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1 Introduction

The integration of multivariate functions plays a fundamental role in numerical mathematics
with applications in all scientific fields where expectations and probabilities need to be com-
puted. One example is engineering, where relevant parameters that describe a system are often
not given as deterministic values, but due to measurement errors or even an intrinsic non-
observability only as a probabilistic description. In such situations, it is important to quantify
how the uncertainty of the input parameters relates to an uncertainty of the output, e.g. the
solution of a differential equation. Further examples include physics [17], computational finance
[73], machine learning [127] and also econometrics [75], where many relevant quantities are de-
scribed as expectations of certain random variables. Unfortunately, these integrals can seldom
be computed in closed-form, but rather require a numerical approximation based on evaluations
of the integrand.
Classically, the integral ∫

Ω
f(x) dx (1.1)

of a function f over a domain Ω ⊂ R represents the (signed) area that is enclosed between
Ω on the x-axis and the graph f(x). For two-dimensional Ω ⊂ R2 the integral represents the
volume between Ω in the (x1, x2)-plane and f(x1, x2). In reference to these areas and volumes
the numerical approximation of integrals is often called quadrature or cubature. To this end,
one takes evaluations of f at N points and constructs algorithms that approximate (1.1) with
as much accuracy as possible. The selection of proper quadrature points and the construction
of efficient algorithms is the main topic of this thesis.

Numerical integration

Mathematically speaking, we deal with the approximation of the integral LΩ(f) of some function
f : Ω → R over a given d-dimensional domain Ω ⊆ Rd with respect to a probability density
function ω : Ω→ R+ by a cubature rule QXN ,w, i.e.

LΩ(f) :=

∫
Ω
f(x)ω(x) dx ≈

N∑
i=1

wif(ξ(i)) =: QXN ,w(f). (1.2)

Here, QXN ,w uses N function values of f at the integration pointsXN := (ξ(1), . . . , ξ(N)) ⊂ Rd
which are linearly combined with the vector of integration weights w = (w1, . . . , wN ). The
choice of good integration points and weights depends on certain assumptions that can be
imposed on the set of possible integrands f as well as on Ω and ω.
The fact that the left-hand-side of (1.2) represents the expectation of f(x) motivates the so-
called Monte Carlo (MC) approach. Here, for square-integrable functions, the average over
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2 1 Introduction

samples drawn identically and independently with respect to the distribution generated by ω
converges to the expectation of f(x) at a dimension-independent rate of O(N−1/2).
The assumption that the integrand f is in L2(Ω, ω) is rather weak because this includes even
functions with infinitely many jumps. This makes MC-based approaches very robust in practical
applications because parameters or models can be changed without giving much thought to
regularity requirements or dimension dependence of the integration method. However, this
robustness comes at the price of a rather slow convergence rate O(N−1/2), which is not only
independent of the dimensionality but also independent of the smoothness of the integrand.
Therefore, it is desirable to construct algorithms that can achieve higher convergence rates by
exploiting additional structure or regularity of the integrand.
For example, in the univariate setting d = 1 one could consider integrands which have their first
s derivatives bounded in L2. Then, quadrature rules using equidistant points can be constructed
that converge with the rate N−s, cf. [46]. An example for s = 2 is the compound trapezoidal
rule, which is related to a piecewise linear approximation of the integrand and achieves the
convergence rate N−2.
For a long time it was not clear how this can be generalized to multiple dimensions d ≥ 2.
If one assumes that ∂kf ∈ L2 for |k|1 ≤ s, the d-fold tensor product of suitable univariate
quadrature rules can only achieve a rate of N−s/d, which for d > 2s is worse than Monte Carlo.
This phenomenon of a convergence rate that deteriorates exponentially with the dimension d
is often referred to as the curse of dimensionality, which was coined by Bellmann in 1961 [15].
If one aims to break the curse of dimensionality, it is necessary to impose further regularity
assumptions on the integrand. In the 20th century it was discovered [98, 142] that it is possible to
construct integration algorithms which achieve convergence of order N−s log(N)q with q ≥ d−1

2
for integrands that fulfill ‖∂kf‖L2 <∞ for all |k|∞ ≤ s ∈ N. Functions that fulfill this condition
belong to Sobolev spaces with bounded mixed derivatives denoted by Hs

mix.
Of course there are many other regularity assumptions that allow for quickly decaying integra-
tion errors, even in high dimensions. For example, if the integrand comes from a certain tensor
product of analytic function spaces, it is possible to obtain convergence rates that decay even
faster than any algebraic rate N−s, s ∈ R+ independently of the dimension [80, Cor. 5.9].

Optimal cubature weights in reproducing kernel Hilbert spaces

A convenient way to impose regularity or structure onto the integrand f : Ω → R is the
assumption that f belongs to a Hilbert space that has a reproducing kernel K : Ω × Ω → R.
These so-called reproducing kernel Hilbert spaces (RKHS) HK are generated by their respective
kernelK : Ω×Ω→ R and many properties ofK are inherited by the elements ofHK . Moreover,
in a RKHS it is possible to evaluate the worst-case error of QXN ,w

wce(QXN ,w,HK) := sup
‖f‖HK≤1

∣∣∣∣∣LΩ(f)−
N∑
i=1

wif(ξ(i))

∣∣∣∣∣ (1.3)

in closed-form. This is useful for comparing the performance of different cubature rules in HK .
Another reason why the worst-case error (1.3) is an interesting object, is its relationship to
Gaussian processes. If one assumes the prior knowledge that the integrand f is an instance of a
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3

Gaussian process with covariance kernel K, the worst-case error wce(QXN ,w,HK) corresponds
to the variance of the posterior distribution that is conditioned on the measurements of f at
XN . This perspective on numerical integration is called Bayesian integration [29, 120, 128].
The explicit formula for (1.3) allows to determine optimal cubature weights w̌(XN ) that still
depend on a given set of cubature points XN ⊂ Ω. These optimal weights yield an optimal
linear algorithm Q̌XN

(f) =
∑N

i=1 w̌i(XN )f(ξ(i)) that achieves the worst-case error

wce(Q̌XN
,HK) = inf

w∈RN
wce(QXN ,w,HK), (1.4)

which only depends on the point set XN .
The first major contribution of this thesis is the investigation to which extent optimal weights
can improve the convergence rate of classical Monte Carlo points. To this end, we compute
optimal cubature weights w̌(XN ) for integration in Hs

mix, where XN is a random set of uni-
formly distributed points in [0, 1]d. We observe that (1.4) decays with high probability like
N−s log(N)q, where q > d−1

2 seems to be dependent on the smoothness s. Here, the main rate
of N−s is known to be the best possible. On the theoretical side, we give upper bounds for
(1.4) in Hs

mix for random XN . For this purpose, we use logarithmic oversampling to obtain a
stable cubature rule with sufficiently high trigonometric degree of exactness to show that (1.4)
is bounded with high probability by N−s+1/2 log(N)sd−1/2.
Even though these results are promising, one should note that the computation of the optimal
weights in (1.4) requires the inversion of a denseN×N -matrix. The resultingO(N3)-complexity
is a problem especially in high-dimensions where a large number of integration points is often
required. Moreover, it is questionable whether random points with optimal weights enjoy close-
to-optimal convergence rates in other RKHS as well. At least for analytic functions this must
be denied, because the Runge phenomenon requires either super-linear oversampling [39, 106],
which would degrade an exponential convergence rate to sub-exponential, or a careful selection
of the quadrature points.
In order to deal with both, good integration points and also the reduction of the computational
cost for optimal integration weights, we will follow the sparse grid paradigm [32, 142, 161].
Here, the problem of constructing an algorithm for multivariate integration is reduced to the
construction of a good univariate algorithm. To this end, we first consider the problem of
univariate quadrature in more detail.

Optimal quadrature points for univariate integration

The problem of computing a set of n univariate quadrature points Xn = {ξ1, . . . , ξn} that
minimizes the worst-case error can be rephrased as a nonlinear approximation problem, i.e.

inf
Xn∈Ωn

inf
w∈Rn

∥∥`Ω(·)−
n∑
i=1

wiK(·, ξi)
∥∥
HK , (1.5)

where `Ω is the Riesz-representer of LΩ. If all the points are allowed to vary, this is a best n-
term approximation problem from the dictionary DK(Ω) = {K(·, x) : x ∈ Ω}. In the univariate
setting, (1.5) can be solved using results on total positivity. To this end, we characterize optimal
quadrature rules and discuss their existence in Section 5.1. Moreover, we develop an efficient
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4 1 Introduction

and stable algorithm for the computation of optimal quadrature points in arbitrary RKHS
whose kernel K is extended totally positive, cf. Def. 5.1.
However, for the aforementioned sparse grid paradigm it is advantageous if the quadrature
points are nested, i.e. there exists a sequence (nj)j∈N such that Xnj ⊂ Xnj+1 . Unfortunately,
this is not the case for the optimal quadrature points. Therefore, instead of solving the best-n-
term approximation problem (1.5), we follow [150] and use orthogonal matching pursuit (OMP)
to construct a nested approximation to the best-n-term solution. By the Riesz-duality between
the dictionary DK(Ω) = {K(·, x) : x ∈ Ω} and the set of quadrature points x ∈ Ω this greedy
approach yields stable, efficient and maximally nested quadrature rules with nj+1 − nj = 1.
In order to deal with singular integrands or integration with respect to non-constant weight
functions ω, we propose a weighted OMP approach that is inspired by results on Leja points.
As it turns out, the resulting nested quadrature rules are not only very stable, but also exhibit
a rate of convergence that is comparable to the one observed with optimal points. To be more
precise, we observe that for algebraic decaying n-th minimal worst-case error, the error of the
OMP greedy method decays at the same algebraic rate. Moreover, for the case of geometric
decay of the nth-minimal worst-case error, say e−αn, the greedy method achieves half of the
geometric decay rate, i.e. e−(α/2)n. Therefore, we are convinced that the OMP greedy approach
is the right choice for the construction of optimally weighted nested quadrature rules. We
remark that this approach is different from a direct greedy minimization of the worst-case
error formula as it is proposed e.g. in [89, 136] which might yield coalescing quadrature points
resulting in stability problems.
We validate the OMP greedy method for a broad range of function spaces in Chapter 6 by
constructing quadrature rules in e.g. Sobolev-, Hardy-, Hermite and Gaussian spaces. Besides,
we also investigate the distribution of both, optimal points and the points obtained by the OMP
greedy procedure. Here, we observe a similarity between the relationship of optimal points to
OMP greedy points on the one hand and Gaussian points to Leja points on the other.
Having the results for the univariate setting at hand, we are now in the position to construct
efficient multivariate cubature rules at a reduced complexity using the idea of sparse grids.

Optimized tensor product methods for multivariate integrals

The sparse tensor product method [32, 142, 161] relies on a linear combination of tensor products
of hierarchical quadrature rules, i.e.

QA(f) :=
∑
k∈A

d⊗
j=1

(
∆

(j)
kj

)
(f), where ∆

(j)
kj

= Q
(j)
kj+1 −Q

(j)
kj

(1.6)

and the Q(j)
kj

are univariate quadrature rules. Here, A ⊂ Nd0 denotes a downward-closed index
set that can be tailored to the multivariate problem. If the univariate quadrature rules Q(j)

kj
use optimal weights for approximating LΩj (f) =

∫
Ωj
f(x)ωj(x) dx in the RKHS HKj , the

tensor product algorithm (1.6) also enjoys optimality with respect to the weights in the tensor
product space HK(d)

=
⊗d

j=1HKj for the approximation of LΩ(d)
(f) =

⊗d
j=1 LΩj (f), i.e. the

multivariate integral
∫

Ω(d)
f(x)

∏d
j=1 ωj(xj) dx. This holds independently of the index set A

and allows for a simplified worst-case error representation. Then, using the ideas of [70], we
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5

derive an algorithm that only requires the evaluation of the univariate kernels Kj and LΩj

to construct optimally weighted integration algorithms for HK(d)
at cost O(N2). Moreover,

recalling that the OMP greedy algorithm for the construction of univariate nested optimal
quadrature rules does not require any information beside the kernelKj as well, we have obtained
a true black-box algorithm for the construction of optimally weighted cubature rules in tensor
product RKHS that are both stable and fast convergent.
If a priori information on the convergence rates of Q(j)

kj
is available, one can directly construct a

quasi–optimal index set and derive error bounds for the associated quasi–optimal tensor product
method (1.6). To this end, we investigate the setting of both, exponential and sub-exponential
decay of the worst-case errors. While the case of exponentially decaying ‖∆(j)

k ‖HKj was already
covered in [13, 80, 153], the case of sub-exponential convergence is novel. However, we will treat
both settings in an unified way assuming that ‖∆(j)

k ‖HKj � exp(−ajkp), with p ∈ (0, 1] and
1/p ∈ N. Then we show that the worst-case error of (1.6) with quasi–optimal index set satisfies

‖LΩ(d)
(f)− Q̌A(f)‖HK(d)

�a,d,p exp
(
− κ(d/p)

κ(1/p)
gm(a)N

p
d

)
N

1
2
− p

2d , (1.7)

where gm(a) denotes the geometric mean of a = (a1, . . . , ad) ∈ Rd+, κ(n) = (n!)1/n and N the
total number of evaluations needed by (1.6). It is noteworthy that (1.7) represents the best
error bound for the described setting that is known so far and improves on [13, 80, 153].
In order to validate both, our adaptive construction and the theoretical results we apply the
method to various tensor product spaces in Section 7.5. Moreover, we consider standard model
problems from numerical analysis to demonstrate the advantage that can be gained by resorting
to our new approach.

Application to problems from econometrics and uncertainty quantification

We complete this thesis by applying our results to practical integration problems from econo-
metrics and engineering. A notorious source for high-dimensional integration problems in many
branches of science is the modelling of uncertainty. For example, within the multinomial pro-
bit model, that is used to model discrete choices, certain unobservable parameters have to be
estimated by maximum-likelihood methods. In some situations, the evaluation of the likeli-
hood function requires the solution of multivariate integrals, which are usually transformed to
the unit-cube by means of the Genz-algorithm [66] and its generalizations. The transformed
integrands are known to be bounded, but can have singular derivatives. Here, we employ
sparse tensor products of the optimal quadrature rules in the Taylor space TLi2 which consists
of bounded functions in the unit disc that have derivatives in the Hardy space. We com-
pare the performance of the optimal algorithm with dimension-adaptive sparse grids based
on Clenshaw-Curtis quadrature as well as (quasi-)Monte Carlo methods, which represent the
current state-of-the-art.
Finally, we consider parametric differential equations. In engineering and mechanics, but also in
other branches of science, there exist well-established models that produce reliable predictions
of a given system’s dynamics. These models, however, need to be initialized with correct
parameters. To this end, measurements of real-world quantities have to be executed which
usually involves a certain error or sometimes are not even observable at all. Therefore, it is
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6 1 Introduction

important to know how the output of the simulation depends on these uncertain parameters.
Here, we consider a simple model problem that consists of an elliptic differential equations with
parametric diffusion coefficient. Since regularity theory [40, 81, 153] implies that the solution
with respect to the parametric variables is analytic in certain polydiscs within the complex plane,
we use sparse tensor products of optimal quadrature rules tailored to the appropriate Hardy
spaces. While our approach does not yield a real advantage over conventional approximation
schemes for large domains of analyticity, it turns out that for small radii our optimal sparse
tensor product method allows for a substantial reduction of computational cost. This can make
the difference between using a laptop or needing an expensive parallel cluster.

Contributions of this thesis

This thesis is concerned with the construction of optimal integration methods for both, uni-
variate and multivariate RKHS. The main contributions can be summarized as follows:
• Investigation of optimally weighted Monte Carlo integration in Sobolev spaces with domi-

nating mixed smoothness resulting in close-to-optimal worst-case error convergence.
• Development of an efficient and stable algorithm for the computation of optimal quadra-

ture points and weights in univariate RKHS.
• Employing (weighted) orthogonal matching pursuit for the construction of nested quadra-

ture rules and comparing their performance, stability and distribution with optimal points
in Sobolev spaces, Hardy spaces, Taylor spaces and Hermite spaces.

• Using sparse tensor products of optimal univariate quadrature rules to automatically
construct optimally weighted cubature rules in tensor product spaces at cost O(N2).

• Proving novel a priori error bounds for quasi-optimal tensor products of both, exponential
and sub-exponential converging nested quadrature rules.

• Application of optimally weighted sparse tensor product integration to uncertainty quan-
tification problems and the computation of multivariate normal probabilities with the
Genz algorithm.

Outline

This thesis is organized as follows: In Chapter 2 we recall the basics about numerical integra-
tion. Chapter 3 deals with the theory on reproducing kernel Hilbert spaces and also contains a
brief overview of the RKHS that will be discussed throughout this thesis. In Chapter 4 we put
this theory into practice by computing optimal cubature weights at random points for integra-
tion of functions with dominating mixed smoothness. The choice of both, optimal and nested
quadrature points is discussed in Chapter 5 and efficient and stable procedures to compute
them are provided. In Chapter 6 we compare the aforementioned quadrature rules to different
approaches common in the literature. These results are used in Chapter 7 as building blocks
for optimally weighted tensor product methods that work almost automatically for any given
tensor product RKHS. Chapter 8 is concerned with the practical application of our approach
to problems from econometrics and and uncertainty quantification. Finally, Chapter 9 summa-
rizes this thesis and discusses questions that have been left unanswered and gives an outlook to
future research.

6



2 Numerical integration

In this chapter, we give a brief overview of cubature rules, their construction and the different
notions of error and its normalization. We start with the discussion of abstract algorithms for
the approximation of the linear functional

LΩ(f) :=

∫
Ω
f(x)ω(x) dx,

where Ω ⊂ Rd is a d-dimensional domain and ω : Ω → R≥0 is a non-negative weight function.
Beside the knowledge that the integrand is from a given function space, i.e. f ∈ F ⊂ L1(Ω, ω),
an algorithm may use further information about f provided by a set of continuous functionals
ΛN = (Λ1, . . . ,ΛN ) ⊂ F?, where F? denotes the dual of F. If these functionals only consist of
point or derivative evaluations of f , we are in the setting of standard information.
In order to compare the performance of different algorithms that use the same set of information
one often uses the concept of worst-case error, cf. Section 2.1. In this setting, it is known that
among all optimal algorithms there is also a linear algorithm. This allows the restriction to
algorithms of the form

QΛN ,w(f) =
N∑
i=1

wiΛi(f) ≈ LΩ(f)

for the approximation of LΩ. Here, the most important special case is ΛN = (δξ(1) , . . . , δξ(N)),
where δξ(i)(f) = f(ξ(i)) denotes the point evaluation functional.

If the information is fixed it remains to choose the weights w ∈ RN . This can be done such that
certain quantities are minimized or exactness of QΛN ,w on a finite-dimensional subspace of F
is achieved. Usually, this can be realized by solving systems of linear equations. The choice of
good cubature points, however, is a much more difficult task and has been subject to intense
research for many decades. In what follows we will give a brief overview on the most common
approaches and strategies to obtain good cubature points and weights.

2.1 Algorithms and error notions

The goal of numerical integration is the approximation of

LΩ(f) =

∫
Ω
f(x)ω(x) dx

where Ω ⊂ Rd is a d-dimensional domain and ω : Ω → R≥0 is a non-negative weight function.
Usually, one assumes that the integrand f : Ω → R comes from a given space of continuous

7



8 2 Numerical integration

functions F ⊂ L1(Ω, ω). At a later point in this thesis, we will specialize on F being a Hilbert
space endowed with certain properties, but at this point we only assume that F is a separable
Banach space of integrable functions on Ω. In this setting, LΩ : F → R is a linear functional
that shall be approximated.

2.1.1 Information

In order to find an estimate of LΩ(f), one needs certain information on the integrand f ∈ F.
Beside the information that f belongs to F, further information is provided as a finite set of
linear functionals that can can be evaluated on f , i.e.

ΛN = (Λ1, . . . ,ΛN ) , Λi ∈ F?.

The most prominent example are of course function values. In this case, the information consists
of

ΛN =
(
δξ(1) , . . . , δξ(N)

)
, ξ(i) ∈ Ω

where δx denotes the point evaluation functional at the point x, i.e. δx(f) = f(x). As another
example one could assume that F consists of univariate analytic functions and choose

ΛN =
(
δξ, δ

(1)
ξ , . . . , δ

(N−1)
ξ

)
,

where δ(j)
x (f) = f (j)(x) denotes the jth derivative of f evaluated at x ∈ Ω. This is the kind of

information that is used by the Taylor formula.
There are many more choices for the information ΛN , e.g. Fourier coefficients or integrals over
smaller subdomains of Ω. However, in almost every practically relevant setting, one is restricted
to so-called standard information, which consists of point- and derivative-evaluations only.

2.1.2 Linear algorithms and error criteria

After the information ΛN ⊂ F? has been fixed, one seeks to construct an algorithm that uses
the available information to approximate LΩ(f) as efficiently as possible. An algorithm is a
mapping αΛN

: F→ R

αΛN
(f) = φ(Λ1(f), . . . ,ΛN (f)), φ : RN → R

such that |LΩ(f)− αΛN
(f)| becomes small.

Throughout this thesis, we will concentrate on linear algorithms of the form

QΛN ,w(f) =
N∑
i=1

wiΛi(f), (2.1)

which are completely determined by the information ΛN ⊂ F? and the choice of the weights
w = (w1, . . . , wN ) ∈ RN .

8



2.1 Algorithms and error notions 9

Usually, an algorithm is not constructed for a single integrand, but rather should work on the
whole class of functions F. In order to compare the performance of different algorithms for
approximating integrals LΩ in F, one has to define a meaningful error criterion. At this point,
we mention two of them:

1. The worst-case error is defined as the error produced by the worst-possible function from
the unit ball of F, i.e.

wce(QΛN ,w,F) := sup
‖f‖F≤1

|LΩ(f)−QΛN ,w(f)| . (2.2)

Moreover, it is common to normalize the worst-case error with respect to the largest
integral a function from the unit ball of F can attain, i.e.

sup‖f‖F≤1 |LΩ(f)−QΛN ,w(f)|
sup‖f‖F≤1 ‖LΩ(f)|

.

The normalized worst-case error equals the worst-case error (2.2) up to a constant. There-
fore, it does not affect asymptotic convergence rates but might have drastic impact on
the constants that are usually neglected for asymptotic considerations. However, this
works only for fixed dimensionality d. If d tends to infinity or the problem is foregone
infinite-dimensional, the normalization has a huge impact on the difficulty and even the
solvability of the problem.

2. The average-case error requires a probability distribution µ on F and then takes the
average over all possible errors with respect to this distribution, i.e.

avg(QΛN ,w,F) :=

(∫
F
|LΩ(f)−QΛN ,w(f)|2 dµ(f)

)1/2

.

Throughout this thesis, we will concentrate on the normalized worst-case error. But we note in
passing, cf. [118, 119, 154], that if the probability measure µ on F is Gaussian with zero mean
and covariance kernelK(x,y) =

∫
F f(x)f(y) dµ(f), the average case error of a linear algorithm

equals the worst-case error in a reproducing kernel Hilbert space HK with reproducing kernel
K, cf. Chapter 3, i.e.

avg(QΛN ,w,F) = wce(QΛN ,w,HK). (2.3)

This is also well-known in statistics where (2.3) is the foundation of so-called Bayesian integra-
tion methods [120, 128, 29].
Another interesting property that linear integration algorithms enjoy in the worst-case setting
is the following famous result from Smolyak and Bakhvalov, cf. [8] or [118, Thm 4.7].

Theorem 2.1. Among all general algorithms αΛN that use the information ΛN and are optimal
with respect to the worst-case error criterion in a function space F, there is also an optimal
linear algorithm QΛN ,w.

Theorem 2.1 justifies the restriction to approximations of the form (2.1) when constructing
cubature rules for function spaces.

9



10 2 Numerical integration

In the following, we will assume that the information ΛN is given in terms of function values
at a set XN ⊂ Ω. In this setting, we define the following quantities.
The worst-case error of a linear integration algorithm QXN ,w is denoted by

wce(QXN ,w,F) := sup
‖f‖F≤1

∣∣∣∣∣
∫

Ω
f(x)ω(x) dx−

N∑
i=1

wif(ξ(i))

∣∣∣∣∣ .
Moreover, one can ask for an optimal algorithm, which uses an optimal vector of weights. The
associated worst-case error is given by

w̌ce(XN ,F) := inf
w∈RN

sup
‖f‖F≤1

∣∣∣∣∣
∫

Ω
f(x)ω(x) dx−

N∑
i=1

wif(ξ(i))

∣∣∣∣∣ . (2.4)

The quantity w̌ce(XN ,F) measures the information value of the specific point setXN . There-
fore, it is often referred to as radius of information.
Sometimes the set of cubature pointsXN is not fixed but can be chosen. This rises the question
for optimal point sets. Therefore, we define the N -th minimal worst-case error as

w̌ceN (F) := inf
XN∈ΩN

inf
w∈RN

sup
‖f‖F≤1

∣∣∣∣∣
∫

Ω
f(x)ω(x) dx−

N∑
i=1

wif(ξ(i))

∣∣∣∣∣ . (2.5)

The w̌ceN (F) measures the inherent difficulty of integration in F and therefore is used to mea-
sure the quality of other, non-optimal algorithms. Consider a class of algorithms (QXN ,w)N∈N
that approximate LΩ. If it holds that

lim
N→∞

wce(QXN ,w,F)

w̌ceN (F)
<∞,

we say that QXN ,w is an order-optimal algorithm in F, i.e. its worst-case error decays at the
same rate to zero as the best possible algorithm using the best possible point set.

2.1.3 Stability

The worst-case error of a cubature rule QXN ,w : F→ R is one of the most important quantities
studied in information based complexity. However, when it comes to practical applications, the
stability of QXN ,w is an important matter. To understand its importance, we recall that in a
computer functions can usually only be evaluated up to a certain precision. Let us assume that
the numeric evaluation f̃(x) of f at all points x ∈ Ω achieves a precision of ε > 0, i.e.∣∣∣f̃(x)− f(x)

∣∣∣ ≤ ε.
Therefore, the error of approximating LΩ(f) with QXN ,w(f̃) can be bounded by∣∣∣LΩ(f)−QXN ,w(f̃)

∣∣∣ =
∣∣∣LΩ(f)−QXN ,w(f) +QXN ,w(f)−QXN ,w(f̃)

∣∣∣

10



2.2 (Quasi–) Monte Carlo integration 11

≤ |LΩ(f)−QXN ,w(f)|+
∣∣∣QXN ,w(f)−QXN ,w(f̃)

∣∣∣
≤ wce(QXN ,w,F)‖f‖F +

N∑
i=1

|wi|
∣∣∣f(ξ(i))− f̃(ξ(i))

∣∣∣
≤ wce(QXN ,w,F)‖f‖F +

(
N∑
i=1

|wi|

)
ε.

Consequently, the quantity

|w|1 =

N∑
i=1

|wi|

is an upper bound for the amplification of the numerical error ε by using the algorithm QXN ,w.
The following theorem from [115, 116] ensures the existence of stable cubature rules for a broad
range of spaces and integration problems.

Theorem 2.2. Let VN ⊂ F be an N -dimensional subspace of F. Then, for every linear func-
tional L ∈ F? and every ε > 0, there exist N points XN and weights w ∈ RN such that it
holds

N∑
i=1

wif(ξ(i)) = L(f) for all f ∈ VN

and

‖L‖F? ≤
N∑
i=1

|wi| ≤ ‖L‖F? + ε.

Unfortunately, it can be quite difficult to construct these points and weights explicitly, cf. Sec-
tion 2.3.4.

2.2 (Quasi–) Monte Carlo integration

In this section, we discuss cubature algorithms which use the same weight wi = 1/N for every
function value. For random points this approach is referred to “Monte Carlo approach”, while
for deterministic point sets usually the term “Quasi–Monte Carlo” is used.

2.2.1 Monte Carlo integration

Assume that a probability measure µ on Ω ⊆ Rd is absolutely continuous with respect to the
Lebesgue measure. This implies the existence of a non-negative weight function ω : Ω → R≥0

such that dµ(x) = ω(x) dx.
The expected value of a function f : Ω→ R is then given by its integral with respect to ω, i.e.

Eµ[f ] =

∫
Ω
f(x)ω(x) dx.

11



12 2 Numerical integration
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Figure 2.1: Scatter plot of N = 256 Monte Carlo points and quasi–Monte Carlo points in [0, 1]2.

For square-integrable f , the law of large numbers ensures that the average

1

N

N∑
i=1

f
(
ξ(i)
)
, where ξ(i) ∼ ω i.i.d. (2.6)

converges to Eµ[f ] as N gets large. Moreover, the convergence of (2.6) both, in expectation and
with high probability, is of order O(N−1/2), which is independent of the dimension. Here, the
constant in the O-notation depends on the variance of the integrand. Therefore, it is common
to use variance reduction techniques, like e.g. control variates or importance sampling [73, 93].

2.2.2 Discrepancy and quasi–Monte Carlo integration

Similar to the Monte Carlo method is the class of so-called quasi–Monte Carlo methods which
also relies on using the same weight wi = 1/N for every function value. However, the set of
points XN is not drawn randomly but chosen by a sophisticated strategy to be distributed as
uniformly as possible within the domain of integration. This is even for the uniform weight
function ω ≡ 1 on Ω = [0, 1]d a difficult problem.
As can be seen in Figure 2.1, the quasi-random points are uniformly distributed over [0, 1]2

while the randomly distributed points have clusters, gaps and seem to be more irregular. The
degree of irregularity of a given point set XN is measured by its discrepancy, which comes in
many different variations and has deep connections to harmonic analysis and number theory.
The general idea behind discrepancy is the approximation of volumes by relative numbers of
points. To be more precise, let

disc(x;XN ) :=

d∏
j=1

xj −
1

N

N∑
i=1

χ[0,x)(ξ
(i)), (2.7)

where χ[0,x) is the indicator function of the box [0,x) :=
⊗d

j=1[0, xj) ⊂ [0, 1)d, which has the

12



2.3 Quadrature with a degree of exactness 13

volume
∏d
j=1 xj . The local discrepancy disc(x;XN ) measures how much the volume of [0,x)

deviates from the relative number of points from the set XN = {ξ(1), . . . , ξ(N)} that fall into
[0,x).
The q-discrepancy of a point set XN is now defined as the Lq-norm of (2.7), i.e.

discq(XN ) :=

(∫
[0,1]d

|disc(x;XN )|q dx

)1/q

.

This concept is useful because on the one hand the Koksma-Hlawka inequality for q = 2 states
that ∣∣∣∣∣

∫
[0,1]d

f(x) dx− 1

N

N∑
i=1

f(ξ(i))

∣∣∣∣∣ ≤ disc2(XN )‖f‖H1
mix
.

On the other hand it is known [52] that there exist point sets which fulfill

disc2(XN ) �d
log(N)(d−1)/2

N
.

This yields an error bound which is asymptotically smaller than the one of Monte Carlo. Ex-
amples for point sets with small discrepancy are digital nets, in particular the Sobol sequence
[143], lattice rules [141] or the well-known Halton sequence [82].
Moreover, there exist so-called higher order quasi–Monte Carlo points which in theory allow an
error bound of order N−s log(N)

d−1
2 if the integrand has bounded Hs

mix norm [74]. However,
the construction, as well as the involved constants, are still a subject of intense research. For
further details on point sets with small discrepancy and higher-order quasi-Monte Carlo we
refer to [52].
Finally, there is a close relationship between generalized notions of discrepancy and worst-case
errors in reproducing kernel Hilbert spaces, cf. Chapter 3. We also refer to [150] and Chapter
9 in [119] for a detailed discussion.

2.3 Quadrature with a degree of exactness

By the Stone-Weierstrass theorem every continuous function on a closed interval [a, b] ⊂ R can
be approximated by polynomials. Therefore, it is a natural approach to construct quadrature
rules that integrate polynomials exactly. Here, by cleverly choosing the n quadrature weights
and the n quadrature points1 the Gaussian quadrature rules achieves the maximal polynomial
degree of exactness of 2n− 1, i.e. all linear combinations of {1, x, x2, . . . , x2n−1} are integrated
exactly.
However, sometimes non-polynomial sets of basis functions φm = {ϕ1, . . . , ϕm} are preferable
to approximate certain classes of integrands, e.g. if singularities are present, cf. [79, 104]. If φm
constitutes a so-called Tschebyscheff-system, cf. Def. 2.3, there exist n points ξ1, . . . , ξn and

1Note at this point that we will denote the point numbers used by univariate quadrature rules by n instead of
N , because we will use tensor products of univariate quadrature rules at a later point of this thesis.
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14 2 Numerical integration

positive weights w1, . . . , wn such that it holds, cf. [100]∫
Ω
f(x)ω(x) dx =

n∑
i=1

wif(ξi) for all f ∈ spanφ2n.

In this section, we first recall the basic properties of Tschebyscheff-systems and (generalized)
Gaussian quadrature rules. Then, we discuss Leja points, which recently gained a lot of interest
in the scientific computing community because they are maximally nested and still yield stable
quadrature weights. Moreover, their distribution converges to the arc-sine distribution of the
respective Gaussian set of quadrature points.

2.3.1 Tschebyscheff-systems

First, we recall so-called Tschebyscheff-systems (T-systems), cf. [96], which generalize the con-
cept of univariate polynomials in the sense that linear combinations from an n-element T-system
possess at most (n− 1) zeros and hence allow the construction of unique interpolants.
To this end, we define the generalized Vandermonde-matrix

V (ϕ1, . . . , ϕm; t1, . . . , tm) :=

ϕ1(t1) · · · ϕ1(tm)
...

