (t)

(5.10)
≤ 1

n
K(Nk)‖g − PVk(g)‖2

L2,ρT (T ;E)

(5.11)
≤

λmin(M)| log(c 1
2
)|

(1 + σ) log(n) ‖g − PVk(g)‖2
L2,ρT (T ;E).

Applying this to (5.21), we finally obtain

E ≤
4λmax(M)| log(c 1

2
)|

(1 + σ)λmin(M) log(n)‖g − PVk(g)‖2
L2,ρT (T ;E) + ‖g − PVk(g)‖2

L2,ρT (T ;E) + 8r2n−σ,

which completes the proof since inff∈Vk ‖f − g‖L2,ρT (T ;E) = ‖g − PVk(g)‖L2,ρT (T ;E).

Under the condition that the coupling between the discretization scale k and the
number of samples n fulfills (5.11), theorem 5.15 provides us with an upper bound on
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the expectation of the overall error for a truncated, unregularized, noiseless regression
method which operates on finite-dimensional search spaces. We now consider the result
of theorem 5.15 in more detail and give a few remarks:
• The decomposition of the error (5.16) into two summands reminds us of the decom-

position into the bias and the sampling error from the previous chapter. However,
the first summand of (5.16) essentially4 only depends on the discretization scale k,
whereas the second summand only depends on n. Therefore, no coupling is present
in each of the summands. This is different to theorem 4.24, where the sampling
error is influenced by both, the size of Vk and the number of samples n.

• Inspecting the first summand of (5.16) in detail, we see that the prefactor

1 +
4λmax(M)| log(c 1

2
)|

(1 + σ)λmin(M) log(n)

in front of the best approximation error converges to 1 with n→∞ if the condition
number κ(M) = λmax(M)

λmin(M) is bounded, i.e. if we are dealing with a Riesz basis. The
second summand of (5.16) shows that - depending on how large σ > 0 can be
chosen such that (5.11) is still fulfilled - the convergence rate for n → ∞ can
indeed be faster than n−1, which was the best rate we could achieve in chapter 4.
We will see this in more detail in section 5.5.

• It is noteworthy that a similar result can be derived also for the noisy case of
unregularized function regression, i.e. xi = g(ti) + εi, where the noise distribution
has finite variance. Here, basically a third summand which scales like Var·Nk

n
has to

be added to (5.16), where Var denotes the variance of the noise distribution, see
[21] for an analysis of the scalar-valued case with orthonormal bases. In this thesis,
we neglect the thorough analysis of this setting as it does not lead to significant
additional insights compared to the results of chapter 4, where we also observed
the rate Nk

n
for the sampling error up to logarithms if Mψ ' 1, see e.g. (4.52) or

(4.57).

• There also exist techniques to derive probabilistic error bounds in the setting of
noiseless function regression, which still exhibit essentially the same structure as
(5.16). Several results for different noise models for scalar-valued function regres-
sion can be found in [60].

Summary
Based on the stability results of lemma 5.10 and theorem 5.11, we derived a bound on
the expected error for unregularized, noiseless function regression in this section. Our

4Note that the 1
log(n) can be neglected in this summand as it gets smaller for n → ∞ and the rate is

therefore mainly determined by the best approximation error in Vk.
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main findings are the following:

• The expected L2,ρT (T ;E) error when computing the truncated solution τr(fZn,Vk)
of the unregularized, noiseless function regression problem (D), instead of taking
the true function g, is(

1 +
4λmax(M)| log(c 1

2
)|

(1 + σ)λmin(M) log(n)

)
inf
f∈Vk
‖f − g‖2

L2,ρT (T ;E) + 8r2n−σ

if the discretization scale k and the number of samples n are coupled such that
n ≥ Nk and

K(Nk) ≤
λmin(M)| log(c 1

2
)|

(1 + σ) · n

log(n)
are fulfilled. The first summand in the error term resembles the choice of the finite-
dimensional search space Vk and its basis ν1, . . . , νNk . It is mainly governed by the
condition number κ(M) of the mass matrix and the L2,ρT (T ;E) best approximation
error in Vk. The second summand represents the error due to the finite sample size.

• The first summand of the error (5.16) behaves comparably to the discretization
error in theorem 4.18. The second summand, however, now decays faster than n−1

if σ can be chosen larger than 1. Therefore, if we are dealing with noiseless function
regression, we can improve on the sampling error bound from theorem 4.24.

5.5 Examples for noiseless function regression
Analogously to section 4.5, we now consider the overall error in noiseless function re-
gression for specific choices of Vk. As in the previous chapter, we have a look at linear
spline spaces on full grids and sparse grids, as well as Fourier polynomials on full grids
and hyperbolic crosses.
Note that the Fourier bases of T full,d

k and T hyp,d
k are L2-orthonormal. Furthermore, the

prewavelet bases of V full,d
k and Vsparse,d

k are L2 Riesz bases in the sense that

~βTM~β ' ‖~β‖2
2

holds independently of k ∈ N for the corresponding mass matrices M and arbitrary
coefficient vectors ~β ∈ RNk . This is due to the norm equivalences (3.37) and (3.38)
for s = 0. Therefore, the condition number κ(M) = λmax(M)

λmin(M) is bounded from above
independently of k ∈ N for every search space Vk which we study here. As we mentioned
in section 5.3, this means that (5.11) suffices to ensure the stability of the regression
problem with high probability, see also theorem 5.11.
The condition n ≥ Nk is a necessary prerequisite in both, theorem 5.11, and theorem

5.15. Therefore, it is a necessary condition to obtain stability and convergence results
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for all of our examples. Our approach will be the same for each example:

• First, we study the behavior of K(Nk) from (5.10).

• We use the scaling of K(Nk) to determine a coupling between k and n which fulfills
(5.11) and, thus, gives a sufficient condition to ensure stability of the regression
method with high probability.

• We apply theorem 5.15 to obtain a bound on the expected convergence rate for
unregularized, noiseless function regression.

• Finally, we approximately balance the two summands of the error term (5.16) to
derive an optimal coupling between the basis size Nk and the number of samples
n. We also determine the appropriate oversampling constant σ > 0 and present
the convergence rate with respect to n in the balanced case.

After the analysis of our examples, we give a short overview on our findings and conclude
this section by relating our results to the work of other researchers.

5.5.1 Regression with piecewise linear basis functions on full grids
We again have a look at the setting from subsection 4.5.1 of multivariate regression on
full grids with piecewise linear basis functions. However, we now focus on the case of
noiseless function regression (D), i.e. T = (0, 1)m, ρT = λT and fρ = g with g ∈ Hs(T ;Rd)
for a fixed 0 < s ≤ 2. The search spaces are the prewavelet spaces Vk = V full,d

k on a full
grid of level k ∈ N.

Stability

To apply theorem 5.11, we need to establish an upper bound on K(Nk). Since the basis
functions of Vk are built componentwise, see (3.35), and because of the definition of
K(Nk) in (5.10), we have

K(Nk) = d · sup
t∈T

∑
|l|`∞≤k

∑
i∈Il

γl,i(t)2.

In order to obtain an upper bound on this quantity, we first need an auxiliary result.

Lemma 5.16
For each l ∈ Nm, we have

max
t∈[0,1]m

∑
i∈Il

γl,i(t)2 ≤ 2|l|`1 · 2|{j∈{1,...,m}| lj=0}| ·
(36

25

)|{j∈{1,...,m}| lj>0}|
. (5.22)
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Proof. We start with the univariate case m = 1. Let us shortly recall the definition
of the univariate prewavelet basis functions γl,i on [0, 1] from subsection 3.5.1: γ0,0 :=
1, γ0,1(t) := t, γ1,1 := 2 · φ1,1 − 1. For l ≥ 2, we have

γl,i := 2 l
2 ·
( 1

10φl,i−2 −
6
10φl,i−1 + φl,i −

6
10φl,i+1 + 1

10φl,i+2

)
for i ∈ Il, i 6= 1, 2l − 1 and

γl,1 := 2 l
2 ·
(
−6

5φl,0 + 11
10φl,1 −

3
5φl,2 + 1

10φl,3
)
, γl,2l−1(t) := γl,1(1− t),

where the hat functions φl,i take values between 0 and 1.

We define Sl(t) := ∑
i∈Il γl,i(t)2. For the special case l = 0, we obtain

S0(t) = γ2
0,0(t) + γ2

0,1(t) = 1 + t2 ≤ 2

and for l = 1 we have

S1(t) = γ2
1,1(t) = (2φ1,1(t)− 1)2 ≤ 1

with t ∈ [0, 1]. For the case l ≥ 2, note that Sl is the sum of the piecewise quadratic
polynomials γ2

l,i(·) with i ∈ Il. Between consecutive grid nodes, the coefficient of the
quadratic term of γ2

l,i(·) is always positive for every i ∈ Il. Therefore, the quadratic term
of the piecewise quadratic polynomial Sl(·) also has a positive coefficient everywhere.
This shows that the maximum of Sl over [0, 1] can only reside on one of the grid points
2−li with i = 0, . . . , 2l. This can also be seen from the example in figure 5.1, where S4 is
plotted.

We claim that the maximum of Sl is attained at the boundary point t = 1. For l = 0
and l = 1, this is directly clear. Let us consider the values at the grid nodes for S2.
These follow directly from the definition of the univariate prewavelet functions. We use
a mask-type notation which contains a prefactor 2l and the nodal values at the grid
points. The calculation

S2(t) = γ2
2,1(t) + γ2

2,3(t)

= 4 [ 36
25

121
100

9
25

1
100 0 ]

+ 4 [ 0 1
100

9
25

121
100

36
25 ]

= 4 [ 36
25

61
50

18
25

61
50

36
25 ]

shows that the largest value 4 · 36
25 is attained at the boundary grid points. Analogously,
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Fig. 5.1: The squared sum S4 of the univariate prewavelet basis functions on level k = 4.

we have

S3(t) = γ2
3,1(t) + γ2

3,3(t) + γ2
3,5(t) + γ2

3,7(t)

= 8 [ 36
25

121
100

9
25

1
100 0 0 0 0 0 ]

+ 8 [ 0 1
100

9
25 1 9

25
1

100 0 0 0 ]

+ 8 [ 0 0 0 1
100

9
25 1 9

25
1

100 0 ]

+ 8 [ 0 0 0 0 0 1
100

9
25

121
100

36
25 ]

= 8 [ 36
25

61
50

18
25

51
50

18
25

51
50

18
25

61
50

36
25 ]

for l = 3. For higher levels l, these calculations work completely analogously. Due to
the local support and overlap of the basis functions, the values of Sl cannot exceed 2l · 36

25
also for higher levels l. Therefore, for each l ∈ N, the maximum of Sl is attained for
t = 1. If l = 0, this maximum is 2 and if l ≥ 2, this maximum is 2l · 36

25 . In the special
case l = 1, we just take the crude estimate S1(1) = 1 < 2 · 36

25 . Therefore, the assertion
(5.22) is proven for m = 1.

The higher-dimensional case m > 1 follows due to the tensor product construction of
the basis functions. To this end, let t ∈ [0, 1]m and l ∈ Nm be arbitrary. Note that

∑
i∈Il

γl,i(t)2 =
∑

(i1,...,im)∈Il

m∏
j=1

γlj ,ij(tj)2 =
m∏
j=1

∑
ij∈Ilj

γlj ,ij(tj)2

holds due to the structure of Il. Therefore, the maximization of the whole term can be
split into the maximization of Slj for each direction j ∈ {1, . . . ,m}. Since the maximum
is bounded by 2 for directions j with lj = 0 and it is bounded by 2lj · 36

25 for directions j
with lj ≥ 1, the claimed inequality (5.22) follows.
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With the help of lemma 5.16 and using 36
25 < 2, we can now estimate K(Nk) by

K(Nk) ≤ d ·
∑
|l|`∞≤k

2|l|`1 · 2|{j∈{1,...,m}| lj=0}| ·
(36

25

)|{j∈{1,...,m}| lj>0}|
≤ 2md

∑
|l|`∞≤k

2|l|`1

= 2m · d ·
m∏
j=1

∑
0≤lj≤k

2lj = 2m · d ·
 ∑

0≤l≤k
2l
m = 2m · d

(
1− 2k+1

1− 2

)m
= 2m · d · (2k+1 − 1)m ≤ 2m · d · 2(k+1)m < 4m ·Nk,

where we used Nk = d · (2k + 1)m > d · 2km.
With this estimate, the condition (5.11) on K(Nk), which guarantees stability of noise-

less function regression with probability larger than 1−2n−σ, see theorem 5.11, becomes

4mNk ≤
λmin(M)| log(c 1

2
)|

(1 + σ) · n

log(n) . (5.23)

Since we are dealing with a Riesz basis, λmin(M) is bounded from below and the sufficient
scaling between n and k to obtain stability with high probability is essentially

2km ' Nk .
n

log(n) , (5.24)

where ' and . imply constants depending on m, d and σ.

