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Zusammenfassung

Wir beschäftigen uns in der vorliegenden Arbeit mit der effizienten numerischen
Berechnung hochdimensionaler Integrale, die in Anwendungen aus dem Finanz- und
Versicherungsbereich auftreten. Klassische Produkt-Quadraturverfahren können we-
gen ihres Aufwands, der exponentiell mit der Dimension steigt, für solche Probleme
nicht mehr eingesetzt werden. Die Berechnung solcher Integrale erfolgt daher mei-
stens mit Monte Carlo Methoden, deren Konvergenz unabhängig von der Dimension
aber relativ langsam ist.

In dieser Arbeit entwickeln wir eine neue allgemeine Klasse von Quadraturver-
fahren zur Berechnung hochdimensionaler Integrale. Unsere Methoden profitieren
direkt von vorhandener Glattheit und niedriger effektiver Dimension des Integranden.
Zudem erhält unsere allgemeine Verfahrensklasse die Klasse der bekannten Dünn-
gitter-Quadraturverfahren (DG-Verfahren) als Spezialfall.

Zur Konstruktion unserer Verfahren bestimmen wir die wichtigsten Terme der
Anker-ANOVA Zerlegung des Integranden mit Hilfe eines dimensions-adaptiven
Fehlerschätzers. Dann integrieren wir die niederdimensionalen Terme unter Ver-
wendung klassischer Quadraturverfahren. Wir analysieren die auftretenden Model-
lierungs- und Diskretisierungsfehler und zeigen, dass für Funktionen mit niedriger
effektiver Dimension auf diese Weise der Fluch der Dimension gebrochen werden
kann. Weiterhin bestimmen wir optimale DG-Verfahren für Funktionen aus gewich-
teten Sobolevräumen und leiten eine neue Schranke für die ε-Kostenkomplexität
dieser Verfahren her.

Außerdem verbessern wir existierende DG-Verfahren durch die Wahl der zu-
grundeliegenden eindimensionalen Quadraturformel und durch orthogonale Koor-
dinatentransformationen. Auf diese Weise können wir vorhandene Glattheit und
niedrige effektive Dimension auf optimale Weise nutzen. Anhand verschiedener An-
wendungsprobleme aus dem Finanzbereich, die zu glatten Integranden führen, zeigen
wir, dass diese neuen Verfahren selbst in hunderten von Dimensionen Monte Carlo
und anderen existierenden Ansätzen um mehrere Größenordnungen überlegen sind.

Desweiteren diskutieren wir verschiedene Lösungsansätze für die Problematik,
dass viele Anwendungen nicht die hohen Glattheitsvoraussetzungen von DG-Ver-
fahren erfüllen. Wir betrachten Gebietszerlegungsmethoden und präsentieren neue
dimensions-adaptive Quadraturverfahren, welche geringe Regularität mit Hilfe von
lokaler Adaptivität in den niederdimensionalen Anker-ANOVA Termen behandeln.
Wir demonstrieren die Effizienz dieser Ansätze anhand der Bewertung von Asia-
tischen Optionen, Barrier Optionen und insbesondere von performance-abhängigen
Optionen.

Schließlich betrachten wir die Simulation stochastischer Asset-Liability Manage-
ment Modelle im Lebensversicherungsbereich als ein Anwendungsgebiet, das in den
letzten Jahren zunehmend an Bedeutung gewonnen hat und zu besonders komplexen
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Integralen führt, die bisher nur mit unbefriedigend langen Rechenzeiten lösbar sind.
Unsere numerischen Tests demonstrieren den Vorteil unserer Ansätze im Vergleich
zu Monte Carlo Methoden auch für diese Anwendung.

Abschließend analysieren wir die effektive Dimension von verschiedenen Inte-
gralen aus dem Finanz- und Versicherungsbereich und erklären, wie das Konvergenz-
verhalten von DG- und anderen numerischen Verfahren von diesen Dimensionen
abhängt. Insgesamt liefern wir auf diese Weise neue Erkenntnisse zum Zusammen-
spiel von DG-Verfahren, Koordinatentransformationen und effektiven Dimensionen.
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Chapter 1

Introduction

Financial institutions have to understand the risks that their financial instruments
create as precisely as possible. To this end, quantitative, mathematical models are
developed which are usually based on tools from stochastic calculus. Most of the
models are too complex to be analytically tractable and are hence analysed with
the help of computer simulations which rely on efficient algorithms from scientific
computing.

An important example is the quantitative, i.e. model-based, pricing of financial
derivatives. Derivatives are financial instruments whose values are derived from the
value of one or several underlying assets such as stocks, interest rates or commodi-
ties. A fundamental result from mathematical finance is that, under certain model
assumptions, the prices of derivatives can be represented as expected values which
in turn correspond to high-dimensional integrals

Id =

∫
Rd
g(z)ϕ(z) dz (1.1)

over the d-dimensional Euclidean space with the Gaussian weight function ϕ and
z := (z1, . . . , zd) or, after a suitable transformation, to high-dimensional integrals

Id =

∫
[0,1]d

f(x) dx (1.2)

over the unit cube. The dimension d depends on the number of sources of uncertainty
respected by the model assumptions and is the larger the more random variables
are involved. This way, high-dimensional integrals in hundreds of variables appear
in many applications from finance. Since the integrals can in most cases not be
calculated analytically, they have to be computed numerically up to a prescribed
accuracy ε. Today, almost one fifth of the most powerful commercially available
computer systems worldwide is owned by financial institutions and used for such
purposes [111]. For comparison note that this share has doubled in the last two
years and that there are by now more supercomputers working for finance than for,
e.g., climate research, defense or geophysics.

For an efficient computation of high-dimensional integrals, one of the key pre-
requisites is that the curse of dimension [9] can be avoided at least to some extent.
The curse of dimension states that the cost to compute an approximation with a
prescribed accuracy ε depends exponentially on the dimension d of the problem.
This is one of the main obstacles for a conventional numerical treatment of high

1



2 Chapter 1. Introduction

dimensional problems. Classical product quadrature methods for the computation
of multivariate integrals [28] achieve with n evaluations of the integrand an accuracy
of

ε(n) = O(n−r/d)

for functions with bounded derivatives up to order r. For fixed r, their convergence
rates r/d thus deteriorate with increasing dimension and are already in moderate
dimensions so small that high accuracies can no longer be obtained in practise. On
the positive side, the case r ∼ d indicates that the problem of a high dimension can
sometimes be compensated by, e.g., a high degree of smoothness. Also other aspects
such as the concentration of measure phenomenon1 or the superposition theorem
of Kolmogorov2 show that there is some chance to treat high-dimensional problems
despite the curse of dimension. Furthermore, it is known from numerical complexity
theory [157] that some algorithm classes can break the curse of dimension for certain
function classes.

Randomised methods, so called Monte Carlo methods, are the most well-known
examples of such classes of algorithms. Here, the integrand is approximated by
the average of n function values at random points. Monte Carlo methods were
first introduced to derivative pricing by Boyle [12] and are today the workhorses in
the financial industry in particular for complex problems which depend on many
variables. For square integrable functions f , the expected mean square error of the
Monte Carlo method with n samples is

ε(n) = O(n−1/2). (1.3)

The convergence rate is thus independent of the dimension d, but quite low and a
high accuracy is only achievable with a tremendously high number n of function
evaluations. This slow convergence of the Monte Carlo method is one of the main
reasons for the enormous need of the financial industry for computer resources.

Under more restrictive assumptions on the smoothness of the integrand it can
be shown that faster rates of convergence can be attained by deterministic integra-
tion methods such as quasi-Monte Carlo methods [59, 119] and sparse grid meth-
ods [18, 150, 170]. Quasi-Monte Carlo methods are number theoretic algorithms
which approximate the integral by the average of n function values at deterministic,
uniformly distributed points. For integrands f of bounded variation, their ε-cost
complexity [119] is

ε(n) = O(n−1(log n)d). (1.4)

They thus converge with a rate of almost one, almost independent of the dimension
and almost half an order faster than the Monte Carlo method. Sparse grid methods

1The concentration of measure phenomenon [102] says that every Lipschitz function on a suffi-
ciently high dimensional domain is well approximated by a constant function.

2The theorem of Kolmogorov [95] shows that every continuous function of several variables can
be represented by the superposition of continuous functions that depend on only one variable.
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are deterministic methods based on polynomial exactness, which are constructed
using certain combinations of tensor products of one-dimensional quadrature rules.3

In their simplest form [150], they have the ε-cost complexity

ε(n) = O(n−r(log n)(d−1)(r+1)) (1.5)

for all integrands which have bounded mixed partial derivatives of order r. Their
convergence rate is almost independent of the dimension and increases with higher
smoothness r of the integrand. For analytic functions even spectral convergence is
observed.

A difficulty in higher dimensions is that quasi-Monte Carlo and sparse grid meth-
ods still depend on the dimension d through the logarithmic terms in (1.4) and (1.5).
Furthermore, the implicit constants in (1.4) and (1.5) depend on d and often grow
exponentially with d. Moreover, it is known from numerical complexity theory that
many classes of integration problems are intractable [157] with respect to these
deterministic methods meaning that even the best quasi-Monte Carlo or the best
sparse grid algorithm can not completely avoid the curse of dimension. For a large
dimension d and a small or moderate number n of sample points, the asymptotic
advantage of the deterministic numerical methods over the Monte Carlo method
might thus not pay off.

Nevertheless, integrals from practise are often in different or smaller problem
classes and thus may be tractable. Paskov and Traub [134] indeed observed in
1995 that quasi-Monte Carlo methods converge nearly independent of the dimension
and faster than Monte Carlo for a 360-dimensional integration problem which was
given to them by the investment bank Goldman Sachs. This empirical observation
indicated that the long computing times required by the Monte Carlo method may be
avoided by deterministic integration methods even in high dimensions. It initiated
intensive research to generalise the result of Paskov and Traub to wider classes of
problems and to explain the success of the quasi-Monte Carlo method despite the
high dimension. In the following years also sparse grid methods were successfully
applied to this particular integration problem [48,49,123,135]. These methods were
also clearly superior to Monte Carlo, showing a similar efficiency as quasi-Monte
Carlo.

One explanation for the success of the deterministic quadrature methods, which
is by now widely accepted, is based on the analysis of variance (ANOVA) repre-
sentation of the integrand [19]. There, the function f on IRd is decomposed into a
sum of 2d terms, where each term describes the relative importance of a subset of
variables with respect to the total variance of f . It turned out that for most inte-

3We refer with sparse grid methods to the generalised sparse grid approach [48, 71, 137, 165].
While the classical sparse grid method [150] is uniquely determined by the choice of the underlying
univariate quadrature rule, generalised sparse grid methods leave in addition the choice of an
underlying index set open.
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grands from finance the importance of each variable is naturally weighted by certain
hidden weights. With increasing dimension, the lower-order terms of the ANOVA
decomposition continue to play a significant role, whereas the higher-order terms
tend to be negligible [19, 161]. Moreover, often coordinate transformations (usually
interpreted as path generating methods), such as the Brownian bridge [117], can be
used to exploit the underlying special structure of the problems from finance and to
enforce the importance of the leading dimensions in this way. It is known by now
that most high-dimensional integrands from finance are of low effective dimension,
or can be transformed to be of low effective dimension, in the sense that they can
be well approximated by a sum of functions which depend on only few variables.

The relation between the effective dimension and the performance of quasi-Monte
Carlo methods has been investigated intensively in recent years. While the effective
dimension has no impact on Monte Carlo methods, quasi-Monte Carlo methods
profit from low effective dimensions, since low dimensional projections of their points
are especially well-distributed and since their points are usually better uniformly
distributed in smaller dimensions than in higher ones.

Classical sparse grid methods can not utilize low effective dimensions. How-
ever, dimension-adaptive sparse grid methods, as recently introduced by Gerstner
and Griebel [49], take advantage of low effective dimensions in a very general and
automatic way by a dimension-adaptive grid refinement.

Sloan and Woźniakowski introduced in [148] weighted Sobolev spaces of func-
tions with bounded mixed regularity and proved that there exist quasi-Monte Carlo
methods which can avoid the curse of dimension in such spaces, provided the func-
tion space weights decay sufficiently fast with growing dimension. Their results were
generalised, also to sparse grid methods [124], and complemented by constructive
approaches, e.g. the CBC-construction of lattice rules [149], in a series of papers
and are still in the focus of active research.

Today many different settings are known in which integration is tractable with
respect to quasi-Monte Carlo and sparse grid methods [124]. However, these set-
tings usually do not apply to applications, since most of them do not satisfy the
smoothness assumptions on bounded mixed regularity. This issue was recently ad-
dressed in [64, 106] with the argument that the lower order terms in the ANOVA
decomposition are in certain cases smoother than the original function. Since the
higher order terms are small because of low effective dimension, this may explain
the fast convergence of the deterministic methods despite the low regularity of the
application problems.
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This thesis deals with the numerical analysis and with the efficient numerical
treatment of high-dimensional integration problems from finance and insurance. It
departs from most of the existing literature in the following two ways:

• We mostly address the arising integrals directly on IRd and avoid transforma-
tions4 to the unit cube.

• We base our numerical analysis and our numerical methods mainly on the
anchored-ANOVA decomposition5 instead of the (classical) ANOVA.

This way, we gain new insights into the interplay between coordinate transfor-
mations, effective dimensions and the error of sparse grid methods. We present
a novel general class of multivariate quadrature methods, which is based on the
anchored-ANOVA. Our approach exploits low effective dimension and, surprisingly,
it includes the class of sparse grid methods as a special case. We derive new error
bounds for sparse grid methods in weighted spaces and improve existing sparse grid
methods in several ways. Our theoretical considerations indicate that these meth-
ods can profit from low effective dimension and from smoothness of the integrand
much more efficiently than existing approaches. In fact many numerical experiments
clearly demonstrate that our novel numerical methods are superior to Monte Carlo,
quasi-Monte Carlo and existing sparse grid methods for various applications from
finance even in hundreds of dimensions by several orders of magnitude.

We next describe the contributions of this thesis in more detail.

• Based on the anchored-ANOVA decomposition we define new notions of ef-
fective dimension, which we refer to as effective dimensions in the anchored
case, and derive new error bounds which relate these dimensions to integration
errors. We determine the effective dimensions in the anchored and in the clas-
sical case for several applications from finance with hundreds of dimensions
and indicate by theoretical arguments and by numerical experiments that the
performance of sparse grid methods can be better explained with the help of
our new notion of effective dimension than with the classical one.

• We furthermore present a new general class of quadrature methods for the
computation of high-dimensional integrals, which we refer to as dimension-
wise quadrature methods. These new quadrature methods are developed in two

4Transformation to the unit cube introduce singularities which deteriorate the efficiency of
methods that take advantage of higher smoothness, such as sparse grids.

5The anchored-ANOVA decomposition expresses a multivariate function as superposition of its
values on lines, faces, hyperplanes, etc., which intersect a certain anchor point and are parallel to
the coordinate axes [140]. Only a finite number of function values is required for its calculation.
The computation of the classical ANOVA decomposition is significantly more expensive, since here
2d many high-dimensional integrals have to be computed.
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steps: First, the anchored-ANOVA decomposition is truncated either, a priori,
based on function space weights or, a posteriori, in a dimension-adaptive fash-
ion where important terms of the decomposition are automatically detected.
This truncation introduces a modeling error which is controlled by the effective
dimension in the anchored case. Then, the remaining terms are integrated us-
ing appropriate low-dimensional quadrature rules which may be different from
term to term and may refine the approximation in a locally-adaptive way. This
introduces a discretization error which only depends on the maximum order of
the kept terms in the decomposition, but not on the nominal dimension d. We
present numerical results using the CUHRE algorithm [10] for the integration
of the low-order anchored-ANOVA terms and quasi-Monte Carlo methods for
the higher-order ones. This way, we obtain mixed CUHRE/QMC methods
which are to our knowledge the first numerical quadrature methods that can
profit from low effective dimension by dimension-adaptivity and can at the
same time deal with low regularity by local adaptivity. A correct balancing
of modeling and discretization error is more difficult with our new methods
than with sparse grid methods. However, numerical experiments with an 16-
dimensional sample function from finance with discontinuous first derivatives
demonstrate that this disadvantage is more than compensated by the benefits
of the local adaptivity.

• We show that our new general class of methods includes the class of sparse
grid methods as a special case if we use particular tensor product methods
for the integration of the subterms. We explain that sparse grid methods
can be interpreted as a refinement of the anchored-ANOVA decomposition
by first expanding each term of the decomposition into an infinite basis and
then truncating this expansion appropriately. This allows to intertwine the
truncation of the anchored-ANOVA series and the subsequent discretization
and allows to balance modeling and discretization error in an optimal way in
the sense of [18] through the choice of the underlying index set. Such optimal
index sets can be found in a dimension-adaptive fashion as in [49] or by using
a priori information on the function space weights similar as in [165]. We
determine optimal index sets for integrands from weighted tensor products of
Sobolev spaces and derive new cost and error bounds, which take into account
the function space weights and recover known results in case of equal weights.

• Moreover, we present two new variants of the sparse grid method which can
treat the integral (1.1) directly on IRd avoiding the singular transformation to
the unit cube. For moderate high-dimensional integrals with Gaussian weight
and equally important dimensions, we define sparse grid methods based on the
delayed Genz-Keister sequence using the recent approach from Petras [135].
For integrals with Gaussian weight, which have a high nominal, but a low
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effective dimension, we propose dimension-adaptive sparse grid methods based
on the slowly increasing Gauss-Hermite sequence combining ideas from [49,
123,135]. We apply the latter method to several applications from finance and
observe that this method is superior to Monte Carlo, quasi-Monte Carlo and
existing sparse grid methods [49,121,135,150] by several orders of magnitude
even in hundreds of dimensions.

• To further improve the performance of dimension-adaptive sparse grid methods
for problems from finance, we combine these methods for the first time with the
linear transformation method from Imai and Tan [82]. Here, the main idea is
that the integral (1.1) is invariant with respect to orthonormal transformations,
such as rotations, and hence equals to

Id =

∫
IRd
g(Qz)ϕ(z)dz

for all orthogonal matrices Q ∈ IRd×d. The linear transformation method iden-
tifies the matrix Q which minimizes the effective dimension of the integrand
for certain function classes and can in this way maximize the performance of
dimension-adaptive sparse grid methods. We provide numerical experiments
with several application problems from finance which illustrate the efficiency
of this new approach.

• We also address the difficulty that integrands from finance often have kinks or
even jumps and do therefore not satisfy the smoothness requirement of sparse
grid methods. To overcome this obstacle we here investigate the approach first
to identify all kinks and jumps and then to decompose the integration domain
IRd into subdomains Ωi in which the integrand g is smooth. We thus shift the
integration of one discontinuous function to the computation of

Id =
∑
i

∫
Ωi

g(Qz)ϕ(z)dz,

i.e., to the integration of several smooth functions. This way, we regain the
fast convergence of sparse grid methods with costs that depend on the num-
ber of terms in the sum and on the complexity of the decomposition. We
show that this approach is superior to standard methods for the pricing prob-
lems of barrier options and performance-dependent options.6 In the first case,
we efficiently decompose the integration domain with the help of conditional
sampling [59]. In the second case, the decomposition is performed using novel

6Barrier options are financial derivatives which become worthless if the underlying asset crosses
a specified barrier. Performance-dependent options are financial derivatives whose payoff depends
on the performance of one asset in comparison to a set of benchmark assets.
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tools from computational geometry for the enumeration and decomposition of
hyperplane arrangements in high dimensions.

• One of the most complex applications from finance and insurance is the simu-
lation of stochastic asset-liability management (ALM) models in life insurance.
In such models the development of the capital markets, the behaviour of the
policyholders and the decisions of the company’s management have simultane-
ously be taken into account as well as guarantees and option-like features of the
insurance products. New regulations, stronger competitions and more volatile
capital markets have increased the demand for such simulations in recent years.
The numerical simulation of such models is usually performed by Monte Carlo
methods, which, however, often lead to unsatisfactorily long computing times
of several days even on a supercomputer. In this thesis, we successfully apply,
to our knowledge for the first time, quasi-Monte Carlo and sparse grid methods
to these problems. To this end, we rewrite the ALM simulation problem as a
multivariate integration problem and then apply the deterministic methods in
combination with adaptivity and dimension reduction techniques. We provide
various numerical experiments with a general ALM model framework, which
incorporates the most important features of ALM simulations in life insurance
such as the surrender of contracts, a reserve-dependent surplus declaration,
a dynamic asset allocation and a two-factor stochastic capital market. The
results demonstrate that the deterministic methods often converge faster, less
erratic and produce more accurate results than Monte Carlo simulation even
for small sample sizes n and complex models with many variables. We deter-
mine the effective dimensions and the important variables of different ALM
models and show that even our most complex ALM model problems are of very
low effective dimension, or can be transformed to be of low effective dimen-
sion by coordinate transformations. This way, we also provide a theoretical
explanation for the success of the deterministic quadrature methods.

Several parts of this thesis are already published in the journal articles [52, 56],
the book contribution [53] and the conference proceedings contributions [50, 54, 57]
or are in process of being published [51,62].

The remainder of this thesis is organized as follows. In Chapter 2, we introduce
the classical ANOVA and the anchored-ANOVA decomposition of a multivariate
function f . Based on these decompositions, we then define our new notions of
effective dimensions and derive error bounds for approximation and integration.

In Chapter 3, we start with a short survey of classical numerical methods for
the computation of high-dimensional integrals. Then, we define our new general
class of multivariate quadrature methods. These methods proceed dimension-wise
and are constructed by truncation of the anchored-ANOVA decomposition and by
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integration of the remaining terms using one or several of the classical numerical
methods. We derive cost and error bounds for the new methods and discuss a priori
and a posteriori approaches to exploit low effective dimension.

We specify our general approach in Chapter 4, which leads us to the class of
sparse grid methods. We then consider these methods in more detail. We first
define new sparse grid methods based on delayed Genz-Keister and on slowly in-
creasing Gauss-Hermite sequences. Then, we derive optimal index sets of sparse
grid constructions for integrands from weighted Sobolev spaces.

The scope of Chapter 5 are approaches which can be used to improve the perfor-
mance of sparse grid methods by dimension reduction and by the smoothing of the
integrands. Here, we consider different path generating methods to reduce the di-
mension. Furthermore, we discuss domain decompositions and conditional sampling
to regain smoothness.

In Chapter 6, we finally present several applications from finance which can
efficiently be treated by our numerical methods. Using the pricing problems of dif-
ferent interest rate derivatives we study the effects of coordinate transformations and
compare the performance of different sparse grid methods. Then, we consider path-
dependent options, which lead to integrands with kinks or jumps. To overcome this
obstacle we apply local adaptivity in the low-order anchored-ANOVA terms using
the CUHRE algorithm and consider smoothing by conditional sampling. Moreover,
we discuss the efficient pricing of performance-dependent options using domain de-
compositions to regain smoothness. Finally, we consider the simulation of stochastic
asset-liability management models in life insurance using our deterministic integra-
tion methods.

We conclude with a summary of the presented results and some remarks on areas
of future research in Chapter 7.

We give complementary information in the appendix. In Appendix A, we for-
mally define the notion of tractability and summarize some related results. In Ap-
pendix B, we provide more details on performance-dependent options and their val-
uation. Finally, in Appendix C, we describe our general asset-liability management
model and present complementary numerical results which illustrate the impact of
the parameters of the model on the convergence behaviour of our numerical methods.
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Chapter 2

Dimension-wise Decompositions

In this chapter, we introduce the classical ANOVA and the anchored-ANOVA de-
composition of a multivariate function f . Based on these decompositions, we then
define different notions of effective dimensions of f and derive error bounds for
approximation and integration.

We start with the introduction of general dimension-wise decompositions. To
this end, let Ω ⊆ R be a domain and let

dµ(x) =
d∏
j=1

dµj(xj) (2.1)

denote a d-dimensional product measure defined on Borel subsets of Ωd. Here,
x = (x1, . . . , xd) and µj, j = 1, . . . , d, are probability measures on Borel subsets of
Ω. Let V (d) denote the Hilbert space of all functions f : Ωd → IR with the inner
product

(f, g) :=

∫
Ωd
f(x)g(x) dµ(x).

For a given set u ⊆ D, where D := {1, . . . , d} denotes the set of coordinate indices,
the measure µ induces projections Pu : V (d) → V (|u|) by

Puf(xu) :=

∫
Ωd−|u|

f(x)dµD\u(x). (2.2)

Thereby, xu denotes the |u|-dimensional vector containing those components of x
whose indices belong to the set u and dµD\u(x) :=

∏
j 6∈u dµj(xj). The projections

define a decomposition of f ∈ V (d) into a finite sum according to

f(x1, . . . , xd) = f0 +
d∑
i=1

fi(xi) +
d∑

i,j=1

fi,j(xi, xj) + . . .+ f1,...,d(x1, . . . , xd)

which is often written in the more compact notation

f(x) =
∑
u⊆D

fu(xu). (2.3)

The 2d terms fu describe the dependence of the function f on the dimensions j ∈ u
with respect to the measure µ. They are recursively defined by

fu(xu) := Puf(xu)−
∑
v⊂u

fv(xv) (2.4)

11
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and can also be given explicitly by

fu(xu) =
∑
v⊆u

(−1)|u|−|v|Pvf(xv), (2.5)

see [97]. The resulting decomposition (2.3) is unique for a fixed measure µ and
orthogonal in the sense that

(fu, fv) = 0 (2.6)

for u 6= v, see, e.g., [61, 140].

2.1 Classical ANOVA Decomposition

For Ω = [0, 1] and the example of the Lebesgue measure dµ(x) = dx in (2.1), the
space V (d) is the space of square integrable functions and the projections are given
by

Puf(xu) =

∫
[0,1]d−|u|

f(x) dxD\u.

The decomposition (2.3) then corresponds to the well-known analysis of variance
(ANOVA) decomposition which is used in statistics to identify important variables
and important interactions between variables in high-dimensional models. It goes
back to [78] and has been studied in many different contexts and applications, e.g.,
[36,71,85,158]. Recently, it has extensively been used for the analysis of quasi-Monte
Carlo methods, see, e.g., [19, 103,106,152] and the references cited therein.

In the ANOVA the orthogonality (2.6) implies that the variance of the function
f can be written as

σ2(f) =
∑
u⊆D
u6=∅

σ2(fu), (2.7)

where σ2(fu) denotes the variance of the term fu. The values σ2(fu)/σ2(f), called
global sensitivity indices in [151, 152], can then be used to measure the relative
importance of the term fu with respect to the function f .

Example 2.1. For given univariate functions gj ∈ L2([0, 1]), j = 1, . . . , d, let

Igj =

∫
[0,1]d

gj(x)dx and σ2(gj) =

∫
[0,1]d

(gj(x)− Igj)2 dx.

For the classes of purely additive or multiplicative functions

f+(x) :=
d∑
j=1

gj(xj) and f ∗(x) :=
d∏
j=1

gj(xj)
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the ANOVA decomposition can easily be derived analytical, see also [129]. We
obtain

If+ =
d∑
j=1

Igj and σ2(f+) =
d∑
j=1

σ2(gj).

Furthermore,

If ∗ =
d∏
j=1

Igj and σ2(f ∗) =
d∏
j=1

(I2gj + σ2(gj))− If ∗.

The ANOVA terms of f+ and their variances are given by

f+
u (xu) =


If+ if u = ∅
gj(xj)− Igj if u = {j}
0 if |u| > 1

and σ2(f+
u ) =


0 if u = ∅
σ2(gj) if u = {j}
0 if |u| > 1.

For the function f ∗, a simple computation yields

f ∗u(xu) =
∏
j∈u

(gj(xj)− Igj)
∏
j 6∈u

Igj and σ2(f ∗u) =
∏
j∈u

σ2(gj)
∏
j 6∈u

I2gj.

For illustration, we show in Figure 2.1 a two-dimensional sample function f and
its three ANOVA terms f1, f2 and f1,2. The displayed function appears in the prob-
lem to price Asian options using the Brownian bridge path constructions.1 Observe
that variance of the ANOVA term f2 is significantly smaller than the variance of
f1. Such a concentration of the variance in the first variables leads to low effective
dimension and can be used for the efficient numerical treatment of high-dimensional
integration problems as we will explain in Chapter 3 and Chapter 4. Note further
that the first order ANOVA terms are smooth functions despite the fact that f is
not differentiable. This smoothing effect of the ANOVA decomposition indicates
that also functions of low regularity may be integrated efficiently in high dimensions
if the higher-order ANOVA terms are sufficiently small. This smoothing effect was
first observed in [106] and is further investigated in [64].

2.1.1 Effective Dimensions

Based on the ANOVA decomposition, different notions of effective dimensions have
been introduced in [19]. For the proportion α ∈ (0, 1], the effective dimension in

1This application problem is described in detail in Section 6.2.1. Path constructions are the
topic of Section 5.1.
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(a) Function f(x1, x2) (b) ANOVA term f1,2(x1, x2)

(c) ANOVA term f1(x1) (d) ANOVA term f2(x2)

Figure 2.1. Sample function f(x1, x2) and its ANOVA terms.

the truncation sense (the truncation dimension) of the function f is defined as the
smallest integer dt, such that ∑

u⊆{1,...,dt}
u6=∅

σ2(fu) ≥ α σ2(f). (2.8)

Here, often the proportion α = 0.99 is used. The effective dimension in the super-
position sense (the superposition dimension) is defined as the smallest integer ds,
such that ∑

|u|≤ds
u6=∅

σ2(fu) ≥ α σ2(f). (2.9)

If the variables are ordered according to their importance, the truncation dimension
dt roughly describes the number of important variables of the function f . The super-
position ds dimension roughly describes the highest order of important interactions
between variables.
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For instance, for the function f(x1, x2, x3) = exp{x1}+x2 with d = 3, we obtain
(independently of α) that dt = 2 and ds = 1 since the third variable as well as the
interaction between two and more variables are unimportant.

For large d, it is no longer possible to compute all 2d ANOVA terms, but the ef-
fective truncation dimension can still be computed in many cases, see [151,160]. The
algorithm requires the computation of several integrals with up to 2d−1 dimensions.
Without additional effort, the algorithm also yields the values

Tj :=
1

σ2(f)

∑
u6⊆{1,...,j}

σ2(fu) (2.10)

for j = 0, . . . , d. Note that T0 = 1 and Td = 0. The decay of these values often
more clearly illustrate the importance of the first dimensions than the truncation
dimension since the dependence on the proportion α is avoided.

For the more difficult problem to compute the superposition dimension or the
values

Sj :=
1

σ2(f)

∑
|u|>j

σ2(fu). (2.11)

the recursive method described in [161] can be used. Because of cancellation prob-
lems and costs which grow exponential in ds, the computation of the superposition
dimension is only feasible for moderately high-dimensional function or for functions
with very low superposition, however.

2.1.2 Error Bounds

The following two lemmas relate the effective dimensions to approximation errors.
The second lemma is taken from [151].

Lemma 2.2. Let dt denote the truncation dimension of the function f with propor-
tion α and let fdt(x) :=

∑
u⊆{1,...,dt} fu(xu). Then

‖f − fdt‖2
L2
≤ (1− α)σ2(f).

Proof. Note that σ2(fu) = ‖fu‖2
2 for u 6= ∅ since

∫
[0,1]|u|

fu(xu) dxu = 0 for u 6= ∅.
From (2.3), one obtains

‖f − fdt‖2
L2

= ‖
∑

u6⊆{1,...,dt}

fu‖2
L2

=
∑

u6⊆{1,...,dt}

‖fu‖2
L2

=
∑
u⊆D

σ2(fu)−
∑

u⊆{1,...,dt}

σ2(fu) ≤ (1− α)σ2(f),
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where the second equality holds by orthogonality and where the inequality follows
from (2.7) and (2.8).

Lemma 2.3. Let ds denote the superposition dimension of the function f with
proportion α and let fds(x) :=

∑
|u|≤ds fu(xu). Then

‖f − fds‖2
L2
≤ (1− α)σ2(f).

Proof. Similar as in Lemma 2.2 we compute

‖f − fds‖2
L2

= ‖
∑
|u|>ds

fu‖2
L2

=
∑
|u|>ds

‖fu‖2
L2

=
∑
|u|>ds

σ2(fu) ≤ (1− α)σ2(f)

using orthogonality, (2.3), (2.7) and (2.9).

For integration, we immediately obtain as corollary the error bound

|If − Iftr| ≤ ‖f − ftr‖L1 ≤ ‖f − ftr‖L2 ≤
√

1− ασ(f) (2.12)

either if ftr := fdt (as in Lemma 2.2) or if ftr := fds (as in Lemma 2.3) and if α is the
proportion corresponding to dt and ds, respectively. One can see that quadrature
methods produce small errors if α is close to one and if the methods can compute
Iftr efficiently.

Quasi-random points2 are usually more uniformly distributed in smaller dimen-
sions than in higher ones such that we can expect that Ifdt is well approximated
for small dt. Moreover, quasi-random points usually have very well distributed low
dimensional projections such that we can expect that Ifds is efficiently computed for
small ds. Hence, the bound (2.12) partly explains the success of quasi-Monte Carlo
methods for high-dimensional integrals with functions of low truncation dimension
or low superposition dimension.3

The bound (2.12) also partly explains the success of sparse grid methods4 for
high-dimensional integrals with functions of low effective dimension since these
methods can compute Iftr very efficiently for small ds or small dt with the help

2Quasi-Monte Carlo methods are the topic of Section 3.1.2.
3Note that low effective dimension is not necessary for the situation that quasi-Monte Carlo

methods are more efficient than Monte Carlo methods for large d and small sample sizes n. This
is shown in [156]. Note also that the combination of low effective dimension and of good low
dimensional projections is not sufficient to imply that quasi-Monte Carlo is more efficient than
Monte Carlo.

4We discuss sparse grid methods and their combination with dimension-adaptivity in Chapter 4.
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of a dimension-adaptive grid refinement.

Remark 2.4. We can also choose Ω = R and the Gaussian measure dµ(x) =
ϕd(x)dx in (2.1) where

ϕd(x) := e−xTx/2/(2π)d/2 (2.13)

denotes the standard Gaussian density in d dimensions. This induces projections

Puf(xu) =

∫
IRd−|u|

f(x)ϕd−|u|(xu) dxD\u.

Then, by (2.3), a corresponding decomposition of functions f : Rd → R results,
which we refer to as ANOVA decomposition with Gaussian weight. Based on this
decomposition, effective dimensions for the ANOVA decomposition with Gaussian
weight can be defined as in (2.8) and (2.9).

2.2 Anchored-ANOVA Decomposition

For Ω = [0, 1] and the example of the Dirac measure located at a fixed anchor point
a ∈ [0, 1]d, i.e. dµ(x) = δ(x− a)dx, we obtain from (2.2) the projections

Puf(xu) = f(x)|x=a\xu

where we use the notation f(x)|x=a\xi = f(a1, . . . , ai−1, xi, ai+1, . . . , ad) with its ob-
vious generalisation to a\xu. The terms of the anchored-ANOVA decomposition are
thus related to the terms of the classical ANOVA decomposition in the sense that all
integrals are replaced by point evaluations at a fixed anchor point a ∈ [0, 1]d. This
approach is considered in [140] under the name CUT-HDMR. The decomposition
expresses f as superposition of its values on lines, faces, hyperplanes, etc., which
intersect the anchor point a and are parallel to the coordinate axes. It is closely re-
lated to the multivariate Taylor expansion [61], and to the anchor spaces considered,
e.g., in [32, 75, 147, 166]. There are various generalisations of the anchored-ANOVA
decomposition such as the multi-CUT-HDMR, the mp-CUT-HDMR and the lp-RS,
see [61] and the references cited therein.

While the classical ANOVA decomposition is very useful to analyse the impor-
tance of different dimensions and of their interactions it can not be used as a tool for
the design of new integration schemes since already the constant term in the classi-
cal ANOVA decomposition requires to compute the integral. The anchored-ANOVA
decomposition has the advantage that its sub-terms are much cheaper to compute
since instead of integrals only point evaluations at the anchor point a ∈ [0, 1]d are
required. We will use this property in Section 3.2 to design new quadrature methods
for high-dimensional functions.

For illustration, we consider, as in Section 2.1, the two-dimensional function
f which arises in the problem to price Asian options with two time steps. The
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resulting anchored-ANOVA terms are displayed in Figure 2.1. One can see that the
concentration of the variance in the first variables is maintained in the anchored
case whereas the smoothing effect of the classical ANOVA is lost.

(a) Function f(x1, x2) (b) ANOVA term f12(x1, x2)

(c) ANOVA term f1(x1) (d) ANOVA term f2(x2)

Figure 2.2. Sample function f(x1, x2) and its anchored-ANOVA terms.

Example 2.5. For purely additive functions f+ or multiplicative functions f ∗,
see Example 2.1, the anchored-ANOVA terms and their integrals can be computed
analytically. We obtain

f+
u (xu) =


∑d

j=1 gj(aj) if u = ∅
gj(xj)− gj(aj) if u = {j}
0 if |u| > 1,

and If+
u =


0 if u = ∅
Igj − gj(aj) if u = {j}
0 if |u| > 1.

Furthermore,

f ∗u(xu) =
∏
j∈u

(gj(xj)− gj(aj))
∏
j 6∈u

gj(aj) and If ∗u =
∏
j∈u

(Igj − gj(aj))
∏
j 6∈u

gj(aj).
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2.2.1 Effective Dimensions

We next define a new notion of effective dimension which is based on the anchored-
ANOVA decomposition. While the effective dimensions in the classical case are
based on the L2-norm, we now introduce effective dimensions for the anchored case,
which are based on the operator |I(·)| and, since |I(f)| = |

∫
[0,1]d

f(x) dx| ≤ ‖f‖L1 ,

which are thus related to the L1-norm. While the effective dimensions in the classical
case directly lead to error bounds for approximation (see Lemma 2.2 and Lemma
2.3), we will use the effective dimensions in the anchored case to derive error bounds
for integration (see Lemma 2.7 and Lemma 2.8). To this end, let

σ̂(f) :=
∑
u⊆D
u6=∅

|Ifu| ≤
∑
u⊆D
u6=∅

‖fu‖L1 (2.14)

be the sum of all contributions to the value of the integral. Then, analogous to
(2.8), for the proportion α ∈ (0, 1], the truncation dimension in the anchored case
is defined as the smallest integer dt, such that∑

u⊆{1,...,dt}
u6=∅

|Ifu| ≥ α σ̂(f), (2.15)

whereas, analogous to (2.9), the superposition dimension in the anchored case is
defined as the smallest integer ds, such that∑

|u|≤ds
u6=∅

|Ifu| ≥ α σ̂(f). (2.16)

As in the classical case, these notions describe roughly the number of important
dimensions and the order of important interactions, respectively. Compared to the
classical case, the effective dimensions in the anchored case have the following ad-
vantages: They are directly related to integration errors as we show below and they
can easily be determined by dimension-wise integration methods as we will explain
in Section 3.2 in more detail. We also have a direct relation of the effective dimen-
sions in the anchored case to sparse grid methods as we will show in Section 4.3.
As |I(·)| is not a norm, it may happen, however, that the effective dimensions in
the anchored case fail to detect some important dimensions and interactions.5 For
instance, for the function f(x1, x2) = ex1 − e0.5 + x2 − 1

2
we obtain f2(x2) = x2 − 1

2

such that σ2(f2) > 0 but |If2| = 0 which misleadingly indicates independence of

5It is also possible to base the definition on the L1-norm. Then this drawback disappears.
Nevertheless we here stick to the operator |I(·)| in order to exploit a more direct relation to
dimension-adaptive sparse grid methods.
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x2. This effect which we have not yet observed in practical applications from fi-
nance, see also Chapter 6, is closely related to the early determination problem of
dimension-adaptive sparse grid methods which is discussed in [49].

To compute the effective dimensions in the anchored case, we use multivariate
quadrature methods to compute Ifu for all u ⊆ D. We denote the resulting approx-
imations by qu ≈ Ifu. By summation of the computed values qu, we estimate

σ̂(f) =
∑
u⊆D
u6=∅

|qu|

according to (2.14) and determine the effective dimensions by the smallest integers
dt and ds, such that∑

u⊆{1,...,dt}
u6=∅

|qu| ≥ α σ̂(f) and
∑
|u|≤ds
u6=∅

|qu| ≥ α σ̂(f),

respectively, see (2.15) and (2.16). Without additional effort, the values qu can also
be used to compute the values

Tj :=
1

σ̂(f)

∑
u6⊆{1,...,j}

|qu| and Sj :=
1

σ̂(f)

∑
|u|>j

|qu| (2.17)

for j = 0, . . . , d. Note that T0 = S0 = 1 and Td = Sd = 0. The values Tj and
Sj approximate the relative modeling error which results if we truncate all terms
of the anchored-ANOVA decomposition that satisfy u 6⊆ {1, . . . , j} and |u| > j,
respectively. While Tj describes the importance of the first j dimensions, Sj illustrate
the importance of the interactions of up to j many variables.

In Chapter 6 we will compute these values for various high-dimensional functions
from finance and relate the results to the effective dimensions in the classical case.
We will see that the effective dimensions in the anchored case provide similar infor-
mation on the importance of dimensions and interactions as the effective dimensions
in the classical case but have the advantage that they are significantly cheaper to
compute. While the computation of the effective dimensions in the classical case
requires the computation of many high-dimensional integrals with, e.g., quasi-Monte
Carlo methods,6 the computation of the effective dimensions in the anchored case
requires only the computation of one high-dimensional integral with, e.g., sparse
grids or other dimension-wise quadrature methods that we introduce in Chapter 3
and Chapter 4.

Remark 2.6. We can also choose Ω = R and the measure dµ(x) = δ(x−a)ϕd(x)dx
with a fixed anchor point a ∈ IRd, where ϕd is the Gaussian density (2.13). This

6The computation of the superposition dimension in the classical case in addition suffers from
cancellation problems and costs which grow exponential in the superposition dimension.
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example induces projections

Puf(xu) =
(
f(x)ϕd−|u|(xu)

)
|x=a\xu

and, by (2.3), a corresponding decomposition of functions f : Rd → R which we
refer to as anchored-ANOVA decomposition with Gaussian weight. Based on this
decomposition, effective dimensions for the anchored-ANOVA decomposition with
Gaussian weight can be defined as in (2.15) and (2.16).

2.2.2 Error Bounds

The following two estimates relate effective dimensions in the anchored case and
integration errors.

Lemma 2.7. Let dt denote the truncation dimension of the function f in the
anchored case with proportion α and let fdt(x) :=

∑
u⊆{1,...,dt} fu(xu). Then

|If − Ifdt | ≤ (1− α) σ̂(f).

Proof. We obtain

|If−Ifdt| = |
∑

u6⊆{1,...,dt}

Ifu| ≤
∑

u6⊆{1,...,dt}

|Ifu| =
∑
u⊆D

|Ifu|−
∑

u⊆{1,...,dt}

|Ifu| ≤ (1−α) σ̂(f)

where the first equality results from (2.3) and from the definition of the function
fdt . The last inequality follows from (2.14) and (2.15).

Lemma 2.8. Let ds denote the superposition dimension of the function f in the
anchored case with proportion α and let fds(x) :=

∑
|u|≤ds fu(xu). Then

|If − Ifds| ≤ (1− α) σ̂(f).

Proof. Similar as in Lemma 2.7 we obtain

|If − Ifds| = |
∑
|u|>ds

Ifu| ≤
∑
|u|>ds

|Ifu| ≤ (1− α) σ̂(f)

using (2.14) and (2.16) for the last inequality.

We conclude this chapter with a short summary. We here considered the classical
ANOVA and the anchored-ANOVA decomposition of high-dimensional functions.
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With respect to these dimension-wise decompositions, we then defined the effective
dimension in the classical and in the anchored case and derived corresponding error
bounds. While the effective dimension in the classical case is based on the L2-
norm and related to approximation, the effective dimension in the anchored case is
related to the L1-norm and to integration. We will return to the anchored-ANOVA
decomposition in Chapter 3 and Chapter 4 to define a new general class of quadrature
methods and to provide a new interpretation of sparse grid methods, respectively.
In Chapter 6, we will finally compute the effective dimensions of several application
problems from fiance and insurance in the classical and in the anchored case and
relate the results to the performance of different numerical quadrature methods.



Chapter 3

Dimension-wise Quadrature

High-dimensional integrals appear in various mathematical models from physics,
chemistry or finance. The large number of dimensions arises, e.g., from small time
steps in time discretizations and/or a large number of state variables. In many
cases the arising integrals can not be calculated analytically and numerical methods
must be applied. Here, one of the key prerequisites for a successful application is
that the curse of dimension [9] can be avoided at least to some extent. The curse
of dimension states that the cost to compute an approximation with a prescribed
accuracy ε depends exponentially on the dimension d of the problem. It is one of
the main obstacles for the numerical treatment of high dimensional problems, see,
e.g., [61].

In this chapter, we first, in Section 3.1, survey classical numerical methods for
the computation of high-dimensional integrals. Then, in Section 3.2, we define a new
general class of multivariate quadrature methods. The methods are constructed by
truncation of the anchored-ANOVA decomposition of the integrand. The kept terms
are then integrated using one or several of the classical numerical methods.