. . .
...

ϕm(t1) · · · ϕm(tm)

 (2.8)

for an arbitrary set of m real-valued functions ϕ1, . . . , ϕm on [a, b] and pairwise-distinct points
t1 < t2 < . . . < tm ∈ [a, b].
We can also remove the constraint that the points have to be pairwise distinct and write for
the case t1 ≤ t2 ≤ . . . ≤ tm

V (ϕ1, . . . , ϕm; t1, . . . , tm) =
(
ϕ

(lj)
i (tj)

)m
i,j=1

, (2.9)

where now lj = max{l : tj−l = tj}. This means that repeated points correspond to higher order
derivatives.

Definition 2.3. (Tschebyscheff-system)
A set of functions φm = {ϕ1, . . . , ϕm},m ∈ N is a complete Tschebyscheff-system (T-system)
over a compact interval [a, b] ⊂ R iff the generalized Vandermonde-determinant

detV (ϕ1, . . . , ϕk; t1, . . . , tk) > 0 (2.10)

for all pairwise distinct t1, . . . , tk ∈ [a, b] and all k = 1, . . . ,m.
Moreover, if the interval (a, b) ⊆ R is not compact, we call φm a complete T-system on (a, b) if
it is a complete T-system on every compact sub-interval [â, b̂] ⊂ (a, b), cf. [104]. This of course
extends to half-open intervals like [a, b) or (a, b].

Examples for sets of functions that form a T-system on their respective domains are given in
[96] and include

14



2.3 Quadrature with a degree of exactness 15

• Polynomials {1, x, x2, x3, . . . , xm−1} .
• Fractional polynomials like {1,

√
x, x, x

√
x, x2, x2√x, . . . , x(m−1)/2}.

• Exponential translates {exp(c1x), . . . , exp(cmx)} for pairwise distinct ci ∈ R.
• Radial basis functions like, e.g., {exp(− (c1−x)2

σ2 ), . . . , exp(− (cm−x)2

σ2 )} for pairwise distinct
ci ∈ R and σ > 0.

The property (2.10) is important because it ensures that V (ϕ1, . . . , ϕm; t1, . . . , tm) is invertible
for every given set of points t1 < t2 < . . . < tm ∈ [a, b]. Hence, for every given data vector
f = (f1, . . . , fm) ∈ Rm there exists a unique function fm ∈ spanφm which interpolates the data
f at (t1, . . . , tm), i.e.

fm(ti) =
m∑
j=1

cjϕ(ti) = fi for all i = 1, . . . ,m,

where c = V −1(ϕ1, . . . , ϕm; t1, . . . , tm)f .

Definition 2.4. (Extended Tschebyscheff-system)
A set of functions φm = {ϕ1, . . . , ϕm},m ∈ N is an extended complete Tschebyscheff-system
(ECT-system) of order p if the determinant of the matrix (2.9) is positive, i.e.

detV (ϕ1, . . . , ϕk; t1, . . . , tk) > 0,

for all t1 ≤ t2 ≤ . . . ,≤ tk, where at most p points may coincide, cf. (2.9). This shall hold for
all k = 1, . . . ,m.

For an ECT-system it is known [96] that every function u ∈ spanφm has at most m− 1 zeros,
including multiplicities up to order p.

2.3.2 (Generalized) Newton-Cotes quadrature

If φm constitutes a T-system on Ω and a set of n pairwise distinct points Xn ⊂ Ω is given, there
is a straight-forward way to obtain quadrature weights w1, . . . , wn such that all functions from
span {ϕ1, . . . , ϕn} are integrated exactly. This is equivalent to

n∑
i=1

wiϕk(ξi) =

∫
Ω
ϕk(x)ω(x) dx for all k = 1, . . . , n,

which can be rephrased as a linear system of equations

V (ϕ1, . . . , ϕn; ξ1, . . . , ξn)w = b, where bk =

∫
Ω
ϕk(x)ω(x) dx.

Since V (ϕ1, . . . , ϕn; ξ1, . . . , ξn) is invertible due to (2.10), the desired set of quadrature weights
is given by w = V −1b.
In order to emphasize the dependence of w on the choice of the quadrature points Xn, we may
also write w(Xn) to denote the set of quadrature weights that integrate polynomials up to
degree n− 1 exactly by using function values at Xn.
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16 2 Numerical integration

Another example is related to Definition 2.4. Assume one seeks to approximate the integral of
a function of which not only function values at a point set Xn ⊂ Ω are known, but also the
value of the first derivatives at the points in Xn. Then, if (ϕk)

2n
k=1 is an ECT-system of order

at least 2, it holds that

n∑
i=1

1∑
j=0

wi,jϕ
(j)
k (ξi) =

∫
Ω
ϕk(x)ω(x) dx for all k = 1, . . . , 2n, (2.11)

where the weights wi,j , i = 1, . . . , n and j = 0, 1 are obtained by inverting the Vandermonde
matrix V (ϕ1, . . . , ϕ2n; ξ1, ξ1, ξ2, ξ2, . . . , ξn, ξn). To simplify the notation, we adopt the notation
X2
n := (ξ1, ξ1, . . . , ξn, ξn) for the set of double integration points. The set of quadrature weights

in (2.11) is then given by

w(X2
n) = V −1(ϕ1, . . . , ϕ2n, X

2
n)b, where bk =

∫
Ω
ϕk(x)ω(x) dx.

However, even though there always exists a vector of quadrature weights w ∈ Rn which ensures
exactness on span {ϕ1, . . . , ϕn}, one cannot be sure that the weights w are stable in the sense
of Section 2.1.3. For example, if φj = xj−1 is the T-system of algebraic monomials and the
prescribed points are equidistant in [0, 1], i.e. ξj = j/n, it is known [90] that already for moderate
n ≥ 7 the weights become highly unstable, which is related to Runge’s phenomenon. On the
other hand, if (ϕk)

n
k=1 is a set of compactly supported B-spline functions, equidistant points

work well. Therefore, additional effort has sometimes to be made to find sets of quadrature
points which guarantee the stability of the associated quadrature weights.
In fact, one can achieve even more. For extended Tschebyscheff-systems it is possible to find
quadrature points which do not only result in stable quadrature weights, but are also exact on
a space of 2n basis functions.

2.3.3 (Generalized) Gaussian quadrature

For given n ∈ N let φ2n be a complete Tschebyscheff-system on an interval (a, b) = Ω ⊆ R. It
was proven in [100], see also [96], that there exist pairwise distinct points Xn = (ξ1, . . . , ξn) and
positive weights w = (w1, . . . , wn) ∈ R+ such that it holds∫ b

a
ϕk(x)ω(x) dx =

n∑
i=1

wiϕk(ξi) for all k ∈ {1, . . . , 2n}. (2.12)

Hence, by the linearity of both sides in (2.12), all functions from spanφ2n are integrated ex-
actly. The n points and weights are called generalized Gaussian quadrature points and weights,
respectively.2

Moreover, one can also construct Gaussian quadrature rules that use not only function values
but also higher order derivatives of the integrand. To this end, let µ = (µ1, . . . , µn) be a

2In [72] it was shown that the points of a generalized Gaussian quadrature rule are unique.
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2.3 Quadrature with a degree of exactness 17

given vector of multiplicities. In [12, 23] it was proven that there exists a unique set of points
ξ∗1 , . . . , ξ

∗
n such that

∫ b

a
ϕk ω(x) dx =

n∑
i=1

µi−1∑
j=0

wi,jϕ
(j)(ξ∗i ) for all k ∈ {1, . . . , 2N}, (2.13)

where N :=
∑n

i=1 µi if each µi is odd. For arbitrary multiplicities µ, the exactness in (2.13)
holds with N =

∑n
i=1

⌊
µi+1

2

⌋
.

2.3.4 Quadrature at Leja points

Leja points originate from polynomial interpolation where one is interested in point sets Xn

with small Lebesgue constant, see [34, 36, 80, 92, 108, 149]. Of particular interest are nested
sets, i.e. there exists a sequence (nj)j∈N such that Xnj ⊂ Xnj+1 for all j ∈ N. Examples for
such a set are the roots of Tschebyscheff polynomials, which, however, are only nested if the
number of points is doubled on each level j, i.e. X2j ⊂ X2j+1 . This implies an exponential
growth of the nested point sets, i.e. nj+1 − nj � 2j . An alternative are so-called Leja-points
which are maximally nested, i.e. nj+1 − nj = 1. This is an important property when using Xn

as a building block for a tensor product method, cf. [37, 80, 138]. While it has not been proven
yet, it is observed [36], that the Lebesgue constant of Leja points grows at most linearly in n.
However, the theory only predicts a growth that is sub-exponential [92, 149].
In this section we will discuss using Leja points for quadrature as it was done in [80, 108, 138].
Here, despite several gaps in the existing theory, there is convincing numerical evidence, that
Leja points allow for stable quadrature with polynomial degree of exactness in the spirit of
Theorem 2.2.
For a given set Ω ⊂ C, a weight function ω : Ω→ R≥0 and a starting point ξ0 ∈ Ω, the associated
Leja sequence (ξi)

∞
i=0 ⊂ Ω usually stems from a certain recursive optimization process. It is

defined by

ξm+1 = arg max
z∈Ω

∣∣∣∣∣
m∏
i=0

(z − ξi)

∣∣∣∣∣√ω(z). (2.14)

Defining Xn := (ξ0, . . . , ξn−1), it holds that

Xn−1 ⊂ Xn for any n ∈ N,

i.e. the hierarchy of sets X1, X2, . . . is maximally nested.
We note in passing that (2.14) is equivalent to a greedy maximization of the weighted Vander-
monde matrix (2.8) for the Tschebyscheff-system of polynomials, i.e.

ξm+1 := arg max
z∈Ω

|detV (ϕ1, . . . , ϕm+2; ξ0, . . . , ξm, z)|
√
ω(z),

where ϕj = x(j−1), j = 1, . . . ,m+ 2.
In the following, we will discuss two kinds of specific Leja constructions. The first one is related
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Gauss-Legendre

Leja

Figure 2.2: The distribution of Gauss-Legendre and Leja points on (−1, 1) approaches the
arcsine-distribution.

to integration on [−1, 1] with respect to the uniform distribution, the other one to integration
on (−∞,∞) with respect to the Gaussian distribution.

Leja points on [−1, 1]

The Leja points on Ω = [−1, 1] are suited for integration with respect to the uniform measure
1
2 dx and are constructed by

ξm+1 = arg max
z∈Ω

∣∣∣∣∣
m∏
i=0

(z − ξi)

∣∣∣∣∣ .
The starting point ξ0 ∈ [−1, 1] is arbitrary, but ξ0 = 1 is an often proposed choice, see e.g. [37].
After a point set Xn is fixed, the vector of n quadrature weights w is determined such that it
holds

n∑
i=1

wiξ
k
i =

1

2

∫ 1

−1
xk dx for k = 1, . . . , n.

Numerical experiments suggest that the resulting weights are stable, cf. Figure 2.3 and [108, 80].
However, this has not been proven yet. The only result regarding the stability of Leja points for
polynomial interpolation can be found in [149], where it was proven that the Lebesgue constant
does grow at most sub-exponentially.
An interesting property of the above definition of Leja points is that they asymptotically dis-
tribute like the Gauss-Legendre points, cf. Figure 2.2. To be more precise, let ξ∗1,n, . . . , ξ∗n,n be
the roots of the n-th Legendre polynomial. Then it holds (in the weak sense)

lim
n→∞

1

n

n∑
i=1

δξi = lim
n→∞

1

n

n∑
i=1

δξ∗i,n = ṽ,

18
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Figure 2.3: Stability of the Leja sequence on [−1, 1] and R.

where ṽ is the density of the logarithmic potential equilibrium measure of the domain Ω in the
presence of a certain external field cf. [108, 132]. In this particular setting, ṽ is the so-called
arcsin-distribution with cumulative distribution function F (x) = 1

2 + 1
π arcsin(x).

Leja points on (−∞,∞)

The other important special case are Leja points on R with respect to the Gaussian density
function ω(x) = 1√

2π
e−

x2

2 . According to (2.14), the associated Leja points are computed by

ξm+1 = arg max
z∈Ω

∣∣∣∣∣
m∏
i=0

(z − ξi)

∣∣∣∣∣ e− z24 ,
where now ξ0 is usually chosen to be ξ0 = 0.
Then, the vector of n quadrature weights w for Xn is determined such that it holds

n∑
i=1

wiξ
k
i =

1√
2π

∫ ∞
−∞

xke−
x2

2 dx for k = 1, . . . , n.

Again, the only available results regarding the stability of this Leja sequence yield that the
Lebesgue-constant is sub-exponential [92]. However, in numerical experiments, cf. Figure 2.3,
the weights are obviously stable in the sense that

∑n
i=1 |wi| < 1.3 for all n ∈ {1, 800}.

19



20 2 Numerical integration

2.4 Tensor product based methods

The construction of efficient algorithms for multivariate integration is not a simple task. Most of
the concepts that are available in the univariate setting do not generalize to multiple dimensions,
e.g. because there are no T-systems in dimensions d ≥ 2. This fact is known as the Mairhuber-
Curtis theorem [163].
Therefore, it is natural to construct integration algorithms for multivariate problems by building
onto the well-understood univariate methods.

2.4.1 Full tensor product cubature

The most straight-forward approach to apply univariate quadrature rules for multivariate prob-
lems is the full tensor product. Consider the integration problem

LΩ(d)
(f) :=

∫
Ω(d)

f(x)ω(d)(x) dx =

∫
Ω1

. . .

∫
Ωd

f(x)ω1(x1) · · ·ωd(xd) dx,

i.e. both, the integration domain Ω(d) =
⊗d

j=1 Ωj and the density ω(d)(x) =
∏d
j=1 ωj(xj) have

product structure.
Assume that there exists a quadrature rule

Q(j)
nj (f) :=

nj∑
i=1

w
(j)
i,j f(ξ

(j)
i,j ), j ∈ N

for each coordinate direction j ∈ {1, . . . , d}.
Defining n = (n1, . . . , nd) ∈ Nd0, we can now discretize the j-th integral LΩj with Q

(j)
nj and

obtain

Qn(f) = Q(1)
n1
⊗ · · · ⊗Q(d)

nd
(f)

=

n1∑
i1=1

· · ·
nd∑
id=1

 d∏
j=1

w
(j)
ij ,nj

 f
(
ξ

(1)
i1,n1

, . . . , ξ
(d)
id,nd

)
.

If Q(j)
nj is exact on some mj-dimensional space V (j)

mj = span {ϕ(j)
1 , . . . , ϕ

(j)
mj}, then Qn is exact on

Vm := V (1)
m1
⊗ . . .⊗ V (d)

md
= span


d∏
j=1

ϕ
(j)
kj

: k ≤m

 .

Here, k ≤m has to be understood component-wise.
With this construction, however, the number of points N =

∏d
j=1 nj grows exponentially with

the dimensionality d.

20



2.4 Tensor product based methods 21

2.4.2 Generalized sparse grid cubature

Sparse grids go back to ideas of Babenko [5], Smolyak [142] and Zenger [166]. They are based on
a decomposition of the aforementioned tensor product method into a multi-indexed telescoping
sum. Balancing cost and error, this sum is truncated in a way that substantially reduces the
cost while maintaining almost the same error as the full tensor product.
Besides in numerical integration [69, 70, 117], sparse grids are nowadays also used for multivari-
ate density estimation [76], uncertainty quantification [37, 113], the reconstruction of manifolds
[60], time series prediction [19] or multivariate regression [64, 65].
However, in order to apply the sparse grid technique, the problem at hand has to fulfill certain
prerequisites. To this end, define Ω(d) := Ω1 × . . . × Ωd and ω(d)(x) =

∏d
j=1 ωj(xj) to be a

product density function on a product domain. The multivariate integral then reads

LΩ(d)
(f) =

∫
Ω(d)

f(x)ω(d)(x) dx. (2.15)

For an approximation of (2.15), we start from a sequence of univariate quadrature rules

Q
(j)
k (f) =

nk−1∑
i=0

w
(j)
i,k f(ξ

(j)
i,k ), for k = 0, 1, 2, . . . ,

which shall be convergent in univariate function spaces Fj ⊂ L1(Ωj , ωj), i.e.

lim
k→∞

Q
(j)
k (f) = LΩj (f), for all f ∈ Fj , j = 1, . . . , d.

With the convention Q(j)
−1(f) = 0, we define the hierarchical quadrature rules

∆
(j)
k (f) = Q

(j)
k (f)−Q(j)

k−1(f), k ∈ N0,

which clearly fulfill

LΩj (f) = lim
k→∞

Q
(j)
k (f) =

∞∑
k=0

∆
(j)
k (f) for all f ∈ Fj .

Then, for every f ∈ F(d) := F1 ⊗ . . .⊗ Fd it holds

LΩ(d)
(f) =

∞∑
k1=0

· · ·
∞∑

kd=0

∆
(1)
k1
⊗ · · · ⊗∆

(d)
kd
f =:

∑
k∈Nd0

∆k(f) (2.16)

An approximation to LΩ(d)
(f) is now given by a truncation of (2.16), i.e.

QA(f) :=
∑
k∈A

∆k(f) ≈ LΩ(d)
(f), (2.17)

21



22 2 Numerical integration

where A ⊂ Nd0 is a downward-closed3 index set. For example, A = {k ∈ Nd0 : |k|∞ ≤ L}
recovers the full tensor product method from the preceding section, i.e. Q(1)

nL ⊗ · · · ⊗Q
(d)
nL(f).

Before we proceed with the discussion on how the index set A can be chosen, we prove a result
regarding the degree of exactness the sparse grid method can achieve.
To this end, let A ∈ Nd0 be a downward-closed set, i.e.

A ⊂ Nd0 such that k ∈ A ∧ l ≤ k implies that l ∈ A

and define
uA := max {k1 ∈ N0 : (k1, . . . , kd) ∈ A}

to be the largest element of the form (k1, 0, . . . , 0) ∈ Nd0 that is contained in A. Moreover, let

Ad−1(k1) :=
{

(k2, . . . , kd) ∈ Nd−1
0 : (k1, . . . , kd) ∈ A

}
.

Clearly, it holds Ad−1(k1) = ∅ for k1 > uA and we can decompose every downward-closed set
A ⊂ Nd0 into

uA⋃
k1=0

⋃
(k2,...,kd)∈Ad−1(k1)

{(k1, . . . , kd)}. (2.18)

Now, we are prepared to prove the following theorem, which relates the index set A to a finite-
dimensional subspace on which QA, defined in (2.17), is exact.

Theorem 2.5. Let Q(j)
k (f), k ∈ N0 be a sequence of univariate quadrature rules that are exact on

a sequence of nested m(j)
k -dimensional spaces V (j)

k = span {ϕ(j)
1 , . . . , ϕ

(j)
mk}, where V

(j)
k ⊂ V

(j)
k+1

for all j = 1, . . . , d. Then, for every downward-closed index set A ⊂ Nd0, the sparse tensor
product algorithm

QA(f) =
∑
k∈A

 d⊗
j=1

∆
(j)
kj

 (f)

is exact on the space VA =
⊕
k∈A

(⊗d
j=1 V

(j)
kj

)
spanned by the basis functions

⋃
k∈A


d∏
j=1

ϕ
(j)
ij

(xj) : i ≤mk

 . (2.19)

Proof. We generalize the proof for the special case of the classical Smolyak index set [117] to
arbitrary downward-closed index sets A ⊂ Nd0. We have to show that it holds for all f ∈ VA
that

LΩ(d)
f = QA(f). (2.20)

To this end, it is enough to show (2.20) for all elements of the basis (2.19), which have the form
f(x) =

∏d
j=1 fj(xj) with fj ∈ V (j)

kj
for some k ∈ A.

3Sometimes, this property is also referred to as lower set.
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2.4 Tensor product based methods 23

For d = 1 the claim holds true due to the exactness of the univariate quadrature rules. We
assume that the claim holds for d−1 dimensions as well. Then, due to the decomposition (2.18)
we can write QA(f) for a product function f(x) =

∏d
j=1 fj(xj) as

QA(f) =

uA∑
k1=0

∑
(k2,...,kd)∈Ad−1(k1)

( d⊗
j=1

∆
(j)
kj

)
(f) =

uA∑
k1=0

QAd−1(k1)(f2 · . . . · fd) ·∆
(1)
k1

(f1)

=

uA∑
k1=0

 d∏
j=2

LΩj (fj)

 ·∆(1)
k1

(f1) =

 d∏
j=2

LΩj (fj)

 uA∑
k1=0

·
(
Q

(1)
k1

(f1)−Q(1)
k1−1(f1)

)

=

 d∏
j=2

LΩj (fj)

 ·Q(1)
uA(f1) =

 d∏
j=2

LΩj (fj)

 · LΩ1(f1)

=LΩ(d)
(f).

In order to derive error bounds one can simply use the triangle inequality and a scaling of the
unit ball to obtain

|LΩ(d)
(f)−QA(f)| ≤

∑
k∈Nd0\A

|∆k(f)|,

≤
∑

k∈Nd0\A
‖∆k‖F?‖f‖F. (2.21)

The choice of a good index set now depends on the magnitude of the norms of ‖∆k‖F? and on
the cost c(k) which is the number of additional function evaluations required by ∆k. Then,
cf. [32], an optimal index set for f consists of the elements with largest benefit-cost ratio,
i.e. |∆k(f)|/c(k). An index set that is optimal with respect to the upper bound (2.21) for the
whole class F is then given by

A(ε) = {k ∈ Nd0 :
‖∆k‖F?
c(k)

≥ ε}.

We refer to [31, 78] for the details.
However, bounds for ‖∆k‖F? are not always available or difficult to obtain. Moreover, in
practical applications when dealing with a specific function f , it is not clear which space is
suited best since often f belongs to a whole scale of function spaces. In such a setting it is
advantageous to tailor the index set A specifically to f instead of fixing it a priorily.

2.4.3 Dimension-adaptive sparse grids

In practice, algorithms are required which can construct appropriate index sets A automatically
during the actual computation. Such algorithms were presented in [70, 84], where the index
sets are found in a dimension-adaptive way by the use of suitable error indicators.
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24 2 Numerical integration

Algorithm 1: Dimension-adaptive construction of the index set A.
Input:

• Desired accuracy ε > 0.

• Lookahead p ∈ {1, 2, . . .}.

Initialize:

• Set of active indices: A = {(0, . . . , 0)}.

• S = ∆(0,...,0)f .

repeat

1. Determine neighbourhood indices B = {A+ αej : j = 1, . . . , d and α = 1, . . . , p}.

2. For all k ∈ B compute ∆kf and associated cost c(k).

3. Determine (some) k∗ = arg maxk∈B |∆kf |/c(k).

foreach k ≤ k∗ : k /∈ A do

a) Add the index k to A.
b) Update the sum S = S + ∆kf .

end

until |∆k∗f | < ε;
Output: QAf = S.

The adaptive method that is outlined in Algorithm 1 starts with the smallest index set
A = {(0, . . . , 0)}. Then, step-by-step the index k∗ which has the largest value |∆kf |/c(k)
from the set of all neighbouring admissible indices k ∈ B is added. This index is expected to
provide the largest error reduction, see [68, 70, 77, 107] for details. The lookahead parameter
p determines the size of the neighbourhood that is taken into account. In most cases a
lookahead of p = 1 or p = 2 will be sufficient.
The downward-closedness of the index set A is ensured at all times by adding the required
parent indices of k∗ in every step to A as well.
Altogether, Algorithm 1 provides an adaptive detection of the important coordinate directions
and constructs A by a greedy approach that leads to quasi-optimal index sets in the sense of
[31, 78].
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3 Reproducing kernel Hilbert spaces

Reproducing kernel Hilbert spaces (RKHS) are Hilbert spaces of functions in which point eva-
luation is a bounded linear functional. The eponymous property of RKHS is the existence of a
unique kernel function K that represents all point evaluation functionals and therefore encodes
the structure of the space.
RKHS are used in many branches of applied mathematics, e.g. in statistics where there are
relationships to Gaussian processes or in machine learning where they are used within support
vector machines [16, 139], but also for the solution of partial differential equations [59].
In this chapter, we recall the definition and the most important properties of RKHS that we
need in the sequel of this thesis with the goal of constructing efficient cubature rules. To this
end, we discuss the approximation of linear functionals by linear combinations of other linear
functionals in Section 3.2. Of particular importance is the choice of weights that minimize
the worst-case error. These are derived directly from their normal equations, but there is an
important relationship to the more general theory of spline algorithms, which is discussed in
Section 3.3. Since we have to use quadrature rules that do not only rely on function values but
on more general classes of information in several proofs in Chapter 5, we will treat the subject
on an abstract level with general linear information. The case of function values then follows
as a special case.
Moreover, we quote some composition formulas to construct kernels of subspaces or tensor prod-
uct spaces in Section 3.5. A brief overview on kernels that will be important in the remainder
of this thesis complements this chapter in Section 3.6.

3.1 Basics

In the following we recall the basic definitions of reproducing kernel Hilbert spaces (RKHS)
as well as their most important properties that will be useful in the remainder of this thesis.
Herein, we mostly follow [4, 16, 59, 135].

Definition 3.1. (Symmetric positive definite kernel)
A function K : Ω× Ω→ R, where Ω ⊆ Rd, is called symmetric positive definite kernel if

1. K(x,y) = K(y,x) for all x,y ∈ Ω.
2. For every N ∈ N and all sets of N pairwise distinct points XN = {ξ(1), . . . , ξ(N)} ⊂ Ω,

the kernel matrix G(XN ) ∈ RN×N with

Gi,j(XN ) = K
(
ξ(i), ξ(j)

)
is positive definite, i.e. cᵀG(XN )c > 0 for all 0 6= c ∈ RN .
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26 3 Reproducing kernel Hilbert spaces

The following theorem describes the relationship between symmetric positive definite kernels
and certain Hilbert spaces. It is proven in e.g. [4, 16, 59].

Theorem 3.2.

(i) Let H be a Hilbert space of real-valued functions on Ω ⊆ Rd, where 〈·, ·〉H denotes the inner-
product of H. Assume that the point-evaluation functional δx(f) = f(x) is continuous in
H for all x ∈ Ω. Then, there exists a unique symmetric positive definite kernel function
K : Ω× Ω→ R such that
(a) The Riesz-representer of the point evaluation functional δx in H is K(·,x), i.e.

f(x) = δx(f) = 〈f,K(·,x)〉H for all f ∈ H and all x ∈ Ω. (3.1)

We say that the kernel K reproduces point evaluation in H.
(b) The closure of the span of all point evaluation representers K(·,x) equals H, i.e.

H = span {K(·,x)|x ∈ Ω}.

(ii) The converse is also true: For every symmetric positive definite kernel K : Ω × Ω there
exists a unique Hilbert space for which the properties (a) and (b) hold true.

From now on we only consider separable Hilbert spaces that fulfill the assumptions of Theorem
3.2, i.e. point evaluation is a continuous linear functional and H contains a countable subset
that is dense in H. Because of the one-to-one correspondence between such Hilbert spaces and
symmetric positive definite kernel functions, we will write HK to denote the Hilbert space in
which the kernel K is reproducing. Hence, HK is called a reproducing kernel Hilbert space,
which usually is abbreviated as RKHS.
First, we note that convergence in HK always implies uniform convergence.

Proposition 3.3. If a sequence of functions (fn)n∈N converges to a function f with respect to
the ‖ · ‖HK -norm, then fn → f uniformly on every compact subset S ⊂ Ω.

Proof.

|f(x)−fn(x)| = |〈f(·)−fn(·),K(·,x)〉HK | ≤ ‖f −fn‖HK‖K(·,x)‖HK = ‖f −fn‖HK
√
K(x,x).

The next proposition discusses the role of orthonormal bases in separable RKHS. Its proof can
be found e.g. in [16, Sec. 1.5].

Proposition 3.4. Let HK be a RKHS with associated kernel K : Ω× Ω→ R. Let (ψk)
∞
k=0 be

an orthonormal basis of HK , i.e. 〈ψi, ψj〉HK = δi,j for all i, j ∈ N0. Then the kernel can be
expressed as

K(x,y) =
∞∑
k=0

ψk(x)ψk(y).
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3.2 Approximation of linear functionals 27

The following result allows to explicitly compute the Riesz-representer and operator norm
of arbitrary bounded functionals in H?K , which is isomorphic to HK . To this end, we use
the notation L(y)K(x,y) to denote the application of the functional L to the variable y,
e.g. δ(y)

ξ K(x,y) = K(x, ξ).

Proposition 3.5. Let L : HK → R be a bounded linear functional on HK , i.e. L ∈ H?K . Then,
there exists a function ` ∈ HK such that

L(f) = 〈`, f〉HK holds for all f ∈ HK .

The Riesz-representer ` ∈ HK of L is explicitly given by

`(x) = L(y)K(x,y) = L (K(x, ·)) . (3.2)

Moreover, the norm of L is given by

‖L‖H?K = sup
‖f‖HK≤1

|L(f)| =
√
L(x)L(y)K(x,y). (3.3)

Proof. By the Riesz-representation theorem there exists a unique function ` ∈ HK such that
L(f) = 〈`, f〉HK for all f ∈ HK . To see that ` is given by (3.2), we use the reproduction formula
(3.1) to obtain

`(x) = 〈`,K(·,x)〉HK = L(K(·,x)) = L(y)K(x,y).

Regarding (3.3) we use (3.2) and compute

‖L‖2H?K = ‖`‖2HK = 〈`, `〉HK = L(`) = L(L(y)K(·,y)) = L(x)L(y)K(x,y).

Using Proposition 3.4, the norm of L can also be written as an infinite series, i.e.

‖L‖2H?K = L(x)L(y)K(x,y) =

∞∑
k=0

L(x)L(y)ψk(x)ψk(y) =

∞∑
k=0

|L(ψk)|2, (3.4)

where (ψk)
∞
k=0 is an orthonormal basis in HK .

3.2 Approximation of linear functionals

Since numerical integration seeks to approximate a given linear functional by linear combina-
tions of different functionals (mostly point evaluations), we now consider the approximation
of bounded linear functionals in reproducing kernel Hilbert spaces. To this end, we stay in a
rather abstract setting during this section, but turn to more concrete examples in Section 3.4
of this Chapter.
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28 3 Reproducing kernel Hilbert spaces

We are now interested in approximating a continuous linear functional L : HK → R using the
information (c.f. Section 2.1) that is given by a finite set of linearly independent functionals

ΛN := {Λ1, . . . ,ΛN}, Λi ∈ H?K .

In the following we assume that L /∈ span ΛN .
From Proposition 3.5 we know that the Riesz-representers of L and Λ1, . . . ,ΛN are given by
`(x) = L(y)K(x,y) and λi(x) = Λ

(y)
i K(x,y), i = 1, . . . , N , respectively.

Motivated by Theorem 2.1, we restrict ourselves to linear approximation algorithms, i.e.

QΛN ,w(f) =

N∑
i=1

wi · Λi(f) ≈ L(f). (3.5)

The choice of the weights w = (w1, . . . , wN ) ∈ RN will be discussed later.
The approximation error

RΛN ,w(f) := L(f)−QΛN ,w(f)

is a bounded linear functional itself which has a representer rΛN ,w ∈ HK given by

rΛN ,w(x) = R
(y)
ΛN ,w

K(x,y) = L(y)K(x,y)−
n∑
i=1

wi Λ
(y)
i K(x,y).

Its norm
‖RΛN ,w‖H?K = sup

‖f‖HK≤1
|RΛN ,w|

can be computed by

‖RΛN ,w‖
2
H?K =RΛN ,w(rΛN ,w) = R

(x)
ΛN ,w

R
(y)
ΛN ,w

K(x,y)

=R
(x)
ΛN ,w

(
L(y)K(x,y)−Q(y)

ΛN ,w
K(x,y)

)
=L(x)L(y)K(x,y)− 2Q

(x)
ΛN ,w

L(y)K(x,y) +Q
(x)
ΛN ,w

Q
(y)
ΛN ,w

K(x,y)

=L(x)L(y)K(x,y)− 2

N∑
j=1

wjL
(x)Λ

(y)
j K(x,y)

+
N∑
i=1

N∑
j=1

wiwjΛ
(x)
i Λ

(y)
j K(x,y)

=‖L‖HK − 2

N∑
j=1

wjΛj(`) +

N∑
i=1

N∑
j=1

wiwjΛ
(x)
i Λ

(y)
j K(x,y),

(3.6)

which is known as the squared worst-case error formula (see e.g. [119, 154]) or the power
function of the functional L (see e.g. [59, 135]).
Moreover, having in mind Proposition 3.4, according to (3.4) the worst-case error can also be
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3.2 Approximation of linear functionals 29

written as

‖RΛN ,w‖
2
H?K =

∞∑
k=0

|RΛN ,w(ψk)|2 =
∞∑
k=0

∣∣∣∣∣∣L(ψk)−
N∑
j=1

wjΛj(ψk)

∣∣∣∣∣∣
2

, (3.7)

where (ψk)
∞
k=0 is an orthonormal basis of HK .