The overall error

If the condition (5.23) is fulfilled, we can apply theorem 5.15 to obtain a bound on
the expected overall error E := EλnT [E (τr (fZn,Vk))− E (g)] of the noiseless regression
problem with Vk = V full,d

k and g ∈ Hs(T ;Rd) with 0 < s ≤ 2, namely

E ≤
(

1 +
4λmax(M)| log(c 1

2
)|

(1 + σ)λmin(M) log(n)

)
inf
f∈Vk
‖f − g‖2

L2(T ;Rd) + 8r2n−σ

. inf
f∈Vk
‖f − g‖2

L2(T ;Rd) + n−σ
(3.41)
. d2−2sk‖g‖2

Hs(T ;Rd) + n−σ . 2−2sk + n−σ. (5.25)

Here, the constant in the final . estimate depends on m, d, σ, r, s and ‖g‖Hs(T ;Rd). The
expectation has to be understood with respect to the n-fold product λnT of the Lebesgue
measure λT on T = (0, 1)m.

Balancing the error terms

In order to fulfill the stability condition with the least amount of data points, we first
choose the smallest n (in dependence on σ and k) such that (5.23) still holds. Thus, the
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inequality in (5.24) becomes an equality and we have

2km ' Nk '
n

log(n)

in this case. Substituting this into (5.25), we obtain

E . 2−2sk + n−σ '
(
2km

)− 2s
m + n−σ '

(
log(n)
n

) 2s
m

+ n−σ.

Therefore, we see that the overall error is approximately balanced for σ = 2s
m

and we
obtain the overall rate

E = O
(
n−

2s
m log(n) 2s

m

)
.

5.5.2 Regression with piecewise linear basis functions on sparse
grids

Now we consider the setting from subsection 4.5.2 for multivariate, noiseless sparse grid
regression with piecewise linear prewavelets. To this end, let T = (0, 1)m, ρT = λT and
fρ = g ∈ Hs

mix(T ;Rd) for a fixed 0 < s ≤ 2. We employ Vk = Vsparse,d
k with k ∈ N as

search spaces.

Stability

We recall the definition ζm(l) := |l|`1−m+|{j ∈ {1, . . . ,m} | lj = 0}|+1 from subsection
3.5.1. Similar as in the full grid example, we now have to estimate

K(Nk) = d · sup
t∈T

∑
ζm(l)≤k

∑
i∈Il

γl,i(t)2.

Lemma 5.17
For Vk = Vsparse,d

k , K(Nk) can be bounded by

K(Nk) ≤ 2 ·
(72

25

)m
Nk. (5.26)

Proof. We denote the number of zero indices of a multiindex l ∈ Nm by Z(l) := |{j ∈
{1, . . . ,m} | lj = 0}|. By applying lemma 5.16, we get

K(Nk) ≤ d ·
∑

|l|`1+Z(l)≤k+m−1
2|l|`1+Z(l) ·

(36
25

)m−Z(l)
,

where we used ζm(l) = |l|`1 −m + Z(l) + 1. Substituting i = |l|`1 + Z(l), the estimate
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can be reformulated as

K(Nk) ≤ d
k+m−1∑
i=0

2i ·
m∑
l=0
|{l ∈ Nm | |l|`1 = i− l and Z(l) = l}| ·

(36
25

)m−l
.

Note that |{l ∈ Nm | |l|`1 = i − l and Z(l) = l}| = 0 for all l = 0, . . . ,m if i < m.
Therefore, we can start the summation over i from m. If i ≥ m, simple combinatorial
arguments, see also [14] and the proof of lemma 3.23, lead to

|{l ∈ Nm | |l|`1 = i− l and Z(l) = l}| = |{l ∈ (N \ {0})m−l | |l|`1 = i− l}| ·
(
m

l

)

=
(
i− l − 1
m− l − 1

)(
m

l

)

for any l = 0, . . . ,m− 1 and

|{l ∈ Nm | |l|`1 = i−m and Z(l) = m}| =
{

1 if i = m
0 else = δim

in the case l = m. Therefore, we obtain

K(Nk) ≤ d
k+m−1∑
i=m

2i ·
(
δim +

m−1∑
l=0

(
i− l − 1
m− l − 1

)(
m

l

)(36
25

)m−l)

= d · 2m ·
k−1∑
i=0

2i ·
(
δi0 +

m−1∑
l=0

(
i+m− l − 1
m− l − 1

)(
m

l

)(36
25

)m−l)

= d · 2m ·
(

1 +
m−1∑
l=0

(36
25

)m−l (m
l

)(
k−1∑
i=0

2i
(
i+m− l − 1
m− l − 1

)))

= d · 2m + 2m
m−1∑
l=0

(36
25

)m−l (m
l

)
|Gm−l

k |,

where |Gm−l
k | denotes the size of a sparse grid of level k in dimension m − l without

boundary points, see lemma 3.6 of [14] for a proof of the last equality in the case d = 1.
The vector-valued case d > 1 follows directly since we use a sparse grid of the same
size in every component. To derive a bound with respect to Nk, we rewrite the above
inequality to obtain

K(Nk) ≤ d · 2m +
m−1∑
l=0

(
2 · 36

25

)m−l
· 2l
(
m

l

)
|Gm−l

k |

≤ d · 2m +
(72

25

)m
·
m−1∑
l=0

2l
(
m

l

)
|Gm−l

k | = d · 2m +
(72

25

)m
Nk,
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where the last equality is proven in lemma 2.1.2 of [30]. The fact that d · 2m ≤
(

72
25

)m
Nk

holds for each k > 0 completes the proof.

Lemma 5.17 and theorem 5.11 show that unregularized, noiseless function regression
is stable for the prewavelet sparse grid spaces Vk with probability larger than 1−2n−σ if

2 ·
(72

25

)m
Nk ≤

λmin(M)n| log(c 1
2
)|

(1 + σ) log(n) . (5.27)

Since the prewavelets in Vk form a Riesz basis with respect to L2(T ;Rd), the condition
number κ(M) = λmax(M)

λmin(M) of the mass matrix is bounded from above independently of
k ∈ N and the scaling between k and n essentially becomes

2kkm−1 ' Nk .
n

log(n) , (5.28)

with implicit m, d and σ dependent constants.

The overall error

We assume that (5.27) is fulfilled and apply theorem 5.15 to obtain the expected con-
vergence rate

E . inf
f∈Vk
‖f − g‖2

L2(T ;Rd) + n−σ
(3.42)
. d2−2skkm−1‖g‖2

Hs
mix(T ;Rd) + n−σ . 2−2skkm−1 + n−σ

(5.29)
for the error E := EλnT [E (τr (fZn,Vk))− E (g)] of the noiseless regression problem (D)
with Vk = Vsparse,d

k and g ∈ Hs
mix(T ;Rd) with 0 < s ≤ 2. Similarly to the full grid case,

the constant in the final . estimate depends on m, d, σ, r, s and ‖g‖Hs
mix(T ;Rd).

Balancing the error terms

Let n be the smallest natural number such that (5.27) is fulfilled. According to (5.28),
we then have

2kkm−1 ' Nk '
n

log(n) .

For n > 1, we can take the logarithm on both sides and obtain k + (m − 1) log(k) '
log(n) − log(log(n)), which leads to k . log(n). Therefore, by substituting our above
coupling of k and n into (5.29), we get

E . 2−2skkm−1 + n−σ '
(
2kkm−1

)−2s
k(2s+1)(m−1) + n−σ

.

(
log(n)
n

)2s

log(n)(2s+1)(m−1) + n−σ ' n−2s log(n)(2s+1)m−1 + n−σ,
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which is approximately balanced for σ = 2s. In this case, we obtain the overall rate

E = O
(
n−2s log(n)(2s+1)m−1

)
.

5.5.3 Periodic regression with Fourier polynomials on full grids

To investigate noiseless function regression in the periodic setting, we assume that T =
(−π, π)m, ρT = 1

(2π)mλT and g ∈ H̄s(T ;Cd) for an s > 0. Here, we consider Fourier
polynomials on full grids. To this end, we take Vk = T full,d

k for all k ∈ N.

Stability

For the Fourier basis, we directly see that

K(Nk) = d · sup
t∈T

∑
l∈Zm
|l|∞≤2k

|eilT t|2
C

= d ·
∑

l∈Zm
|l|∞≤2k

1 = Nk. (5.30)

Therefore, theorem 5.11 states that solving the noiseless problem (D) is stable with
probability 1− 2n−σ if

Nk = K(Nk) ≤
λmin(M)| log(c 1

2
)|

(1 + σ) · n

log(n) . (5.31)

Since the Fourier basis is L2,ρT (T ;Cd)-orthonormal, the mass matrix M is the identity
matrix for each k ∈ N, i.e. λmax(M) = λmin(M) = 1 and the scaling in the above
condition becomes

2mk ' Nk .
n

log(n) . (5.32)

The overall error

If (5.31) holds, the error E := EρnT [E (τr (fZn,Vk))− E (g)] fulfills

E . inf
f∈Vk
‖f − g‖2

L2(T ;Cd) + n−σ
(3.50)
. d2−2sk‖g‖2

H̄s(T ;Cd) + n−σ . 2−2sk + n−σ (5.33)

with an implicit constant depending onm, d, σ, r, s and ‖g‖H̄s(T ;Cd), according to theorem
5.15.



5.5 Examples for noiseless function regression 119

Balancing the error terms

Depending on k and σ, we choose the smallest n such that (5.31) is still fulfilled. Then,
we obtain the approximate equality

2mk ' Nk '
n

log(n) ,

which we substitute into (5.33). This leads to

E . 2−2sk + n−σ '
(
2mk

)− 2s
m + n−σ '

(
log(n)
n

) 2s
m

+ n−σ.

We see that σ = 2s
m

is the right choice to balance these terms and get

E = O
(
n−

2s
m log(n) 2s

m

)
.

5.5.4 Periodic regression with Fourier polynomials on hyperbolic
crosses

Finally, we consider noiseless function regression in the periodic setting with Fourier
polynomials on hyperbolic crosses. To this end, we again take T = (−π, π)m and ρT =

1
(2π)mλT . We assume that s > 0 is such that g ∈ H̄s

mix(T ;Cd) and take Vk = T hyp,d
k for

all k ∈ N.

Stability

With the same argument as in (5.30), we obtain

K(Nk) = d · sup
t∈T

∑
l∈Zm∏m

n=1(max(|ln|,1))≤2k

|eilT t|2
C

= d ·
∑

l∈Zm∏m

n=1(max(|ln|,1))≤2k

1 = Nk.

Thus, theorem 5.11 shows that solving (D) over Vk is stable with probability 1− 2n−σ if

Nk = K(Nk) ≤
λmin(M)| log(c 1

2
)|

(1 + σ) · n

log(n) . (5.34)

Again, due to the L2,ρT (T ;Cd)-orthonormality of the Fourier basis, we get λmax(M) =
λmin(M) = 1 independently of k ∈ N. Hence, the scaling which is necessary to fulfill
(5.34) becomes

2kkm−1 ' Nk .
n

log(n) . (5.35)
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The overall error

Let (5.34) be fulfilled. Then, theorem 5.15 provides the upper bound

E . inf
f∈Vk
‖f − g‖2

L2(T ;Cd) + n−σ
(3.51)
. d2−2sk‖g‖2

H̄s
mix(T ;Cd) + n−σ . 2−2sk + n−σ (5.36)

on the error E := EρnT [E (τr (fZn,Vk))− E (g)]. Here, the . constant in the final estimate
depends on m, d, σ, r, s and ‖g‖H̄s

mix(T ;Cd).