3.1 Classical Multivariate Quadrature Methods

In this section, we survey numerical methods for the computation of high-dimensional
integrals

If :=

∫
[0,1]d

f(x) dx (3.1)

over the unit cube. Note that rectangular domains [a1, b1]× . . .× [ad, bd] can easily
be mapped to the unit cube by a linear transformation. We also consider numerical
methods for high-dimensional integrals

Iϕf :=

∫
Rd
f(z)ϕd(z) dz (3.2)

over the d-dimensional Euclidean space with the Gaussian weight function ϕd from
(2.13). The two domains unit cube and IRd typically appear in high-dimensional
applications.

For integration over non-tensor product domains, which are important for d = 2
and d = 3, and for non-uniform or non-Gaussian integration, we refer to [20–22,153]
where a comprehensive listing of polynomial-based methods is given. General refer-
ence to multivariate numerical integration are [28,153]. Applications of multivariate
numerical integration in finance and economics are discussed, e.g., in [47, 59,89].

23
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All numerical methods, which we discuss here, approximate the d-dimensional
integral If by a weighted sum of n function evaluations

Qn(f) :=
n∑
i=1

wif(xi) (3.3)

with weights wi ∈ IR and nodes xi ∈ Ωd. Here, either Ω = [0, 1] or Ω = IR. De-
pending on the choice of the weights and nodes, different classes of methods with
varying properties are obtained, which are shortly reviewed in the next sections.
Here, one can distinguish between statistical methods (Monte Carlo), number the-
oretic methods (quasi-Monte Carlo) and polynomial-based methods (product rules,
sparse grids and other interpolatory formulas). While the methods of the first two
classes are based on uniformly distributed point sets, the rules of the third class
are designed to be exact for a certain set of polynomials. We next survey Monte
Carlo, quasi-Monte Carlo and product rules in more detail. Sparse grid methods
are separately discussed in Chapter 4.

Note that the integral (3.2) can be transformed to an integral on the unit cube
[0, 1]d, e.g., by the standard, component-wise substitution with the inverse of the
cumulative normal distribution function.1 This is important since most multivari-
ate numerical quadrature methods, e.g., (quasi-) Monte Carlo methods, compute
integrals of the form (3.1).

Remark 3.1. The resulting transformed integrand is unbounded on the boundary
of the unit cube, which is undesirable from a numerical as well as theoretical point of
view. Nevertheless, in combination with (quasi-) Monte Carlo methods this trans-
formation turns out to be very effective because it cancels the Gaussian weight, see
also [162]. However, the singularities which are introduced by the transformation de-
teriorates the efficiency of methods which take advantage of higher smoothness, such
as product methods or sparse grids. Here, it is often better to avoid the transfor-
mation and the corresponding loss of regularity and to address the integral directly
on IRd. This is possible if one bases the product or sparse grid construction on
univariate quadrature formulas for integrals on IR, e.g. Gauss-Hermite rules, which
we will discuss in Section 3.1.3.

3.1.1 Monte Carlo

High dimensional integrals on the unit cube are mostly approximated with the Monte
Carlo (MC) method. Here, all weights equal wi = 1/n and uniformly distributed
sequences of pseudo-random numbers xi ∈ [0, 1]d are used as nodes.2 The law of

1The standard univariate normal distribution function and its inverse can efficiently and up to
high accuracy be computed by a Moro [114] scheme.

2 Algorithms which generate uniform pseudo-random numbers are surveyed, e.g., in [59,83,119].
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large numbers then ensures that the estimate

MCn(f) :=
1

n

n∑
i=1

f(xi) (3.4)

converges to If for n → ∞ if f has finite variance σ2(f). The MC method is very
easy to implement but suffers from a relative low probabilistic convergence rate of
1/2, which is, on the positive side, independent of the dimension. The error ε(n)
of a MC estimate with n samples is approximately normally distributed with mean
zero and standard deviation σ2(f)/

√
n. In this way, the MC method also provides

a useful statistical error estimate because σ2(f) can be estimated in each sampling
step from the available function values.

Variance reduction methods

Several variance reduction techniques, such as antithetic variates, control variates,
stratified sampling and importance sampling, exist to enhance the performance of
the MC method, see, e.g., [13,59,90]. Such approaches are designed either by using
a priori knowledge of the integrand or in an automatic way as realised in (locally)
adaptive MC algorithms such as Vegas, Miser, Suave or Divonne, see, e.g., [68,139].
The adaptive approaches exhibit costs which increase exponentially fast with the
dimension, though, and are thus limited to the computation of at most moderately
high dimensional integrals. Variance reduction techniques do not overcome the
slow and erratic convergence but can improve the implicit constant of the method.
Decreasing the variance σ2(f) by a factor c does roughly as much for error reduction
as increasing the number n of samples by a factor of c2. A drawback of some variance
reduction techniques is that the construction of statistical error estimators is often
no longer straightforward.

We next survey some of the most important variance reduction techniques. Sev-
eral extensions, variants and combinations of these techniques are possible, see [59].
There also a comparison of the different methods with respect to their complexity
and effectiveness is given.

Antithetic Variates The simplest variance reduction technique is to use antithetic
variates. This technique requires no a priori information about the integrand, is
simple to implement, but rarely provides much variance reduction. The MC estimate
with antithetic variates is defined by

MCAV
n (f) :=

1

n

n∑
i=1

g(xi)
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with g(xi) = 1
2
(f(xi) + f(1− xi)).3 Since 1− x is uniformly distributed in the unit

interval if x is uniformly distributed in the unit interval, this estimate converges to
I(f) with the same rate as the MC method (3.4). As MCAV

n requires 2n evaluations
of the function f , antithetic sampling provides a variance reduction if

σ2(g) ≤ 1

2
σ2(f).

This condition is satisfied for many functions from mathematical finance. It is always
satisfied if f is monotonic in x. The method of antithetic variates matches the first
moment of the underlying uniform probability distribution since MCAV

n (f) has by
construction the correct mean of 1/2. Also the second and higher order moments
can be matched which is known as the method of moment matching.

Control Variates The method of control variates is a very effective variance re-
duction technique which can be applied if a function g is known which is similar to
f and for which Ig can be evaluated in closed form. Then,

MCCV
n (f) :=

1

n

n∑
i=1

(
f(xi) + β(Ig − g(xi)

)
can be used as MC estimator. The parameter β can either be set to one or it can be
estimated during the simulation such that the variance of MCCV

n (f) is minimized.
The optimal value is thereby given by β = Cov(f, g)/σ2(g). The valuation of options
based on arithmetic averages are an important application of this approach. Here,
their counterparts based on geometric averages turn out to be very effective control
variates as they have a similar payoff and can usually be priced in closed form. More
generic but less effective alternatives are to use the underlying asset or the moments
of xi as control variates. The method of control variates can also be interpreted as
weighted MC method, see, e.g., [59].

Importance Sampling Importance sampling techniques try to reduce the variance
of the integrand by a change the underlying probability measure. In this way, one
exploits knowledge about the integrand and the MC method can focus on those
regions of the integration domain which contribute most to the integral value. If the
importance sampling distribution is carefully chosen then this approach can lead to
an enormous improvement of the constant of the MC approximation. Important
applications are barrier or out-of-the-money options. Here, sometimes the proba-
bility distributions of the underlying asset conditional on the asset being greater as
the barrier or greater as the strike can be determined. The importance sampling

3Note that if the vector xi is used to construct the path of a Brownian motion, then 1 − xi

corresponds to the reflection of this path about the origin.
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method then samples from this conditional probability distribution which ensures
that all drawn samples are in regions where the payoff is non-zero. We will use a
similar approach in Section 6.2.2 for the smoothing of some integrands from finance
problems.

Stratified Sampling and Latin Hypercube Sampling Stratified and Latin hyper-
cube sampling are methods which seek to distribute the MC samples more regular.
They lie in between the plain MC method (completely random) and QMC methods
(completely deterministic).4 In the stratified sampling method, the space [0, 1]d is
divided into nd disjoint subsets. From each subset then a fixed number of ` samples
is drawn.

Since the total number of `nd function evaluations grows exponentially with
the dimension, stratified sampling easily becomes inapplicable in higher dimensions.
Latin hypercube sampling avoids this exponential growth of costs by using permu-
tations of suitable one dimensional stratified samples. To this end, random points xi

are generated for i = 1, . . . , n such that xi is uniformly distributed in the hypercube
[(i − 1)/n, i/n]d which intersects the diagonal of the unit cube [0, 1]d. The coordi-
nates of these points are then randomly permuted in order to distribute the points
uniformly over the unit cube. Their coordinates thereby stay perfectly stratified5

in the sense that any one-dimensional projection of the point set covers all intervals
[(i − 1)/n, i/n] for i = 1, . . . , n. This also indicates that Latin hypercube sampling
is most efficient for integrands which are nearly additive, i.e. the sum of univariate
functions. In option pricing problems, it is often efficient to stratify the underlying
Brownian motion along those values which contribute most to the variability of the
payoff of the option.

3.1.2 Quasi-Monte Carlo

Quasi-Monte Carlo (QMC) methods are equal-weight rules like MC. Instead of
pseudo-random numbers, however, deterministic point sequences are used as nodes.
These sequences are designed to yield a better uniformity than random samples.
For a two-dimensional example, this property is illustrated by the grids in Figure
4.1 where 128 MC points and 128 QMC points are displayed. One can see that
the pseudo-random points cluster, exhibit gaps and are not as evenly distributed as
the quasi-random ones. To measure the quality of QMC points, i.e., the irregular-
ity of their distribution in the unit cube, the notion of discrepancy is used. Many
different discrepancy measures are possible and have been studied in the literature,
see, e.g., [76, 125, 126]. Some are based on geometric properties of the point set

4An other class of methods that are combining random and deterministic components is the
class of randomized QMC methods, see, e.g., [101].

5Note that many QMC methods, e.g. Sobol point sets, have the same property build in.
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whereas others are based on the worst case errors for integration in certain function
spaces. We give a survey in the Appendix A.2. Several different approaches to
construct low-discrepancy sequences exist. Most of them are either based on digital
nets (see, e.g., [119]) or on lattices (see, e.g., [98,146]). Some popular QMC methods
are Halton, Faure, Sobol and Niederreiter-Xing sequences and lattice rules based
on Korobov or fast component-by-component constructions [127, 149]. Their appli-
cation to problems from mathematical finance is considered in, e.g., [59, 167]. The
classical QMC theory is based on the Koksma-Hlawka inequality (see, e.g., [119])
which shows that the worst case error of a QMC method with n samples is of the
order

ε(n) = O(n−1(log n)d) (3.5)

for integrands of bounded variation which is asymptotically better than the prob-
abilistic O(n−1/2) error bound of MC.6 For periodic integrands, lattice rules can
achieve convergence of higher order depending on the decay of the Fourier coeffi-
cients of f , see [146]. Using novel digital net constructions [31], QMC with higher
order convergence can also be obtained for non-periodic integrands depending on
the number of mixed bounded partial derivatives of f .7 QMC methods can be ran-
domised, e.g., by random shifts or random permutations of digits, see, e.g., [101]. In
this way, MC like simple statistical error estimates can be derived while the higher
QMC convergence rate is maintained.

The construction and theory of QMC point sets is beyond the scope of this thesis.
We thus only briefly survey the construction of digital nets and lattice rules.

Digital nets

An important family of QMC methods are (t,m, d)–nets and (t, d)–sequences.8 The
idea of (t,m, d)–nets is to find point sets which have a perfect uniform distribution
for all elementary intervals in the unit cube. An elementary interval in base b ≥ 2
is a sub-interval of [0, 1)d of the form

d∏
i=1

[
ai
bci
,
ai + 1

bci

)
with integers ci and ai satisfying ci ≥ 0 and 0 ≤ ai < bci . A set of bm points in [0, 1]d

is called a (t,m, d)–net in base b if every elementary interval in base b with volume
bt−m contains exactly bt points, where t is an integer with 0 ≤ t ≤ m. A sequence of

6The bound (3.5) shows that QMC points exhibit almost (up to a logarithmic factor) the
smallest possible discrepancy, see Appendix A.3 for details.

7Efficient implementations and the practical use of these methods is not yet clear, though.
8For consistency reasons, we use the term (t,m, d)–net instead of the more common notation

(t,m, s)–net.
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points x0,x1, . . . in [0, 1]d is called a (t, d)–sequence in base b if for all integers k ≥ 0
and m > t the point set {

xkb
m

, . . . ,x(k+1)bm−1
}

is a (t,m, d)–net in base b.
For a fixed dimension d, one aims to find (t, d)–sequences with t as small as

possible because the smaller t the more intervals have perfect uniform distribution.
If t is small compared to m then one can show that a (t,m, d)–net defines a low
discrepancy point set, which in turn means that the resulting QMC method satisfies
the bound (3.5).

The digital nets provide a general framework for the construction of (t,m, d)–
nets, which includes almost all of the known constructions. Next, we describe the
digital net construction in the simplest case which requires a base b which is a prime
number.9 Let Fb = {1, . . . , b−1} be a finite field with b elements and let Ci ∈ Fm×mb

for i = 1, . . . , d. The matrices Ci are used to define a mapping of vectors a ∈ Fmb to
points xa ∈ [0, 1]d. Thereby, the i-th coordinate of xa is given by

xa
i := T (Cia) with T (e) :=

m∑
j=1

ejb
−j for e ∈ Fmb .

Then, one can show that the point set {xa : a ∈ Fmb } defines a (t,m, d)–net. The
value of t, i.e., the quality of the point set, depends on the choice of the matrices
C1, . . . ,Cd. If the system of their row vectors has rank ρ over Fb, then t = m − ρ
for m ≥ d, see [119].

Sobol sequences are (t, d)–sequences in base 2 with t = O(d log d). Faure se-
quences are (0, d)–sequences which can be constructed in any prime base b ≥ d.
Niederreiter sequences are (t, d)–sequences which can be constructed for any d and
any b. For fixed b, their quality parameter t can be shown to be of order O(d log d).
The use of algebraic curves over finite fields with many Fb–rational points leads to
Niederreiter-Xing sequences. They are (t, d)–sequences which can be constructed for
any d and any b and t = O(d) for fixed b, which is asymptotically optimal. The van
der Corput sequence is a (0, 1)–sequence. It arises by the digital net construction if
C1
ij = 1 for j = i − 1 and C1

ij = 0 otherwise. Its multidimensional extension, the
Halton sequence, is not a (t, d)–sequence, though, as its constructions uses van der
Corput sequences with different prime numbers for each dimension.

Lattice rules

Lattice rules have originally been developed for the numerical integration of periodic
functions. In recent years their use has been extended to the non-periodic case by
the introduction of shifts that lead to the class of shifted lattice rules.

9The construction is easily generalised to the case where b is a prime power.
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For periodic functions f , lattice rules have the advantage that the regularity
of the integrand is reflected in the error bound similar as it is known for one-
dimensional quadrature rules, for product methods and sparse grids, see Section
3.1.3 and Chapter 4. The regularity is thereby measured by the rate of decay of
the Fourier coefficients of f . If the function f is non-periodic, periodization tech-
niques can be used. However, the full power of lattice rules can only be preserved in
special cases using this approach. Lattice rules have optimal one-dimensional pro-
jections, like many other QMC methods and like Latin hypercube sampling. They
are usually not easily scalable with respect to the number of integration points and
also not extensible in the dimension.10 This drawback results since they are usually
constructed for a fixed dimension d and define fixed point sets, rather than infinite
sequences.

There are many different kinds of lattice rules. They can be classified according
to their rank or according to their underlying construction. The family of rank-1
lattice rules is particular simple and interesting. Here, the lattice points are defined
by

xi :=
{
i
z

n

}
for i = 1, . . . , n where {u} := u − buc denotes the fractional part of u. The vector
z ∈ {1, 2, . . . , n − 1}d is the generating vector of the lattice rule. The resulting
sequence x1,x2, . . . then has a period length of n, i.e., xi = xi+n.11 It can be shown
that there exist generating vectors z such that the point set {x1, . . . ,xn} is of low
discrepancy. Such points are called good lattice points. For their identification,
usually computer searches are used. A full search of this kind is exponentially
expensive and thus usually infeasible. Instead, either Korobov or fast component-
by-component constructions [149] are used. In the first case, the search space is
reduced by assuming that the generating vector is of the special form

z = (1, a, a2, . . . , ad−1)

modulo n with some integer 1 ≤ a ≤ n− 1. In the latter approach, the generating
vector is constructed component-by-component which is possible in only O(d log d)
operations using the fast Fourier transformation, see [127]. For non-periodic f ,
shifted lattice rules are used. Here, the lattice points are defined by

xi :=
{
i
z

n
+ ∆

}
where ∆ ∈ [0, 1)d is the shift which is often assumed to be a random vector. For
more information on shifted and non-shifted lattice rules we refer to the survey
article [98] and to the references cited therein.

10Lattice rules which are extensible in the number of points and Korobov-form lattice rules which
are extensible in the dimension are investigated in [167].

11 A vector z with irrational components would lead to sequences with infinite period.
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3.1.3 Product Methods

(Q)MC methods use uniformly distributed point sets and integrate constant func-
tions exactly. We next consider product methods. Such methods are exact for
polynomials of higher degree, can profit from higher smoothness of the integrand
and also obtain convergence rates larger than one. Furthermore, product methods
can address integrals on IRd directly.

Let Pdl denote the space of all multivariate polynomials in d dimensions which
have the maximum degree l. A quadrature rule Qn has the degree l of polynomially
exactness if

Qnf = If

for all f ∈ Pdl and if Qnf 6= If for at least one polynomial of degree l + 1. In the
following we denote the degree of Qn by deg(Qn).

Product methods are constructed by tensor products of the weights and nodes
of one-dimensional quadrature rules, e.g., Gauss rules, see, e.g. [28,153]. Let

Un(f) :=
n∑
i=1

wk f(xk) (3.6)

denote a univariate quadrature rule with n points xk ∈ Ω, where Ω = [0, 1] or
Ω = IR, and weights wk ∈ R. The d-dimensional tensor product

Pn(f) = Un(f)⊗ . . .⊗ Un(f)

of such formulas is given by

Pn(f) :=
n∑

i1=1

. . .

n∑
id=1

wi1 . . . wid f(xi1 , . . . , xid). (3.7)

This way, a d-dimensional quadrature rule is defined which requires nd function
evaluations. We show the grid points of a two-dimensional product rule in Figure
4.1. Product constructions preserve the degree of polynomially exactness of the
underlying univariate quadrature rule, i.e.

deg(Pn) = deg(Un).

If the polynomial degree of the one-dimensional quadrature rules is sufficiently12

large then the error of a product method decreases with the number of points n
proportional to

ε(n) = O(n−r/d) (3.8)

12It suffice if interpolatory rules, e.g. Gauss rules, are used which are defined below.
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for all functions f from the space

Cr([0, 1]d) =

{
f : [0, 1]d → R : max

|k|1≤r

∥∥∥∥ ∂|k|1f

∂x1
k1 · · · ∂xdkd

∥∥∥∥
∞
<∞

}
of functions with bounded derivatives up to order r, see, e.g. [28]. The error bound
(3.8) indicates the positive impact of the smoothness r as well as the negative impact
of the dimension d on the convergence rate. In particular one can see that product
methods suffer from the curse of dimension, which prevents their efficient application
for high-dimensional (roughly d > 8) applications.

Nevertheless, for low-dimensional integrals standard multivariate numerical in-
tegration methods, like ADAPT [46] or DCUHRE [10], which combine product
methods with globally adaptive subdivision schemes, are among the most reliable
and efficient approaches.

Univariate Quadrature Formulas

We next briefly summarise different univariate quadrature rules, either for uniform
integration in the unit interval [0, 1] or for Gaussian integration on the real axis
R. Each of these rules corresponds via (3.7) to a different product method, either
for the computation of integrals on the unit cube [0, 1]d or for integrals on IRd with
Gaussian weight. We will see in the Chapter 4 that each rule also corresponds to a
different sparse grid method.

Univariate quadrature rules can be classified in various ways: For integers n1 ≤
n2 ≤ . . ., a sequence Un1 , Un2 , . . . of quadrature rules is called nested if the nodes of
Uni are a subset of the nodes of Unj if i < j. This property is of advantage if the
rules are used to construct sparse grid methods. It is also important for (locally)
adaptive quadrature methods, like ADAPT or DCUHRE.

An integration formula on [0, 1] is called of closed type if the function is evaluated
at the end points x = 0 or x = 1 of the interval. Here, we only consider open
type formulas since integrands which come from finance are often singular on the
boundary of the unit cube.

Two important classes of univariate quadrature rules are Newton-Cotes and
Gauss formulas. While Newton-Cotes formulas use arbitrary, mostly equidistant,
points xi and choose the weights wi such all piecewise polynomials of a certain de-
gree are integrated exactly, Gauss formulas are constructed by choosing both the
points and the weights with the goal to exactly integrate as many polynomials as
possible. The dimension of the space P1

l of polynomials with maximum degree l
is l + 1. Hence, if there are n specific abscissas x1, . . . , xn given, then there exists
a unique set of weights w1, . . . , wn such that the corresponding quadrature rule Un
is exact for all polynomials in P1

n−1. Such quadrature rules are called interpolatory
formulas and satisfy n− 1 ≤ deg(Un) ≤ 2n− 1. Gauss formulas attain the optimal
result deg(Un) = 2n− 1.
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We start with quadrature formulas for uniform integration in the interval [0, 1].
Then, we proceed with quadrature rules for univariate integrals with Gaussian
weight function.

Newton-Cotes formulas We here only use iterated Newton-Cotes formulas since
the non-iterated versions get numerically instable for large numbers of points. It-
erated Newton-Cotes formulas result from a piecewise polynomial approximation of
the integrand f . This approximation is then integrated exactly. The Newton-Cotes
formula which corresponds to piecewise constant approximation is the midpoint rule.
The trapezoidal rule is based on a piecewise linear approximation of f . With n
equidistant points it is defined as

Un(f) =
1

n+ 1

(
3

2
· f
(

1

n+ 1

)
+

n−1∑
i=2

f

(
i

n+ 1

)
+

3

2
· f
(

n

n+ 1

))
.

For integrands f ∈ C2([0, 1]), its convergence rate is given by

|Unf − If | = O(n−2).

The trapezoidal rule is particular powerful for smooth periodic functions. In this
case the error bound

|Unf − If | = O(n−r)

can be derived for f ∈ Cr([0, 1]) from the Euler-Maclaurin formula. The Newton-
Cotes formula based on piecewise quadratic approximations finally results in the
Simpson rule.

Clenshaw-Curtis formula The Clenshaw-Curtis formula (also known as Filippi
formula) is an interpolatory integration formula whose abscissas are the extreme
points of Tchebyscheff polynomials of first kind. The abscissas are nested and simple
to compute. They are given by

xi =
1

2

(
1− cos

(
πi

n+ 1

))
for i = 1, . . . , n. The weights are determined by the interpolatory conditions. For
odd n one obtains

wi =
2

n+ 1
sin

(
πi

n+ 1

) (n+1)/2∑
j=1

1

2j − 1
sin

(
(2j − 1)πi

n+ 1

)
.

This resulting quadrature formula Un satisfies deg(Un) = n− 1 and

|Unf − If | = O(n−r)

for f ∈ Cr([0, 1]).
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Gauss formulas Gauss-Legendre formulas achieve the maximum possible polyno-
mial degree of exactness which is 2n−1. The abscissas are the zeros of the Legendre
polynomials and the weights are computed by integrating the associated Lagrange
polynomials. The Gauss-Legendre formulas are not nested.

An n-point Gauss-Legendre formula can be extended by n+1 points to a quadra-
ture formula with 2n + 1 points which has the polynomial degree of exactness of
3n + 2. If this extension (called Konrod extension) is iterated recursively, the
Gauss-Patterson formulas result. These sequences are nested by construction. They
achieve the polynomial degree 3/2n+1/2 for odd n > 1 which is lower than the degree
of Gauss-Legendre rules but considerably higher than the degree of Clenshaw-Curtis
formulas. Gauss-Patterson formulas do not exist for all n ∈ N, but their construc-
tion is known for n = 1, 3, 7, 15, 63, 127 which is usually sufficient for product and
sparse grid constructions in moderate and high dimensions as shown in [48].

Gaussian-Integration Next, we consider rules for Gaussian integration. Gauss-
Hermite formulas use nodes that are defined on the real axis R. Their construction
is known for all n ∈ N, but for large n the construction easily gets unstable. Gauss-
Hermite formulas achieve the optimal polynomial degree 2n− 1, but are not nested.

In [45], a sequence of quadrature rules with n = 1, 3, 9, 19, 35 points is presented
which is nested and satisfies deg(Un) ≈ 3/2n. We refer to these formulas as Genz-
Keister formulas. They can be seen as the analog of the Gauss-Patterson rules for
Gaussian integration.

We will use different univariate quadrature rules in Chapter 4 to construct sparse
grid methods. These methods maintain the high polynomial degree of exactness of
product methods to a large extent but avoid that the cost grows exponentially with
increasing dimension.

Note that there exist several other interpolatory methods for multivariate inte-
gration which are neither of product- nor of sparse grid form. Like sparse grids,
some of these methods can avoid an exponential increase of the grid points with the
dimension. We refer to [21,153] and for Gaussian integration in particular to [107].
The methods are often classified by the number of function evaluations which are
required to exactly integrate all polynomials up to a given degree. For uniform
and Gaussian integration the rules in [42,77,135] and [45,77] are currently the best
known constructions in the sense that they require the fewest number of points for
a given polynomial degree. Note that all of these rules can be written as generalised
sparse grid formulas, see, e.g., [77]. We will discuss generalised sparse grid formulas
in Section 4.1.3.
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3.2 Dimension-wise Quadrature Methods

Next, we use the anchored-ANOVA decomposition from Section 2.2 to define a new
class of methods for the computation of high-dimensional integrals

If =

∫
[0,1]d

f(x) dx (3.9)

over the unit cube and for integrals

Iϕf =

∫
Rd
f(z)ϕd(z) dz (3.10)

over the d-dimensional Euclidean space with Gaussian weight.

3.2.1 Truncation and Discretization

In the following, we develop our new class of quadrature methods. The methods
result by truncation and discretization of the anchored-ANOVA decomposition

f(x) =
∑
u⊆D

fu(xu)

of the integrand f , see Section 2.2. We start with Ω = [0, 1] and take µ as the Dirac
measure with anchor point a ∈ [0, 1]d. Then, (2.2) and (2.4) imply

fu(xu) = Puf(xu)−
∑
v⊂u

fv(xv) where Puf(xu) = f(x)|x=a\xu . (3.11)

Applying the integral operator to the anchored-ANOVA decomposition (2.3), the
d-dimensional integral is decomposed, by linearity, into the finite sum

If =
∑
u⊆D

Ifu = f(a) +
d∑
i=1

Ifi +
d∑

i,j=1

Ifi,j + . . .+ If1,...,d (3.12)

which contains
(
d
j

)
many j-dimensional integrals for j = 0, . . . , d. Starting with the

decomposition (3.12) we now define a general class of quadrature methods for the
approximation of If . We proceed as follows:

1. Truncation: We take only a subset S of all indices u ⊆ D and thus truncate
the sum in (3.12). Here, we assume that the set S satisfies the property13

u ∈ S and v ⊂ u =⇒ v ∈ S. (3.13)

13Note that this condition is closely related to the admissibility condition (4.11) in Section 4.1.3.
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For example, the set Sds := {u ⊆ D : |u| ≤ ds} or the set Sdt := {u ⊆
{1, . . . , dt}} could be used to take into account the superposition and the
truncation dimension of the function f , respectively. Alternatively, dimension-
adaptive methods can be applied to build up an appropriate index set S. This
will be later discussed in more detail.

2. Discretization: For each u ∈ S, we compute approximations to Ifu. To this
end, we choose |u|-dimensional quadrature rules Qu. Starting with q∅ = f(a)
we recursively compute

qu := Qu(Puf)−
∑
v⊂u

qv. (3.14)

Then, qu is an approximation to Ifu due to the recursive representation (3.11)
of fu. Observe that we avoid to compute and integrate the functions fu ex-
plicitly. Instead we numerically integrate Puf and correct the resulting value
by the (previously computed) values qv using (3.11). The admissibility condi-
tion thereby ensures that we can run over the set S by starting with u = ∅
and proceeding with indices u for which the values qv, v ⊂ u, have already
be computed in previous steps. Note that we allow for arbitrary quadrature
methods Qu in (3.14) which can be different for each u. Specific choices for
Qu will be discussed later.

Altogether, this defines a quadrature formula ASf for the approximation of If
which is given by

ASf :=
∑
u∈S

qu (3.15)

and which we refer to as dimension-wise quadrature method in the following. Note
that the method ASf requires

n =
∑
u∈S

nu

evaluations of the function f , where nu denotes the number of function evaluations
of Qu.

Remark 3.2. Dimension-wise quadrature methods for integrals over IRd with Gaus-
sian weight can be constructed analogously to (3.15). To this end, we set Ω = R
and use the measure dµ(x) = δ(x − a)ϕd(x)dx such that the anchored-ANOVA
decomposition with Gaussian weighted results. Then, we select as above a suitable
index set S and appropriate quadrature rules Qu to integrate the resulting functions
Puf . Since now f : Rd → R, either quadrature rules for unbounded domains, e.g.
Gauss-Hermite rules, or transformations of the resulting integrals to the unit cube
must be used.
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3.2.2 Error and Costs

We first consider the case of arbitrary quadrature methods Qu. By construction, we
then have the error bound

|If − ASf | = |
∑
u⊆D

Ifu −
∑
u∈S

qu| ≤
∑
u∈S

|Ifu − qu|+
∑
u6∈S

|Ifu|. (3.16)

This shows how the error of the method (3.15) depends on the quadrature rules Qu

(which determine qu) and on the choice of the index set S. Here, the second term
describes the modeling error which is introduced by the truncation of the anchored-
ANOVA series whereas the first term describes the discretization error which results
from the subsequent discretization of the remaining subspaces.

In the following, we aim to balance costs and accuracies by relating the cost of
the quadrature method Qu to the importance of the anchored-ANOVA term fu. We
first relate the accuracy of the methods Qu to the accuracy of the method ASf .

To this end, we fix α ∈ (0, 1] and assume that ds and dt, the corresponding
superposition and truncation dimensions in the anchored case, are known. With
help of these effective dimensions we define the index set

Sdt,ds := {u ⊆ {1, . . . , dt} : |u| ≤ ds}. (3.17)

We now have the following lemma.

Lemma 3.3. Let S = Sdt,ds. For ε > 0, let furthermore Qu be such that |I(Puf)−
Qu(Puf)| ≤ ε(|u|) with ε(j) := ε/(2 ddst

(
dt
j

)
) for all u ∈ S. Then, it holds

|If − ASf | ≤ ε+ 2(1− α) σ̂(f).

Proof. Starting with |If −ASf | ≤ |If − Ifdt,ds|+ |Ifdt,ds −ASf | with the function
fdt,ds :=

∑
u∈Sdt,ds

fu, we observe that the modelling error is bounded by

|If − Ifdt,ds| = |
∑

u6∈Sdt,ds

Ifu| ≤
∑
|u|>ds

|Ifu|+
∑

u6⊂{1,...,dt}

|Ifu| ≤ 2(1− α) σ̂(f),

see the proofs of Lemma 2.7 and 2.8. From (2.5) and (3.14), we have the explicit
representation

Ifu − qu =
∑
v⊆u

(−1)|u|−|v| (I(Pvf)−Qv(Pvf)) . (3.18)

Since |I(Pvf) − Qv(Pvf)| ≤ ε(|v|) for all v ⊆ u, we obtain for all u with |u| ≤ dt
that

|Ifu − qu| ≤
∑
v⊆u

ε(|v|) =

|u|∑
j=1

(
|u|
j

)
ε(j) ≤

|u|∑
j=1

(
dt
j

)
ε(j),
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where we used that there are
(|u|
j

)
many sets v ⊆ u which satisfy |v| = j. Using the

definition of ε(j), we can bound the discretization error by

|Ifdt,ds − ASdt,dsf | ≤
∑

u∈Sdt,ds

|Ifu − qu| ≤
ds∑
k=1

(
dt
k

) k∑
j=1

(
dt
j

)
ε(j) ≤

ds∑
k=1

(
dt
k

) k∑
j=1

ε

2 ddst

=
ε

2 ddst

ds∑
k=1

(
dt
k

)
k ≤ ε

2 ddst

ds∑
k=1

ddst
k!
k =

ε

2

ds∑
k=1

1

(k − 1)!
≤ ε,

which concludes the proof.

We next relate the error |If − ASf | to the cost n =
∑

u∈S nu of the method
ASf . Furthermore, we aim to balance the cost nu of the methods Qu with their
accuracy. Here, we restrict ourselves to the case that all employed methods Qu are
based on a univariate quadrature formula Um with m points, which converges for
f ∈ Cr([0, 1]) with rate m−r. An examples for such a univariate formula with r = 1
is the trapezoidal rule. For arbitrary r, Gauss rules can be used.

Theorem 3.4 (ε-complexity). If we choose S = Sdt,ds and Qu to be the |u|-
dimensional tensor product of the rule Um with m := bn1/dsc then

|If − ASf | ≤ c(dt, ds)n
−r/ds + 2(1− α) σ̂(f)

for all f ∈ Cr([0, 1]d). Here, the constant c(dt, ds) depends on the effective dimen-
sions dt and ds in the anchored case, but not on the nominal dimension d.

Proof. We have the same modelling error as in Lemma 3.3, i.e.,

|If − ASf | ≤ |Ifdt,ds − ASf |+ 2(1− α) σ̂(f)

with the function fdt,ds :=
∑

u∈Sdt,ds
fu. Since f ∈ Cr([0, 1]d) also fu ∈ Cr([0, 1]|u|)

for all u ⊆ D. Consequently, Qu converge with rate r/|u|. By definition, Qu requires
nu = bn|u|/dsc function evaluations such that

|I(Puf)−Qu(Puf)| ≤ c(|u|)n−r/|u|u ≤ c(|u|)n−r/ds

for a constant c(|u|) > 0 which depends on the order |u|. By (3.18) we have

|Ifdt,ds − ASdt,dsf | ≤
∑

u∈Sdt,ds

|Ifu − qu| ≤
∑

u∈Sdt,ds

∑
v⊆u

|I(Pvf)−Qv(Pvf)|

≤
∑

u∈Sdt,ds

∑
v⊆u

c(|v|)n−r/ds =
ds∑
k=1

(
dt
k

) k∑
j=1

(
k

j

)
c(j)n−r/ds
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which is bounded by c(dt, ds)n
−r/ds with the constant

c(dt, ds) :=
ds∑
k=1

(
dt
k

) k∑
j=1

(
k

j

)
c(j) ≤ max

j=1,...,ds
c(j)

ds∑
k=1

(
dt
k

)
2k ≤ 2 max

j=1,...,ds
c(j) 2dsddst .

This completes the proof.

Note that the first term in the error bound describes the discretization error
which depends on n whereas the second term corresponds to the modeling error
which depends on the proportion α. Note furthermore that the cost to obtain a pre-
scribed discretization error does not exponentially depend on the nominal dimension
d, but only on the superposition dimension ds in the anchored case.

3.2.3 A priori Construction

In applications, the effective dimensions of f are usually unknown. These dimensions
can also not be computed since this would be at least as expensive as the integration
of f . In general it is thus difficult to determine the set Sdt,ds in (3.17).

To overcome this obstacle, we here assume that the integrand is contained in
some function class that is defined by certain function space weights γu ≥ 0, which
describe the importance of the term fu of the anchored-ANOVA decomposition.
Using this a priori information, we then determine the index set S by including
those indices u which correspond to the largest weights γu. In the following, we use
the set

Sγ := {u ⊆ D : γu > ε}
which includes all indices u for which γu is larger than some threshold ε. We consider
two different approaches to define the weights: order-dependent weights for functions
f with low superposition dimension and product weights for functions f with low
truncation dimension.

• Order-dependent Weights: We define the order-dependent weights γu = 1/|u|.
Then, the indices are added according to their order |u| and, by construction,
the admissibility condition (3.13) is always satisfied. In this way the resulting
index set Sγ is tailored to the superposition dimension ds of the function f .

• Product Weights: As in [148], we assume that the dimensions are ordered
according to their importance which is modulated by a sequence of weights

γ1 ≥ γ2 ≥ . . . ≥ γd ≥ 0.

Using the weights γi, we then assign the product weight

γu :=
∏
j∈u

γj (3.19)
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to the index u ⊆ D. The weights γi can here either be input parameters
of the algorithm similar as in the CBC construction of lattice rules [149] or
they can be derived from the first order terms fj of the anchored-ANOVA
decomposition. In the latter case they are defined by

γj :=
|qj|
|q∅|

=
|Qj(Pjf)− f(a)|

|f(a)|

for j = 1, . . . , d, see (3.14). If the size of the product weights corresponds to
the importance of the anchored-ANOVA terms then the resulting index set Sγ

includes the most important contributions to the integral value.

We will use these weights and the resulting index sets Sγ in our numerical ex-
periments in Section 6.2. Note that also more general weights can be used in our
construction as long as the admissibility condition (3.13) is satisfied. Nevertheless,
we here only shifted the problem of the choice of S to the problem of determining
the weights γu. In Section 3.2.4, we will consider a different approach. There, we
will determine the index set S a posteriori in a dimension-adaptive way.

3.2.4 Dimension-adaptive Construction

In Section 3.2.3, we shifted the problem of the choice of the index set S to the
problem of determining the weights γu. In practise, however, the weights are usually
unknown and can also not be computed as this would be more expensive than
computing the integral.

In these cases adaptive algorithms are required which can estimate the weights
a posteriori during the actual calculation of the integral. This way appropriate
index sets S can be constructed automatically for a given function f without any a
priori information on the dimension structure of the integrand being required. Such
algorithms were presented in [49] to determine optimal index sets of generalised
sparse grid methods, see Section 4.1.4.

We next consider the same approach to determine the index set S in a dimension-
adaptive fashion. To estimate the importance of the term I(fu) we define γu :=
|qu| ≈ |I(fu)| with qu from (3.14). Furthermore, we denote by A the subset of all
indices u ∈ D\S which satisfy the admissibility condition (3.13) with respect to the
set S. With help of the weights γu, we then heuristically build up the index set S in
a general and automatic way by the following Greedy-approach: We start with the
initial set S = {∅} and add step by step the index u ∈ A with the largest weight γu

to S until the largest weight is below some threshold ε, see Algorithm 3.1.
Note that in the first step of Algorithm 3.1 the values qu have to be computed

for all u ∈ A for which qu has not yet been computed in previous steps. In high
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Algorithm 3.1: Dimension-adaptive constructions of the index set S.

Initialise: Let S = {∅}, q∅ := f(a) and s = f(a).

repeat
1) Compute the values qu from (3.14) for all u ∈ A for which qu

has not yet been computed and set s = s+ qu.
2) Move the index u ∈ A with the largest weight γu = |qu| from A to S.

until γu ≤ ε ;

Set ASf = s.

dimensions d, this may result in a certain overhead since not all of these values
significantly contribute to the integral value.

Example 3.5. We next provide specific examples of dimension-wise quadrature
methods of the form (3.15) which can refine the approximation of the integral in
both a locally adaptive and a dimension-adaptive way. To this end, recall that we
still have to specify the quadrature rules Qu and the index set S to finalize the
construction of the method (3.15). Here we choose the Qu’s as follows: If |u| < 4,
we use the locally-adaptive product method CUHRE, see [10, 68], to address low
regularity of the terms Puf . If |u| ≥ 4, we use a randomised quasi-Monte Carlo
method based on Sobol point sets to lift the dependence on the dimension. We
always use the anchor point (1/2, . . . , 1/2). For the construction of the index set S
(i.e. for finding the most important terms of the anchored-ANOVA decomposition)
we employ the a priori constructions from the previous section and the a posteriori
construction from this section. This defines the following three new quadrature
methods:

• mixed CUHRE/QMC method with order-dependent weights (COW),

• mixed CUHRE/QMC method with product weights (CPW),

• mixed CUHRE/QMC method with dimension-adaptivity (CAD).

We refer to COW, CPW and CAD as mixed CUHRE/QMC methods. To our
knowledge these methods are the first numerical quadrature methods which can
profit from low effective dimension (by the selection of appropriate function space
weights or by dimension-adaptivity) and which can at the same time resolve low
regularity to some extent by local adaptivity. We will study the performance of
these methods in Section 6.2 for high-dimensional integrals as they arise in option
pricing problems.



42 Chapter 3. Dimension-wise Quadrature

We conclude this chapter with a short summary. We here defined dimension-wise
quadrature methods which resulted by truncation and discretization of the anchored-
ANOVA decomposition. We discussed a priori and a posteriori approaches for the
truncation and derived bounds for the resulting modeling and discretization errors.
The results indicated that the curse of dimension can be avoided for the class of
functions which is of low effective dimension in the anchored case. We will return to
dimension-wise quadrature methods in the next chapter and show that sparse grid
methods can be regraded as a special case of this general approach.



Chapter 4

Sparse Grid Quadrature

This chapter is concerned with sparse grid (SG) quadrature methods. These meth-
ods are constructed using certain combinations of tensor products of one-dimensional
quadrature rules. They can exploit the smoothness of f , overcome the curse of
dimension to a certain extent and profit from low effective dimensions, see, e.g.,
[18, 47,48,61,121,150].

The remainder of this chapter is structured as follows: Section 4.1 is concerned
with the construction of several variants (classical, delayed, generalised, dimension-
adaptive) of the general sparse grid approach. Then, in Section 4.2 we derive optimal
generalised sparse grid constructions for integrands from weighted Sobolev spaces.
Finally, in Section 4.3, we relate sparse grids to the anchored-ANOVA decomposition
and show that sparse grids methods can be regarded as special cases of our general
class (3.15) of dimension-wise quadrature methods.

4.1 Sparse Grid Methods

The sparse grid approach is based on a decomposition of the d-dimensional integral
If into a infinite telescope sum and on a truncation of this sum which balances
work and accuracy. Different ways to truncate the sum thereby correspond to dif-
ferent sparse grid constructions such as the classical construction [150], the delayed
construction [135], the generalised construction [48,71,137,165] and the dimension-
adaptive construction [49] which we will summarise in the next sections.

4.1.1 Classical Construction

Sparse grids (SG) can be defined for general tensor product domains Ωd ⊆ IRd. We
here consider the case Ω = [0, 1], but most results can be generalised in straightfor-
ward way to other domains. We will give remarks on the case Ω = IR.

For a univariate function f : [0, 1]→ IR and a sequence of non-decreasing integers
mk, k ∈ N, let

Umkf :=

mk∑
i=1

wi,k f(xi,k) (4.1)

denote a sequence of univariate quadrature rules withmk points xi,k and weights wi,k,
which converges pointwise to If for k →∞. We assume m1 = 1 and Um1f = f(1/2)

43
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and define the difference quadrature formulae

∆k := Umk − Umk−1
with Um0 := 0 (4.2)

for k ≥ 1.
Now let f : [0, 1]d → IR be a multivariate function. Then, the d-dimensional

integral If can be represented by the infinite telescoping sum

If =
∑
k∈Nd

∆kf (4.3)

which collects the products of each possible combination of the univariate difference
formulae. Here, k ∈ Nd denotes a multi-index with kj > 0 and

∆kf := (∆k1 ⊗ . . .⊗∆kd) f. (4.4)

For a given level ` ∈ N, the classical sparse grid method, often also denoted as
Smolyak method, see, e.g., [48, 121,150], is then defined by

SG`f :=
∑

|k|1≤`+d−1

∆kf (4.5)

where |k|1 :=
∑d

j=1 kj.

From the set of all possible indices k ∈ Nd thus only those are considered whose
| · |1-norm is smaller than a constant. Note that the product approach is recovered
if instead of the | · |1-norm in (4.5) the norm | · |∞ := max{k1, . . . , kd} is used for the
selection of indices.

The SG method (4.5) can exploit the smoothness of f and in this way also
obtain convergence rates larger than one. In addition, it can overcome the curse of
dimension to a certain extent. The function classes for which this is possible are the
spaces

Hr([0, 1]d) :=

{
f : [0, 1]d → R : max

|k|∞≤r

∥∥∥∥ ∂|k|1f

∂x1
k1 . . . ∂xdkd

∥∥∥∥
∞
<∞

}
of functions which have bounded mixed partial derivatives of order r. The error of
the classical SG quadrature formula is bounded by

ε(n) = O(n−r(log n)(d−1)(r−1)) (4.6)

for all f ∈ Hr([0, 1]d).1 The convergence rate is thus independent of the dimension
up to a logarithmic factor. For analytic functions even spectral convergence is

1We will give a proof of this result for the case r = 1 in Section 4.2.
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(a) Monte Carlo (b) Quasi-MC (c) Product grid (d) Sparse grid

Figure 4.1. Sample grids of four different classes of methods for multivari-
ate numerical integration. The QMC points come from the Sobol low discrepancy
sequence. The product grid and the sparse grid are based on the trapezoidal rule with
31 nodes.

observed. In addition, the SG method (4.5) achieves (up to logarithmic factors)
optimal rates of convergence for the classical spaces Cr([0, 1]d) which we defined
in Section 3.1.3. These rates depend exponentially on the dimension, however,
see [121].