For a given set of information ΛN ⊂ H?K , the optimal linear algorithm is defined by the vector
of optimal weights w̌(ΛN ) = (w̌1(ΛN ), . . . , w̌n(ΛN )), i.e.

w̌(ΛN ) := arg min
w∈RN

‖RΛN ,w‖H?K . (3.8)

It can be seen from (3.6) that ‖RΛN ,w‖2H?K is a quadratic form in w whose partial derivatives
are given by

∂

∂wk
‖RΛN ,w‖

2
H?K = −2

(
L(x)Λ

(y)
k K(x,y)−

N∑
i=1

wiΛ
(x)
i Λ

(y)
k K(x,y)

)
,

such that the first-order conditions for optimality ∂
∂wk
‖RΛN ,w‖2H?K = 0 for k = 1, . . . , N imply

L(x)Λ
(y)
k K(x,y) =

N∑
i=1

wiΛ
(x)
i Λ

(y)
k K(x,y) for k = 1, . . . , N. (3.9)

This leads to a linear system of equations, i.e. the vector of optimal weights is uniquely deter-
mined by

w̌(ΛN ) = w̌(ΛN ,K) = arg min
w∈Rn

‖RΛN ,w‖ = G−1
ΛN
· b(ΛN ). (3.10)

Here, the matrix G(ΛN ) ∈ RN×N is the Gramian of the representers λi of the functionals Λi
that act on HK , i.e.

G(ΛN ) = G(ΛN ,K) = (〈λi, λj〉HK )Ni,j=1 =
(

Λ
(x)
i Λ

(y)
j K(x,y)

)N
i,j=1

(3.11)

and the right-hand side vector b(ΛN ) ∈ RN is given by

b(ΛN ) := b(ΛN ,K) := (Λi(`))
N
i=1 =

(
L(x)Λ

(y)
i K(x,y)

)N
i=1

. (3.12)

If it is clear from the context, we will drop the dependence of G, b and w̌ on K to keep the
notation more simple.
In the following we will denote the linear approximation (3.5) that uses optimal weights w̌(ΛN )
defined in (3.10) by Q̌ΛN

. The associated error functional will be denoted by ŘΛN
and its

Riesz-representer as řΛN
.

Moreover, it will be helpful to express the worst-case error ‖ŘΛN
‖H?K in a more convenient

form. To this end, we note that by (3.9) the choice of optimal weights w̌(ΛN ) is equivalent to

ŘΛN
(λk) = Λk(řΛN

) = 0 for k =, 1 . . . , N.
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30 3 Reproducing kernel Hilbert spaces

Therefore, the worst-case error formula (3.6) takes the simpler form

‖ŘΛN
‖2H?K = ŘΛN

(řΛN
) = L(řΛN

)− Q̌ΛN
(řΛN

)

= L(řΛN
) = L(x)L(y)K(x,y)−

N∑
j=1

w̌j(ΛN )L(x)Λ
(y)
j K(x,y)

= ‖L‖2H?K −
N∑
j=1

w̌j(ΛN )Λj(`)

= ‖L‖2H?K − b
ᵀ(ΛN )G−1(ΛN )b(ΛN ).

(3.13)

Before we proceed, we note the following property of the optimally weighted worst-case error
‖ŘΛN

‖H?K . Let Λ̃N ⊂ H?K be a set of linear functionals such that span Λ̃N = span ΛN , i.e. there
exists a matrix A ∈ GL(n) such that Λ̃i =

∑N
k=1 ai,kΛk. Then, it holds

‖ŘΛN
‖H?K = ‖ŘΛ̃N

‖H?K ,

i.e. the worst-case error of an optimal algorithm is independent of any (invertible) linear trans-
formation of the underlying information. This follows from (3.13) because

‖ŘΛ̃N
‖2H?K =‖L‖2H?K − b

ᵀ(Λ̃N )G−1(Λ̃N )b(Λ̃N )

=‖L‖2H?K − (A · b(ΛN ))ᵀ(A ·G(ΛN ) ·Aᵀ)−1A · b(ΛN )

=‖L‖2H?K − b
ᵀ(ΛN )G−1(ΛN )b(ΛN ).

The following corollary summarizes the most important properties of optimally weighted ap-
proximations to bounded linear functionals in reproducing kernel Hilbert spaces.

Corollary 3.6. Let L ∈ H?K be a bounded linear functional with representer ` ∈ HK . Moreover,
ΛN = (Λ1, . . . ,ΛN ) ⊂ H?K denotes N different linear functionals as information.
Then, it holds
(i) For an arbitrary linear approximation

QΛ,w(f) =
N∑
i=1

wiΛi(f)

the worst-case error is given by

‖L−QΛ,w‖2H?K = L(x)L(y)K(x,y)− 2Q
(x)
Λ,wL

(y)K(x,y) +Q
(x)
Λ,wQ

(y)
Λ,wK(x,y)

= ‖L‖2H?K − 2QΛ,w(`) + ‖QΛ,w‖2H?K .
(3.14)

(ii) For an orthonormal basis (ψk)
∞
k=0 of HK the worst-case error can be computed by

‖L−QΛ,w‖2H?K =

∞∑
k=0

|L(ψk)−QΛ,w(ψk)|2
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3.2 Approximation of linear functionals 31

(iii) The vector of weights that minimizes the worst-case error (3.14) is given by

w̌(ΛN ) = G−1(ΛN ) b(ΛN ).

The resulting linear approximation to L

Q̌ΛN
(f) =

N∑
i=1

w̌i(ΛN )Λi(f)

achieves the smallest worst-case error among all (possibly nonlinear) algorithms that use
the information ΛN .

(iv) The representer of the error functional ŘΛN
= L− Q̌ΛN

vanishes at Λk, i.e.

Λk(řΛN
) = 0, for all k = 1, . . . , N

and the vector of optimal weights w̌ΛN
is uniquely determined by these conditions.

Equivalently, the optimal algorithm Q̌ΛN
treats exactly all functions from the span of the

representers {λi, i = 1, . . . , N}, where λi(x) = Λ
(y)
i K(x,y), i.e.

Q̌ΛN
(λi) = L (λi) for all i = 1, . . . , N.

(v) The worst case error of Q̌ΛN
takes the simpler form

‖ŘΛN
‖2H?K = ŘΛN

(`) = ‖L‖2H?K − Q̌ΛN
(`)

= ‖L‖2H?K −
N∑
i=1

w̌i(ΛN )Λi(`)

= ‖L‖2H?K − b
ᵀ(ΛN )G−1(ΛN )b(ΛN ).

(vi) The worst-case error ‖ŘΛN
‖H?K of an optimal algorithm that uses the information given

by ΛN ⊂ H?K is independent of any (non-singular) linear transformation of ΛN .

Finally, the following proposition states that the error of an optimal approximation algorithm
can always be reduced by adding a further information functional.

Lemma 3.7. If L /∈ span ΛN , the error of any optimal linear approximation Q̌ΛN
to L can be

reduced by adding a functional ΛN+1 ∈ H?K with ΛN+1(řΛN
) 6= 0 to the information.

Proof. We choose ΛN+1, such that ΛN+1(řΛN
) 6= 0 and define the linear algorithm

QN+1(f) := QΛN
(f) + w̃N+1ΛN+1(f),

whose error representer is rN+1(x) := řΛN
(x)− w̃N+1Λ

(x)
N+1K(x,y).

Choosing w̃N+1 = ΛN+1(řΛN
) ·
(

Λ
(x)
N+1Λ

(y)
N+1K(x,y)

)−1
, we obtain ΛN+1(řΛN

) = 0. Then, we
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32 3 Reproducing kernel Hilbert spaces

can compute

‖RN+1‖2 = RN+1(rN+1) = RΛN
(rN+1)− w̃N+1ΛN+1(rN+1)

= RΛN
(rN+1) = RΛN

(řΛN
)− w̃N+1ΛN+1(řΛN

)

= ‖řΛN
‖2 − w̃2

N+1

(
Λ

(x)
N+1Λ

(y)
N+1K(x,y)

)
.

As ‖ŘΛN+1
‖ ≤ ‖RN+1‖ < ‖ŘΛN

‖, the claim is proven.

Corollary 3.8. If K is normalized such that ‖L‖HK = 1, then ‖řΛN
‖HK < 1 for all N ≥ 1.

3.3 Relationship to spline algorithms

In the following we will discuss the relation of optimal cubature rules to so-called spline algo-
rithms, which are treated in a much more general setting in [154]. In what follows, we will keep
the level of abstraction as low as possible.

Definition 3.9. (Spline interpolation)
For a given set of linear functionals ΛN = (Λ1, . . . ,ΛN ) ⊂ H?K and a data vector f = (Λi(f))Ni=1

generated by a function f ∈ HK , the associated interpolatory spline Sf ∈ HK is defined by
(i) Λi(Sf ) = fi for i = 1, . . . , N , i.e. Sf interpolates the data f at ΛN .
(ii) ‖Sf‖HK = min {‖g‖ : g ∈ HK and Λi(g) = fi, i = 1, . . . , N} , i.e. among all functions that

interpolate f , the spline Sf has minimal HK-norm.

We can construct the interpolatory spline algorithm explicitly since it is the orthogonal projec-
tion of f onto HK(ΛN ). To this end, we define

Sf (x) :=

N∑
k=1

ck(f)λk(x), where c(f) := G−1(ΛN )f

=
N∑
k=1

N∑
l=1

G−1
k,l (ΛN )flΛ

(y)
l K(x,y),

(3.15)

where the matrix G(ΛN ) was defined in (3.11). The property (i) in Definition 3.9 now follows
from Λi(λk) = Gi,k(ΛN ) and hence

Λi(Sf ) =

N∑
k=1

ck(f)Λi(λk) = cᵀ(f)G(ΛN )ei = fᵀG−1(ΛN )G(ΛN )ei = fi.

To see (ii), we first show that f − Sf is orthogonal to Sf in HK , i.e.

〈f − Sf , Sf 〉HK = 0 for all f ∈ HK . (3.16)
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This follows by

〈f − Sf , Sf 〉HK =
N∑
k=1

ck(f)〈f − Sf , λk〉HK =
N∑
k=1

ck(f) Λk(f − Sf )︸ ︷︷ ︸
=0

= 0.

Then, we can conclude from (3.16) that

‖f − Sf‖2HK = ‖f‖2HK − ‖Sf‖
2
HK ,

which implies ‖Sf‖2HK ≤ ‖f‖
2
HK . In other words, the norm of Sf never exceeds the norm of f

and therefore is the desired minimum norm interpolant.
Next, we construct a cardinal representation of the spline (3.15) which consists of functions
H1, . . . ,HN ∈ span {λ1, . . . , λN} such that Λi(Hj) = δi,j . In the context of polynomial interpo-
lation such functions are sometimes called Lagrange basis.
The functions H1, . . . ,HN can be constructed by finding a matrix of coefficients C ∈ RN×N
which fulfills

N∑
k=1

Cj,kΛi(λk) = δi,j for all i, j = 1, . . . , N.

Because it holds Λi(λk) = 〈λi, λk〉HK = Λ
(x)
i Λ

(y)
j K(x,y) = Gi,k(ΛN ), we conclude that the

coefficient matrix is given by C = G−1(ΛN ), i.e.

Hj(x) =
N∑
k=1

G−1
j,k(ΛN )λk(x).

Now, the spline interpolant (3.15) can be written as

Sf (x) =
N∑
i=1

fiHi(x).

It is interesting to note that the optimal weights w̌1(ΛN ), . . . , w̌N (ΛN ) for the approximation
of a linear functional L ∈ H?K from (3.8) can also be obtained from the cardinal functions
H1, . . . ,HN via w̌i(ΛN ) = L(Hi). To see this, we compute

L (Hi) =
N∑
k=1

G−1
i,kL(λk) =

N∑
k=1

G−1
i,kΛk(`) =

(
G−1(ΛN )b(ΛN )

)
i

= w̌i(ΛN ). (3.17)

3.4 Application to numerical integration

Until now we kept everything rather abstract by considering only general linear information in
form of ΛN ⊂ H?K to approximate L ∈ H?K . In order to get more concrete, we now consider
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34 3 Reproducing kernel Hilbert spaces

the setting where L is an integration functional of the form

LΩ(f) :=

∫
Ω
f(x)ω(x) dx.

Here, Ω ⊆ Rd and ω : Ω → R≥0 is a non-negative weight function. We have to assume that
LΩ ∈ H?K , which is the case if the kernel K is integrable, i.e. L(x)

Ω L
(y)
Ω K(x,y) < ∞. We will

discuss two scenarios that are important in the remainder of this thesis.

3.4.1 Integration using function values

The most classical choice of the set of information ΛN would be point evaluations at a set of
N points XN = (ξ(1), . . . , ξ(N)). In what follows, the information provided by the functionals
ΛN = (δξ(1) , . . . , δξ(N)) will be denoted by XN as well.

For an arbitrary vector of cubature weights w ∈ RN the error functional is

RXN ,w(f) =

∫
Ω
f(x)ω(x) dx−

N∑
i=1

wif
(
ξ(i)
)
.

The associated worst-case error formula, c.f. (3.6) now reads

‖RXN ,w‖
2
H?K =

∫
Ω

∫
Ω
K(x,y)ω(x)ω(y) dx dy − 2

N∑
i=1

wi

∫
Ω
K(ξ(i),y)ω(y) dy

+
N∑
i=1

N∑
j=1

wiwjK(ξ(i), ξ(j)).

(3.18)

If optimal weights
w̌(XN ) = G−1(XN )b(XN )

are chosen, the resulting cubature rule

LΩ(f) ≈
N∑
i=1

w̌i(XN )f
(
ξ(i)
)

has the simplified worst-case error representation, c.f. Corollary 3.6, given by

‖ŘXN
‖2H?K =

∫
Ω

∫
Ω
K(x,y)ω(x)ω(y) dxdy −

N∑
i=1

wi

∫
Ω
K(ξ(i),y)ω(y) dy

=

∫
Ω

∫
Ω
K(x,y)ω(x)ω(y) dxdy − bᵀ(XN )G−1(XN )b(XN ).

According to (3.11) and (3.12), we have the Gramian G(XN ) = (K(ξ(i), ξ(j)))Ni,j=1 and the
right-hand side vector b(XN ) = (`Ω(ξ(i)))Ni=1 in this setting.
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3.5 Construction and composition of reproducing kernels 35

3.4.2 Integration using higher order derivatives

A different setting that will be important in Chapter 5 is univariate integration where not only
function values but also values of the derivative of the integrand can be used. To this end, let
Ω ⊆ R and a set of n points Xn = (ξ1, . . . , ξn) ∈ Ωn be given. For a vector of multiplicities
µ = (µ1, . . . , µn) ∈ Nn with N =

∑n
i=1 µi we write

Xµ
n =

(
ξ1 ξ2 · · · ξn
µ1 µ2 · · · µn

)
, µi > 0,

which is short for the information given by

ΛN = Xµ
n = (δξ1 , δ

1
ξ1 , . . . , δ

µ1−1
ξ1

, . . . , δξn , . . . , δ
µn−1
ξn

).

Here, δjx(f) = f (j)(x) denotes the evaluation of the j-th derivative of f at the point x ∈ Ω. We
assume that δjx is a bounded linear functional inHK , i.e. (δjx)(s)(δjx)(t)K(s, t) = K(j,j)(x, x) <∞.
The resulting optimal quadrature rule then reads

LΩ(f) ≈
n∑
i=1

µi−1∑
j=0

w̌i,j(X
µ
n )f (j)(ξi).

Again, due to (3.11) and (3.12) the vector of optimal weights w̌(Xµ
n ), which is now indexed by

i and j, can be computed by w̌(Xµ
n ) = G−1(Xµ

n )b(Xµ
n ).

Consequently, the Gramian matrix G(Xµ
n ) ∈ RN×N is given by

K(ξ1, ξ1) · · · K(0,µ1−1)(ξ1, ξ1) · · · K(ξ1, ξn) · · · K(0,µn−1)(ξ1, ξn)
...

. . .
...

...
. . .

...
K(µ1−1,0)(ξ1, ξ1) · · · K(µ1−1,µ1−1)(ξ1, ξ1) · · · K(µ1−1,0)(ξ1, ξn) · · · K(µ1−1,µn−1)(ξ1, ξn)

...
...

K(ξn, ξ1) · · · K(0,µ1−1)(ξn, ξ1) · · · K(ξn, ξn) · · · K(0,µn−1)(ξn, ξn)
...

. . .
...

...
. . .

...
K(µn−1,0)(ξn, ξ1) · · · K(µn−1,µ1−1)(ξn, ξ1) · · · K(µn−1,0)(ξn, ξn) · · · K(µn−1,µn−1)(ξn)


and the right-hand-side vector b(Xµ

n ) ∈ RN is

b(Xµ
n ) =

(
`Ω(ξ1), . . . , `

(µ1−1)
Ω (ξ1), · · · , `Ω(ξn), . . . , `

(µn−1)
Ω (ξn)

)ᵀ
.

3.5 Construction and composition of reproducing kernels

We have seen that the theory on reproducing kernels is very useful to tackle approximation and
interpolation in certain Hilbert spaces. In this section we will summarize some composition
formulas for kernels.
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36 3 Reproducing kernel Hilbert spaces

3.5.1 Product of reproducing kernels

Let K1 : Ω1 × Ω1 → R and K2 : Ω2 × Ω2 → R be reproducing kernels of HK1 and HK2 on
domains Ω1,Ω2 ⊆ R. Then, for Ω(2) := Ω1 × Ω2 the kernel

K(2)(x,y) := K1(x1, y1)K2(x2, y2)

is reproducing in the tensor product space

HK(2)
= HK1 ⊗HK2 .

More generally, it holds that for d symmetric positive definite kernel functionsKj : Ωj×Ωj → R,
j = 1, . . . , d the kernel

K(d)(x,y) :=

d∏
j=1

Kj(xj , yj)

is the reproducing kernel of the tensor product space

HK(d)
:=

d⊗
j=1

HKj .

See [16, Sec 4.6] and the references therein for more details.

3.5.2 Sum and differences of reproducing kernels

Let K1 and K2 be reproducing kernels on Ω×Ω with associated RKHSs HK1 and HK2 . Then,
K1(x,y) +K2(x,y) is the reproducing kernel of

HK1+K2 = HK1 ⊕HK2 = {f1 + f2 : f1 ∈ HK1 and f2 ∈ HK2} .

If HK1 ∩ HK2 = {0}, then HK is a direct sum, i.e. HK2 is the orthogonal complement of HK1

in H, c.f. [16].
The norm in HK1+K2 is given by

‖f‖2HK1+K2
= min{‖f1‖2HK1

+ ‖f2‖2HK2
: f1 ∈ HK1 and f2 ∈ HK2}.

Now, assume that HK1 is a closed subspace of HK . Then, the orthogonal complement of HK1

in HK , i.e. H⊥K1
has the reproducing kernel

K⊥1 (x,y) = K(x,y)−K1(x,y).

3.5.3 Restriction of reproducing kernels

Let K : Ω×Ω→ R be the reproducing kernel of HK and Ω̃ ⊂ Ω. Then the restriction K̃ = K|Ω̃
of K to Ω̃ is the reproducing kernel of the space {f|Ω̃ : f ∈ HK} =: HK̃ . The norm of HK̃ is
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3.5 Construction and composition of reproducing kernels 37

given by [16]
‖f̃‖HK̃ = min

f∈HK :f|Ω̃=f
‖f‖HK .

This result is important when considering spaces of holomorphic functions that are real valued
for real argument.

3.5.4 Kernels of finite dimensional spaces

If ψ1, . . . , ψn is an orthonormal basis of an n-dimensional space HK , the kernel K is due to
Proposition 3.4 simply given by

K(x,y) =
n∑
k=1

ψk(x)ψk(y).

However, if only a non-orthonormal basis φ1, . . . , φn of HK is available one can compute the
Gramian matrix G ∈ Rn×n with

Gi,j = 〈φi, φj〉HK , i, j = 1, . . . , n

and the reproducing kernel of HK is given by [16, Sec. 6.1]

K(x,y) =
n∑
i=1

n∑
j=1

G−1
i,j φi(x)φj(y). (3.19)

If ΛN = (Λ1, . . . ,ΛN ) ⊂ H?K we can project on the subspace spanned by the Riesz-representers
of ΛN , i.e.

HKΛN
:= span {λ1, . . . , λN}

whose reproducing kernel is according to (3.19) given by

KΛN
(x,y) =

n∑
i=1

n∑
j=1

G−1
i,j (ΛN )Λ

(y)
i K(x,y) Λ

(x)
j K(x,y). (3.20)

3.5.5 Kernels of a certain subspace

Sometimes one is interested in the subspace of a RKHS which is defined by the property that
its elements vanish at a finite set of certain linear functionals, i.e.

{f ∈ HK : Λi(f) = 0 for i = 1, . . . , N}.

Examples are subspaces with prescribed zeros or zeros of derivatives. But one could also con-
struct subspaces of functions with vanishing moments.
The following proposition gives an explicit formula for the kernel of such subspaces.
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38 3 Reproducing kernel Hilbert spaces

Proposition 3.10. For a given set of N linear functionals ΛN = (Λ1, . . . ,ΛN ) ⊂ H?K let

K⊥ΛN
(x,y) := K(x,y)−KΛN

(x,y),

where KΛN
(x,y) was given in (3.20). The unique Hilbert space in which K⊥ΛN

is reproducing
is given by

HK⊥ΛN
= {f ∈ HK : Λi(f) = 0 for i = 1, . . . , N} .

Proof. First, we note that the Riesz-representer of Λk ∈ H?K in H⊥KΛN
is given by

λ̃k(x) = Λ
(y)
k K⊥ΛN

(x,y).

Since Λk(f) = 〈λ̃k, f〉H⊥KΛN

, it suffices to show that λ̃k ≡ 0. To this end, we compute

λ̃k(x) = Λ
(y)
k

(
K⊥ΛN

(x,y) = Λ
(y)
k K(x,y)−KΛN

(x,y)
)

= Λ
(y)
k K(x,y)−

n∑
i=1

n∑
j=1

G−1
i,j (ΛN )Λ

(y)
i K(x,y) Λ

(x)
j Λ

(y)
k K(x,y)

= Λ
(y)
k K(x,y)−

n∑
i=1

n∑
j=1

G−1
i,j (ΛN )Λ

(y)
i K(x,y)Gj,k(ΛN )

= Λ
(y)
k K(x,y)−

n∑
i=1

Λ
(y)
i K(x,y)

n∑
j=1

G−1
i,j (ΛN )Gj,k(ΛN )

= Λ
(y)
k K(x,y)−

n∑
i=1

Λ
(y)
i K(x,y) δi,k

= Λ
(y)
k K(x,y)− Λ

(y)
k K(x,y)

= 0.

3.5.6 Kernels of L2 subspaces

Let L2(Ω, ω) denote the space of functions that are square-integrable on Ω ⊆ Rd with respect
to the weight function ω. The inner product is given by

〈f, g〉L2(Ω,ω) =

∫
Ω
f(x)g(x)ω(x) dx.

Let (φk)
∞
k=0 be an orthonormal basis of L2(Ω, ω). Then, every f ∈ L2(Ω, ω) can be written as

f(x) =
∞∑
k=0

〈f, φk〉L2(Ω,ω)φk(x)
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3.5 Construction and composition of reproducing kernels 39

where we will abbreviate f̂k := 〈f, φk〉L2(Ω,ω). By Parseval’s identity, it holds

‖f‖2L2(Ω,ω) =
∞∑
k=0

∣∣∣f̂k∣∣∣2 <∞
for all f ∈ L2(Ω, ω).
Now consider a subspace of L2(Ω, ω) defined by some weight function ρ : N0 → R+, which
fulfills

ρ(0) = 1 and ρ(k + 1) ≥ ρ(k).

We can define the norm

‖f‖2Hρ :=

∞∑
k=0

ρ(k)
∣∣∣f̂k∣∣∣2

and the space generated by ρ is then the subset of L2 with finite ‖f‖Hρ-norm, i.e.

Hρ :=
{
f ∈ L2(Ω, ω) : ‖f‖Hρ <∞

}
.

The inner product in this space is

〈f, g〉Hρ =
∞∑
k=0

ρ(k)f̂k ĝk

and the set of functions
ψk(x) :=

1√
ρ(k)

φk(x)

is orthonormal in Hρ. Consequently, according to Proposition 3.4, the reproducing kernel of
Hρ is given by

K(x,y) =
∞∑
k=0

ψk(x)ψk(y) =
∞∑
k=0

ρ(k)−1φk(x)φk(y).

3.5.7 Kernels from Taylor spaces

A similar approach consists in so-called Taylor spaces. The idea goes back at least to [33]
and more recently was studied in [51, 168]. The basic principle is to replace the Fourier series
expansion in the preceding subsection by the power series expansion

f(z) =
∞∑
k=0

fkz
k (3.21)

of functions that are analytic in open discs of radius r ∈ (0,∞], i.e. Dr = {z ∈ C : |z| < r}.
Because fk = f (k)(0)/k! is also the k-th Taylor coefficient, (3.21) is the Taylor series of f .
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40 3 Reproducing kernel Hilbert spaces

Following [33] let the function

θ(z) :=
∞∑
k=0

θkz
k

be analytic in Dr and real-valued for z ∈ R. We define the space

Tθ :=

{
f ∈ Hol(Dr) :

∞∑
k=0

|fk|2

θk
<∞

}

with the inner product between f(z) =
∑∞

k=0 fkz
k and g(z) =

∑∞
k=0 gkz

k given by

〈f, g〉Tθ =

∞∑
k=0

θ−1
k fk gk

and norm

‖f‖2Tθ = 〈f, f〉Tθ =

∞∑
k=0

θ−1
k |fk|

2.

The reproducing kernel K : Dr × Dr → C is then given by

K(x, y) =
∞∑
k=0

θkx
kyk = θ(x y).

Indeed, it holds for real x ∈ (−r, r) that

〈f,K(·, x)〉Tθ =
∞∑
k=0

θ−1
k fk θkx

k =
∞∑
k=0

fkx
k = f(x).

Many well-known function spaces fit into this framework, c.f. [168], and the examples given in
the sequel.

3.6 Examples of relevant RKHS

In the following we will give several examples for univariate reproducing kernel Hilbert spaces,
whose tensor products are relevant in numerical analysis, scientific computing, machine learning
and engineering.

3.6.1 Sobolev spaces

The scale of Sobolev spaces Hs(Ω), Ω ⊂ R, s ∈ N consists of square-integrable functions on Ω,
whose first s weak derivatives are bounded in L2 as well, i.e.

Hs(Ω) =
{
f ∈ L2(Ω) :

∫
Ω

∣∣∣f (k)(x)
∣∣∣2 dx <∞ for k = 0, 1, . . . , s

}
. (3.22)
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3.6 Examples of relevant RKHS 41

There are several ways to choose a norm for Hs(Ω) c.f. [101]. In what follows we will concentrate
on a particular class of norms which result in an easy closed-form expression of the associated
reproducing kernel.

Periodic Sobolev space

We will start with the Sobolev space on the torus T = [0, 1) which consists of periodic functions
that fulfill (3.22) and whose first s− 1 derivatives are periodic.
A possible norm for the periodic Sobolev space

H̃s = Hs(T) =
{
f ∈ Hs(Ω) and f (k)(0) = f (k)(1) for k = 0, . . . , s− 1

}
.

is given by

‖f‖2
H̃s :=

(∫ 1

0
f(x) dx

)2

+

∫ 1

0

∣∣∣f (s)(x)
∣∣∣2 dx, (3.23)

because the integrals of the derivatives k ∈ {1, . . . , s− 1} vanish due to the periodic boundary
conditions.
Having in mind the construction from Section 3.5.6, we define the weight

ρ(k) := max(1, 2π|k|).

Inserting the Fourier expansion
f(x) =

∑
k∈Z

f̂ e2πikx,

where f̂k =
∫ 1

0 f(x)e−2πikx dx denotes the k-th Fourier coefficient, we note that (3.23) equals

‖f‖2
H̃s =

∑
k∈Z

ρ(k)2s|f̂k|2.

Consequently, the reproducing kernel of H̃s is given by

K̃s(x, y) =
∑
k∈Z

ρ(k)−2s exp(2πik x)exp(2πik y) =
∑
k∈Z

ρ(k)−2s exp (2πik(x− y)) .

For s ∈ N, this infinite series can be written as [157]

K̃s(x, y) = 1 +
(−1)s+1

(2s)!
B2s(|x− y|),

where B2s : [0, 1]→ R denotes the Bernoulli polynomial of degree 2s.
We will also briefly comment on the space H̃s

mix = H̃s ⊗ . . . ⊗ H̃s, which is the d-fold tensor
product of univariate periodic Sobolev spaces. Due to the tensor product structure its norm is
given by

‖f‖2
H̃s =

∑
k∈Zd

d∏
j=1

ρ(kj)
2s|f̂k|2, f̂k =

∫
[0,1]d

f(x)e−2πik·x dx (3.24)
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42 3 Reproducing kernel Hilbert spaces

and according to Section 3.5.1 the reproducing kernel of H̃s
mix is

d∏
j=1

K̃s(xj , yj) =
∑
k∈Zd

d∏
j=1

ρ(kj)
−2s exp (2πik · (x− y)) .

Nonperiodic Sobolev space

The so-called unanchored Sobolev space on [0, 1] is constructed from H̃s by adding those func-
tions that reproduce the boundary values of f (k) for k = 0, . . . , s − 1. To this end, we note
that the Bernoulli polynomials B1, . . . , Bs have the property

∫ 1
0 Bj(x) dx = 0 and they repro-

duce the values of functions on the boundary of [0, 1], c.f. [158]. Therefore, by the additive
composition formula in Section 3.5.2, the kernel

Ks(x, y) = 1 +
(−1)s+1

(2s)!
B2s(|x− y|) +

s∑
j=1

Bj(x)Bj(y)

(j!)2

reproduces point evaluation in Hs([0, 1]) with respect to the inner product

〈f, g〉Hs =
s−1∑
j=0

(∫ 1

0
f (j)(x) dx

)(∫ 1

0
g(j)(x) dx

)
+

∫ 1

0
f (s)(x)g(s)(x) dx.

We refer to [52, 158] for details.

Zero boundary condition

More restrictive is the class of functions, whose support is strictly contained in the open interval
(0, 1), i.e. f ∈ Hs and suppf ⊂ (0, 1). These functions play a role in the construction of Frolov
cubature methods, cf. [63, 156]. An equivalent definition is

H̊s(Ω) =
{
f ∈ Hs(Ω) and f (k)(0) = f (k)(1) = 0 for k = 0, . . . , s− 1

}
.

Obviously, we have
H̊s(Ω) ⊂ H̃s(Ω) ⊂ Hs(Ω).

Since H̊s is a subspace of H̃s, we can invoke the results from Section 3.5.5 to construct the
reproducing kernel of H̊s.
To this end, we first note that it holds for f ∈ H̃s that f (j)(0) = f (j)(1) for j = 0, . . . , s− 1. In
order to determine the subspace where

f (j)(0) = f (j)(1) = 0,

we first define the set X1 := {0} and µ = (s − 1). Then, in the notation of Section 3.5.5 the
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3.6 Examples of relevant RKHS 43

space HK(Xµ1 ) is the orthogonal complement of H̊s. Consequently, the kernel of H̊s is given by

K̊s(x, y) = K̃s(x, y)−
s∑
i=1

s∑
j=1

G−1
i,j (Xµ

1 )K̃(0,i−1)
s (x, 0)K̃(j−1,0)

s (0, y),

where K(p,q)(x, y) = ∂p∂q

xpyqK(x, y) and the Gramian G(Xµ
1 ) ∈ Rs×s is defined by

Gi,j(X
µ
1 ) = K̃(i−1,j−1)

s (0, 0) for i, j = 1, . . . , s.

3.6.2 Hardy spaces on open discs

Classically, c.f. [54], the scale of univariate Hardy spaces Hp
r with r ∈ (1,∞) and p ∈ [1,∞] is

defined as the set of functions that are holomorphic on the open disc Dr = {z ∈ C : |z| < r}
and have bounded Lp-norms on all circles of radius t < r, i.e. ( 1

2π

∫ 2π
0

∣∣f (teiϕ
)∣∣p dϕ)1/p < ∞

for all 0 ≤ t < r. Then, functions f ∈ Hp
r can be extended point-wise to the boundary of Dr

almost everywhere and their norm1 is given by

‖f‖Hpr =

(
1

2πr

∫
∂Dr
|f(z)|pd|z|

) 1
p

=

(
1

2π

∫ 2π

0
|f
(
reiϕ

)
|pdϕ

) 1
p

,

i.e. by the Lp-norm on the circle bounding Dr or equivalently on the torus T = [0, 2π). Therefore,
analogously to the scale of Lp(T)-spaces, H1

r are Banach spaces and we have the inclusion
Hq
r ⊂ Hp

r for 1 ≤ p < q ≤ ∞, see e.g. [54]. Moreover, for 1 ≤ t < r it holds Hp
r ⊂ Hp

t .
In the context of approximation theory, functions of this class have been studied for quite some
time, e.g. the case r > 1 and p = 2 in [103, 133], r ≥ 1 and p =∞ in [99] or r = 1 and p ∈ (1,∞]
in [3, 145].
In the following we will be interested in the case p = 2 when Hr := H2

r becomes a Hilbert space
with inner product

〈f, g〉Hr =

(
1

2π

∫ 2π

0
f
(
reiϕ

)
g (reiϕ) dϕ

)1/2

. (3.25)

Using that f, g ∈ Hr can be represented as absolutely convergent power series on Dr, i.e.

f(z) =
∑
k∈N0

fkz
k and g(z) =

∑
k∈N0

gkz
k,

together with the orthogonality of the monomial basis with respect to (3.25) we obtain an
alternative representation of the inner product, i.e.