Balancing the error terms

Let n be the smallest natural number such that (5.34) still holds. In this case, we have

2kkm−1 ' Nk '
n

log(n) ,

which also gives k . log(n) for n > 1. Therefore, substituting this scaling into (5.36),
we obtain

E . 2−2sk + n−σ '
(
2kkm−1

)−2s
k2s(m−1) + n−σ .

(
log(n)
n

)2s

log(n)2s(m−1) + n−σ

' n−2s log(n)2sm + n−σ.

By choosing σ = 2s, the overall error bound reads

E = O
(
n−2s log(n)2sm

)
.

5.5.5 Overview
A summary of the results which we derived in the previous subsections can be found in
table 5.2. The columns there have to be understood in the following way:

• The sufficient condition on the coupling between Nk and n guarantees the stability
of solving the unregularized, noiseless regression problem (D) with probability at
least 1− 2n−σ.

• The balanced (optimal) scaling between n and Nk together with the choice of σ
in the next column optimizes the error bound from theorem 5.15 such that both
summands are approximately equal up to logarithms.

• The balanced rate in the last column of table 5.2 resembles the convergence rate
of the error EρnT [E (τr (fZn,Vk))− E (g)] with respect to n for the optimal scaling
between n and k and the optimal σ.

Note that the balancing Nk ' n
log(n) is the same for all four cases which we considered.



5.5 Examples for noiseless function regression 121

(a) Piecewise linear prewavelets on full grids and and sparse grids, 0 < s ≤ 2

Vk suff. cond. balanced n balanced σ balanced rate
V full,d
k 4mNk ≤ Υσ

n
log(n) Nk ' n

log(n) σ = 2s
m

n−
2s
m log(n) 2s

m

Vsparse,d
k 2

(
72
25

)m
Nk ≤ Υσ

n
log(n) Nk ' n

log(n) σ = 2s n−2s log(n)(2s+1)m−1

(b) Fourier polynomials on full grids and hyperbolic crosses, s ≥ 0

Vk suff. cond. balanced n balanced σ balanced rate
T full,d
k Nk ≤ Υσ

n
log(n) Nk ' n

log(n) σ = 2s
m

n−
2s
m log(n) 2s

m

T hyp,d
k Nk ≤ Υσ

n
log(n) Nk ' n

log(n) σ = 2s n−2s log(n)2sm

Table 5.2: Results for noiseless regression (D) over Vk for full grids (H1 regularization,
g ∈ Hs, Nk ' 2km) and sparse grids/hyperbolic crosses (H1

mix regularization,
g ∈ Hs

mix, Nk ' 2kkm−1). We provide a sufficient condition on the scaling
between Nk and n such that the problem is stable with probability at least
1− 2n−σ. Here, we used Υσ := λmin(M)| log(c 1

2
)|(1 + σ)−1. Furthermore, we

present the relation between n and Nk in the balanced case as well as the
appropriate choice of σ. The last column of the tables contains the balanced
convergence rate with respect to n.

The curse of dimensionality

We observed that - due to condition (5.11) onK(Nk) - the coupling Nk . n
log(n) is manda-

tory for all our examples to ensure stability and convergence of the noiseless regression
problem with high probability. This condition directly translates to the presence of the
curse of dimensionality with respect to the necessary number of samples n in the full
grid case since Nk ' 2km here. Thus, 2km . n

log(n) has to hold and n grows exponentially.
Furthermore, the curse of dimensionality is also visible in the balanced convergence rate
whose leading term is n− 2s

m .
For sparse grids and hyperbolic crosses, the scaling of the sufficient condition for

stability and convergence is 2kkm−1 ' Nk . n
log(n) . Therefore, the curse of dimensionality

appears only in a mild form with respect to the level k.

Oversampling in the optimal/balanced case

In the balanced case, we have Nk ' n
log(n) . Ignoring the logarithm for a moment, this

means that only n = cNk samples are needed for some constant c > 0. For Fourier
polynomials for instance, we have c = Υ−1

σ , see table 5.2. Since λmin(M) = 1 in this
case, c is determined by the size of σ, which is 2s

m
for full grids and 2s for hyperbolic

crosses. Therefore, the oversampling factor for hyperbolic crosses is larger than for full
grids ifm > 1. However, when taking the scaling Nk ' 2mk or Nk ' 2kkm−1, respectively,
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into account, we see that the absolute number of samples which is needed is much larger
in the full grid case.

Convergence with respect to n

In contrast to the regularized, more general regression problem (B) over Vk,b, which we
considered in section 4.5, we can achieve (expected) error convergence rates which are
faster than n−1 for unregularized, noiseless function regression (D) over Vk. To this end,
let us first consider prewavelets on a full grid. Here, we can achieve a convergence rate
of n− 2s

m log(n) 2s
m . In this case, the expected rate of the overall error decay is better than

n−1 if m < 2s. Since the smoothness index s is limited from above by 2 for a prewavelet
discretization, the best possible convergence rate would be n− 4

m up to logarithms in the
case s = 2 and σ = 4

m
. Here, the curse of dimensionality appears again and we see that

even the best convergence rate in the noiseless regression case cannot beat n−1 if the
dimension is too large, i.e. m ≥ 4, in the full grid case.
For sparse grids, however, we see from table 5.2 that the factor m is no longer present

in the main term of the balanced rate n−2s log(n)(2s+1)m−1 = n−4 log(n)5m−1 for s = 2
and σ = 4.
For Fourier polynomials on full grids or hyperbolic crosses, the situation is analogously

to the prewavelet case. Note that, this time, s can be arbitrarily large and thus, for
s → ∞, we are able to observe super-algebraic convergence rates in the balanced case,
i.e. the error decays faster than any inverse polynomial n−p with p ∈ (0,∞). However,
this only holds if σ → ∞. Since our analysis is only valid for fixed s and σ, we cannot
directly deduce what happens if s → ∞ and how the balanced relation between n and
Nk has to look like in this case.

5.5.6 Relation to other results
We now relate our findings to other works in the research area of penalized and unpe-
nalized regression.

Convergence and stability results for arbitrary orthonormal bases

Naturally, we have to compare our results to [21] since the basic ideas for our proofs
are provided there and it can be seen as the foundation for analyzing the higher order
convergence rates with respect to n for noiseless least-squares regression in a very general
setting. Their theorems 1 and 2 can be interpreted as special cases of our theorems 5.11
and 5.15 for d = 1, an orthonormal basis ν1, . . . , νNk of Vk and the unregularized case µ =
0. In this specific situation, our results read the same as the ones in [21]. Furthermore,
the authors also consider a Fourier polynomial example in the univariate case and show
that ti = −π+ 2π j

n
provides a deterministic point distribution for j = 1, . . . , n such that

stability of the corresponding least-squares algorithm is guaranteed if n ≥ Nk, i.e. for
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this deterministic sample, the right hand side in the stability condition (5.31) becomes
n. Note that the authors also provide the error bound

EρnT [E (τr (fZn,Vk))− E (g)] . inf
f∈Vk
‖f − g‖2

L2,ρT (T ) + Nk

n

for unregularized regression in the presence of additive noise, which (asymptotically)
coincides with the bounds we obtained in chapter 4 up to logarithms, cf. theorems 4.18,
4.24 and the discussion in subsection 4.5.6.

Least-squares regression with global polynomials

Based on [61], the approach from [21] has been applied to the case of global polynomial
bases in total degree spaces and hyperbolic cross spaces in [19]. There, the authors also
show the validity of their results in the Hilbert space-valued case by exploiting the tensor
product identity L2,ρT (T ;X) = X ⊗ L2,ρT (T ) and using the scalar-valued results. They
provide bounds on K(Nk) for several types of tensorized Jacobi-polynomials, such as
Legendre polynomials (K(Nk) . N2

k ), even for infinite-dimensional T and E. Further-
more, when changing the measure ρT to the Chebyshev measure with density 1√

1−t2 in
each direction, they show that Chebyshev polynomials are able to achieve

K(Nk) . N
log(3)
log(2)
k

in the infinite-dimensional case m =∞ and

K(Nk) ≤ 2mNk

in the finite-dimensional case m < ∞. In the finite-dimensional case, this is similar to
the conditions K(Nk) ≤ 4mNk and K(Nk) ≤ 2

(
72
25

)m
Nk we proved for prewavelets on

full grids and sparse grids with respect to the Lebesgue measure ρT = λT , cf. subsections
5.5.1 and 5.5.2. Note however, that the authors of [19] usually deal with densely popu-
lated sample matrices G because of their global bases, while our spline basis functions
have only local support and lead to sample matrices with sparse (“finger-like”) structure,
see also [11, 31]. A detailed analysis of probabilistic error bounds for function regression
also for non-centered additive noise models can be found in [60]. In [59], the stability
and convergence properties of least-squares regression on global polynomial search spaces
with deterministic samples ti for i = 1, . . . , n from low discrepancy point sets have been
studied.

Compressive sensing and the restricted isometry property

Considering a compressive sensing approach to the regression problem, the aim is to find
sparse solutions. The corresponding constrained minimization problem to obtain the
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function f = ∑Nk
i=1 βiνi can then be written as5

min
~β∈RNk

‖β‖`1 such that G~β = B(~x)

with G,B and ~x from propositions 5.4 and 5.5. Here, the minimization of the `1 norm
of the coefficients guarantees the sparsity of the solution, i.e. most entries of ~β are 0, see
e.g. [25, 32].
Note that, for our examples above, the regularization term in the least-squares ap-

proach can always be written as a sum of weighted L2 norms and, ultimately, as a
weighted `2 norm of the coefficients, see e.g. (3.37) and (3.38) for the prewavelet spline
spaces and Sobolev norm regularizations. Therefore, the least-squares regression prob-
lem (C) is similar to a dual formulation of the above compressive sensing problem in this
case. The main difference is now the appearance of the `1 norm for compressive sensing
and the weighted `2 norm in our case.
In the following, we consider scalar-valued functions, i.e. d = 1. A natural question

which arises in the context of compressive sensing is if G~β = B(~x) is solvable for an
s-sparse vector ~β, i.e. a vector with at most s non-zero entries. To this end, one usually
aims to establish the so-called restricted isometry property (RIP). The RIP basically says
that G is almost an isometry for every s-sparse vector, i.e. there exists 0 < δ < 1 such
that

(1− δ)‖~β‖2
2 ≤ ‖G~β‖2

2 ≤ (1 + δ)‖~β‖2
2 ∀ s-sparse β ∈ RNk .

Thus, the best s-sparse solution which minimizes ‖G~β − B(~x)‖2 is computable if the
RIP holds. To establish the RIP with high probability, the parameter s has to be
appropriately coupled to the number of samples n. To this end, it has recently been
shown in [20] that for Chebyshev and Legendre polynomials - and the corresponding
measures ρT - the number

K̃(s) := sup
Λ⊂Ihyp(log(s))

|Λ|=s
Λ lower

∥∥∥∥∥∥
∑
l∈Λ
|νl|2

∥∥∥∥∥∥
L∞,ρT (T )

plays an important role for such a coupling. Here, νl is the corresponding polynomial of
degree l, Ihyp(log(s)) is the index set of a hyperbolic cross of level log(s) and we call a
set Λ ⊂ Nm lower if l ∈ Λ implies k ∈ Λ for all k ≤ l. Note that K̃(s) is nothing else but
the supremum of K(Nk) over all collections of functions which result from lower subsets
of Ihyp(log(s)) of size s. The authors of [20] have shown that there exists a constant
C > 0, independent of s and m, such that

CK̃(s) log(s)2(log(s) +m) ≤ n

5Note that it often is only required that the equations are solved up to a certain error ε > 0.
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suffices to establish an RIP for lower index subsets of Ihyp(log(s)) with s elements. This
is directly related to the stability condition

K(Nk) .
n

log(n) ,

for least-squares regression, see also (5.11). Apart from the logarithmic factors, the
difference between these two inequalities is the substitution of K(Nk) by K̃(s) for the
compressive sensing case. Thus, the stability condition for least-squares regression be-
comes a sufficient condition on the sparsity s to establish an RIP with high probability.
A similar analysis as in [20], but for an arbitrarily weighted `1 norm minimization, can
be found in [2].