SG quadrature formulas come in various types depending on the one-dimensional
basis integration routine. SG methods with Clenshaw-Curtis rules are used in [121].
Gauss-Patterson and Gauss-Legendre formulas are investigated in [48]. For Gaus-
sian integration, SG methods with Gauss-Hermite and Genz-Keister rules are used
in [118, 123] and [73], respectively. In many cases, the performance of the classi-
cal sparse grid method can be enhanced by the use of delayed sequences of one-
dimensional quadrature rules (see Section 4.1.2), by spatial adaptivity [11, 16] or by
a dimension-adaptive refinement (see Section 4.1.4).

In Figure 4.1, the two-dimensional product grid and the corresponding sparse
grid are displayed which result if the trapezoidal rule with 31 nodes is used as uni-
variate quadrature rule. One can see that the sparse grid contains much fewer nodes
than the corresponding product grid. This effect is even more pronounced in higher
dimensions.

Remark 4.1. Sparse grid methods can directly be applied to the numerical com-
putation of integrals on IRd with Gaussian weight. To this end, only the sequence of
univariate quadrature rules Umk must be replaced by quadrature formulas for func-
tions f : R → R on unbounded domains, such as Gauss-Hermite or Genz-Keister
rules, see, e.g., [73, 118,123].
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4.1.2 Delayed Basis Sequences

This section is concerned with an optimization of the classical sparse grid construc-
tion with respect to its polynomial degree of exactness.

To this end, we denote by Pd` the space of all multivariate polynomials in d
dimensions which have the maximum degree `. We assume that the univariate
formulas Um` are exact for the space P1

` . Then the classical sparse grid quadrature
rule SG` is exact for the non-classical space of polynomials

P̃d` :=
{
P1
k1
⊗ . . .⊗ P1

kd
: |k|1 = `+ d− 1

}
,

see [121]. The method also preserves the classical polynomial exactness (based on
the space Pd` ) of the univariate quadrature rules to a certain extend as the following
lemma shows. The lemma is taken from [122].

Lemma 4.2. Let mi, i ∈ N, be a non-decreasing sequence of integers. Let further
Umi denote a univariate quadrature rule with mi points and

deg(Umi) ≥ 2i− 1. (4.7)

Then,
deg(SG`) ≥ 2`− 1, (4.8)

where SG` is the sparse grid method (4.5) based on the sequence Umi.

Proof. The proof proceeds via induction over d using dimension recursive formu-
lations [165] of the method SG`. We refer to [122] and [135] for details.

The classical SG quadrature rule thus integrates all polynomials up to a certain
degree exactly. The number of points thereby only increases polynomially with
the dimension. Nevertheless, the number of points increases still rather fast. In
[135], modifications of the classical SG construction are presented which have the
same degree of polynomial exactness with a fewer number of points. To construct
these methods, delayed basis sequences are used which result from a repetition of
quadrature formulas in the univariate basis sequences.

Delayed Gauss-Patterson sequences In the classical SG construction the se-
quence mi = 2i − 1 is used. If Umi is the Gauss-Patterson rule then deg(Umi) =
3/2mi + 1/2 for i > 1. The degree of exactness thus increases considerably faster
than 2i− 1, see Table 4.1(a). To avoid this overhead, it is proposed in [135] to base
the SG construction on a different sequence m̃i which increases slower with i than
the sequence mi. The sequence m̃i is thereby determined as

m̃i = 1, 3, 3, 7, 7, 7, 15, . . . for i = 1, 2, . . . (4.9)
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in such a way that deg(Um̃i) increases as slow as possible but is always larger than
2i− 1. This way, the number of points of SG` increases much slower with the level
` while (4.8) holds as in the classical SG construction. The degrees of polynomial
exactness of Umi and Um̃i are shown in Table 4.1(a) for i = 1, . . . , 7.

Table 4.1. Degrees of polynomial exactness of different univariate quadrature
rules with the classical sequence mi and with the delayed sequence m̃i. The lower
bound is 2i− 1.

(a) Gauss-Patterson

i 1 2 3 4 5 6 7
deg(Umi) 1 5 11 23 47 95 191
deg(Um̃i) 1 5 5 11 11 11 13
2i− 1 1 3 5 7 9 11 13

(b) Gauss-Legendre

i 1 2 3 4 5 6 7
deg(Umi) 1 5 13 29 61 125 252
deg(Um̃i) 1 3 5 7 9 11 13
2i− 1 1 3 5 7 9 11 13

(c) Gauss-Hermite

i 1 2 3 4 5 6 7
deg(Umi) 1 5 13 29 61 125 252
deg(Um̃i) 1 3 5 7 9 11 13

2i− 1 1 3 5 7 9 11 13

(d) Genz-Keister

i 1 2 3 4 5 6 7
deg(Umi) 1 5 15 29 51 - -
deg(Um̃i) 1 5 5 15 15 15 15

2i− 1 1 3 5 7 9 11 13

It is shown in [135] that the SG method with the sequence Um̃i is almost asymp-
totically optimal and that there are only minor improvements possible. Also the
numerical experiments presented in [135] indicate that the delayed constructions
are more efficient than their non-delayed counterparts provided smooth functions
are integrated, since such functions are well approximated by polynomials.

We observe the same effect in Figure 4.2 where we compare several SG variants
for the integration of the quadrature test functions

f1(x) := exp

(
−

d∑
j=1

x2
i

)
and f2(x) :=

d∏
j=1

(
1 +

(
3

4

)j (
π

4
sin(πxj)−

1

2

))

with d = 8. The function f1 is from the testing package of Genz [43]. The function
f2 is a slight modification2 of a test function from [161].

Slowly increasing Gauss-Legendre sequences The approach from [135] is not
restricted to SG methods based on Gauss-Patterson formulas. It can be used to
determine improved sequences m̃i for SG methods based on arbitrary univariate

2In [161] specific polynomials are used to study the performance of QMC methods for integrands
from weighted spaces. Since SG methods can integrate these polynomials exactly we replaced all
monomials xj by π

4 sin(πxj).
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(a) Functionf1 (b) Functionf2

Figure 4.2. Errors and required number of function evaluations of the SG
method with Clenshaw-Curtis (SG CC), Gauss-Patterson (SG Pa), Gauss-Legendre
(SG Ga) and delayed Gauss-Patterson (SG Pa del).

quadrature rules. To this end, we determine the slowest increasing sequence m̃i,
i = 1, 2, . . ., which fulfils (4.7). The sparse grid method corresponding to this
sequence then satisfies the condition (4.8) as in the classical case but requires fewer
points.

For the Gauss-Legendre rule, which has a higher polynomial degree than the
Gauss-Patterson rule, but is not nested, we obtain

m̃i = i for i = 1, 2, . . . .

In this way, the degree of exactness deg(Um̃i) = 2i− 1 exactly equals the minimum
requirement, see Table 4.1(b).

Slowly increasing Gauss-Hermite sequences Next, we improve the classical con-
struction of SG methods for integrals on IRd with Gaussian weight with respect to
its polynomial degree.

SG methods with Gauss-Hermite rules and the sequence mi = 2i − 1 have been
used in [118,123]. The degree of polynomial exactness of themi-point Gauss-Hermite
rule Umi is 2mi−1. Hence, its degree increases much faster than 2i−1 in the classical
construction where mi = 2i − 1. For the Gauss-Hermite rule, the slowest increasing
sequence subject to (4.7) is given by

m̃i = i for i = 1, 2, . . . .

It exactly satisfies the minimum requirement deg(Um̃i) = 2i − 1, see Table 4.1(c).
SG methods with such slowly increasing Gauss-Hermite sequences maintain the
condition (4.8) from the classical case but require fewer points on level `.
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(a) Functionf3 (b) Functionf4

Figure 4.3. Errors and required number of function evaluations of the SG
method with Gauss-Hermite (SG He), Genz-Keister (SG GK), slowly increasing
Gauss-Hermite (SG He del) and delayed Genz-Keister (SG GK del).

Delayed Genz-Keister sequences Finally, we consider Genz-Keister rules. They
have a lower degree as Gauss-Hermite rules but have the advantage that they are
nested. SG methods with these rules have been used in [73] with the sequence
mi = 1, 3, 9, 19, 35.

In order to reduce the number of points on level ` while keeping at the same
time the property (4.8), we again determine the slowest increasing sequence subject
to (4.7). One obtains the delayed version

m̃i = 1, 3, 3, 9, 9, 9, 9, 19, . . . for i = 1, 2, . . . . (4.10)

The degrees of exactness of Umi and Um̃i are shown in Table 4.1(d).
To provide numerical examples which illustrate the improvement that results

from the delay of basis sequences, we consider the quadrature test functions

f3(x) := cos

(
d∑
i=1

x2
i

)
ϕd(x) and f4(x) := exp

(
d∑
i=1

xi

)
ϕd(x)

with d = 9 and d = 7, respectively. Here, ϕd denotes the standard Gaussian density
(2.13) in d dimensions. The function f3 is also used in [129,132] to show that QMC
methods can be superior to MC methods also for isotropic problems. The function f4

corresponds to a simplified version of the problem to price Asian options, see [161].
One can see in Figure 4.3 that the SG method with delayed Genz-Keister se-

quences is in both examples more efficient than its classical counterpart. While SG
methods with non-delayed Genz-Keister rules can only be constructed until level
five [45], higher levels and also higher accuracies can be achieved in the delayed
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case. In the two tests, the slowly increasing Gauss-Hermite sequences turn out to
be slightly less effective than the classical Gauss-Hermite sequences. Nevertheless,
we will see in Section 4.1.4 that dimension-adaptive SG methods can benefit from
such sequences as then the grid refinement can be performed more fine granular.

4.1.3 Generalised Sparse Grids

The sparse grid construction can be tailored to certain classes of integrands if a
priori information about the importance of the dimensions or the importance of
the interactions between the dimensions is available. This is achieved by choosing
appropriate index sets I ⊂ Nd in the representation (4.3).

To ensures the validity of the telescoping sum expansion, the index set I has to
satisfy the admissibility condition

k ∈ I and l ≤ k =⇒ l ∈ I, (4.11)

where l ≤ k is defined by lj ≤ kj for j = 1, . . . , d.
In this way, the generalised sparse grid method

SGIf :=
∑
k∈I

∆kf (4.12)

is defined, see, e.g., [48, 71,137,165].
Different ways to truncate the sum (4.3) then correspond to different quadrature

methods. Examples are the product approach (3.7), the classical SG construction
(4.5) and SG methods with delayed basis sequences. Moreover, SG methods based
on weighted norms |k|1,a :=

∑d
j=1 ajkj, where a ∈ Rd

+ is a weight vector for the
different dimensions (see, e.g., [48]), or SG methods with finite-order weights, where
the norm |k|0 :=

∑d
j=1 1kj>1 is used for the selection of indices, are special cases of

this approach.
Using the example of the Gauss-Patterson sequence, we illustrate in Figure 4.4

the fact that SG methods with delayed basis sequences are special cases of the
generalised SG method. Due to the delay of the basis sequence it holds the equality
Umk−1

= Umk and thus ∆k = Umk − Umk−1
= 0 for several k ∈ N. Therefore, also

several product difference formulas ∆k = 0 and do not contribute to the integral
value. In Figure 4.4(a) these indices k are colored orange. If these zero quadrature
rules are omitted, one obtains a generalised index set as indicated in Figure 4.4(b).

4.1.4 Dimension-adaptive Sparse Grids

In practise, usually no a priori information about the dimension structure of the inte-
grand is available. In these cases algorithms are required which can construct appro-
priate index sets I automatically during the actual computation. Such algorithms
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(a) Sample index set of the
SG method with the delayed
Gauss-Patterson sequence

(b) Index set of the correspond-
ing generalised SG method

Figure 4.4. Illustration of the relation between SG methods based on delayed
sequences and generalized SG methods.

were presented in [49, 71] where the index sets are found in a dimension-adaptive
way by the use of suitable error indicators.

The adaptive methods start with the smallest index set I = {(1, . . . , 1)}. Then,
step-by-step from the set of all admissible indices, the index k is added to I which
has the largest |∆kf | value and is therefore expected to provide an as large as
possible error reduction, see [47, 49,118] for details.

The resulting dimension-adaptive construction of the index set3 is shown in Al-
gorithm 4.1. There, A denotes the subset of all indices k ∈ Nd \ I which satisfy the
admissibility condition (4.11) with respect to the set I.

Algorithm 4.1: Dimension-adaptive sparse grid method.

Initialise: Let I = {(1, . . . , 1)} and s = ∆(1,...,1)f .

repeat
1) Compute the values ∆kf from (4.4) for all k ∈ A for which ∆kf

has not yet been computed and set s = s+ ∆kf .
2) Move the index k ∈ A with the largest weight |∆kf | from A to I.

until |∆kf | ≤ ε ;

Set SGIf = s.

Altogether, the algorithm allows for an adaptive detection of the important di-
mensions and heuristically constructs optimal index sets I in the sense of [17, 63].
Note that this is closely related to best N -term approximation [30].

3Note that in [49] more sophisticated stop criterions are used than |∆kf | ≤ ε.
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Remember that we already presented a similar algorithm, Algorithm 3.1, in
Section 3.2.4. We next compare these two algorithms. Recall that Algorithm 3.1
can be based on two separate types of adaptivity. The important anchored-ANOVA
terms Ifu are found in a dimension-adaptive fashion with help of the weights γu

and are approximated by qu using possibly locally adaptive methods. In Algorithm
4.1 the calculation of the contributions ∆k is more restrictive since the telescoping
sum expansion has to hold. The algorithm is already completely determined by the
choice of the univariate quadrature rule Umk . While Algorithm 3.1 has the advantage
that low regularity of low order anchored-ANOVA terms can be resolved by local
adaptivity, Algorithm 4.1 has the advantage that modeling and discretization errors
are simultaneously taken into account and can thus be balanced in an optimal way.

Remark 4.3. Note finally that dimension-adaptive SG methods do not profit
from the delay of basis sequences since dimension-adaptive SG methods operate on
the class of generalised SG methods. This class includes all SG methods based on
delayed sequences as special cases as we explained in the previous section. Therefore,
dimension-adaptive SG methods based, e.g., on the Gauss-Patterson sequence and
dimension-adaptive SG methods based on the delayed Gauss-Patterson sequence
provide the same results. Their grids equal to the grid of the classical SG method
based on the delayed Gauss-Patterson sequence if this grid is optimal with respect
to the error indicator used for the dimension-adaptive grid refinement.

Dimension-adaptive SG methods can however take advantage of slowly increasing
sequences like Gauss-Hermite rules (see Section 4.1.2) as here the grid refinement
can be performed more fine granular. In this way, the constant of the approximation
can be reduced in particular for anisotropic integrands in high dimensions. We will
present various numerical results in Chapter 6 which illustrate the efficiency of this
particular SG method.

4.2 Optimal Sparse Grids in Weighted Spaces

This section we consider the generalised SG method (4.12) in more detail. We
here determine the index set I of this method, which balances error and cost in an
optimal way for integrands from weighted tensor product Sobolev spaces [148,165].
To this end, we partly proceed as in [18,165].

For reasons of simplicity, we restrict ourselves to the case that the univariate
quadrature rules Umk in (4.1) are given by the trapezoidal rule with m1 = 1, U1f =
f(0) and mi = 1 + 2i−2 points for i ≥ 2. Our analysis is based on the univariate
function space

H1
γ([0, 1]) := {f : [0, 1]→ R : ‖f‖1,γ <∞}

with the norm

‖f‖2
1,γ := f(0)2 + γ−1‖f ′‖2

L2
, (4.13)
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where γ ∈ (0, 1] denotes a weight. In the multivariate case we consider a given
sequence of weights

1 = γ1 ≥ γ2 ≥ . . . ≥ γd ≥ 0

and assign to each set u ⊆ D the product weight γu from (3.19). We then define
the tensor product space4

H1,mix
γ ([0, 1]d) :=

d⊗
j=1

H1
γj

([0, 1])

with the norm
‖f‖2

1,γ :=
∑
u⊆D

γ−1
u ‖fu‖2

1,mix

with

‖fu‖2
1,mix :=

∫
[0,1]|u|

∣∣∣∣ ∂|u|∂xu

f(xu,0)

∣∣∣∣2 dxu,

where fu denote the sub-terms of the anchored-ANOVA decomposition anchored at
the origin.5

4.2.1 Cost-Benefit Ratio

For the space Hmix
γ ([0, 1]d) we next determine the index set I of the generalised

sparse grid method SGI , which has the best possible cost-benefit ratio. To this end,
we first associate each index k ∈ Nd with a local cost value, namely the number of
function evaluations nk required by ∆kf . Since the methods Umi are nested and
since mi ≤ 2i−1, we have

nk =
d∏
j=1

mkj ≤ 2|k−1|1 =: ck.

For the global costs of (4.12) we thus have the bound∑
k∈I

nk ≤
∑
k∈I

ck =: nI . (4.14)

We now consider the error of the method SGI . To this end, note that

|If − SGIf | = |
∑
k∈Nd

∆kf −
∑
k∈I

∆kf | ≤
∑

k∈Nd\I

|∆kf |. (4.15)

4Note that H1,mix
γ ([0, 1]d) is the reproducing kernel Hilbert space to the product kernel

K(x,y) =
∏d
j=1 k(xj , yj), where k(x, y) := 1 + γmin{x, y} is the reproducing kernel of the space

H1
γ([0, 1]). We provide more detail on reproducing kernel Hilbert spaces in Appendix A.1.

5It is also possible to anchor the space H1
γ([0, 1]) at the point 1/2.
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To derive bounds for ∆kf , we associate to each index k ∈ Nd the product weight

γk :=
∏

j=1,...,d
kj>1

γj,

where the product is taken over all j for which kj > 1 holds.

Lemma 4.4. It holds
|∆kf | ≤ bk‖f‖1,γ (4.16)

where
bk := 2−|k−1|1γ

1/2
k . (4.17)

Proof. We first consider the univariate case and show that

|∆if | ≤ γ1/22−i+1‖f‖1,γ (4.18)

for i ≥ 2. In fact, by (4.13) we have

‖f ′‖2
L2

=
√
γ(‖f‖2

1,γ − f(0)2) ≤ γ1/2‖f‖1,γ.

Therefore,

|∆if | = |Umif − Umi−1f | ≤ 2−i+1‖f ′‖2
L2
≤ γ1/22−i+1‖f‖1,γ

for i ≥ 2, where a proof of the first inequality can be found in [165]. For i = 1,
we have |∆if | = |Um1f | = |f(0)| ≤ ‖f‖1,γ. Using the tensor product structure

∆k =
⊗d

i=1 ∆ki we obtain the assertion.

Motivated by (4.16), we refer to bk in the following as the local benefit associated
with the index k ∈ Nd. The global benefit of the method (4.12) is then given by

BI :=
∑
k∈I

bk. (4.19)

This leads to the restricted optimization problem

max
nI=w

BI , w ∈ N

to maximize the global benefit BI for fixed global costs nI . Using the argumentation
from [18], this global optimization problem can be reduced to the problem to order
the local cost-benefit ratios

cbrk := bk/ck = 2−2|k−1|1γ
1/2
k (4.20)
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associated with the index k according to their size. The optimal index set I then
contains all indices whose local cost-benefit ratios are larger than or equal to some
constant value. Here, we use the value

cbrk̄ := 2−2(`−1) (4.21)

as threshold, which is associated with the index k̄ = (`, 1, . . . , 1).

Theorem 4.5 (Optimal index sets in the weighted case). The optimal index
set in the weighted case is given by

I`,γ := {k ∈ Nd : |k|1 + σk ≤ `+ d− 1} (4.22)

where
σk :=

∑
j=1,...,d
kj>1

σj with σj := − log(γj)/4.

Proof. Using

γ
1/2
k = 2

P
j∈Dk

log(γj)/2 = 2−2σk with Dk := {j ∈ D : kj > 1}

we obtain from (4.20) that

cbrk = 2−2(|k−1|1+σk).

The comparison with (4.21) shows that cbrk ≥ cbrk̄ if and only if −2(|k−1|1 +σk) ≥
−2(`− 1), i.e., if |k| − d+ σk ≤ `− 1, which proves the assertion.

The resulting sparse grid method with the index set I`,γ is then given by

SG`,γf :=
∑

k∈I`,γ

∆kf. (4.23)

Note that the method SG`,γ is the classical sparse grid approach (4.5) in the un-
weighted case γj = 1, j = 1, . . . , d. For illustration, the resulting optimal index sets
I`,γ on level ` = 7 are shown in Figure 4.5 for d = 2 and different choices of the
weights γ = (γ1, γ2). There, the local cost-benefit ratios of the indices k = (k1, k2),
ki ∈ {1, . . . , 8}, i = 1, 2, are color-coded. In addition the indices k which belong to
I`,γ with ` = 7 are marked with a dot.

One can see that the index sets I`,γ can be represented by the disjoint union of
the four subsets

I∅ = {(1, 1)},
I1 = {(k1, 1) : k1 > 1 and k1 < b1},
I2 = {(1, k2) : k2 > 1 and k2 < b2},
I12 = {(k1, k2) : k1, k2 > 1 and |k|1 < b12},

(4.24)
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(a) γ = (1, 1) (b) γ = (1, 2−8) (c) γ = (2−8, 2−8)

Figure 4.5. Optimal index sets I`,γ on the level ` = 7.

with integers b1, b2 and b12 which depend on the weights γ1 and γ2, the dimension
d and on the level `. Note that all four subsets correspond to index sets of classical
sparse grid methods. In general 2d subsets are required (one for each ANOVA
subterm). We will use this decomposition of the index set in the next two sections
to derive cost and error bounds for the generalized sparse grid method SG`,γ from
the known cost and error bounds for the classical method SG`.

4.2.2 Cost Analysis

In the following, we use n(d, `,γ) to denote the number of function evaluations of
the method SG`,γ . To analyse these costs we first recall the well-known cost bound
for classical sparse grids, see, e.g., [18, 163]. In this case, we omit the index γ and
write n(d, `) := n(d, `,1).

Lemma 4.6 (Costs of classical sparse grids). Let mi ≤ 2i−1. Then

n(d, `) ≤ 2`
(
`+ d− 2

d− 1

)
.

Proof. We compute

n(d, `) ≤
∑

|k|1≤`+d−1

2|k−1| = 2−d
`+d−1∑
j=d

(
j − 1

d− 1

)
2j ≤

(
l + d− 2

d− 1

)
2−d

`+d−1∑
j=d

2j

=

(
l + d− 2

d− 1

)
2−d(2`+d − 2d) = (2` − 1)

(
l + d− 2

d− 1

)
.

We now present a generalised cost bound for the weighted case. The cost bound
results from the insight that the sparse grid method SG`,γ can be represented by the
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combination of 2d many classical sparse grids (one for each anchored-ANOVA term).
We already gave an example of this general relation in (4.24) for the case d = 2.
Here and in the following, we define that

(
n
d

)
:= 0 for n < d and that

(
x
d

)
:=
(bxc
d

)
for x ∈ R.

Theorem 4.7 (Costs of weighted sparse grids). Let mi ≤ 2i−1. Then

n(d, `,γ) ≤ 2`
∑
u⊆D

γu
1/4

(
`+ log(γu)/4− 2

|u| − 1

)
.

Proof. We start with

n(d, `,γ) ≤
∑

k∈I`,γ

ck (4.25)

and remark that the index set I`,γ from (4.22) can be represented by I`,γ =
⋃

u⊂D Iu

as the disjoint union of the sets

Iu = {k ∈ I`,γ : kj > 1 if and only if j ∈ u}.

Thus, ∑
k∈I`,γ

ck =
∑
u⊆D

∑
k∈Iu

2|k−1|1 (4.26)

for u ⊆ D. Here, the inner sum bounds the costs of a |u|-dimensional classical sparse
grid starting with m1 = 2 points and with level ` − σu − |u|, where σu =

∑
j∈u σj.

From Lemma 4.6 we see that

2d+`

(
`+ d− 2

d− 1

)
bounds the costs of a classical sparse grid algorithm on level ` with mi = 2i. There-
fore, ∑

k∈Iu

2|k−1|1 ≤ 2`−σu
(
`− σu − 2

|u| − 1

)
. (4.27)

Using σu = − log(γu)/4 and 2−σu = γ
1/4
u we obtain the assertion by combining (4.25)

- (4.27).

Note that Theorem 4.7 recovers Lemma 4.6 in the unweighted case γj = 1,
j = 1, . . . , d. This can be seen as follows: We have

n(d, `,1) ≤ 2`
∑
u⊆D

(
`− 2

|u| − 1

)
= 2`

d∑
j=1

(
d

j

)(
`− 2

j − 1

)
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and use

d∑
j=1

(
d

j

)(
`− 2

j − 1

)
=

d∑
j=1

(
d

d− j

)(
`− 2

j − 1

)
=

d−1∑
j=0

(
d

d− 1− j

)(
`− 2

j

)
=

(
d+ `− 2

d− 1

)

where we applied the Vandermonde’s identity for the last equality.

4.2.3 Error Analysis

We now consider the error of the method SG`,γ . To this end, we start with an error
bound for classical sparse grids, see, e.g., [18]. In the unweighted case, we again
omit the index γ and write ‖f‖1 := ‖f‖1,1.

Lemma 4.8 (Error of classical sparse grids). Let SG` denote the classical
sparse grid method (4.5) and let ` ≥ d− 1. Then

|If − SG`f | ≤ 2−`A(d, `)‖f‖1

where

A(d, `) := 2d

(
`+ d− 1

d− 1

)
.

Proof. Using (4.15) and Lemma 4.4 with γj = 1 for all j, we conclude

|If − SGIf | ≤
∑

|k|1>`+d−1

|∆kf | ≤
∑

|k|1>`+d−1

2−|k−1|1‖f‖1.

A simple computation with combinatorial identities and the geometric series lead to

∑
|k|1>`+d−1

2−|k−1|1 = 2−`+1

d−1∑
j=0

(
`+ d− 1

j

)
,

see Lemma 3.7 in [18]. Since(
`+ d− 1

j

)
≤
(
`+ d− 1

d− 1

)
for j = 0, . . . , d− 1 if ` ≥ d− 1 we have proved the assertion.

We now present a corresponding error bound for the weighted case. To derive
this bound, we in particular use the fact that the error of the sparse grid method
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SG`,γ can be bounded by the sum of the errors of 2d many classical sparse grids (one
for each anchored-ANOVA term).

Theorem 4.9 (Error of weighted sparse grids). Let ` ≥ d− log(γ{1,...,d})/4−1.
Then

|If − SG`,γf | ≤ 2−`
∑
u⊆D

γu
1/4 2|u|

(
`+ log(γu)/4− 1

|u| − 1

)
‖f‖1,γ .

Proof. We start with

|If − SG`,γf | ≤
∑

k∈Nd\I`,γ

bk‖f‖1,γ (4.28)

which follows from (4.15) and (4.16). Note that

Nd \ I`,γ =
⋃

u⊆D

(Nu \ Iu)

with Nu as in (4.37) and Iu as in the proof of Theorem 4.7. By (4.17), we thus have∑
k∈Nd\I`,γ

bk‖f‖γ =
∑
u⊆D

γ1/2
u

∑
k∈Nu\Iu

2−|k−1|1‖f‖1,γ (4.29)

with γu =
∏

j∈u γj = 2−4σu .Here, the inner sum bounds the error of a |u|-dimensional
classical sparse grid starting with m1 = 2 points and with level `−bσuc− |u|. From
Lemma 4.8 we see that

2−d−`A(d, `)‖f‖1

bounds the error of a classical sparse grid algorithm with mi = 2i and level `.
Therefore, ∑

k∈Nu\Iu

2−|k−1|1 ≤ 2−`+σuA(|u|, `− σu − |u|). (4.30)

If ` ≥ d− log(γ{1,...,d})/4− 1, it holds `− σu ≥ |u| − 1 for all u ⊆ D and thus

A(|u|, `− σu − |u|) = 2|u|
(
`− σu − 1

|u| − 1

)
(4.31)

by the definition of A(d, `), see Lemma 4.8. Using σu = − log(γu)/4 and γ
1/2
u 2σu =

γ
1/4
u , we finally obtain the assertion by combining (4.28) - (4.31).
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Note that Theorem 4.9 recovers Lemma 4.8 in the unweighted case γj = 1,
j = 1, . . . , d. We see this from

|If − SG`,1f | ≤ 2−`
∑
u⊆D

2|u|
(
`− 1

|u| − 1

)
‖f‖1,1 = 2−` 2d

d∑
j=1

(
d

j

)(
`− 1

j − 1

)
‖f‖1,1

= 2−` 2d

(
`+ d− 1

d− 1

)
‖f‖1,1 = 2−`A(d, `)‖f‖1.

Here, the second equality follows from the Vandermonde’s identity.

4.2.4 ε-Cost Analysis

Using the results of Section 4.2.2 and Section 4.2.3, we now represent the error of
the method SG`,γ as a function of its costs n = n(d, `,γ). We again start with the
classical case.

Lemma 4.10 (ε-cost of classical sparse grids). For f ∈ Hmix
1 ([0, 1]d) and

` ≥ d− 1 it holds
|If − SG`f | = O(n−1(log n)2(d−1))

where n denotes the number of points used by the method SG`.

Proof. Note that A(d, `) = O(`d−1). By Lemma 4.8 we can thus estimate

|If − SG`f | = O
(
2−``d−1

)
= O

(
`2(d−1)

2``d−1

)
= O

(
(log n)2(d−1)

n

)
.

Here, we used ` ≤ log(n) and n = O(2``d−1) where the latter bound can be derived
with the help of Lemma 4.6.

We now generalise this result such that also the weighted case is covered.

Theorem 4.11 (ε-cost of weighted sparse grids). Let ` ≥ d−log(γ{1,...,d})/4−1.
Then

|If − SG`,γf | ≤ n−1 2dB(d, `,γ)2 ‖f‖1,γ (4.32)

where

B(d, `,γ) :=
d∑
j=1

γ
1/4
{1,...,j}

(
d

j

)(
`+ log(γ{1,...,j})/4− 1

j − 1

)
.

Proof. We first show that

n(d, `,γ) ≤ 2`B(d, `,γ). (4.33)
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To this end, note that γ{1,...,j} =
∏j

i=1 γi ≥ γu for all u with |u| = j since the weights
are ordered according to their size. Thus, by Lemma 4.7,

n(d, `,γ) ≤ 2`
d∑
j=1

∑
|u|=j

γu
1/4

(
`+ log(γu)/4− 2

|u| − 1

)

≤ 2`
d∑
j=1

(
d

j

)
γ

1/4
{1,...,j}

(
`+ log(γ{1,...,j})/4− 1

j − 1

)
where we use the fact that

(
n
d

)
is monotone increasing in n. Similarly, we derive

|If − SG`,γf | ≤ 2−` 2dB(d, `,γ) ‖f‖1,γ (4.34)

from Lemma 4.9. From (4.34) and (4.33) with n = n(d, `,γ) we conclude that

|If − SG`,γf | ≤
2dB(d, `,γ)2

2`B(d, `,γ)
‖f‖1,γ ≤ 2dB(d, `,γ)2 n−1 ‖f‖1,γ

which proves the theorem.

We now comment on Theorem 4.11:

• In the unweighted case γj = 1, j = 1, . . . , d, we obtain B(d, `,γ) = A(d, `) =
O((log n)d−1). Theorem 4.11 is thus a generalisation of the classical case in
Lemma 4.10.

• Theorem 4.11 shows that the method SG`,γ converges with rate n−1 which
is independent of the dimension. The error bound still depends on the value
B(d, `,γ), however. In general, we see that B(d, `,γ) = O(`d−1). It thus
introduces a logarithmic dependence on the dimension.

• The value B(d, `,γ) is decreasing with the size of the weights γj, j = 1, . . . , d,
though. Moreover, the level

`∗ := d− log(γ{1,...,j})/4 (4.35)

grows with decreasing weights, see also Example 4.12. It describes the level
where the asymptotic regime in the error bound of Theorem 4.11 starts and
thus gives the point where the logarithmic factor `d−1 appears in the complex-
ity.

• If the weights decay sufficiently fast such that

sup
d

d∑
j=1

γ
1/2
j <∞ (4.36)

then the general results of [165] indicate that B(d, `,γ) and hence also the
method SG`,γ depends only polynomially on the dimension.
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• Note that the error bound (4.32) also depends on the norm ‖f‖1,γ of the
integrand. This norm may grow exponentially fast for increasing d which can
cause problems in higher dimensions. Note that this effect is not included in
the notion of tractability in [148,165] since only functions with norm ‖f‖1,γ ≤ 1
are addressed there.

• Note finally that the error estimator used in the dimension-adaptive sparse
grid method is based on the values ∆kf on which also the above analysis is
based. We can thus expect that these methods correctly identify the optimal
index sets I`,γ provided no early determination problems occur. In this case,
the results of this section can also be used to show that dimension-adaptive
sparse grid methods can avoid the curse of dimension in weighted function
spaces whose weights decay sufficiently fast.

Example 4.12. As in [165], we consider the family of weights

γj = j−α, with α ≥ 0.

This example with α = 2 is motivated by the fact that in many application problems
from finance the high nominal dimension arises from the discretization of an under-
lying continuous time process. The corresponding integrals can thus be written as
an approximation to some infinite-dimensional integrals with respect to the Wiener
measure.6 In these cases, the integrands are contained in some weighted function
spaces whose weights are related to the eigenvalues of the covariance operator of
the Wiener measure. These eigenvalues, sorted by their magnitude, are decaying
proportionally to j−2, where j is the number of the eigenvalue.

For γj = j−α, we obtain γ{1,...,j} = (j!)−α and `∗ = d+ α/4 log(d!). We thus can
compute the level `∗ in (4.35) for different exponents α and different dimensions d.
The results are shown in Table 4.2. For instance, let d = 360 and α = 2. Then, one
can see that the asymptotic log-factor `d−1 in the error bound from Theorem 4.11
does not appear as long as ` < `∗ = 1633. In the unweighted case, the level `∗ = 361
is significantly smaller.

Table 4.2. The values `∗ := d+α/4 log(d!) for α ∈ {0, 1, 2, 3} and different
nominal dimensions d.

α \ d 1 3 5 10 50 100 360 1024
0 1 4 6 11 51 101 361 1025
1 1 4 8 16 105 232 997 3217
2 1 5 9 22 158 363 1633 5409
3 1 6 11 27 212 495 2268 7601

6See, e.g., [105] and the references listed there.
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If α > 2 holds, then the condition (4.36) is satisfied and we can use the general
results of [165] to see that the ε-cost of the method SG`,γ is independent of the di-
mension. In this case the number of function evaluations n(ε) to obtain an accuracy
of ε can be bounded by

n(ε) ≤ c εmax{1, 2
α−1
}

for integrands from the unit ball ‖f‖γ ≤ 1, where the constant c is independent of d
and ε. It is known, see [138], that the ε-exponent in this bound can not be improved
using generalised sparse grid methods. It is optimal for α ≥ 3 but far from optimal
for α ≈ 1.

4.3 Relation to Dimension-wise Quadrature

There is a close relation of the sparse grid approach and the anchored-ANOVA
decomposition. The sparse grid approach (4.12) can indeed be interpreted as a
refinement of each anchored-ANOVA term by first expanding it into an infinite basis
and then truncating this expansion appropriately.7 It can thus be regarded as special
case of the dimension-wise quadrature method (3.15) where the set S and the rules
Qu are chosen in a systematic way to exploit smoothness of the integrand. We now
show this in more detail. To this end, we always use the anchor a = (1/2, . . . , 1/2).
We start with the following lemma.

Lemma 4.13. Let fu and Puf as in (3.11). Let further

Nu :=
{
k ∈ Nd : kj > 1 if and only if j ∈ u

}
. (4.37)

Then, ∆kf = ∆k(Puf) if k ∈ Nv with v ⊆ u. Moreover, ∆kf = ∆kfu if k ∈ Nu.

Proof. The proof follows from the fact that the projections Pu fix dimensions
of f at the same point as the operator ∆1. Indeed, if k ∈ Nv and v ⊆ u then
kj = 1 for all j 6∈ u and thus ∆kf = ∆k(Puf) since ∆k = ∆k1 ⊗ . . . ⊗ ∆kd and
∆1f = P∅f = f(1/2) for all univariate functions f . To show the second assertion,
let k ∈ Nu. Then, we obtain from (2.4) that

∆k(Puf) = ∆kfu +
∑
v⊂u

∆kfv.

Since fv(xv)|xj=1/2 = 0 for all j ∈ v, which is a direct consequence of the orthog-
onality (2.6), we conclude ∆kfv = 0 for all v ⊂ u and k ∈ Nu. This proves
∆kf = ∆k(Puf) = ∆kfu for all k ∈ Nu.

7Note the close relation to [103].
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By Lemma 4.13 and (4.3) we obtain

If =
∑
u⊆D

∑
k∈Nu

∆kf

since Nd is the disjoint union of the sets Nu, u ⊆ D. By (3.12), we also have
If =

∑
u⊆D Ifu, which yield a decomposition

Ifu =
∑

k∈Nu

∆kf

of the integrals of the anchored-ANOVA terms into an infinite sum. Next, we trun-
cate this sum. To this end, we select index sets Iu ⊂ Nu for all u ⊆ D, which satisfy
the condition (4.11), and use

qu :=
∑
k∈Iu

∆kf (4.38)

as approximation to Ifu. The corresponding method (3.15) with S = D can then
be represented as

ASf =
∑
u⊆D

qu =
∑
k∈I

∆kf

with the index set I =
⋃

u⊆D Iu. We see that in this way both, the modeling and
the discretization error is expressed8 in terms of the values ∆kf . We further see
that the resulting method ASf coincides with the generalised sparse grid approach
(4.12). To this end, we define

Iu := {k ∈ I : kj > 1 if and only if j ∈ u} = I ∩ Nu. (4.39)

Theorem 4.14. The dimension-wise quadrature method (3.15) with anchor a =
(1

2
, . . . , 1

2
), the index set S = D and the quadrature methods

Quf :=
∑
v⊆u

∑
k∈Iv

∆kf (4.40)

coincides with the generalised sparse grid method (4.12).

Proof. We have to show that (3.14) holds with qu as in (4.38) and Qu as in (4.40).
In fact,

Qu(Puf)−
∑

v⊂u qv =
∑
v⊆u

∑
k∈Iv

∆k(Puf)−
∑
v⊂u

∑
k∈Iv

∆kf

=
∑
k∈Iu

∆k(Puf) +
∑
v⊂u

∑
k∈Iv

(∆k(Puf)−∆kf) =
∑
k∈Iu

∆kf = qu

8Modeling errors are here represented by the case Iu = ∅ for any u ⊆ D.
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where we twice used Lemma 4.13.

Remark 4.15. Similar as in Theorem 4.14, we see that generalised sparse grid
methods for integrals on IRd with Gaussian weight (e.g. sparse grids based on
Gauss-Hermite rules) are special cases of the dimension-wise quadrature method
for integrals with Gaussian weight, see Remark 3.2. Both methods result from a
discretization of the terms of the anchored-ANOVA decomposition with Gaussian
weighted using the anchor a = (0, . . . , 0), see Remark 2.6.

We conclude this chapter with a short summary. In this chapter, we first dis-
cussed different sparse grid constructions which resulted from different choices of
the underlying index set. Then, we determined optimal index sets for integrands
from weighted Sobolev spaces. For the respective sparse grid methods, we derived
cost and error bounds, which indicate that the curse of dimension can be avoided in
such spaces if their function space weights decay sufficiently fast. Finally we showed
that SG methods can be regarded as special cases of dimension-wise quadrature
methods. In the next chapter, we discuss several approaches which can be used to
enhance the performance of SG methods for special classes of integrals.
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Chapter 5

Dimension Reduction and
Smoothing

Numerical quadrature methods can profit from smoothness and low effective dimen-
sion as we showed in Chapter 3 and Chapter 4. Integrals that arise in applications
from finance often have kinks or even jumps, however. Moreover, they often have
a high truncation dimension. We here focus on several different approaches which
aim to reduce the effective dimension or to smooth the resulting integrands. In this
way, the efficiency of the numerical quadrature methods can be improved in many
cases as we finally show in Chapter 6 by numerical experiments.

5.1 Orthogonal Transformations

This section is concerned with transformations that can reduce the effective dimen-
sion of high-dimensional integrals of the form

Iϕg =

∫
IRd
g(z)ϕd(z)dz (5.1)

with Gaussian density ϕd in d dimensions. Such integrals usually appear in applica-
tion problems from finance that are based on Brownian motions. The main idea is
that such integrals are invariant with respect to orthonormal transformations such
as rotations or reflections. This yields

Iϕg =

∫
IRd
g(Qz)ϕd(Qz)dz =

∫
IRd
g(Qz)ϕd(z)dz

for all matrices Q ∈ IRd×d that satisfy

QTQ = I,

where I is the identity. If we want to compute integrals of the form (5.1), we thus
have the degree of freedom to choose the matrix Q from the d(d− 1)/2-dimensional
group of orthonormal matrices. In the following, we aim to determine Q such that
the effective dimension of the integral (5.1) is minimized.

An equivalent situation arises in all application problems which require the com-
putation of an underlying Brownian motion W (t) on a given simulation grid. To
this end, mostly the random walk construction is used. However, since the result of

67
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such a path construction is invariant with respect to orthonormal transformations
Q as we show below, we again have the degree of freedom to choose the matrix Q
which leads to the lowest effective dimension and to the best performance of the
deterministic integration methods.

In this section, we present four different approaches that construct a Brownian
motion until time T at the equidistant points in time tk = k∆t with k = 0, . . . , d
and ∆t = T/d. They all require an input vector y = (y1, . . . , yd) of d independent
standard normally distributed random numbers yk and generate a vector W =
(W1, . . . ,Wd) whose joint distribution exactly coincides with the joint distribution
of the continuous time Brownian motion W (t) at the discrete time points tk. All
constructions can be written in the form

W = Ay (5.2)

and differ only in the choice of the matrix A which has to satisfy ATA = C where
C ∈ IRd×d with entries cij = Cov(W (ti),W (tj)) = min(ti, tj) denotes the covariance
matrix of the Brownian motion.

To show the relation to orthonormal matrices, note that if ATA = C then this
also holds for QA if Q is orthogonal since

(QA)TQA = ATQTQA = ATA = C.

Hence, Ay ∈ IRd and AQy ∈ IRd have the same distribution. For a given path
generating matrix A, we can thus choose an arbitrary orthogonal matrix Q to im-
prove the properties of the path construction without changing the distribution of
W. This is also the starting point of the LT-construction, which we discussed in
more detail in Section 5.1.2.

5.1.1 Random Walk, Brownian Bridge, PCA

We next follow [59] and describe the random walk, the Brownian bridge [117] and
the principal component [1] construction of the path W = (W1, . . . ,Wd) in the
univariate as well as in the multivariate case.

Random Walk

We start with the random walk (RW) construction which is most commonly used
and is most simple to implement. It proceeds incrementally and computes

Wk = Wk−1 +
√

∆t yk
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with W0 = 0. This approach corresponds to (5.2) if A is the Cholesky matrix of C,
i.e.,

A =
√

∆t


1
1 1
...

. . .

1 . . . . . . 1

 .

The RW-construction is illustrated in Figure 5.1(a) for a sample path with eight
time steps.

Brownian Bridge

The Brownian bridge (BB) construction differs from the RW construction in that
rather than constructing the increments sequentially, the path is constructed in a
hierarchical way which has the effect that more importance is placed on the earlier
variables than on the later ones. It has been proposed in [117] for option pricing
problems. If d is a power of two, i.e. d = 2m with m ∈ N, then the BB-construction
is defined by

Wd =
√
T y1,

Wd/2 = (W0 +Wd)/2 +
√
T/4 y2,

Wd/4 = (W0 +Wd/2)/2 +
√
T/8 y3,

W3d/4 = (Wd/2 +Wd)/2 +
√
T/8 y4,

...
...

W1 = (W0 +W2)/2 +
√
T/2m+1 y2m−1+1,

...
...

Wd−1 = (Wd−2 +Wd)/2 +
√
T/2m+1 yd.

The construction thus proceeds level-wise where the `-th level corresponds to the
first 2` dimensions. On each level the previous path is refined by intermediate values
W (tk) which are generated conditional on the neighbouring values W (tj) and W (tl)
which have already been constructed on previous levels. If d is not a power of two,
the above procedure is first applied to a subset of the points tk, whose number
is a power of two. The remaining points are then filled in at the end. The BB-
construction can also be written in the form (5.2). The explicit formula for the
matrix A can be found in [159]. For illustration, the construction is displayed in
Figure 5.1(b) for a sample path with eight time steps.
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(a) Random walk (b) Brownian bridge

Figure 5.1. Construction of the sample path W = (W1, . . . ,W8) based on
the input vector y = (y1, . . . , y8) of standard normally distributed random numbers.