〈f, g〉2Hr =
1

2π

∫ 2π

0
f
(
reiϕ

)
g (reiϕ) dϕ

=
∑
k1∈N0

∑
k2∈N0

fk1gk2

1

2π

∫ 2π

0

(
reiϕ

)k1
(reiϕ)k2 dϕ

1In the case p = ∞ we have the obvious modification ‖f‖H∞
r

= ess supz∈∂Dr
|f(z)|.
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44 3 Reproducing kernel Hilbert spaces

=
∑
k1∈N0

∑
k2∈N0

fk1gk2

1

2π

∫ 2π

0
rk1+k2eiϕk1e−iϕk2 dϕ

=
∑
k∈N0

r2kfkgk.

Therefore, the Hr-norm can also be realized in terms of the weighted `2-norm of the power
series coefficients, i.e.

‖f‖Hr =
( ∑
k∈N0

r2k|fk|2
)1/2

,

which fits into the setting of Section 3.5.7, by choosing

θ(z) :=
∞∑
k=0

r−2kzk =
r2

r2 − z
.

Consequently, for x, y ∈ R the reproducing kernel of H2
r is given by

Kr(x, y) =
r2

r2 − xy
.

3.6.3 Taylor space generated by the di-logarithm

Our next example consists of functions that are analytic on the open disc of radius r = 1,
i.e. D1 = {z ∈ C : |z| < 1}, and have derivatives in the Hardy space Hr with r = 1. This
property is important for certain integrands that appear in econometrics, cf. Section 8.3 of
Chapter 8.
We will denote this space by TLi2 which refers to the di-logarithm

Li2(x) =
∞∑
k=1

xk

k2
.

In the notation of Section 3.5.7 we set

θ(x) = 1 +

∞∑
k=1

k−2xk = 1 + Li2(x).

Consequently, the norm of f(z) =
∑∞

k=0 fkz
k in TLi2 is

‖f‖2TLi2
:=

(
|f0|2 +

∞∑
k=1

k2 |fk|2
)1/2

and the associated inner product is

〈f, g〉TLi2
= f0g0 +

∞∑
k=1

k2fkgk.
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3.6 Examples of relevant RKHS 45

Moreover, the reproducing kernel K of TLi2 for real arguments is given by

K(x, y) = 1 + Li2(xy).

Finally, we note that the first derivative of functions from TLi2 belongs to the Hardy space Hr

with radius r = 1.

Proposition 3.11. For every f ∈ TLi2 it holds that

f ′ ∈ H1,

i.e. the first derivative is in the Hardy space of functions analytic on the open unit disc.

Proof. For a given f ∈ TLi2 it holds

f ′(z) =

∞∑
k=1

kfkz
k−1 =

∞∑
k=0

(k + 1)fk+1z
k,

i.e. the power series coefficients of f ′ are given by ((k + 1)fk+1)∞k=0. The ‖ · ‖H1-norm of f ′ is
therefore

‖f ′‖2H1
=

∞∑
k=0

|(k + 1)fk+1|2 =

∞∑
k=1

|kfk|2 =

∞∑
k=1

k2 |fk|2 ≤ ‖f‖2TLi2
<∞.

3.6.4 Hermite spaces

The scale of Hermite spacesMτ was introduced in [91] and consists of functions whose Hermite-
coefficients fulfill certain decay conditions in the spirit of Section 3.5.6. To this end, let the k-th
degree Hermite polynomial be denoted by

Hk(x) =
(−1)k√
k!

e
x2

2
dk

dxk
e
−x2

2 .

For Ω = R and ω(x) = 1√
2π
e−x

2/2 it holds

〈Hi, Hj〉L2(Ω,ω) = δi,j .

Let
f̂k = 〈f,Hk〉L2(Ω,ω)

denote the k-th Hermite coefficient of a function f ∈ L2(Ω, ω). In the following we will con-
sider the class of functions whose Hermite coefficients decay exponentially. To this end, for a
parameter τ ∈ (0, 1) we define the norm

‖f‖2Mτ
:=

∞∑
k=0

τ−kf̂2
k
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46 3 Reproducing kernel Hilbert spaces

and the function space
Mτ := {f ∈ L2(Ω, ω) : ‖f‖Mτ <∞}.

Consequently, the reproducing kernel ofMτ is given by

K(x, y) =
∞∑
k=0

τkHk(x)Hk(y). (3.26)

By Mehler’s formula, c.f. [91, 148], (3.26) can be written as

K(x, y) =
1√

1− τ2
exp

(
1

τ−1 + 1
xy − 1

2(τ−2 − 1)
(x− y)2

)
.

Moreover, it was shown in [91] that f ∈Mτ is analytic in a strip of width τ−1 − 1, i.e.

f ∈ Hol(Sτ−1), with Sτ−1 =
{
z ∈ C : z = x+ it for t ∈ (−(τ−1 − 1), τ−1 − 1)

}
.

3.6.5 Gaußian spaces

Our final example consists of most famous kernel, namely the Gaussian kernel

K(x, y) = exp
(
−γ2(x− y)2

)
,

which is frequently used within support vector machines for machine learning problems [139].
Due to a general theorem by Bochner, c.f. [163], the space in which the Gaußian kernel is
reproducing consists of entire functions, i.e. f ∈ Hol(C), whose Fourier transform F(f)(ω) =
1

2π

∫
R f(t)eiωt dt decays exponentially, i.e.

‖f‖2HK =
1

2π

∫
R
|F(f)(ω)|2 exp

(
ω2

2γ2

)
dω <∞.

Further details on HK can be found in [144] or [102], where the space is characterized in terms
of an L2 eigenfunction basis.
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4 Optimal cubature using random point sets

In this chapter we investigate to which extent optimal cubature weights can improve the con-
vergence rate of plain Monte Carlo and classical quasi–Monte Carlo in Sobolev spaces with
dominating mixed smoothness on the d-dimensional torus T = [0, 1)d and the d-dimensional
unit cube [0, 1]d. In other words, as information, cf. Section 2.1, we use function values at
uniformly distributed points or low-discrepancy point sets XN = (ξ(1), . . . , ξ(N)) ⊂ [0, 1)d.
Classical (quasi–)Monte Carlo methods, abbreviated by (q)MC, like e.g. the Halton sequence
[82], use uniform weights wi = 1/N , i.e.

Q
(q)MC
XN

(f) =
1

N

N∑
i=1

f
(
ξ(i)
)
.

They can achieve a convergence rate of N−1/2 or N−1 log(N)(d−1)/2, respectively, in Hs
mix for

s ≥ 1. There are also so-called higher order quasi–Monte Carlo methods [52] as well as lattice
rules [141]. They can achieve higher order convergence for s > 1 but are not studied at this
point because the former are difficult to construct already for moderate d ≥ 6 and the latter
only work for periodic functions.
For a given s ∈ N we will consider the cubature rule

Q̌XN
(f) :=

N∑
i=1

w̌i(XN , H
s
mix)f

(
ξ(i)
)

that uses the optimal vector of weights w̌i(XN ) which minimize the worst-case error in Hs
mix

among all linear algorithms that use the point set XN as information. Hence, the radius of
information of the point set XN in Hs

mix equals the worst-case error of this optimally weighted
cubature rule, i.e.

w̌ce(XN , H
s
mix) = wce(Q̌XN

, Hs
mix).

In order to compute w̌i(XN ), we will make use of the reproducing kernel Hilbert space based
computation of the worst-case error, cf. Chapter 3, which can rather easily be implemented in
a computer. Therefore, it is a natural approach to conduct numerical experiments, analyze the
resulting data, and put forward a theory which then hopefully can be proven.
The numerical experiments can be found in Section 1 of this chapter. Here, we compare the
worst-case errors of classical (quasi–) Monte Carlo point sets with uniform 1/N weights to their
optimally weighted counterparts as well as to the sparse grid construction. As it turns out,
the choice of optimal cubature weights can improve the convergence rate from O(N−1/2) for
conventional uniformly weighted Monte Carlo or O(N−1 log(N)(d−1)/2) for quasi–Monte Carlo
cubature to O(N−s log(N)q). Here, q seems to be substantially smaller than (d−1)(s+1/2), as
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48 4 Optimal cubature using random point sets

would be the case for sparse grids. However, even though the worst-case error formula is exact,
we can only compute it numerically for rather small N ∈ {1, . . . , 215}. Therefore, in Section
4.2 we will deal with the derivation of sound asymptotic results on the radius of information
of random points. Here, we obtain an upper bound which is of order N−s+1/2 log(N)ds−1/2.
Unfortunately, this leaves a gap to the previously observed optimal main rate N−s.
Finally, in Section 3 we will comment on the reasons why the promising results of Section 1
and 2 can not be expected to be carried over to analytic function spaces.

4.1 Numerical experiments

In the first part of this section we consider integration in Ω = [0, 1]d with respect to the uniform
density function ω(x) ≡ 1. We will investigate the radius of information, cf. (2.4), of both
random and quasi–random point sets for the approximation of

LΩ(f) :=

∫
[0,1]d

f(x) dx,

in periodic and non-periodic Sobolev spaces with bounded mixed derivatives numerically. We
will see that they achieve an optimal main rate of N−s log(N)q(s,d), where the best possible
log-exponent is q(s, d) = (d − 1)/2 and hence independent of the smoothness s, cf. [43, 150].
However, the numerical experiments suggest that for optimally weighted random points the
exponent q(s, d) in fact is depending on s.

4.1.1 Setup

Recalling Section 3.6.1 the reproducing kernel K̃ of the periodic Sobolev space with bounded
mixed derivatives H̃s

mix := Hs
mix(Td) can be written as

K̃(x, y) =
∑
k∈Z

ρ(k)−2s exp (2πik(x− y)) = 1 +
(−1)s+1

(2s)!
B2s(|x− y|), (4.1)

where s ∈ N and Bj denotes the j-th Bernoulli polynomial.
Moreover, the kernel of the non-periodic Sobolev space Hs

mix := Hs
mix([0, 1]d) is given by, cf. Sec-

tion 3.6.1,

K(x, y) = K̃(x, y) +

s∑
j=1

Bj(x)Bj(y)

(j!)2
. (4.2)

Consequently, according to the results in Section 3.5.1, the kernel of the tensor product spaces
H̃s

mix and Hs
mix are given by the product of the univariate kernels, i.e.

K̃(x,y) =

d∏
j=1

K̃j(xj ,j ) and K(x,y) =

d∏
j=1

Kj(xj ,j ),

respectively.
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Moreover, we can directly obtain from (4.1) and the zero mean property of the Bernoulli poly-
nomials that the Riesz-representer of LΩ(f) =

∫
[0,1]d f(x) dx is constant in both, H̃s

mix and
Hs

mix, i.e.

`Ω(x) =

∫
[0,1]d

K(x,y) dy =

∫
[0,1]d

K̃(x,y) dy = 1.

Therefore, we also have
‖LΩ‖(Hs

mix)? = ‖LΩ‖(H̃s
mix)? = 1.

Since we will put an emphasis on the periodic Sobolev space in the following, we will from now
on explain our approach for H̃s

mix. However, by replacing K̃ by K every formula holds for the
non-periodic setting as well.
Before we proceed, we recall (3.10), i.e. the vector of optimal weights for a given setXN ⊂ [0, 1)d

of N cubature points is given by

w̌(XN ) := G−1(XN ) · b(XN ), (4.3)

where b(XN ) = (`Ω(ξ(i)))Ni=1 = 1 ∈ RN and G(XN ) =
(
K̃(ξ(i), ξ(j))

)N
i,j=1

∈ RN×N .

Moreover, recalling (3.18), the worst-case error of a cubature-rule

QN (f) :=
N∑
i=1

wif(ξ(i))

is given by

wce(QN , H̃
s
mix) =

√√√√1− 2

N∑
i=1

wi +

N∑
i=1

N∑
j=1

wiwjK̃(ξ(i), ξ(j)). (4.4)

The expression on the right-hand side of (4.4) has to be computed with a precision of ε2

to guarantee an accuracy of ε for wce(QN , H̃
s
mix) on the left-hand side. Depending on the

magnitude of wce(QN , H̃
s
mix), we thus have to use data types with a precision beyond 10−16,

as is the standard double floating point arithmetic.

4.1.2 Numerical results

We compute the optimal weights w̌(XN ) in (4.3) using a Cholesky decomposition of G(XN ).
This involves costs of approximately N3 floating point operations. For the numerical experi-
ments with s ≥ 2 we use the GNU Multiple-precision library MPFR [62] with a fixed precision
of 96 binary digits. This equals a decimal precision of about 10−27 and hence is sufficient to
compute worst-case errors up to 10−13 accurately.
The set of uniformly distributed random cubature points XN is drawn with the Mersenne
twister implementation of C++11, using the number 2016 as seed. For the generation of the
Halton and Sobol quasi–random point sets we used the GNU Scientific Library (GSL) [58].
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Figure 4.1: Numerical results for the mixed-Sobolev spaceHs
mix(Td) with smoothness parameter

s = 1 on the torus.

4.1.3 Worst-case error in the periodic setting

We will start with the detailed numerical investigation of the periodic setting, i.e. the space
H̃s

mix = Hs
mix(Td). Here, we compare optimally weighted random and Halton points to their

unweighted counterparts as well as to sparse grids based on the rectangle rule, which is known
to be optimal for integration in univariate Sobolev spaces of periodic functions, cf. [22, 30]. In
Section 4.1.4 we will demonstrate that similar results hold for the non-periodic Sobolev space
Hs

mix([0, 1]d) as well.
For the smoothness parameter s = 1, we give the results of the worst-case error computation
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(4.4) in dimensions d ∈ {2, 4, 8, 16} in Figure 4.1. In d = 2 it is known that the Fibonacci
lattice gives the optimal order of the convergence rate N−1 log(N)1/2. Moreover, in [88] we
gave a computer-based proof by exhaustion that for N up to 16 the Fibonacci lattice represents
the true global minimum of the worst-case error function with respect to the location of the
points. Here, we can see that Halton points with and without optimal weights also attain
this optimal rate of convergence. Random points with uniform weight 1/N achieve the rate
of N−1/2, which improves to N−1 with optimal weights. It is not clear whether an additional
log-factor comes into play here. Finally, sparse grids also attain the main rate N−1, but an
additional log factor is clearly present.
In higher dimensions d ∈ {4, 8, 16} the picture is basically the same: For s = 1, Halton points
with and without optimal weights seem to achieve the best possible rate

N−s log(N)(d−1)/2. (4.5)

Unfortunately, the Fibonacci lattice does not have a canonical counterpart in higher dimensions.
Therefore, it appears in the plots for d = 2 only.

It is noteworthy that the rate (4.5) only holds asymptotically. For small N ≤ e
d−1
2s , the rate

(4.5) is not even meaningful at all because it is not decreasing. Therefore, the Halton sequence
with and without optimal weights, as well as the optimally weighted Monte Carlo method,
achieve a pre-asymptotic rate that is better than (4.5) in d = 8 and d = 16, where (4.5) was
not even plotted at all.
Another observation for s = 1 is that sparse grids, as well as uniformly weighted Halton and
random points, yield the same worst-case error if N = 1. This is due to the periodicity in
Hs

mix(Td) – it simply does not matter where the first point is placed, as long as the weight is
1. However, with non-uniform weights one can improve the worst-case error, as it is the case
for the optimally weighted (quasi–) Monte Carlo rules. We will see that this effect becomes less
influential in higher smoothness.
For smoothness parameter s = 2, the results of the worst-case error computation (4.4) in
dimensions d ∈ {2, 4, 8, 16} are given in Figure 4.2. Again, the Fibonacci lattice attains the
best possible rate (4.5) in d = 2. As opposed to s = 1, now the Halton sequence with uniform
weights still has a main rate of N−1. This can be improved by computing optimal weights: The
optimally weighted Halton sequence achieves a main rate of N−2, where a log-factor seems to
be involved. The same holds for Monte Carlo points which have order N−1/2 convergence for
uniform weights and a main rate of N−2 when optimal weights are used. Additional log-factors
seem to be involved here as well. However, as the dimensionality becomes larger, i.e. d = 8
or d = 16, one can clearly see that the optimally weighted random and quasi–random point
sets converge much faster than the sparse grid method, which has a log-factor with exponent
(d− 1)(s+ 1/2), cf. [44]. Therefore, we believe that the dimension and smoothness dependence
of the log-factors for the optimally weighted (q)MC methods is much weaker than with sparse
grids.
Another effect that becomes visible in d = 16 is that the optimally weighted random points have
a smaller worst-case error than optimally weighted Halton points for small N . However, the
Halton sequence becomes more efficient than random points as N gets larger. We explain this
behaviour by the fact that most quasi–random constructions in high dimensions attain their
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Dimension d = 16 and smoothness s = 2

Figure 4.2: Numerical results for the mixed-Sobolev spaceHs
mix(Td) with smoothness parameter

s = 2 on the torus.

small discrepancy bounds only for large N , i.e. large constants are involved. The discrepancy
of random points, however, can be bounded by

√
d/N , cf. [85], which is only mildly dependent

on d.
In Figure 4.3 the plots for the case s = 3 are given. Here, the gap between the optimal Fibonacci
lattice and optimally weighted Halton and Monte Carlo points for d = 2 is even more prominent
than in the case s = 2. Therefore, we conclude that there is an s-dependency in the log-term
of optimally weighted (quasi–) random sequences, even though it might be possible that just
the constant gets worse.
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Figure 4.3: Numerical results for the mixed-Sobolev spaceHs
mix(Td) with smoothness parameter

s = 3 on the torus.

Looking at the higher dimensional settings d ∈ {4, 8, 16}, we get a similar picture as in the
cases before: For small point sets optimally weighted random points are the best choice, but,
as N increases, the optimally weighted Halton becomes superior. In all cases we observe that
optimally weighted (quasi–) random points achieve the best possible main rate N−3 and even
outperform sparse grids, especially if d gets large.
In order to investigate whether the log-exponent of optimally weighted random and Halton
points is s-dependent at all, we multiplied the respective worst-case errors w̌ce(XN , H̃

s
mix)

with N s and plotted the resulting data against the logarithmically scaled point numbers N . As
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Figure 4.4: Dependency of the log-term on the smoothness s ∈ {1, 2, 3}.

can be observed in Figure 4.4, the depicted curves clearly depend on the smoothness parameter
s ∈ {1, 2, 3}. Therefore, it can be ruled out that optimally weighted random points do achieve
the best possible rate N−s log(N)(d−1)/2, whose log-term is independent of the smoothness s.

Stability

Finally, we comment on the stability of the optimal weights w̌(XN ). We recall that a cubature
rule is called stable if |w̌(XN )|1 is uniformly bounded by some constant for all N or at least
does not grow faster than a power of log(N).
In Figure 4.5 the values of |w̌(XN )|1 are given for different smoothness parameters s ∈ {1, 2, 3}
and N = 2k. The point set XN is either the Halton sequence or the random sequence used
in the worst-case error experiments before. Clearly, the optimally weighted cubature rules are
stable for large N . However, between N = 10 and N = 100 the random points and for s = 3
also the Halton sequence get less stable. Still, |w̌(XN )|1 is bounded by 4 for all the considered
combinations of the number of points N , the dimensionality d and the smoothness s.

4.1.4 Extension to the non-periodic setting
It is a natural question whether the results of the preceding section are related to the periodicity
of the considered function spaces. To this end, we compute the worst-case error in Hs

mix on
[0, 1]d with the very same approach as before. As mentioned in Section 4.1.1, all the formulas
apply in the non-periodic setting as well, albeit replacing the kernel K̃ with the kernel K given
in (4.2). The associated reproducing kernel Hilbert space Hs

mix([0, 1]) contains all functions
from its periodic counterpart H̃s

mix as well as all of its products with multivariate polynomials
of the form

p(x) =
∑
|k|∞≤s

ck

d∏
j=1

x
kj
j .
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Figure 4.5: Stability of optimal cubature in the mixed-Sobolev space Hs
mix(Td) for smoothness

parameters s ∈ {1, 2, 3}.

Therefore, Hs
mix([0, 1]) is substantially larger than H̃s

mix. Yet, it is known [150] that there exist
cubature algorithms which can achieve the same optimal asymptotic rate of convergence as
in the periodic setting, i.e. O(N−s log(N)(d−1)/2). However, not much is known about the
constant that is involved in the O-notation.
Again, we compute the optimal weights w̌(XN ) in (4.3) using a Cholesky decomposition of
G(XN ), where XN are either Halton points or uniformly distributed random points generated
with the Mersenne twister.
These optimally weighted random and Halton points are compared to their unweighted coun-
terparts. In Figure 4.6 we give the results for s = 2. We observe that using optimal weights
improves the convergence rate to the best possible main rate N−s. Moreover, the Halton se-
quence with equal weights has a worst-case error that is larger than 1. We explain this by the
fact that the first Halton point is 0 ∈ Rd which is a corner of the domain of integration. This
is no problem for periodic functions, but in the non-periodic setting, where boundary effect are
present, it is usually advantageous to avoid placing points too close to the boundary [122].
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Figure 4.6: Worst-case errors for the non-periodic Sobolev space Hs
mix on [0, 1]d with s = 2.

4.2 Upper bounds

In this section, we will prove bounds for the worst-case error in H̃s
mix for optimally weighted

Monte Carlo cubature rules of the form

Q̌XN
(f) :=

N∑
i=1

w̌i(XN )f(ξ(i)), XN = {ξ(1), . . . , ξ(N)} ∼ U([0, 1]dN ), (4.6)

i.e. we draw a set ofN uniformly distributed random points in [0, 1]d and compute the associated
optimal cubature weights. Related results for isotropic Sobolev spaces on the cube and the
sphere are discussed in [29]. The numerical results in Section 1 of this Chapter suggested that
optimally weighted random points do not only achieve the optimal main rate of N−s in H̃s

mix,
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but also have a fairly good log-exponent that is close to the optimal d−1
2 .

However, it is very difficult to analyze the properties of the aforementioned optimally weighted
cubature rule Q̌XN

(f) directly. Therefore, we will use the following approach:
1. Construct a stable cubature rule

Q+
N (f) :=

N∑
i=1

w+
i (XN )f(ξ(i))

that is exact on a finite-dimensional subspace of trigonometric polynomials and uses the
same random point set XN as information, but certain non-optimal weights w+

i (XN ).
2. Prove upper bounds for the worst-case error of Q+

N (f) in H̃s
mix.

3. Finally, by the optimality of the cubature weights in (4.6), it follows that Q̌XN
has at

least the convergence rate of Q+
N (f).

Unfortunately, this will not lead to the desired optimal main rate N−s that we saw numerically.
Nevertheless, we will obtain a main rate N−s+1/2 which still is a substantial improvement over
N−1/2 for s > 1.
To get started, we first recall (3.24), i.e. the H̃s

mix-norm can be realized as

‖f‖2
H̃s

mix
=
∑
k∈Zd

ρ(k)2s|f̂k|2,

where f̂k denotes the k-th Fourier coefficient and

ρ(k) =

d∏
j=1

max(1, 2π|kj |).

Hence, the reproducing kernel of H̃s
mix is given by

K̃(x,y) =
∑
k∈Zd

ρ(k)−2sψk(x)ψk(y),

where we denote

ψk(x) := exp (2πik · x) =
d∏
j=1

e2πikjxj .

Therefore, by (3.7), it holds for an arbitrary cubature rule QN (f) =
∑N

i=1wif(ξ(i)) that

wce(QN , H̃
s
mix)2 =

∑
k∈Zd

ρ(k)−2s

∣∣∣∣∣
∫

[0,1]d
ψk(x) dx−

N∑
i=1

wiψk

(
ξ(i)
)∣∣∣∣∣

2

.

Now we can bound the error of cubature rules that are exact on a certain set of trigonometric
monomials.
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Proposition 4.1. Let a cubature rule QN be exact on a hyperbolic cross of radius T > 0, i.e. on
{ψk,k ∈ HC(T ))} with

HC(T ) :=

k ∈ Zd :
d∏
j=1

max(1, |kj |) ≤ T

 .

In addition, assume that QN is stable in the sense that there exists a constant C > 0 such that∑N
i=1 |wi| < C for all N ∈ N. Then it holds that

wce(QN , H̃
s
mix) �s,d T−s+1/2 log(T )

d−1
2 . (4.7)

Moreover, (4.7) can be rephrased in terms of the cardinality m := |HC(T )| as

wce(QN , H̃
s
mix) �s,d m−s+1/2 log(m)s(d−1). (4.8)

Proof. For k 6= 0 it holds
∫

[0,1]d ψk (x) dx = 0. We use the stability of QN to obtain

∣∣∣∣∣
∫

[0,1]d
ψk (x) dx−

N∑
i=1

wiψk

(
ξ(i)
)∣∣∣∣∣

2

=

∣∣∣∣∣−
N∑
i=1

wiψk

(
ξ(i)
)∣∣∣∣∣

2

≤

 N∑
i=1

|wi|
∣∣∣ψk (ξ(i)

)∣∣∣︸ ︷︷ ︸
=1


2

≤

(
N∑
i=1

|wi|

)2

≤C2.

(4.9)

Therefore, it follows from the exactness of QN on HC(T ) for T > 0 that

wce(QN , H̃
s
mix)2 =

∑
k∈Zd

ρ(k)−2s

∣∣∣∣∣
∫

[0,1]d
ψk (x) dx−

N∑
i=1

wiψk

(
ξ(i)
)∣∣∣∣∣

2

=
∑

k∈Zd\HC(T )

ρ(k)−2s

∣∣∣∣∣
∫

[0,1]d
ψk (x) dx−

N∑
i=1

wiψk

(
ξ(i)
)∣∣∣∣∣

2

≤
∑

k∈Zd\HC(T )

ρ(k)−2sC2

�d,s T−2s+1 log(T )d−1,

where the last inequality can be found e.g. in [43, Sec. 2.3].
Regarding (4.8), we also know from [43, Sec. 2.3] that the cardinality m := |HC(T )| of a
hyperbolic cross with radius T behaves like m �d,s T log(T )d−1. Hence, we can conclude that
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Figure 4.7: Without oversampling, i.e. m = N the quadrature weights in (4.12) get unstable
already for d = 1.

m−2s+1 � T−2s+1 log(T )(−2s+1)(d−1), which implies

wce(QN , H̃
s
mix)2 �d,s T−2s+1 log(T )d−1

�d,s m−2s+1 log(T )(2s−1)(d−1) log(T )d−1

= m−2s+1 log(T )2s(d−1)

≤ m−2s+1 log(m)2s(d−1).

Let us discuss the assumptions of Proposition 4.1 in more detail. First, let m := |HC(T )|
denote the cardinality of HC(T ) and define the non-decreasing re-arrangement of the multi-
indices k ∈ HC(T ) by a function h : N→ Zd, which fulfills h(1) = 0 and

k ≤ l ⇔ ρ(h(k)) ≤ ρ(h(l)).

Basically, this means that the countable set Zd is ordered with respect to the magnitude of ρ.
This translates also to our basis functions ψh which we will write as

ψk(x) := ψh(k)(x) = exp (2πih(k) · x) .

Now, we can define the Vandermonde-type matrix V ∈ Rm×N by

Vk,i = ψk

(
ξ(i)
)
, k = 1, . . . ,m and i = 1, . . . , N. (4.10)

as well as the vector b ∈ Rm by

bk =

∫
[0,1]d

ψk(x) dx, k = 1, . . . ,m. (4.11)
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Clearly, it holds that b = (1, 0, . . . , 0).
If m = N and V ∈ GL(m), which holds with probability 1, the cubature rule

QN (f) =

N∑
i=1

wif(ξ(i)), where w = V −1b (4.12)

is exact for all basis functions with index k ∈ HC(T ). Still, we have to ensure the stability ofQN ,
i.e.

∑N
i=1 |wi| ≤ C for all N ∈ N to fulfill the assumptions of Proposition 4.1. Unfortunately,

numerical experiments suggest that for m = N the | · |1-norm of w grows super-linearly in N ,
cf. Figure 4.7. Therefore, we will follow an oversampling approach to ensure stability. This
means that we choose m < N and use the (N −m) remaining degrees of freedom not to achieve
the maximal degree of exactness but instead for stabilizing the weights. In particular, we will
aim for the solution with minimal `2-norm, i.e.

w+ := arg min{‖w‖2 : w ∈ RN and V w = b}.

Using results from [39] it will turn out that for logarithmic oversampling one can ensure the
stability of w+.
To simplify the notation we define the matrix G ∈ Rm×m by

G := V V ∗,

which means that Gk,l =
∑N

i=1 ψk(ξ
(i))ψl(ξ

(i)), k, l = 1, . . . ,m. We note that G is Hermi-
tian and positive semi-definite. The expectation of 1

NG with respect to all possible uniformly
distributed point sets XN ⊂ [0, 1]d is the m-dimensional identity matrix Im ∈ Rm×m.
We will need the following concentration inequality, which is basically proven in [39] and quan-
tifies the deviation of 1

NG from Im with respect to the spectral norm

‖A‖ = max
‖v‖2=1

‖Av‖2.

Theorem 4.2. For s > 0 assume

S(m) := sup
x∈[0,1]d

m∑
k=1

|ψk(x)|2 ≤ 1− log 2

2 + 2s

N

logN
.

Then, it holds that

P
{∥∥∥∥ 1

N
G− Im

∥∥∥∥ ≥ 1

2

}
≤ 2N−s. (4.13)

In our situation we have S(m) = m because

m∑
k=1

|ψk(x)|2 =

m∑
k=1

|exp(h(k) · x)|2 =

m∑
k=1

1 = m.
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4.2 Upper bounds 61

Hence, in order to fulfill (4.13), one has to choose m such that

m ≤ cs
N

logN
, with cs :=

1− log 2

2 + 2s
. (4.14)

Now we are ready to pose conditions on the interplay betweenm and N such that stable weights
can be constructed.

Theorem 4.3. Let XN = {ξ(1), . . . , ξ(N)} be a set of N uniformly distributed points in [0, 1]d

and HC(T ) a hyperbolic cross with cardinality |HC(T )| = m. Moreover, assume that N and m
fulfill (4.14). Then, for V ∈ Rm×N and b ∈ Rm defined in (4.10) and (4.11), respectively we
define the cubature rule Q+

N (f) =
∑N

i=1w
+
i f(ξ(i)) with

w+ := V ∗ (V V ∗)−1 b.

It holds that
(i) The cubature rule Q+

N is exact on Vm = {ψ1, . . . , ψm}.
(ii) Among all possible weights that ensure the exactness of Q+

N on Vm, w+ is the one with
minimal `2-norm, i.e.

w+ = arg min{‖w‖2 : w ∈ RN and V w = b}.

(iii) w+ is stable with high probability, i.e.

P
{
‖w+‖1 ≤

√
6
}
≥ 1−N−2s.

Proof. The exactness of Q+
N on Vm holds true because

V w+ = V V ∗(V V ∗)−1b = Imb = b.

Next, we show that w+ is the minimum norm solution of V w = b by elementary linear algebra.
To this end, take another w ∈ RN that fulfills V w = b. We show that ‖w‖2 ≥ ‖w+‖. First,
we note that it holds (w −w+)∗w+ = 0 because

(w −w+)∗w+ = (w −w+)∗V ∗G−1b = (V w − V w+)∗G−1b = 0.

Therefore,

‖w‖22 = ‖w −w+ −w+‖22
= ‖w −w+‖22 − 2(w −w+)∗w+ + ‖w+‖22 = ‖w −w+‖22 + ‖w+‖22 ≥ ‖w+‖22.

Finally, following [39], we observe that ‖ 1
NG− Im‖ ≤ 1

2 implies

1

2
N ≤ ‖G‖ ≤ 3

2
N
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62 4 Optimal cubature using random point sets

and hence
‖G−1‖ ≤ 2N−1. (4.15)

Moreover, because of G = G∗ we have

‖G‖ = λmax(G) = max
‖x‖2=1

x∗Gx = max
‖x‖2=1

x∗V ∗V x = max
‖x‖2=1

‖V x‖22 = ‖V ‖2,

which implies
‖V ∗‖ = ‖V ‖ =

√
‖G‖ ≤

√
3/2
√
N. (4.16)

Now, combining (4.15) and (4.16), we arrive at

‖w+‖2 =
∥∥∥V ∗ (V V ∗)−1 b

∥∥∥
2
≤ ‖V ‖‖G−1‖‖b‖2 ≤

√
3/2
√
N2N−1‖b‖2 =

√
6N−1/2.

Finally, by Hoelder’s inequality we obtain the desired result:

‖w+‖1 ≤
√
N‖w+‖2 ≤

√
6.

Remark 4.4. w+ = V ∗ (V V ∗)−1 b = V +b, where V + denotes the Moore-Penrose pseudo
inverse of the fat matrix V ∈ Rm×N .

Now we are in the position to determine a final error estimate for the cubature-rule Q+
N in terms

of the number of function evaluations N .