5.6 Summary
We now provide a brief summary of our results to conclude this chapter:

• We have shown the equivalence between the primal problem of solving (B) over Hb

and the dual problem of solving

Find arg min
f∈H

EZn(f) + µ‖f‖2
H (C)

for a certain Lagrange parameter µ ≥ 0. A solution of the latter problem can
be computed with the help of the representer theorem 5.3 if H is an RKHS. For
finite-dimensional search spaces, we can solve the system

(G+ µC)~α = B(~x)

of linear equations instead and obtain the solution fZn,Vk,µ = ∑Nk
j=1 αjνj. Here, the

size of the system is determined by Nk instead of n, where the latter would be the
case if the representer theorem was applied.

• We proved that solving the above system is (uniformly) stable for all k ∈ N with
probability 1− 2n−σ if

K(Nk) ≤
λmin(M)| log(c 1

2
)|

(1 + σ) · n

log(n)

holds and if

◦ ν1, . . . , νNk is a Riesz basis or

◦ µ · λmin(C) is bounded from below independently of k.
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• Similarly to the bias/sampling error decomposition in chapter 4, we observed that
the expected overall error

E := EρnT [E (τr (fZn,Vk))− E (g)]

for an r-truncated solution of the unregularized, noiseless function regression prob-
lem

Find fZn,Vk = arg min
f∈Vk

1
n

n∑
i=1
‖f(ti)− g(ti)‖2

E (D)

can be bounded by

E ≤
(

1 +
4λmax(M)| log(c 1

2
)|

(1 + σ)λmin(M) log(n)

)
inf
f∈Vk
‖f − g‖2

L2,ρT (T ;E) + 8r2n−σ

if the above condition on K(Nk) holds.

• We investigated the stability conditions and the convergence rates of unregular-
ized, noiseless function regression on sparse grids and hyperbolic crosses. Here, we
observed the considerably reduced effect of the curse of dimensionality in contrast
to the full grid methods and showed that the convergence can be faster than n−1.



6 Numerical Experiments
After deriving our theoretical statements in the previous chapters, we now underpin our
findings by several numerical results. As we already mentioned in section 5.1, the com-
putation of a solution to the constrained problem (B) over the set Vk,b is very involved.
Therefore, we restrict1 ourselves to the dual problem (C) and solve (5.6).
For the prewavelet spline case, we used the C++ sparselib code developed in [29, 30],

which we maintained and enhanced during the last years. This code features efficient
traversal algorithms for prewavelet basis functions as well as fast matrix-vector multi-
plication routines based on the unidirectional principle, see also [13, 91]. To solve the
system of linear equations we employ a conjugate gradient algorithm which stops if the `2
norm of the relative residual is smaller than 10−13 or if the number of iterations reaches
max(104, Nk). The latter criterion is only employed to avoid problems in the case of very
ill-conditioned systems, e.g. in the case of small (or no) regularization and Nk > n. Due
to the fast matrix-vector multiplication routines, the computational complexity of each
CG-step is only O (Nk + nkm−1), see also [10, 31], and the overall number of CG steps
is small in most cases, i.e. if n > Nk or if the regularization parameter is large enough.
For the Fourier polynomial experiments, we wrote a python program based on the

numpy library. Due to the densely populated G matrix, we employ an LU decomposi-
tion with partial pivoting to solve the least-squares problem on full grids and hyperbolic
crosses. The computational costs for the assemblation and the computation of the solu-
tion scale like O (N3

k + n ·N2
k ), see [70].

As in the example sections 4.5 and 5.5, we employ an H1/H̄1 regularization in the
full grid case and an H1

mix/H̄1
mix regularization in the sparse grid/hyperbolic cross case.

Here, we use the norm equivalences (3.37), (3.38), (3.46) and (3.47) to compute the reg-
ularization matrix, i.e. we approximate C by the corresponding diagonal weight matrix
instead of taking the true regularization matrix.
We start with a thorough convergence study for a noisy scalar-valued function regres-

sion problem in two dimensions in section 6.1. Due to the noise, we cannot rely on the
convergence results of section 5.5 but can only hope to achieve the convergence rates
predicted in section 4.5. Next, we study the noiseless case in section 6.2. In section 6.3,
we have a look at a problem which employs a non-smooth solution. We briefly introduce
a dimension-adaptive sparse grid regression algorithm, which is able to improve the con-
vergence with respect to Nk in this case. Finally, after considering the aforementioned
artificial problems, we deal with real world examples in section 6.4.

1Note, however, that we compared some of our results for small problem instances to the results of a
constrained minimization algorithm for (B) and they did not differ significantly.
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(a) gnp : (0, 1)2 → R

0
0.5

1 0
0.5

10.5

1

t1
t2

(b) gp : (−π, π)2 → R

−2 0 2 −2
0

20

5

t1

t2

Fig. 6.1: The example functions gnp and gp

6.1 Convergence analysis for regularized regression of
noisy data

We first have a look at two scalar-valued function regression problems which admit a
smooth solution. In the non-periodic case, we consider

gnp(t) = exp
(
−‖t‖2

2

)
+

m∏
i=1

ti

on T = (0, 1)m with dimension m = 2. This smooth function served as a benchmark
example for sparse grid regression already in [35]. Obviously, gnp ∈ H2(T ) and gnp ∈
H2

mix(T ). In the periodic setting, we take the smooth test function

gp(t) = exp
(

m∑
i=1

cos (ti)
)

on T = (−π, π)m with dimension m = 2, which fulfills gp ∈ H̄s(T ) and gp ∈ H̄s
mix(T ) for

every s > 0. The shape of both test functions is depicted in figure 6.1.
We choose normally distributed additive noise with variance 0.01. Therefore, to sam-

ple the conditional measure ρ(x|t), x is drawn according to the normal distribution
N(g∗(t), 0.01), where ∗ = np in the non-periodic case and ∗ = p in the periodic case.
We directly observe that fρ = g∗ in this setting. The distribution on T is chosen to be
uniformly in both cases, i.e. ρT = λT for T = (0, 1)2 and ρT = 1

(2π)2λT for T = (−π, π)2.
Since we are dealing with noisy regression, we cannot apply theorem 5.15 and have to
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rely on our convergence results from chapter 4. Note that, technically, our setup does
not fulfill the prerequisites of chapter 4 since r from (4.5) is infinite for Gaussian noise.
However, because of the fast decay of the tails of the Gauß density, the error of truncat-
ing it at a certain, large enough value is negligibly small. Therefore, we tacitly assume
that we can apply our theorems anyhow. As we will observe in the following, the numer-
ical results match the outcome of our theoretical analysis in section 4.5 for the choice
Mψ ' 1. This shows again that it is often justified to assume that the M -boundedness
constant Mψ can be chosen independently of the regularization parameter, even though
there is no direct theoretical justification.

6.1.1 Non-periodic regression on full grids and sparse grids
We start with a study of the regression error

Err := E (fZn,Vk,µ)− E (gnp) = ‖fZn,Vk,µ − gnp‖2
L2(T )

in the full grid space and the sparse grid space for noisy samples of gnp. To this end, we
computed the solutions fZn,Vk,µ to the dual problem for Vk = V∗,1k with ∗ ∈ {full, sparse}
for various choices of the sample size n and the grid level k. To evaluate the error,
we interpolated gnp on a full grid of level 11 and used the mass matrix on this level to
compute the squared L2 norm. For each parameter tuple (k, n), we ran 10 individual
computations for different, random input data points and calculated the arithmetic mean
AvErr of Err over these 10 runs. We showed in subsections 4.5.1 and 4.5.2 that b ' 2k is
an appropriate choice for the norm bound in the primal problem, see also the overview
in subsection 4.5.5. However, it is not directly clear how this can be transferred to the
choice of the regularization parameter µ. Therefore, we studied three different cases: the
constant coupling (CC) µ = 10−3, the linear coupling (LC) µ = 10−3 · 2−k ' 10−3b−1

and the quadratic coupling (QC) µ = 10−3 · 2−2k ' 10−3b−2.

The overall error in dependence on k and n

The plots for the average error for the full grid can be found in figure 6.2 and the average
error for the sparse grid is depicted in figure 6.3. We see that the general behavior is
the same in both cases. We first discuss the error behavior for fixed n and varying k,
i.e. the plots in the top row of the figures. First of all, we observe that the CC µ = 10−3

is too restrictive, i.e. we see no convergence of the overall error after an initial reduction
to 10−5. For the LC µ = 10−32−k, however, the results are more promising. In plot (b)
of figures 6.2 and 6.3, we indeed observe the decay rates 2−4k and 2−4k · k in the full and
the sparse grid case, respectively. Because of the smoothness of gnp, these rates for the
discretization error are also predicted by (4.46) and (4.52) with s = 2. Note, however,
that the error increases again for k ≥ 5 since the sampling error now dominates in the
overall error decomposition and the noisy data points are overfitted more and more for
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Fig. 6.2: Full grid Vk = V full,1
k : The average AvErr of the overall error Err = E (fZn,Vk,µ)−

E (gnp) over 10 independent draws of input data Zn is plotted versus the level
k for different choices of n (top) and versus the number of data n for different
choices of k (bottom).

increasing grid level. Although, the results for the QC µ = 10−32−2k are quite similar,
subfigure (c) shows that the overall error increases much faster for k ≥ 5 than in the LC
case since the overfitting is more severe in the QC case.
Now, we consider the behavior of the overall error for fixed k and varying n (bottom

row of figures 6.2 and 6.3). Here, we have to discern two regimes. For small n, we observe
a convergence rate of approximately n−2 and for larger n the rate becomes log2(n)

n
. The

latter matches our theoretical bounds on the sampling error, see also (4.46) and (4.52).
The faster convergence in the beginning is due to the fact that we are still above the
noise level there. Note the plateau in the QC case (subfigure (f)) for k = 7 (and also
k = 9 for the sparse grid) around log2(n) = 10. This is again due to the severe overfitting
of the noisy data points. Furthermore, the error for k = 3 stagnates for large n. This
resembles the fact that, here, the discretization error dominates and the level k needs to
be refined in order to achieve a smaller overall error. In summary, we observe that it is
not reasonable to go beyond k = 5 even for n = 220 data points. We will see that this is
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Fig. 6.3: Sparse grid Vk = Vsparse,1
k : The average AvErr of the overall error Err =

E (fZn,Vk,µ) − E (gnp) over 10 independent draws of input data Zn is plotted
versus the level k for different choices of n (top) and versus the number of data
n for different choices of k (bottom).

also reflected by the optimal balancing between k and n, which we investigate later on.

The overall error in dependence on Nk

Although our results suggest that the full grid method and the sparse grid method behave
essentially in the same way, this is of course only true with respect to the discretization
level k and not with respect to the basis size Nk. To clarify this, we depicted the behavior
of the overall error with respect to Nk for n = 220 in figure 6.4. There, we also depicted
the error when considering the analogous convergence study in m = 3 dimensions to
underpin the fact that the spread between the full grid and the sparse grid results
becomes even more obvious in higher dimensions. We observe that, for sparse grids,
AvErr is at its minimum for a significantly smaller value of Nk than for full grids. This
means that we need less degrees of freedom for sparse grids to reach the margin where
the sampling error begins to prevail.
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Fig. 6.4: The average overall error AvErr in dependence on the basis size Nk for full grids
and sparse grids with n = 220, µ = 10−32−k. We plotted the two-variate case
m = 2 (left) and the three-variate case m = 3 (right).