Principal Component

The principal component (PCA) construction [1] is based on an eigenvalues decom-
position C = VTΛV of the covariance matrix C. It maximises the concentration of
the total variance of the Brownian path in the first few dimensions. Here, the path
is obtained via (5.2) with

A =
√

ΛV =


√
λ1v11 . . .

√
λdv1d

...
...√

λ1vd1 . . .
√
λdvdd


where vij denotes the j-th coordinate of the i-th eigenvector and λi denotes the i-th
eigenvalue of the covariance matrix C. The eigenvectors and -values are given by

vij =
2√

2d+ 1
sin

(
2i− 1

2d+ 1
jπ

)
and

λi =
∆t

4
sin−2

(
2i− 1

4d+ 2
π

)
,

see, e.g., [59]. Since A is now a full matrix, the PCA construction requires O(d2)
operations for the generation of one path instead of O(d) operations which are
needed for the random walk or for the Brownian bridge construction. For large d,
this often increases the run times of the simulation and limits the practical use of
the PCA construction.

The sample paths which result from the RW, BB and PCA-construction after
k = 1, 2, 4 and 8 intermediate steps are shown in Figure 5.2 for a grid with d = 8
time points. After few intermediate steps (k = 4) one can see, that BB and PCA
have already captured the main movements of the total random path, whereas RW
has only focused on the first part of the path. These effects are the more pronounced
the larger the dimension d and result since BB and PCA add increasingly fine detail
to the path at each step and do not proceed incrementally as RW. The resulting
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concentration of variance in the first dimensions is thereby related to the decay of the
factors

√
T/j, j = 1, 4, 8, . . ., and

√
λi, i = 1, 2, . . . in the BB and PCA construction

and often results in integrands which are of low truncation dimension.

k = 1

k = 2

k = 4

k = 8

RW BB PCA

Figure 5.2. Intermediate results of the different path constructions with d = 8.

Multivariate case

The RW, BB and PCA construction can also be used in the multivariate case
when a D-dimensional Brownian motion W(t) = (W1(t), . . . ,WD(t)) with corre-
lation matrix Σ ∈ RD×D has to be generated on the simulation grid. To this end,
we first generate a discrete D-dimensional uncorrelated Brownian motion W̃ =
(W̃1, . . . ,W̃d) ∈ IRd×D at the time points tk, k = 1, . . . , d, by applying either RW,
BB or PCA separately to each component of the Brownian motion. Then, we respect
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the correlation in a second step by computing

Wk = ΛW̃k

for k = 1, . . . , d using a matrix Λ ∈ RD×D which satisfies ΛTΛ = Σ. Here, either the
Cholesky matrix or an eigenvalue decomposition can be used which require O(D2)
and O(D3) operations, respectively. The optimal construction with the highest
possible concentration of variance in the first variables in the multivariate case can be
achieved in O(D3 +d3) operations by an eigenvalue decomposition of the covariance
matrix of (W1(t1), . . . ,WD(t1),W1(t2), . . . ,WD(t2), . . . ,W1(td), . . . ,WD(td)), see [59]
for details. We refer to this approach as eigenvalue decomposition (EVD).

5.1.2 Linear transformations

In this section, we discuss the LT-construction. It is further approach to generate the
path of an underlying Brownian motion, that was first presented by Imai and Tan
in [81, 82]. The construction aims to identify the optimal linear transformation Q
in (5.2) by taking into account not only the underlying Brownian (i.e. the Gaussian
weight) but also the linear part of the integrand g. This is an important improvement
of other path constructions such as BB and PCA which concentrate the variance of
the underlying Brownian motion in the first few dimensions but do not take into
account the particular structure of the integrand. A priori it is thus not clear that
BB and PCA lead to smaller effective dimensions as e.g. RW. In fact, digital options
are an example where BB performs worse than RW, see [130].

A Special Class of Functions

To illustrate the main idea of the LT-construction, we start to discuss dimension
reduction for a special class of functions g : IRd → IR that can be represented as
concatenation g = f ◦gL of an univariate function f : IR→ IR and an affine function
gL : IRd → IR. Such functions are known under the names ridge functions in the
context of computerized tomography and neural networks, plane waves in the study
of hyperbolic partial differential equations and projection pursuit in statistic and
approximation theory, see [136] for details. This class of functions is also interesting
since some finance problems can be represented in this form as we show below.

For this function class an optimal transformation Q can be obtained such that
g(Qz) is an only one-dimensional function. Interestingly, the optimal matrix can
be determined without that information on the special form of the functions f and
gL are required. Only the gradient of g has to be computed at a fixed anchor point
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a ∈ IRd as stated in the following theorem.

Theorem 5.1. For w = (w1, . . . , wd) ∈ IRd and w0 ∈ IR let

g(z) := f

(
w0 +

d∑
i=1

wizi

)
(5.3)

with f : IR → IR and f ′(wTa) 6= 0. Then, there exist an orthonormal matrix
Q ∈ IRd×d such that

g(Qz) = f (w0 ± ‖w‖z1)

where the sign corresponds to the sign of f ′(wTa). The matrix Q = (q1, . . . ,qd) is
thereby determined as follows: Its first column vector is defined by

q1 := ∇g(a)/‖∇g(a)‖

and the remaining column vectors are arbitrary as long as the orthogonality condition

(qj,qk) = 0 for k = 1, . . . , j − 1

holds, where (·, ·) denotes the euclidean inner product in IRd.

Proof. We compute

g(Qz) = f

(
w0 +

d∑
i=1

wi(Qz)i

)

= f

(
w0 +

d∑
i=1

wi

d∑
j=1

qijzj

)

= f

(
w0 +

d∑
j=1

zj

d∑
i=1

wiqij

)

= f

(
w0 +

d∑
j=1

αjzj

)
with αj := wTqj.

Since
∂g

∂zj
(a) = wj f

′ (wTa
)

we have ∇g(a) = f ′
(
wTa

)
w. If we choose q1 := ∇g(a)/‖∇g(a)‖ we see that

α1 = wTq1 =
wT∇g(a)

‖∇g(a)‖
=
f ′
(
wTa

)
wTw

|f ′ (wTa) |‖w‖
= ±‖w‖.
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Since (q1,qj) = 0 for j = 2, . . . , d, it further holds that

αj = wTqj =
∇g(a)Tqj

f ′ (wTa)
=
‖∇g(a)‖
f ′ (wTa)

(q1,qj) = 0 for j = 2, . . . , d.

This proves the assertion.

In this way, an initially d-dimensional integrand g can be reduced to an integrand
of only one dimension without changing the value of the integral (5.1). This result
is based on the simple fact that the sum of normally distributed random variables is
again normally distributed. Nevertheless, it shows that for some non-linear functions
very effective dimension reductions can be obtained by orthonormal transformations
that only depend on the linear part, i.e. on the gradient of the function at a certain
anchor point. We will see in the next section that these optimal transformations are
correctly identified by the LT-construction.

Important examples which are included in the function class (5.3) are functions
of the form

g(z) = max{0, egL(z) −K} with gL(z) := w0 +
d∑
j=1

wjzj (5.4)

where wj, j = 0, . . . , d, and K are constants. This special class of functions is also
considered in [161] to explain why high-dimensional finance problems are often of
low effective dimension. Asian options and European basket options with geometric
averages are examples which can be represented in the form (5.4) and are hence
reduced to one-dimensional problems by the LT-construction.

The general LT-construction

Theorem 5.1 only specifies the first column of the matrix Q since this is already
sufficient to reduce functions g of the form (5.3) to only one dimension. For general
integrands g such a large dimension reduction can usually not be expected. The
’optimal’ transformation Q then also depends on the choice of the remaining columns
qj for j = 2, . . . , d. In special cases the contribution of the j-th dimension to the
total variance of the integrand is known or can be approximated analytically. Then,
the matrix Q can be constructed inductively, column by column, such that the
explained variance due to the first dimensions is sequentially maximized with the
side condition such that all columns are orthonormal. Similarly, it is possible in
special cases to find the matrix Q which minimizes the truncation dimension. These
approaches, which are denoted by LT-I and LT-III in [81] can be used to price Asian
basket options with arithmetic averages as it is shown in this reference.

In general the contribution of the j-th dimension to the total variance of the
integrand is unknown, though. It can also not be computed as this would be more
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expensive than to compute the integral. To circumvent this problem, we here pro-
ceed as in the general LT-construction that only takes into account the contribution
of the linear part of the function g. The construction proceed inductively and de-
termines the matrix Q column by column. In the j-th step, the j-th column qj is
constructed using the following approach:

• Taylor approximation: First, the linear part gL of the function g is determined
using the first order Taylor expansion.

• Optimal transformation: Then, the j-th column qj is determined such that the
contribution of the j-th dimension of gL is maximized with the orthogonality
side condition (qj,qk) = 0 for k = 1, . . . , j − 1.

Next, we describe the Taylor approximation and the construction of qj in more
detail.

Taylor approximation In order to linearize the integrand gQ(z) := g(Qz) we use
the first order Taylor approximation of gQ in a fixed point a ∈ IRd which yields

gL(z) := gQ(a) +
d∑
j=1

∂gQ

∂zj
(a)(zj − aj). (5.5)

Note that in each step j of the construction a different anchor point a has to be
used.1 As in [82] we here use the point a := (1, . . . , 1, 0, . . . , 0) with j − 1 leading
ones in the j-th step of the construction.

Note further that if z ∈ IRd is standard normally distributed, then the contribu-
tion of the j-th dimension to the total variance of the linear function gL is given by

σj :=

(
∂gQ

∂zj
(a)

)2

=
(
∇g(Qa)T Q, ej

)2
= (∇g(Qa), qj)

2 , (5.6)

where ej denotes the j-th unit vector in IRd. To compute the gradient ∇g(Qa) we
use the finite difference approximation

∂g

∂zj
(yj) ≈

g(yj + h)− g(yj − h)

2h

with small h > 0.

1As noted in [82] a more complex and costly alternative would be to use the Taylor approxima-
tion of order j in the j-th step.
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Optimal transformation Taking the linear approximation gL into account, we then
aim to determine the j-th column of the matrix Q such that the contribution σj is
maximized and such that in addition the orthogonality side conditions are respected.
The solution to this optimization problem is given in the following theorem, which
we state and proof in a slightly different way as in [82].

Theorem 5.2. Let V := span{q1, . . . ,qj−1}, σj as in (5.6) and w := ∇g(Qa).
Assume that w /∈ V . Then,

qj := ±w⊥/‖w⊥‖ with w⊥ := w −
j−1∑
i=1

(w,qi) qi

is the (up to the sign) unique solutions of the constrained optimization problem

max
qj∈V ⊥

σj with ‖qj‖ = 1, (5.7)

where V ⊥ ⊂ IRd denotes the orthogonal complement to V .

Proof. We start by defining wV ∈ V by

wV :=

j−1∑
i=1

(w,qi) qi. (5.8)

Since V ⊕ V ⊥ = IRd there exists w⊥ ∈ V ⊥ such that

w = wV + w⊥. (5.9)

For qj ∈ V ⊥ we then obtain that

(qj,w) = (qj,w
V ) + (qj,w

⊥) = (qj,w
⊥) = ‖qj‖ ‖w⊥‖ cos(θ),

where θ is the angle between the vectors qj and w⊥. Using (5.6), we see that

σj = (qj,w)2 = ‖qj‖2 ‖w⊥‖2 cos2(θ). (5.10)

Since ‖qj‖ = 1, the maximum in (5.10) is attained if cos(θ) = ±1, i.e., if

qj = ±w⊥/‖w⊥‖.

Using (5.8) and (5.9), we finally see that

w⊥ = w −
j−1∑
i=1

(w,qi) qi

which proves the assertion.

Combining the Taylor approximation and the result of Theorem 5.2 for j =
1, . . . , d, the matrix Q is now constructed as summarized in Algorithm 5.1.
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Algorithm 5.1: LT-construction of the orthonormal matrix Q = (q1, . . . ,qd).

for j = 1, . . . , d do
1) Set a := (1, . . . , 1, 0, . . . , 0) with j − 1 leading ones.

2) Compute w := ∇g(Qa)/‖∇g(Qa)‖.

3) Set w⊥ := w −
j−1∑
i=1

(w,qi) qi.

4) Set qj := w⊥/‖w⊥‖.

Discussion

We conclude this section with several remarks on the LT-construction. Note first
that the Taylor approximation is only used to find suitable columns of the matrix Q
and not to compute the integral (5.1). Since the integral is invariant to orthogonal
transformations Q this approach does hence not involve any approximation errors.

Note further that Algorithm 5.1 yields (for j = 1) the first column

q1 = ∇g(Qa)/‖∇g(Qa)‖

and hence the same result as Theorem 5.1. This is explained from the fact that the
function gL is of the form (5.3) with f the identity and wj =

∂gQ
∂zj

(a). This shows

that the LT-construction reduces integrands g of the special form (5.3) to only one
dimension. Note that, e.g., Asian or basket options based on geometric averages are
included in this class for which optimal transformations can be derived.

By Theorem 5.2 we see that the solution of the optimization problem (5.7) co-
incides with the result of the Gram-Schmidt process applied to the system

{q1, . . . ,qj−1,w}.

As alternatives to the Gram-Schmidt process also other orthogonalisation algorithms
such as the Householder transformation or the Givens rotation can be used. We
recommend one of the latter methods since we observed numerical instabilities with
the Gram-Schmidt process in higher dimensions in particular if gradients appear
which are ’nearly’ linear dependent.

A further important remark is that the LT-construction can be significantly more
time-consuming than other path constructions particularly in higher dimensions.
In this case, also sub-optimal matrices Q can be used, which result if Algorithm
5.1 is only applied to the first k < d columns while the remaining columns are
arbitrary but orthonormal. In this way, the computational costs is significantly
reduced whereas the loss of efficiency is mostly only minimal as also noted in [82].
For many application problems, the LT-construction already provides very effective
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transformations with only k = 1 as we motivated by Theorem 5.1 and as we will
illustrate in Chapter 6 by numerical experiments.

In applications from finance often integrands of the form

g(z) := max{0, f(z)}

appear. In these cases, we apply the LT-construction to the inner function f in
order to to avoid the region where the integrand and thus also its gradient is zero.

The LT-construction often provides effective transformations Q also for inte-
grands g which are not of the special form (5.3) as shown in [82] for Asian basket
options with arithmetic averages in the Black-Scholes model and for European op-
tions in a stochastic volatility model. For these and several further applications
from finance, the LT-construction leads to larger reductions of the effective dimen-
sion and to larger advantages for numerical quadrature methods than other path
constructions such as BB and PCA. In Chapter 6 we provide several numerical ex-
periments which show that in particular dimension-adaptive sparse grid methods
can profit from this approach. This important relation results from the fact that
the dimension-adaptive methods can automatically identify the important dimen-
sions and then only refine the approximation of the integral with respect to these
dimensions.

5.2 Domain Decomposition

We now address the issue that integrands from finance often have kinks or even
jumps, which deteriorate the performance of numerical quadrature methods. To
circumvent this problem, we here investigate the approach first to identify the areas
of discontinuity or non-differentiability. Then, we decompose the total integration
domain Ω = [0, 1]d or Ω = Rd into sub-domains Ωi, i = 1, . . . , n, such that the
integrand is smooth in the interior of Ωi and such that all kinks and jumps are
located along the boundary of these areas. Instead of one discontinuous function,
in this way several smooth functions are integrated. The total integral is then given
as the sum of the separate integrals, i.e,

If :=

∫
Ω

f(x) dx =
n∑
i=1

∫
Ωi

f(x) dx.

In this way the fast convergence of the numerical methods (e.g., sparse grids) can
be regained whereas the costs only increase by a constant (the number of terms in
the sum), provided the cost required for the decomposition is sufficiently small such
that it can be neglected.

In general such a decomposition is more expensive, however, than to integrate
the function. Nevertheless, for some problem classes, the areas of discontinuity have
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a particular simple form, which allows to decompose the integration domain with
costs which are much smaller than the benefit which results from the decomposition.
We here consider two examples of such problem classes. In Section 5.2.1, we have
the information that the kink bounds the part of the integration domain where the
integrand is zero and can thus be identified by root finding as proposed in [47].
In Section 5.2.2, we have the information that the discontinuities are located on
hyperplanes, which allows a decomposition first into polyhedrons and then into
orthants as discussed in [56].

5.2.1 Root Finding

In this section, we closely follows [47] and assume that the integration domain Ω can
be divided into two parts Ω1 and Ω2. In Ω1 the integrand f is smooth and positive
whereas f(x) = 0 in Ω2. Hence,

If =

∫
Ω1

f(x) dx.

Along the boundary between Ω1 and Ω2, the integrand is non-differentiable or non-
continuous. This situation arises in several applications from finance, e.g. if Asian
options have to be priced.

We now use the idea that for these problems, kinks and jumps can efficiently
be identified by a one-dimensional root finding. Then, the kinks and jumps can
be transformed to the boundary of integration domain such that they no longer
deteriorate the performance of the numerical methods. In order to find the kinks and
jumps first the zeros of the integrand are computed. Using iterated integration, the
root finding can thereby be restricted to only the last dimension. In this dimension,
then, e.g., Newton’s method or bisection can be used to identify the point which
separates Ω1 and Ω2. By a coordinate-wise linear transformation with respect to
the last dimension, Ω1 can be mapped onto the total integration domain Ω. In this
way, standard numerical quadrature methods (e.g. sparse grids) can be applied such
that they only integrate the smooth part of the function, while they omit the part
where the function is zero.

This approach is illustrated in Figure 5.3 for the problem to price an Asian
option with two time steps using sparse grids. The application problem is discussed
in detail in Section 6.2. Figure 5.3(a) shows the arising integrand defined on the unit
cube Ω = [0, 1]2. One can see that the two parts Ω1 and Ω2 are separated by a one-
dimensional manifold along which the integrand exhibits a kink. Using coordinate-
wise transformations with respect to this manifold sparse grids are obtained as
shown in Figure 5.3(b) which only cover the smooth part Ω1 of the integrand and
thus avoid the problem of low regularity. For further details on this approach and
for numerical experiments with applications from finance we refer to [47].
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(a) Integrand after transformation with the cu-
mulative normal distribution function.

(b) Sparse grids after root finding and
coordinate-wise transformation.

Figure 5.3. Domain decomposition for an Asian options with two time steps.
These two figures are taken from [47].

5.2.2 Hyperplane Arrangements

We here assume that all kinks and jumps of the integrand f are located on lines,
faces and hyperplanes which depend on the input parameter of the application prob-
lem. In this case, the decomposition reduces to the problem to decompose a given
hyperplane arrangement into polyhedrons. The pricing of performance dependent
options is an example where this approach can be applied, see [56].

Decomposition into polyhedrons

To formalize this ansatz and to illustrate the main ideas, we use n to denote the
number of hyperplanes which is required to describe the location of the disconti-
nuities. We assume n ≥ d, where d refers to the dimension of the space. Given a
matrix A ∈ IRn×d and a vector b ∈ IRd the i-th hyperplane is defined by

Hi := {x ∈ IRd : ai · x = bi}

in the space IRd where ai denotes the i-th row of the matrix A. We hence assume that
the kinks or jumps of the integrand are contained in the manifold of points x which
satisfy the linear system Ax = b. The set of hyperplanes Hi induces a dissection of
the space into different domains or cells which is called a hyperplane arrangement and
is denoted byAn,d. Hyperplane arrangements are one of the fundamental concepts in
geometry and topology. Their topological properties have been studied thoroughly
in many publications, for a summary see, e.g., [34,128]. Each cell in the hyperplane
arrangement An,d is a (possibly open) polyhedron P which is uniquely represented
by a position vector p ∈ {+,−}n. Each element of the position vector indicates
on which side of the corresponding hyperplane the polyhedral cell is located. The
position vectors of an example hyperplane arrangement with three planes (lines) in
dimension two are shown in Figure 5.4.
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+ + +

+ + –

– – –

– + +

– + – + – –

+ – +
3

12

0 0 –

0 + 0

+ 0 0

Figure 5.4. Example hyperplane arrangement A3,2. Shown are the position
vectors p of the 7 cells and the 3 vertices.

In order to formally define the polyhedral cells, we use a comparison relation ≥p

of two vectors x,y ∈ IRn with respect to the position vector p. It is defined by

x ≥p y :⇔ pi(xi − yi) ≥ 0 for 1 ≤ i ≤ n.

Thus, the comparison relation ≥p is the usual component-wise comparison where
the direction depends on the sign of the corresponding entry of the position vector
p. This way, each cell in the hyperplane arrangement has the representation

Pp =
{
x ∈ IRd : Ax ≥p b

}
.

Moreover, each face and each vertex of a hyperplane arrangement can be char-
acterized by a position vector p ∈ {+, 0,−}n. If the entry pi is zero, then the
corresponding face or vertex is located on hyperplane i. In Figure 5.4, also the three
arising vertices are labeled with their position vectors.

A hyperplane arrangement is called non-degenerate if any d hyperplanes intersect
in a unique vertex and if any d + 1 hyperplanes possess no common points. In the
following, we always assume that the non-degeneracy condition is satisfied.2 In a
non-degenerate hyperplane arrangement there are exactly

(
n
d

)
vertices and

cn,d :=
d∑
i=0

(
n

d− i

)
(5.11)

cells, see [34]. Note that non-degenerate arrangements maximize the number of
vertices and cells.

In Table 5.1 we show the number of cells in a non-degenerate hyperplane arrange-
ment for various n and d. These complexities have to be taken into account since
the number of cells determine the costs of the decomposition. For large n and small
d, we have cn,d � 2n, i.e., the number of cells in the hyperplane arrangement A is
significantly smaller than the number of different position vectors p. For constant
d, we see that the number of cells in a hyperplane arrangement grows like O(nd).

2In the case this condition is not met, it can be ensured by slightly perturbing some entries of
the matrix A.
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Table 5.1. Number of cells cn,d in a non-degenerate hyperplane arrangement
for varying n and d.

n 2n = cn,n cn,20 cn,10 cn,5 cn,3
2 4 - - - -
4 16 - - - 15
8 256 - - 219 93
16 65536 - 58651 6885 697
30 1.1e+9 1.0e+9 5.3e+7 1.7e+5 4526

Next, we denote by P the set of all position vectors p which correspond to cells
in the hyperplane arrangement A. Then, the integral If can be determined by

If =
∑
p∈P

∫
Pp

f(x) dx, (5.12)

provided we can identify P and integrate f over each cell of the hyperplane arrange-
ment separately. Note that only smooth integrands appear in this approach and
that the number of terms is given by cn,d.

For illustration, we show in Figure 5.5(a) the integrand which arises in the prob-
lem to price a performance-dependent option3. One can see that the integrand is
divided into several regions which are divided by kinks or jumps. The structure of
the discontinuities is also shown in Figure 5.5(b). One can see that the underlying
geometry is described by an hyperplane arrangement which contains n = 5 hyper-
planes in the d = 2 dimensional space. Thus, cn,d = 16 cells arise of which 13 can be
seen in the figure. Each cell corresponds to a different position vector p as indicated
in the figure.

Decomposition into Orthants

Two problems remain with formula (5.12), however. First, it is not easy to see
which position vectors p and corresponding polyhedra Pp appear in the hyperplane
arrangement and which do not. Second, the integration region is now a general
polyhedron and, therefore, involved integration rules are required. To resolve these
difficulties we need some more utilities from computational geometry summarized
in the following two lemmas.

To state the first lemma, we assume4 here that no row of the matrix A is a
multiple of one of the unit vectors in IRd. The unit vectors impose an order on all

3The payoff function of a performance-dependent option is defined in Section 6.3. The integrand
in Figure 5.5(a) corresponds to the performance-dependent option in Example 6.5 with n = 5 and
d = 2.

4If this condition not holds, it can be ensured by slightly perturbing some of entries of the
matrix.
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(a) Integrand f : IR2 → IR arising in the pricing of the performance-dependent
option from Example 6.5 with n = 5 and d = 2.

(b) Corresponding hyperplane arrangement A5,2 and corresponding position vec-
tors R = p ∈ {+,−}5.

Figure 5.5. Domain decomposition into polyhedral cells.
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(a) Mapping between intersection points
{v1, . . . ,v7} and polyhedral cells Pj :=
Pvj
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(b) Reflection signs sv,w and the or-
thant Ov4 .

Figure 5.6. Notation for the decomposition of the hyperplane arrangement
from Figure 5.4.

vertices. A vertex v is said to be smaller than another vertex w if v1 < w1. If v1

and w1 happen to be equal, v2 and w2 are compared, and so on.
The position of each vertex can be computed by solving the corresponding d× d

linear system. By computing the minimum and maximum vertex of the hyperplane
arrangement in each direction, an artificial bounding box which encompasses all
vertices is defined. This bounding box is only needed for the localization of the
polyhedral cells in the following lemma and does not implicate any approximation.

Lemma 5.3. Let the set V consist of all vertices of the hyperplane arrangement, of
the largest intersection points of the hyperplanes with the bounding box and of the
largest corner point of the bounding box. Furthermore, let Pv ∈ A be the polyhedron
which is adjacent to the vertex v ∈ V and which contains no other vertex which is
larger than v. Then the mapping v 7→ Pv is one-to-one and onto.

Proof. The proof of Lemma 5.3 uses a sweep plane argument and induction over
d. It can be found in [55].

For the two dimensional example with three hyperplanes in Figure 5.4 the map-
ping between intersection points and polyhedral cells is illustrated in Figure 5.6(a).
Each vertex from the set V := {v1, . . . ,v7} is mapped to the polyhedral cell indi-
cated by the corresponding arrow. Using Lemma 5.3, an easy to implement optimal
order O(cn,d) algorithm which enumerates all cells in an hyperplane arrangement
can be constructed. Note that by Lemma 5.3 each vertex v ∈ V corresponds to a
unique cell Pv ∈ A and thus to a unique position vector p.

Next, we assign each vertex v an associated orthant Ov. An orthant is defined
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as an open region in IRd which is bounded by at most d hyperplanes. Note that each
vertex is the intersection of 0 ≤ k ≤ d hyperplanes of the hyperplane arrangement
with d − k boundary hyperplanes of the bounding box. To find the orthant Ov

associated with the vertex v, we determine k points which are smaller than v and
which lie on the intersection of d− 1 of these d hyperplanes. These points are found
by solving a d× d linear system where d− 1 equations are given by the intersecting
hyperplanes and the last equation is x1 = v1 − ε with ε > 0. The unique orthant
which contains v and all smaller points is denoted by Ov.

For illustration, the orthant Ov4 is displayed in Figure 5.6(b). Note that vertices
which are located on the boundary correspond to orthants with k < d intersecting
hyperplanes. For example, Ov3 is defined by all points which are below hyperplane
one.

By definition, there exists a (k× d)-submatrix Av of A and a k-subvector bv of
b such that the orthant Ov can be characterised as the set

Ov =
{
x ∈ IRd : Avx ≥p bv

}
, (5.13)

where p is the position vector which corresponds to v. This way, the submatrix Av

and the subvector bv consist of exactly those rows of A and b whose corresponding
hyperplanes intersect in v.

Furthermore, given two vertices v,w ∈ V , we define the reflection sign sv,w :=
(−1)rv,w where rv,w is the number of reflections on hyperplanes needed to map Ow

onto Pv. The reflection signs sv,w with v ∈ {v1, . . . ,v7} and w ∈ Pv arising in
the two dimensional arrangement in Figure 5.4 are displayed in Figure 5.6(b). For
instance, the three reflection signs in the cell Pv4 are given by sv4,v1 = +, sv4,v2 = −
and sv4,v4 = +. Finally, let Vv denote the set of all vertices of the polyhedron Pv.

Lemma 5.4. It is possible to algebraically decompose any cell of a hyperplane
arrangement into a signed sum of orthant cells by

χ(Pv) =
∑

w∈Vv

sv,wχ(Ow)

where χ is the characteristic function of a set. Moreover, all cells of a hyperplane
arrangement can be decomposed into a signed sum of orthants using exactly one
orthant per cell.

Proof. The first part of Lemma 5.4 is originally due to Lawrence [100]. The second
part follows from the one-to-one correspondence between orthants Ov and cells Pv.
It can be found in detail in [55].

We can now state the main result of this section.

Theorem 5.5. Let the set V of vertices, the cell Pw, the orthant Ov and the
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reflection sign sv,w for v,w ∈ V be defined as above. Then, the decomposition

If =
∑
v∈V

cv

∫
Ov

f(x) dx (5.14)

holds with cv ∈ {+1,−1} where

cv :=
∑

w∈V: v∈Pw

sv,w. (5.15)

Proof. Representation (5.12) shows that the integration domain Ω can be decom-
posed into cn,d many polyhedrons Pp. By Lemma 5.3, each position vector p ∈ P
can uniquely be mapped onto a vertex v ∈ V which yields

If =
∑
v∈V

∫
Pv

f(x) dx.

By Lemma 5.4 we can decompose each polyhedron Pv into a signed sum of orthants
and obtain

If =
∑
v∈V

∑
w∈Vv

sv,w

∫
Ow

f(x)dx.

By the second part of Lemma 5.4 we know that only cn,d different integrals appear
in the above sum. Rearranging the terms leads to the assertion.

Note that only smooth functions are integrated in (5.14) and that the number
of terms is given by cn,d. Note further that the complexity of (5.12) to compute cn,d
integrals over general polyhedral cells is reduced by Theorem 5.5 to the complexity
to compute cn,d integrals over orthant cells. This is a significant simplification since
orthants can easily be mapped to the unit cube. This way standard numerical
quadrature methods can directly be applied for the computation of the corresponding
integrals. Note finally that such an orthant decomposition is not unique. A different
decomposition of a polyhedron into a sum of orthants is presented in [35].

Example 5.6. The decomposition of all cells within the hyperplane arrangement
from Figure 5.6(a) is given by

χ(P1) = χ(O1)
χ(P2) = χ(O2)− χ(O1)
χ(P3) = χ(O3)− χ(O2)
χ(P4) = χ(O4)− χ(O2) + χ(O1)
χ(P5) = χ(O5)− χ(O4)− χ(O1)
χ(P6) = χ(O6)− χ(O4)− χ(O3) + χ(O2)
χ(P7) = χ(O7)− χ(O6)− χ(O5) + χ(O4)
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Figure 5.7. Decomposition of the three cells P1, P2 and P4 using the three
orthants O1, O2 and O4.

where we used the abbreviations Pj := Pvj and Oj := Ovj . We see that seven
orthants are required for the decomposition of seven cells. In Figure 5.7, the decom-
position of the three polyhedral cells P1, P2, P4 into the three orthants O1, O2, O4 is
illustrated. Note that the orthant O1 coincides with the cell P1.

We will return to the presented orthant decomposition in Section 6.3 and apply
it there to derive pricing formulas for performance-dependent options.

5.2.3 Conditional Sampling

Most financial derivatives have non-smooth payoff functions. Hence, also the inte-
grands of the corresponding integrals are not smooth. In this section, we consider
the approach to smooth these integrands through the use of conditional sampling
following [59], Section 7.2.3.

We first describe the main idea for the situation that the expected value of
a stochastic process has to be computed. For illustration we consider an specific
example which corresponds to the problem to price a discretely monitored knock-
out barrier option.5 To this end, typically an expected value of the form

P := E[f(S)] (5.16)

5Barrier options are the topic of Section 6.2.2. They are financial derivatives which become
worthless if the underlying asset crosses a specified barrier.
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has to be computed. Here S := (S(t1), . . . , S(td)) collects the values of a stochastic
process S(t), e.g. a geometric Brownian motion in the simplest case, at the discrete
points in time tk = k∆t for k = 1, . . . , d. The function f : IRd → IR corresponds to
the payoff function of the barrier option. We assume that f(S) is zero if S(t) < B
or S(t) > B for any t ∈ {t1, . . . , td}. Here B < S(0) < B are barriers which are
specified in the contract of the barrier option. Typically, f is not differentiable and
has kinks and jumps which are caused by the knock-out barrier conditions. The
function f is smooth, however, on the space of paths S which not hit one of the
barriers.

Often, the distribution of the path S is based on an underlying d-dimensional
Gaussian distribution. Then, the expected value (5.16) corresponds to an d-dimensional
integral over IRd with Gaussian weight, see Section 6.2. Since f has kinks and jumps
also the corresponding integrand has kinks and jumps, which heavily degrade the
performance of numerical quadrature methods.

To smooth the integrand in (5.16), we next construct a modified process S̃(t)
that has the same initial value S̃(0) = S(0) but never crosses the relevant barriers.

This can be achieved in the following way: If S(tk) has the distribution F , then
S(tk) can be generated via

S(tk) = F−1(x)

by the inverse transformation method from an random number x which is uniformly
distributed in the unit interval. Alternatively, we can generate S(tk) conditional on
B ≤ S(tk) ≤ B from x by

S̃(tk) = F−1
[
F (B) +

(
F (B)− F (B)

)
x
]
,

see [59], Example 2.2.5.
Since f(S) = 0 if S(tk) < B or S(tk) > B for any k = 1, . . . , d, we obtain

P = E[f(S̃)], (5.17)

where S̃ = (S̃(t1), . . . , S̃(td))
Since f(S̃) is a smooth function of S̃, the value P can now be computed by the

integration of a smooth function instead of a function with kinks and jumps as in
(5.16).

For illustration, we show in Figure 5.8 the integrands in (5.16) and (5.17) which
arise in the pricing of discretely monitored knock-out barrier options with four time
steps.6 The smoothing effect of the conditional sampling approach is clearly visible.

Note that this approach involves no approximation errors. It is closely related to
the domain decomposition in Section 5.2.1. While we used there numerical search
algorithms to identify the region Ω2 where the integrand is zero, we here use condi-
tional sampling (and hence a priori information on the underlying stochastic process)

6We used the parameters from Section 6.2.2.
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(a) Integrands (5.16) (b) Integrand (5.17)

Figure 5.8. First two dimensions of the integrands which arise in the pricing
of discretely monitored knock-out barrier options without and with smoothing.

to avoid the zero region of the integrand. The domain Ω1 in Section 5.2.1 thus ex-
actly contains those points x ∈ IRd which correspond to sample paths S that do not
cross the barriers. Note finally that conditional sampling not only smoothness the
integrand but also reduces its variance. It can hence also be used to improve the
constant of Monte Carlo simulations.

In Section 6.2.2 we will apply conditional sampling in combination with Monte
Carlo, quasi-Monte Carlo and sparse grid methods to price discretely monitored
knock-out barrier options efficiently.

We conclude this chapter with a short summary. We here discussed several ap-
proaches for dimension reduction and smoothing which can be used to enhance the
performance of sparse grid and of other dimension-wise quadrature methods. We
first considered orthogonal transformations, in particular the linear transformation
method of Imai and Tan, which aim to reduce the effective dimension of the in-
tegrand. Then, we considered domain decompositions as a possible approach to
address low regularity. In the next chapter, we will use applications from finance
and insurance to study the impact of these approaches on sparse grid and other
numerical quadrature methods.
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Chapter 6

Validation and Industrial
Applications

In this chapter, we present various numerical experiments with different applica-
tions from finance. We study the performance of the different numerical quadrature
methods from Chapter 3 and Chapter 4 and investigate the impact of our different
approaches for dimension reduction and smoothing from Chapter 5.

Unless states otherwise we compare the following numerical methods:

• Monte Carlo integration (MC): The Monte Carlo method is applied without
variance reduction techniques since good control variates or importance sam-
pling functions are in general difficult to obtain.

• Quasi-Monte Carlo integration based on Sobol point sets (QMC): In prelimi-
nary numerical experiments, Sobol point sets turned out to be the most ef-
ficient representative of several quasi-Monte Carlo variants. We compared
Halton, Faure and Sobol low discrepancy point sets and different lattice rules1

with and without randomisation.

• Dimension-adaptive sparse grids based on Gauss-Patterson formulas (SGP):
This method calculates integrals over the unit cube in a dimension-adaptive
way, see Section 3.2.4. It was first presented in [49]. The method provided
more precise results than sparse grid methods based on the trapezoidal, the
Clenshaw-Curtis and the Gauss-Legendre rule in almost all of our experiments.
We also tested several other grid refinement strategies [118]. These alterna-
tives turned out to be similar or less effective than the dimension adaptive
refinement from [49] and are thus not further investigated here.

• Dimension-adaptive sparse grids based on Gauss-Hermite formulas (SGH):
This method computes integrals over IRd with Gaussian weight using the
dimension-adaptive sparse grid approach [49] in combination with univariate
Gauss-Hermite formulas, see Remark 4.1. We use the slowly increasing Gauss-
Hermite sequence from Section 4.1.2. Dimension-adaptive sparse grids based
on the Genz-Keister sequence or on the classical Gauss-Hermite sequence led
to slightly worse results in most of our experiments.

1Lattice rules [149] yield in many cases equal or even more precise results than Sobol points if
good weights are used in their CBC construction. But the selection of good weights is a priori not
always clear and is thus not further investigated here.

91
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Note that SGP and SGH are both special cases of the dimension-wise quadrature
method (3.15), see Theorem 4.14 and Remark 4.15. In our numerical experiments
we will consider the following applications from finance and insurance:

• Interest rates derivatives: We first consider the pricing of collateralized mort-
gage obligations and the valuation of zero coupon bonds. These applications
lead to the integration of smooth but high-dimensional functions, where the
large number of dimensions arises from small time steps in the time discretiza-
tion. To reduce the effective dimension of the integrand and to enhance the
performance of the QMC, SHP and SGH method, we apply the different path
generating methods from Section 5.1.

• Path-dependent options: We then compute the prices of Asian options and
of barrier options. Here, high-dimensional integrands appear which are not
differentiable or even discontinuous. To overcome the obstacle of low regular-
ity, we apply local adaptivity in the low order anchored-ANOVA terms using
the mixed CUHRE/QMC methods from Example 3.5 in Section 3.2. We fur-
thermore consider the approach from Section 5.2.3 to recover smoothness by
conditional sampling.

• Performance-dependent options: The payoff of performance-dependent options
depends on many underlying assets and is typically discontinuous. The val-
uation of such options thus requires the integration of high-dimensional, dis-
continuous functions. Here, we use the domain decomposition approach from
Section 5.2.2 to regain smoothness and the principal component analysis to
reduce the dimension.

• Asset-liability management models in life insurance: Finally, we consider the
numerical simulation of stochastic asset-liability management models in life
insurance. This is the most complex application considered in this thesis. This
problem requires the computation of several complicated, recursively defined
integrands with many variables. To reduce the dimension, we here again focus
on the different path constructions from Section 5.1.

All of these applications lead to the computation of high-dimensional integrals
over IRd with Gaussian weight. The SGH method can treat such integrals directly
on IRd. To apply the MC, QMC and SGP method we need to transform the integrals
over IRd into integrals over the d-dimensional unit cube [0, 1]d. To this end, we use
the standard substitution with the inverse of the cumulative normal distribution
function. Remember that such transformations to the unit cube introduce singu-
larities which deteriorate the efficiency of methods that take advantage of higher
smoothness such as sparse grids, compare also Remark 3.1.
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Depending on the application problem, we consider different nominal dimensions
ranging from 5−512. We will see that sparse grid or other dimension-wise quadrature
methods are superior to Q(MC) in all of our model problems. Nevertheless, we
emphasise that all results depend on the input parameters of the problems since
they affect their smoothness and/or their effective dimension. Different choices of
the parameters may thus lead to better or worse results. Changes in the parameters
often have a rather large impact on SG methods, a moderate one on QMC and a
small one on MC.

To gain insight into the importance of dimensions and to explain the convergence
behaviour of the numerical methods, we will compute the effective dimension of all
model problems in the classical case and in the anchored case using the methods from
Section 2.1.1 and Section 2.2.1. We will see that most of the application problems
are of low effective dimension or can be transformed to be of low effective dimension,
which justifies the use of deterministic numerical methods for their computation.

The remainder of this chapter is organized as follows: In Section 6.1, we consider
the pricing of different interest rates derivatives to validate our algorithms and to
demonstrate the high efficiency of the SGH method for integrands which are smooth
and of low effective dimension. Section 6.2 is about the valuation of path-dependent
options and different approaches to overcome the obstacle of low regularity. Sec-
tion 6.3 is concerned with the pricing of performance-dependent options. Here, we
apply the domain decomposition approach from Section 5.2.2 to regain smooth-
ness. Section 6.4 finally deals with the complex application to simulate stochastic
asset-liability management models in life insurance. In Section 6.5 we conclude this
chapter with a short summary and discussion of the presented results.

6.1 Interest Rates Derivatives

In this section, we consider the pricing of collateralized mortgage obligations and
the valuation of zero coupon bonds. Both applications lead to high-dimensional
integrals where the large number of dimensions arises from small time steps in
the time discretization. To reduce the effective dimension of these integrals we
compare the different methods from Section 5.1 to generate sample paths of the
stochastic processes which model the interest rate movements. Since the resulting
integrands are smooth functions, no smoothing is required and sparse grid methods
are particularly efficient as we will demonstrate by numerical experiments.

6.1.1 Zero Coupon Bonds

We here consider the problem to price zero coupon bonds by simulating the short-
term interest rate r(t) using the Vasicek model.2 The same problem is also consid-

2For more information on the Vasicek model and other short rate models we refer to [14].
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ered in [115,120,159] to analyse the behaviour of QMC methods.

Modeling

In the Vasicek model the movement of the short-term interest rate is given by

dr(t) = κ(θ − r(t))dt+ σdW (t), (6.1)

where W (t) is the standard Brownian motion, θ > 0 denotes the mean reversion
level, κ > 0 denotes the reversion rate and σ ≥ 0 denotes the volatility of the short
rate dynamic.

For the solution of the above stochastic differential equation until time t = T ,
we use an Euler-Maruyama discretization with step size ∆t := T/d on the grid
tk := ∆ k, k = 1, . . . , d, which yields the time-discrete version

rk = rk−1 + κ(θ − rk−1)∆t+ σ zk. (6.2)

Here zk := W (tk) −W (tk−1) is normally distributed with mean zero and variance
∆t and denotes the increment of the Brownian motion in the k-th time interval.

Based on the short-term interest rates (6.2) the price P (0, T ) at time t = 0 of a
zero coupon bond with maturity date T is given by

P (0, T ) = E

[
exp

{
−∆t

d∑
k=0

rk

}]
. (6.3)

It can be written as a d-dimensional integral on IRd with Gaussian density since the
expected value is via (6.2) taken over d many normally distributed random variables
zk. The value P (0, T ) can also be derived in closed-form, which we use to validate
our numerical methods and results.

Lemma 6.1 (Closed-form solution). The price of the bond (6.3) at time t = 0
with the short-term interest rate (6.2) is given by

P (0, T ) = exp

{
−(γ + βd r(0)) T

d

}
(6.4)

where

βk :=
k∑
j=1

(1− κ∆t)j−1, k = 1, . . . , d, and γ :=
d−1∑
k=1

βkκθ∆t− (βkσ∆t)2/2.

Proof. The proof uses that rk is normally distributed. The derivation can be found
in [154] in more detail.
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In our following numerical experiments, we always use the parameters

κ = 0.1817303, θ = 0.0825398957, σ = 0.0125901, r(0) = 0.021673 and T = 5

which are also used in [120]. We consider the case d = 512.

Effective Dimensions

We first compute the effective dimensions of the expected value (6.3) to investigate
the impact of the different path constructions from Section 5.1. Here, we always
compare random walk (RW), Brownian bridge (BB), principal component (PCA)
and the LT-construction (LT).3 The results are shown in Table 6.1.

We first observe that the Vasicek bond pricing problem (6.3) is of very low super-
position dimension ds ≤ 2 in the anchored case and that ds is almost independent
of the path construction.

One can furthermore see that the truncation dimensions dt in the classical case
almost coincide with the truncation dimensions dt in the anchored case. For instance,
for α = 0.99 we obtain dt = 420, 7, 1, 1 using RW, BB, PCA and LT, respectively,
for the anchored case and dt = 419, 7, 1, 1 for the classical one. We conjecture that
a more precise numerical computation would yield even exact equal results and we
believe that this equality holds for a wider class of functions. Note however that
this does not hold in general. We will give a counterexample in Section 6.1.2.

Observe in Table 6.1 that the path construction has a significant impact on the
truncation dimensions. For α close to one the dimensions dt are almost as large as
the nominal dimension d = 512 if we employ the RW approach. The dimensions
dt are significantly smaller if BB, PCA or LT is used instead. The LT-construction
even obtains the optimal result dt = 1 for this problem. While it is not surprising
that such an optimal transformation exists,4 it is nevertheless interesting that it
is correctly identified by the LT-construction, which takes only the gradient of the
integrand at a certain anchor point into account.

This situation is also illustrated in Figure 6.1. There, we show the values Tj,
j = 0, . . . , d − 1, from (2.17) and (2.10) in the anchored and in the classical case,
respectively. The results quantify the impact of the different path constructions on
the modeling error. The smaller the values Tj the more important contributions are
concentrated in the first j dimensions by the path construction. One can see that
BB leads to a significantly faster decay of the importance of the dimensions as RW.
We observe in Figure 6.1(a) that the level-wise construction of the Brownian bridge

3Here and in the following we apply the LT-construction only to the first column of the matrix
A. The remaining columns are arbitrary but orthonormal. This way the LT-construction is signifi-
cantly less expansive than the PCA-construction. The optimization of additional columns increases
the computing times but led to no or only minor improvements in our numerical experiments.