Theorem 4.5. Let XN = {ξ(1), . . . , ξ(N)} be a set of N uniformly distributed points in [0, 1]d

and HC(T ) a hyperbolic cross with cardinality |HC(T )| = m. Choose m as large as possible such
that (4.14) is still fulfilled. Then, the worst-case error of Q+

N (f) =
∑N

i=1w
+
i f(ξ(i)) in H̃s

mix can
be bounded from above by

wce(Q+
N , H̃

s
mix) �d,s N−s+1/2 log (N)sd−1/2

Proof. Let m = m(T ) = |HC(T )|, where T is chosen as large as possible to fulfill (4.14),
i.e. m(T ) ≤ csN/ log(N). It follows that m(T + 1) > csN/ log(N). Moreover, there exists a
dimension-dependent constant α such that m(T + 1) ≤ αm(T ) for all T ∈ R+. This implies
m(T ) ≥ cs

αN/ log(N). Then, using (4.8), we can conclude that it holds

wce(QN , H̃
s
mix) �d,s m−s+1/2 log(m)s(d−1)

�d,s
(

N

logN

)−s+1/2

log

(
N

logN

)s(d−1)

≤ N−s+1/2 log(N)s−1/2 log (N)s(d−1)

= N−s+1/2 log (N)sd−1/2 .
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4.3 Random information in analytic function spaces 63

In the following remark we comment on possible alterations of our result to obtain the best
possible main rate of N−s, which we saw in the numerical experiments of Section 1.

Remark 4.6. In fact, numerical experiments suggest that Q+
N decays with a main rate of N−s

instead of N−s+1/2. We are convinced that the missing N−1/2 gets lost in (4.9), where the
bound ∣∣∣∣∣

N∑
i=1

wiψk

(
ξ(i)
)∣∣∣∣∣ ≤

N∑
i=1

|wi|
∣∣∣ψk (ξ(i)

)∣∣∣ for all k ∈ Zd

seems to be too rough for our choice of w+. Due to extensive numerical simulations, we believe
that it actually holds ∣∣∣∣∣

N∑
i=1

w+
i ψk

(
ξ(i)
)∣∣∣∣∣ ≤ CN−1/2 (4.17)

for sufficiently many k ∈ Zd.
For example, in the univariate setting d = 1, assume that (4.17) holds for all but a fixed number
of elements in every dyadic block Dj = {±2j ,±(2j + 1), . . . ,±(2j + 2j − 1)}, j ∈ N. Then, the
desired main rate N−s could be obtained with a simple modification of Proposition 4.1.
However, the validity of (4.17) seems to be difficult to prove and is ongoing joint work with
Aicke Hinrichs and Mario Ullrich (JKU Linz).

The following remark gives an outlook to possible extensions of the proof-technique used here.

Remark 4.7. In Theorem 4.3 we constructed the set of auxiliary cubature weights to be of
minimal ‖·‖2-norm among all weights that ensure a certain degree of exactness on trigonometric
polynomials. Of course it is also reasonable to follow the same approach, but replace the ‖ · ‖2
with the ‖ · ‖1- norm, i.e.

w = arg min{‖w‖1 : w ∈ RN and V w = b},

which is closely related to compressed-sensing, see e.g. [61].

Beside proving upper bounds for the periodic Sobolev spaces with dominating mixed smooth-
ness, one could consider non-periodic setting as well.

Remark 4.8. The concentration inequality from [39] only holds for orthonormal bases. In [18]
this was generalized to Riesz-bases, in particular to the hierarchical Faber basis. Therefore,
it is possible to obtain a similar result as for the periodic Sobolev space for its non-periodic
counterpart as well.

4.3 Random information in analytic function spaces

At first glance, it seems to be a natural approach to extend the results from this chapter to
function spaces of infinite or analytic smoothness. However, it is known that in this case the
precise location of points is much more important than it seems to be the case for integration
of functions with finite smoothness. A well-known example is the so-called Runge phenomenon,
originally observed for polynomial interpolation and hence also for Newton-Cotes quadrature.
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64 4 Optimal cubature using random point sets
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Figure 4.8: Worst-case error and stability of optimally weighted point sets in the analytic Hardy
space H2.

Basically, it says that polynomial interpolation becomes extremely unstable for equidistant
points. In [125] it was proven that the Runge-phenomenon is present also for arbitrary inter-
polation operators when applied to analytic functions.
In Figure 4.8, we computed optimal weights for integration in the Hardy space H2 which consists
of functions that are analytic in a disc of radius r = 2. It is known that in this space one
can achieve convergence rates of order 2−2n, cf. [80]. This rate is approximately achieved by
optimally weighted Gauss-Legendre points. However, for optimally weighted equidistant or
random points the rate is substantially smaller. Moreover, looking at the right-hand side of
Figure 4.8, the optimal weights are highly unstable, which is consistent with the results in [125].
Since the instability of the optimal quadrature weights grows exponentially with n, the resulting
quadrature rules have no practical value at all.
A possible workaround is using quadratic oversampling, cf. [90], which, however, reduces the rate
exponential convergence rates of order O(e−αn) to a sub-exponential rate of order O(e−α

√
n).

Moreover, even if logarithmic oversampling, like in the finite smoothness setting, would be
sufficient, still an exponential rate of convergence deteriorates to the order of

exp
(
− α N

logN

)
,

which is also sub-exponential.
Therefore, we believe that for integrands with infinite or even analytic regularity the precise
location of the points plays an important role, which is our motivation for the next chapter.
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5 Computation of optimal and nested
quadrature points

In Chapter 4 we studied the radius of information of uniformly distributed random and low-
discrepancy point sets. It turned out that they provide almost optimal information in the sense
that they allow convergence of order N−s+ε, where the ε > 0 neglects possible log-terms. Even
with optimal cubature points one cannot beat the N−s+ε-asymptotic of the worst-case error in
Hs

mix, cf. [43]. However, as discussed in Section 4.3 the situation is quite different in the setting
of analytic regularity. Now, the precise choice of the cubature points is much more important,
but also more delicate because of the nonlinear structure of the worst-case error with respect
to the points.
This chapter deals with the problem of choosing good or even optimal point sets for numerical
integration in a given RKHS HK . Here, our main focus is the treatment of infinitely differen-
tiable functions, but most results are applicable to spaces with finite smoothness as well, albeit
with additional effort to deal with certain technicalities.
First, we note that the best possible linear integration algorithm consisting of N points X̌N

and weights w̌ for integration in HK is represented by

(X̌N , w̌) := arg min
XN∈Ω
w∈RN

sup
‖f‖HK≤1

∣∣∣∣∣∣
∫
Ω

f(x)ω(x) dx−
N∑
i=1

wif(ξ(i))

∣∣∣∣∣∣ (5.1)

= arg min
XN∈Ω
w∈RN

∥∥∥∥∥`Ω(·)−
N∑
i=1

wiK(·, ξ(i))

∥∥∥∥∥
HK

.

We see that by the Riesz-duality in HK the problem of finding a set of N points X̌N ⊂ Ω ⊆ Rd
that minimize the worst-case error is equivalent to finding the best N -term approximation of
`Ω ∈ HK by elements from the set {K(·,x) : x ∈ Ω}, cf. [49, 151].
As a first step, we decouple the problem of finding the optimal point set X̌N from the problem
of finding the optimal weights w̌ ∈ RN . To this end, we recall Corollary 3.6, which states that
for a given set of points XN , the optimal weights can be computed by solving the linear system

w̌(XN ) := G−1(XN )b(XN ),

where G(XN ) = K(ξ(i), ξ(j))Ni,j=1 ∈ RN×N and b(XN ) = (`Ω(ξ(i)))Ni=1 ∈ RN .
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66 5 Computation of optimal and nested quadrature points

Then, the worst-case error can be written as (cf. Corollary 3.6)

sup
‖f‖HK≤1

∣∣∣∣∣∣
∫
Ω

f(x)ω(x) dx−
∑
i=1

w̌i(XN )f(ξ(i))

∣∣∣∣∣∣ = ‖LΩ‖2H?K − b
ᵀ(XN )G−1(XN )b(XN ), (5.2)

which is a nonlinear function of XN . Unfortunately, direct minimization of (5.2) in multiple
dimensions has three main drawbacks:

1. For analytic kernels the problem is very ill-conditioned, cf. the discussion in Section 5.2.
2. For d ≥ 2 there exist many local minima. In fact, there exist approximately N ! local

minima already for d = 2, see the discussion in [88].
3. Every single evaluation of (5.2) for a set of points XN requires the inversion of a dense
N × N matrix with high precision, cf. the discussion at the beginning of Section 4.1.2.
Therefore, the computation of an amount of points that is sufficient for multivariate
integration problems is not tractable, even with parallel computers.

We deal with the ill-conditionedness by a reformulation of the best-approximation problem
(5.2) as a nonlinear, but stable system of equations that can be solved efficiently with Newton’s
method. However, this approach only works for d = 1 because it relies on the properties of
extended Tschebyscheff-systems, which only exist for d = 1, cf. Section 2.3.1. Therefore, we
postpone the second and third problem to future work and treat the problem of finding optimal
points throughout this thesis in the univariate quadrature setting only.
To this end, we use the concept of total positivity, which relates the theory of interpolation with
extended Tschebyscheff systems, cf. Definition 2.4, to approximation with kernel functions.
Then, the zeros and hence the behaviour of the error representer can be controlled to derive
several important properties of optimal quadrature rules in the univariate setting. This leads
to an efficient method for the computation of optimal quadrature points, which can be further
improved by exploiting certain symmetry properties of the kernel.
Because we will tackle the problem of multivariate integration with optimal weights by a sparse
tensor product approach in Chapter 7, we also need good quadrature rules with nested points.
To this end, we rely on the best-N -term approximation perspective (5.1) again and use ortho-
gonal matching pursuit to construct a greedy approximation to `Ω from the dictionary DΩ(K).
By Riesz-duality this corresponds to nested quadrature rules. Moreover, for non-uniform in-
tegration, i.e. ω 6= 1, we propose a weighted variant of the matching pursuit approach that is
inspired by Leja points, cf. Section 2.3.4.
The algorithms that are developed throughout this chapter will be validated in Chapter 6,
where we compare the performance of the greedy approach to optimal quadrature points as
well as to classical quadrature rules like e.g. Gaussian quadrature.

5.1 Optimal quadrature points and their properties

In this section, we discuss optimal quadrature rules, i.e. numerical integration in the univariate
setting, where both the weights w = (w1, . . . , wn) and the points Xn = (ξ1, . . . , ξn) are chosen
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5.1 Optimal quadrature points and their properties 67

to minimize the worst-case error, i.e.

(X̌n, w̌) := arg min
w∈Rm
Xn∈Ωn

wce(Xn,w,K) = arg min
w∈Rm
Xn⊂Ωn

sup
‖f‖HK≤1

∣∣∣∣∣LΩ(f)−
n∑
i=1

wif(ξi)

∣∣∣∣∣
= arg min

w∈Rm
Xn⊂Ωn

∥∥∥∥∥`Ω −
n∑
i=1

wiK(·, ξi)

∥∥∥∥∥
HK

.

(5.3)

Apparently, by Riesz-duality, this problem is closely related to the approximation of

`Ω(x) = L
(y)
Ω K(x, y) =

∫
Ω
K(x, y)ω(y) dy

by functions from the set {K(·, x)|x ∈ Ω}.
The residual of such an approximation

`Ω(x)−
n∑
i=1

wiK(x, ξi)

is called an extended monospline if K is extended totally positive, cf. Definition 5.1. Given a
norm ‖ · ‖∗ and n ∈ N, one can ask for

inf
w∈Rm
Xn⊂Ωn

‖`Ω(·)−
n∑
i=1

wiK(·, ξi)‖∗, (5.4)

i.e. a monospline of least deviation with respect to the ‖ · ‖∗-norm. If ‖ · ‖∗ = ‖ · ‖HK , the
problem (5.4) becomes (5.3). Moreover, we will show that the points that minimize the error
for the HK-norm are the same that minimize the L1(Ω, ω)-norm.
This problem has been extensively studied in the 1970’s and 1980’s, e.g. in [9, 10, 11, 20, 27,
30, 56, 95, 103, 129, 130, 167] after it was considered for the first time in [164]. Therefore, this
first Section does not offer new insights, however we give some new proofs that are specifically
tailored to the RKHS setting we are dealing with.
Before we proceed, we recall some results from Chapter 3, especially Section 3.4: For a vector
of n given quadrature points Xn := (ξ1, . . . , ξn) the vector of optimal quadrature weights in a
RKHS HK with kernel K : Ω× Ω→ R is defined by

w̌(Xn,K) := G−1(Xn,K)b(Xn,K).

Here, the positive definite matrix G(Xn,K) ∈ Rn×n denotes the Gramian of point-evaluation
functionals and is given by

Gk,l(Xn,K) = K(ξj , ξl) j, l = 1, . . . , n.
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68 5 Computation of optimal and nested quadrature points

Moreover, the vector b(Xn,K) ∈ Rn is defined by

bk(Xn,K) = `Ω(ξk) = L
(y)
Ω K(x, y) =

∫
Ω

K(ξk, y)ω(y) dy.

In the following, we will assume that the kernel K is fixed and hence omit the dependence on
K, writing

w̌(Xn) = G−1(Xn)b(Xn)

for the vector of optimal quadrature weights associated to Xn for approximation of LΩ in HK .
As stated in Corollary 3.6, the optimally weighted quadrature rule

Q̌Xn(f) :=
n∑
i=1

w̌i(Xn)f(ξi)

is exact on the n-dimensional space

HKXn = span {K(·, ξi) : i = 1, . . . , n}.

For the error functional ŘXn ∈ H?K given by

ŘXn(f) := LΩ(f)− Q̌Xn(f) = LΩ(f)−
n∑
i=1

w̌i(Xn)f(ξi)

this exactness property implies

ŘXn(K(·, ξk)) = 0 for k = 1, . . . , n.

This is equivalent to
řXn(ξk) = 0,

where řXn ∈ HK is the Riesz-representer of ŘXn given by

řXn(t) := `Ω(t)−
n∑
i=1

w̌i(Xn)K(ξi, t).

Therefore, the squared worst-case error formula simplifies to

w̌ce2(Xn) = ‖ŘXn‖2H?K = LΩ

(
`Ω(·)−

n∑
i=1

w̌i(Xn)K(·, ξi)

)
= ‖LΩ‖2H?K −

n∑
i=1

w̌i(Xn)`Ω(ξi).

Hence, by w̌(Xn) = G−1(Xn)b(Xn) we can define the function w̌ce2 : Ωn → R+ via

w̌ce2(Xn) = ‖LΩ‖2H?K −
n∑
i=1

w̌i(Xn)`Ω(ξi) = ‖LΩ‖2H?K − b
ᵀ(Xn) ·G−1(Xn) · b(Xn), (5.5)
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5.1 Optimal quadrature points and their properties 69

whose minimization with respect to Xn = (ξ1, . . . , ξn) ∈ Ωn yields a set of (locally) optimal
quadrature points. Since quadrature points are indistinguishable, we will assume in the following
that the points are ordered, i.e. ξ1 ≤ ξ2 ≤ . . . ≤ ξn. This means that we restrict the set Xn to
come from the simplex defined by

Sn(Ω) := {(ξ1, . . . , ξn) ∈ Ωn : ξ1 ≤ ξ2 ≤ . . . ≤ ξn} .

At this point, the function w̌ce2 : Sn(Ω)→ R is only defined on the inside of Sn(Ω), i.e.

S̊ = {Xn ∈ Sn(Ω) : ξ1 < ξ2 < . . . < ξn},

because for ξi = ξk with i 6= k the matrix G(Xn) is singular. Unfortunately, the inside of Sn(Ω)
is open. It would be desirable to establish the continuity of the function w̌ce2 on the whole
Sn(Ω) since by the extreme value theorem continuous functions on a compact set attain their
minima. Therefore, we will now discuss the continuous extension of w̌ce2 to the boundary of
Sn(Ω), i.e the case when two or more points coincide.
Before we proceed with the continuous extension of w̌ce2 to the boundary of Sn(Ω), we need
to impose additional assumptions on the kernel K.

5.1.1 Extended totally positive kernels

In this subsection, we deal with a variant of positive definite kernels, where not only the kernel
function K is evaluated at a given set of points, but also the kernel function’s partial derivatives
play a certain role. To this end, we recall the notation K(l,j)(x, y) = ∂l∂j

∂xl∂yj
K(x, y) and the

definition of an extended totally positive kernel from [94].

Definition 5.1. (Extended total positivity)
For Ω ⊂ R, a symmetric positive definite kernel K ∈ C∞(Ω × Ω) is called extended totally
positive (e.t.p.) if the sets{

K(0,j)(·, xi) : i = 1, . . . , n and j = 0, . . . , µi − 1
}

are extended Tschebyscheff-systems for all n ∈ N and all choices of n points x1, . . . , xn ∈ Ω
with associated multiplicites µ1, . . . , µn ∈ N0.

Remark 5.2. By the symmetry of K, also the sets{
K(j,0)(xi, ·) : i = 1, . . . , n and j = 0, . . . , µi − 1

}
form extended T-systems on Ω.
Hence, the condition in Definition 5.1 can be re-phrased into

det
(
K(νi,µj)(si, tj)

)N
i,j=1

> 0

for all s1 ≤ · · · ≤ sN , t1 ≤ · · · ≤ tN ⊂ Ω, where νi = max{k : si−k = si, k ≥ 0} and
µi = max{k : ti−k = ti, k ≥ 0}.
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70 5 Computation of optimal and nested quadrature points

The following theorem from [33] will help us to identify kernels that are extended totally positive.

Theorem 5.3. For Ω ⊂ R let u ∈ C∞(Ω) be positive and increasing. Then, if the sum

K(x, y) =

∞∑
k=0

λku(x)ku(y)k, λk > 0

converges for all (x, y) ∈ Ω2, the kernel K is e.t.p. on Ω.

Another useful characterization of e.t.p. kernels can be found in [94].

Theorem 5.4. Let K̃ : Ω → Ω be e.t.p. and the function v : Ω → R+ positive. Then, the
kernel

K(x, y) := K̃(x, y)v(x)v(y)

is e.t.p. on Ω× Ω as well.

Throughout the remainder of this chapter, we will assume that the kernel K is extended totally
positive.

5.1.2 Continuity of the worst-case error

Even though the worst-case error for optimal weights of the form (5.5) is not defined for identical
points, the limit of coalescing points exists and the resulting quadrature rule is of the form

QXµn (f) :=
n∑
i=1

µi−1∑
j=0

w̌i,j(X
µ
n )f (j)(ξi). (5.6)

Here, cf. also Section 3.4, the notation

Xµ
n =

(
ξ1 ξ2 · · · ξn
µ1 µ2 · · · µn

)
, µi > 0

is short for the vector

XN = ξ1, . . . , ξ1︸ ︷︷ ︸
µ1 times

, ξ2, . . . , ξ2︸ ︷︷ ︸
µ2 times

, . . . , ξn, . . . , ξn︸ ︷︷ ︸
µn times

),

where N =
∑n

i=1 µi. Note that Xµ
n means that each point ξi appears at least µi − 1 times.

Still, two or more ξi may coincide such that there exists Xν
m = Xµ

n with m < n and ν ≥ µ.
Never the less, we will see that Xµ

n represents the information given by function values at
ξ1, . . . , ξn and in addition also the values of derivatives up to order µi − 1 at the points ξi.
This is well-known for polynomial interpolation, where Lagrange basis functions converge to
the respective Hermite-Birkhoff cardinal functions, when the interpolation points coalesce. In
the context of radial basis functions, this was observed e.g. in [134].
In this setting, cf. Section 3.4.2, the optimal weights w̌(Xµ

n ) are

w̌(Xµ
n ) := G−1(Xµ

n )b(Xµ
n ).
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Recalling the notation K(l,j)(x, y) = ∂l∂j

∂xl∂yj
K(x, y), the matrix G(Xµ

n ) = G(Xµ
n ,K) is

K(ξ1, ξ1) · · · K(0,µ1−1)(ξ1, ξ1) · · · K(ξ1, ξn) · · · K(0,µn−1)(ξ1, ξn)
...

. . .
...

...
. . .

...
K(µ1−1,0)(ξ1, ξ1) · · · K(µ1−1,µ1−1)(ξ1, ξ1) · · · K(µ1−1,0)(ξ1, ξn) · · · K(µ1−1,µn−1)(ξ1, ξn)

...
...

K(ξn, ξ1) · · · K(0,µ1−1)(ξn, ξ1) · · · K(ξn, ξn) · · · K(0,µn−1)(ξn, ξn)
...

. . .
...

...
. . .

...
K(µn−1,0)(ξn, ξ1) · · · K(µn−1,µ1−1)(ξn, ξ1) · · · K(µn−1,0)(ξn, ξn) · · · K(µn−1,µn−1)(ξn)


and the right-hand-side vector b(Xµ

n ) = b(Xµ
n ,K) is given by

b(Xµ
n ) =

(
`Ω(ξ1), . . . , `

(µ1−1)
Ω (ξ1), · · · , `Ω(ξn), . . . , `

(µn−1)
Ω (ξn)

)ᵀ
.

Since derivative evaluation is assumed to be a continuous linear functional in HK , the Gramian
matrix G(Xµ

n ) ∈ RN×N is invertible and its dimensionality N =
∑n

i=1 µi is the total number
of (derivative) evaluations that are used by QXµn .

Consequently, the associated error functional will be denoted by ŘXµn (f) = LΩ(f) − Q̌Xµn (f).
Its Riesz-representer

řXµn (t) = `Ω(t)−
n∑
i=1

µi−1∑
j=0

w̌i,j(X
µ
n )K(0,j)(t, ξi),

has zeros of multiplicity µ1, . . . , µn at the points ξ1, . . . , ξn, i.e.

ř
(j)

Xµn
(ξk) = 0 for all k = 1, . . . , n and j = 0, . . . , µk − 1.

Moreover, the squared worst-case error of the higher-order quadrature rule (5.6) is

w̌ce2(Xµ
n ) = ‖řXµn ‖

2
HK = ‖`Ω‖2HK −

n∑
i=1

µi−1∑
j=0

w̌i,j(X
µ
n )`

(j)
Ω (ξi). (5.7)

Proposition 5.5. The function w̌ce2(XN ) = ‖ŘXN ‖2HK is continuous on SN (Ω).

Proof. First we note that ‖ŘXN ‖2H?K = ‖řXN ‖2HK = ‖LΩ‖2H?K − b
ᵀ(XN ) ·G−1(XN ) · b(XN ) is

continuous in the inside of SN (Ω) because G and b, as well as matrix-inversion, are continuous
functions of XN . We have to take care of the case where two or more points coalesce, which
happens on the boundary of SN (Ω). To this end, we follow [20]. Let (X(q))∞q=1 be a sequence
of points X(q) ∈ SN (Ω). Each X(q) can be written as

X(q) = Xµ
n ,

such that N =
∑n

i=1 µi and Xn ∈ S̊n(Ω), i.e. ξ1 < . . . < ξn. Assume that limq→∞X(q) = Xν
m
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72 5 Computation of optimal and nested quadrature points

with Xm ∈ Sm(Ω). We have to prove that

lim
q→∞

‖řX(q)‖2 = ‖řXνm‖
2.

To this end, we recall the recursive definition of divided differences

D[ξk,...,ξk+l]f =
D[ξk+1,...,ξk+l]f −D[ξk,...,ξk+l−1]f

ξk+l − ξk
,

which are linear combinations of the function values at XN . In order to deal with confluent
points, we need the Hermite-Genocci formulation of the divided-differences [48], i.e.

D[ξk,...,ξk+l]f =

1∫
0

τ1∫
0

. . .

τl−1∫
0

f (k)

(
ξk +

l∑
i=1

τi(ξk+i − ξk)

)
dτl . . . dτ1,

which is well-defined for confluent points ξk = ξk+1 = . . . = ξk+l and equals f (l)(ξk)
l! in this case.

The information provided by X(q) = (ξ
(q)
1 , . . . , ξ

(q)
N ) ∈ ΩN can therefore be expressed as a linear

combination of the information given by

Λ
(q)
N := (D[ξ

(q)
1 ]f,D[ξ

(q)
1 , ξ

(q)
1 ]f, . . . ,D[ξ

(q)
1 , . . . , ξ

(q)
N ]f)

and by Corollary 3.6 it holds
w̌ce2(X(q)) = w̌ce2(Λ

(q)
N ).

Now, for confluent points the divided differences converge uniformly to the respective derivative
value and it holds that

lim
q→∞

G(X(q)) = G(Xν
m) and b(X(q)) = b(Xν

m),

which implies limq→∞G−1(X(q)) = G−1(Xν
m) and hence limq→∞ w̌(X(q)) = w̌(Xν

m), which
proves the claim.

Now we know that the optimally weighted worst-case error depends continuously on the quadra-
ture points in Sn(Ω) and therefore attains its minimum. However, it is not clear whether this
minimum consists of n different points or whether all the points coalesce to one single point
yielding a Taylor-style quadrature rule that uses derivative values of increasing order at one
single point.
In order to address this question, we will study the behaviour of the error representer řXµn in
more detail.

5.1.3 Properties of optimal quadrature points

In the following, we discuss the properties of optimal quadrature weights w̌(X̌n) associated to
a local minimizer X̌n of the w̌ce2 function.
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5.1 Optimal quadrature points and their properties 73

Proposition 5.6. For Xµ
n , where µ = (µ1, . . . , µn) with all µi even, it holds for the error

representer řXµn that
(i) řXµn has exactly n zeros ξ1, . . . , ξn, each with multiplicity µ1, . . . , µn, respectively.
(ii) řXµn (t) ≥ 0 for all t ∈ Ω.

(iii) ř(µi)

Xµn
(ξi) > 0 for i = 1, . . . , n.

Proof. Let N :=
∑n

i=1 µi. We recall that Q̌Xµn is exact on the N -dimensional space

HK(Xµn ) = span
{
K(0,j)(·, ξi), i = 1, . . . , n and j = 0, . . . , µi − 1

}
which implies that

řXµn (x) = `Ω(x)−
n∑
i=1

µi−1∑
j=0

w̌i,j(X
µ
n )K(0,j)(x, ξi)

has vanishing derivatives up to order µk − 1 at ξk, i.e. ř(j)

Xµn
(ξk) = 0 for k = 1, . . . , n and

j = 0, . . . , µk − 1. For (i), we have to prove that there are no additional zeros. To this end,
we assume that řXµn (x) has an additional zero, which can either be a new simple zero at a
point z ∈ Ω \ {ξ1, . . . , ξn}, or an existing zero with then increased multiplicity. Without loss of
generality we assume the first case, i.e. řXµn (z) = 0. This implies that Q̌XµN is exact on the
span of

HK(Xµn ) ∪ {K(·, z)},

which is an extended Tschebyscheff-system of N+1 functions. Therefore, we can find a function
g ∈ HK(Xµn ) ⊕ {K(·, z)} which fulfills the interpolation conditions

g(j)(ξi) = 0 for i = 1, . . . , n and j = 0, . . . , µi − 1 and g(z) = 1.

The function g cannot have more than N zeros (counting multiplicities) and all zeros are of even
multiplicity. Therefore, g cannot cross the x-axis and has to be positive because of g(z) = 1.
This implies LΩ(g) > 0. But Q̌XµN (g) = 0, which is a contradiction to the exactness of Q̌Xµn on
HK(Xµn ) ∪ {K(·, z)}.
Next, (ii) is a direct consequence of (i) and

∫
Ω řXµn (x)ω(x) dx = ‖řXµn ‖

2
HK ≥ 0 because it

has to be positive at least at one point and cannot cross the x-axis since all zeros are of even
multiplicity. Because of řXµn (ξk) = 0, the points ξ1, . . . , ξn have to be local minima of řXµn ,
which implies (iii).

Proposition 5.7. Let Xn ∈ S̊n(Ω), i.e. the points are pairwise distinct. Then, the partial
derivative of w̌ce2(Xµ

n ) given by (5.7) with respect to a quadrature points ξk is

∂

∂ξk
w̌ce2(Xµ

n ) = −2w̌k,µk−1(Xµ
n ) ř

(µk)

Xµn
(ξk). (5.8)

Proof. In order to differentiate w̌ce2(Xµ
n ) = ‖řXµn ‖

2
HK with respect to the point ξk we use the
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74 5 Computation of optimal and nested quadrature points

(inner) product rule and ř(j)

Xµn
(ξi) = 0 for i = 1, . . . , n and j = 0, . . . , µi − 1 to obtain

∂

∂ξk
‖řXµn ‖

2
HK =

∂

∂ξk
〈řXµn , řXµn 〉HK

= 2
〈 ∂

∂ξk
řXµn , řXµn

〉
HK

= −2
〈 n∑
i=1

µi−1∑
j=0

∂

∂ξk
{w̌i,j(Xµ

n )}K(j,0)(ξi, ·) +

µk−1∑
j=0

w̌k,j(X
µ
n )K(j+1,0)(ξk, ·), řXµn

〉
HK

= −2

( n∑
i=1

µi−1∑
j=0

∂

∂ξk
{w̌i,j(Xµ

n )}〈K(j,0)(ξi, ·), řXµn 〉HK

+

µk−1∑
j=0

w̌k,j(X
µ
n )〈K(j+1,0)(ξk, ·), řXµn 〉HK

)

= −2

( n∑
i=1

µi−1∑
j=0

∂

∂ξk
{w̌i,j(Xµ

n )}ř(j)

Xµn
(ξi) +

µk−1∑
j=0

w̌k,j(X
µ
n )ř

(j+1)

Xµn
(ξk)

)
= −2w̌k,µk−1(Xµ

n ) ř
(µk)

Xµn
(ξk).

From now on, we will call a set of points X̌µ
n optimal of type µ if

∂

∂ξk
w̌ce2(X̌µ

n ) = −2w̌k,µk−1(Xµ
n ) ř

(µk)

Xµn
(ξk) = 0 (5.9)

holds true for all k = 1, . . . , n.
Next, we discuss the properties of optimal quadrature weights associated to optimal quadrature
points. To this end, we need the following lemma which is standard in analysis text books, see
e.g. [2].

Lemma 5.8. Let k ∈ N be even and f ∈ Ck+1(a, b). Assume it holds for some x ∈ (a, b) that
1. f (j)(x) = 0 for j = 0, . . . , k − 1 and f (k)(x) > 0. Then x is a local minimum of f .
2. f (j)(x) = 0 for j = 0, . . . , k and f (k+1)(x) > 0. Then f is strictly increasing at x.

Theorem 5.9. For even µ ∈ Nn+ it holds for the optimal weights w̌(X̌µ
n ) at optimal points X̌n

that
w̌k,µk−1(X̌µ

n ) = 0 and w̌k,µk−2(X̌µ
n ) > 0 for all k = 1, . . . , n.

Proof. According to Proposition 5.6 (iii), it holds ř(µi)

Xµn
(ξk) > 0 for k = 1, . . . , n. The first-order

optimality condition (5.9) requires for optimal X̌µ that

−2w̌k,µk−1(X̌µ
n ) ř

(µk)

X̌µn
(ξ̌k) = 0.

This implies w̌k,µk−1(X̌µ
n ) = 0, i.e. the first equality.
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5.1 Optimal quadrature points and their properties 75

Figure 5.1: The function f ∈ VN−1 for n = 3 and µ = (2, 2, 2) from the proof of Theorem 5.9.

Regarding the second inequality consider the unique function

f ∈ VN−1 := span {K(0,j)(·, ξ̌i) : i = 1, . . . , n, j = 0, . . . , µi − 1} \ {K(0,µk−1)(·, ξ̌k)},

that fulfills
f (j)(ξ̌i) = 0 for k 6= i = 1, . . . , n and j = 0, . . . , µi − 1

f (j)(ξ̌k) = 0 for j = 0, . . . , µk − 3 if µk ≥ 3

f (µk−2)(ξ̌k) = 1.

(5.10)

We will show that f is non-negative and we consider the more complicated case µk ≥ 3 first.
We note that functions from VN−1 can have at most N − 2 zeros (counting multiplicities).
Therefore, all possible zeros of f are already fixed by (5.10). Moreover, by Lemma 5.8 (i) f has
a local minimum at ξ̌n. Therefore, f(x) > 0 for all x ∈ Ω \ X̌n, which implies LΩ(f) > 0.
Then we apply Q̌X̌n , which is exact on VN−1 ⊂ HK(X̌µn ), to f and use w̌k,µk−1(X̌µ

n ) = 0 to
obtain

LΩ(f) = Q̌X̌n(f) =
n∑
i=1

µi−1∑
j=0

w̌i,j(X̌n)f (j)(ξ̌n)

= w̌k,µk−2(X̌µ
n )f (µn−2)(ξ̌n) = w̌k,µk−2(X̌µ

n ).

The case µk = 2 follows similarly with f(ξ̌k) = 1, cf. Figure 5.1. Again, LΩf is positive and by
the exactness of Q̌X̌n on VN−1 the weight w̌k,0(X̌µ

n ) is positive.

Proposition 5.10. For even µ ∈ Nn the optimality of X̌µ
n implies the optimality of X̌µ−1

n .

Proof. By Theorem 5.9 it holds w̌i,µi−1(X̌µ
n ) = 0 for i = 1, . . . , n. This implies

řX̌µn (x) = ř
X̌µ−1
n

(x).

Moreover, by Proposition 5.6 (i) it holds ř(µi−1)

X̌µn
(ξ̌i) = 0 and therefore also ř(µi−1)

X̌µ−1
n

(ξ̌i) = 0. This

implies the optimality of X̌µ−1
n .

Next, we deal with the location of optimal quadrature nodes. We show that under certain
conditions the optimal points are located in the interior of the domain of integration.
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76 5 Computation of optimal and nested quadrature points

a b

Figure 5.2: Visualization of the cardinal function Hn,µn−1(x) from the proof of Proposition 5.11.