Stability

Besides the error decay, we are also interested in the stability when solving the linear
system. Since theorem 5.11 can also be applied in the noisy function regression case,
we expect that the condition number of our system matrix G + µC is small with high
probability if K(Nk) . n

log(n) , see (5.11). Because of our considerations in subsections
5.5.1 and 5.5.2, we know thatK(Nk) ' Nk and the above inequality becomes Nk . n

log(n) .
A closer look at theK(Nk) condition (5.27) for sparse grids reveals that the oversampling
constant c involved in cNk ≤ n

log(n) needs to be larger than

(1 + σ)2 · (2.88)m
λmin(M) · | log(c 1

2
)| .

For m = 2 and for the realistic choice σ ≈ 1 and λmin(M) ≈ 0.1, we obtain that c needs
to be larger than 3066 ≈ 211.6 for theorem 5.11 to hold. This results in the oversampling
condition 211.6Nk ≤ n

log(n) , which essentially is 11.6 + k ≤ log2(n) if we omit double-
logarithmic terms in n and Nk. A similar analysis can also be performed for the full
grid case with dimension-dependent prefactor 4m, see (5.23), instead of 2 · (2.88)m, which
leads to a comparable constant c as in the sparse grid case. However, here we have Nk '
2mk = 22k and the oversampling condition becomes approximately 11.6 + 2k ≤ log2(n).
We calculated the average condition numbers κ(S) = λmax(S)

λmin(S) over the 10 computations
for each parameter set (k, n) using a singular value decomposition of S = G + µC
and plotted the results in figures 6.5 and 6.6. There, we essentially discern between
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Fig. 6.5: Contour plot of the average of the condition numbers κ(G + µC) over 10 in-
dependent draws of input data Zn for full grids Vk = V full,1

k . We depicted the
contour lines for κ = 10, 103, 105 and 107.
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Fig. 6.6: Contour plot of the average of the condition numbers κ(G+ µC) over 10 inde-
pendent draws of input data Zn for sparse grids Vk = Vsparse,1

k . We depicted the
contour lines for κ = 10, 103, 105 and 107.

well-conditioned systems (κ(S) < 10), treatable systems (10 ≤ κ(S) < 107) and ill-
conditioned systems (κ(S) ≥ 107). First, we observe that the system is always well-
conditioned if our derived oversampling condition (11.6 + 2k ≤ log2(n) for full grids and
11.6 + k ≤ log2(n) for sparse grids) is fulfilled. The conditions even seem to be a bit too
pessimistic when considering the isoline for κ(S) = 10 in the plots. Besides, there are
many more parameter tuples (k, n) for which the equation system is still treatable and
employs condition numbers smaller than 107. For the CC case with µ = 10−3, we see
that all plotted pairs of k and n fall into that category. In the LC case, only scenarios
with (approximately) k > log2(n) lead to ill-conditioned system matrices. However, as
we have seen in our convergence studies in figures 6.2 and 6.3, and also in our analysis
in section 4.5, we need to have log2(n) > k in order to obtain convergence of the overall
error, anyhow. For QC, the parameter range, where we encounter ill-conditioned systems
increases to 2k > log2(n) for full grids and 3

2k > log2(n) for sparse grids. Furthermore,
the set of parameters in the transition area between well-conditioned systems and ill-
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Fig. 6.7: The average overall error AvErr with µ = 10−32−k after balancing the dis-
cretization error and the sampling error. For full grids, the balancing n = 26k is
used, whereas for sparse grids, n = 25k is taken. The respective expected rates
are also plotted, compare table 4.2.

conditioned ones becomes quite small.
Combining our convergence study and our stability analysis, we conclude that the

linear coupling µ = 10−32−k is the most promising one to achieve both a good convergence
behavior of the overall error and treatable linear systems also for log2(n) close to k.

Balanced convergence rate

Finally, we consider the convergence behavior in the case of balanced discretization error
and sampling error. Since m = s = 2 for our example, a look at the case Mψ ' 1 of
table 4.2 (a) reveals that the appropriate scaling is n ' 2(2s+m)k = 26k for full grids and
n ' 2(2s+1)k = 25k for sparse grids. The corresponding error convergence rates for this
coupling can be found in figure 6.7. According to table 4.2, the upper bounds on the
convergence rates are n− 2

3 log(n) for full grids and n−
4
5 log(n)2 for sparse grids. It can

be observed that our proven rate in the balanced case seems to match our experimental
results for sparse grids. However, our proven rate in the full grid case seems to be too
pessimistic as the experimental rate is similar to the sparse grid rate. Possible reasons
for this are, for example, that the LC for µ, although reasonable, might not correspond
to b ' 2k, or the simple fact that our proven rates are not tight and the theory does not
exploit the special structure of the noisy function regression problem at hand.
It is noteworthy that, although the convergence rates with respect to n are approxi-

mately equal here, the basis size for the full grid scales like Nk ' 2km = 22k ' n
1
3 , while

the basis size for the sparse grid is only Nk ' 2kk ' n
1
5 log(n).
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Fig. 6.8: Full grid Vk = T full,1
k : The average AvErr of the overall error Err = E (fZn,Vk,µ)−

E (gp) over 10 independent draws of input data Zn is plotted versus the level
k for different choices of n (top) and versus the number of data n for different
choices of k (bottom).

6.1.2 Periodic regression on full grids and hyperbolic crosses
We now consider the noisy function regression of gp. Here, we again measure the average
error AvErr over 10 random test instances of

Err := ‖fZn,Vk,µ − gp‖2
L2(T ),

as in the previous subsection. However, now the sampling is done with respect to gp and
the solutions fZn,Vk,µ are computed for Vk = T ∗,1k with ∗ ∈ {full, hyp}.

The overall error in dependence on k and n

We depicted the results for the full grid in figure 6.8 and the ones for the hyperbolic
cross in figure 6.9. The qualitative behavior of the error is the same as in the previous
subsection on non-periodic regression with full grids and sparse grids. We obtain that the
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Fig. 6.9: Hyperbolic cross Vk = T hyp,1
k : The average AvErr of the overall error Err =

E (fZn,Vk,µ) − E (gp) over 10 independent draws of input data Zn is plotted
versus the level k for different choices of n (top) and versus the number of data
n for different choices of k (bottom).

constant coupling µ = 10−3 leads to a too restrictive regularization and the error cannot
decay after an initial drop. In the LC case µ = 10−3 · 2k and the QC case µ = 10−3 · 22k,
however, we observe a further error decay. Since gp ∈ H̄s and gp ∈ H̄s

mix for all s > 0, we
could expect super-algebraic convergence of the discretization error, see also (4.54) and
(4.57). However, due to the early dominance of the sampling error already for k > 3,
this cannot be observed in the plots in the top row of figures 6.8 and 6.9. For k ≥ 4, the
oversampling effect is already visible, i.e. the error increases again.

For fixed k and varying n, i.e. in the bottom row of the figures, we again observe the
rate n

log(n) if k and n are large enough. The error decay for small n, where the noise
level is not yet met by the overall error, is faster. In contrast to the non-periodic case,
however, we cannot easily determine the decay rate here since it is different for each
choice of k.
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Fig. 6.10: The average overall error AvErr in dependence on the basis sizeNk for full grids
and hyperbolic crosses with n = 218, µ = 10−32−k. We plotted the two-variate
case m = 2 (left) and the three-variate case m = 3 (right).

The overall error in dependence on Nk

Both the full grid and the hyperbolic cross discretizations lead to super-algebraic con-
vergence of the discretization error. For the specific example gp, we do not observe a
significant difference between the discretization error behavior with respect to the degrees
of freedom Nk for the full grid and the hyperbolic cross, see figure 6.10.

Stability

As we have shown in section 5.5, we obtain K(Nk) = Nk for Fourier polynomials on full
grids and hyperbolic crosses. Therefore, the oversampling factor c in cNk ≤ n

log(n) needs
to be larger than

(1 + σ)
λmin(M) · | log(c 1

2
)|

to apply theorem 5.11 and obtain a uniform stability bound. Since the Fourier poly-
nomials are L2-orthonormal, we have λmin(M) = 1. Choosing σ = 1, we obtain
that c ≥ 18.48 ≈ 24.2 and, thus, 24.2Nk ≤ n

log(n) should suffice. This is essentially
4.2 + 2k ≤ log2(n) for full grids and 4.2 + k ≤ log2(n) for hyperbolic crosses.
Having a closer look at the computed average condition numbers for the system matrix

S = G + µC, which we plotted in the figures 6.11 and 6.12, we observe that the full
grid oversampling condition quite accurately describes the area for which κ(S) ≤ 10. In
the case of hyperbolic crosses, the condition 4.2 + k ≤ log2(n) is fulfilled also by several
pairs (k, n) for which κ(S) > 10. However, the corresponding condition numbers are
still smaller than 103 for CC and LC, and they are smaller than 105 for QC. Thus, all
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Fig. 6.11: Contour plot of the average of the condition numbers κ(G + µC) over 10
independent draws of input data Zn for full grids Vk = T full,1

k . We depicted
the contour lines for κ = 10, 103, 105 and 107.
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Fig. 6.12: Contour plot of the average of the condition numbers κ(G + µC) over 10
independent draws of input data Zn for hyperbolic crosses Vk = T hyp,1

k . We
depicted the contour lines for κ = 10, 103, 105 and 107.

systems are still treatable. As in the non-periodic case, we see that the transition area
between well-conditioned and ill-conditioned systems shrinks from CC over LC to QC.
Also for the periodic case, we can conclude that the linear coupling µ = 10−32−k is the

best choice to achieve a small error and still lead to treatable systems for many choices
of k and n.

Balanced convergence rate

As mentioned before, we could theoretically choose the smoothness parameter s > 0
arbitrarily large for this example. For the balancing between the discretization error
and the sampling error, this implies that the larger the oversampling, the closer the
convergence rate should get to n−1, see also table 4.2 (b). However, because we only have
finite computing resources at hand, there is a limit to the amount of data n which can
be treated. Note that, in subsection 6.1.1, we looked at the optimal coupling between
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Fig. 6.13: AvErr for full grids (left) and hyperbolic crosses (right) with µ = 10−32−k. We
balanced the discretization error and the sampling error by using the relation
n = 2lk with l ∈ {3, 4, 5, 6}. The upper bounds which we derived in chapter
4, i.e. n− l−2

l log(n) for full grids and n− l−1
l log(n)2 for hyperbolic crosses, are

plotted as dashed lines with color according to the corresponding coupling.
These rates are obtained by setting n = 2lk = 2(2s+m)k for full grids and
n = 2lk = 2(2s+1)k for hyperbolic crosses and taking the corresponding result
from table 4.2 (b).

n and k in terms of the overall convergence rate with respect to n. Here, this is not
possible since we would have to choose an infinite oversampling. Hence, we compute the
results for different choices of the coupling between n and k instead and compare them.
In figure 6.13, we observe the error behavior for couplings of type n = 2lk with l =

3, 4, 5, 6. For full grids, the observed convergence behavior approximately matches our
upper bounds for l = 4, 5, 6. In the hyperbolic cross case, our theoretical bounds seem
to be too pessimistic, especially for l = 5, 6. However, it is not clear if the bounds are
indeed not sharp or if we are observing only preasymptotic behavior in our plots.

6.2 Convergence analysis for unregularized regression of
noiseless data

We now consider noiseless function regression with the same test functions as in the
previous section. Thus, we have ρ(x|t) = δg∗(t)(x), where δg∗(t) denotes the Dirac distri-
bution centered in g∗(t) and ∗ ∈ {p,np}. We deal with the unregularized case µ = 0 in
our computations, which means that the system matrix S = G + µC = G = nB ◦ B∗
cannot have full rank if n < Nk. Therefore, we only consider parameter tuples (k, n)
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Fig. 6.14: The average AvErr of the overall error Err = E (fZn,Vk,µ) − E (gnp) over 10
independent draws of input data Zn for the function gnp is plotted versus the
level k for different choices of n (top) and versus the number of data n for
different choices of k (bottom). Both full grid (left) and sparse grid (right)
results are depicted. The expected rate in the top row is 2−4k in the full grid
case and 2−4k · k in the sparse grid case.

with Nk ≤ n. We are now in a setting where we can employ our results on noiseless
function regression from section 5.5.