4This way the closed-form pricing formula is derived.
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Table 6.1. Effective dimensions of the Vasicek bond pricing problem (6.3).
The nominal dimension is d = 512.

anchored-ANOVA classical ANOVA
superposition dim. truncation dimensions

1−α RW BB PCA LT RW BB PCA LT RW BB PCA LT
1e-1 1 1 1 1 302 2 1 1 305 2 1 1
1e-2 1 1 1 1 420 7 1 1 419 7 1 1
1e-3 1 1 1 1 471 16 2 1 471 16 2 1
1e-4 2 2 1 1 494 59 5 1 494 52 5 1

(the `-th level corresponds to the first 2` dimensions) is mirrored in the decay of
the values Tj. The PCA in turn leads to a significantly faster decay as BB. The LT
even reduces the problem to only one effective dimension. In Figure 6.1(b) one can
see that the values Tj in the classical case show a similar overall behaviour as in the
anchored case but exhibit oscillations in the small Tj-values. These oscillations can
be reduced if the algorithm from [160] is used with a sufficiently large number of
sampling points which is very expensive, though. One can see that the oscillations
are avoided in the anchored case although the results are significantly cheaper to
obtain.

(a) Anchored case (2.17) (b) Classical case (2.10)

Figure 6.1. Decay of the importance of the dimensions of the Vasicek bond
pricing problem (6.3) with d = 512. Note that the results of the LT-construction
almost coincide with the y-axis.

In summary, we see that the Vasicek bond pricing problem (6.3) is of very low
superposition dimension ds. It is also of low truncation dimension if BB, PCA or
LT is used. Moreover, we observe that the effective dimensions in the anchored case
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provide the same or almost the same information on the importance of dimensions
as in the classical case but have the advantage that they are significantly cheaper
to compute. While the computation of the effective dimensions in the classical
case require the computation of many high-dimensional integrals with up to 2d− 1
dimensions,5 the computation of the effective dimensions in the anchored case require
only the computation of one d-dimensional integral with a sparse grid method or an
other method of the class (3.15).

Quadrature Error and Costs

We next compute the integral value (6.3) using the different numerical quadrature
and path generating methods. By a comparison of the results with the analytical
solution from Lemma 6.1, we determine the relative errors of the different numerical
methods. The relative errors are shown in Figure 6.2 for different numbers n of
function evaluations.

One can see that the convergence rate of the MC method is always about 0.5 as
predicted by the law of large numbers. The rate is not affected by the path construc-
tion since the total variance stays unchanged. The convergence rate of the QMC
method increases if BB, PCA or LT is used since these path constructions concen-
trate the total variance in the first few dimensions. This way QMC outperforms MC
and achieves higher convergence rates of almost one, smaller relative errors and a less
oscillatory convergence behaviour. We furthermore observe in Figure 6.2 that the
convergence of SGP and SGH is significantly accelerated by the path constructions
BB, PCA and PCA which lead to a low effective dimension.

Note here that two different regimes have to be distinguished to describe the con-
vergence behaviour of these methods, compare, e.g., Figure 6.2(d). In the preasymp-
totic regime, SGP and SGH first search for the important dimensions and interac-
tions, whereas, in the asymptotic regime, the important dimensions are identified
and the grid is then refined only in these directions. Since the LT-construction re-
duces the problem to only one dimension, its combination with dimension-adaptive
methods is particularly efficient. We see from Figure 6.2(d) that SGP and SGH cor-
rectly recognize the solely important dimension and then only refine in this respect,
which leads to an extremely rapid convergence in the asymptotic regime. This way
the dependence on the dimension is completely avoided in the asymptotic regime.
There, the convergence of the methods is as fast as it is known for univariate prob-
lems despite the high nominal dimension d = 512. Overall, SGH is the most efficient
method. It is more efficient than SGP since it avoids the singular transformation to
the unit cube. It outperforms (Q)MC by several orders of magnitude independent
of the employed path construction. By exploiting the low effective dimension and

5The computation of the superposition dimension in the classical case in addition suffers from
cancellation problems and costs which are exponential in the superposition dimension.
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smoothness of the integrand, SGH achieves in combination with PCA or LT almost
machine accuracy with only about 1,000 function evaluations.

(a) Random walk (b) Brownian bridge

(c) Principal components (d) Linear transformation

Figure 6.2. Convergence behaviour of the different numerical methods for
the Vasicek bond pricing problem (6.3) with d = 512.
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6.1.2 Collateralized Mortgage Obligations

The problem to price mortgage-backed securities is a commonly used test problem
from finance to study the performance of numerical quadrature algorithms. It was
first presented in [134]. There, a collateralized mortgage obligation (CMO) is calcu-
lated as 360-dimensional integral which was given to the authors Paskov and Traub
by the investment bank Goldman Sachs. They observed that QMC methods out-
perform MC for this problem, which initiated extensive research to generalise their
results to further problems in finance and to explain the success of the QMC despite
the high dimension. The CMO problem is also considered in [19, 120] to study the
performance of QMC methods and in [48, 49, 135] to demonstrate the efficiency of
SG methods.

Modeling

We next describe the CMO problem following [19]. We consider a mortgage-backed
security with a maturity of d months. Its holder receives d payments mk of an
underlying pool of mortgages at the times tk = ∆t k, k = 1, . . . , d, where ∆t denotes
the period length of one month. The present value of the sum of all payments is
then given by

g(z) :=
d∑

k=1

ukmk

where

uk :=
k−1∏
j=0

(1 + ij)
−1

is the discount factor for the month k, which depends on the interest rates ij. The
interest rate ik for month k is modelled by

ik := Kk
0 e

σ(z1+...+zk)i0

using k many standard normally distributed random numbers zj, j = 1, . . . , k. Here,
i0 is the interest rate at the beginning of the mortgage, σ is a positive constant and
K0 := e−σ

2/2 such that E[ik] = i0. The payments mk at time tk are given by

mk := c rk((1− wk) + wkck),
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where c denotes the monthly payment. Moreover,

ck :=
d−k∑
j=0

(1 + i0)−j,

rk :=
k−1∏
j=1

(1− wj),

wk := K1 +K2 arctan(K3ik +K4).

Here, rk denotes the fraction of remaining mortgages at month k, which in turn
depends on the fraction wk of mortgages which prepay in month k. The values
K1, K2, K3, K4 are constants of the model for the prepayment rate wk.

The expected present value of the sum of all payments can then be written as
d-dimensional integral

PV :=

∫
IRd
g(z)ϕd(z)dz (6.5)

on IRd with Gaussian weight ϕd.
We next focus on the efficient numerical computation of this integral. In our

numerical experiments we thereby use the parameters

i0 = 0.007, c = 1, K1 = 0.01, K2 = −0.005, K3 = 10, K4 = 0.5 and σ = 0.0004

which are also used in [19,48,135]. We consider the case d = 256 for which we obtain
the reference solution PV = 119.21588257.

Effective Dimensions

To illustrate the impact of the different path constructions we first consider the
effective dimensions of the integral (6.5). From Table 6.2, we see that the CMO

anchored-ANOVA classical ANOVA
superposition dim. truncation dimensions

1−α RW BB PCA LT RW BB PCA LT RW BB PCA LT
1e-1 1 1 1 1 123 18 13 123 60 5 2 1
1e-2 2 2 1 2 191 134 108 191 110 10 5 1
1e-3 2 2 2 2 225 192 235 225 158 36 11 1
1e-4 2 2 2 2 242 229 254 242 181 80 23 1

Table 6.2. Effective dimensions of the CMO pricing problem (6.5). The
nominal dimension is d = 256.

problem is of very small superposition dimension ds ≤ 2 in the anchored case for all
α ∈ [0.9, 0.9999] and all path constructions.
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(a) Anchored case (2.17) (b) Classical case (2.10)

Figure 6.3. Decay of the importance of the dimensions of the CMO pricing
problem (6.5) with d = 256.

In Table 6.2 also the truncation dimensions dt of this problem are shown. It
is striking that the path construction has only a small impact on the truncation
dimension in the anchored case, i.e., the advantage of BB, PCA and LT compared
to RW is not so clear for the CMO problem. For α = 0.9 we have dt = 123 in
case of RW and LT. This truncation dimension is reduced to dt = 18 and dt = 13
if BB and PCA is used, respectively. For higher accuracy requirements, however,
i.e. for α ≥ 0.99, significantly less or even no reduction at all is achieved with these
constructions. Note that for the CMO problem the truncation dimensions dt in the
classical case clearly differ from the truncation dimensions in the anchored case. In
the classical case, BB, PCA and LT lead to significant dimension reductions. LT
even reduces the problem to the truncation dimension one.

This situation is also illustrated by the values Tj from (2.17) and (2.10) which we
show in Figure 6.3. The differences between the anchored and the classical case are
clearly visible. While LT leads to very similar results as RW in the anchored case,
LT leads to a large dimension reduction compared to RW in the classical one. In
the anchored case, BB turns out to be the most efficient path construction, whereas
LT is most efficient in the classical case.

Quadrature Error and Costs

We next study the convergence behaviour of the different numerical methods for this
problem. To measure their accuracy we used the reference solution PV = 119.21588.
The respective numerical results are illustrated in Figure 6.4. One can see that the
QMC method converges faster, less oscillatory and superior to MC if we switch
from RW to BB, PCA or LT. SGP performs similar as QMC in case of BB and
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PCA and slightly worse in case of RW and LT. SGH combined with BB or PCA is
most efficient for the CMO problem. It achieves the highest convergence rate and
the most precise results. With 104 function evaluations SGH obtains a relative error
which is about 100 times smaller than the relative error of the QMC method.

(a) Random walk (b) Brownian bridge

(c) Principal components (d) Linear transformation

Figure 6.4. Convergence behaviour of the different numerical approaches
for the CMO pricing problem (6.5) with d = 256.

We next discuss the relation of the convergence behaviour of the numerical meth-
ods to the effective dimension of the CMO problem. We already showed that the
path construction affects both the performance of the numerical methods (except of
MC) and the truncation dimension of the integral. Since the truncation dimension
in the classical case differs from the truncation dimension in the anchored case for
this problem, it is interesting to see which of these two notions better predicts the
convergence behaviour of the numerical methods. Remember that LT does not lead
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to an improved convergence of the dimension-adaptive sparse grid methods SGP
and SGH compared to RW. This observation can not be explained by the effective
dimension in the classical case since LT obtains the optimal result dt = 1 for the
CMO problem. The observation is, however, in clear correspondence with the fact
that LT provides no reduction of the truncation dimension in the anchored case.
This indicates that the performance of SGP and SGH depends on the truncation
dimension in the anchored case, but not on the truncation dimension in the classical
case. Note that the convergence behaviour of the QMC method is rather related to
the effective dimension dt in the classical case than to the anchored one, since this
method converges faster and less oscillatory with LT than with RW.

The different effective dimensions in the anchored and in the classical case are
related to the fact that in the anchored-ANOVA decomposition the contributions
Ifu are of varying sign in the CMO problem. Summing the contributions thus leads
to cancellation effects which are not seen in the anchored case since the absolute
values |Ifu| are taken into account there. Nevertheless, also the error indicator6 of
dimension-adaptive sparse grid methods is based on the absolute values |∆k|. These
values are closely related to |Ifu| as we showed in Section 4.3. The methods SGP and
SGH can thus also not profit from such cancellation effects and their convergence
behaviour therefore rather depends on the effective dimensions in the anchored case
than on the effective dimension in the classical case.

Note finally that the truncation dimension dt in the anchored case explains the
impact of the path construction but not the high performance of the SGH method
since dt is high for this problem. The fast convergence is explained by the low
superposition dimension ds ≤ 2 and by the smoothness of the integrand.

6.2 Path-dependent Options

In this section, we consider the pricing of European-style path-dependent options
in the Black-Scholes model.7 We denote the maturity date of the option by T and
assume that the payoff of the option at time T depends on the prices S(t) of an
underlying asset at the equidistant points in time tk := ∆t k, k = 1, . . . , d, with
∆t := T/d. We collect these prices in the vector S := (S(t1), . . . , S(td)).

We assume that the underlying asset follows a geometric Brownian motion

dS(t) = µS(t)dt+ σS(t)dW (t). (6.6)

Here, µ denotes the drift, σ denotes the volatility and W (t) is the standard Brownian
motion. Using the usual Black-Scholes assumptions, see, e.g., [79, 91], the price of
the option V (S, 0) at time t = 0 is given by the discounted expectation

V (S, 0) = e−rTE[V (S, T )] (6.7)

6See Algorithm 4.1.
7For more information on the Black-Scholes model we refer to [79].
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under the equivalent martingale measure, where V (S, T ) denotes the payoff of the
option at time T and r the riskless interest rate.

By Itô’s lemma, the analytical solution of the stochastic differential equation
(6.6) is given by

S(t) = S(0)e(r−σ2/2)t+σW (t), (6.8)

where we replaced the drift µ by the riskless interest rate r to obtain the risk-neutral
measure in (6.7). Hence, to simulate the path S = (S(t1), . . . , S(td)) of the asset
is suffices to simulate the discrete path W := (W (t1), . . . ,W (td)) of the Brownian
motion.

Using the relation (6.8), we can define

g(W) := V (S, T ).

Let y = (y1, . . . , yd) denote a vector of d independent standard normally distributed
random numbers. Then, the vector W can be generated by

W = Ay

using an arbitrary matrix A ∈ IRd×d which satisfies ATA = C, where C denotes the
covariance matrix of the Brownian motion, see Section 5.1. Different choices of the
matrix A thereby correspond to different path constructions such as random walk
(RW), Brownian bridge (BB), principal component (PCA) or linear transformation
(LT).

This way, we see that the expected value (6.7) depends on d independent standard
normally distributed random numbers yk. It can thus be written as d-dimensional
integral

V (S, 0) = e−rT
∫

IRd
g(Ay)ϕd(y)dy (6.9)

over IRd where ϕd is the density of the standard normal distribution. Next we will
compute the value of the integral (6.9) and its effective dimension using functions g
which correspond to the payoff functions of Asian and barrier options.

6.2.1 Asian options

The pricing of Asian options is a commonly used test problem from finance, see,
e.g., [159–161].

Modeling

The payoff of an Asian option with discrete geometric average is defined by

V (S, T ) = max

{
d∏

k=1

S(tk)
1/d −K, 0

}
, (6.10)
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where K denotes the strike price of the option. In case of an discrete arithmetic
average the payoff is

V (S, T ) = max

{
1

d

d∑
k=1

S(tk)−K, 0

}
. (6.11)

While there is no closed form solution for Asian options with arithmetic average,
a generalised Black-Scholes formula exists for Asian options with geometric average,
which we use to validate our numerical methods and results.

Lemma 6.2 (Closed-form solution). The price of an Asian option with discrete
geometric average (6.10) is given by

V (S, 0) = S(0) γ Φ(β + σ
√
T1)−Ke−rTΦ(β),

where
γ := e−r(T−T2)−σ2(T2−T1)/2,

β :=
ln(S(0)/K) + (r − 1

2
σ2)T2

σ
√
T1

,

T1 := T − d(d− 1)(4d+ 1)

6d2
∆t,

T2 := T − (d− 1)

2
∆t.

Proof. The proof uses that the sum of normally distributed random variables is
again normally distributed. It can be found in detail in [171].

Unless states otherwise, we consider an Asian option with d = 16 time steps and
the parameters

S(0) = 100, σ = 0.2, r = 0.1, T = 1 and K = 100,

which are also used in [159–161]. In the following, we compute the fair price V (S, 0)
of this option via (6.9) using different quadrature methods and different path gen-
erating methods.

To study the impact of the smoothness, we calculate the results additionally
for the case K = 0. While we obtain a smooth integrand in the case K = 0, the
integrand has discontinuous first derivatives in the case K = 100.

Effective Dimensions

We first determine the effective dimensions of the integral (6.9). The results are
shown in Table 6.3 for different proportions α ∈ [0.9, 0.9999]. We first note that the
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Asian option pricing problem with K = 0 is of very low superposition dimension
ds ≤ 2 independent of the employed path construction. In the case K = 100,
ds decreases if we switch from LT to PCA, to BB and RW.8 The superposition
dimension in the classical case with proportion α = 99% is one if K = 0, see [159],
and (about) two if K = 100, see [161].

(a) Case K = 0

anchored-ANOVA classical ANOVA
superposition dim. truncation dimensions

1−α RW BB PCA LT RW BB PCA LT RW BB PCA LT
1e-1 1 1 1 1 9 2 1 1 9 2 1 1
1e-2 1 1 1 1 13 6 2 1 13 6 2 1
1e-3 2 2 1 1 15 14 3 1 15 14 3 1
1e-4 2 2 2 1 16 16 6 1 16 16 6 1

(b) Case8 K = 100

anchored-ANOVA classical ANOVA
superposition dim. truncation dimensions

1−α RW BB PCA LT RW BB PCA LT RW BB PCA LT
1e-1 7 2 1 1 10 3 1 1 10 2 1 1
1e-2 8 3 1 1 10 4 2 1 14 7 2 1
1e-3 8 4 2 1 10 7 3 1 15 14 3 1
1e-4 8 4 3 1 13 15 5 1 16 16 6 1

Table 6.3. Effective dimensions of the Asian option pricing problem (6.9).
The nominal dimension is d = 16.

One can moreover see in Table 6.3 that the truncation dimensions in the classical
case almost coincide with the truncation dimensions in the anchored case. For
instance, for the case K = 0 with α = 0.999 we obtain dt = 15, 14, 3, 1 using RW,
BB, PCA and LT, respectively, for the anchored case as well as for the classical one.
The LT-construction achieves the optimal result dt = 1 in both cases. One can show
that this holds even for the extreme case α = 1, i.e. this problem can be reduced
by LT to one with only one nominal dimension.

Quadrature Error and Costs

We now focus on the case K = 100 (i.e. the case where the integrand has dis-
continuous first derivatives) and study the performance of the different numerical

8 Note that our numerical computations for the anchored case with K = 100 and RW or BB
might be inaccurate. For these particular problems accurate results are difficult to obtain since
the truncation dimension is high (hence many terms have to be integrated) and the integrals are
not smooth (hence their computation is expensive).
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methods with respect of this difficulty. We again use MC, QMC and the sparse grid
methods SGP and SPH. In our tests, we will here in addition consider the mixed
CUHRE/QMC methods COW, CPW and CAD from Example 3.5 in Section 3.2.
Remember that these dimension-wise quadrature methods are not of sparse grid
form, but can resolve low regularity in the low-order anchored-ANOVA terms by
local adaptivity.

Next we compute the value of the integral (6.9) using the different numerical
approaches (MC, QMC, COW, CPW, CAD, SGP and SGH) and different path con-
structions (RW, BB, PCA, LT) and compare the results to the exact solution from
Lemma 6.2. We display the respective convergence behaviour of these methods in
Figure 6.5 and Figure 6.6. There, we show the number of function evaluations which
is required by each of the different numerical methods to obtain a fixed accuracy.

One can see that the convergence rate of the MC method is again always about
0.5 as expected. QMC is superior to MC and achieves higher convergence rates of
almost one, smaller relative errors and a less oscillatory convergence behaviour. This
advantage increases if BB, PCA or LT is used. From Figure 6.5 and Figure 6.6 we
also observe that the impact of the path construction is considerably bigger in case
of the dimension-wise quadrature methods COW, CPW, CAD, SGP and SGH. This
is explained by the fact that these methods are tailored to the effective dimension of
the problem by the choice of the respective function space weights from Section 3.2.3,
or by the dimension-adaptive grid refinement. The convergence of these methods
is thus significantly accelerated by path constructions which reduce the effective
dimension of the associated integrand. For instance, in the case K = 0, compare
Figure 6.5, one can see that the performance of the dimension-wise quadrature
methods significantly improves if we switch from RW to BB, to PCA and then to
LT. While COW, CPW, CAD and SGP provide results which are similar to or even
worse than (Q)MC in case of RW, they outperform (Q)MC slightly, clearly and
drastically in case of BB, PCA and LT, respectively. To describe the convergence
behaviour of the dimension-adaptive methods, again the preasymptotic regime and
the asymptotic regime has to be distinguished, compare, e.g., Figure 6.5(d). In the
preasymptotic regime, the methods COW, CPW, CAD, SGP and SGH first search
for the important dimensions and interactions, whereas, in the asymptotic regime,
the important dimensions are identified and the grid is then refined only in these
directions. This leads to an extremely rapid convergence in the asymptotic regime,
in particular in combination with the LT-construction, see Figure 6.5(d). This is
explained by the fact that LT reduces the problem to only one dimension.

A comparison of the convergence rates of the COW, CPW and CAD method
shows that the a priori constructions (with order-dependent weights or product
weights) and the dimension-adaptive construction of the index set S lead to very
similar results. The results of COW and CPW even coincide in most cases.

For the case K = 0, SGH is the by far most efficient method independenty of the
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(a) Random walk (b) Brownian bridge

(c) Principal components (d) Linear transformation

Figure 6.5. Convergence behaviour of the different methods for the Asian
option pricing problem (6.9) with K = 0 and d = 16.

employed path construction. It exploits the low effective dimension by its dimension-
adaptive grid refinement and can profit from the smoothness of the integrand much
better than all other approaches since it avoids the singular transformation to the
unit cube. This way, we obtain relative errors smaller than 1012 with only about 105,
104, 103 and 102 function evaluations in case of RW, BB, PCA and LT, respectively,
which is 7− 10 orders of magnitude more precise than the results of QMC.

Comparing the two cases K = 0 and K = 100, we furthermore see that the
convergence rates of the QMC method are only slightly affected by the kink in the
integrand, whereas the SG methods clearly suffer from the low degree of regularity.
This drawback is to some extent overcome by the COW, the CPW and the CAD
method, which are in combination with PCA or LT the most efficient approaches for
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(a) Random walk (b) Brownian bridge

(c) Principal components (d) Linear transformation

Figure 6.6. Convergence behaviour of the different methods for the Asian
option pricing problem (6.9) with K = 100 and d = 16.

the case K = 100. These methods profit from the low effective dimension and can
in addition deal with the low regularity of the integrand by local adaptivity in the
low order anchored-ANOVA terms due to the CUHRE approach. With LT, these
methods obtain relative errors smaller than 10−8 with only about 1,000 function
evaluations, see Figure 6.6(d), which is about 100,000 times more accurate than the
results of QMC.



110 Chapter 6. Validation and Industrial Applications

6.2.2 Barrier options

This section is concerned with discretely monitored barrier options.9 Such options
can be priced by the integration of high-dimensional functions that have kinks and
jumps. To regain smoothness we here use the approach from Section 5.2.3 to avoid
the kinks and jumps through conditional sampling, see also [59].

Modeling

Barrier options are path-dependent options which become worthless if the underlying
asset reaches a specified barrier. There are various types of barrier options. Here,
we consider discretely monitored knock-out barrier options.10 The payoff of such an
option is zero if the underlying asset S(t) crosses a lower barrier B > 0 at one of the
points in time tk = k∆t, k = 1, . . . , d, with ∆t = T/d. If the barrier is not crossed
until the maturity date T , the holder obtains the payoff of a European call option
with strike price K. In summary, the payoff is given by

V (S, T ) = (S(T )−K)+ χ( min
k=1,...,d

S(tk) > B), (6.12)

where we used the notation (x)+ := max{x, 0} and where χ(A) denotes the charac-
teristic function which is one if A is true and zero else.

By the martingale approach (6.7) this option can be priced by computing the
expected value

V (S, 0) = e−rTE[V (S, T )]

via the integral representation (6.9). The maximum operator and the characteristic
function in (6.12) lead to a kink and a jump in the corresponding integrand, however,
which makes accurate solutions difficult to achieve by numerical methods.

We here overcome this obstacle by deriving the one-step survival probabilities
that the underlying asset does not reach the barrier in the time interval [tk, tk+1]
given its value at time tk. This way we can exploit special structure of the problem
and avoid to integrate the zero area of the integrand, see Section 5.2.3. We obtain
the following lemma which is originally due to Jan Baldeaux from the University of
New South Wales.

Lemma 6.3 (Smoothing of Barrier Options). The price of the barrier option
(6.12) is given by

V (S, 0) = e−rTE[Ṽ (S, T )],

9The results of this section are joint work with Jan Baldeaux from the University of New South
Wales, Australia

10Knock-in or double barrier options can be treated in a similar way. For continuously monitored
barrier options there exist closed form pricing formulas, see [171].
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where

Ṽ (S, T ) :=
(
S(td−1)er∆tΦ(d1 + σ

√
∆t) +KΦ(d1)

)
(6.13)

·
d−1∏
k=1

(
1− Φ

(
log (B/S(tk−1))− (r − 1

2
σ2)∆t

σ
√

∆t

))
. (6.14)

Here Φ denotes the cumulative normal distribution function and

d1 :=
log (S(td−1)/M) + (r + σ2/2)∆t

σ
√

∆t

with M := max(K,B).

Proof. We proceed incrementally and avoid in each time interval [tk, tk+1] a crossing
of the barrier and hence the jump in the integrand using conditional expectations.

To this end, let P[S(tk) > B|S(tk−1)] denote the one-step survival probability
that the asset is above the barrier B at time tk conditional on its value at tk−1.
Then, by definition of M and by independence of the increments of the underlying
Brownian motion, we obtain that

E[V (S, T )] = E
[
(S(T )−K)+ χ( min

k=1,...,d
S(tk) > B)

]
= E

[
(S(T )−M)+ χ( min

k=1,...,d−1
S(tk) > B)

]
= E

[
E
[
(S(T )−M)+ |S(td−1)

] d−1∏
k=1

P[S(tk) > B|S(tk−1)]

]
.

(6.15)

By (6.8), the one-step survival probabilities can be derived analytically. A simple
computation yields

P[S(tk) > B|S(tk−1)] = P
[
S(tk−1) exp{(r − σ2/2) ∆t+ σ

√
∆tzk} > B|S(tk−1)

]
= P

[
zk >

log (B/S(tk−1))− (r − 1
2
σ2)∆t

σ
√

∆t
|S(tk−1)

]

= 1− Φ

(
log (B/S(tk−1))− (r − 1

2
σ2)∆t

σ
√

∆t

)
,

where zk denotes a standard normally distributed random number.
The value of the remaining integral in (6.15) is given by

E
[
(S(T )−M)+ |S(td−1)

]
= S(td−1)er∆tΦ(d1 + σ

√
∆t) +KΦ(d1),
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Table 6.4. Contribution (in percentage) of the first j = 1, 2, 3 dimensions
to the total variance σ2(f) of the Barrier option pricing problem (6.7).

(a) Standard payoff (6.12)

d σ2(f) D1 D2 D3 dt
4 268.8 92 95 99 4
8 268.7 88 92 95 7
16 267.6 85 89 93 14
32 266.4 82 86 91 27

(b) Smoothed payoff (6.13)

d σ2(f) D1 D2 D3 dt
4 110.2 71 82 82 4
8 149.7 84 88 88 8
16 182.2 87 91 93 16
32 207.1 88 92 95 32

which directly follows from the Black-Scholes formula for European call options.
This way, also the kink in the integrand can be avoided and the dimension is reduced
by one.

We next compute the fair price V (S, 0) of a Barrier option with the parameters

S(0) = 100, σ = 0.2, r = 0.05, T = 1, K = 95 and B = 92

and compare the results which we obtain by integration of the payoff (6.12) with
the results which we obtain by integration of the smoothed version (6.13).

Note that the simulation of the smoothed version (6.13) with BB, PCA or LT is
not straightforward, but possible using the method of Leobacher [104]. Furthermore,
it is difficult to address (6.13) directly on IRd, since we used the inverse transforma-
tion method to generate conditional samplings. We therefore omit the method SGH
in the following numerical experiments.

Effective Dimensions

To study the importance of the dimensions of the pricing problem of barrier options,
we consider the classical case and use the values Tj from (2.10) to compute

Dj := (1− Tj) 100.

The values Dj describe the contribution (in percentage) of the first j dimensions to
the total variance of the problem. The results are shown in Table 6.4 for the case
that the BB-construction is used. To illustrate the impact of the dimension, we here
display the results for d = 4, 8, 16, 32.

We observe that in case of the standard payoff (6.12), 91 − 99% of the total
variance is concentrated in the first three dimensions. This proportion, however,
decreases with increasing dimension. In case of the smoothed payoff (6.13), we see
for d = 4 and d = 8 that the concentration of the variance is partly lost. This
indicates that our approach to apply BB via the method [104] does not completely
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avoid the incremental character of the conditional sampling approach. Interestingly,
the contribution of the first dimensions to the total variance grows with increasing
dimension.11 Nevertheless, the truncation dimension dt (with α = 0.99) remains
high, see Table 6.4.12 It equals or almost equals to the nominal dimension d.

Further numerical computations not displayed here show that RW leads to less
concentration of the variance in the first dimensions than BB with and without
smoothing. PCA and LT lead to slightly better results than BB in the smoothed case
but slightly worse in the standard case. The superposition dimension in the classical
case is larger than two for the standard payoff while its two (at least for d ≤ 8) for the
smoothed one. This holds almost independently of the path construction. However,
in all cases that we considered here the truncation dimension equals or almost equals
to the nominal dimension. We will see below that this effect prevents the efficient
pricing of barrier options by SG methods for high (roughly d > 8) dimensions and
also deteriorates the performance of QMC methods.

We finally consider the impact of conditional sampling on the variance of the
integrand. One can see in Table 6.4 that conditional sampling reduces the variance
(by a factor of almost two for d = 8), but this advantage decreases with increasing
dimension.

Quadrature Error and Costs

To compare the efficiency of the different numerical methods we computed the rela-
tive errors for different sample sizes n using the reference solution V (S, 0) = 11.4899.
In Figure 6.7 we display the convergence behaviour of the numerical methods MC,
QMC and SGP for the case d = 8 and the BB-construction.

The positive effect of the smoothing is clearly visible. The QMC method con-
verges in the smoothed case faster with a rate of almost one and significantly less
oscillatory than in the standard case. While the SG method shows no convergence
at all in case of the standard payoff, it attains a high rate of convergence of almost
two in case of the smoothed payoff and obtains in this way more precise results than
MC and QMC also for small sample sizes n. Note that the smoothing implicates
no approximation or model errors, but only serves to avoid the kink, the jump and
the zero region of the integrand. We observe similar effects if the RW, PCA or
LT-construction methods are used.

For smaller dimensions d, the advantage of the QMC method and in particular
of the SG method compared to MC is even larger. The performance of QMC and
SG deteriorates moderately and clearly, respectively, with increasing dimension,
however, also in case of the smoothed payoff. This is explained by the high truncation

11One possible explanation for this effect is the concentration of measure phenomenon [102].
12Note that conditional sampling reduces the dimension by one. In combination with the method

[102], which we require to apply BB, PCA or LT, this advantage is lost, though.
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(a) Standard payoff (6.12) (b) Smoothed payoff (6.13)

Figure 6.7. Convergence behaviour of the Barrier option pricing problem
with d = 8.

dimension of this application, which is neither reduced by BB nor by PCA or LT.

6.3 Performance-dependent Options

In this section, we consider the valuation of performance-dependent options. Per-
formance-dependent option are financial derivatives whose payoff depends on the
performance of one asset in comparison to a set of benchmark assets. Their valu-
ation is an application from mathematical finance which requires the computation
of high-dimensional integrals. Here, the large number of dimensions arises from a
large number of state variables. As additional difficulty is that the integrands are
typically discontinuous such that only MC methods can directly be applied without
penalty. To overcome these two obstacles (high dimensionality and low regularity)
we here use the principal component analysis to reduce the dimension and the do-
main decomposition from Section 5.2.2 to recover smoothness. For the integration
of the smooth terms, we then apply SG methods.

The content of this section is already published in the journal article [56] and in
the conference proceedings contributions [54,57].

6.3.1 Framework and Pricing Formulas

In this section, we first motivate the relevance of performance-dependent options.
Then, we formally define performance-dependent options and present closed-form
formulas for their fair value in a multivariate Black-Scholes model. For details on
the stochastic model and on the derivation of the pricing formulas, we refer to
Appendix B.
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Motivation

Companies make big efforts to bind their staff to them for longer periods of time in
order to prevent a permanent change of executives in important positions. Besides
high wages, such efforts are long-term incentive and bonus schemes. One widespread
form of such schemes consists in giving the participants a conditional award of
shares [143]. If the participant stays with the company for at least a prescribed time
period he will receive a certain number of company shares at the end of the period.
Typically, the exact amount of shares is determined by a performance criterion such
as the company’s gain over the period or its ranking among comparable firms (the
peer group). This way, such bonus schemes induce uncertain future costs for the
company.

For the corporate management and especially for the shareholders, the actual
value of such bonus programs is quite interesting. One way to determine an upper
bound of this value is to take the price of vanilla call options on the maximum
number of possibly needed shares. This upper bound, however, often significantly
overestimates the true value of the bonus program since its specific structure is not
respected.

Contingent claim theory states that the accurate value of such bonus programs is
given by the fair price of options which include the used performance criteria in their
payoff. Such options are called performance-dependent options. Their payoff yields
exactly the required shares at the end of the bonus scheme. This way, performance-
dependent options minimize the amount of money the company would need to hedge
the future payments arising from the bonus scheme, see [96].

Similar performance comparison criteria are currently used in various financial
products, for example many hedge funds are employing so-called portable alpha
strategies. Recently, also pure performance-based derivatives have entered the mar-
ket in the form of so-called alpha certificates. Here, typically the relative performance
of a basket of stocks is compared to the relative performance of a stock index. Such
products are either used for risk diversification or for pure performance speculation
purposes.

Payoff profile

We next formally define performance-dependent options and their payoff profiles.
We assume that there are n companies involved in total. Our company gets assigned
label 1 and the n−1 benchmark companies are labeled from 2 to n. The stock price
of the i-th company varying with time t is denoted by Si(t), 1 ≤ i ≤ n. The current
time is denoted by t = 0. All stock prices at the end of the time period t = T are
collected in the vector S = (S1(T ), . . . , Sn(T )).

The character of a performance-dependent option is described by the payoff of
the option at time T . To this end, we denote the relative price increase of stock i
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over the time interval [0, T ] by

∆Si :=
Si(T )

Si(0)
.

We save the performance of the first company in comparison to a given strike price K
and in comparison to the benchmark assets at time T in a ranking vector Rank(S) ∈
{+,−}n which is defined by

Rank1(S) :=

{
+ if S1(T ) ≥ K,
− else

and Ranki(S) :=

{
+ if ∆S1 ≥ ∆Si,
− else

for i = 2, . . . , n. This means, if the first asset outperforms benchmark asset i we
denote this by a plus sign in the i-th component of the ranking vector Rank(S),
otherwise, there is a minus sign. For the fair valuation of a bonus scheme, the strike
K is typically equal to S1(0) since this way the payoff represents the risk of the price
increase of the company’s own stock until time T . In the following, arbitrary strike
prices K are allowed, though.

In order to define the payoff of the performance-dependent option, we require
bonus factors aR which define the bonus for each possible ranking R ∈ {+,−}n.
It is important to distinguish here between a possible ranking denoted R and the
realized ranking induced by S which is denoted by Rank(S). The payoff of the
performance-dependent option at time T is then defined by

V (S, T ) := aRank(S) max{S1(T )−K, 0}.

We always define aR = 0 if R1 = −, so that the payoff can be written as

V (S, T ) = aRank(S) (S1(T )−K). (6.16)

In the following, we illustrated some possible choices for the bonus factors aR

which are included in our framework.

Example 6.4 (Performance-independent option).

aR =

{
1 if R1 = +
0 else.

In this case, we recover a European call option on the stock S1.

Example 6.5 (Linear ranking-dependent option).

aR =

{
m/(n− 1) if R1 = +
0 else.
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Here, m denotes the number of outperformed benchmark assets. The payoff only
depends on the rank of our company in the benchmark. If the company ranks first,
there is a full payoff (S1(T )−K)+. If it ranks last, the payoff is zero. In between,
the payoff increases linearly with the number of outperformed benchmark assets.

Example 6.6 (Outperformance option).

aR =

{
1 if R = (+, . . . ,+)
0 else.

A payoff only occurs if S1(T ) ≥ K and if all benchmark assets are outperformed.

Example 6.7 (Ranking-dependent option with outperformance condition).

aR =

{
m/(n− 1) if R1 = + and R2 = +
0 else.

The bonus depends linearly on the number m of outperformed benchmark com-
panies like in Example 6.5. However, the bonus is only payed if company two is
outperformed. Company two could, e.g., be the main competitor of our company.

Pricing Formulas

To define a fair value for performance-dependent options, we use a multidimensional
Black-Scholes model (see, e.g., [70, 91]) for the temporal development of all asset
prices Si(t), i = 1, . . . , n, required for the performance ranking.13 It is based on
d ≤ n many independent Brownian motions and described in the Appendix B.1.
We thereby distinguish two cases: In the first case, which we refer to as full model,
the number of stochastic processes d equals the number of assets n, whereas d < n
in the second case, which we refer to as reduced model.

Using the usual Black-Scholes assumptions, see, e.g., [91], the fair price V (S1, 0)
of an option at time t = 0 is given by the discounted expectation

V (S1, 0) = e−rT E[V (S, T )] (6.17)

of the payoff under the equivalent martingale measure, where r denotes the riskless
interest rate. In the case of a performance-dependent option with payoff (6.16), we
see that the expected value (6.17) can be written as a d-dimensional integral, since d
independent Brownian motions are involved in the model. The integrand, however,

13 A valuation approach for American-style performance-dependent options using a fairly general
Lévy model for the underlying securities is presented in Egloff et al. [37]. There, a least-squares
Monte Carlo scheme is used for the numerical solution of the model, but only one benchmark
process is considered. Thus, the problem of high-dimensionality does not arise which is one of the
main issues in this thesis.
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is discontinuous induced by the jumps of the bonus factors aR, see the Examples
6.4-6.7. Therefore, numerical integration methods will perform poorly and only MC
integration can be used without penalty. Thus, high accuracy solutions will be hard
to obtain.

A closer inspection of the integral (6.17) shows, however, that the discontinuities
are located on hyperplanes. Hence, we can apply the approach from Section 5.2.2 to
decompose the integration domain first into polyhedrons and then each polyhedron
into orthants. In this way, we can derive an analytical expression for the expected
value (6.17) in terms of smooth functions, in our case multivariate normal distri-
butions. The pricing formulas and their derivation can be found in the appendix.
Theorem B.3 states the result for the full model case d = n while Theorem B.4
summarizes the main result in the reduced model case d < n.

6.3.2 Numerical Results

In this section, we present numerical examples to illustrate the costs and the benefits
which result from the domain decomposition into orthants as presented in Theorem
5.5. In particular, we compare the efficiency of the resulting pricing algorithm to
the direct pricing approach

• QMC integration14 of the expected payoff (6.17) using Sobol point sets (STD)

Observe that our pricing formulas in Theorem B.3 and Theorem B.4, which
result from the orthant decomposition in Section 5.2.2, require the evaluation of
several multivariate cumulative normal distributions. For their computation, we
here systematically compare the use of

• QMC integration based on Sobol point sets (QMC),

• Product integration based on the Clenshaw Curtis rule (P),

• SG integration based on the Clenshaw Curtis rule (SG)

in combination with the Genz-transformation [44].
In the following we investigate four different choices of bonus factors aR in the

payoff function (6.16) according to the Examples 6.4 – 6.7. In all cases, we use the
model parameters

K = 100, S1(0) = 100, T = 1 and r = 5%.

In the performance-independent case of Example 6.4, an analytical solution is readily
obtained by the Black-Scholes formula. In all other cases, we computed reference

14 Monte Carlo integration led to significantly less accurate results in all our experiments.
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Table 6.5. Option prices V (S1, 0), discounts compared to the corresponding
plain vanilla option and number of computed normal distributions (# Int) for the
considered examples using a full Black-Scholes model with n = 5.

Example V (S1, 0) Discount # Int
6.4 9.4499 - 1
6.5 6.2354 34.02% 30
6.6 3.0183 68.06% 2
6.7 4.5612 51.73% 16

values for the option prices on a very fine integration grid to compare the efficiency
of the different pricing approaches.

To take into account the cost of the domain decomposition, we measure in this
section the total cost of the different pricing algorithms not by the number of re-
quired function evaluations but show the overall computing times. To this end, note
that all computations were performed on a dual Intel(R) Xeon(TM) CPU 3.06GHz
processor.

Full Model

We consider the multivariate Black-Scholes model from Section B.1 with n = 5
assets, d = 5 processes and use the volatility matrix

σ =


0.1515 0.0581 0.0373 0.0389 0.0278
0.0581 0.2079 0.0376 0.0454 0.0393
0.0373 0.0376 0.1637 0.0597 0.0635
0.0389 0.0454 0.0597 0.1929 0.0540
0.0278 0.0393 0.0635 0.0540 0.2007

 .

The prices of the different performance-dependent options under these model as-
sumptions are displayed in the second column of Table 6.5. In principle, all bonus
schemes, which correspond to the Examples 6.5 – 6.7, could be hedged by the plain
vanilla option in Example 6.4. The differences of the prices of the performance-
dependent options (yielding the accurate value) and the corresponding plain vanilla
options are shown in the third column of Table 6.5. We see that the usage of plain
vanilla options substantially (up to 68 %) overestimates the fair values of the bonus
schemes. The number of d-dimensional normal distributions (# Int) which have to
be computed is shown in the last column. It depends on the special choice of the
bonus factors as we explain in Appendix B.2.

The convergence behaviour of the four different approaches (STD, QMC, P,
SG) to price the performance-dependent options from the Examples 6.5 – 6.7 are
displayed in Figure 6.8. There, the time is displayed which is needed to obtain a
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(a) Example 6.5 (b) Example 6.6

(c) Example 6.7

Figure 6.8. Errors and timings of the different numerical approaches to
price different performance-dependent options using a full Black-Scholes model with
n = d = 5.

given accuracy. One can see that the standard approach (STD) and the product
integration approach (P) perform worst for all accuracies. The convergence rates
are clearly lower than one in all Examples. The integration scheme STD suffers
under the irregularity of the integrand which is highly discontinuous and not of
bounded variation. The product integration approach suffers under the curse of
dimension. The use of the pricing formula from Theorem B.3 combined with QMC
or SG integration clearly outperforms the STD approach in terms of efficiency in all
considered examples. The QMC scheme exhibits a convergence rate of about one
independent of the problem. The combination of SG integration with our pricing
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formula (SG) leads to the best overall accuracies and convergence rates in all cases.
Even very high accuracy demands can be fulfilled in less than a few seconds.

Reduced Model

In this section, we illustrate the performance of our approach in case of a reduced
Black-Scholes market with n = 30 assets and d = 5 processes. This setting cor-
responds, e.g., to the case of a performance-dependent option which includes the
performance of all companies of the German stock index DAX in its payoff profile.
As we can see from the principal component analysis in Figure B.1, this number of
processes suffice to explain more than 95 percentage of the total variance. Through-
out this section we use σ being a 30×5 volatility matrix whose entries are uniformly
distributed in [−1/d, 1/d].

The prices of the performance-dependent options from the Examples 6.4 – 6.7
under these model assumptions are displayed in the second column of Table 6.6. In

Table 6.6. Option prices V (S1, 0), discounts compared to the corresponding
plain vanilla option, number of computed normal distributions (# Int), intrinsic
dimensions (Dim), and convergence rates of the different numerical approaches for
the considered examples using a reduced Black-Scholes model with n = 30 and d = 5.

Example V (S1, 0) Discount ] Int Dim STD QMC P SG
6.4 14.4995 - 1 1 1.1 - - -
6.5 12.9115 10.95% 41 2 0.58 0.88 1.45 1.55
6.6 1.8774 87.05% 31 5 0.6 1.1 0.27 1.87
6.7 8.6024 40.67% 38 3 0.52 1.3 0.89 1.54

the third column we show the discounts which result from a comparison of the prices
of the performance-dependent options (yielding the accurate value of the bonus
schemes) and the corresponding plain vanilla options (yielding an upper bound to
the value of the bonus schemes). One can see that the usage of plain vanilla options
substantially (up to 87 %) overestimates the fair values of the bonus schemes. As we
will explain in more detail in Appendix B.2, the complexity and dimensionality of our
formula is often substantially reduced depending on the choice of the bonus factors.
The number (] Int) and the maximum dimension (Dim) of normal distributions
which have to be computed in the Examples 6.4 – 6.7 are displayed in the fourth
and fifth column of Table 6.6. One can see that the number of required normal
distributions is substantially lower than the theoretical bound (5.11) which is cn,d =
174, 437 for these examples. The maximum dimension varies from one to the nominal
dimension five depending on the specific example.