Proposition 5.11. Let K be extended totally positive on Ω̃ ) Ω =: (a, b). Then, for even
µ ∈ Nn, the nodes of an optimal quadrature formula are all located within (a, b), i.e. there exists
a < α < β < b such that it holds for all optimal points ξ̌µi , i = 1, . . . , n that

α ≤ ξ̌1 ≤ ξ̌2 ≤ . . . ≤ ξ̌n ≤ β.

Proof. We will prove that for all n there exists β < b, such that for ξn ≥ β it holds

∂

∂ξn
w̌ce2(Xµ

n ) > 0.

This implies that if the largest node gets to close to the right border b, then w̌ce2(Xµ
n ) is

strictly increasing. The same argument yields ∂
∂ξ1

w̌ce2(Xµ
n ) < 0.

By (5.8) we have to show that w̌n,µn−1(Xµ
n ) < 0 for ξn ∈ (β, b). To this end, we use that the

weights can be written as

w̌i,j(X
µ
n ) = LΩ(Hi,j) =

∫ b

a
Hi,j(x)ω(x) dx for all i = 1, . . . , n and j = 0, . . . , µi − 1, (5.11)

where Hi,j denotes the elements of the cardinal basis of HK(Xµn ), cf. (3.17) in Section 3.3.

Because of the cardinal property it holds H(j)
n,µn−1(ξk) = δn,kδj,µn−1. Besides those prescribed∑n−1

i=1 µi+µn−1 zeros, Hn,µn−1 cannot have additional zeros. Moreover, because µn is even, so is
µn−2. Therefore, H(j)

n,µn−1(ξn) = 0, j = 0, . . . , µn−2 and H(µn−1)
n,µn−1(ξn) = 1 imply by Lemma 5.8

(ii) that Hn,µn−1 is strictly increasing at ξn. Since all other zeros have even multiplicities, we
conclude that Hn,µn−1 has only this one sign-change from negative to positive at ξn, i.e.

Hn,µn−1(x)

{
< 0 for x < ξn

> 0 for x > ξn.

Therefore, (5.11) can be decomposed into

w̌n,µn−1(Xµ
n ) =

∫ ξn

a
Hn,µn−1(x)ω(x) dx +

∫ b

ξn

Hn,µn−1(x)ω(x) dx,

where the first summand is strictly negative and the second one strictly positive if a < ξn < b,
cf. Figure 5.2. We conclude that for ξn = b it holds w̌n,µn−1(Xµ

n ) < 0, which by continuity also
holds for ξn = β < b sufficiently close.
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Now we are prepared to deal with the existence of optimal quadrature formulas. To this end,
we recall Proposition 5.5 and note that the function w̌ce2 : Sn(Ω) → R attains its minimum
Xµ
n within Sn(Ω). It remains to show that this minimum consists of n different points.

This result has been established in many contexts before, e.g. [11, 20, 55, 95, 124], mostly using
abstract results on monosplines of least deviation or specific properties of certain kernels. In
the following, we sketch an elementary proof from [21].

Theorem 5.12. Let n ∈ N, µ ∈ Nn, N =
∑n

i=1 µi, Ω ⊂ Ω̃ ⊂ R and K ∈ C∞(Ω̃× Ω̃) be e.t.p.
Assume that

Xν
m := arg min

Xµn∈Sn(Ω)

∥∥∥∥∥∥`Ω(·)−
n∑
i=1

µi−1∑
j=0

w̌i,j(X
µ
n )K(0,j)(·, ξi)

∥∥∥∥∥∥
HK

. (5.12)

Then it holds m = n and µ = ν, i.e. the n points minimizing the right-hand-side of (5.12) are
pairwise distinct.

Proof. Before we proceed, we define the C∞(Ω) function

FXµn (x) =
řXµn (x)

‖řXµn ‖HK
,

which belongs to the unit ball of HK . Then it holds∫ b

a
FXµn (x)ω(x) dx = ‖řXµn ‖HK = w̌ce(Xµ

n )

and F (j)

Xµn
(ξk) = 0 for k = 1, . . . , n and j = 0, . . . , µi − 1.

For now, let µ be even. We have to show that for

Xν
m := arg min

ξ1,...,ξn

w̌ce(Xµ
n ),

it holds m = n and hence ν = µ. Assume to the contrary that m < n and hence at least one
νk > µk. We will produce a contradiction by showing that there exists

X̃(h) :=

(
ξ1 . . . ξk−1 τ − h τ + h ξk+1 . . . ξm
ν1 . . . νk−1 µk νk − µk νk+1 . . . νm

)
such that w̌ce(X̃(h)) < w̌ce(Xν

m) for sufficiently small h > 0. The parameter τ ∈ [ξk−h, ξk+h]

is chosen such that it holds F (νk−1)

X̃(h)
(ξk) = 0. Then it holds by the argumentation in [21] that

F
(νk−2)

X̃(h)
(ξk) < 0 and |F (νk−2)

X̃(h)
(ξk)| > A2h

2, with A2 > 0.

Moreover, there exists A1 > 0 such that

|F (l)

X̃(h)
(ξk)| ≤ A1h

νk−l for l = 0, . . . , νk − 1.
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78 5 Computation of optimal and nested quadrature points

Next, we will use Q̌Xνm to integrate FX̃(h). But first we note that

ŘXνm(FX̃(h)) ≤ sup
‖f‖HK≤1

|ŘXνm(f)| = ŘXνm(FXνm) = ‖ŘXνm‖H?K .

Now we can compute

‖ŘXνm‖H?K ≥ ŘXνm(FX̃(h)) = LΩ

(
FX̃(h)

)
− Q̌Xνm

(
FX̃(h)

)
= ‖ŘX̃(h)‖H?K − Q̌Xνm

(
FX̃(h)

)
= ‖ŘX̃(h)‖H?K −

m∑
i=1

νi−1∑
j=1

w̌i,j(X
ν
m)F

(j)

X̃(h)
(ξk)

= ‖ŘX̃(h)‖H?K −
νk−2∑
j=1

w̌k,j(X
ν
m)F

(j)

X̃(h)
(ξk)

≥ ‖ŘX̃(h)‖H?K −
(
−w̌k,µk−2(Xν

m)A2h
2
)
−
νk−3∑
j=1

w̌k,j(X
ν
m)F

(j)

X̃(h)
(ξk)

≥ ‖ŘX̃(h)‖H?K + w̌k,νk−2(Xν
m)A2h

2 −
νk−3∑
j=1

∣∣∣w̌k,j(Xν
m)F

(j)

X̃(h)
(ξk)

∣∣∣
≥ ‖ŘX̃(h)‖H?K + w̌k,νk−2(Xν

m)A2h
2 −

νk−3∑
j=1

|w̌k,j(Xν
m)|A1h

νk−j

≥ ‖ŘX̃(h)‖H?K + w̌k,νk−2 h
2 −O(h3).

For sufficiently small h we obtain ‖ŘX̃(h)‖H?K < ‖ŘXνm‖H?K , which contradicts the optimality
of Xν

m. We can conclude that it holds m = n and ν = µ. The case of non-even µ follows by
Proposition 5.10.

We sum up the most important properties of optimal quadrature points, now specializing on
the practically most relevant case µ = 1.

Corollary 5.13. Let X̌n = (ξ̌1, . . . , ξ̌n) be optimal in HK , i.e. local minimizers of the squared
worst-case error w̌ce2. Let K be e.t.p. on Ω̃ ⊃ Ω = (a, b). Then it holds
(i) Optimal points are pairwise distinct and located within the domain of integration, i.e.

a < ξ̌1 < ξ̌2 < . . . < ξ̌n < b.

(ii) The optimal weights w̌(X̌n) that are associated to an optimal point set X̌n are all positive,
i.e. w̌i(X̌n) > 0.

(iii) Optimal n points quadrature rules Q̌X̌n are exact on the 2n-dimensional space spanned by

{K(0,j)(·, ξi) : i = 1, . . . , n and j ∈ {0, 1}}.

Therefore, they are a generalized Gaussian quadrature rule for a kernel dependent ETC.
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(iv) The Riesz-representer of the error functional of Q̌X̌n is non-negative, i.e.

řX̌n(t) ≥ 0 for all t ∈ Ω.

and equality only holds for t ∈ {ξ̌1, . . . , ξ̌n}.
(v) It holds that

w̌ce2(X̌n) = ‖řX̌n‖
2
HK =

∫
Ω

řX̌n(t)ω(t) dt =

∫
Ω

|řX̌n(t)|ω(t) dt = ‖řX̌n‖L1(Ω,ω),

i.e. the monospline of least deviation with respect to the HK-norm is the same as the one
with smallest L1(Ω, ω)-norm.

(vi) The optimality of X̌n is implied by w̌i,1(X̌2
n) = 0, i = 1, . . . , n.

5.2 Efficient computation of optimal quadrature points

In this section we discuss the computational aspects of optimal quadrature rules in RKHS. To
this end, we will reformulate the minimization problem as a nonlinear system of equations that
is much more stable and allows for the first time to compute optimal quadrature points with a
sufficient amount of points in RKHS of smooth functions. Moreover, we will make use of certain
symmetry properties of the reproducing kernel that allow to reduce the number of points that
have to be considered by a factor of about one half. We will concentrate on the simple node
case, i.e. the setting Xn = X1

n .

5.2.1 Direct minimization

The most straight-forward approach to the computation of optimal quadrature points X̌n is of
course the direct minimization of the squared worst-case error formula for optimal weights

X̌n := arg min
Xn∈Sn(Ω)

w̌ce2(Xn) = arg min
Xn∈Sn(Ω)

‖ŘXn‖2H?K

= arg min
Xn∈Sn(Ω)

{‖LΩ‖2H?K − b
ᵀ(Xn) ·G−1(Xn) · b(Xn)}.

(5.13)

This is a nonlinear problem because both, b(Xn) and G(Xn) depend in a nonlinear way on the
points Xn = (ξ1, . . . , ξn).
From Proposition 5.7 we recall the partial derivatives of w̌ce2 with respect to the points, i.e.

∂

∂ξk
w̌ce2(Xn) = −2w̌k(Xn) ř′Xµn (ξk).

Hence, we can utilize classic optimization approaches, like e.g. nonlinear conjugate gradient or
(quasi-)Newton methods [114].
In each step of an iterative optimization procedure it is necessary for the evaluation of both,
the objective function w̌ce2 and its derivative, to compute the optimal weights w̌(Xn) ∈ Rn.
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80 5 Computation of optimal and nested quadrature points

We recall that
w̌(Xn) = G−1(Xn)b(Xn), (5.14)

where
G(Xn) = (K(ξi, ξj))

n
i,j=1 ∈ Rn×n and b(Xn) = (`Ω(ξi))

n
i=1 ∈ Rn.

Since G(Xn) is a dense positive definite matrix, the Cholesky decomposition is the canonical
method to compute (5.14), which comes at costs of approximately n3

3 floating point operations
[48]. Therefore, it is the main bottle-neck in the minimization of (5.13).
This naive approach seems to work fine for Sobolev spaces with finite smoothness, e.g. Hs([0, 1])
orHs(T), cf. the left-hand side plot in Figure 5.3. Here, the Fletcher-Reeves nonlinear conjugate
gradient method [114] as well as Newton’s method for optimization are used to compute n = 10
optimal quadrature points. Clearly, Newton’s method outperforms the CG-approach, yet both
methods converge reasonably well.
However, the situation changes dramatically when considering analytic function spaces in the
right-hand side plot of Figure 5.3. Again, n = 10 points for optimal quadrature in the Gaussian
space shall be computed. Now, it takes much longer for the Newton minimization to converge
and the CG method does not seem to work at all. We conclude that in smooth function spaces
already for moderate point numbers n the optimization problem becomes very ill-conditioned.
Therefore, we will aim for a different approach.

5.2.2 Reformulation as stable nonlinear system

We will make use of Proposition 5.10 and instead of solving (5.13) consider the equivalent
problem of computing optimal points of order µ = 2 , i.e.

X̌n := arg min
Xn∈Sn(Ω)

w̌ce2(X2
n) = arg min

Xn∈Sn(Ω)
‖ŘX2

n
‖2H?K

= arg min
Xn∈Sn(Ω)

{‖LΩ‖2H?K − b
ᵀ(X2

n) ·G−1(X2
n) · b(X2

n)}.

We use that every point set X̌n that is optimal for µ = 2 is also optimal for µ = 1.
Now, the vector of optimal weights is given by

w̌(X2
n) = G−1(X2

n)b(X2
n),

where
G(X2

n) =

(
(K(ξi, ξj))

n
i,j=1

(
K(0,1)(ξi, ξj)

)n
i,j=1(

K(1,0)(ξi, ξj)
)n
i,j=1

(
K(1,1)(ξi, ξj)

)n
i,j=1

)
∈ R2n×2n

and
b(X2

n) =

(
(`Ω(ξi))

n
i=1

(`′Ω(ξi))
n
i=1

)
∈ R2n.

On first glance, this does not make much sense because the computation of optimal weights
w̌(X2

n) now requires solving a 2n× 2n system. Using the Cholesky decomposition this involves
costs of approximately (2n)3

3 = 8
3n

3 floating point operations, which is about 8 times more costly
than the direct approach.
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Figure 5.3: Convergence for different approaches to compute n = 10 optimal points in the
Sobolev space of finite smoothness H3([0, 1]) and the analytic Gaußian space with
shape parameter γ = 1.

However, we can make use of Theorem 5.9, which states that the quadrature points X̌n are
optimal if it holds

Ψ(X̌n) :=
(
w̌1,1(X̌2

n), . . . , w̌n,1(X̌2
n)
)

= 0 ∈ Rn. (5.15)

This is a nonlinear system of n equations which is much better conditioned than the original
minimization problem and can easily be solved by Newton’s method. This was already ob-
served in [57, 105] for the Hardy and Bergman spaces, but their approach relied heavily on the
special structure of these spaces. We will demonstrate that the aforementioned reformulation
is beneficial in a much wider setting, namely for all RKHS of sufficiently smooth functions.
To this end, we refer to Figure 5.3 where the superiority of this reformulation as nonlinear
system of equations over the naive minimization of the worst-case error from Section 5.2.1 can
be observed.
For an efficient implementation of Newton’s method a closed formula for the Jacobian of the
objective function Ψ : Ωn → Rn is beneficial. To this end, we need the following lemma
regarding the derivative of parameterized linear systems.

Lemma 5.14. Let a matrix A(θ) ∈ GL(n) ⊂ Rn×n and a vector b(θ) ∈ Rn be parameterized
with parameter θ ∈ R. Then, with x(θ) = A−1(θ)b(θ) it holds

d

dθ
x(θ) = A−1(θ)

(
d

dθ
b(θ)− d

dθ
A(θ)x(θ)

)
.

Proof. We use the product rule and the identity

d

dθ
A−1(θ) = −A−1(θ)

d

dθ
{A(θ)}A−1(θ)

81



82 5 Computation of optimal and nested quadrature points

to obtain

d

dθ
x(θ) =

d

dθ

{
A−1(θ)b(θ)

}
=

d

dθ

{
A−1(θ)

}
b(θ) +A−1(θ)

d

dθ
{b(θ)}

= −A−1(θ)
d

dθ
{A(θ)}A−1(θ)b(θ) +A−1(θ)

d

dθ
{b(θ)}

= A−1(θ)

(
d

dθ
{b(θ)} − d

dθ
{A(θ)}A−1(θ)b(θ)

)
= A−1(θ)

(
d

dθ
{b(θ)} − d

dθ
{A(θ)}x(θ)

)
.

In order to compute the derivative of kernel matrices with respect to a point ξk ∈ Xn, the
following remark is useful to simplify the notation.
Remark 5.15. Let H ∈ C1(Ω× Ω). Then

∂

∂xk
H(xi, xj) =


H(1,0)(xk, xk) +H(0,1)(xk, xk) for i = k, j = k

H(1,0)(xk, xj) for i = k, j 6= k

H(0,1)(xi, xk) for i 6= k, j = k

0 for i 6= k, j 6= k

.

Thus, the matrices from Rn×n can be written as(
∂

∂xk
H(xi, xj)

)n
i,j=1

=
(
H(0,1)(xi, xk)

)n
i=1
· eᵀk + ek ·

((
H(1,0)(xk, xj)

)n
j=1

)ᵀ
∈ Rn×n,

where ek = (δi,k)
n
i=1 denotes the k-th unit column vector.

Now we are prepared to compute the Jacobian of Ψ. To simplify the notation we define the
following n× n matrices:

G(0,1) := K(0,1)(ξi, ξk)
n
i,k=1, G(0,2) := K(0,2)(ξi, ξk)

n
i,k=1

G(1,1) := K(1,1)(ξi, ξk)
n
i,k=1, G(1,2) := K(1,2)(ξi, ξk)

n
i,k=1

W 0 := diag(w̌0(X2
n)), W 1 := diag(w̌1(X2

n)),

where
w̌0(X2

n) = (w̌1,0(X2
n), . . . , w̌n,0(X2

n)),

w̌1(X2
n) = (w̌1,1(X2

n), . . . , w̌n,1(X2
n))

are a partition of the vector of optimal weights w̌(X2
n)) = G−1(X2

n) b(X2
n).

Moreover, define
H ′′ := diag(ř′′X2

n
(ξ1), . . . , ř′′X2

n
(ξk)) ∈ Rn×n

to be the matrix with the second derivative of řX2
n
evaluated at the points inXn on the diagonal.
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5.2 Efficient computation of optimal quadrature points 83

Theorem 5.16. The Jacobian JΨ(x) ∈ Rn×n of Ψ is given by

JΨ(Xn) =
(
0 In

)︸ ︷︷ ︸
∈Rn×2n

G−1(X2
n)

((
0
H ′′

)
−
(
G(0,1)W 0 +G(0,2)W 1

G(1,1)W 0 +G(1,2)W 1

))
(5.16)

Proof. First we define a block-partitioning of G(X2
n), i.e.

G(X2
n) =

(
A(Xn) B(Xn)

BT (Xn) D(Xn)

)
∈ R2n×2n,

where
A(Xn) = (K(ξi, ξj))

n
i,j=1 , B(Xn) =

(
K(0,1)(ξi, ξj)

)n
i,j=1

Bᵀ(Xn) =
(
K(1,0)(ξi, ξj)

)n
i,j=1

, D(Xn) =
(
K(1,1)(ξi, ξj)

)n
i,j=1

.

Having in mind Remark 5.15, we obtain

∂

∂ξk
A(Xn) =

(
K(0,1)(ξi, ξk)

)n
i=1
· eᵀk + ek ·

((
K(1,0)(ξk, ξj)

)n
j=1

)ᵀ
∂

∂ξk
B(Xn) =

(
K(0,2)(ξi, ξk)

)n
i=1
· eᵀk + ek ·

((
K(1,1)(ξk, ξj)

)n
j=1

)ᵀ
∂

∂ξk
Bᵀ(Xn) =

(
K(1,1)(ξi, ξk)

)n
i=1
· eᵀk + ek ·

((
K(2,0)(ξk, ξj)

)n
j=1

)ᵀ
∂

∂ξk
D(Xn) =

(
K(1,2)(ξi, ξk)

)n
i=1
· eᵀk + ek ·

((
K(2,1)(ξk, ξj)

)n
j=1

)ᵀ

Moreover, it holds for b(X2
n) = (`Ω(ξ1), . . . , `Ω(ξn), `′Ω(ξ1), . . . , `′Ω(ξn)) that

∂

∂ξk
b(X2

n) =

(
ek`
′
Ω(ξk)

ek`
′′
Ω(ξk)

)
∈ R2n. (5.17)

Now we compute

∂

∂ξk
{G(X2

n)}w̌(X2
n) =

(
∂
∂ξk
A(Xn) ∂

∂ξk
B(Xn)

∂
∂ξk
Bᵀ(Xn) ∂

∂ξk
D(Xn)

)(
w̌0(X2

n)
w̌1(X2

n)

)
=

((
K(0,1)(ξi, ξk)

)n
i=1
· eᵀk

(
K(0,2)(ξi, ξk)

)n
i=1
· eᵀk(

K(1,1)(ξi, ξk)
)n
i=1
· eᵀk

(
K(1,2)(ξi, ξk)

)n
i=1
· eᵀk

)(
w̌0(X2

n)
w̌1(X2

n)

)

+

ek · ((K(1,0)(ξk, ξj)
)n
j=1

)ᵀ
ek ·

((
K(1,1)(ξk, ξj)

)n
j=1

)ᵀ
ek ·

((
K(2,0)(ξk, ξj)

)n
j=1

)ᵀ
ek ·

((
K(2,1)(ξk, ξj)

)n
j=1

)ᵀ
(w̌0(X2

n)
w̌1(X2

n)

)
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=

(
w̌k,0(X2

n)
(
K(0,1)(ξi, ξk)

)n
i=1

+ w̌k,1(X2
n)
(
K(0,2)(ξi, ξk)

)n
i=1

w̌k,0(X2
n)
(
K(1,1)(ξi, ξk)

)n
i=1

+ w̌k,1(X2
n)
(
K(1,2)(ξi, ξk)

)n
i=1

)

+

ek (∑n
i=1

∑1
j=0 w̌i,j(X

2
n)K(1,j)(ξi, ξk)

)
ek

(∑n
i=1

∑1
j=0 w̌i,j(X

2
n)K(2,j)(ξi, ξk)

) .

Therefore, having in mind (5.17), it holds that

∂

∂ξk
b(X2

n)− ∂

∂ξk

{
G(X2

n)
}
w̌(X2

n)

=

(
ekr
′
X2
n
(ξk)

ekr
′′
X2
n
(ξk)

)
−
(
w̌k,0(X2

n)
(
K(0,1)(ξi, ξk)

)n
i=1

+ w̌k,1(X2
n)
(
K(0,2)(ξi, ξk)

)n
i=1

w̌k,0(X2
n)
(
K(1,1)(ξi, ξk)

)n
i=1

+ w̌k,1(X2
n)
(
K(1,2)(ξi, ξk)

)n
i=1

)
=

(
0

ekr
′′
X2
n
(ξk)

)
−
(
w̌k,0(X2

n)
(
K(0,1)(ξi, ξk)

)n
i=1

+ w̌k,1(X2
n)
(
K(0,2)(ξi, ξk)

)n
i=1

w̌k,0(X2
n)
(
K(1,1)(ξi, ξk)

)n
i=1

+ w̌k,1(X2
n)
(
K(1,2)(ξi, ξk)

)n
i=1

)
=: c(Xn, k).

Now, the matrix C(Xn) = (c(Xn, 1), . . . , c(Xn, n)) whose columns are given by the vectors
c(Xn, k), k = 1, . . . , n, can be written as

C(Xn) =

(
0
H ′′

)
−
(
G(0,1)W 0 +G(0,2)W 1

G(1,1)W 0 +G(1,2)W 1

)
.

Finally, because of Lemma 5.14 we obtain

∂

∂ξk
w̌(X2

n) =
∂

∂ξk

{
G−1(X2

n)b(X2
n)
}

= G−1(X2
n)c(Xn, k) =: h(Xn, k) ∈ R2n

and the derivative with respect to the point ξk of Ψ consists of the (n+1), . . . , (2n) components
of h(Xn, k), i.e.

∂

∂ξk
Ψ(Xn) = (hn+1(Xn, k), . . . ,h2n(Xn, k)) ∈ Rn,

which equals (5.16).

5.2.3 Obtaining starting points for Newton’s method

Newton’s method is a well-established approach for the solution of nonlinear systems of equa-
tions. If provided with a starting point sufficiently close to the solution, it converges quadrati-
cally [48, 121]. However, if the starting point is too far away, it does not necessarily converge
at all. Therefore, we propose the following approach to generate good starting points.
Let X̌n ⊂ (a, b) = Ω be a set of n ordered optimal points, i.e.

a < ξ̌1 < . . . , < ξ̌n < b.
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5.2 Efficient computation of optimal quadrature points 85

Algorithm 2: Computation of optimal quadrature points in HK .
Input:

• extended totally positive kernel function K : Ω× Ω→ R.

• Riesz-representer `Ω : Ω→ R of LΩ.

• derivatives of K and `Ω up to order 2.

Initialize: k := 0, X0 = ∅.
repeat

1. k := k + 1

2. Define starting points ξ̄1, . . . , ξ̄k according to (5.18) or (5.19).

3. Assemble and initialize the closed-form Jacobian (5.16).

4. Solve the nonlinear equation (5.15) by Newton’s method.

5. Store the solution Xk as well as the associated optimal weights w̌(Xk).

until k = n;
Output: Optimal quadrature points Xk and optimal weights w̌(Xk) for k = 1, . . . , n.

We construct starting values ξ̄1, . . . , ξ̄n+1 for the problem of computing a set of n + 1 optimal
points by

ξ̄1 :=
ξ̌1 + a

2

ξ̄i :=
ξ̌i+1 + ξ̌i

2
for i = 2, . . . , n

ξ̄n+1 :=
b+ ξ̌n

2
.

(5.18)

On unbounded domains like e.g. Ω = (−∞,∞) we proceed similarly, i.e.

ξ̄1 := ξ̌1 −
ξ̌2 − ξ̌1

2

ξ̄i :=
ξ̌i+1 + ξ̌i

2
for i = 2, . . . , n

ξ̄n+1 := ξ̌n +
ξ̌n − ξ̌n−1

2
.

(5.19)

Now we are prepared to compute optimal quadrature points and weights in univariate repro-
ducing kernel Hilbert spaces HK , where K is extended totally positive. The nonlinear system
of equations (5.15), i.e. Ψ(Xn) = 0 can be solved by Newton’s method, cf. [48, 114], which is
implemented in many numerical analysis libraries. We used the implementation from [126]. If
the kernel K has partial derivatives up to order 2, we can use the closed-form solution of the
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86 5 Computation of optimal and nested quadrature points

Jacobian of Ψ given in (5.16). After a set of k optimal quadrature points has been computed, it
is utilized to construct the starting points for the search for n+1 points. The overall procedure
is summarized in Algorithm 2. We remark that for the case of kernels that are less than two
times differentiable, one can still use the direct minimization approach, cf. Section 5.2.1.

5.2.4 Exploiting the symmetry of certain RKHS

Let us assume that Ω = (−α, α) and the reproducing kernel K : Ω× Ω→ R of HK fulfills the
condition

K(x,−y) = K(−x, y). (5.20)

Moreover, we assume that it holds

ω(x) = ω(−x) for all x ∈ Ω. (5.21)

All kernels of the form K(x, y) = g(xy) or K(x, y) = g(|x− y|) are examples that fulfill (5.20).
We will see that this kind of symmetry allows to construct optimal point sets with cardinality
2n or 2n+ 1 by constructing an optimal set of n points for the modified kernel

K̃(x, y) := K(x, y) +K(x,−y). (5.22)

We remark that (5.20) can be generalized to K(x, a− y) = K(a− x, y) for some a ∈ Ω, but in
order to keep the notation simple we will stick to the case a = 0.
In the following, we will show that optimal weights and points for the approximation of

L(−α,α)(f) =

∫ α

−α
f(x)ω(x) dx

in the Hilbert space HK can be obtained by optimal weights and points for the approximation
of

L(0,α)(f) =

∫ α

0
f(x)ω(x) dx

in the Hilbert space HK̃ , where K̃ is given by (5.22).
Before we proceed, we need a simple Lemma.

Lemma 5.17. Let K fulfill (5.20). Then it holds
1. `Ω(x) = `Ω(−x).
2. K(1,0)(x,−y) = −K(1,0)(−x, y).
3. `′Ω(x) = −`′Ω(x).
4. K(1,0)(0, y) +K(1,0(0,−y) = 0.
5. K(1,0)(0, 0) = 0.

Proof. Claim 1. follows from the symmetry of ω, i.e. (5.21). The claims 2.-5. follow by differ-
entiating both sides of (5.20) with respect to x.
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Proposition 5.18. Let Xn = (ξ1, . . . , ξn) ∈ (0, α)n and w̌(Xn, K̃) the associated optimal
quadrature weights for the approximation of L(0,α) in HK̃ .
With X2n := (−ξn, . . . ,−ξ1, ξ1, . . . , ξn) it holds

w̌(X2n,K) = (w̌n(Xn, K̃), . . . , w̌1(Xn, K̃), w̌1(Xn, K̃), . . . , w̌n(Xn, K̃)),

i.e. the 2n optimal weights for the approximation of L(−α,α) using the symmetric point set X2n

in HK can be obtained by computing n optimal weights for L(0,α) in HK̃ .

Proof. Let v := (w̌n(Xn, K̃), . . . , w̌1(Xn, K̃), w̌1(Xn, K̃), . . . , w̌n(Xn, K̃)). We have to show
that v = w̌(X2n,K). To this end, note that the Riesz-representer of the error functional
RX2n,v(f) = L(−α,α)(f)−QX2n,v(f) is

rX2n,v(x) = `(−α,α)(x)−
n∑
i=1

w̌i(Xn, K̃)(K(x, ξi) +K(x,−ξi)). (5.23)

We will prove the two equalities

řXn(x) = rX2n,v(x) for all x ∈ (0, α)

rX2n,v(x) = rX2n,v(−x) for all x ∈ Ω = (−α, α).
(5.24)

Because of řXn(ξi) = 0 for i = 1, . . . , n, the identities (5.24) imply that rX2n,v(±ξi) = 0 and
hence the optimality of v.
Regarding the first equality, we note that it holds for x ∈ (0, α) that

`(0,α)(x) = `(−α,α)(x)

because of
α∫

0

K̃(x, y)ω(y) dy =

α∫
0

K(x, y)ω(y) dy +

α∫
0

K(x,−y)ω(y) dy =

α∫
−α

K(x, y)ω(y) dy.

Then, having in mind (5.23), we can compute for x ∈ (0, α)

řXn(x) = `(0,α)(x)−
n∑
i=1

w̌i(Xn, K̃)K̃(x, ξi)

= `(−α,α)(x)−
n∑
i=1

w̌i(Xn, K̃) (K(x, ξi) +K(x,−ξi))

= rX2n,v(x).

Regarding the second equality in (5.24), we use the identities `(−α,α)(−x) = `(−α,α)(x) and
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88 5 Computation of optimal and nested quadrature points

K(−x, y) = K(x,−y) to compute

rX2n,v(−x) = `(−α,α)(−x)−
n∑
i=1

w̌i(Xn,K) (K(−x, ξi) +K(−x,−ξi))

= `(−α,α)(−x)−
n∑
i=1

w̌i(Xn,K) (K(x,−ξi) +K(x, ξi))

= rX2n,v(x).

An immediate consequence is the following theorem, which allows to obtain optimal quadrature
rules with 2n points at reduced costs.

Theorem 5.19. Let X̌n = (ξ̌1, . . . , ξ̌n) ∈ (0, α)n be a vector of optimal points for the approx-
imation of L(0,α)(f) in HK̃ . Moreover, let w̌(X̌n, K̃) = (w̌1(X̌n, K̃), . . . , w̌n(X̌n, K̃)) ∈ Rn be
the optimal weights for X̌n in HK̃ . Then it holds that
(i) The points

X2n := (−ξ̌n, . . . ,−ξ̌1, ξ̌1, . . . , ξ̌n) ∈ (−α, α)2n

are optimal for approximating L(−α,α)(f) in the Hilbert space HK .
(ii) The associated optimal weights for X2n in HK are given by

w(X2n,K) = (w̌n(X̌n, K̃), . . . , w̌1(X̌n, K̃), w̌1(X̌n, K̃), . . . , w̌n(X̌n, K̃)) ∈ R2n.

Proof. Since X2n is symmetric, the optimality of the weights (ii) follows by Proposition 5.18.
For the optimality of the points we have to show that

ř′X2n
(±ξ̌i) = 0 for i = 1, . . . , n.

This follows from the symmetry (5.24) in the proof of Proposition 5.18 and the optimality of ξ̌,
i.e.

ř′X2n
(ξ̌i) = 0 for i = 1, . . . , n.

This allows to compute optimal quadrature formulas with 2n points in HK by solving the
associated problem in HK̃ for n points. In order to deal with the case of 2n+1 nodes, we define
the kernels

K0(x, y) = K(x, y)− K(x, 0)K(0, y)

K(0, 0)

and

K̃0(x, y) := K̃(x, y)− K̃(x, 0)K̃(0, y)

K̃(0, 0)
= K0(x, y) +K0(x,−y).

Theorem 5.20. Let X̌n = (ξ̌1, . . . , ξ̌n) ∈ (0, α)n be a vector of optimal points for the approxima-
tion of L(0,α)(f) in the Hilbert space HK̃0

. Let w̌(X̌n, K̃) = (w̌1(X̌n, K̃0), . . . , w̌n(X̌n, K̃0)) ∈ Rn

denote the associated optimal weights for X̌n in HK̃0
.

88



5.2 Efficient computation of optimal quadrature points 89

Then, it holds that
(i) The points

X2n+1 := (−ξ̌n, . . . ,−ξ̌1, 0, ξ̌1, . . . , ξ̌n) ∈ (−α, α)2n+1

are optimal for approximating L(−α,α)(f) =
∫ α
−α f(x)ω(x) dx in the Hilbert space HK .