6.2.1 Non-periodic regression on full grids and sparse grids
Our setup is exactly the same as in the previous section, apart from the fact that we
now deal with noiseless samples of gnp and µ = 0.

The overall error in dependence on k and n

We plotted the error for different choices of k and n in figure 6.14. In the top row,
we observe that the overall error in dependence on k decreases with the expected rate
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Fig. 6.15: Contour plot of the average of the condition numbers κ(G) over 10 independent
draws of input data Zn for full grids (left) and sparse grids (right). We depicted
the contour lines for κ = 10 and κ = 107.

of 2−4k for full grids and 2−4k · k for sparse grids. If k gets too large in comparison
to n, the error either stagnates (sparse grid) or even increases (full grid). The latter
is due to the instability in the case Nk ≈ n for full grids, which we will observe in the
follow-up subsection. A related phenomenon can be discovered when inspecting the error
for varying n and fixed k (bottom row of figure 6.14). For full grids, the error is very
large when Nk ≈ n, but it rapidly drops to a plateau when n increases, i.e. when the
discretization error begins to dominate. For sparse grids, the error in the case Nk ≈ n,
i.e. at the first dot of each colored line, is significantly smaller for k ≥ 5.

Stability

We depicted the condition number κ(G) of the system matrix G in dependence on k
and n in figure 6.15. Here, we plotted the contour lines for κ(G) = 10 and κ(G) =
107. Recall that these contour lines characterize the transition between well-conditioned,
treatable and ill-conditioned systems according to our earlier definition in section 6.1.
Furthermore, we filled the region in which Nk > n holds with a red color. In the full
grid case, we observe that the problem becomes ill-conditioned, i.e. κ(G) ≥ 107, if Nk is
close to n. This explains why the error in figure 6.14 (a) increases again when k becomes
too large in comparison to n. In the sparse grid case, however, all systems are well-
conditioned or at least treatable, i.e. κ(G) < 107, except for the ones with parameter
pairs k = 3, n = 26 and k = 4, n = 27.
Since the contour line for κ = 10 is approximately the same as in the regularized ex-

ample from subsection 6.1.1, the application of theorem 5.11 gives again a good estimate
for adequate parameter choices which lead to well-conditioned systems.
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Fig. 6.16: The average overall error AvErr for full grids (left) and sparse grids (right)
after balancing the summands in the overall error bound. We used the coupling
Nk = n · c, for an offset c > 0. If the offset is large enough, we expect the rates
n−2 log(n)2 for full grids and n−4 log(n)9 for sparse grids, see table 5.2 (a) for
m = s = 2.

Balanced convergence rate

To simulate the balanced case, we choose2 the sample size to be n = Nk · c for an offset
factor c > 0, which is directly related to the oversampling constant σ from (5.11). Clearly,
if c is chosen too small, we cannot expect to get the optimal rates derived in section 5.5.
However, if c is large enough to ensure σ ≥ 2s

m
= 2 for full grids and σ ≥ 2s = 4 for

sparse grids, we expect to observe convergence rates of at least

n−
2s
m log(n)− 2s

m = n−2 log(n)2

for full grids and
n−2s log(n)(2s+1)m−1 = n−4 log(n)9

for sparse grids, see table 5.2 (a). We plotted our results for different choices of the offset
c in figure 6.16. For full grids, the expected rate is met already for c = 23. For sparse
grids, the expected rate can be observed for c = 29. Note that, c naturally influences the
constant in the rates. To achieve a fixed error, it might, therefore, be better to choose a
smaller c, even though the asymptotic convergence rate is worse.

2Note that n
log(n) = Nk · c would be more appropriate to reflect the balancing from table 5.2 in the

asymptotic case. However, since we only deal with n up to 20 here, we can ignore the logarithm.
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Fig. 6.17: The average AvErr of the overall error Err = E (fZn,Vk,µ) − E (gp) over 10
independent draws of input data Zn for the function gnp is plotted versus
the level k for different choices of n (top) and versus the number of data n
for different choices of k (bottom). Both full grid (left) and hyperbolic cross
(right) results are plotted.

6.2.2 Periodic regression on full grids and hyperbolic crosses
In this subsection, we consider unregularized regression (µ = 0) of the periodic function
gp in the noiseless setting.

The overall error in dependence on k and n

In figure 6.17, we plotted the error in dependence on k and n. As we observe, the
qualitative behavior is opposite to the one we witnessed for noisy function regression in
figures 6.8 and 6.9. There, the discretization error quickly reached its minimum and the
overall error was governed by the rate of convergence of the sampling error. In figure
6.17, however, the error with respect to n is almost constant and convergence can only
be seen when increasing k. Note that 10−24 is the machine precision and we cannot
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Fig. 6.18: Contour plot of the average of the condition numbers κ(G) over 10 independent
draws of input data Zn for full grids (left) and hyperbolic crosses (right). We
depicted the contour line for κ = 10. All calculated condition numbers are
smaller than 104.

expect to observe any further decay of the error. Having a closer look at the error
bounds (5.33) and (5.36), which we derived for noiseless regression on full grids and
hyperbolic crosses, our experimental results have to be interpreted as follows: Although
we theoretically have super-algebraic decay of the k-dependent term 2−2sk since s > 0 can
be chosen arbitrarily large, the constants involved there are such that the corresponding
summand is still larger than the data dependent term governed by n−σ already for
moderate oversampling parameters σ > 0, i.e. already for n close to Nk.

Stability

A contour plot of the average condition numbers κ(G) of the system matrix G for un-
regularized regression in the periodic case can be found in figure 6.18. We depicted
the contour line κ(G) = 10 and marked the area in which Nk > n holds. Note that
all of the computed condition numbers were smaller than 104 and the contour line for
κ(G) = 107, which we plotted in figure 6.15, cannot be seen here. Therefore, all systems
are well-conditioned or at least treatable.
We observe that the contour line for κ = 10 approximately matches the corresponding

line in the LC case of the noisy regression problem, see also figure 6.12. Therefore,
everything we discussed about the application of theorem 5.11 in subsection 6.1.2, is
also valid here.

Balanced convergence rate

Similarly as in the non-periodic case, we take n = Nk · c for different choices of c > 0.
Since s > 0 can be chosen arbitrarily large, we could expect that the convergence becomes
faster with increasing c in the balanced case, see table 5.2. However, as we already saw
in figure 6.17, the constants involved in the 2−2sk term of the error bound and the finite
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Fig. 6.19: The average overall error AvErr for full grids (left) and hyperbolic crosses
(right) after balancing the summands in the overall error bound. We used the
coupling Nk = n · c, for an offset c > 0.

machine precision prevent us from observing arbitrarily high convergence rates. We
plotted the experimental results for the balanced case in figure 6.19. There, we see that
the convergence rate is not influenced by the choice of c. However, as we mentioned,
this is most probably due to the fact that we cannot compute the error with arbitrary
high precision and that the computational resources limit us to the case k < 10, n < 220.
Nevertheless, we observe convergence rates faster than n−15 already in figure 6.19.

6.3 Adaptivity
In contrast to the previous sections, we now consider a non-smooth example function.
To this end, let the vector-valued function fjump : (0, 1)5 → R3 be defined by

fjump(t1, . . . , t5) :=
(
χ[0.4,1)(t1), χ[0.4,1)(t2),

5∑
i=1

ti

)T
,

where
χ[0.4,1)(t) :=

{
1 if t ∈ [0.4, 1)
0 else

denotes the characteristic function on the interval [0.4, 1). Since the first two components
of fjump contain a jump, the smoothness of this function is limited. Indeed, it can be
shown that we only have fjump ∈ H

1
2−δ
mix for any δ > 0. Therefore, when drawing samples

from g = fjump and running a sparse grid regression algorithm, we can expect our
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convergence results to hold only with smoothness parameter s < 1
2 . Thus, the squared

best approximation error inff∈Vsparse,1
k

‖fjump−f‖2
L2((0,1)5;R3) can be expected to decay with

a rate of only 2−2sk · km−1 > 2−kk4, see also (3.42). This, of course, directly carries over
to the decay of the discretization error in (4.52) in the noisy case or the k-dependent
summand in (5.29) in the noiseless case, respectively.
The slow rate of convergence of the best approximation error is a major drawback

when applying regression algorithms. In the noiseless case for instance, the convergence
with respect to n is very fast. Therefore, the k-dependent error term is usually dominant
in the overall error bound, see also section 6.2. In order to achieve a certain overall error,
the basis size Nk needs to be significantly larger in the case of a non-smooth g than in
the case of a smooth solution.
Adaptivity can be employed to remedy this problem to some extent. In the following,

we briefly introduce a dimension-adaptive variant of the sparse grid regression algorithm
based on [30] and investigate its performance for our example. The idea behind the
algorithm is to refine the resolution of the discretization in the most important coordinate
directions and coarsen it in the other ones. For our example, this means that e.g. the
first component function χ[0.4,1)(t1) needs to be resolved quite accurately in t1 direction.
However, since it does not depend on the other coordinates at all, the resolution in these
directions can be coarsened.

6.3.1 A dimension-adaptive sparse grid regression algorithm

In order to describe the dimension-adaptive sparse grid algorithm, we have to make a
few alterations to our previous definitions for sparse grids from section 3.5. For detailed
explanations, we refer to [11, 30]. Let the altered index set Ĩl for an l ∈ (N ∪ {−1})m be
defined by

Ĩl :=

i ∈ Nm

∣∣∣∣∣∣∣
ij = 0, if lj = −1,
ij = 1, if lj = 0,
1 ≤ ij ≤ 2lj − 1, ij odd if lj > 0,

for 1 ≤ j ≤ m

 .
Furthermore, let the univariate basis function γ−1,0(t) := 1 be constant on [0, 1] and let
us redefine γ0,1(t) := 2t− 1. With the definition

W̃l := span{γl,i | i ∈ Ĩl},

compare (3.31), we directly obtain Wl = W̃l for every l ∈ (N \ {0})m. By using

ζ̃m(l) :=
{

0 if lj ≤ 0 for all 1 ≤ j ≤ m,∑m
j=1 max(lj, 0)−m+ |{j | lj ≤ 0}|+ 1 else
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instead of ζm(l), we obtain the equality

Vsparse,d
k =

⊕
l∈(N∪{−1})m
ζ̃m(l)≤k

W̃l

for the sparse grid spaces with k > 0. However, the specific choice of W̃l now establishes
a direct link of the decomposition of the sparse grid space discretization to the so-
called analysis-of-variance (ANOVA) decomposition. For a detailed introduction of the
ANOVA decomposition and a thorough explanation of the mentioned link, we refer the
interested reader to [11, 30].

The error indicator

The main ingredient for the dimension-adaptive sparse grid regression algorithm is the
error indicator. Its size determines if the grid is refined in a certain direction. Let
Ξi ⊂ (N ∪ {−1})m be arbitrary lower multilevel index sets for the directions i = 1, . . . , d.
As we already mentioned in subsection 5.5.6, the term “lower” means that l ∈ Ξi implies
k ∈ Ξi for all k ≤ l. Let, furthermore, f : (0, 1)m → Rd be a function with components
fi, i = 1, . . . , d, given in the form

fi =
∑
l∈Ξi

∑
j∈Ĩl

αl,j,i γl,j.

The error indicator εl,i for the l-th multilevel index of the i-th component function of f
is defined by

εl,i(f) := max
j∈Ĩl

‖αl,j,i γl,j‖L2([0,1]m) ' max
j∈Ĩl

αl,j,i.

We refer to [38] for details on this specific error indicator. To see that this choice is
meaningful, let us consider the regression error E(f)−E(g). Let the components gi of g
with i = 1, . . . , d be given by

gi :=
∑

l∈(N∪−1)m

∑
j∈Ĩl

βl,j,i γl,j.