The convergence behaviour of the four different approaches STD, QMC, P and
SG to price the performance-dependent options from the Examples 6.5 – 6.7 are
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displayed in Figure 6.9. There, the time is displayed which is needed to obtain a

(a) Example 6.5 (b) Example 6.6

(c) Example 6.7

Figure 6.9. Errors and timings of the different numerical approaches to
price different performance-dependent options using a reduced Black-Scholes model
with n = 30 and d = 5.

given accuracy.
In the special case of Example 6.4, the application of Theorem B.4 combined

with the transformation of Genz [44] automatically reduces to the analytical solution
given by the Black-Scholes formula with the variance σ̄1 which is defined in Appendix
B.1. The exact solution up to machine precision is obtained in about 4.7 seconds by
all integration schemes (QMC, P, SG). This is the time which is needed in the domain
decomposition step of our algorithm to compute all vertices v and all weights cv. In
the same time, the STD approach approximates the solution up to an error of 1e−03.
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One can see that a simulation of the expected payoff (STD) performs similarly in all
examples. Low accuracies are quickly achieved, the convergence rate is slow, though.
The rate is about 0.6 in all examples and thus lower than one, as may be expected.
The integration scheme suffers under the irregularity of the integrand which is highly
discontinuous and not of bounded variation. The QMC scheme clearly outperforms
the STD approach in all examples. It exhibits a convergence rate of about one and
leads to much smaller errors after the setup time of 4.7 seconds. In contrast to
the two previous approaches, the product integration approach (P) exhibits a high
dependency on the specific example. While it performs very well in the Examples
6.4 and 6.5 it only converges with a rate of 0.27 in Example 6.6. Here, the curse of
dimension, under which the product approach suffers, is clearly visible. While the
intrinsic dimensions of Examples 6.4 and 6.5 are only one and two, respectively, the
intrinsic dimension of Example 6.6 is five and, thus, equal to the nominal dimension.
The combination of SG integration with our pricing formula (SG) leads to the best
convergence rates. The curse of dimension can be broken to some extent, while the
favorable accuracy of the product approach is maintained. It is the most efficient
scheme for the Examples 6.4, 6.5 and 6.7. However, for higher dimensional problems
as Example 6.6, this advantage is only visible if very accurate solutions are required.
In the preasymptotic regime, the QMC scheme leads to smaller errors.

6.4 Asset-Liability Management in Life Insurance

In this section, we consider the asset-liability management of a portfolio of partic-
ipating life insurance policies.15 This is an application from mathematical finance
leading to high-dimension integrals where the large number of dimensions mainly
arises from small time steps in the time discretizations. We here in particular focus
on dimension reduction using the different approaches from Section 5.1 to construct
stochastic sample paths.

The remainder of this section is as follows: First, we describe the ALM model.
Then, we formulate the problem to compute target figures of the model in terms
of high-dimensional integrals. Finally, we present numerical results which illustrate
the efficiency of different numerical approaches to compute these integrals using
different constructions for the sample paths of the capital market.

The ALM model presented in this chapter is already published in the journal
article [52]. The conference proceedings contribution [50] covers the part of this
chapter which is concerned with the effective dimension of ALM problems in life
insurance. The numerical aspects are partly published in the book contribution [53].

15Most of this section is the result of the research project “numerical simulation for asset-liability
management in insurance” (03GRNHBN). The project was realized in cooperation with the Zurich
Group Germany and was supported by the German Federal Ministry of Education and Research
(BMBF) in the framework of its program “Mathematics for innovations in industry and service”.
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6.4.1 Model and Integral Representation

In this section, we describe the application problem to compute target figures of
stochastic asset-liability management models (ALM) in life insurance. Because of
their high complexity, we here only sketch the most important aspects of such models
and refer for details to Appendix C.1.

Stochastic ALM models are becoming more and more important for insurance
companies due to new accountancy standards, greater globalisation, stronger com-
petition, more volatile capital markets and longer periods of low interest rates.
Additional importance arises from the current need of insurance companies to move
from an accounting based on book values to a market-based, fair value accountancy
standard as required by Solvency II and the International Financial Reporting Stan-
dard (IFRS), see, e.g., [88]. This task can be achieved by performing stochastic
simulations of ALM models in a risk-neutral environment.

In the following, we start with an abstract representation of ALM models in
life insurance in terms of a general state space model. This representation reveals
the different building blocks from a computational point of view and is used in the
remainder of this article.

Overall Model Structure

Much effort has been spent on the development of stochastic ALM models in the
last years, see, e.g., [2,4,5,8,15,24,29,60,66,67,84,93,110,112,113,155,169] and the
references therein.

As in these references, we here focus on the situation where a stochastic capital
market model is used, while all other model components are assumed to be deter-
ministic. We model all terms in discrete time.16 The simulation starts at time t = 0
and ends at time t = T . The time interval [0, T ] is decomposed into K periods
[tk−1, tk] with tk = k∆t and period length ∆t = T/K. Thereby, a (Markov) multi-
period model specifies how the different accounts evolve from one point in time to
the next. Then, the overall structure of one time step of such ALM models can of-
ten be organized into different modules as illustrated in Figure 6.10. Similar model
structures are also used in [33,52,84].

The stochastic component, the capital market model (or scenario generator),
is usually defined by a system of stochastic differential equations for the involved
market components (e.g., stocks and interest rates). It is usually based on an un-
derlying multivariate Brownian motion. The deterministic part of the ALM model
includes all model equations specified in the asset model, the management model
and the liability model. In the asset-model, the market prices of the different asset
classes, the return rate of the company’s portfolio and the overall development of

16Our starting point is thus either a discrete-time model or the discretization of a continuous-time
model.
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Figure 6.10. Overall structure of one time step of the ALM model.

the capital are determined. In the liability model, the premium payments and all
survival, death and surrender benefits are collected, which depend on the specific
insurance product. In addition, the balance sheet items on the liability side (e.g.,
the actuarial reserve, the bonus reserve or the equity) are updated. In the man-
agement model, the capital allocation, the bonus declaration and the shareholder
participation are specified by deterministic management rules which can depend on
the capital markets, the cash flows, the reserves and all other accounts.

State Space Representation

To obtain a convenient and compact representation of stochastic ALM models, we
assume that the entire state of the insurance company at time tk can be represented
by a state vector Xk ∈ RM . This vector contains all information, e.g., balance sheet
items and policyholder accounts, which are required to carry the simulation from
one point in time to the next, thereby depending on the development of the capital
markets. We further assume that the state of the capital markets at time tk can be
described by a vector Sk ∈ RD. It contains, for instance, the current stock prices
and interest rates at time tk.

The initial state of the insurance company at the start of the simulation is given
and denoted by X0. Its temporal development is then specified by the equation

Xk = r(Xk−1,Sk) (6.18)

in a recursive way for k = 1, . . . , K, which mirrors the Markov property of the ALM
model. For a given input vector Sk, the state equation r : RM+D → RM thereby
relates the state of the insurance company at time tk to the state at time tk−1. It
includes all model equations specified in the asset model, in the management model
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and in the liability model. Most models proposed in the literature or used in practise
can be written in the form (6.18) using a sufficiently complex function r.

The computation of one scenario of the model (6.18) then involves the compu-
tation of the vector

X = (X1, . . . ,XK)

for the states of the insurance company at the different points in time. The states
thereby depend on the vector

S = (S1, . . . ,SK)

which describes the underlying capital market scenario.

Benchmark Model

As an example for the abstract model (6.18), we here consider the general ALM
model framework from [52]. It describes the temporal development of a portfolio
of participating life insurance policies. The items of the balance sheet at time tk
which are simulated in this model are shown in Table 6.7. The asset side consists
of the market value Ck of the company’s assets at time tk. On the liability side,
the first item is the book value of the actuarial reserve Dk.

17 The second item is
the allocated bonus Bk which constitutes the part of the surpluses that have been
credited to the policyholders via the profit participation. The free reserve Fk is a
buffer account for future bonus payments. It consists of surpluses which have not yet
been credited to the individual policyholder accounts, and is used to smooth capital
market oscillations in order to achieve a stable and low-volatile return participation
of the policyholders. The last item, the equity Qk, consists of the part of the
surpluses which is kept by the shareholders of the company. The model parameters
and model equations which are used to describe the temporal development of the
different balance sheet items are summarized in Figure 6.11 and are briefly explained
in the following. For more details we refer to Appendix C.1.

Table 6.7. Simplified balance sheet at time tk.

Assets Liabilities
Capital Ck Actuarial reserve Dk

Allocated bonus Bk

Free reserve Fk
Equity Qk

17i.e., the guaranteed savings part of the policyholders after deduction of risk premiums and
administrative costs.
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The capital market model contains the price of a stock and the short interest
rate. The temporal dynamics of the stock price is modelled by a geometric Brownian
motion while the short interest rates are obtained from the Cox-Ingersoll-Ross (CIR)
model which is coupled to the stock price model via a constant correlation factor
ρ. This system, which is based on a two-dimensional Brownian motion, is then
discretized according to the period length ∆t with an explicit Euler-Maruyama
discretization yielding discrete stock prices sk and short interest rates rk for each
period k, see the equations (C1) and (C2) in Figure 6.11.

In the asset model, the market prices bk(τ) of the bonds of the company at time
tk are determined, see equation (A1), which in turn depend on their duration τ and
on the short interest rates rk. This way, the portfolio return rate pk is specified
(A2) which contributes to the development of the capital Ck of the company in each
period (A3).

In the management model, the capital allocation, the bonus declaration and the
shareholder participation are specified. The asset allocation in stocks and bonds
is dynamic. Thereby, the proportion of funds invested in stocks is linked to the
current amount of reserves of the company, see (M2). This implements a CPPI
(constant proportion portfolio insurance) capital allocation strategy. The remaining
part of the capital is invested in zero coupon bonds using a buy-and-hold trading
strategy, see (M1) and (M3). For the declaration of the policyholder interest zk, the
mechanism from [66] is used (M4), which is based on the reserve situation of the
company. To distribute the total surplus Gk in each period k among policyholders
and shareholders, a fixed percentage α of the surplus is saved in the free reserve Fk
while the remaining part is added to the equity Qk, see (M5).

In the liability model, the actuarial reserve Di
k and the allocated bonuses Bi

k for
each policyholder i, i = 1, . . . ,m, are updated, see (L2) and (L3). They depend
on the biometry assumptions and on the specific insurance products under consid-
eration. Mortality and surrender are thereby assumed to be deterministic. The
probabilities qik and uik that the policyholder i dies or surrenders, respectively, in
period k are taken from experience-based tables and determine the number δik of
contracts in the portfolio (L1). The surplus Gk in period k, see (L4), consists of the
interest surplus, which results from the spread pk − zk of portfolio and policyholder
interest, and of the surrender surplus, which depends on the surrender factor ϑ.
Finally, the equity Qk is obtained (L5) so that the sum of the assets equals the sum
of the liabilities.

Next, we formulate this particular model in terms of the state space representa-
tion (6.18). The state space Xk at time tk of this model consists of all accounts of
the insurance company and of the policyholders. We use

Xk =
(
B1
k, . . . , B

m
k , D

1
k, . . . , D

m
k , δ

1
k, . . . , δ

m
k , nk, . . . , nk−τ+1, Ck, Fk

)
and thus have M = 3m+ τ + 2, where m is the number of policyholders and τ the
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Capital market model:

Input parameters: κ, θ, σr (short interest rates), µ, σs (stock prices)

(C1) Short interest rates rk = rk−1 + κ(θ − rk−1)∆t+ σr
√
|rk−1|∆Wk,1

(C2) Stock prices sk = sk−1 exp{(µ− σ2
s/2)∆t+ σs ∆Wk,2}

Management model:

Input parameters: β (asset allocation), ω, γ (bonus declaration), α (shareholders)

(M1) New investment Nk = Ck−1 + Pk −
∑τ−1

j=1 nk−j bk−1(τ − j)

(M2) Investment in stocks Ak = max {min{Nk, βFk−1}, 0}

(M3) Number new bonds nk = (Nk −Ak)/bk−1(τ)

(M4) Policyholder interest zk = max {z, ω(Fk−1/(Dk−1 +Bk−1)− γ)}

(M5) Free reserve Fk = max{Fk−1 + min{Gk, αGk}, 0}

Asset model:

Input parameters: τ (bond duration)

(A1) Bond prices bk(τ) = A(τ) exp{−B(τ) rk}

(A2) Portfolio return rate pk = (∆Ak +
∑τ−1

j=0 nk−j ∆bk,j)/(Ck−1 + Pk)

(A3) Capital Ck = (1 + pk)(Ck−1 + Pk)− Ek − Tk − Sk

Liability model:

Input parameters: qik, u
i
k (mortality, surrender), z, ϑ, P ik, E

i,G
k , T i,Gk , Si,Gk (product)

(L1) Number of contracts δik =
(
1− qik − uik

)
δik−1

(L2) Actuarial reserve Di
k = ((1 + z)(Di

k−1 + P ik)− qikT
i,G
k )/(1− qik)− E

i,G
k

(L3) Allocated bonus Bi
k = (1 + zk)Bi

k−1 + (zk − z) (Di
k−1 + P ik)

(L4) Surplus Gk = pkFk−1+(pk−zk) (Dk−1+Bk−1+Pk)+(1/ϑ−1)Sk

(L5) Equity Qk = Ck −Dk −Bk − Fk

Figure 6.11. Summary of the most important model parameters and equa-
tions. Lower indices k refer to the point in time tk whereas upper indices i refer
to the i-th policyholder. The values ∆Wk,` = W`(tk) − W`(tk−1) for ` ∈ {1, 2},
∆Ak = Ak(sk/sk−1 − 1) and ∆bk,j = bk(τ − j − 1) − bk−1(τ − j) denote the in-
crements of the underlying Brownian motion, the changes of the stock investments
and the changes of the bond prices from the beginning to the end of period k, re-
spectively. The terms A(τ) and B(τ) are constants which are defined in the CIR
model. The values Pk, Ek, Tk and Sk denote the total premium income and the
total survival, death, and surrender payments in period k. Like Dk and Bk, these
values result by summation of the individual policyholder accounts.
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duration of the bonds. From the state space X all remaining variables in the model
can be derived. Since any term of the model is recursively defined, see Figure 6.11,
a state equation of the form Xk = r(Xk−1,Sk) can be formulated. It includes all
model equations from Figure 6.11 except Equations C1 and C2. The state space of
the capital market model is two-dimensional and given by

Sk = (sk, rk).

Integral Representation

Due to the large variety of path-dependencies, guarantees and option-like features
of insurance products and management rules in ALM models, closed-form repre-
sentations of statistical target figures, such as expected values, are in general not
available. Therefore, numerical methods have to be used for their simulation. In
this section, we rewrite the problem to simulate ALM models of type (6.18) as an
high-dimensional integration problem and apply deterministic quadrature methods
for its numerical computation.

A single simulation run X of the ALM model (6.18) corresponds to a particular
capital market scenario S. It can be analysed by looking, e.g., at the balance sheet
positions or at cross sections of the portfolio at certain times. Here, we focus on
stochastic simulations of the ALM model (6.18). To this end, a large number of
scenarios is generated and statistical performance figures such as expected values
are considered and evaluated. These measures are based on the most important
state variables, e.g. the equity or the investment return, and can be written in the
form

P = E[fP (X)] (6.19)

for some evaluation function fP : RM ·K → R. A simple example for such a function
fP evaluates the equity from the state vector XK at the time tK .

We next discuss the numerical computation of the performance figure P . Thereby,
we assume that the capital market scenarios S result from the discretization and
simulation of a system of stochastic Itô differential equations which is based on a
D-dimensional Brownian motion. Since K time steps are used in the discretization
this results in an (D ·K)-dimensional problem represented by

S = fC(W),

W = fB(Y),
(6.20)

where W = (W1, . . . ,WK) denotes the discrete path which contains the values
of the Brownian motion at times t1, . . . , tK and where Y denotes a vector which
contains D · K independent standard normally distributed random numbers. The
functions fC : RD·K → RD·K and fB : RD·K → RD·K represent the generation of the
capital market scenarios S and the path construction of the underlying Brownian
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Algorithm 6.1: Computation of the expected value (6.19) by (Q)MC meth-
ods.

for i = 1, 2, . . . , n do
1) Generate normally distributed random numbers Yi ∈ RD·K

2) Construct path of Brownian motion Wi=fB(Yi)

3) Generate capital market scenario Si=fC(Wi)

4) Evaluate ALM model equations Xi = fI(S
i)

5) Compute performance figure P i = fP (Xi)

Compute the average P ≈ 1
n

(P 1 + . . .+ P n).

motion W, respectively. For the specific ALM model from Section 6.4.1 the equation
S = fC(W) is explicitly given by Equations C1 and C2 in Figure 6.11. Possible
choices for the function fB are

fB(Y) = A ·Y.

The matrix A then describes the path construction. It can be arbitrary as long as
ATA = C, where C denotes the covariance matrix of the D-dimensional Brownian
motion. Specific choices are discussed in Section 5.1.

This way the performance figure P can be computed by numerical quadrature
methods. The main steps of a standard (Q)MC algorithm (see Section 3.1) using
n scenarios for the approximation of the expected value (6.19) are summarised in
Algorithm 6.1. Thereby, the function fI : RD·K → RM ·K denotes the explicit (i.e.
non-recursive) representation of the recursion (6.18) and thus contains all equations
of the ALM model.

Since the distribution of the vector X ∈ RM ·K , which contains the states of
the insurance company, depends on the normally distributed vector Y ∈ Rd with
d = D ·K, see (6.18) and (6.20), the performance figure (6.19) can be represented
as a d-dimensional integral

P =

∫
IRd
h(y)ϕd(y) dy =

∫
[0,1]d

f(x) dx. (6.21)

Here, the function h : Rd → R is explicitly given by h = fP ◦ fI ◦ fC ◦ fB, see also
Algorithm 6.1, and ϕd(y) = (2π)−d/2e−yTy/2 denotes the Gaussian density function.
The usual transformation with the cumulative normal distribution function Φ yields
the integrand f(x) = h(Φ−1(x1), . . . ,Φ−1(xd)).

We see that, for instance, the computation of a performance figure in an ALM
model with a two-factor capital market and a monthly discretization for a time
horizon of T = 10 years corresponds to D = 2 and K = 120 and thus results in a
240-dimensional integral.
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6.4.2 Numerical Results

We now apply MC simulation, QMC integration based on Sobol point sets and
dimension-adaptive SG integration based on the Gauss-Hermite rule (SGH) to com-
pute of the integral (6.21). The dimension-adaptive SG method SGP turned out to
be less efficient than SGH in most of our experiments. We here thus only show the
results for SGH and refer to this method by SG.

We in particular investigate the impact of the different path generating methods
on the dimension reduction of the integral and on the performance of the numerical
methods. Further numerical experiments using different parameter setups can be
found in the Appendix C.2. The impact of the parameters on the outcome of the
model is studied in detail in [52].

Setting

In our numerical experiments we consider the following sample portfolio.

Example 6.8 (Sample Portfolio). We consider a model portfolio with 50, 000
contracts which is represented by m = 500 equal-sized model points. The data of
each model point i = 1, . . . ,m, is generated according to the distribution assump-
tions that entry and exit age are normally distributed with mean 36 and 62 and
variance 10 and 4, respectively. In addition, the side conditions are respected that
entry and exit age are in intervals [15, 55] and [55, 70], respectively. The current age
at the start of the simulation is uniformly distributed between entry and exit age.
The probability that the contracts of a model point belong to female policyholders
is assumed to be 55%. The policyholders of model point i pay a constant monthly
premium P i which we generated uniformly distributed in the interval [50, 500]. For
simplicity, we assume that the policies have not received any bonus payments before
the start of the simulation, i.e., Bi

0 = 0 for all i = 1, . . . ,m. Furthermore, we as-
sume that the policyholders die according to the probabilities qik which we take from
the DAV 2004R mortality table. Surrender occurs according to the exponentially
distributed probabilities uik = 1− e−0.03∆t which are taken from [80].

Furthermore, we assume that all policyholders hold the following sample insur-
ance product.

Example 6.9 (Sample Product). We consider an endowment insurance with
death benefit and constant premium payments. All policyholders receive at maturity
their guaranteed benefit Di

k and the value of their bonus account Bi
k provided they

are still alive at this point in time. For the computation of Di
k, the guaranteed

interest z = 3% is used. In case of death prior to maturity, the sum of all premium
payments and the value of the bonus account is returned. In case of surrender, the
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policyholder receives ϑ(Di
k +Bi

k) with ϑ = 0.9.

We use the following parameters to specify the management model. The partic-
ipation ratio for the bonus declaration is chosen as ω = 25% corresponding to the
neutral scenario in [66]. The target reserve rate is assumed to be γ = 15%. The
capital allocation follows the CPPI strategy with β = 1. The bonds are traded with
duration τ = 1/12 years.

The parameters for the short rate and the stock prices are κ = 0.1, θ = 4%, σr =
5% and µ = 5%, σs = 10%. They are taken from [38] and [93], respectively, where
they have been estimated based on historical data for the German market. The
correlation is set to ρ = −0.1.

We assume that the two accounts Fk and Qk are merged into one single account,
also denoted by Qk, which is appropriate if the policyholders are also the owners
of the company, see [66], and which corresponds to the case α = 1. It is finally
assumed that the total initial reserves of the company are given by Q0 = γ0D0

with γ0 = 0.1. We always choose a period length of ∆t = 1/12 years, but consider
different numbers of periods in the simulation.

Effective Dimensions

We now demonstrate that the path generating method fB in (6.20) has a significant
influence on the effective dimension and on the performance of the deterministic
numerical methods.

We compare the component-wise application of the random walk (RW), the
Brownian bridge (BB), and the principal component construction (PCA) and, in
addition, the eigenvalue decomposition (EVD), see Section 5.1. The truncation di-
mensions dt which result from these four different constructions of the short interest
rates and stock prices are listed in Table 6.8 for different nominal dimensions d. Note
that we here show the classical effective dimensions (2.8) based on the (classical)
ANOVA decomposition.

Table 6.8. Truncation dimensions dt of the ALM problem and the conver-
gence rates of the QMC and SG method using different path constructions.

Truncation dimension dt QMC convergence rates SG convergence rates
d RW BB PCA EVD RW BB PCA EVD RW BB PCA EVD
16 16 3 10 9 0.6 0.8 0.8 0.8 2.1 2.0 1.6 1.4
32 32 7 12 12 0.6 0.8 0.8 0.9 1.5 1.6 1.3 1.8
64 64 8 16 15 0.5 0.8 0.9 0.8 0.1 0.5 0.6 0.3
128 126 11 22 20 0.5 0.8 0.9 0.9 0.1 0.1 0.2 0.2

One can see that the BB, PCA and EVD path constructions all lead to effective
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dimensions dt which are much smaller than the nominal dimensions d and are only
slightly increasing with increasing d. If instead the RW discretization is used then
the effective dimension is nearly equal to the nominal dimension. PCA and EVD
lead to almost the same results which is explained by the rather small correlation
ρ = −0.1 between the two underlying Brownian motions. The lowest effective
dimensions are achieved by the BB construction.

Further numerical computations show that the our ALM model problem is also
of very low effective dimension ds in the superposition sense independently of the
path construction. We show in Appendix C.2 that this property stays maintained
if we vary input parameters and model components. We conjecture that this prop-
erty might also hold for more complex ALM models in life insurance as the ones
considered here.

A partial explanation for the low effective dimensions and a common feature
of ALM problems is that the high nominal dimension mainly arises from the dis-
cretization of an underlying continuous time process. The corresponding integrals
can thus be written as an approximation to some infinite-dimensional integrals with
respect to the Wiener measure.18 In these cases, the integrands are contained in
some weighted function spaces whose weights are related to the eigenvalues of the
covariance operator of the Wiener measure. The eigenvalues, sorted by their mag-
nitude, are decaying proportional to j−2 (where j is the number of the eigenvalue)
which induces strong tractability as shown in [148], see also Appendix A, and may
explain the low effective truncation dimension.

We further show in Table 6.8 the impact of the path construction on the con-
vergence rates of the QMC and SG method. The convergence behaviour of the
MC method is not affected by the path construction since the total variance of
the problems remains unchanged and is thus not displayed. One can see that the
QMC method achieves higher convergence rates than MC if the paths are generated
with BB, PCA or EVD. In these cases the rates are almost identical ranging from
0.75 to 0.92 and show almost no dependence on the nominal dimension d. If the
random walk construction is used instead, then the convergence rates of the QMC
method deteriorate with increasing d and no longer outperform the MC rate of 0.5
for d ≥ 64. This effect illustrates the importance of the path generating method if
QMC methods are applied to ALM simulations. It even more significantly affects
other QMC points sets, like, e.g., the Halton sequence, whose points are in higher
dimensions not as uniformly distributed as the Sobol points. One can finally see that
the behaviour of the SG method is less clearly related to the truncation dimension
dt and to the path construction19 but is rather affected by the nominal dimension d.

18See, e.g., [105] and the references listed there.
19The reason are two different interacting effects. The BB, PCA and EVD constructions lead

to integrands of low truncation dimension but with kinks which are not parallel to the coordinate
axes. In the RW construction the integrands are of high truncation dimension but some of the



134 Chapter 6. Validation and Industrial Applications

While the SG method attains high convergence rates larger than one in the moder-
ately high dimensional case d ≤ 32, the rates deteriorate with increasing d and only
a very slow or even no convergence is observed in the higher dimensional cases.

Quadrature Error and Costs

We finally display in Figure 6.12 the convergence behaviour of the MC, QMC and
SG method for our benchmark model. There, the number of function evaluations is
shown which is required by each of the three numerical methods to obtain a fixed
accuracy. We here use the BB-path construction and consider the two cases K = 16
and K = 128 which correspond to integration problems with nominal dimensions
d = 32 and d = 256 and effective dimensions dt = 7 and dt = 15, respectively.

(a) d = 32 (b) d = 256

Figure 6.12. Convergence behaviour of the different numerical approaches
to compute the expected value (6.19) for the benchmark ALM model introduced in
Section 6.4.1.

One can see that the QMC method clearly outperforms MC simulation with a
convergence rate close to one and independent of the dimension. The convergence
of the QMC method is also less erratic than the convergence of the MC method.
If 1, 000 function evaluations are used, the QMC method is about ten times as
accurate as the MC method with the same number of scenarios. For higher accuracy
requirements, the advantage of the QMC method is even more pronounced. These
results can not be explained by the classical QMC convergence theory but by the
low effective dimension of the ALM problems, which we reported in Section C.2.

kinks are axis-parallel. SG profit from low truncation dimension but suffer from kinks which are
not axis-parallel.
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The SG method is the by far most efficient method for the moderate high-
dimensional setup (d = 32). With 1, 000 function evaluations already an relative
accuracy of 10−7 is achieved, which is thousand times as accurate than the result
of the QMC method. The performance of the SG method deteriorates with rising
dimensions, however, showing that the curse of dimension can not be completely
avoided in this application. For very high dimensions (d = 256), the SG method is no
longer competitive to QMC. This is explained by the fact that the arising integrands
have discontinuous first derivatives. The points of low regularity result from the
minimum operators, maximum operators or absolute values in the model equation
(C1), (M2) and (M4), see Figure 6.11. To ensure a satisfactory performance of the
SG method despite the low regularity, the smoothness must first be recovered by
suitable smoothing transformations (e.g., by a smoothing of maximum and minimum
operators or by a decomposition of the integration domain into domains where
the integrand is smooth). These approaches are discussed in Section 5.2. Their
application to ALM problems is interesting but not straightforward, and requires
further investigations, which we leave for future work. Several additional numerical
experiments which illustrate the impact of the regularity and of the dimension on
the performance of the numerical methods can be found in the Appendix C.2.

6.5 Summary and Discussion

We conclude this chapter with a short summary and with recommendations. In this
chapter, we applied different sparse grid methods to various application problems
from finance and insurance and compared their performance to the performance of
Monte Carlo and quasi-Monte Carlo integration.

Moreover, to gain insight into the importance of dimensions and to explain the
convergence behaviour of the numerical methods, we computed the effective dimen-
sions of our model problems in the classical case and in the anchored case. We saw
that most of our problems are of very low effective dimension, or can be transformed
to be of low effective dimension by coordinate transformations. Using the example
of the CMO problem, we moreover observed that the behaviour of the dimension-
adaptive methods, such as SGP and SGH, can not be explained by the effective
dimension in the classical case, but by the effective dimension in the anchored one.

In summary, we showed in correspondence with the theoretical results from
Chapter 3 and Chapter 4 that the efficient applicability of sparse grid methods
strongly depends on the two key properties

• high degree of smoothness

• low effective dimension

of the integrand. Remember that the sparse grid approach is very general. It
leaves the underlying univariate quadrature rule as well as the underlying index set
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open. Note that different choices of these components may considerably affect the
convergence behaviour of the sparse grid method. We give some comments and
guidelines based on the numerical experiments in this chapter.

• To profit from smoothness it is important to chose an underlying univariate
quadrature rule with a high polynomial degree of exactness such as a Gauss
rule. Moreover, the singular transformation to the unit cube should be avoided,
which is possible with help of the Gauss-Hermite or the Genz-Keister rule.

• For problems with higher nominal dimensions (roughly d > 10) it is essential to
lift the dependence of the method on the dimension through a careful choice of
the underlying index set. The lower the effective dimension, the smaller choices
of the index set are possible without deteriorating the accuracy of the method.
A general, automatic and efficient way to construct a suitable index set is given
by the dimension-adaptive approach from Gerstner and Griebel [49].

• In higher dimensions it is important to start with a one-point quadrature
rule on the lowest level (i.e. with m1 = 1, see Section 4.1.1) of the sparse
grid construction to reduce the increase of the number of grid points. It is
of advantage if the univariate sequence of quadrature rules is nested but this
property is not essential in our experience. The Gauss-Hermite sequence,
which provided the best results in most of our numerical experiments, is not
nested, for instance.

In summary, we recommend the use of the dimension-adaptive sparse grid method
based on the slowly increasing Gauss-Hermite sequence (SGH) for integrals with
Gaussian weight and integrands which are smooth and of low effective dimension.
Our numerical results in Section 6.1 with interest derivatives clearly showed the
superiority of this method to Monte Carlo, quasi-Monte Carlo and existing sparse
grid methods even in hundreds of dimensions.

Most application problems do unfortunately not satisfy the two conditions low
effective dimension and high degree of smoothness. While this situation has only a
moderate and a small impact on QMC and MC, respectively, it strongly deteriorates
the performance of sparse grid methods as we illustrated, e.g., in Section 6.2. Sparse
grid integration is therefore not suited as a black box method for problems from
finance and insurance.

Nevertheless, the results of this chapter demonstrate that this difficulty can be
overcome in several cases by coordinate transformations and domain decomposi-
tions. In particular the LT-construction from Imai and Tan [82] turned out to be
a very efficient coordinate transformation in combination with dimension-adaptive
methods. We showed that domain decompositions are beneficial for the problems to
price barrier options and performance-dependent options, compare Section 6.2 and
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Section 6.3. This way, we could exploit the underlying structure of the problems and
we believe that sparse grid methods can with the help of similar approaches also be
successfully applied to many further problems. However, none of the approaches is
applicable in a general and generic way to a wider class of problems. Low regularity
therefore remains the main challenge for the efficient applicability of sparse grids
methods in finance and insurance.

Here, the flexibility in the construction of the dimension-wise quadrature ap-
proach may help to design methods which can deal also with low regularity in an
automatic way. As a first step into this direction we defined mixed CUHRE/QMC
methods. We applied these methods in Section 6.2 to the problem to price an Asian
option. In combination with PCA or LT, the methods performed most efficient
in our tests and outperformed quasi-Monte Carlo by several orders of magnitude
despite the low regularity of the integrand. We believe that further improvements
of this approach are possible if modeling and discretization errors are balanced in
a more sophisticated way and if instead of the CUHRE method a different locally
adaptive method is employed which treats the integrals directly on IRd such that the
singular transformation to the unit cube is avoided.
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Chapter 7

Conclusions

In this thesis we dealt with the efficient numerical computation of high-dimensional
integrals as they commonly arise in applications from finance and insurance.

Starting with the anchored-ANOVA decomposition, we introduced the new no-
tion of effective dimension in the anchored case and showed that integration errors
can be bounded by these dimensions. Moreover, we provided numerical experi-
ments with applications from finance which indicate that the performance of sparse
grid methods can be better explained with the help of our new notion of effective
dimension than with the classical one.

Based on the anchored-ANOVA decomposition, we developed a novel general
class of methods for the computation of high-dimensional integrals, which we referred
to as dimension-wise quadrature methods. To construct our new methods, we first
truncated the anchored-ANOVA decomposition and then integrated the remaining
terms using appropriate low-dimensional quadrature rules. We discussed a priori
and a posteriori approaches for the truncation and derived bounds for the resulting
modeling and discretization errors. We showed that the presented error bounds
also apply to sparse grid methods as they can be regarded as special cases of our
general approach. Furthermore, we explained that sparse grid methods intertwine
the truncation of the anchored-ANOVA series and the subsequent discretization.
This way, modeling and discretization error can be balanced in an optimal way by
the choice of the underlying index set. We determined the optimal index sets for
integrands from weighted tensor products of Sobolev spaces and derived new cost
and error bounds for the respective sparse grid methods.

We considered sparse grid methods in more detail and presented two new vari-
ants based on the delayed Genz-Keister and on the slowly increasing Gauss-Hermite
sequence, respectively. Both methods can treat integrals with Gaussian weight di-
rectly on IRd. This way, singular transformations to the unit cube can be avoided
and the smoothness of the integrand is exploited in an optimal way. To further
improve the performance of dimension-adaptive sparse grid methods, we combined
these methods for the first time with the linear transformation method from Imai
and Tan. We provided several numerical experiments with problems from finance
which lead to smooth integrands. Our results show that the dimension-adaptive
sparse grid method based on the slowly increasing Gauss-Hermite sequence is most
efficient for these problems. It outperforms Monte Carlo, quasi-Monte Carlo and
existing sparse grid methods by several orders of magnitude even in hundreds of
dimensions.

139
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We also discussed several approaches to overcome the difficulty that many inte-
grands in finance are not smooth, which deteriorates the performance of sparse grid
methods enormously. To this end, we presented dimension-wise quadrature methods
which are not of sparse grid form, but use the CUHRE method for the integration
of the low-order anchored-ANOVA terms and quasi-Monte Carlo methods for the
higher-order ones. This way, we obtained mixed CUHRE/QMC methods which are
to our knowledge the first numerical quadrature methods which can profit from low
effective dimension by dimension-adaptivity and can at the same time deal with low
regularity by local adaptivity. A correct balancing of modeling and discretization
errors is then more difficult than with sparse grid methods. Numerical experiments
with the Asian option as a test function from finance with discontinuous first deriva-
tives demonstrate, however, that this disadvantage is more than compensated by the
benefits of the local adaptivity. We moreover studied the approach to decompose
the integration domain into subdomains where the integrand is smooth. This way,
we successfully regained the fast performance of sparse grid methods for some spe-
cial classes of problems from finance. We demonstrated the superiority of these
approaches to standard methods for the pricing problems of barrier options and
performance-dependent options.

Finally, we considered the simulation of stochastic asset-liability management
(ALM) models in life insurance, which is one of the most complex and sophisticated
problems in insurance. We here successfully applied, to our knowledge for the first
time, quasi-Monte Carlo and sparse grid methods to ALM simulation problems. To
this end, we first rewrote the ALM simulation problem as a multivariate integra-
tion problem, which we then solved with the help of our deterministic quadrature
methods in combination with adaptivity and dimension reduction techniques. We
provided numerical experiments based on a general ALM model framework, which
includes the most important features of life insurance product management and
most of the models previously proposed in the literature. Our results demonstrate
that the deterministic methods often converge faster and less erratic than Monte
Carlo integration even for complex models with many variables and model equa-
tions. Furthermore, we showed by an analysis of variance that ALM problems are
often of very low effective dimension, or can be transformed to be of low effective
dimension by coordinate transformations. This way, we also provided a theoretical
explanation for the success of the deterministic quadrature methods.

Of course, there are issues which could not be dealt with in this thesis and which
remain open. It would be interesting, for instance, to identify the function classes
for which the effective dimension in the anchored case coincides with the effective
dimension in the classical case. We indicated that the pricing problems of Asian
options or zero coupon bonds belong to such a function class, but not the CMO
problem. Note that we always used the center of the integration domain as anchor
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point. Of course also other choices are possible and it would be of interest to analyse
the impact of the anchor point in more detail.

Other possible areas for future research include improvements of our dimension-
wise quadrature methods, e.g., by a more sophisticated balancing of modeling and
discretization errors. For applications from finance, our mixed CUHRE/QMC meth-
ods can be further improved if instead of the CUHRE method a different locally
adaptive method is employed which treats the integrals directly on IRd such that the
singular transformation to the unit cube can be avoided. The local error estimator
of such a method could, e.g., be based on Genz-Keister points [45]. Note further
that our dimension-wise approach can not only be used for integration but also for
the representation and approximation of high-dimensional functions in the sense
of [140], which we also leave for future research.

With respect to sparse grid methods it is of particular importance that more
general and generic approaches are developed to overcome the difficulty that many
integrands in finance are not smooth. This issue remains the main challenge for the
efficient applicability of sparse grids methods in finance and insurance. Moreover,
it would be interesting to study the efficient computation of further quantities,
which can not be formulated as expected values or integrals, but which are also
important for financial institutions, such as quantiles. Quasi-Monte Carlo methods
can compute also quantiles very efficiently as shown by Papageorgiou and Paskov
[131] using the example of Value at Risk calculations. To our knowledge, it is not
yet known if similar or even better results can be obtained with sparse grid methods.

We finally remark that most of our methods and results are not restricted to
applications from finance and insurance, but can also be used in other application
areas such as chemistry or physics.
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Appendix A

Tractability of Integration

Tractability is a very active research area in information-based complexity which
investigates the dependence of an algorithm on the dimension of a problem. In
this chapter, we summarize known results on tractability of uniform integration
in the worst case setting.1 The results are mostly taken from the recent survey
articles [125,126]. We start in Section A.1 by introducing reproducing kernel Hilbert
spaces since for such spaces particularly many results can be derived. Then, the
worst case error and the notion of tractability is defined. In Section A.2, we relate
the worst case error in different function spaces to different discrepancy measures.
In Section A.3, we report bounds on the discrepancy. The classical bounds depend
on the number n of sample points and hold for a fixed dimension d, whereas the
more recent estimates, which have been obtained to study tractability, hold for
variable n and variable d. The discrepancy of a point set can be defined in many
different ways. Similarly, there are many different notions of tractability which can
be studied in many different function spaces. In the following, we mainly consider
L2-discrepancies. They are related to integration in the Sobolev spaces of functions
which have bounded mixed derivatives in the L2-norm.

A.1 Reproducing Kernel Hilbert Spaces

In this section, we introduce the basic definitions and tools which we are required
in the subsequent sections to summarize results on tractability of multivariate inte-
gration.

Reproducing kernel Hilbert spaces

The theory of reproducing kernel Hilbert spaces (RKHS) was introduced in [3] and
further investigated in [158]. It is widely used for the numerical analysis of algo-
rithms since it allows to define function spaces in a particularly concise and elegant
way by means of so-called reproducing kernel functions.

Let K : [0, 1]d× [0, 1]d → R be non-negative definite. Then, there exists a unique
Hilbert space H = H(K) with scalar product (·, ·)H such that

• K(·, t) ∈ H(K) for all t ∈ [0, 1]d

1Worst case setting means that the performance of the algorithm is measured by the worst case
error in a some function spaces. It is closely related to the average case setting which is the main
focus in [142]. Results on weighted (e.g. Gaussian ) integration can be found in, e.g., [27,74,124].
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• (f,K(·, t))H = f(t) for all t ∈ [0, 1]d and all f ∈ H(K).

The Hilbert space H(K) is called the reproducing kernel Hilbert space to the kernel
K. By Riesz’s representation theorem also the opposite direction is true: Let H be
a Hilbert space in which the point evaluation is a bounded linear functional, i.e.,
f(t) ≤ C‖f‖H for all f ∈ H and a constant C > 0. Then, there exists a unique
kernel K, such that H is its reproducing kernel Hilbert space. A Hilbert space
is thus a reproducing kernel Hilbert space if and only if the point evaluation is a
bounded linear functional in this space. Several properties of reproducing kernel
Hilbert spaces are known, see, e.g., [158]. For instance, the tensor products of
reproducing kernel Hilbert spaces are the reproducing kernel Hilbert spaces to the
tensor product kernels, i.e,

H(K1 ⊗K2) = H(K1)⊗H(K2)

for two dimensions. Many examples of reproducing kernel Hilbert spaces can be
found in [3, 142, 144, 158]. Note that L2([0, 1]d) is not a reproducing kernel Hilbert
space, since the point evaluation is not well-defined in this space.

Worst Case Errors

Let Qn denote a quadrature rule in d dimensions of the form (3.3) which uses n
points xi and weights wi. The worst case error of Qn in a Hilbert space H with
norm ‖ · ‖H is defined by its worst case performance over the unit ball in H, i.e.,

e(Qn) := sup
f∈H, ‖f‖H≤1

|If −Qnf |.

We will see that it is important to compare this quantity to the initial error

e(Q0) = sup
f∈H, ‖f‖H≤1

|If |

where we formally set Q0 = 0.
If we assume that H = H(K) is a reproducing kernel Hilbert space with kernel

K, then the worst case error can be represented as

e2(Qn) =

∫
[0,1]d×[0,1]d

K(s, t) dsdt− 2
n∑
i=1

wi

∫
[0,1]d

K(s,xi)ds +
n∑

i,j=1

wiwjK(xi,xj) (A.1)

see, e.g., [65]. The initial error is given by

e2(Q0) =

∫
[0,1]d×[0,1]d

K(s, t) dsdt.
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It is known that worst case settings in reproducing kernel Hilbert spaces cor-
respond to particular average case settings. Indeed, e(Qn) equals to the average
case error with respect to the Gaussian measure µ which has mean zero and the
covariance matrix K, i.e.,

e2(Qn) =

∫
C([0,1]d)

(If −Qnf)2µ(df), (A.2)

see [142] for details.
Moreover, by the Cauchy Schwarz inequality the general Koksma-Hlawka in-

equality
|If −Qnf | ≤ e(Qn)‖f‖H (A.3)

holds for all f ∈ H(K), see, e.g., [40]. Thereby, e(Qn) describes the quality of the
quadrature rule and ‖f‖H the regularity of the integrand. The inequality is sharp
in the sense that for each Qn there exist a function f ∈ H(K), f 6= 0, such that
equality holds.

Of particular interest is the problem to find points xi and weights wi such that
the quadrature rule Qn minimizes the worst case error e(Qn). The minimal worst
case error is defined as

e(n, d) := inf {e(Qn) : Qn as in (3.3)} .

It is often compared to the initial error e(0, d). To this end, let

n(ε, d) := min {n : e(n, d) ≤ ε e(0, d)}

denote the minimal number of points which are required by Qn to reduce the initial
error by a factor of ε. Bounds on e(n, d) in terms of n and d and on n(ε, d) in terms
of ε and d are known for many reproducing kernel Hilbert space H(K). We report
known estimates for these quantities for particular spaces H(K) in Section A.3.

It is known from complexity theory that the worst case error e(Qn) is minimized
by linear algorithms which use non-adaptive integration points. Nevertheless, for
the integration of a particular function f , a quadrature rule Qn may perform much
better as its worst case performance and adaption may lead to significantly better
results than non-adaption.

Tractability

Based on the behaviour of n(ε, d) the notion of tractability for the normalised error
criterion e(n, d)/e(0, d) is defined. It describes the dependence of an algorithm on
the dimension of a problem. Integration for a Hilbert space H is called tractable in
the class of quadrature rules (3.3) if there exist constants C, p, q ≥ 0, such that

n(ε, d) ≤ C dqε−p (A.4)
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for all d ∈ N and ε ∈ (0, 1), i.e., if n(ε, d) is polynomial in d and ε−1. Integration is
called strongly tractable if (A.4) holds with q = 0, i.e., if n(ε, d) is independent of d
and polynomial in ε−1.2 The smallest q and p for which (A.4) holds are called the d-
exponent and the ε-exponent of tractability. To illustrate the notion of tractability,
we consider some examples:

• The expected L2-error of the MC method (3.4) with n samples is

ε(n, d) = σ2(f)n−1/2

where σ2(f) is the variance of f . This shows that integration is MC-tractable
in the space H if and only if the variance σ2(f) is uniformly bounded for all d
and all f ∈ H. Then, the ε-exponent of tractability is p? = 2.

• Let H = Cr([0, 1]d) be the space of r-times continuously differentiable func-
tions. Then, there exist constants cr,d and Cr,d > 0 such that

cr,d ε
−d/r ≤ n(ε, d) ≤ Cr,d ε

−d/r,

which shows that integration is intractable in this space. If we assume that
r = d, then we get for fixed d that n(ε, d) = O(ε−1), i.e., n(ε, d) is polynomial
in ε−1. It is not known, though, if integration is tractable or intractable in
this space since Cr,d is exponentially large in d and cr,d is exponentially small
in d.

• Let Hr,...,r([0, 1]d) denote the Sobolev space of functions with r bounded mixed
derivatives. It is known that integration is intractable in this space for all
r ≥ 1. In weighted Sobolev spaces Hr,...,r

γ ([0, 1]d) integration is tractable if the
function space weights γ decay sufficiently fast. We discuss this example in
more detail in Section A.3.