(ii) With the definition

w0(X̌n) :=
1

K(0, 0)

(
`Ω(0)−

n∑
i=1

w̌i(X̌n, K̃0)
(
K(0, ξ̌i) +K(0,−ξ̌i)

) )
the weights

v := (w̌n(X̌n, K̃0), . . . , w̌1(X̌n, K̃0), w0(X̌n), w̌1(X̌n, K̃0), . . . , w̌n(X̌n, K̃0)) ∈ R2n+1

are optimal for X2n+1 in HK , i.e. w̌(X2n+1) = v.

Proof. We first note that the optimality of the points X̌n for L(0,α) in HK̃0
implies the opti-

mality of (−ξ̌n, . . . ,−ξ̌1, ξ̌1, . . . , ξ̌n) for L(−α,α) in HK0 . Therefore, the error representer of the
associated optimal quadrature formula in HK0 is

řX2n(x) = L
(y)
(−α,α)K0(x, y)−

n∑
i=1

w̌i(X̌n)
(
K0(x,−ξ̌i) +K0(x, ξ̌i)

)
,

and fulfills ř′X2n
(±ξi) = ř′X2n

(±ξi) = 0. Therefore, in the spirit of the proofs for Proposition 5.18
and Theorem 5.19, it remains to show that

rX2n+1,v(x) = řX2n(x) for all x ∈ Ω.

To this end, noting that

rX2n+1,v(x) = `(−α,α)(x)−
n∑
i=1

w̌i(X̌2n)
(
K(x,−ξ̌i) +K(x, ξ̌i)

)
− w0(X̌n)K(x, 0)

we can compute

řX2n(x) = L
(y)
(−α,α)K0(x, y)−

n∑
i=1

w̌i(X̌n)
(
K0(x,−ξ̌i) +K0(x, ξ̌i)

)
= `(−α,α)(x)−

K(x, 0)`(−α,α)(0)

K(0, 0)

−
n∑
i=1

w̌i(X̌n)

(
K(x,−ξ̌i) +K(x, ξ̌i)−

K(x, 0)

K(0, 0)
(K(0, ξ̌i) +K(0,−ξ̌i))

)

= `(−α,α)(x)−
n∑
i=1

w̌i(X̌2n)
(
K(x,−ξ̌i) +K(x, ξ̌i)

)
− w0(X̌n)K(x, 0).

It remains to show that řX2n+1(0) = ř′X2n+1
(0) = 0, which follows by inserting x = 0 and using

Lemma 5.17.
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90 5 Computation of optimal and nested quadrature points

5.3 Greedy construction of nested point sets using matching
pursuit

In the preceding section we dealt with the problem of computing optimal quadrature points
without any additional constraints, i.e. all the n points and n weights were considered as
degrees of freedom and could be varied to minimize the worst-case error. The resulting optimal
quadrature points are pairwise distinct and strictly contained in the interval of integration
Ω = (a, b), i.e. a < ξ̌1 < ξ̌2 < . . . < ξ̌n < b. However, numerical experiments suggest that
the optimal point sets X̌n are not contained in X̌m for m > n, except for the midpoint of the
interval if certain symmetry conditions of K are fulfilled. Therefore, the optimal quadrature
points are not nested. But in many practical applications nestedness is a big advantage because,
for example, one can increase the accuracy of the numerical approximation from n to m = n+k
function values without evaluating the integrand at all the m points. Instead, one can re-
use the first n values requiring only an additional k function evaluations. Moreover, for the
construction of sparse tensor product cubature rules, cf. Section 2.4.2 and Chapter 7, nestedness
of the underlying univariate quadrature rule is advantageous. Therefore, we will spend this
section on the construction of nested quadrature rules, keeping the following points in mind:

1. The nested quadrature rules should use optimal weights for a given RKHS. This is impor-
tant with regard to the construction of optimal tensor product cubature-rules in Chapter 7.

2. The nested quadrature rules should have a small worst-case error, preferably comparable
to the n-th minimal worst-case error of the non-nested optimal quadrature rule discussed
in Section 5.1.

3. The nested quadrature rules should be stable, i.e. the `1-norm of the vector of optimal
weights w̌(Xn) should not grow with n.

There are several approaches to construct nested quadrature rules that directly minimize the
worst-case error by a greedy approach, cf. [89, 136]. Then, however, it is not guaranteed that
the resulting points are well-separated. In fact, already for the univariate Hardy space H2

stability problems occur. Therefore, we will go for a different approach that is well-established
in the field of nonlinear approximation and yields well-separated point sets which lead to stable
quadrature rules.

5.3.1 Orthogonal matching pursuit and nonlinear approximation

In the following, we will discuss the application of orthogonal matching pursuit to the construc-
tion of optimally weighted quadrature rules. To this end, let us first recall the setting of best
n-term approximation.

Nonlinear approximation

The following generalization of a basis in a Hilbert space will be essential.

Definition 5.21. (Dictionary)
Let H be a Hilbert space with inner product 〈·, ·, 〉H. A dictionary D ⊂ H for H is a set of
functions that fulfills the following two conditions:
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5.3 Greedy construction of nested point sets using matching pursuit 91

(i) For each dictionary element φ ∈ D it holds ‖φ‖H =
√
〈φ, φ〉H = 1.

(ii) The closure of the span of D equals H, i.e.

H = span D.

A dictionary is not necessarily a basis because it can be redundant.
For a given dictionary D ⊂ H one can now ask the question how well a given function f ∈ H
can be approximated by elements from this dictionary. This is formalized by the best n-term
approximation error, i.e.

inf
φ1,...,φn∈D

inf
w1,...,wn∈R

∥∥∥∥∥f −
n∑
i=1

wiφi

∥∥∥∥∥
H
. (5.25)

If a set of n dictionary elements φ1, . . . , φn ∈ D is fixed, the second inf in (5.25) is a classical best-
approximation problem which due to the Hilbert space structure breaks down to the solution
of the linear system

n∑
i=1

wi 〈φi, φj〉H = 〈φj , f〉H for all j = 1, . . . , n.

However, due to the first inf over all possible combinations of n dictionary elements
φ1, . . . , φn ∈ D this problem is referred to as nonlinear approximation problem.

Greedy approach to best n-term approximation

A popular greedy approach to solve the problem (5.25) is well-known by the name Orthogonal
Matching Pursuit (OMP) [45, 123, 155] or Orthogonal Greedy Algorithm (OGA) [151]. For a
given dictionary D ⊂ H and an element f ∈ H it works as follows: First, we need a so-called
selection function κ : H → D

κ(g) := arg max
φ∈D

|〈g, φ〉H|, g ∈ H (5.26)

which selects the dictionary element that maximizes the absolute value of the inner product
between its argument g and all the elements from the dictionary. Moreover, for a given finite-
dimensional subspace H0 ⊂ H, we need the orthogonal projection PH0 : H → H0.
Then, step-by-step an approximation space Hn is constructed by the greedy procedure outlined
in Algorithm 3.
In order to illustrate the behaviour of OMP, we consider the following example.

Example 5.22. Assume the dictionary consists of an orthonormal basis of H, i.e. 〈ϕ,ψ〉H = 0
for ϕ 6= ψ and ϕ,ψ ∈ D. Then, each function f ∈ H can be written as

f(x) =
∑
φ∈D
〈f, φ〉H φ(x)
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92 5 Computation of optimal and nested quadrature points

Algorithm 3: Orthogonal matching pursuit
Initialize: k := 0, r0 := f , H0 := {0}.
repeat

1. k := k + 1

2. ϕk := κ(rk−1) (compute the next dictionary element)

3. Hk := span (Hk−1 ∪ {ϕk}) (update the subspace)

4. rk := f − PHk(f) (compute projection on subspace and associated residual)

until k = n;
Output: The projection PHnf of f onto Hn is an approximation to f in the H-norm.

and after k steps the OMP algorithm has automatically selected the k largest coefficients 〈f, φ〉H
of f . In this case, the OMP approximation equals the best n-term approximation in (5.25)
because

‖f − PHnf‖
2
H =

∑
φ/∈Hn

〈f, φ〉2H.

However, in general, the dictionary is not orthogonal.

Now, we are going to apply this generic approach to the approximation of functionals in RKHS.

5.3.2 Greedy approach to quadrature in RKHS

As discussed before, the approximation of a linear functional LΩ : HK → R using point-
evaluation functionals δξ, ξ ∈ Ω is dual to the problem of approximating `Ω ∈ HK using
K(·, ξ), ξ ∈ Ω, where K(·, ξ) is the Riesz-representer of δξ.
Recalling that

‖K(·, ξ)‖HK =
√
〈K(·, ξ),K(·, ξ)〉HK =

√
K(ξ, ξ)

and that HK = span {K(·, x)|x ∈ Ω}, we note that the set of normalized point-evaluation
representers

DΩ(K) :=

{
K(·, ξ)√
K(ξ, ξ)

∣∣ξ ∈ Ω

}
,

is a dictionary for HK in the sense of Definition 5.21. The idea to use orthogonal matching
pursuit in this setting appeared for example in [150, 151].
Next, we need to compute the projections onto the subspaces spanned by {K(·, ξi), i = 1, . . . n}.
To this end, let Hm = span {K(·, ξ1), . . . ,K(·, ξm)} be a subspace spanned by m kernel func-
tions. The orthogonal projection PHm : Hk → Hm is explicitly given by the spline algorithm,
cf. Section 3.3, i.e.

PHmf(x) :=
m∑
i=1

m∑
j=1

G−1
i,j (Xm)K(x, ξj) f(ξi).
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5.3 Greedy construction of nested point sets using matching pursuit 93

Algorithm 4: OMP greedy approach to compute nested quadrature rules in RKHS
Input: kernel function K : Ω× Ω→ R, representer `Ω : Ω→ R.
Initialize: k := 0, X0 = ∅, řX0 = `Ω.
repeat

1. k := k + 1

2. ξk := arg maxx∈Ω |řXk−1
(x)|2/K(x, x) (solve global optimization problem)

3. Xk := Xk−1 ∪ {ξk} (add new point)

4. w̌(Xk) = G−1(Xk,K)b(Xk,K) (compute optimal weights)

5. řXk := `Ω(x)−
∑k

i=1 w̌i(Xk)K(x, ξi) (update error representer)

until k = n;
Output: Quadrature points Xn and optimal weights w̌(Xk) for all k = 1, . . . , n.

Moreover, for the special case of f = `Ω, the projection of f on the subspace Hm is given by
Pm`Ω(x) =

∑m
i=1 w̌i(Xm)K(x, ξi) and the residual f−PHmf is just the Riesz-representer of the

quadrature rule that uses the points Xm = (ξ1, . . . , ξm), i.e.

`Ω − PHm`Ω = řXm .

Finally, we need the selection-function κ : HK → DΩ(K), cf. (5.26). To this end, we observe
that to each point x ∈ Ω there corresponds a dictionary element φ ∈ DΩ(K). Therefore, for a
given function g ∈ HK , we can write the selection function κ : HK → DΩ(K) as

κ(g) := arg max
φ∈DΩ(K)

|〈g, φ〉HK | = arg max
x∈Ω

|〈g,K(·, x)/
√
K(x, x)〉HK |

= arg max
x∈Ω

|g(x)/
√
K(x, x)| = arg max

x∈Ω
|g(x)|2/K(x, x).

Here, we used that K(·, x) represents point-evaluation and that the maximizer of a positive
function is invariant with respect to taking the square.
We see that with our particular choice of the dictionary DΩ(K), the orthogonal matching
pursuit algorithm can easily be realized for RKHS by solving a global optimization problem for
the smooth function |g|2/K(x, x).
We summarize the final procedure in Algorithm 4. Note that the only input required by this
approach is the kernel function K : Ω× Ω→ R and the Riesz-representer of LΩ in HK that is
given by `Ω(x) =

∫
ΩK(x, y)ω(y) dy.

We visualized the sequence of maximization problems in Figure 5.4. Note the similarity to the
construction of Leja points in Section 2.3.4, where also repeated maximization problems have
to be solved in order to obtain nested point sets.
This approach is applicable for d ≥ 2 as well, but unfortunately global optimization problems
quickly become intractable when the dimensionality increases. However, for d = 1 it can be
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94 5 Computation of optimal and nested quadrature points

Figure 5.4: Orthogonal matching pursuit for approximation of `Ω with K(x, x) = 1.

solved by splitting Ω into k + 1 sub-intervals

Ω = (a, b) = (a, ξ1] ∪ (ξ1, ξ2] ∪ . . . ∪ (ξk−1, ξk] ∪ (ξk, b] =
k+1⋃
i=1

Ωi.

Since řXk(ξk) = 0, we know by Rolle’s theorem that there exists a local maximum of ř2
Xk

in
every Ωi. Therefore, in the k-th step we solve (k + 1) local optimization problems and obtain
the global solution by the largest of all the local ones.

5.3.3 Symmetric point sets

Sometimes it is advantageous to have nested point sets that are symmetric. One reason is that
symmetric points, which also lead to symmetric weights by Proposition 5.18, integrate all odd
functions exactly. Therefore, we will modify Algorithm 4 such that it produces points that are
symmetric by following the ideas from Section 5.2.4.
In particular, we assume that the integration domain is zero-centered, i.e. Ω = (−α, α) and the
weight function is even, i.e. ω(x) = ω(−x) for all x ∈ Ω. Moreover, for all x, y ∈ Ω it shall hold
K(x,−y) = K(−x, y). Then, we set the first quadrature point ξ1 = 0 and apply Algorithm 4
to the kernel K̃(x, y) = K(x, y) +K(x,−y).
Each point ξk that is computed in the k-th iteration of the algorithm is then mirrored at zero
and the final set of points after n iterations has the form

Xs
2n+1 = (0, ξ1,−ξ1, ξ2,−ξ2, . . . , ξn,−ξn)

and a cardinality of 2n+ 1. The procedure is outlined in Algorithm 5.
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5.3 Greedy construction of nested point sets using matching pursuit 95

Algorithm 5: OMP greedy approach for symmetric nested quadrature rules on Ω = (−α, α).
Input: kernel function K : Ω× Ω→ R, representer `Ω : Ω→ R.
Initialize: k := 1, X1 = Xs

1 = {0}, řX1 = `Ω(x)− K̃(x, 0)`Ω(0)/K̃(0, 0). repeat
1. k := k + 1

2. ξk := arg maxx∈(0,α) |řXk−1
(x)|2/K̃(x, x) (solve global optimization problem)

3. Xk := Xk−1 ∪ {ξk} and Xs
2k+1 := X2k−1 ∪ {−ξk, ξk} (add new point)

4. w̌(Xk) = G−1(Xk, K̃)b(Xk, K̃) (compute optimal weights in HK̃)

5. řXk := `Ω(x)−
∑k

i=1 w̌i(Xk)K̃(x, ξi) (update symmetrized error representer)

until k = n;
Output: Symmetric set of nested quadrature points Xs

2n+1.

5.3.4 Extension to unbounded domains and singular function spaces

A possible extension of the classical orthogonal matching pursuit introduces a certain prior on
the dictionary which moderates how much certain dictionary elements are preferred over others.
This can be realized by some function η : D → R+ which modifies the selection function κ to

κη(g) := arg max
φ∈D

|〈g, φ〉H| η(φ).

In our setting, where we use the dictionary DΩ(K) and each element corresponds to a point
x ∈ Ω, the prior on the dictionary elements can be realized as weight function ν : Ω→ R≥0.
Inspired by weighted Leja sequences, we choose ν(x) =

√
ω(x) for integration with respect to

non-constant weight functions ω. This is especially important when dealing with integration on
unbounded domains like Ω = R. Moreover, it turned out to be beneficial to use the Chebyshev
weight function ν(x) =

√
(1− x2) for integration on (−1, 1) when the function x 7→ K(x, x) or

its derivative is unbounded as x→ ±1, like e.g. in H1 or TLi2 .
The weighted OMP greedy algorithm for the construction of nested quadrature rules is outlined
in Algorithm 6 and visualized for K(x, x) = 1 in Figure 5.5.
Finally, we remark that it is of course possible to combine the weighted greedy approach in
Algorithm 6 with the symmetric greedy approach in Algorithm 5.

Figure 5.5: Weighted orthogonal matching pursuit with weight function ν : Ω→ R+.
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96 5 Computation of optimal and nested quadrature points

Algorithm 6: Weighted OMP greedy approach to compute nested quadrature rules in RKHS
Input: kernel function K : Ω× Ω→ R, representer `Ω : Ω→ R, weight function ν : Ω→ R+.
Initialize: k := 0, X0 = ∅, řX0 = `Ω
repeat

1. k := k + 1

2. ξk := arg maxx∈Ω |řXk−1
(x)ν(x)|2/K(x, x) (solve weighted optimization problem)

3. Xk := Xk−1 ∪ {ξk}. (add new point)

4. w̌(Xk) = G−1(Xk,K)b(Xk,K) (compute optimal weights)

5. řXk := `Ω(x)−
∑k

i=1 w̌i(Xk)K(x, ξi) (update error representer)

until k = n;
Output: Quadrature points Xn and optimal weights w̌(Xk) for all k = 1, . . . , n.
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6 Application to optimal quadrature in
certain RKHS from scientific computing

In Chapter 5 we have introduced two algorithms for the construction of both, optimal and
nested univariate quadrature, rules that approximate

LΩ(f) =

∫
Ω
f(x)ω(x) dx

in a univariate reproducing kernel Hilbert space HK with kernel K : Ω×Ω→ R. Here, Ω ⊂ R
is a one dimensional domain and ω : Ω→ R+ a positive weight function.
This chapter is concerned with the validation of these quadrature rules in a variety of repro-
ducing kernel Hilbert spaces that are relevant in applications from numerical analysis, scientific
computing and engineering. In order to apply the algorithms from Chapter 5 to the construc-
tion of quadrature formulas in specific spaces HK efficiently, we have to derive closed-form
representations of

‖LΩ‖2H?K = L
(x)
Ω L

(y)
Ω K(x, y) and `Ω(x) = L

(y)
Ω K(x, y), (6.1)

which are the squared norm and the Riesz-representer of LΩ in HK , respectively. Moreover, we
need certain derivatives of the kernel K and the function `Ω, but since differentiation in general
is a simple task the main problem is the derivation of (6.1).
After the desired optimal and nested quadrature rules have been computed we will compare
them not only with each other but also to Gaussian, Clenshaw-Curtis and Leja quadrature.
Even though the optimal quadrature points will not be used in Chapters 7 and 8, they will
serve as a benchmark for the performance of other quadrature rules in the respective setting.
To this end, we define

w̌cen(HK) = w̌ce(Q̌X̌n) (6.2)

to be the worst-case error of a quadrature rule with n optimal points X̌n and associated optimal
weights w̌(X̌n). Here we note that our numerical experiments suggest that in all the investigated
settings the optimal quadrature points obtained by Algorithm 2 are unique. However, this has
been proven only for translation invariant kernels of the form K(x, y) = g(x−y) for integration
with respect to the uniform density ω ≡ 1, cf. [27]. If in fact the uniqueness would hold true
for all of the kernels considered in this thesis, the quantity (6.2) would equal the n-th minimal
worst-case error in HK , cf. (2.5) in Section 2.1.2.
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98 6 Application to optimal quadrature in certain RKHS from scientific computing

Our main observation regarding the performance of the OMP greedy approach is the following:
• If w̌cen(HK) decays algebraically with order O(n−s), s ∈ N, the OMP greedy quadrature

also exhibits a convergence rate of O(n−s), albeit with a slightly worse constant than the
optimal algorithm.
• If w̌cen(HK) decays exponentially with order O(e−αn), α > 0, the OMP greedy quadra-

ture achieves a convergence rate of O(e−
α
2
n).

• If w̌cen(HK) decays sub-exponentially with order O(e−α
√
n), α > 0, the OMP greedy

quadrature achieves a convergence rate of O(e−β
√
n), where the precise relationship be-

tween α and β is not clear. However, in the considered cases we have β > α/2.
Beside the relationship between optimal points and the OMP greedy points with respect to
their worst-case errors we also consider further properties, like the distribution of both, optimal
and OMP greedy points, or the stability of the resulting optimal quadrature weights. Regarding
the latter, we note that the stability of optimal quadrature rules follows from the positivity of
their weights, cf. Theorem 5.9. The stability of the OMP greedy points will be investigated
numerically. It turns out that they behave similar to Leja points, i.e. the associated optimal
weights are not all positive, but the quantity

∑n
i=1 |w̌i(Xn)| seems to be uniformly bounded for

all n ∈ N.
Moreover, we investigate the distribution of the OMP greedy points, relative to the respective
optimal points. Here we observe that in many settings the OMP greedy points are distributed
in the same way as the optimal point sets. This is a similarity to Gaussian and Leja quadrature,
where the respective point sets also lead to the same distribution.
Finally, we compare the performance of our new quadrature rules with respect to the worst-case
error to other, well-known quadrature rules from the literature. Therefore, in the upcoming
plots we give the worst-case errors of the following quadrature rules.

Optimal: Optimal quadrature points and weights, cf. Section 5.2.
OMP Greedy: The points are selected by the approach from Section 5.3, which is based on

orthogonal matching pursuit. The weights are computed to be optimal in HK .
Weighted Greedy: The points are selected by the approach from Section 5.3, but an additional

weight is employed.
Gaussian-quadrature: Classical Gaussian quadrature rule that achieves the maximal polyno-

mial degree of exactness which is 2n− 1. Depending on the setting we use either Gauss-
Legendre for integration on bounded intervals like [−1, 1] or [0, 1], or Gauss-Hermite for
integration on (−∞,∞).

Clenshaw-Curtis: Common quadrature rule that is nested for n = 2k− 1, k ∈ N. It is exact for
polynomials up to degree n− 1. Their construction is explained e.g. in [38, 159].

Leja: The points are maximally nested with polynomial degree of exactness of n − 1. Their
construction for integration on [−1, 1] is explained in Section 2.3.4 and for integration on
(−∞,∞) in Section 2.3.4.

All computations were carried out with arbitrary precision floating points arithmetic [62], where
it was necessary to use an accuracy of ε2 to compute worst-case errors of the magnitude ε, cf. the
discussion at the end of Section 4.1.1.
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Figure 6.1: Log-log plot of the worst-case errors in Hs on [0, 1] for s ∈ {2, 3}.

6.1 Sobolev spaces

Our first examples are Sobolev spaces with smoothness s ∈ N. The non-periodic Sobolev space
Hs on [0, 1] as well as its reproducing kernel

Ks(x, y) = 1 +
(−1)s+1

(2s)!
B2s(|x− y|) +

s∑
j=1

Bj(x)Bj(y)

(j!)2

was already discussed in Section 3.6.1. Moreover, the reproducing kernel of the periodic Sobolev
space H̃s is

K̃s(x, y) =
∑
k∈Z

ρ(k)−2s exp (2πik(x− y)) = 1 +
(−1)s+1

(2s)!
B2s(|x− y|).

In order to apply the algorithms from Chapter 5, we need to compute the Riesz-representer of
LΩf =

∫ 1
0 f(x) dx in both spaces. Due to the representation as Bernoulli polynomials, which

fulfill LΩBk = 0, we obtain

`Ω(x) = 1 and therefore ‖LΩ‖(Hs)? = ‖LΩ‖(H̃s)? = 1.

It is well-known that for both, periodic and non-periodic Sobolev spaces, it is possible to achieve
the best possible convergence rate of the worst-case error, i.e. n−s by using equidistant points,
cf. [28, 109, 116]. Also, classical Gaussian quadrature with its 2n−1 polynomial degree of exact-
ness exhibits this rate of convergence, which is a consequence of polynomial best approximation
results in Sobolev spaces [109].
Therefore, it is not surprising that the improvement by choosing optimal point sets is ne-
glectable. However, it is still interesting to note that even the greedy algorithm achieves the
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Figure 6.2: Log-log plot of worst-case error of the OMP greedy quadrature in both, periodic
and non-periodic Sobolev spaces on [0, 1].

best possible rate n−s, albeit with a slightly worse constant.
To be more precise, in Figure 6.1 we compare worst-case errors of optimal points to greedy
points as well as to Gaussian quadrature and Leja quadrature in the non-periodic Sobolev
spaces Hs for s ∈ {2, 3}. The data is plotted in a log-log-scale. Clearly, all the considered
methods achieve a convergence rate of n−s. The decay of the Leja quadrature, however, is not
as smooth and straight as the rates of the other methods.
In Figure 6.2 the worst-case errors of the OMP greedy points for both, the periodic Sobolev space
H̃s and the non-periodic Sobolev space Hs on [0, 1] are given. Here, we considered smoothness
parameters s ∈ {1, 2, 3}. Clearly, the OMP greedy method achieves the best possible rate of
n−s in both spaces for all the considered smoothness settings.
Moreover, we comment on the stability of the OMP greedy points. We computed the quantities

σ(n) :=
n∑
i=1

|w̌i(Xn)| (6.3)

for Xn being the nested point sets obtained by the OMP greedy algorithm. For both spaces,
H̃s and Hs and all smoothness parameters s ∈ {1, 2, 3} we found that σ(n) ≤ 1.1. Therefore,
we claim that the OMP greedy quadrature rules are stable.
Finally, we consider the distribution of optimal and OMP greedy points. To this end, in
Figure 6.3 their cumulative distribution functions are given on the left-hand side. Both point
sets are distributed uniformly over the domain Ω = [0, 1]. This is consistent with the right-hand
side picture, where the convergence of the largest optimal quadrature point to the interval’s
boundary is plotted in a log-log scale. Since the largest optimal point is always located within
(0, 1), it can only approach x = ±1 but never actually hits the boundary. The observed
convergence is of order n−1, which is consistent with a uniform or equidistant distribution.
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Figure 6.3: Distribution of optimal and greedy points for non-periodic Sobolev spaces on [0, 1].

6.2 Hardy spaces on open discs

The next example are Hardy spaces Hr which consist of functions that are analytic in the open
disc Dr = {z ∈ C : |z| < r} and are square integrable on its boundary. Its reproducing kernel
was given in Section 3.6.2, i.e.

Kr(x, y) =
r2

r2 − xy
=
∞∑
k=0

r−2kxkyk.

We consider integration on Ω = (−1, 1) with respect to the uniform measure, i.e.

LΩ(f) =

∫ 1

−1
f(x) dx. (6.4)

The extended total positivity of Kr is an immediate consequence of Theorem 5.3 with u(x) = x
and λk = r−2k.
In order to apply the results from Chapter 5, we need a closed formula for both, the Riesz-
representer `Ω and the norm ‖LΩ‖H?r of LΩ.

Proposition 6.1.

(i) The Riesz-representer of LΩ(f) given in (6.4) is

`Ω(x) =
2r2

x
tanh−1

( x
r2

)
.
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(ii) The operator norm of LΩ in Hr is given by

‖LΩ‖2H?r = 2r2

(
Li2

(
1

r2

)
− Li2

(
− 1

r2

))
,

where Li2(x) =
∑∞

k=1
xk

k2 denotes the di-logarithm, cf. [165] and the references therein for
an overview of the properties of the Li2-function.

Proof. Regarding (i) we use the identity

tanh−1(x) =
∞∑
k=0

x2k+1

2k + 1

and compute

`Ω(x) = L
(y)
Ω Kr(x, y) =

∑
k∈N0

r−2kxk
∫ 1

−1
yk dy =

∑
k∈N0

r−2kxk
1 + (−1)k

k + 1

=
∑
k∈N0

r−4kx2k 2

2k + 1
=

2r2

x

∑
k∈N0

( x
r2

)2k+1 1

2k + 1

=
2r2

x
tanh−1

( x
r2

)
.

The norm of LΩ is computed by

‖LΩ‖2H?r = L
(x)
Ω L

(y)
Ω Kr(x, y)

=
∑
k∈N0

r−2k

(∫ 1

−1
xk dx

)2

=
∑
k∈N0

r−2k

(
1 + (−1)k

)2
(k + 1)2

=
∑
k∈N0

r−2k 2

(k + 1)2

(
1 + (−1)k

)
= 2r2

∑
k∈N0

r−2(k+1) 1

(k + 1)2

(
1 + (−1)k

)
= 2r2

∞∑
k=1

r−2k 1

k2

(
1 + (−1)k−1

)
= 2r2

( ∞∑
k=1

(r−2)k

k2
−
∞∑
k=1

(−r−2)k

k2

)
= 2r2

(
Li2(r−2)− Li2(−r−2)

)

Now we are prepared to apply the results from Chapter 5 to compute both, optimal and nested
quadrature rules for Hr. These are then compared to several other quadrature rules on (−1, 1)
in Hr for different r > 1 in Figures 6.4 and 6.5. The data is plotted in a semi-logarithmic scale,
i.e. the respective worst-case errors on the y-axis are logarithmically scaled. Clearly, a large
radius of analyticity r allows for a faster rate of convergence.
It is known that optimal quadrature points for Hr converge to the Gauss-Legendre points
as r → ∞, cf. [103]. Therefore, for large r the benefit of using optimal quadrature points
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Figure 6.4: Semi-logarithmic plots of the worst-case errors in the Hardy space Hr with relatively
large radii r ∈ {3, 1.5, 1.25, 1.05}.

over classical Gaussian quadrature is neglectable, cf. Figure 6.4. Both, Gauss-Legendre and
optimal points exhibit the almost same exponentially decaying worst-case error. The Clenshaw-
Curtis and Leja quadrature exhibit about half of the exponential convergence rate. This is not
surprising because they integrate polynomials up to degree n − 1 exactly, which is about half
of the degree the Gaussian approach can achieve.
The same holds for the OMP greedy method which achieves a worst-case error that is not much
better than the one of the nested polynomial based approaches.
However, as r tends to 1 the situation changes. Even though for r > 1 all the considered
methods achieve an exponential rate of convergence [80, Thm 5.7], the optimal quadrature
rule clearly outperforms the Gaussian approach if r < 1.25. For the limiting case r = 1 it is
known that the rate of convergence of Gauss-Legendre quadrature drops to O(n−2), cf. [99].
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Figure 6.5: Semi-logarithmic plot of the worst-case errors in the Hardy space Hr for small radii
r ∈ {1.02, 1.01, 1.001, 1.00001}.

However, it was shown in [3] that the optimal algorithm with optimal points for quadrature in
H1 converges at a rate of

w̌ce(X̌n,H1) � n1/4 exp

(
− π√

2

√
n

)
. (6.5)

In Figure 6.6 we observe that the optimal quadrature rule computed by the approach from
Section 5.2 attains this best possible rate, while the quadrature rules based on a polynomial
degree of exactness converge algebraically only.
Let us discuss the performance of the nested quadrature rules obtained by the OMP greedy
procedure from Section 5.3 in more detail. We have estimated both, the optimal rate and the
greedy rate using a least-squares approach. Clearly, the estimated rates match the ones that
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Figure 6.6: Semi-logarithmic worst-case error plot for Hr with r = 1.

can be observed in Figures 6.4 and 6.5. Here, it sticks out that for r > 1 the greedy rate is
always about half of the rate that the optimal points achieve. For r < 1.01, the greedy rate is
even better than Gauss-Legendre quadrature and hence offers a real benefit in settings where
the integrand is analytic in just a small neighborhood of the integration domain.
Even more interesting is the limiting case r = 1. Now, the optimal rate is sub-exponential,
cf. (6.5), and we estimate exp(−1.6

√
n) for the OMP greedy rate, where the weight function

ν(x) =
√

1− x2 was employed, cf. Section 5.3.
A very pleasant observation is the stability of weights associated to the OMP greedy quadrature
points Xn in Hr. We computed

σ(n) :=
n∑
i=1

|w̌i(Xn)|

with various radii r ∈ {1, 1 + 10−5, 1 + 10−3, 1.01, 1.02, 1.05, 1.25, 1.5, 3}. In all these cases, the
value of σ(n) never exceeded 3.2. Therefore, we claim that the OMP greedy quadrature rules
for Hr are stable.
Finally, Figure 6.8 studies the distribution of the optimal quadrature points in Hr: It is well-
known that Gauss-Legendre points are more concentrated close to the boundary than in the
inner part of the interval. In fact, the largest node ξGn of an n-point Gauss-Legendre quadrature
rule converges to 1 at a rate of about n−2, cf. [147], i.e. it holds

1− ξGn � n−2.

For the Hr-optimal quadrature points we see a similar behaviour if r � 1. For smaller r, how-
ever, we observe that for small n the points tend much faster, i.e. at sub-exponential speed, to
the boundary. But when n gets larger their algebraic asymptotic behaviour becomes apparent.
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Figure 6.7: Distribution of optimal and greedy points for Hardy spaces on (−1, 1).

In the limiting case r = 1, there certainly is a super-algebraic convergence of the largest optimal
quadrature point towards the boundary.
Moreover, in Figure 6.7 the cumulative distribution functions of both, optimal points and OMP
greedy points are depicted for r ∈ {1 + 10−5, 1.01, 1.25}. In all cases the greedy construction
yields a point distribution that exactly matches the one of the respective optimal points. How-
ever, for small r the distribution is substantially more concentrated at the boundary, which is
consistent with the observations regarding the growth of the largest optimal node. Again, we
remark the similarity to the relationship between Leja points on [−1, 1] and Gauss-Legendre
quadrature, which also distribute in the same way, cf. Figure 2.2.
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and the Taylor space generated by the di-logarithm TLi2 .
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6.3 Taylor space generated by the di-logarithm

The Taylor space TLi2 that is generated by the di-logarithm Li2 was introduced in Section 3.6.3.
It consists of functions that are analytic in the open unit disc and have quadratically decaying
power-series coefficients. Its kernel is given by

K(x, y) = 1 + Li2(xy) = 1 +
∞∑
k=1

xkyk

k2
.