If f is a good approximation to g, e.g. if f is the solution to the regression problem, then
αl,j,i ≈ βl,j,i for all i = 1, . . . , d and l ∈ Ξi, j ∈ Ĩl. Therefore, we obtain

E(f)− E(g) = ‖f − g‖2
L2((0,1)m;Rd) '

d∑
i=1

∑
l/∈Ξi

∑
j∈Ĩl

β2
l,j,i

according to (3.38) with s = 0. Thus, the overall error is reduced the most, when adding
those l to Ξi for which ∑j∈Ĩl

β2
l,j,i is the largest. Since the coefficients of g ∈ Hs

mix have
to decay quickly with increasing multilevel index, see again (3.38), it is reasonable to
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assume that β2
k,j,i < β2

l,j,i for k > l. Therefore, we do not need to refine further into
directions l for which εl,i(f) is already small. Note, however, that this is of course only a
heuristic approach and there exist counter-examples where this idea does not work, see
e.g. [38] for details.

The dimension-adaptive algorithm

The dimension-adaptive procedure to compute the solution fZn,A,µ of the regression
problem on an adapted grid space A can be found in algorithm 1. The input parameters
are the threshold ε > 0, the maximum refinement level kend > 0 and the initial lower
multilevel index sets Ξi ⊂ (N ∪ {−1})m for i = 1, . . . , d. Prior to the adaption, we
perform a compression step in order to detect directions which are irrelevant for our
further computations. In the refinement step, we consider the directions l + ej for all
j ∈ {1, . . . ,m} for which lj 6= −1. This means that we exclude the refinement of
directions in which f is constant since they are not important for the representation of
f . For more mathematical details on this step, we refer to [11, 30]. Note that we run
over all k ≤ l+ej to ensure that the index sets of the underlying grid are lower also after
the refinement. This is needed to ensure that a grid traversal algorithm works correctly,
see [29, 30] for technical details.

6.3.2 Regular sparse grids vs. dimension-adaptive sparse grids
We now compare the performance of our standard algorithm for (regular) sparse grids to
the dimension-adaptive algorithm. To this end, we take g = fjump and randomly sample
n = 215 data points. Since we investigate the noiseless case, i.e. ρ(x|t) = δg(t)(x), we use
µ = 0. For the numerical error measurement, we interpolated g on a standard sparse
grid of level 6. In figure 6.20, we plotted the overall error for regular sparse grids and
dimension-adaptive sparse grids with respect to the basis size. We started with a grid
over the index sets Ξi = {−1, 0}m in each direction i = 1, . . . , d and varied the kend
parameter.
First of all, we notice that the adaptive algorithm clearly outperforms the regular

sparse grid method for both choices of ε. In the case ε = 10−2, we observed during the
experiment that the algorithm detects the structure of the function perfectly, i.e. the first
component is coarsened up to two remaining grid points and, subsequently, refined only
in t1 direction. The same holds true for the second component and the t2 direction. The
algorithm also detects that the sum ∑5

i=1 ti in the third component can be described
by the basis functions with the multilevel indices l = (−1,−1,−1,−1,−1)T + ej for
each j = 1, . . . , 5. If we choose ε too small, the grid is also refined in several irrelevant
directions as we observe for ε = 10−3. However, also in this case the algorithm still
outperforms the regular sparse grid method. It is noteworthy that the runtime of the
regular sparse grid computation for level k = 3 was more than 10 times larger than the
runtime for each of the adaptive calculations.
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Algorithm 1 Computation of f = fZn,A,µ in the dimension-adaptive space A
Require: ε > 0, kend > 0, Ξi ⊂ (N ∪ {−1})m for i = 1, . . . , d
Ensure: f : the solution to the regression problem on the refined grid

A := (A1, . . . , Ad)T with Ai ←
⊕

l∈Ξi W̃l for i = 1, . . . , d {Initialization of A}
f ← fZn,A,µ {Initialization of f}
for i = 1, . . . , d do
for W̃l ⊂ Ai do
if εk,i(f) ≤ ε‖fi‖L2([0,1]m) for all k ∈ Ξi with l ≤ k then
Ai ← Ai \ {W̃l} {Initial compression}

end if
end for

end for
while |l|`∞ < kend for all l with W̃l ⊂ Ai for an i ∈ {1, . . . , d} do
f ← fZn,A,µ {Calculate solution on actual grid}
for i = 1, . . . , d do
for W̃l ⊂ Ai do
if εl,i(f) > ε‖fi‖L2([0,1]m) then
for j ∈ {1, . . . ,m} with lj 6= −1 do
for k ≤ l + ej do
Ai ← Ai ∪ W̃k {Refinement step}

end for
end for

end if
end for

end for
end while
f ← fZn,A,µ {Calculate the solution on the refined space A}
return f

In summary, the dimension-adaptive variant has two main advantages over its regular
counterpart: First, we obtain significantly improved error convergence rates with respect
to Nk for anisotropic problems. Second, we can employ a much higher grid resolution
in important directions of the function before we encounter the critical Nk ≈ n barrier.
Besides the runtime, this also affects the stability of the corresponding equations.
We cannot expect the adaptive algorithm to perform as nicely as for our toy example

when dealing with more complicated problems. However, there exist ideas on how to
extend the class of problems which can be successfully treated by the dimension-adaptive
sparse grid algorithm. By applying an initial rotation to the data for instance, functions
with jumps along diagonal directions can also be handled efficiently, see [65] for first
results in this direction. Besides the sparse grid case, the general ideas of this section
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Fig. 6.20: The overall error Err := E(fZn,Vk,0)−E(fjump) in dependence on the basis size
Nk. Here, Vk = Vsparse,5

k for regular sparse grids and Vk = A with k = kend
for dimension-adaptive sparse grids. The plotted levels for the regular SG are
k = 1, 2, 3. For the dimension-adaptive SG we start with Ξi = {−1, 0}m for
all i = 1, . . . , 5 and plot the results for kend = 1, 2, 3, 4, 5, 6 with ε = 10−2 and
ε = 10−3.

can also be transferred to hyperbolic cross regression.

6.4 Real world examples
In this section, we show how the dimension-adaptive algorithm can be used to tackle
problems which stem from real-world applications. To this end, we consider a data
set of electroencephalogram (EEG) measurements in one experiments and the results of
professional soccer games over the last 8 years in a second experiment. In both cases,
the number of input data points is quite large and exceeds 104. It is unclear, however, if
the data at hand fulfills the assumptions posed in our earlier chapters, e.g. independence
of measurements, or if the true solution resides in a Sobolev space of mixed smoothness.
Since the data points t1, . . . , tn do not necessarily reside in (0, 1)m in the experiments,
we rescale the domain linearly in each coordinate direction in our code.

6.4.1 Eye state prognosis from EEG measurements
The goal in this experiment is to correctly predict the eye state (open or closed) of a
test subject from given EEG data.
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The data set

The “EEG eye state data set” is taken from the UCI machine learning repository, see
[57]. It provides 117 seconds of EEG measurements from one single proband. More
specifically, it consists of 14-dimensional points ti for i = 1, . . . , 14980, where each data
point corresponds to a fixed time step and represents the values measured by the m = 14
electrodes of the electroencephalograph. Furthermore, we are given xi ∈ {−1, 1}, which
indicate if the eyes of the test subject were open (−1) or closed (1) at time step i. Here,
approximately 55% of the data have the label −1 and 45% carry the label 1. Since there
is obvious measurement noise in 4 of the data points, we remove them to obtain a data
set with 14976 points (ti,xi).

Learning the data

To tackle this problem with our dimension-adaptive sparse grid regression algorithm,
we perform a 10-fold crossvalidation, i.e. we split the set {1, . . . , 14976} into 10 parts of
(approximately) equal size. Then, we use the union of 9 of these parts as training indices
Itrain to learn a model fZn,A,µ for which all data points Zn = (ti,xi)i∈Itrain are taken as
input data. We evaluate the classification rate

ClassRate(fZn,A,µ) := 1
|Itest|

∑
i∈Itest

Class(fZn,A,µ(ti),xi)

with
Class(fZn,A,µ(ti),xi) :=

{
1 if fZn,A,µ(ti) · xi > 0
0 else

on the test data corresponding to Itest = {1, . . . , 14976} \ Itrain. Subsequently, we take
another one of the 10 parts of the index set as Itest and learn a model from the remaining
9 parts. This process is repeated until each of the 10 parts has been chosen as Itest once.
The arithmetic average of the classification rate over all 10 runs serves as a measurement
for the performance of our algorithm and allows to directly compare our results to the
ones in [71].
We could think about solving the whole 14-dimensional problems with a rather large

refinement threshold ε to limit the size of the resulting grid. However, besides the
high computational costs, this does not allow to refine the most important directions
sufficiently well. Therefore, we choose a two-step approach:

• First, we tackle the 14-dimensional problem with the dimension-adaptive algorithm
with ε = 0.1, kend = 3, µ = 10−3 and an initial multilevel index set which consists
of all 14-dimensional vectors from {−1, 0}14 with at most three zero-entries. In
this way, we only consider at most three-way interactions of the input variables.
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• Afterwards, we take the three coordinate directions in which the adaptive algorithm
spent the most amount of grid points and use them to start the adaptive algorithm
with ε = 0.01, kend = 5, µ = 10−3 and initial multilevel index set {−1, 0}3 for the
corresponding three-dimensional problem.

In this way, the adaptive algorithm first determines the most important directions and
we then take only these coordinates to proceed with a fine-grained approach. In order
to save computational time, we perform the initial 14-dimensional computation only
for the first choice of Itrain and keep the three most important dimensions fixed for our
computations of the other folds. Note that the specific choice of the parameters of the
dimension-adaptive sparse grid algorithm is rather ad hoc and has not been optimized
in any way.

Evaluation

The three directions in which our dimension-adaptive method spends the most grid
points correspond to three electrodes which were located at the left hemisphere of the
brain. Here, one was placed to measure stimulus of the the occipital lobe, the second one
measured the parietal lobe activity and the third one was placed at the posterior of the
frontal lobe, close to the temporal lobe. Therefore, the algorithm decided not to consider
the activity of the right hemisphere at all. Furthermore, it decided that combining the
information from several lobes is more promising than relying on multiple measurements
from a single lobe.
Our results can be found in table 6.1. The average classification rate is approximately

71.6%, which is of course too small for an actual clinical application, but it shows that
there is a connection between the eye state and the EEG measurements. Since this 10-
fold crossvalidation experiment has served as a benchmark for many machine learning
algorithms, we can directly check how our algorithm ranks in comparison to others.
As we see from the survey in [71], we outperform the majority of the classification
algorithms tested there. Surprisingly, popular machine learning methods such as naive
Bayes estimators, support vector machines and multilayer artificial neural networks seem
to perform quite bad for this data set and rank significantly worse than our approach.
More specifically, they achieve classification rates ranging from approximately 50% up to
68%. Note that the authors of [71] did not optimize the parameters for the corresponding
methods - but neither did we. Our choices for ε, kend and µ are quite generic.3 Note,
furthermore, that most of the methods that achieved a higher average classification rate
than 71.6% in [71] are either based on a decision tree or on an instance-by-instance
comparison. Thus, the underlying idea for these methods is quite different from our
approach.

3We also tested different values here, but the results for our adaptive sparse grid method did not vary
much.
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test fold classification rate
1 0.6947
2 0.7303
3 0.7128
4 0.7150
5 0.7256
6 0.7301
7 0.7096
8 0.7114
9 0.7210
10 0.7056

Average 0.7156

Table 6.1: The classification rates ClassRate(fZn,A,µ) for each test set in a 10-fold cross-
validation of the EEG eye state data set. The calculations were performed on
the three-dimensional data set which resulted from the initial analysis of the
14-dimensional problem. The parameters were chosen as ε = 0.01, kend = 5,
µ = 10−3 and we started on the grid which contains all multilevel indices
l ∈ {−1, 0}3.

6.4.2 Prediction of soccer matches
In this experiment, we investigate if it is possible to predict the tendential outcome of
soccer matches, i.e. home team win, away team win or draw, based on player statistics
from the “EA Sports FIFA” computer game series.