A.2 Notions of Discrepancy

In this section, we relate the worst case error to the discrepancy of a point set. The
notion of discrepancy is much older than the notion of tractability and goes back to
the work of Weyl in 1916. It has been investigated extensively for the analysis of
QMC methods and pseudo-random number generators. It appears in the classical
Koksma–Hlawka inequality (see, e.g., [119]), which bounds the integration error of a

2Note that we defined tractability and strong tractability with respect to the normalized error
e(n, d)/e(0, d). Instead, one can use n(ε, d) := min {n : e(n, d) ≤ ε}. This leads to the notion of
tractability with respect to the absolute error. We only defined polynomially tractability. There are
further notions of tractability such as weak tractability or T -tractability. Polynomially tractability
or T -tractability implies weak tractability. The lack of weak tractability is called intractability,
see [126].
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QMC method by the product of the discrepancy of the QMC sample points and of the
variation of the integrand. The discrepancy describes the quality of the QMC points
in the sense that it measures the irregularity of the distribution of the point set in
the unit cube. Many different discrepancy measures (and corresponding notions of
variation) are possible and have been studied in the literature, see, e.g., [76,125,126].
Some are based on geometric properties of the point set whereas others are based
on the worst case errors for integration in certain function spaces.

Here, we start with a general notion of discrepancy which is taken from [40]
and which includes many discrepancy measures proposed in the literature as special
cases. The starting point of this definition is a function B(x, t) : [0, 1]d × D → R
where D ⊆ [0, 1]d̄ and d̄ is a positive integer.3 We assume that B(x, · ) ∈ L2(D) for
all x ∈ [0, 1]d and that x 7→ B(x, · ) is a continuous mapping. The local discrepancy
of the quadrature rule Qn with respect to the function B is defined as

g(t) =
n∑
i=1

wiB(xi, t)−
∫

[0,1]d
B(x, t)dx. (A.5)

Using the local discrepancy, the L2-discrepancy of the quadrature rule Qn with
respect to the function B is defined as

D(Qn) =

(∫
D

|g(t)|2dt
)1/2

. (A.6)

The function B induces a symmetric and non-negative definite kernel

K(x,y) =

∫
D

B(x, t)B(y, t)dt (A.7)

and thus also a reproducing kernel Hilbert space H(K), see Section A.1. If we
represent the square of the discrepancy D2(Qn) in terms of the kernel function, one
obtains that it equals to the right hand side of (A.1) and therefore

D(Qn) = e(Qn). (A.8)

The L2-discrepancy of Qn with function B can thus be interpreted as the worst case
error of Qn in the reproducing kernel Hilbert space with associated kernel (A.7) or,
see (A.2), as the average case error of Qn with respect to the Gaussian measure
which has mean zero and the covariance matrix (A.7).

Next, we define the weighted L2-discrepancy with respect to the function B. It in-
corporates ANOVA4-like projections of the quadrature points onto lower-dimensional

3In [40] the case D = [0, 1]d is considered. We use the more general case D ⊆ [0, 1]d̄ in order to
include also unanchored discrepancies in the definition (A.6).

4The analysis of variance (ANOVA) and related dimension-wise decompositions of a function
f : [0, 1]d → R are the topic of Chapter 2.
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faces of the unit cube. Weighted notions of discrepancy are used to analyse algo-
rithms in reproducing kernel Hilbert spaces where dimensions and/or interaction are
not of equal importance.

For a set u ⊆ {1, . . . , d} and a vector t ∈ [0, 1]d let tu denote the vector from
[0, 1]|u| containing the components of t whose indices are in u. Furthermore, let
dtu =

∏
j∈u dtj and (tu,1) the vector from [0, 1]d whose j-th component is tj if

j ∈ u and one otherwise. Let

γ = {γu : u ⊆ {1, . . . , d}} (A.9)

denote a given sequence of 2d-many weights γu ∈ [0, 1]. This definition of general
weights includes the following important special cases:

• Equal weights: γu = 1 for all u ⊆ {1, . . . , d}.

• Product weights: For a given sequence of weights γj ≥ 0, j = 1, . . . , d, product
weights are defined by

γu =
∏
j∈u

γj.

• Finite-order weights: For some integer ds independent of d, finite-order weights
satisfy γu = 0 if |u| > ds.

Based on the weights γu the weighted L2-discrepancy of the quadrature rule Qn with
respect to the function B is defined as

Dγ(Qn) :=

 ∑
u⊆{1,...,d}

γu

∫
[0,1]|u|

|g(tu,1)|2dtu

1/2

(A.10)

with the local discrepancy g as in (A.5). For the specific choice of weights γu = 0
if |u| < d and γ{1,...,d} = 1, the weighted L2-discrepancy (A.10) reduces to the
L2-discrepancy (A.6).

Next, we discuss specific choices of the function B, for which we obtain from (A.6)
the r-smooth L2-discrepancy [133] and the B-discrepancy [126]. Both discrepancy
measures include the L2-star discrepancy [119] as special case. For the same choices
of B, we get from (A.10) the generalised L2-star discrepancy [76] and the weighted
L2-star discrepancy [148]. Unless states otherwise, we setD = [0, 1]d in the following.

L2-star discrepancy

The L2-star discrepancy (see, e.g., [119]) is a very popular discrepancy measure
which has been investigated extensively for the analysis of QMC methods and
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pseudo-random number generators. It is obtained from (A.6) if we choose the func-
tion B as

B(x, t) = χ[0,t)(x), (A.11)

i.e., as the characteristic function which is one if x ∈ [0, t) and zero otherwise. Here,
[0, t) denotes the box

∏d
j=1[0, tj). From (A.5), we then get

g(t) =
n∑
i=1

wi χ[0,t)(x
i)− t1 · . . . · td.

For a quadrature rule Qn with equal weights wi = 1/n, the sum on the right hand
side equals to the number of points of Qn which lie in the box [0, t) which shows
that g is the classical local discrepancy of a point set. The L2-star discrepancy then
results from averaging over g(t) according to (A.6). It is a special case of the B-
discrepancy, of the r-smooth L2-discrepancy and of the weighted L2-star discrepancy
which we discuss below.

From (A.7) and (A.11) we obtain that

K(x,y) =
d∏
j=1

(1−max{xj, yj}).

This kernel corresponds to the reproducing kernel Hilbert space

H(K) = H1,...,1
0 ([0, 1]d) =

d⊗
j=1

H1
0 ([0, 1])

where H1
0 ([0, 1]) = {f ∈ H1([0, 1]) : f(1) = 0} is the Sobolev space of absolutely

continuous functions whose first derivatives belong to L2([0, 1]) anchored at one.
Because of (A.8), the L2-star discrepancy can be interpreted as the worst case error
e(Qn) in this particular tensor product space. From (A.1), one obtains by direct
integration the explicit formula

D2(Qn) =
1

3d
− 1

2d−1

n∑
i=1

wi

d∏
j=1

(1− (xij)
2)

+
n∑

i,k=1

wiwk

d∏
j=1

(1−max{xij, xkj})
(A.12)

for the L2-star discrepancy, which can be evaluated in O(dn2) operations. For mod-
erate d, faster algorithms are found in [72], which require O(n(log n)d) operations.
The initial L2-star discrepancy is given by D(Q0) = 3−d/2 and is thus exponentially
small in d. It corresponds to the initial error e(Q0) in the space H(K).
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If the L2-norm in the definition (A.6) is replaced by the Lp-norm with 1 ≤ p <
∞, then (A.6) with B as in (A.11) corresponds to the Lp-star discrepancy. The
Lp-star discrepancies are directly related to the worst case error of multivariate
integration in the spaces of absolutely continuous functions whose first derivatives
belong to Lq[(0, 1)] with 1/p + 1/q = 1, see [119]. If the L∞-norm is used in (A.6)
then one obtains the L∞-star discrepancy (also denoted by ?-discrepancy) which
corresponds to the variation in the sense of Hardy and Krause and which has the
initial discrepancy one.

B-discrepancy

The B-discrepancy as introduced in [126] is obtained from (A.6) if we choose

B(x, t) = χA(t)(x), (A.13)

where A(t) ⊆ [0, 1]d̄ denotes a measurable set.5 The L2-star discrepancy is a special
case of (A.13) which is obtained if we choose

A(t) =
d∏
j=1

[0, tj).

Note that the boxes [0, t), which are used in this definition, are anchored at the
origin (0, . . . , 0). For

A(t) =
d∏
j=1

[min{aj, tj},max{aj, tj})

we get a generalized notion of discrepancy; the discrepancy anchored at the point
a ∈ [0, 1]d. If A(t) denotes the box which has one corner at t and the opposite corner
at the vertex of the unit cube which is closed to t, then the centered discrepancy is
obtained which was studied in [76]. Finally, one can averages over all boxes in the
unit cube. For d̄ = 2d, D = {(x,y) ∈ [0, 1]2d : x ≤ y}, t = (x,y) and

A(t) =
d∏
j=1

[xj, yj)

one gets the L2-unanchored discrepancy (also called extreme discrepancy) which was
introduced in [116]. Further choices of the sets A(t) and D are possible and lead to

5In [126], the more general case A(t) ⊆ Rd̄ is considered. Then also the ball discrepancy is
included in the definition.
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further discrepancy measures such as the quadrant discrepancies6 anchored at the
point a ∈ [0, 1]d, see [126]. The B-discrepancies can of course also be studied in the
Lp-norm with 1 ≤ p ≤ ∞.

The kernel function and reproducing kernel Hilbert space which relate to the
discrepancy anchored at the point a are given by

K(x,y) =
d∏
j=1

1

2
(|xj − aj|+ |yj − aj| − |xj − yj|)

and

H(K) =
d⊗
j=1

H1
aj

([0, 1]),

where H1
aj

([0, 1]) = {f ∈ H1([0, 1]) : f(1 − aj) = 0} denotes the Sobolev space
anchored at 1− ai.

The kernel function and the reproducing kernel Hilbert space which correspond
to the unanchored discrepancy are given by

K(x,y) =
d∏
j=1

(min{xj, yj} − xjyj)

and

H(K) =
d⊗
j=1

F 1([0, 1]),

where F 1([0, 1]) = {f ∈ H1([0, 1]) : f(0) = f(1) = 0} denotes the Sobolev space of
periodic functions with boundary condition.

r-smooth L2-discrepancy

The B-discrepancies are related to integration problems with classes of functions
which have bounded mixed first derivatives. Such function spaces are widely used
to compare the quality of QMC methods. For the analysis of SG methods, spaces
of functions with higher regularity are more appropriate. To this end, we choose the
function

B(x, t) =
1

((r − 1)!)d
(t− x)r−1

+ , (A.14)

with the parameter r ≥ 1 and (t−x)r−1
+ =

∏d
i=1(max{ti−xi, 0})r. This choice of B

together with (A.6) corresponds to the r-smooth L2-discrepancy introduced in [133].
For r = 1, (A.14) simplifies to (A.11) and the L2-star discrepancy is obtained.

6The centered discrepancy is the quadrant discrepancy anchored at the point (1/2, . . . , 1/2).
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The kernel K(x,y) =
∫

[0,1]d
B(x, t)B(y, t)dt which corresponds to the r-smooth

L2-discrepancy is the reproducing kernel of the Sobolev space

H(K) = Hr,...,r
0 ([0, 1]d) =

d⊗
i=1

Hr
0([0, 1])

where Hr
0([0, 1]) is the space of functions whose (r− 1)-st derivatives are absolutely

continuous, which satisfy the boundary conditions f (j)(0) = 0 for j = 0, . . . , r−1 and
whose r-th derivative belongs to L2[(0, 1)]. By a modification of the kernel function
it is possible to remove the boundary conditions and to consider the Sobolev space
Hr,...,r([0, 1]d) with the norm ‖f‖2

H =
∑r−1

j=1(f (j)(0))2 + ‖f (r)‖2
2, see [125]. The r-

smooth L2-discrepancy of a SG algorithms in the space Hr,...,r
0 ([0, 1]d) can be derived

in only O(n(log n)2−d + d(log(n))4) operations, if the tensor product structure of
sparse grids is exploited, see [40].

Weighted L2-star discrepancy

If we consider the weighted L2-discrepancy (A.10) with B as in (A.11) and with
equal weights γu = 1, then the generalized L2-star discrepancy is obtained, which
was introduced in [76]. Although the square of the generalized L2-star discrepancy
is defined as the sum of 2d terms, see (A.10), it can be computed in only O(dn2)
operations using the explicit formula

D2
1(Qn) =

(
4

3

)d
− 2

n∑
i=1

wi

d∏
j=1

3− (xij)
2

2

+
n∑

i,k=1

wiwk

d∏
j=1

(
2−max{xij, ykj }

) (A.15)

which is proved in [76]. The initial generalized L2-star discrepancy is given by
D1(Q0) = (4/3)d/2. It is thus exponentially large in d.

Next, we consider product weights γu =
∏

j∈u γj. Then, one recovers from (A.10)
with B as in (A.11) the weighted L2-star discrepancy which was introduced in [148]
to analyse QMC methods in weighted Sobolev spaces. One obtains from (A.7) that

K(x,y) =
d∏
j=1

(
1 + γj(1−max{xij, ykj })

)
.

This kernel corresponds to the space

H(K) = Hr,...,r
γ ([0, 1]d) = {f ∈ Hr,...,r([0, 1]d) : ‖f‖γ,H <∞}
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with the norm

‖f‖2
γ,H =

∑
u⊆{1,...,d}

γ−1
u

∫
[0,1]|u|

∣∣∣∣ ∂|u|∂xu

f(xu,1)

∣∣∣∣2 dxu. (A.16)

For the weighted L2-star discrepancy, the explicit formula

D2
γ(Qn) =

d∏
j=1

(
1 +

γj
3

)
− 2

n∑
i=1

wi

d∏
j=1

(
1 +

γj
2

(1− (xij)
2)
)

+
n∑

i,k=1

wiwk

d∏
j=1

(
1 + γj(1−max{xij, ykj })

) (A.17)

holds, whose computation requires O(dn2) operations. It is derived in [86] for
quadrature rules with equal weights.

If we use general weights γu as in (A.9), then the associated kernel function is

K(x,y) =
∑

u⊆{1,...,d}

γuKu(x,y)

with

Ku(x,y) =
∏
j∈u

(
1 +

1

2
(|xj − aj|+ |yj − aj| − |xj − yj|)

)
.

The corresponding reproducing kernel Hilbert space H(K) is the sum of the spaces
H(Ku) for all u for which γu > 0 holds. The norm in this space is given by (A.16).
In general, the kernel K and the space H(K) are thus defined as the sum of 2d-many
terms. If some of the weights are zero (e.g. if finite-order weights are used), then
H(K) is not a tensor product space. The notion of weighted L2-discrepancies can
be further generalized by using the Lp-norm with 1 ≤ p ≤ ∞ in (A.10), see [148].

A.3 Tractability Results

In this section, we report bounds on the minimal discrepancies which can be achieved
by quadrature rules Qn of the form (3.3) with n points xi and weights wi. We
start with classical bounds which depend on the number n of sample points and
hold for a fixed dimension d. Then, we proceed with more recent estimates which
hold for variable n and variable d. Finally, we use the latter estimates to study
tractability in different function spaces. Thereby, we restrict ourselves to the L2-
star discrepancy (A.12) and to the weighted L2-star discrepancy (A.17). They are
related to integration in the Sobolev spaces of functions which have bounded mixed
derivatives in the L2-norm. For many other discrepancy measures similar estimates
are valid, see [125].
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Minimal L2-discrepancies

The minimal discrepancy is defined as

D(n, d) := inf {D(Qn) : Qn as in (3.3)} .

Because of (A.8), it equals to the minimal worst case error e(n, d) from Section
A.1. Next, we summarize known bounds on the minimal discrepancy D(n, d) and
compare it to the discrepancies D(Qn) which can be achieved by QMC and SG
algorithms.

We start with the L2-star discrepancy and the case that d is fixed. Then, it is
known that there exist constants cd > 0 and Cd > 0 such that

cd
(log n)(d−1)/2

n
≤ D(n, d) ≤ Cd

(log n)(d−1)/2

n

for all n ≥ 2.
QMC methods are based on low-discrepancy sequences. Such sequences satisfy

the bound

D(Qn) ≤ Cd
(log n)d

n

for all n ≥ 2. QMC methods are thus almost (up to a different power of the
logarithmic factor) optimal with respect to the asymptotic behaviour of their L2-
star discrepancy. Explicit bounds on the L2-star discrepancy of SG quadrature rules
are given in [163] which imply

D(Qn) ≤ Cd
(log n)3d/2

n

for all n ≥ 2. Hence, SG methods show a similar almost optimal asymptotic be-
haviour for fixed d. Recently, also methods Qn have been found based on random-
ized digital net constructions, which are optimal with respect to the asymptotic
behaviour of their L2-star discrepancy, see [126] and the references therein. Note
that the constants in the above estimates depend on d and may also be exponentially
large in d. In this case it is not clear if a good asymptotic behaviour of D(Qn) can
be utilized in practical computations.

Tractability of the absolute L2-star discrepancy

To investigate the impact of the dimension on the size of the constants, we next
consider the exponent p? of the L2-star discrepancy which is defined as the smallest
number p for which there exists a constant C > 0 such that

D(n, d) ≤ Cn−1/p
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for all n, d ∈ N.7 Note that here neither the constant C nor the exponent p depends
on d.

Next, we report lower and upper bound on p?. An inspection of the case d = 1,
shows that p? ≥ 1. For quadrature rules with equal weights it is proved in [108] that
p? ≥ 1.0699. For sparse grid methods the lower bound p? ≥ 2.1933 is found in [137].
In a non-constructive way it is shown in [164] that p? ≤ 1.4778. The best known
construction obtains p = 2.454, see [163], where sparse grid methods are used. In
conclusion, the results show that quadrature rules can be constructed whose L2-star
discrepancy depends at most polynomially on the dimension d. In view of (A.8) this
in particular implies that integration in the Sobolev space H1,...,1

0 ([0, 1]d) is strongly
tractable with respect to the absolute worst case error.

Intractability of the relative L2-star discrepancy

It is questionable, though, if the question for the exponent p? of the absolute L2-star
discrepancy is properly scaled. Since the initial L2-star discrepancy D(Q0) = 3−d/2

is exponentially small in d, it indicates that integration is getting easier with respect
to the dimension which is not in agreement with the behaviour of the numerical al-
gorithms. This problem is avoided if the relative (or normalised) L2-star discrepancy
D(Qn)/D(Q0) is considered. Because of (A.8), this quantity is directly related to
the notion of tractability for the normed worst case error, see Section A.1.

To describe the behaviour of the relative L2-star discrepancy, let

n(ε, d) := min {n : D(n, d)/D(0, d) ≤ ε}

denote the minimal number of points which are necessary to reduce the initial min-
imal discrepancy by a factor of ε. For quadrature methods with equal weights
wi = 1/n, it is known that(

9

8

)d
(1− ε2) ≤ n(ε, d) ≤

(
3

2

)d
ε−2.

For quadrature methods with arbitrary weights wi ∈ R, the asymptotic estimates

1.0628d(1 + o(1)) ≤ n(ε, d) ≤
(

3

2

)d
ε−2

can be proved, where the lower bound holds for all ε < 1, see [124]. Hence, in both
cases n(ε, d) increases exponentially fast in d. The normalised L2-star discrepancy

7Note that the exponent p? of the absolute L2-star discrepancy equals to the ε-exponent of
strong tractability for the absolute error criterion in the Sobolev space H1,...,1([0, 1]d) anchored at
one.
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is thus intractable. Moreover, integration in the Sobolev space H1,...,1
0 ([0, 1]d) is

intractable with respect to the normed worst case error. Similar results hold for the
Lp-star discrepancies with 1 ≤ p < ∞. The L∞-star discrepancy satisfies n(ε, d) ≤
Cdε−2, though. It is thus tractable and depends only linearly on the dimension.

Tractability of the weighted L2-star discrepancy

Next, we discuss tractability for the weighted L2-star discrepancy (A.17). It re-
lates to the tractability of integration in the Sobolev space H1,...,1([0, 1]d) without a
boundary condition. Its minimal discrepancy, its minimal number of points, which
are required to reduce the initial discrepancy by a factor of ε, and its exponent are
denoted by Dγ(n, d), nγ(ε, d) and p?γ , respectively.

For equal weights γu = 1 and for quadrature methods with equal weights wi =
1/n it holds that

1.0563d(1− ε2) ≤ n1(ε, d) ≤
(

9

8

)d
ε−2.

For arbitrary weights wi ∈ R it is known that

1.0463d(1 + o(1)) ≤ n1(ε, d) ≤
(

9

8

)d
ε−2

for all ε < 1, see [124]. The lower bounds show that the generalized L2-star discrep-
ancy (A.15) is exponentially large in d. Therefore, integration in the Sobolev space
H1,...,1([0, 1]d) is intractable.

Next, we consider finite-order weights γu. They imply strong tractability of
multivariate integration for the relative error and tractability for the absolute error
criterion, see [126]. Furthermore, it is found in [147] that the worst case errors
of Halton, Sobol and Niederreiter QMC points depend at most polynomial on the
dimension if finite-order weights are used. From these estimates one obtains that

nγ(ε, d) ≤ (Cd log d)ds(log ε−1 + log(Cd log d))ds ε−1,

where the exponent ds denotes the order of the finite-order weights. Similar results
are known for shifted lattice rules whose generating vector is tailored to the finite-
order weights using the component-by-component construction, see [147].

For product weights γu =
∏

j∈u γj and for quadrature rules with equal weights
wi = 1/n it is shown in [148] that

1.055sd (1− ε2) ≤ nγ(ε, d) ≤ (1.1836sd − 1) ε−2

for all ε < 1, where

sd =
d∑
j=1

γj



A.3. Tractability Results 157

is the sum of all weights. These estimates imply that nγ(ε, d) is uniformly bounded
in d and polynomially bounded in ε−1 if and only if

∞∑
j=1

γj <∞. (A.18)

In this case, we obtain that integration in the spaceH1,...,1
γ ([0, 1]d) is strongly tractable.

Furthermore, it holds that nγ(ε, d) is polynomially bounded in d and ε−1 if and only
if

lim sup
d→∞

(
d∑
j=1

γj
log d

)
<∞,

which is equivalent to the statement that integration in the space H1,...,1
γ ([0, 1]d) is

tractable.
The case of higher smoothness r > 1 is studied in [124] and leads to similar

conclusions: For equal weights one obtains that integration in the Sobolev space
Hr,...,r([0, 1]d) is intractable for all r ≥ 1. For product weights γj it is proved that if

∞∑
j=1

γj =∞

then integration in the weighted Sobolev spaceHr,...,r
γ ([0, 1]d) is not strongly tractable.

If

lim sup
d→∞

(
d∑
j=1

γj
log d

)
=∞

then integration in the weighted Sobolev space Hr,...,r
γ ([0, 1]d) is intractable. It is

not known if these conditions are also necessary for no strong tractability and in-
tractability if r > 1.

Finally, we consider the exponent p?γ of the weighted L2-star discrepancy with
product weights. It follows from the results in [148] for quadrature rules with equal
weights that the exponent p?γ of QMC quadrature exists if and only if (A.18) holds.

Then, p?γ ∈ [1, 2]. If
∑∞

j=1 γ
1/2
j < ∞, then the optimal exponent p?γ = 1 is achieved

with QMC methods. If the weights satisfy

γj = O(j−α)

with α > 1 then the exponent of SG quadrature is

p?γ = max

{
1,

2

α− 1

}
,
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see [138]. Sparse grids are thus optimal for α ≥ 3 with p?γ = 1. They far from
optimal for α ∈ (1, 2).

In summary, the results show that deterministic methods of the form (3.3) can
never completely avoid the curse of dimension in classical Sobolev spaces with
bounded mixed derivatives. For weighted Sobolev spaces, however, integration is
tractable if the function space weights decay sufficiently fast. In this case, tractabil-
ity holds in the class of QMC methods as well as in the class of SG quadrature
rules. Furthermore, the use of quadrature rules with arbitrary weights instead of
only positive weights do not help to break intractability with respect to the normal-
ized weighted L2-star discrepancy. It is known that this is not true in general. There
are spaces for with integration is tractable for the class of linear quadrature formu-
las whereas integration is intractable for the class of positive quadrature formulas,
see [125].



Appendix B

Performance-dependent Options

In this chapter, we provide more details on the valuation of performance-dependent
options as discussed in Section 6.3. To this end, we first recall the multivariate
Black-Scholes model which we use to describe the temporal development of the
involved asset prices. Then, we derive closed-form representations of the prices of
performance-dependent options for full and for reduced models. In the reduced
model case the formula is based on the orthant decomposition from Theorem 5.5.

B.1 Multidimensional Black-Scholes Model

For the valuation of derivatives in markets with several interacting assets, the mul-
tidimensional Black-Scholes model [70,91] has been used with great success. There,
it is assumed that the stock prices are driven by d ≤ n stochastic processes modeled
by the Black-Scholes-type system of stochastic partial differential equations (SDEs)

dSi(t) = Si(t)

(
µidt+

d∑
j=1

σijdWj(t)

)
(B.1)

for i = 1, . . . , n. Here, µi denotes the drift of the i-th stock, σ the n × d volatility
matrix of the stock price movements and Wj(t) the corresponding Wiener processes.
The matrix σσT is assumed to be positive definite. If d = n, we call the correspond-
ing model full. If d < n, the model is called reduced.

Let us remark here that for small benchmarks usually the full model with a
square volatility matrix σ is used. The entries of the volatility matrix are typi-
cally estimated from historical market data. However, for larger benchmarks, the
parameter estimation problem becomes more and more ill-conditioned resulting in
eigenvalues of σσT which are close to zero. Then, reduced models with d < n are of-
ten employed. If the benchmark consists of all assets in a stock index, this reduction
can be achieved, for instance, by grouping assets in the same area of business. The
matrix entry σij then reflects the correlation of stock i with business area j. Such a
grouping can often be obtained without much loss of information e.g. using Principal
Component Analysis (PCA), as was confirmed empirically by research from Meade
and Salkin [109] and Laloux et al. [99], see also [141]. For illustration, we estimated
the covariance matrix of the 30 stock prices in the German stock index DAX using
the daily data from 1. January 2004 – 31. December 2004. The results of the PCA
are shown in Figure B.1.

159
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(a) The eigenvalues plotted in a logarithmic
scale in decaying order with the largest eigen-
value scaled to one.

(b) Percentage of the total variance which is
explained by the first six eigenvectors.

Figure B.1. The eigenvalues of the covariance matrix of the German stock
index DAX.

One can see that the eigenvalues decay exponentially and that already five com-
ponents suffice to explain more than 95 percentage of the total variance.

By Itô’s formula, the explicit solution of the SDE (B.1) is given by

Si(T ) = Si(X) = Si(0) exp

(
µiT − σ̄i +

√
T

d∑
j=1

σijXj

)
(B.2)

for i = 1, . . . , n with

σ̄i :=
1

2

d∑
j=1

σ2
ij T

and X = (X1, . . . , Xd) being a N(0, I)-normally distributed random vector.

B.2 Pricing Formulas

We next derive closed-form formulas for the prices of performance-dependent options
for full and for reduced models.

Martingale approach

The multivariate Black-Scholes model induces a complete market which gives the
existence of a unique equivalent martingale measure. Using the usual Black-Scholes
assumptions, see, e.g., [91], the option price V (S1, 0) is given by the discounted
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expectation
V (S1, 0) = e−rT E[V (S, T )] (B.3)

of the payoff under the equivalent martingale measure. To this end, the drift µi is
replaced by the riskless interest rate r for each stock i. In the case of a performance-
dependent option with payoff (6.16) we get

V (S1, 0) = e−rT E

 ∑
R∈{+,−}n

aR(S1(T )−K)χR(S)

 .
Thereby, the expectation runs over all possible rankings R and the characteristic
function χR(S) is defined by

χR(S) =

{
1 if Rank(S) = R,
0 else.

Plugging in the density function ϕ(x) := ϕ0,I(x) of the N(0, I)-distributed random
vector X (note that S = S(X)), we get

V (S1, 0) = e−rT
∫
Rd

∑
R∈{+,−}n

aR(S1(T )−K)χR(S)ϕ(x) dx (B.4)

which will be the starting point of the following analysis.

Full model

In this section, we assume that the number of stochastic processes d equals the
number of assets n. We derive the price of a performance-dependent option as a
multivariate integral and show how this integral can be evaluated in terms of multi-
variate normal distributions. In the following, we nevertheless distinguish between
d and n in order to be able to reuse some of the results also for the reduced model
case.

To prove our main theorem we need the following two lemmas which relate the
payoff conditions to multivariate normal distributions Φ. To this end, recall that
the multivariate normal probability with limits b = (b1, . . . , bd), mean zero and
covariance matrix A is defined by

Φ(A,b) :=

∫ b1

−∞
. . .

∫ bd

−∞
ϕ0,A(x) dxd . . . dx1. (B.5)

Here, the multivariate Gaussian density with mean µ ∈ IRd and covariance matrix
A ∈ IRd×d is defined by

ϕµ,A(x) :=
1

(2π)d/2(det A)1/2
e−

1
2

(x−µ)TA−1(x−µ). (B.6)
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Lemma B.1. Let b,q ∈ IRd and A ∈ IRd×d with full rank, then∫
Ax≥b

eqTxϕ(x)dx = e
1
2
qTqΦ(AAT ,Aq− b).

We use
∫

Ax≥b
as abbreviation for the integration over the set {x∈ IRd :Ax≥b}.

Proof. A straightforward computation shows

eqTxϕ(x) = e
1
2
qTqϕq,I(x)

for all x ∈ IRd. Using the substitution x = A−1y + q we obtain∫
Ax≥b

eqTxϕ(x)dx = e
1
2
qTq

∫
Ax≥b

ϕq,I(x)dx

= e
1
2
qTq

∫
y≥b−Aq

ϕ0,AAT(y) dy

and thus the assertion.

For the second lemma, we first need to define a comparison relation ≥R of two
vectors x,y ∈ IRn with respect to the ranking R:

x ≥R y :⇔ Ri(xi − yi) ≥ 0 for 1 ≤ i ≤ n.

Thus, the comparison relation ≥R is the usual component-wise comparison where
the direction depends on the sign of the corresponding entry of the ranking vector
R.

Lemma B.2. We have Rank(S) = R exactly if AX ≥R b with

A :=
√
T


σ11 . . . σ1d

σ11 − σ21 . . . σ1d − σ2d

...
...

σ11 − σn1 . . . σ1d − σnd

 and b :=


ln K

S1(0)
− rT + σ̄1

σ̄1 − σ̄2

...

σ̄1 − σ̄n


where A ∈ IRn×d, X ∈ IRd and b ∈ IRn.

Proof. Using (B.2) we see that Rank1(S) = + is equivalent to

S1(T ) ≥ K ⇐⇒
√
T

d∑
j=1

σ1jXj ≥ ln
K

S1(0)
− rT + σ̄1
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which yields the first row of the system AX ≥R b. Moreover, for i = 2, . . . , n the
outperformance criterion Ranki(S) = + can be written as

S1(T )

S1(0)
≥ Si(T )

Si(0)
⇐⇒

√
T

d∑
j=1

(σ1j − σij)Xj ≥ σ̄1 − σ̄i

which yields rows 2 to n of the system.

Now we can state the following pricing formula which, in a slightly more special
setting, is originally due to Korn [96].

Theorem B.3. The price of a performance-dependent option with payoff (6.16) is
for the model (B.1) in the case d = n given by

V (S1, 0) =
∑

R∈{+,−}n
aR

(
S1(0) Φ(ARAT

R,−dR)− e−rT KΦ(ARAT
R,−bR)

)
where the vectors bR, dR and the matrix AR are defined by (bR)i := Ribi, (dR)i :=
Ridi and (AR)ij := RiAij. Thereby, A ∈ IRn×n and b ∈ IRn are defined as in
Lemma B.2 and the vector d ∈ IRn is defined by d := b−

√
TAσ1 with σT1 being the

first row of the volatility matrix σ.

Proof. The characteristic function χR(S) in the integral (B.4) can be eliminated
using Lemma B.2 and we get

V (S1, 0) = e−rT
∑

R∈{+,−}n
aR

∫
Ax≥Rb

(S1(T )−K)ϕ(x)dx. (B.7)

By (B.2), the integral term can be written as

S1(0)erT−σ̄1

∫
Ax≥Rb

e
√
TσT1 x ϕ(x)dx−K

∫
Ax≥Rb

ϕ(x)dx.

Application of Lemma B.1 with q =
√
Tσ1 shows that the first integral equals

e
1
2
qTq

∫
y≥Rb−Aq

ϕ0,AAT(y) dy = eσ̄1

∫
y≥dR

ϕ0,ARAT
R

(y) dy = eσ̄1Φ(ARAT
R,−dR).

By a further application of Lemma B.1 with q = 0 we obtain that the second integral
equals KΦ(ARAT

R,−bR) and thus the assertion holds.

Note that this decomposition not only provides the option price as a sum of nor-
mal distributions but can also be used to show which rankings appear with which
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probabilities under the model assumptions. Note further that the pricing formula in
Theorem B.3 allows a stable and efficient valuation of performance-dependent op-
tions in the case of moderate-sized benchmarks. For a large number n of benchmark
assets, one is, however, confronted with the following problems:

• In total, 2n rankings have to be considered and thus an with n exponentially
growing number of cumulative normal distributions have to be computed.

• For each normal distribution, an n-dimensional integration problem has to be
solved which gets increasingly more difficult with rising n.

• In larger benchmarks, stock prices are typically highly correlated. As a conse-
quence, some of the eigenvalues of the covariance matrix σ will be very small
which makes the integration problems ill-conditioned.

• There is a large number (n(n+1)/2) of free model parameters in the volatility
matrix which are difficult to estimate robustly for large n.

In conclusion, the pricing formula in Theorem B.3 can only be applied to small
benchmarks, although it is very useful in this case. In the next section, we aim to
derive a similar pricing formula for reduced models which incorporate less processes
than companies (d < n). This way, substantially fewer rankings have to be consid-
ered and much lower-dimensional integrals have to be computed which allows the
pricing of performance-dependent options even for large benchmarks.

Reduced model

In this section, we assume that the number of stochastic processes d is less than
the number of assets n. Lemma B.2 and thus representation (B.7) of the option
price remains also valid in the reduced model. Note, however, that A is now an
(n× d)-matrix which prevents the direct application of Lemma B.1. At this point,
a geometrical point of view is advantageous to illustrate the effect of performance
comparisons in the reduced model.

The matrix A and the vector b define a set of n hyperplanes in the space IRd.
The set Ax ≥R b thus describes a polyhedron P , which is bounded by up to n
hyperplanes in the d-dimensional space. Each polyhedron thereby corresponds to a
unique ranking R and hence to a particular bonus factor aR. The integrand (B.4)
therefore exhibits kinks or jumps along the boundary of each polyhedron, i.e., in the
set of points x which satisfy the linear system Ax = b.

By identifying all cells P in the hyperplane arrangement, as explained in Section
5.2.2, the representation (B.7) of the option price can be rewritten as

V (S1, 0) = e−rT
∑
P∈A

aR

∫
P

(S1(T )−K)ϕ(x)dx. (B.8)
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By integrating the payoff function over each cell of the hyperplane arrangement
separately, the option value can be determined as a sum over all integral values
weighted with the corresponding bonus factors. Note that only smooth integrands
appear in this approach. To circumvent the problem that the integration region is
now a general polyhedron we use the orthant decomposition of each polyhedral cell,
as explained in Section 5.2.2.

Now, we are able to give a pricing formula for performance-dependent options
also in the reduced model case.

Theorem B.4. The price of a performance-dependent option with payoff (6.16) is
for the model (B.1) in the case d ≤ n given by

V (S1, 0) =
∑
v∈V

cv
(
S1(0)Φ(AvAT

v ,−dv)− e−rTKΦ(AvAT
v ,−bv)

)
with Av,bv as in (5.13) and dv being the corresponding subvector of d. The weights
cv are given by

cv :=
∑

w∈V: v∈Pw

sv,waw. (B.9)

Proof. By Lemma 5.3 we see that the integral representation (B.8) is equivalent to
a summation over all vertices v ∈ V , i.e.

V (S1, 0) = e−rT
∑
v∈V

av

∫
Pv

(S1(T )−K)ϕ(x)dx.

By Lemma 5.4 we can decompose the polyhedron Pv into a signed sum of orthants
and obtain

V (S1, 0) = e−rT
∑
v∈V

av

∑
w∈Vv

sv,w

∫
Ow

(S1(T )−K)ϕ(x)dx.

By the second part of Lemma 5.4 we know that only cn,d different integrals appear
in the above sum. Rearranging the terms leads to

V (S1, 0) = e−rT
∑
v∈V

cv

∫
Ov

(S1(T )−K)ϕ(x)dx.

Since now the integration domains Ov are orthants, Lemma B.1 can be applied
exactly as in the proof of Theorem B.3 which finally implies the theorem.

To compute the weights cv, all cells Pw incident in v have to be traversed and
their ranking vectors have to be be determined. This can be done symbolically by
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Algorithm B.1: Valuation algorithm for performance-dependent options in
the reduced model case.

1) To compute the set of all intersection points V :
a) compute the set of vertices of the hyperplane arrangement
b) compute the bounding box of these vertices
c) compute the set of boundary intersection points

2) For each intersection point v ∈ V :
a) determine the submatrix Av and the subvectors dv and bv

b) evaluate the cumulative normal distributions Φ(AvAT
v ,−dv)

and Φ(AvAT
v ,−bv)

c) for all vertices w ∈ V whose polyhedra Pw contain v:
determine the reflection signs sv,w and bonus factors aw

d) compute the weight cv using formula (B.9)

3) Compute the price of the option as the weighted sum over all normal
distributions according to Theorem B.4

flipping the signs in the ranking vector of Pv which correspond to the hyperplanes
intersecting in v. By the non-degeneracy condition there are at most 2d cells adjacent
to each vertex which bounds the number of terms in the definition of cv. Moreover,
the number of vertices in V equals cn,d which yields the number of integrals which
have to be computed in the worst case. The structure of the valuation algorithm is
summarized in Algorithm B.1.

Example B.5. Consider the bonus scheme from Example 6.5 with n = 3, d = 2
and the hyperplane arrangement from Figure 5.6. Then, the bonus factors aj := avj

are given by

a1 = 0, a2 = 0, a3 = 0, a4 =
1

2
, a5 = 1, a6 = 0, a7 =

1

2
.

Following the steps in the proof of Theorem B.4 and employing the decomposition
from Example 5.6 we see that the price of this option satisfies

V (S1, 0) = e−rT
(

1

2
I(P4) + I(P5) +

1

2
I(P7)

)
= e−rT

(
−1

2
I(O1)− 1

2
I(O2) +

1

2
I(O5)− 1

2
I(O6) +

1

2
I(O7)

)
where we define

I(B) :=

∫
B

(S1(T )−K)ϕ(x)dx.
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Let us remark that, if the payoff function has a special structure, many weights
cv are zero in the formula from Theorem B.4. This way, the corresponding nor-
mal distributions do not have to be computed. This is, for example, true for the
outperformance option of Example 6.6.

In addition, if the vertex v is located on the artificial boundary, see for example
vertex v3 in Figure 5.6, the corresponding orthant is defined by k < d intersecting
hyperplanes. As a consequence, only a k-dimensional normal distribution instead
of a d-dimensional one has to be computed. Consider, for example, a bonus scheme
which is defined by the bonus factors

aR =


∑

{i:Ri=+}

āi if R1 = +

0 else

(B.10)

for some given āi ∈ IR, where the sum goes over all i ∈ {2, . . . , n} where Ri = +.
Example 6.5 is a special case of such a scheme with āi ≡ 1/(n − 1). The pricing
formula for such a scheme only contains vertices which are located on at least d− 2
boundary hyperplanes. Thus, independently of d and n, at most two-dimensional
normal distributions have to be evaluated. Moreover, the number of two-dimensional
normal distributions is bounded by n− 1. This behaviour is most easily understood
if the payoff function of the bonus scheme (B.10) is rewritten in the equivalent form

V (S, T ) =
n∑
i=2

āi (S1(T )−K)+ χ∆S1(T )≥∆Si(T )

which shows that only the two-dimensional joint distributions of the random vari-
ables S1(T ) and Si(T ) are required for i = 2, . . . , n. Note that these special cases
are automatically recognized by our algorithm and only the minimum number of
integrals with the corresponding minimal dimensions are computed.

An additional advantage of the formulas from Theorem B.3 and B.4 is given
by the fact that option price sensitivities (the Greek letters) can be obtained by
analytical differentiation. Their computation can thus be integrated in the valuation
algorithm without much additional effort.

Let us finally remark that we restricted ourselves to payoff profiles which depend
on relative performance comparisons to a specific benchmark. Payoff profiles which
include absolute performance criteria, e.g., performance comparisons with different
strike prices, can also be included. The corresponding valuation formulas then
include weighted sums of gap option prices.
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Appendix C

Asset-Liability Management in Life
Insurance

In this chapter, we provide more details on asset-liability management models in life
insurance. This application was considered in Section 6.4.

First, in Section C.1, we describe our general ALM model framework for the sim-
ulation of the future development of a life insurance company in more detail. Then,
we study in Section C.2 to which extent mathematical properties of the model, such
as its variances, its smoothness and its effective dimensions, relate to the convergence
behaviour of MC, QMC and SG methods.

C.1 Modeling

The scope of asset-liability management (ALM) is the responsible administration of
the assets and liabilities of insurance contracts. To this end, the insurance company
has to attain two goals simultaneously. On the one hand, the available capital has
to be invested profitably, usually in bonds but also, up to a certain percentage,
in stocks (asset management). On the other hand, the obligations against policy-
holders, which depend on the specific insurance policies, have to be met (liability
management).

Here, we focus on portfolios of participating (with-profit) policies which make
up a significant part of the life insurance market. The holder of such a policy
gets a fixed guaranteed interest and, in addition, a variable reversionary bonus
which is annually added to the policyholder’s account and allows the policyholder
to participate in the investment returns of the company. Thereby, the insurance
company has to declare in each year which part of the investment returns is given to
the policyholders as reversionary bonus, which part is saved in a reserve account for
future bonus payments and which part is kept by the shareholders of the company.
These management decisions depend on the financial situation of the company as
well as on strategic considerations and legal requirements. A maximisation of the
shareholders’ benefits has to be balanced with a competitive bonus declaration for
the policyholders. Moreover, the exposure of the company to financial, mortality
and surrender risks has to be taken into account. These problems, which easily
become quite complex due to the wide range of guarantees and option-like features
of insurance products and management rules, are investigated with the help of ALM
analyses. In this context, it is necessary to estimate the medium- and long-term

169
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development of all assets and liabilities of the company as well as the interactions
between them and to determine their sensitivity to the different types of risks. This
can either be achieved by the computation of particular scenarios (stress tests) which
are based on historical data, subjective expectations, and guidelines of regulatory
authorities or by a stochastic modeling and simulation of the market development,
the policyholder behaviour and all involved accounts, see, e.g., [84].

In recent years, the latter approach has attracted more and more attention as
it takes financial uncertainties more realistically into account than an analysis of
a small number of deterministically given scenarios. Additional importance arises
from the current need of insurance companies to move from an accounting based
on book values to a market-based, fair value accountancy standard as required by
Solvency II and the International Financial Reporting Standard (IFRS), see, e.g.,
[88]. This task can be achieved by performing stochastic simulations of ALM models
in a risk-neutral environment. Much effort has been spent on the development of
such models in the last years, see, e.g., [2, 4, 5, 8, 15, 24, 29, 60, 66, 67, 84, 93, 110,
112, 113, 155, 169] and the references therein. Here, most authors focus on the fair
valuation and contract design of unit-linked and participating life insurance policies.
Exceptions are [60,93] where the financial risks and returns of participating policies
are analysed under the real world probability measure. Most of the articles in
the existing literature (exceptions are [4, 5, 29, 113]) restrict themselves to single-
premium contracts and neglect mortality to simplify the presentation or to obtain
analytical solutions. However, in the presence of surrender, generalisations which
include periodic premiums and mortality risk are not always straightforward, see,
e.g., [6].

Here, we develop a general model framework for the ALM of life insurance prod-
ucts. The complexity of the model is chosen such that, on the one hand, most of
the models previously proposed in the literature and the most important features
of life insurance product management are included. As a consequence, closed-form
solutions will only be available in special cases. On the other hand, the model is sup-
posed to remain transparent and modular, and it should be possible to simulate the
model efficiently. Therefore, we use a discrete time framework in which all terms can
be derived easily and can be computed recursively. We use a stochastic two-factor
model to simulate the behaviour of the capital markets, while the development of
the biometric parameters is assumed to be deterministic. The asset allocation is
dynamic with the goal of keeping a certain percentage of stocks. The bonus dec-
laration mechanism is based on the reserve situation of the company as proposed
in [66]. Surrender is modelled and analysed using experience-based surrender tables.
Different life insurance product specifics are incorporated via premium, benefit and
surrender characteristics in a fairly general framework. In contrast to most of the
existing literature, where only the valuation or the development of a single policy is
considered, we model the development of a portfolio of policies using model points.
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Each model point corresponds to an individual policyholder account or to a pool of
similar policyholder accounts which can be used to reduce the computational com-
plexity, in particular in the case of very large insurance portfolios. Thus we can also
investigate effects which arise from the pooling of non-homogeneous contracts, as
in [69], where the pooling of two contracts is considered.

Overall Model Structure

We model all terms in discrete time. Here, we denote the start of the simulation
by time t = 0 and the end of the simulation by t = T (in years). The time interval
[0, T ] is decomposed into K periods [tk−1, tk] with tk = k∆t, k = 1, . . . , K and a
period length ∆t = T/K of one month.1

Balance Sheet Model The main focus of our model is on simulating the temporal
development of the most important balance sheet items for a portfolio of insurance
policies. In this section, we indicate the overall structure of the balance sheet. The
determination of the single balance sheet items and the modeling of their future
development is the subject of the following sections. The balance sheet items at
time tk, which are used in our model, are shown in Table 6.7.

The asset side consists of the market value Ck of the company’s assets at time
tk. On the liability side, the first item is the book value of the actuarial reserve Dk,
i.e., the guaranteed savings part of the policyholders after deduction of risk premi-
ums and administrative costs. The second item is the book value of the allocated
bonuses Bk which constitute the part of the surpluses that have been credited to
the policyholders via the profit participation. The free reserve Fk is a buffer account
for future bonus payments. It consists of surpluses which have not yet been cred-
ited to the individual policyholder accounts, and is used to smooth capital market
oscillations and to achieve a stable and low-volatile return participation of the poli-
cyholders. The last item, the equity or company account Qk, consists of the part of
the surpluses which is kept by the shareholders of the company and is defined by

Qk = Ck −Dk −Bk − Fk

such that the sum of the assets equals the sum of the liabilities. Similar to the
bonus reserve in [66], Qk is a hybrid determined as the difference between a market
value Ck and the three book values Dk, Bk and Fk. It may be interpreted as hidden
reserve of the company as discussed in [93].

Similar balance sheets have already been considered in the literature. The sum
Mk = Dk + Bk corresponds to the policy reserve in [66], the policyholders’ account
in [93] or to the customer account in [112]. We prefer to separate the two accounts

1Shorter or longer period lengths can be realised in a straightforward way.
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in order to thoroughly distinguish the effects of the bonus distribution from the
guaranteed benefits. The free reserve Fk and the company account Qk in our model
correspond to the bonus account (also termed undistributed reserve) and to the
insurer’s account in [26]. These two accounts are sometimes merged into one single
account. This, however, is only appropriate if the policyholders are also the owners
of the company, see [66].

Performance Figures Typically, stochastic simulations of the balance sheet items
are performed for which many different scenarios are generated. To analyse the
results of such a simulation then statistical measures are considered which result
from an averaging over all scenarios. As a risk measure we consider the path-
dependent cumulative probability of default

PDk = P
(

min
j=1,...,k

Qj < 0

)
.

In the next sections, we also take a look at the expected values of the balance
sheet items E[Ck], E[Bk], E[Fk] and E[Qk] for k = 1, . . . , K. These profit and risk
figures can easily be computed during the simulation. Similarly, it is straightforward
to include the computation of further performance measures like the variance, the
value-at-risk, the expected shortfall or the return on risk capital.

To determine the sensitivity of a given performance figure f to one of the model
parameters v, we compute the partial derivative f ′(v) = ∂f(v)/∂v by a finite differ-
ence approximation.2 For a better comparison, often also the relative change in f
to a small change in v is considered, which is given by f ′(v)/f(v). For v = r0, this
measure of sensitivities is also called effective duration or interest-rate elasticity. For
a discussion and further collection of useful risk measures we refer to [15,29,84].

To compute these performance figures and to model the future development of the
items of the balance sheet, the capital markets, the behaviour of the policyholders
and the decisions of the company’s management have to be taken into account. Here,
we use a stochastic capital market model, while all other model components (asset
model, management model and liability model) are assumed to be deterministic. We
already described the overall structure of the model in Section 6.4. Next, we consider
the different modules, see also Figure 6.10, in more detail.

Capital Market Model

We assume that the insurance company invests its capital either in fixed interest
assets, i.e., bonds, or in a variable return asset, i.e., a stock or a basket of stocks.

2There exist more recent approaches to calculate sensitivities using the Monte Carlo method,
like e.g. smoking adjoints [58], likelihood ratio methods [59] or Malliavin calculus [39], see also [41].
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The future development of the capital market is specified by a coupled system of two
stochastic differential equations, one for the short interest rate and one for the stock
price. This system is then discretized with a period length of ∆t. The simulation of
the model can either be performed under the objective probability measure which
is used for risk analyses, see, e.g., [60, 93], and which is the main focus of this
work, or under the risk-neutral probability measure, which is appropriate for the
fair valuation of embedded options or the identification of fair contract designs, see,
e.g., [4, 66,67,112].

Continuous Capital Market Model For the modeling of the interest rate envi-
ronment we use the Cox-Ingersoll-Ross (CIR) model [25]. The CIR model is an
one-factor mean-reversion model which specifies the dynamics of the short interest
rate r(t) at time t by the stochastic differential equation

dr(t) = κ(θ − r(t))dt+
√
r(t)σrdWr(t), (C.1)

where Wr(t) is a standard Brownian motion, θ > 0 denotes the mean reversion level,
κ > 0 denotes the reversion rate and σr ≥ 0 denotes the volatility of the short rate
dynamic. The CIR model has the following appealing properties: First, it produces
short interest rates which are always positive if the parameters fulfil the condition
κθ > σ2

r/2. In addition, assuming the absence of arbitrage and a market price λ(t, r)
of interest rate risk of the special form λ(t, r) = λ0

√
r(t) with a parameter λ0 ∈ R,

the short interest rate under the risk-neutral measure follows the same square-root
process as in (C.1) but with the parameters κ̂ = κ+ λ0σr and θ̂ = κθ/κ̂. Moreover,
in the CIR model the prices of arbitrage-free bonds can be derived in closed form,
see (C.9).

To model the stock price uncertainty, we assume that the stock price s(t) at time
t evolve according to a geometric Brownian motion

ds(t) = µs(t)dt+ σss(t)dWs(t), (C.2)

where µ ∈ R denotes the drift rate and σs ≥ 0 denotes the volatility of the stock
return.3 By Itô’s lemma, the explicit solution of this stochastic differential equation
is given by

s(t) = s(0) e(µ−σ2
s/2)t+σsWs(t). (C.3)

Usually, stock and bond returns are correlated. We thus assume that the two Brow-
nian motions satisfy dWs(t)dWr(t) = ρdt with a constant correlation coefficient
ρ ∈ [−1, 1].

The same two-factor model is used in [29]. In [15, 87], the Vasicek model is
employed instead of the CIR model. In [93], stocks and bonds are modelled via a

3For a simulation under the risk-neutral measure Q, the drift µ is replaced by r(t).
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coupled system of two geometric Brownian motions with different drift and volatil-
ity parameters. In [7, 145], more complex jump-diffusion processes and Markov-
modulated geometric Brownian motions are employed. The simulation of the latter
models is more involved, though. For more detail about these and other models
which can be used to simulate the bond and stock prices, we refer to [14,79,92].

The capital market parameters κ, θ, σr, µ, σs and ρ can be estimated on the basis
of historical data. This way, the objective dynamics of r(t) and s(t) are charac-
terised. The market price of risk parameter λ0 can then be identified by calibrating
the theoretical bond prices (C.9) to observed market prices, see, e.g., [38]. Alterna-
tively, the parameters κ̂, θ̂, σr and σs, which identify the risk neutral measure, can
be obtained by calibrating the models (C.1) and (C.2) to observed market prices,
see, e.g., [14, 29]. To derive the remaining parameters, estimates of µ, θ and ρ are
required. In a more complex model, the constant coefficients in (C.1) could be re-
placed by time-dependent parameter functions. Then, the model can be fitted to
the currently observed term structure of interest rates. However, the bond prices
can not be derived analytically anymore, but have to be computed by numerical
integration, see [14].

Discrete Capital Market Model In the discrete time case, the short interest rate
and the stock prices are defined by rk = r(tk) and sk = s(tk). For the solution of
equation (C.1), we use an Euler-Maruyama discretization4 with step size ∆t, which
yields

rk = rk−1 + κ(θ − rk−1)∆t+ σr
√
|rk−1|∆Wr,k, (C.4)

where ∆Wr,k = Wr(tk) −Wr(tk−1) denotes the increment of the Brownian motion
in the k-th period. For the stock prices, we use (C.3) and obtain

sk = sk−1 exp
{

(µ− σ2
s/2)∆t+ σs∆Ws,k

}
, (C.5)

with ∆Ws,k = Ws(tk)−Ws(tk−1). The increments ∆Wr,k and ∆Ws,k can be generated

by ∆Wr,k =
√

∆tξr,k and ∆Ws,k =
√

∆t (ρξr,k +
√

1− ρ2ξs,k) with two independent
N(0, 1)-distributed random variables ξr,k and ξs,k. Since

Cov(ρξr,k +
√

1− ρ2ξs,k, ξr,k) = ρ,

the correlation between the two Wiener processes Ws(t) and Wr(t) is respected. Note
that several alternative path generation methods exist that can be used instead
of this random walk construction and that these constructions often have better
properties with respect to the numerical simulation of the model as we have discussed
in Section 5.1. We will compare different approaches in Section C.2.

4An alternative to the Euler-Maruyama scheme, which is more time consuming but avoids time
discretization errors, is to sample from a noncentral chi-squared distribution, see [59]. The time
discretization error is not the focus of this article, though, and we refer to [23]. More information
on the numerical solution of stochastic differential equations can be found, e.g., in [59,94].
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Management Model

In this section, we first discuss the allocation of the available capital between stocks
and bonds, which determines the portfolio return rate pk in each period k. Then, the
bonus declaration mechanism is illustrated, which defines the interest rate zk which
is given to the policyholders. Finally, the shareholder participation is discussed.

Capital allocation We assume that the company rebalances its assets at the be-
ginning of each period. Thereby, the company aims to have a fixed portion β ∈ [0, 1]
of its assets invested in stocks, while the remaining capital is invested in zero coupon
bonds with a fixed duration of τ periods.5 The price of such a bond at time tk is
denoted by bk(τ). We assume that no bonds are sold before their maturity.

Let Pk be the premium income of the company at the beginning of period k
and let Ck−1 be the total capital at the end of the previous period. The part Nk of
Ck−1 + Pk which is available for a new investment at the beginning of period k is
then given by

Nk = Ck−1 + Pk −
τ−1∑
i=1

nk−i bk−1(τ−i),

where nj denotes the number of zero coupon bonds which were bought at the be-
ginning of period j. The capital Ak which is invested in stocks at the beginning of
period k is then determined by

Ak = max{min{Nk, β(Ck−1 + Pk)}, 0} (C.6)

so that the side conditions 0 ≤ Ak ≤ β(Ck−1 + Pk) are satisfied. The remaining
money Nk − Ak is used to buy nk = (Nk − Ak)/bk−1(τ) zero coupon bonds with
duration τ∆t. Note that due to long-term investments in bonds it may happen that
Nk < 0. This case of insufficient liquidity leads to nk < 0 and thus to a short selling
of bonds.

Note that we considered an alternative capital allocation strategy in Section 6.4.
There, we used

Ak = max{min{Nk, βFk−1}, 0} (C.7)

with β ∈ R+, so that the proportion of funds invested in stocks is linked to the
current amount of reserves. This implements a CPPI capital allocation strategy,
see [113]. A comparison of these two strategies can be found in [53].

Bonus declaration Due to regulatory requirements, companies can only guarantee
a relatively low interest rate to their policyholders. As a compensation, policyhold-
ers are usually entitled to additional variable bonus payments, which are periodically

5A slightly more general trading strategy is discussed in [29].
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credited to the policyholders’ accounts and allow the policyholders to participate in
the investment returns of the company (contribution principle). The exact specifi-
cation of this reversionary bonus varies from one insurance product to another and
often depends on the financial situation of the company as well as on strategical con-
siderations and legal requirements. The bonus is declared annually by the company,
with the goal to provide a low-volatile, stable and competitive return participation
(average interest principle). The company builds up reserves in years of good re-
turns, which are used to keep the bonus stable in years of low returns. Thereby,
a high and thus competitive declaration has to be balanced with a solid financial
strength of the company. Various mathematical models for the declaration mecha-
nism are discussed in the literature, see, e.g., [4, 8, 26, 60, 66, 93, 112]. In [60, 66, 93],
the bonus interest rate for the next year is already declared at the beginning of
this year (principle of advance declaration) as it is required in some countries, e.g.,
Germany, by regulation. The declaration is based on the current reserve rate γk−1

of the company, which is defined in our framework by the ratio of the free reserve
to the allocated liabilities, i.e.,

γk−1 =
Fk−1

Dk−1 +Bk−1

.

In this work, we follow the approach proposed in [66] where the annual interest rate
is defined by

ẑk = max{ẑ, ω(γk−1 − γ)}.

Here, ẑ denotes the annual guaranteed interest rate, γ ≥ 0 the target reserve rate of
the company and ω ∈ [0, 1] the distribution ratio or participation coefficient which
determines how fast excessive reserves are reduced. Typical values are ω ∈ [0.2, 0.3]
and γ ∈ [0.1, 0.4]. This way, a fixed fraction of the excessive reserve is, in accordance
with the average interest rate principle, distributed to the policyholders in case of a
satisfactorily large reserve. If the reserve rate γk−1 is below the target reserve rate
γ, only the guaranteed interest is paid, see [66] for details.

In our model, the bonus is declared annually, always at the beginning of the
first period of each year. In case of a monthly discretization, this bonus has to be
converted into a monthly interest

zk =

{
(1 + ẑk)

1/12 − 1 if k mod 12 = 1
zk−1 otherwise

which is given to the policyholders in each period k of this year.

Shareholder participation Excess returns pk− zk, conservative biometry and cost
assumptions as well as surrender fees lead to a surplus Gk in each period k which
has to be divided among the two accounts free reserve Fk and equity Qk. In case
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of a positive surplus, we assume that a fixed percentage α ∈ [0, 1] is saved in the
free reserve while the remaining part is added to the equity account. Here, a typical
assumption is a distribution according to the 90/10-rule which corresponds to the
case α = 0.9. If the surplus is negative, we assume that the required capital is taken
from the free reserve. If the free reserves do not suffice, the company account has
to cover the remaining deficit. The free reserve is then defined by

Fk = max{Fk−1 + min{Gk, αGk}, 0}. (C.8)

The exact specification of the surplus Gk and the development of the equity Qk is
derived in the liability model.

Asset Model

In this section, market prices of the different asset classes, the portfolio return rate
pk and the development of the capital Ck in the k-th time step of the model are
derived.

Bond prices In the CIR model, the price b(t, τ) at time t of a zero coupon bond
with maturity at time t+ τ∆t can be derived in closed form by

b(t, τ) = A(τ) e−B(τ) r(t) (C.9)

as an exponential affine function of the prevailing short interest rate r(t) with

A(τ) =

(
2he(κ̂+h)τ∆t/2

2h+ (κ̂+ h)(ehτ∆t − 1)

)2κθ/σ2
r

, B(τ) =
2(ehτ∆t − 1)

2h+ (κ̂+ h)(ehτ∆t − 1)
,

and h =
√
κ̂2 + 2σ2

r . In the discrete time case, we then define bk(τ) = b(tk, τ).

Portfolio return rate As a result of the capital allocation, at the beginning of
period k, the capital Ak from (C.6) is invested into stocks with value sk−1. In
addition, the company owns nk−i bonds with maturity τ − i and value bk−1(τ − i)
for each i = 1, . . . , τ − 1. The portfolio return rate pk in period k resulting from the
above allocation procedure is then determined by

pk =

(
∆Ak +

τ−1∑
i=0

nk−i ∆bk,i

)
/(Ck−1 + Pk), (C.10)

where ∆Ak = Ak(sk/sk−1 − 1) and ∆bk,i = bk(τ − i − 1) − bk−1(τ − i) denote the
changes of the market values of the stock and of the bond investments from the
beginning to the end of period k, respectively.
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Projection of the assets Let Pk denote the premium, which is obtained by the
company at the beginning of period k, and let Ek, Tk and Sk denote the survival,
the death, and the surrender payments to policyholders, which take place at the end
of period k. These cashflows are defined in the liability model. The capital Ck is
then recursively given by

Ck = (Ck−1 + Pk) (1 + pk)− Ek − Tk − Sk. (C.11)

Liability Model

In this section, we first discuss the modeling of the decrement of policies due to
mortality and surrender. Then, we derive the development of the policyholder’s
accounts and, finally, the development of all items on the liability side of the balance
sheet.

Decrement model For efficiency, the portfolio of all insurance contracts is often
represented by a reduced number m of model points. Each model point then repre-
sents a group of policies which are similar with respect to cash flows and technical
reserves, see, e.g., [84]. A model point then contains averaged values for all criteria
like the entry and maturity time, the age and the gender of the policyholders.

Let qik denote the probability that a policyholder of model point i dies in the k-th
period. In the following, we assume that this probability is given deterministically.
This is motivated by the fact that the systematic development of mortality can be
predicted much more accurately than, e.g., the development of the capital markets.
Moreover, unsystematic mortality risk can be controlled by means of portfolio di-
versification. The probabilities qik typically depend on the age, the year of birth
and the gender of the policyholder. They are collected and regularly updated by
the insurance companies. In the following, we always assume that mortality occurs
deterministically in accordance with the actuarial assumptions.

Most insurance policies include surrender options for the policyholder. Usually,
two different approaches for the valuation of these rights are distinguished, see [6].
Either surrender is considered as an exogenously determined event and modelled
like death using experience-based decrement tables, or it is assumed that surren-
der options are rationally exercised by policyholders. While the second approach is
extensively investigated in the literature, see, e.g., [2, 5, 66], only very few publica-
tions (see [80] and the references therein) investigate the effects of exogenously given
surrender decisions. In this work we assume that the probabilities uik that a policy-
holder of model point i surrenders in the k-th period are exogenously given. This is
the appropriate approach if surrender decisions are mainly driven by the personal
consumption plans of the policyholders, see, e.g., [29]. Here, a typical assumption
is that the probabilities uik only depend on the elapsed contract time. As in [80],
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we assume that the time t until surrender follows an exponential distribution with
exponent λ = 0.03. The probabilities of surrender are then given by

uik = 1− e−λ∆t. (C.12)

Since the probabilities of surrender are, in contrast to the probabilities of death,
not included into the actuarial premium calculation, the effects of surrender on the
success of the company significantly differ from the effects due to mortality.

Let δik denote the expected number of contracts in model point i at the end of
period k. This number evolves over time according to

δik =
(
1− qik − uik

)
δik−1. (C.13)

By pooling, all contracts of a model point expire at the same time. In the simulation
the model point is then simply dissolved. In this work, we do not consider the
evolution of new contracts during the simulation.

Insurance products Next, the guaranteed part and the bonus part of the insurance
products are specified. We always assume that premiums are paid at the beginning
of a period while benefits are paid at the end of the period. Furthermore, we assume
that all administrative costs are already included in the premium.

For each model point i = 1, . . . ,m, the guaranteed part of the insurance product
is defined by the specification of the following four characteristics:

• premium characteristic: (P i
1, . . . , P

i
K) where P i

k denotes the premium of an
insurance holder in model point i at the beginning of period k if he is still
alive at that time.

• survival benefit characteristic: (Ei,G
1 , . . . , Ei,G

K ) where Ei,G
k denotes the guar-

anteed payments to an insurance holder in model point i at the end of period
k if he survives period k.

• death benefit characteristic: (T i,G1 , . . . , T i,GK ) where T i,Gk denotes the guaranteed
payment to an insurance holder in model point i at the end of period k if he
dies in period k.

• surrender characteristic: (Si,G1 , . . . , Si,GK ) where Si,Gk denotes the guaranteed
payment to an insurance holder in model point i at the end of period k if he
surrenders in period k.

Here, K denotes the last period of the simulation. The characteristics, which
can be different for each model point, are usually derived from an insurance tariff
which contains the functional interrelations between premium, benefit, death and
surrender characteristics.



180 Appendix C. Asset-Liability Management in Life Insurance

Given the benefit characteristics of a product, the premiums are determined
by the equivalence principle which states that the present value of the death and
survival benefits must equal the present value of the premium at the start of the
insurance, see, e.g., [4, 168]. Here, the present values are computed according to a
given technical interest rate z using the traditional actuarial approach. Typically, z
is fixed at the start of the contract and constitutes an interest rate guarantee. We
assume here that z is equal for all contracts.

The actuarial reserve Di
k of an insurance contract at each point in time is defined

as the difference of the present value of the expected future death and survival
benefits and the present value of the expected future premiums which are calculated
according to the actuarial assumptions. An efficient computation of the actuarial
reserve Di

k of model point i at the end of period k is possible by using the recursion

Di
k =

1 + z

1− qik
(Di

k−1 + P i
k)− E

i,G
k −

qik
1− qik

T i,Gk . (C.14)

Multiplication by (1 − qik) shows that this equation results from the fact that the
expected actuarial reserve (1−qik)Di

k at the end of period k is given by the sum of the
actuarial reserve of the previous period and the premium after guaranteed interest
(1+z)(Di

k−1+P i
k) minus the expected survival and death benefits (1−qik)E

i,G
k +qikT

i,G
k ,

see, e.g., [4, 168].
In addition to the guaranteed benefits which depend on the technical interest

rate z, policyholders are also entitled to a bonus interest zk − z defined in Section
C.1, which depends on the development of the financial markets. Depending on the
specific insurance product, the allocated bonuses are distributed to each policyholder
either at maturity of his contract or earlier in case of death or surrender. Let Ei,B

k ,
T i,Bk and Si,Bk denote the bonus payments to an insurance holder in model point i at
the end of period k in case of survival, death and surrender, respectively. The sum
of all bonuses allocated to a policyholder of model point i at the end of period k is
collected in an individual bonus account Bi

k. Its value is recursively defined by

Bi
k =

1 + zk
1− qik

Bi
k−1 +

zk − z
1− qik

(Di
k−1 + P i

k)− E
i,B
k −

qik
1− qik

T i,Bk . (C.15)

Similar to above, this equation results from the fact that the expected value6 (1 −
qik)B

i
k of the bonus account at the end of period k is given by the sum of allocated

bonuses in the past after interest (1+zk)B
i
k−1 and the bonus payment (zk−z)(Di

k−1+

P i
k) of period k minus the expected bonus payments (1− qik)E

i,G
k + qikT

i,G
k in case of

survival and death, respectively.

6Note that Bik still depends on financial uncertainty. The expected value is only taken with
respect to the death probabilities.
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The total payments Ei
k, T

i
k and Sik to a policyholder of model point i at the end

of period k in case of survival, death and surrender are then given by

Ei
k = Ei,G

k + Ei,B
k , T ik = T i,Gk + T i,Bk and Sik = Si,Gk + Si,Bk . (C.16)

By adding (C.14) and (C.15), we see that the sum M i
k = Di

k + Bi
k of the two

policyholder accounts satisfies

M i
k =

1 + zk
1− qik

(M i
k−1 + P i

k)− Ei
k −

qik
1− qik

T ik (C.17)

which has a similar structure as the recursion for the actuarial reserve (C.14).

Example C.1 (Sample Characteristics). For illustration, we consider the en-
dowment insurance with death benefit and constant premium payments from Ex-
ample 6.9. The guaranteed components of the four characteristics are then defined
by

P i
k = P i, Ei,G

k = χk(d
i)Ei,G, T i,Gk = k P i and Si,Gk = ϑDi

k,

where χk(d
i) denotes the indicator function which is one if k = di and zero otherwise.

The bonus payments at the end of period k are given by

Ei,B
k = χk(d

i)Bi
k, T i,Bk = Bi

k and Si,Bk = ϑBi
k.

We used this sample characteristics in our numerical experiments in Section 6.4.2
and Section C.2.

Projection of the liabilities We next determine the cash flows which are occurring
to and from the policyholders in our model framework. The premium Pk, which is
obtained by the company at the beginning of period k, the survival payments Ek,
the death payments Tk, and the surrender payments Sk to policyholders, which take
place at the end of period k, are obtained by summation of the individual cash flows
(C.16), i.e.,

Pk =
m∑
i=1

δik−1 P
i
k, Ek =

m∑
i=1

δik E
i
k, Tk =

m∑
i=1

qikδ
i
k−1 T

i
k, Sk =

m∑
i=1

uikδ
i
k−1 S

i
k, (C.18)

where the numbers δik are given by (C.13) and where m denotes the number of model
points. The actuarial reserve Dk and the allocated bonus Bk are derived similarly
by summation of the individual policyholder accounts (C.14) and (C.15), i.e.,

Dk =
m∑
i=1

δikD
i
k and Bk =

m∑
i=1

δik B
i
k.
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From the equations (C.13), (C.17) and (C.18), we derive that the sum Mk =∑
i δ
i
kM

i
k = Dk +Bk is recursively given by

Mk = (1 + zk)(Mk−1 + Pk)− Ek − Tk − Sk/ϑ, (C.19)

where we assumed Si,Gk = ϑDi
k as in Example 6.9 and ϑ > 0.

To define the free reserve Fk, we next determine the gross surplus Gk in pe-
riod k. By the so-called contribution formula, the surplus is usually divided into
the components interest surplus, risk surplus, cost surplus and surrender surplus.
In our model only the interest surplus and the surrender surplus show up. The
interest surplus is given by the difference between the total capital market return
pk (Fk−1 +Mk−1 + Pk) on policyholder capital and the interest payments zk (Mk−1 + Pk)
to policyholders. The surrender surplus is given by Sk/ϑ− Sk. The gross surplus in
period k is thus obtained by

Gk = pk Fk−1 + (pk − zk) (Mk−1 + Pk) + (1/ϑ− 1)Sk.

The free reserve Fk is then derived using equation (C.8). Altogether, the company
account Qk is determined by

Qk = Ck −Dk −Bk − Fk. (C.20)

For convenience, the most important model parameters and equations are sum-
marised in Figure 6.11. Note that the cash flows and all balance sheet items are
expected values with respect to our deterministic mortality and surrender assump-
tions, but random numbers with respect to our stochastic capital market model.

Note that our model framework includes many of the models previously proposed
in the literature as special cases. If we consider only one policy with a single initial
payment P i at time t = 0, a term of K years, a yearly discretization and neglect
mortality and surrender, then the non-zero entries in the characteristics of this (pure
savings) product are defined by P i

1 = P i and Ei,G
K = (1+z)KP i. Moreover, by (C.19)

it holds that

M i
k = (1 + zk)M

i
k−1, M i

0 = P i for k = 1, . . . , K.

If we further replace (C.8) by Fk = Fk−1 + Gk, we exactly recover the model for
European-type participation contracts proposed in [66]. If we include mortality,
define the guaranteed death benefit by T i,Gk = (1+z)kP i and declare the policyholder
interest according to zk = max{ω pk, z}, we further recover the model for single
premium contracts proposed in [4]. The definition P i

k = P i for all k = 1, . . . , K
leads to the constant premium case in [5] but without the linear approximation for
the benefit adjustment.
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In [52, 53], we performed a sensitivity analysis of the presented ALM model to
show that the model captures the most important behaviour patterns of the bal-
ance sheet development of participating life insurance products, that it incorporates
effects such as solvency risks, liquidity risks and diversification effects and that it
can be used to analyse the impact of mortality and surrender and the influence of
different capital allocation strategies and of different bonus declaration mechanisms.

C.2 Numerical Analysis

In this section, we determine the variances, the smoothness and the effective di-
mensions of different parameter setups and show how these properties relate to the
convergence behaviour of MC, QMC and SG methods.

Parameter Setups

As remarked in Section 6.4.1, the efficiency of numerical integration methods de-
pends on several mathematical properties of the integrand, such as its variance, its
effective dimension and its smoothness, all of which are affected by the choice of
the input parameters of the ALM model. To investigate the numerical issues which
arise from different choices of parameters and the influence of different model com-
ponents, we consider the following simple basic setup 1 and several extensions 2 –
10. Thereby, in each of the extensions, either one additional feature is added to the
basic setup or one particular component of the basic setup is replaced by a different
one. In setup 11, we then consider the combination of several extensions. All setups
are special cases of the ALM model in Figure 6.11 and result from different choices
of the input parameters.

1) Basic model We start with a basic model which corresponds to the model from
[66] for European-type participation contracts with conservative bonus declaration.
Thereby, we consider a homogeneous portfolio of 50, 000 pure savings policies, which
are exactly represented by one model point. The policyholders of this model point
are assumed to be male and of age 42. Their contracts started at the age 36 and
mature at age 62. The policyholders pay a constant monthly premium P i

k = 50
and receive the guaranteed interest z = 3%. The assets follow Equation C2 (Figure
6.11) with parameters µ = 5% and σs = 10%. This case is represented in the model
framework by setting m = 1, β = 1, ω = 0 and qik ≡ uik ≡ 0. We assume that
the two accounts Fk and Qk are merged into one single account, also denoted by
Qk, which is appropriate if the policyholders are also the owners of the company,
see [66], and which corresponds to the case α = 1. We further assume that the
policies have not received any bonus payments before the start of the simulation,
i.e., Bi

0 = 0. It is finally assumed that the total initial reserves of the company are
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given by Q0 = γ0D0 with γ0 = 0.1. We always choose a period length of ∆t = 1/12
years, but consider different numbers of periods in the simulation.

2) Mortality and surrender As a representative for a more complex insurance
product, we consider the endowment insurance with death benefit and surrender
option from Example 6.9. We take the probabilities qik of death from the DAV
2004R mortality table and choose exponentially distributed surrender probabilities
uik = 1− e−0.03∆t.

3) Non-homogeneous portfolio We here consider a more complex representative
model portfolio with 500 different model points as described in Example 6.8.

4) High volatility To illustrate the effect of more volatile capital markets, we here
choose a volatility of σs = 30% instead of 10%.

5) and 6 Moderate and aggressive bonus payments To illustrate the effect of the
bonus declaration mechanism, we choose ω = 25% and ω = 100%, which correspond
to the neutral and aggressive scenarios in [66], respectively. The target reserve rate
is assumed to be γ = 15%.

7) Shareholder participation In this setup, we choose α = 0.9 which corresponds
to a distribution of the surplus between free reserve Fk and equity Qk according to
the 90/10-rule. We assume Q0 = 0 which means that the shareholders will not make
additional payments to the company to avoid a ruin. This way, E[QK ] serves as a
direct measure for the investment returns of the shareholders in the time interval
[0, tK ]. The initial reserves of the company are collected in the free reserve, i.e.,
F0 = 0.1D0.

8) CIR model In this setup, we assume that the capital is only invested into
bonds (i.e. β = 0) with a duration of τ = 1/12 years. The short interest rates
follow Equation C1 (Figure 6.11), where we use the parameters κ = 0.1, θ = 4%
and σr = 5%. The bond prices then result from Equation A1. The terms A(τ)
and B(τ) in this equation involve the market price of interest rate risk which we
assume to be λ0 = −5%. At time t0, we assume a uniform bond allocation, i.e.,
nj = (1− β)C0/

∑τ−1
i=0 b0(i) for j = 1− τ, . . . , 0.

9) CIR + GBM As a representative for a more complex capital market model,
we consider a correlated system of geometric Brownian motion and square-root
diffusion as in Equation C1 and C2 (Figure 6.11) with a correlation of ρ = −0.1.
The parameters of the geometric Brownian motion and of the CIR model are as
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above, but with σs = 5%. The capital allocation is performed with the target stock
ratio β = 10%.

10) CPPI strategy In this setup, we again use the correlated system of geometric
Brownian motion and square-root diffusion as in the previous setup. In contrast to
setup 9, we here replace β(Ck−1 + Pk) in Equation M2 by β Fk−1 with β = 1 such
that the proportion of funds invested in stocks is linked to the current amount of
reserves. This implements a CPPI (constant proportion portfolio insurance) capital
allocation strategy.

11) Compound model We finally consider the simulation of a more complex ALM
model which is obtained by a combination of the setups 1 – 3, 5 and 10. It models
the development of a portfolio of endowment insurances with death benefit and
incorporates the surrender of contracts, a reserve-dependent bonus declaration, a
dynamic asset allocation and a two-factor stochastic capital market. We used this
model also for our numerical experiments in Section 6.4.2.

Properties of the Model Components

Here, we merely consider results which have an impact on the performance of the
numerical methods. An detailed assessment of the influence of the different model
parameters on the expected value of the equity account and on other performance
figures such as, e.g., the default probabilities, can be found in [52].

We in particular focus on the distribution of the equity account QK at time tK
in the setups 1 – 11. We compute the expected value of QK and the variance of QK

for all setups by numerical integration on a very fine simulation grid with 220 QMC
sample points.7 The results for K = 16 and K = 128 time steps are shown in Table
C.1(a) and Table C.1(b), respectively.

One can see that the small volatility and the mean-reverting property of the
short interest rates in the CIR model result in rather small variances in the setups
8 – 11. The by far highest variance arises in the setup 4. A comparison of the
cases K = 16 and K = 128 shows that longer time horizons with more periods lead
to higher variances in all considered setups as expected. Setup 11 with K = 128
is of striking small variance as it combines several components which reduce the
variance of the basic setup such as the decrement of contracts (setup 2), the bonus
declaration (setup 5) and the CIR model (setup 10).

7For the setups 1 – 4 these values can also be derived analytically. For setup 1 and setup 4
one obtains E[QK ] =

∑K
k=1 P

i
k

(
exp{µ(K − k + 1)∆t} − P ik(1 + z)K−k+1

)
+ exp{µK∆t}C0− (1 +

z)KD0, which we used as a first test to validate the correctness of the implementation and the
accuracy of the numerical methods. The closed-form solution of a similar model but with bonus
payments can be found in [4].
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Note further that the integrands which correspond to the different setups not
only differ in their variance but are also contained in different smoothness classes.
This is indicated in Table C.1(a) and Table C.1(b) by the smoothness parameter r,
which denotes the maximum number of continuous derivatives of the equity QK as
function of the vector Y ∈ Rd. While QK is a C∞-smooth function in the setups
1–4, it is only a C0-smooth function in the other cases. This loss of regularity
results from the maximum and minimum operators in the management rules M2,
M4 and M5 for the capital allocation, the bonus declaration and the shareholder
participation and from the absolute value in the model equation C1.

In addition to the expected values and variances, we also computed the (classical)
truncation dimension (2.8) of the function QK for all setups. We thereby used the
Brownian bridge construction for the stock prices and short interest rates. The path
generation does not affect the distribution or smoothness of QK , but has a significant
influence on the truncation dimension as we already showed in Section 6.4.2. One
can see in Table C.1(a) and in Table C.1(b) that the truncation dimensions dt are in
all cases significantly smaller than the nominal dimensions d. In the setups 9 – 11
with K = 128, the nominal dimension is d = 256, while the truncation dimension is
only dt = 15. The highest truncation dimension appears in setup 6 where we have
d = 128 and dt = 23. In the setups 1 – 4 and 8, we observe that the truncation
dimension is almost independent of the nominal dimension. It is in all cases smaller
than eight and even only one in the setups 1 – 4. In setup 11 one can finally see
that the combination of several extensions does not necessarily increase the effective
dimension. It may even be smaller than the maximum effective dimension of the
individual components. This indicates that also significantly more complex ALM
models might be of low effective dimension.

Further numerical computations show that the considered ALM model problems
are also of very low effective dimension ds in the superposition sense. For d = 32 we
obtain for almost all setups that the integral (6.19) is ’nearly’ additive, i.e. ds = 1,
independent of d and independent of the chosen construction of the capital market
paths.8 Only for setup 7 we get the superposition ds = 2.

In summary, one can see that the use of the different model components leads to
comparably small changes in the expected value but it significantly affects the vari-
ance, the smoothness and the effective dimension of the function QK . Interestingly,
all of our model problems led to integrands which are of low effective dimension
in the superposition sense. They are also of rather low effective dimension in the
truncation sense if the BB path construction is used. We conjecture that these
properties might also hold for more complex ALM models in life insurance as the
ones considered here.

8It is more difficult and expensive to compute the superposition than the truncation dimension
so that we here have to restrict the maximum dimension to d = 32.
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Impact of the Model Components

As in Section 6.4.2, we now apply MC simulation, QMC integration based on Sobol
point sets and dimension-adaptive SG integration based on the Gauss-Hermite rule
to compute the integral (6.19) for all eleven setups.

To demonstrate the impact of the nominal dimension d on the performance of
the numerical methods, we again distinguish the two cases K = 16 and K = 128.
They correspond to integrals, where the nominal dimension ranges from 16 to 256,
see Table C.1(a) and Table C.1(b). Here, we again use the Brownian bridge path
construction for the stock prices and short interest rates to obtain low effective
dimensions avoiding the additional computational costs of the PCA and EVD con-
structions. To measure the accuracy of the three different numerical approaches we
proceeded as follows: We approximate the integral (6.19) with n = 1, 2, 4, . . . , 218

MC and QMC samples. As the considered SG method determines the required
number of nodes automatically, we here successively refine the approximation until
the grid size exceeded 218 nodes. By a comparison of these results with reference
solutions, the convergence rates and the error constants of the numerical methods
are then computed using a least square fit. To eliminate the influence of the initial
seed in the MC method, we show the average convergence rates and constants which
are obtained after twenty independent runs of the MC method with different seeds.

For the eleven setups and the three numerical methods, the convergence rates
and the constants are displayed in Table C.1(a) and Table C.1(b) for the cases
K = 16 and K = 128, respectively.

One can see that the MC method on average converges with the rate 1/2 inde-
pendently of the selection of the model parameters and of the number of time steps
while the average constant of the approximation significantly varies from setup to
setup. This is explained by the different variances σ of the considered setups and the
fact that the expected MC error is proportional to the ratio σ/

√
n. For instance,

the constants in the setups 8 – 11, which are of comparably small variance, are
considerably smaller than, e.g., the constant in setup 4 which is of particular high
variance. This means that also the number of scenarios, which have to be simulated
to obtain a prescribed precision, varies from setup to setup according to its variance.
Computational results not displayed in Table C.1(a) and Table C.1(b) show that
with 500 scenarios on average only one digit accuracy, i.e., a relative error of about
10%, can be expected.9 For two digits precision, about 20, 000 sample points are
required on average. Three digits accuracy are only attained in very few cases with
the considered maximum number of sample points of 218.

One can further see that the QMC method outperforms MC simulation in all
setups. It converges faster with a convergence rate of 0.7 – 0.8 and has also smaller

9Note that we show the average results of 20 independent MC runs. Single runs of the MC
method may be much better as well as much worse than the reported results.
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Table C.1. Expected values E, variances σ, smoothness parameters r, nom-
inal dimensions d and effective dimensions dt of the equity QK for the eleven setups.
Moreover, convergence rates (rate) and constants (const) of the MC, QMC and SG
method.

(a) K = 16 periods

no. 1 2 3 4 5 6 7 8 9 10 11
sample basic mort. non- high moder. aggr. share- CIR GBM+ CPPI comp.
setup setup surr. homog. vola. bonus bonus holder model CIR strat. model

E 5.9 6.1 6.6 5.9 5.8 5.6 5.8 4.6 4.9 4.7 5.7
σ 38 37 46 359 36 33 22 0.1 0.4 0.2 0.5
r ∞ ∞ ∞ ∞ 0 0 0 0 0 0 0
d 16 16 16 16 16 16 16 16 32 32 32
dt 1 1 1 1 1 1 4 7 7 9 7

MC method
rate 0.52 0.49 0.45 0.5 0.41 0.49 0.53 0.49 0.52 0.51 0.49

const 0.63 0.73 0.52 1.88 0.32 0.64 0.59 0.05 0.1 0.08 0.1

QMC method
rate 0.77 0.8 0.75 0.8 0.79 0.7 0.77 0.71 0.8 0.8 0.79

const 0.5 0.53 0.45 2.26 0.5 0.25 0.64 0.02 0.05 0.05 0.04

SG method
rate 3.01 2.33 2.37 2.26 0.35 -0.2 0.09 1.22 1.31 1.63 1.62

const 0.52 0.07 0.1 3.4 0.01 2e-3 0.11 2e-4 4e-3 0.01 0.01

(b) K = 128 periods

no. 1 2 3 4 5 6 7 8 9 10 11
sample basic mort. non- high moder. aggr. share- CIR GBM+ CPPI comp.
setup setup surr. homog. vola. bonus bonus holder model CIR strat. model

E 26.5 26 22.8 26.5 14.2 6.6 24.2 10.9 15.3 12.7 10.2
σ 1233 937 791 16627 596 437 490 155 138 160 17
r ∞ ∞ ∞ ∞ 0 0 0 0 0 0 0
d 128 128 128 128 128 128 128 128 256 256 256
dt 1 1 1 1 8 23 16 8 15 15 15

MC method
rate 0.5 0.51 0.53 0.48 0.51 0.51 0.5 0.48 0.48 0.52 0.49

const 0.79 0.84 1.01 2.45 1.42 2 0.57 0.64 0.42 0.7 0.22

QMC method
rate 0.81 0.8 0.71 0.69 0.81 0.71 0.72 0.73 0.75 0.75 0.78

const 0.93 0.82 0.6 3.08 0.6 0.93 0.54 0.5 0.44 0.44 0.14

SG method
rate 1.65 1.64 1.56 1.5 0.14 0.21 0.1 0.63 0.29 0.33 0.15

const 2.5 1.58 0.99 70.7 0.28 3.31 1.36 0.07 0.37 0.04 0.01
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or comparably large error constants. It is therefore also more accurate than MC
even for small sample sizes. On average it suffices to generate about 100 scenarios
for one digit, 1, 000 scenarios for two digits and 10, 000 scenarios for three digits
precision, i.e., low accuracy requirements of two digits precision are obtained by the
QMC method about twenty times faster than by MC simulation. For higher ac-
curacy requirements, the advantage of the QMC method is even more pronounced.
Furthermore, an inspection of the high-dimensional case K = 128 shows that the
QMC convergence rate as well as the constant of the approximation is almost in-
dependent of the dimension. These results can not be explained by the classical
QMC convergence theory but by the low effective dimension of the ALM problems.
We further see that the fast convergence behaviour of the QMC method is not af-
fected by the smoothness parameter r. This shows on the other hand that the QMC
method can hardly profit from setups with a high degree of smoothness r =∞.

One can finally see that the performance of the SG method varies significantly
from setup to setup. We observe that it is the by far most efficient method with
a very high convergence rate of up to three for all setups which lead to smooth
integrands with r = ∞. In the moderately high dimensional case K = 16 also
the constants (except in setup 4) are clearly lower than the constants of the MC
and QMC approximations. In these cases three digits precision (and more) are
already attained with only about 50 points if r =∞. The convergence rates and the
constants slightly deteriorate with rising dimensions, though, showing that the curse
of dimension can not be completely avoided by the SG method. Higher variances
seem not to affect the convergence rates of the SG method but lead to increasing
constants of the approximation, see, e.g., setup 4. With respect to the smoothness of
the integrands, we see that the low degree of regularity has a much more pronounced
impact on the SG convergence in the setups 5 – 7 than in the setups 8 – 11. This is
explained by the fact that in the setups 8 – 11 the arising maximum and minimum
operators in the model equation M2 and the absolute value in the model equation C1
only apply in very rare cases (e.g. if the discrete version of the CIR model produces
negative interest rates). In the setups 5 – 7, the non-smooth model equations are of
higher importance such that we consequently observe only a very slow or even no
convergence. To ensure a satisfactory performance of the SG method in these cases,
the smoothness must first be recovered by suitable smoothing transformations (e.g.,
by a smoothing of maximum and minimum operators or by a decomposition of the
integration domain into domains where the integrand is smooth).



190 Appendix C. Asset-Liability Management in Life Insurance



Bibliography

[1] P. Acworth, M. Broadie, and P. Glasserman, A comparison of some
Monte Carlo and quasi-Monte Carlo methods for option pricing, in Monte
Carlo and Quasi-Monte Carlo Methods in Scientific Computing, P. Hellekalek
and H. Niederreiter, eds., Springer, 1998, pp. 1–18.

[2] M. Albizzati and H. Geman, Interest rate risk management and valuation
of the surrender option in life insurance policies, J. Risk and Insurance, 61
(1994), pp. 616–637.

[3] N. Aronzaijn, Theory of reproducing kernels, Trans. Amer. Math. Soc., 68
(1950), pp. 337–404.

[4] A. Bacinello, Fair pricing of life insurance participating contracts with a
minimum interest rate guaranteed, Astin Bulletin, 31 (2001), pp. 275–297.

[5] , Pricing guaranteed life insurance participating policies with annual pre-
miums and surrender option, Astin Bulletin, 7 (2003), pp. 1–17.

[6] , Modelling the surrender conditions in equity-linked life insurance, Insur-
ance: Mathematics and Economics, 37 (2005), pp. 270–296.
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