The data set

The corresponding “European Soccer Database”, which we use here, can be found at
http://www.kaggle.com. From this data set, we extracted the data for all matches
from seasons 2008/2009 to 2015/2016 of the following leagues: Jupiler League (Bel-
gium), Premier League (England), Ligue 1 (France), 1. Bundesliga (Germany), Serie A
(Italy), Eredivisie (Netherlands), Liga ZON Sagres (Portugal), Scottish Premier League
(Scotland), Liga BBVA (Spain). We aim to predict the outcome of the matches from
all leagues in the season 2015/2016 by learning from the data of the remaining seasons.
To build our input data vectors and allow for an evaluation in the end, we only consider
matches for which the starting lineup and the odds from the betting provider “bet365”
are present in our database.
Our first task is to extract suitable features from the given data set. Since the actual

lineup of a team has the most impact on the result of the match, we pursue the idea
of giving a rating to each player and building our features with this information. To
this end, we rely on the “overall player rating” (an integer number between 0 and 100)

http://www.kaggle.com
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given to each player in the “EA Sports FIFA” video game series. These values have
been updated on an irregular basis over the last years. Therefore, for each specific soccer
match, we always rely on the most recent rating for each player. To build our features,
let h1, . . . , h11 be the ratings of the players in the starting lineup of the home team and
let a1, . . . , a11 be the corresponding values for the away team. Let, furthermore, the
order be such that h1 and a1 are the values for the goalkeepers of each team. Then, our
features are

1. team strength: ∑11
i=1 hi − ai,

2. star bonus: max hi −max ai,

3. weakest link: min hi −min ai,

4. goalkeeper strength: h1 − a1.
The first feature indicates which team has the better total rating, whereas the second
one measures how large the gap between the best player of the home team and the best
player of the away team is. The third feature is the analogue of the second one for the
worst player of each team. Finally, the fourth parameter indicates which goalkeeper is
better. Let T ⊂ (−1100, 1100) × (−100, 100)3 be the domain in which the parameters
reside. Now, the data point (ti,xi) ∈ T×Z ⊂ R4×R, corresponding to the i-th match of
our database, consists of a four-dimensional vector ti, which contains the team strength,
the star bonus, the weakest link and the goalkeeper statistics, as well as a label xi ∈ Z.
The latter provides the difference between the number of goals scored by the home team
and the number of goals scored by the away team, i.e. it is positive if the home team won,
zero if the match ended in a draw and negative if the away team won. Our training set,
i.e. all points corresponding to matches which took place before the season 2015/2016,
is of size n = 16946, while the test set on which we evaluate our model consists of 2654
data points.

Learning the data

To measure the quality of our model, we again consider the classification rate. Note,
however, that we have three possible outcomes (home team win, draw, away team win)
instead of only two as in the previous experiment. Therefore, we introduce a threshold
δ > 0 and we classify a match t as a home team win if fZn,A,µ(t) > δ, as an away team
win if fZn,A,µ(t) < −δ and as a draw otherwise. Note that, after testing several values
for δ, we observed that δ = 0 is the optimal choice in almost every case. Therefore, we
set δ = 0 and only classify a match as a home or an away win. Thus, we automatically
fail if the match actually ended in a draw.
We run a 5-fold crossvalidation on the training set to determine the optimal choice of

µ ∈ {10−1, 10−2, 10−3, 10−4} and kend ∈ {2, 3, 4, 5}, i.e. the pair of parameters for which
the average classification rate is the highest. Subsequently, we learn a model on the full
training data set with these optimal parameters and evaluate it on the test data.
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Evaluation

With the 5-fold crossvalidation, we found λ = 10−2 and kend = 3 to be the optimal
set of parameters, which achieved an average classification rate of 53.0% on the train-
ing data. With these parameters, we obtain a classification rate of 51.1% on the test
data. In more detail, we predicted 1034 of 1176 home team wins and 322 of 809 away
team wins correctly. Furthermore, there were 669 draws, which we misclassified. The
amount of grid points spent in each direction is approximately equal for the coordi-
nates corresponding to the “team strength”, the “star bonus” and the “weakest link”.
In the “goalkeeper strength” direction, however, only a very coarse grid is employed by
the dimension-adaptive algorithm. This indicates that more subtle differences in the
goalkeepers’ abilities do not matter that much for the outcome of a match.
To interpret our quantitative results, note that 44.3% of all matches in the 2015/2016

season ended with a win of the home team. Therefore, we obviously beat the trivial
strategy of betting on the home team in each match. Usually, even experts only achieve
classification rates around 51 − 53%. To this end, let us have a look at the betting
odds of “b365”, one of the largest betting providers, for all matches in the 2015/2016
season. If we always bet on the outcome of a match according to the smallest betting
odds, we achieve a classification rate of 52.0% by classifying 990 home team wins, 391
away team wins and 0 draws correctly. Note that the result of our algorithm comes quite
close to this. Note, furthermore, that the computation of the betting odds is usually
based on expert knowledge and requires the analysis of many statistics. Therefore, the
performance of our method, which is based only on the player ratings from the video
games series, is quite remarkable.
Given the b365 odds, we could pose the question if there is any chance to make profit

from betting on the matches. With the strategy of betting 1e on the outcome with the
smallest odds for each match, we would actually lose 156.83e. By betting 1e on the
outcome which the dimension-adaptive sparse grid algorithm predicted, the loss amounts
to 118.49e. A more clever strategy can be obtained by betting on a match t only if
the absolute value |fZn,A,µ(t)| exceeds a fixed threshold ω > 0. Furthermore, we bet
|fZn,A,µ(t)|e instead of 1e, i.e. the more confident we are in our prediction, the more
money we bet. The profit in dependence on ω can be found in figure 6.21. Note that we
are indeed in the positive range for several, large enough choices of ω. The most profit is
achieved for ω = 1.63. In this case, we betted 214.99e to earn a profit of 4.08e. Thus,
the ratio between profit and investment is just 1.9%. Furthermore, the profit highly
depends on ω and still fluctuates around 0e also for large choices of ω. Therefore, our
approach is only profitable if we guess the right ω by chance.
Overall, we see that the outcome of a soccer match is often influenced by chance/noise

and it is impossible to predict it reliably. Nevertheless, we are able to achieve a remark-
able classification rate by using statistics from the “EA Sports FIFA” computer game
series.
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Fig. 6.21: The profit when betting on all soccer matches t of the season 2015/2016 for
which |fZn,A,µ(t)| > ω. We depicted the results for a 1e wager and for a
|fZn,A,µ(t)|e wager. The full range (0 ≤ ω ≤ 3) can be found on the left and
a zoomed range (0.85 ≤ ω ≤ 3) is shown on the right.



7 Conclusion
This chapter serves to provide a short summary of the results of this thesis. Furthermore,
we point at open questions and discuss possible directions for future research.

7.1 Summary
In this thesis, we analyzed the vector-valued regression problem over finite-dimensional
search spaces. We provided theorems on its solvability/stability and the rate of decay
of the overall error for both regularized and unregularized regression. To illustrate our
results, we applied them to regression methods based on sparse grids and hyperbolic
crosses.
After we had given an overview on the state of the art of regression and had motivated

our analysis in the introduction, we provided a short survey on general Lebesgue-Bochner
spaces and Sobolev-Bochner spaces and presented a review on the most important prop-
erties of vector-valued reproducing kernel Hilbert spaces and real interpolation scales.
In the next step, we recapitulated the concepts of spline-based grids and gave a proof on
the rate of decay of the L2 best approximation error for sparse grids. Furthermore, we
provided the basic idea behind hyperbolic cross approximation with Fourier polynomials.
We introduced the regression functional and its finite sample counterpart and, sub-

sequently, formulated the general constrained, vector-valued regression problem over
arbitrary search sets. We showed that it is solvable if the search set is restricted to a
ball in a certain Banach space. Furthermore, we derived sufficient conditions to ensure
the uniqueness of the solution. In order to establish upper bounds on the overall er-
ror of the regression problem, we split the error into a bias part and a sampling error
part and analyzed each part separately. After reviewing known results on the bias for
regression over infinite-dimensional search spaces, we explained why these do not apply
for the discretization error in finite-dimensional search spaces. Therefore, we proposed
a different approach based on Jackson and Bernstein inequalities for this case. Within
this framework, we were able to provide a theorem on the decay of the discretization
error under the premise that the search set radius is large enough. Then, we proved a
probabilistic upper bound on the sampling error in compact finite-dimensional search
sets. By applying our results to sparse grid and hyperbolic cross regression, we showed
that the corresponding methods can circumvent the curse of dimensionality to some ex-
tent, as it is already known from interpolation or approximation problems for instance.
Furthermore, we balanced the discretization error and the sampling error to provide
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optimal convergence rates for these spaces, which come close to n−1, where n denotes
the number of samples. We concluded our analysis of the constrained problem with a
comparison to other results in this research area.
In a next step, we related the penalized, Lagrangian dual problem to the constrained

one and deduced the system of linear equations which needs to be solved in this case.
We also elaborated on the advantages of grid-based methods when solving the dual
problem for large n as it is often required in Big Data applications. By extending well-
known results for scalar-valued orthonormal basis discretizations in the unregularized
case, we were able to prove the stability of both the penalized and the unpenalized
approach for arbitrary Riesz basis discretizations. Furthermore, we took a closer look at
the special case of noiseless function regression without regularization and established a
more refined error analysis here. As before, we applied our theoretical results to sparse
grid and hyperbolic cross regression methods and provided sufficient stability conditions
and optimally balanced error bounds, which exceed the n−1 limit rate from the more
general, constrained regression problem. Finally, we related our results to state-of-the-art
research.
We validated that our theoretical findings are indeed relevant for practical applications

by showing that our upper bounds on the convergence rates come close to the observed
rates in numerical experiments. We also introduced a dimension-adaptive variant of the
sparse grid regression algorithm, which can be applied to significantly reduce the degrees
of freedom which are necessary to deal with anisotropic problems. We concluded with
two real-world regression applications.
In summary, we presented a thorough analysis of the stability properties and the error

behavior of regularized and unregularized vector-valued regression problems over finite-
dimensional search spaces. Our approach is the first one to allow for a detailed analysis of
the sparse grid and the hyperbolic cross regression algorithms. The novel results for these
examples provide new insights in terms of choosing suitable regularization parameters
and determining appropriate couplings between the discretization level and the amount
of input data. We confirmed our theoretical findings by several numerical experiments.

7.2 Outlook
There still remain several open questions, which pave the way for complementary studies
and future research in the field of regression over finite-dimensional search spaces.
First of all, it is an interesting task to check whether or not the proven upper bounds on

the error convergence rates are sharp. As we observed in our numerical experiments, the
actual convergence behavior of a sparse grid or hyperbolic cross algorithm often comes
very close to our proven bounds. Nevertheless, we have also seen slightly improved rates
for specific couplings in the balanced case. Furthermore, it is still an open question,
how the optimal coupling and the corresponding convergence rate for hyperbolic cross
regression look like if the order of Sobolev smoothness of the solution can be chosen
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arbitrarily large.
Although we already derived the optimal rate of convergence which our upper bounds

yield when balancing the error terms appropriately, we did not yet take the computational
costs into account. This is a sophisticated task by itself since it involves the derivation of
a meaningful cost/benefit ratio for the solution of the regression problem with a certain
input parameter set as well as the equilibration of the corresponding terms.
Although we saw in our numerical experiments that the dimension-adaptive sparse

grid regression method is able to considerably reduce the degrees of freedom which are
necessary to deal with an anisotropic problem, there are still open questions from the
theoretical point of view: It remains unclear if the regularization parameter has to be
adjusted for very anisotropic problems. Furthermore, we did not discuss the optimal
coupling between Nk and n and the corresponding convergence rate for a dimension-
adaptive sparse grid space.
As we shortly discussed in subsection 4.5.6, there also exist different variations of the

sparse grid regression algorithm based on the combination technique or the optimized
combination technique. Although our theory is not directly applicable to these variants,
it would be interesting to fit our general ideas into this framework. Naturally, the analysis
of various other local or global sparse discretizations is interesting by itself.
Finally, an aspect which caught a lot of attention recently is the correct treatment of

regression problems over unbounded or infinite-dimensional domains. This problem is
often encountered in the field of uncertainty quantification. A first result in this direction
can be found in [19] for a polynomial discretization.
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