Again, we consider integration on Ω = (−1, 1) with respect to the uniform measure, i.e.

LΩ(f) =

∫ 1

−1
f(x) dx.

The extended total positivity also follows from Theorem 5.3 with u(x) = x and λk = k−2.
In order to apply the results from Chapter 5 we need a closed formula for both, the Riesz-
representer `Ω and the norm ‖LΩ‖T ?Li2

of LΩ.

Proposition 6.2. (i) The Riesz-representer of LΩ(f) =
∫ 1
−1 f(x) dx in TLi2 is given by

`Ω(x) =
2 tanh−1(x)

x
+ log(1− x2) +

1

2
Li2(x2).

(ii) The operator norm of L in TLi2 is

‖LΩ‖2T ?Li2
= 8(log(2)− 1) +

2

3
π2.

Proof. Regarding (i) we use log(1 − x) = −
∑∞

k=1
xk

k , the definition of Li2 and the identity
1

k2(k+1)
= 1

k2 − 1
k + 1

k+1 to compute

`(x) =

∫ 1

−1
K(x, y) dy =

∫ 1

−1
1 + Li2(xy) dy

= 2 +
∞∑
k=1

xk

k2

(1 + (−1)k)

k + 1

= 2 +
∞∑
k=1

(
xk + (−x)k

)( 1

k2
− 1

k
+

1

k + 1

)

= 2 +

∞∑
k=1

xk + (−x)k

k2
−
∞∑
k=1

xk

k
−
∞∑
k=1

(−x)k

k
+
∞∑
k=1

xk + (−x)k

k + 1

= 2 +

∞∑
k=1

2x2k

4k2
+ log(1− x) + log(1 + x) +

∞∑
k=1

xk + (−x)k

k + 1

= 2 +
Li2(x2)

2
+ log(1− x2) +

∞∑
k=1

xk + (−x)k

k + 1
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= 2 +
Li2(x2)

2
+ log(1− x2) +

2

x

∞∑
k=1

x2k+1

2k + 1

= 2 +
Li2(x2)

2
+ log(1− x2) +

2

x

(
tanh−1(x)− x

)
=

Li2(x2)

2
+ log(1− x2) +

2 tanh−1(x)

x
.

For (ii) we first note that it holds

∞∑
k=1

1

1 + 2k
− 1

2k
= log(2)− 1

because
∞∑
k=1

1

1 + 2k
− 1

2k
= lim

n→∞

n∑
k=1

1

1 + 2k
− 1

2k
= lim

n→∞

n∑
k=1

1

1 + 2k
+

1

2k
− 1

k

= lim
n→∞

−1 +
2n∑
k=1

1

k
−

n∑
k=1

1

k
= lim

n→∞
−1 + h(2n)− h(n),

where h(n) denotes the harmonic series. It behaves like h(n) = log(n) + γ + o(1), where
γ ≈ 0.5772 denotes the Euler-Mascheroni constant. Hence we can conclude that

∞∑
k=1

1

1 + 2k
− 1

2k
= lim

n→∞
−1 + h(2n)− h(n) = lim

n→∞
−1 + log(2n)− log(n) + o(1)

= −1 + log(2).

Moreover, it holds that
∞∑
k=1

2

(1 + 2k)2
=
π2 − 8

4

because ∞∑
k=1

1

(1 + 2k)2
=
∞∑
k=1

1

k2
− 1−

∞∑
k=1

1

(2k)2
=
π2

6
− 1− π2

24
=
π2

8
− 1.

Now we are in the position to prove (ii) by computing

‖L‖2T ∗Li2
= L(x)L(y)K(x, y) =

∫ 1

−1

∫ 1

−1
1 + Li2(xy) dx dy

= 4 +

∞∑
k=1

k−2

(∫ 1

−1
xk dx

)2

= 4 +

∞∑
k=1

k−2

(
1 + (−1)k

)2
(k + 1)2

= 4 +

∞∑
k=1

(
2(1 + (−1)k)

)( 1

k2
− 2

k
+

1

(1 + k)2
+

2

(1 + k)

)
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Figure 6.9: Semi-logarithmic and double-logarithmic plots for the worst-case error in the Taylor
space TLi2 .
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∞∑
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π2
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+
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2π2
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In Figure 6.9, the worst-case error of both, the optimal and the weighted OMP greedy quadra-
ture with ν(x) =

√
1− x2 are given. Here, the left-hand picture is a semi-logarithmic plot

while the right hand picture contains the same data, but as a log-log plot. Clearly, the optimal
quadrature rule converges sub-exponentially at a rate estimated by a least-squares approach to
be exp(−4.05

√
n). The OMP greedy method exhibits a rate of approximately exp(−2.8

√
n).

In order to discuss the performance of the polynomial based approaches Gauss-Legendre, Clen-
shaw Curtis and Leja, the log-log-plot is more informative. Here, we see that all the polynomial
based quadrature rules achieve an algebraic convergence rate of about n−5/2. This is a clear
advice to use optimal quadrature rules instead of classical ones if the integrand has singular
derivatives. We will make use of this in Chapter 8 when we deal with certain integrals from
econometrics.
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Moreover, we computed the stability σ(n), cf. (6.3), for the OMP greedy quadrature points in
TLi2 . Here, it turned out that σ(n) ≤ 2.4 for all n = 1, . . . , 120. We conclude that the nested
quadrature rules for TLi2 obtained by the OMP greedy procedure are stable.
Finally, we also considered the distribution of optimal points in TLi2 in Figure 6.8. Similar to
the Hardy space with r = 1 the points tend super algebraically to the boundary, albeit at a
slower rate than the optimal points for the Hardy space.

6.4 The Hermite space

The univariate Hermite space Mτ was introduced in Section 3.6.4 and consists of functions
whose Hermite coefficients are square summable with respect to the weight τ−k. Its kernel is
given by the Mehler kernel, i.e.

K(x, y) =
1√

1− τ2
exp

(
1

τ−1 + 1
xy − 1

2(τ−2 − 1)
(x− y)2

)
=

∞∑
k=0

τ−kHk(x)Hk(y). (6.6)

In order to apply the results from Chapter 5 we have to make sure that K is extended totally
positive. To this end, we use Theorem 5.4 with

K̃(x, y) =
1√

1− τ2
exp

((
1

τ−1 + 1
+

1

τ−2 − 1

)
xy

)
and v(x) = exp

(
− 1

2(τ−2 − 1)
x2

)
.

Now, the extended total positivity of K(x, y) = K̃(x, y)v(x)v(y) follows from the extended total
positivity of the function exp(c xy), c > 0, cf. [94].
We consider integration on R = (−∞,∞) with respect to the Gaussian measure, i.e.

LΩ(f) =

∫
R
f(x)

1√
2π
e−

x2

2 dx.

We note that the Riesz-representer `Ω and the norm ‖LΩ‖T ?Li2
of LΩ are given by

`Ω(x) = 1 and ‖LΩ‖M?
τ

= 1,

which is a direct consequence of the series representation (6.6) and LΩ(Hk) = 0 for all Hermite
polynomials Hk with k ≥ 1.
Now we can use the algorithms from Chapter 5 to construct optimal points on the one hand
and nested quadrature points on the other. For the latter, we will employ the OGA greedy
method in both variants, unweighted and weighted.
For small values of τ ∈ (0, 1), e.g. τ = 0.25, the Gauss-Hermite and the optimal quadrature
rule achieve almost the same error, cf. Figure 6.10. This is not surprising because the Gaus-
sian approach integrates the first 2n − 1 summands of the Hermite expansion exactly and the
remaining part is very small due to the strong decay of the Hermite coefficients. If on the
other hand τ is close to one, there is a substantial difference between optimal quadrature and
Gauss-Hermite quadrature, albeit both of them achieve an exponential convergence rate.
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Figure 6.10: Semi-logarithmic worst-case error plots for the Hermite spaceMτ .

Regarding the OMP greedy algorithm, we note that for small τ there is a substantial difference
between the weighted and the unweighted variant. While the weighted greedy points achieve
approximately half of the geometric convergence rate as the optimal points, the unweighted
greedy points fail completely, especially for small τ . However, for larger τ the difference between
weighted and unweighted OMP greedy points is not that prominent, albeit still clearly visible.
Finally, we also computed worst-case error for the weighted Leja sequence from Section 2.3.4.
Similar to the Gauss-Hermite quadrature rule it is very competitive for small τ and almost
achieves the error level as the weighted OMP greedy points. But for larger τ the convergence
rate of the Leja points deteriorates until almost no convergence is visible anymore.
We also computed the values σ(n), cf. (6.3) to study the stability of the OMP greedy quadrature
points Xn for integration inMτ . In all the considered settings, i.e. τ ∈ {0.25, 0.75, 0.95, 0.99}
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Figure 6.11: Growth of the largest optimal node and the largest greedy note for τ ∈
{0.25, 0.75, 0.95, 0.99}.

the value of σ(n) never exceeded 1.4. Therefore, we claim that the OMP greedy quadrature
rules forMτ are stable.
Finally we investigated the distribution of optimal and weighted greedy points in Mτ . But
here the greedy points do not just distribute differently, they also exhibit a different growth
behaviour, as can be observed in Figure 6.11. Here, the largest optimal points grows at a
sub-linear rate in all the considered settings. Even though the largest greedy point also grows
sub-linearly, this happens at a substantially slower rate. We do not have an explanation for
this behaviour at this point.

6.5 The Gaussian space

Our final example consists in the RKHS in which the Gaussian kernel

K(x, y) = exp
(
−γ2(x− y)2

)
is reproducing, cf. Section 3.6.5. Its extended total positivity is well-known and was proven in
e.g. [94].
In order to apply our results from Chapter 5, we need the Riesz-representer `Ω and the norm
‖LΩ‖ for HK of the functional LΩ(x) =

∫ 1
−1 f(x) dx in closed-form. To this end, we use the

change of variable z = γ(x− y) to obtain

`Ω(x) =

∫ 1

−1
K(x, y) dy =

∫ 1

−1
exp

(
−γ2(x− y)2

)
dy =

1

γ

∫ γ(x+1)

γ(x−1)
e−z

2
dz,
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Figure 6.12: Semi-logarithmic worst-case error plots for the Gaussian space.

and by the definition of the error function erf(x) = 2√
π

∫ x
0 e
−t2 dt it holds

`Ω(x) =

√
π

2γ
(erf(γ(1 + x)) + erf(γ(1− x))) .

Moreover, the antiderivative of erf(x) is x erf(x) − e−x2
/
√
π. Therefore, a change of variable

leads to

‖LΩ‖2H?K =

∫ 1

−1

∫ 1

−1
K(x, y) dx dy =

∫ 1

−1

∫ 1

−1
exp

(
γ2(x− y)2

)
dx dy

=

√
π

2γ

(∫ 1

−1
erf(γ(1 + x)) dx+

∫ 1

−1
erf(γ(1− x)) dx

)
=

2
√
πγ erf(2γ) + e−4γ2 − 1

γ2
.
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Figure 6.13: Distribution of optimal and greedy points for Gaussian spaces on (−1, 1).

Now we can construct both, optimal and OMP greedy points for the Gaussian space. In
Figure 6.12, we compare their worst-case errors to Clenshaw-Curtis, Leja and Gauss-Legendre
quadrature for shape parameters γ ∈ {1/8, 1/2, 1, 4}. We computed worst-case errors up to
10−55 using arbitrary precision arithmetic [62]. Clearly, the integration problem becomes more
simple if γ decreases. Moreover, we observe that the worst-case error decays super-exponentially.
The results from [131] imply that it is of order O(e−αn log(n)), where α > 0.
Regarding the stability of the OMP greedy quadrature points Xn, we computed σ(n), cf. (6.3).
In all the considered settings, i.e. γ ∈ {0.125, 0.5, 1, 4} the value of σ(n) never exceeded 3.2.
Therefore, we claim that the OMP greedy quadrature rules for the Gaussian space are stable.
However, especially for small values of γ one has to use arbitrary precision arithmetic with a
sufficient accuracy to compute the weights. Here, the accuracy needs to be at least the value of
the worst-case error squared. Therefore, in the given examples we used floating point arithmetic
with a precision of about 800 binary digits.
Finally, Figure 6.13 compares the distribution of optimal points and OMP greedy points for
γ ∈ {1, 4}. Clearly, both point construction have the same distribution, as it was also observed
for the Hardy and Sobolev spaces before. Moreover, we observe a quadratic convergence of the
largest optimal point to the boundary, which seems to be typical for analytic function spaces
on a bounded domain.
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7 Quasi–optimal tensor product integration
in RKHS

This chapter is concerned with the construction of multivariate integration algorithms based on
tensor products of the optimally weighted nested quadrature rules we constructed in Chapter 5.
We first deal with the properties of generalized sparse grid cubature that use univariate quadra-
ture rules with optimal weights. In this setting, the sparse grid construction yields a multivariate
cubature rule that is also optimal with respect to the weights. Therefore, the worst-case error
enjoys a simplified representation and an optimal index set can be constructed without any
knowledge about a priori error bounds by employing the dimension-adaptive sparse grid tech-
nique [70] to a specific function from the Hilbert space. Then, every index set which is optimal
for this particular function is also optimal with respect to the worst-case error for the whole
space. In combination with the greedy procedure that was proposed in Section 5.3, we therefore
obtain a true black-box algorithm that only needs the univariate reproducing kernel as an in-
put and automatically produces stable and effective integration algorithms for the multivariate
problem.
Moreover, for (sub-)exponential error bounds on the univariate quadrature rules, we provide
novel error bounds for the associated quasi-optimal sparse grid algorithm. These generalize the
results we obtained previously in [80].
Finally, we validate both, our automatic index set construction and the theoretical upper bounds
in various tensor product spaces.

7.1 Worst-case error of tensor product quadrature formulae

In this section, we deal with the problem of optimal integration in tensor products of RKHS.
Here, we will follow the sparse grid paradigm from Section 2.4.2 with the additional assumption
that the underlying univariate quadrature rules are nested and use optimal weights. Then, the
multivariate sparse grid cubature rule inherits the property of being optimally weighted. This
was already studied in [161, 162] in a more general setting. We losely follow their presentation,
albeit provide different proofs for some of the results.
Let HK1 , . . . ,HKd be RKHS of functions on Ω1, . . . ,Ωd, respectively. Moreover, let

LΩj (f) :=

∫
Ωj

f(x)ωj(x) dx, j = 1, . . . , d
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116 7 Quasi–optimal tensor product integration in RKHS

be linear functionals on Hj . Their Riesz-representers will be denoted by

`Ωj (x) =

∫
Ωj

K(x, y)ωj(y) dy.

In the following we assume product structure of the integration domain Ω(d) := Ω1 × . . .× Ωd,
as well as of the weight function ω(d)(x) =

∏d
j=1 ωj(xj). We want to approximate the functional

LΩ(d)
(f) = LΩ1 ⊗ · · · ⊗ LΩd =

∫
Ω(d)

f(x)ω(d)(x) dx

using cubature algorithms of the form

QA(f) :=
∑
k∈A

 d⊗
j=1

∆
(j)
kj

 f, (7.1)

where A ⊂ Nd0 is a downward-closed set of multi-indices and ∆
(j)
k : HKj → R is a hierarchical

quadrature rule for HKj that can be written as linear combination of nk function evaluations
at points from nested sets Xnk ⊂ Xnk+1

, i.e

∆
(j)
k (f) =

nk∑
i=1

v
(j)
i,k f(ξ

(j)
i ), v

(j)
i,k ∈ R. (7.2)

The sequence (nk)
∞
k=0 is assumed to be non-decreasing and positive. In most cases, the choice

n0 = 1 is reasonable because the total number of function-values needed by QA is given by

N = N(QA) =
∑
k∈A

d∏
j=1

(nkj − nkj−1),

where we define n−1 = 0 for technical reasons. In the special case nkj − nkj−1 = 1 it holds
N = |A|.
For the construction of the ∆

(j)
k : HKj → R, j = 1, . . . , d, we start from a sequence of univariate

nested quadrature rules

Q
(j)
k (f) =

nk∑
i=1

w
(j)
i,k f(ξ

(j)
i ), for k = 0, 1, 2, . . . , (7.3)

with the convention Q
(j)
−1(f) = 0. Note that due to the nestedness of the sets

X
(j)
k = (ξ

(j)
1 , . . . , ξ

(j)
nk ) the labeling of the points ξ(j)

i in (7.3) does not depend on the level k.
Moreover, we assume that the univariate quadrature rules are convergent, i.e.

lim
k→∞

Q
(j)
k (f) = LΩj (f), for all f ∈ HKj and j = 1, . . . , d. (7.4)
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Now, the aforementioned hierarchical quadrature rules associated to Q(j)
k can be defined by

∆
(j)
k (f) = Q

(j)
k (f)−Q(j)

k−1(f)

=

nk∑
i=1

w
(j)
i,k f(ξ

(j)
i )−

nk−1∑
i=1

w
(j)
i,k−1f(ξ

(j)
i )

=

nk∑
i=nk−1+1

w
(j)
i,k f(ξ

(j)
i ) +

nk−1∑
i=1

(
w

(j)
i,k − w

(j)
i,k−1

)
f(ξ

(j)
i )

=:

nk∑
i=1

v
(j)
i,k f(ξ

(j)
i ).

(7.5)

This definition implies by (7.4) that

LΩj (f) =

∞∑
k=1

∆
(j)
k (f), for all j = 1, . . . , d

and hence
LΩ(d)

(f) = LΩ1 ⊗ · · · ⊗ LΩd(f) =
∑
k∈Nd0

∆k(f),

where

∆kf :=

 d⊗
j=1

∆
(j)
kj

 f.

In order to derive a simplified worst-case error representation for arbitrary tensor product
formulas of the form (7.1), we require the following lemma.

Lemma 7.1. Let f(x) :=
∏d
j=1 fj(xj) be the product of univariate functions fj ∈ HKj . Then

it holds for QA of the form (7.1) that

QA(f) =
∑
k∈A

d∏
j=1

(
∆

(j)
kj

(fj)
)
.

Proof. Using the product structure of f and (7.2) we obtain d⊗
j=1

∆
(j)
kj

 f =

nk1∑
i1=1

. . .

nkd∑
id=1

 d∏
j=1

v
(j)
ij ,kj

 d∏
j=1

fj(ξ
(j)
ij

)


=

d∏
j=1

 nkj∑
ij=1

v
(j)
ij ,kj

fj(ξ
(j)
ij

)

 =

d∏
j=1

∆
(j)
kj

(fj).
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Now we are in the position to compute the worst-case error of QA with a complexity of approx-
imately |A|2 instead of N2.

Proposition 7.2. Let ∆
(j)
k for j = 1, . . . , d and k ∈ N be defined as in (7.5). For any downward-

closed index set A ⊂ Nd0 the worst-case error of the cubature rule (7.1) is given by

‖LΩ(d)
−QA‖2H?K(d)

=

d∏
j=1

‖LΩj‖2H?Kj −2
∑
k∈A

d∏
j=1

∆
(j)
kj

(`Ωj )+
∑
k∈A

∑
v∈A

d∏
j=1

(∆
(j)
kj

)(x)(∆(j)
vj )(y)Kj(x, y).

Proof. The proof follows directly from the worst-case error formula (3.14) in Corollary 3.6,
Lemma 7.1 and the product structure of both, `Ω(d)

and K(d).

From now on, besides the nestedness of the univariate quadrature rules Q(j)
k , we will additionally

assume that the univariate quadrature rules use optimal weights w̌(X
(j)
k ), i.e. have the form

Q̌
(j)
k (f) =

nk∑
i=1

w̌
(j)
i,k (X

(j)
k )f(ξ

(j)
i ). (7.6)

Here,
X

(j)
k := (ξ

(j)
1 , . . . , ξ(j)

nk
)

is a set of integration points that fulfills X(j)
k ⊂ X

(j)
k+1 and

w̌
(j)
k (X

(j)
k ) = (w̌

(j)
1,k(X

(j)
k ), . . . , w̌

(j)
nk,k

(X
(j)
k )) ∈ Rnk , j = 1, . . . , d and k ∈ N0

is the vector of optimal weights that can be computed by

w̌
(j)
k (X

(j)
k ) = G−1(X

(j)
k ,Kj) b(X

(j)
k ,Kj).

Consequently, we will denote the hierarchical quadrature rules that are built from the optimal
quadrature rules Q̌(j)

k by
∆̌

(j)
k (f) = Q̌

(j)
k (f)− Q̌(j)

k−1(f), (7.7)

which enjoy the following orthogonality properties.

Proposition 7.3. Let ř
X

(j)
k

denote the Riesz-representer of Ř
X

(j)
k

= LΩj − Q̌
(j)
k . Then it holds

for k, l ∈ N0 that

〈∆̌(j)
k , ∆̌

(j)
l 〉H?Kj =

‖ŘX(j)
k−1

‖2H?Kj
− ‖Ř

X
(j)
k

‖2H?Kj
for k = l

0 for k 6= l
. (7.8)

In particular, we have for k ∈ N0

‖∆̌k‖H?Kj =

√
‖Ř

X
(j)
k−1

‖2H?Kj
− ‖Ř

X
(j)
k

‖2H?Kj
=
√

∆̌k(`Ωj ). (7.9)

Note here that for k = 0, it holds ‖Ř
X

(j)
k−1

‖H?Kj = ‖LΩj‖H?Kj .
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Proof. For the sake of readability, we will drop the dependence on the dimension j. We note
that it holds Q̌s(řXt) = 0 for all s ≤ t because řXt(ξi) = 0, i = 1, . . . , nt.
Without loss of generality assume l ≤ k, which implies Xl ⊂ Xk. Let us treat the second case
of (7.8) first. Then we have k ≥ l − 1 and using řXk−1

(ξi) = 0, i = 1, . . . , nk−1 we compute

〈∆̌k, ∆̌l〉H?K = 〈Q̌k − Q̌k−1, Q̌l − Q̌l−1〉H?K
= 〈LΩ − Q̌k−1 − (LΩ − Q̌k), Q̌l − Q̌l−1〉H?K
= 〈ŘXk−1

− ŘXk , Q̌l − Q̌l−1〉H?K
= Q̌l(řXk−1

)− Q̌l(řXk)− Q̌l−1(řXk−1
) + Q̌l−1(řXk)

= 0− 0− 0 + 0 = 0.

Regarding the first case k = l we have

〈∆̌k, ∆̌k〉H?K = 〈Q̌k − Q̌k−1, Q̌k − Q̌k−1〉H?K = 〈ŘXk−1
− ŘXk , ŘXk−1

− ŘXk〉H?K
= ‖ŘXk−1

‖2H?K + ‖ŘXk‖
2
H?K − 2〈ŘXk , ŘXk−1

〉H?K .

Now, the first claim follows by

〈ŘXk , ŘXk−1
〉H?K = LΩ(řXk)− Q̌Xk−1

(řXk) = LΩ(řXk) = ‖ŘXk‖
2
HK ,

cf. (3.14) in Corollary 3.6.
The second equality in (7.9) is a direct consequence of ‖ŘXk‖2H?k = ŘXk(`Ω).

As a consequence of the univariate orthogonality property, we obtain for the tensor products

∆̌k =

d⊗
j=1

∆̌
(j)
kj

(7.10)

the analogue result
〈∆̌k, ∆̌l〉H?K(d)

= 0 for k 6= l

and

〈∆̌k, ∆̌k〉H?K(d)
= ‖∆̌k‖2H?K(d)

=
d∏
j=1

(
‖Ř

X
(j)
k−1

‖2H?Kj − ‖ŘX(j)
k

‖2H?Kj

)
= ∆̌k(`Ω(d)

).

Let ∆̌k : HK(d)
→ R be the tensor product of the ∆̌

(j)
k given in (7.7), which are differences of

optimal univariate quadrature rules Q̌(j)
k in (7.6). Then, the sparse tensor product algorithm

Q̌A(f) :=
∑
k∈A

∆̌k(f) (7.11)

uses the information given by the function values at the set

XA :=
⋃
k∈A

X1
nk1
× . . .×Xd

nkd
.
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120 7 Quasi–optimal tensor product integration in RKHS

Theorem 7.4. Among all algorithms that use function values at ξ ∈XA, the algorithm Q̌A in
(7.11) minimizes the worst-case error.

Proof. We recall from Section 3.2 that a linear cubature algorithm that uses function values
from the set XA is optimal in HK(d)

, if and only if it integrates exactly all functions

{
K(d)(·, ξ), ξ ∈XA

}
, where K(d)(·, ξ) =

d∏
j=1

Kj(·, ξj) (7.12)

i.e. the Riesz-representers of the point evaluation functionals that it uses.

To see that this is the case, we note that for j = 1, . . . , d the univariate quadrature rules Q̌(j)
k

use the points from X
(j)
nkj

and, due to the choice of the optimal weights, are exact on the nested
sequence of spaces

V
(j)
k := span

{
Kj(·, ξ(j)

i ), i = 1, . . . , nk
}
.

Now, Theorem 2.5 yields the desired exactness on (7.12).

The following corollary summarizes the results from this section.

Corollary 7.5. Let ∆̌k : HK(d)
→ R be as defined in (7.10), i.e. the tensor product of ∆̌

(j)
k

given by (7.7), which are differences of the optimal quadrature rules Q̌(j)
k in (7.6).

Then, the sparse tensor product algorithm

Q̌A(f) :=
∑
k∈A

∆̌k(f)

is optimal among all algorithms that use the same function values at the set

XA :=
⋃
k∈A

X1
nk1
× . . .×Xd

nkd
.

Moreover, because of the orthogonality of the hierarchical tensor product rules ∆̌k, the squared
worst-case error of Q̌A can be represented as either an infinite sum, i.e.∥∥LΩ(d)

− Q̌A
∥∥2

H?K(d)

=
∑

k∈Nd0\A
‖∆̌k‖2H?K(d)

=
∑

k∈Nd0\A

d∏
j=1

(
‖Ř

X
(j)
kj−1

‖2H?Kj − ‖ŘX(j)
kj

‖2H?Kj
)

(7.13)

≤
∑

k∈Nd0\A

d∏
j=1

‖Ř
X

(j)
kj−1

‖2H?Kj (7.14)
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7.2 Adaptive construction of the index set 121

or a finite sum which equals the error of QA for integration of `Ω(d)
, i.e.∥∥LΩ(d)

− Q̌A
∥∥2

H?K(d)

= LΩ(d)
(`Ω(d)

)− Q̌A(`Ω(d)
) = ‖LΩ(d)

‖2H?K(d)

−
∑

k∈Nd0\A
‖∆̌k‖2H?K(d)

=

d∏
j=1

‖LΩj‖2H?Kj −
∑
k∈A

d∏
j=1

(
‖Ř

X
(j)
kj−1

‖2H?Kj − ‖ŘX(j)
kj

‖2H?Kj
)
.

(7.15)

Using (7.15), it is possible to compute the worst-case error for any index set A ⊂ Nd0 by simply
computing the worst-case errors of the univariate quadrature rules Q̌(j)

k . Therefore, the cost is
only linear in the cardinality |A| of A. Moreover, because the worst-case error of QA equals the
integration error of QA applied to the function `Ω(d)

∈ HK(d)
, the construction of quasi–optimal

index sets can be done automatically by means of the classical dimension-adaptive sparse grid
Algorithm 1 from Section 2.4.2.
For theoretical considerations however, when a priori information on the asymptotic behaviour
of the univariate worst-case errors ‖Ř

X
(j)
k

‖H?Kj is available, the infinite sums (7.13) and (7.14)
are more convenient to obtain bounds on the worst-case error of QA.
Before we proceed with an a priori error analysis for analytic functions, we discuss both, a
greedy technique to obtain index sets where no a priori information on ‖∆k‖ is available and
the choice of quasi-optimal index sets based on given bounds for ‖∆k‖.
To this end, we will assume from now on, that nk − nk−1 = 1, i.e. the point sets X(j)

k are
maximally nested, and therefore ∆

(j)
k uses exactly one additional function evaluation. Actually

one could also assume that nk − nk−1 = c, where c is independent of the level k. Then, all the
results would remain valid, but for the sake of readability we stick to this more simple case for
now.

7.2 Adaptive construction of the index set

The choice of good index sets A aims to make the worst-case error (7.15) of Q̌A as small as
possible. Therefore, it is natural to define the index set such that it contains those indices
k ∈ Nd0 with the highest contribution ‖∆̌k‖. However, there are infinitely many ‖∆̌k‖ to
compute. Besides, the downward-closedness of A has to be satisfied at all times. Therefore,
and because of ‖∆̌k‖2 = ∆̌k(`Ω(d)

), we propose the use of Algorithm 1 applied to the specific
function f(x) = `Ω(d)

(x). The procedure is outlined in Algorithm 7. Here, step-by-step the
index set A is constructed by searching in its direct neighbourhood for suitable candidates that
promise the highest error contribution. After a suitable index k∗ is found, the associated point
(ξ

(1)
k∗1
, . . . , ξ

(d)
k∗d

) is added to the set X and the new weight wk∗ is computed from the weights of
the hierarchical quadrature rule ∆̌k∗ . Moreover, the weights associated to the points that are
already in X also have to be updated. This leads to a total cost complexity of O(N2) floating
point operations, where N = |A| = |X| denotes the total number of cubature points that
are constructed by the algorithm. This is a substantial reduction over the naive construction
of optimal weights for unstructured point sets which has a complexity of O(N3) due to the
inversion of a dense N ×N matrix.
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122 7 Quasi–optimal tensor product integration in RKHS

Algorithm 7: Dimension-adaptive construction of optimally weighted cubature rule QA.
Input:

1. Representer `Ω(d)
=
∏d
j=1 `Ωj of LΩ(d)

in HK(d)
.

2. Optimally weighted nested quadrature-rules Q̌(j)
Xk

with |Xk| = k + 1 for j = 1, . . . , d.

3. Desired accuracy ε > 0.

Initialize:

1. Compute the hierarchical weights of ∆̌
(j)
k (f) =

∑k+1
i=1 v

(j)
i,k f(ξ

(j)
i ).

2. Set of active indices: A = {0}.

3. Set of cubature points: X = {(ξ(1)
1 , . . . , ξ

(d)
1 )}.

4. Squared worst-case error: W =
∏d
j=1 ‖LΩj‖2HKj −∆0(`Ω(d)

).

repeat

1. Determine admissible neighbours B = {A+ ej : j = 1, . . . , d}.

2. For all k ∈ B compute ‖∆̌k‖2H?K(d)

.

3. Determine (some) k∗ = arg maxk∈B ‖∆̌k‖2H?K(d)

.

4. Add k∗ and deal with hanging nodes:
foreach k ≤ k∗ : k /∈ A do

a) Add the index k to A.
b) Update worst-case error: W := W − ‖∆̌k‖2H?K(d)

.

c) Add the point (ξ
(1)
k1+1, . . . , ξ

(d)
kd+1) to X.

d) Update the weights: wk =
∏d
j=1 v

(j)
kj+1,kj

.
foreach l < k do

wl = wl +
∏d
j=1 v

(j)
lj+1,kj

.

end

end

until
√
W < ε;

Output:

• Cubature rule QAf =
∑
k∈Awkf(ξ

(1)
k1
, . . . , ξ

(d)
kd

) that uses N = |A| points.

• Worst-case error ‖LΩ(d)
−QA‖HK(d)

=
√
W .
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7.3 Quasi-optimal index sets 123

7.3 Quasi-optimal index sets

The choice of good index sets A aims to make the worst-case error (7.15) of Q̌A, i.e.∥∥∥LΩ(d)
− Q̌A

∥∥∥2

H?K(d)

=
∑

k∈Nd0\A
‖∆̌k‖2H?K(d)

,

as small as possible. To this end, we will assume in the following the existence of functions
ρj : N0 → R+ that fulfill

ρj(kj) �
∥∥∥∆̌

(j)
kj

∥∥∥2

H?Kj

and are monotonically decreasing. Then, the function

ρ(k) :=
d∏
j=1

ρj(kj) �d,ρ
∥∥∆̌k

∥∥2

H?K(d)

is also monotonically decreasing with respect to each component kj , j = 1, . . . , d.
Hence, for a given cardinality m ∈ N a quasi–optimal index set A contains the m multi-
indices with the highest value of ρ(k). Here, the downward-closedness of A follows from the
monotonicity of ρ.
Therefore, every downward-closed index set A that fulfills

k ∈ A ⇒ ρ(k) > ρ(l) for all l ∈ Nd0 \ A

is quasi-optimal. Consequently,

Aρ(ε) :=
{
k ∈ Nd0 : ρ(k) ≥ ε

}
is a quasi-optimal index set. Since we are interested in analytic functions that allow for expo-
nential or sub-exponential convergence rates, we define the family of index sets

Aρ(T ) :=
{
k ∈ Nd0 : ρ(k) ≥ e−T

}
.

The worst-case error of QAρ(T ) can be bounded by

‖LΩ(d)
−QA‖HK(d)

≤

 ∑
k∈Nd0\Aρ(T )

ρ(k)

1/2

. (7.16)

In order to derive a bound for (7.16) in terms of the total number of points N = |Aρ(T )|, the
following two problems have to be solved.
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124 7 Quasi–optimal tensor product integration in RKHS

Error bound: Bound (7.16) in terms of the parameter T by some function G : R≥0 → R+, i.e.∑
k∈Nd0\Aρ(T )

ρ(k) � G(T ). (7.17)

Cost bound: Bound the cardinality of the index set Aρ(T ) in terms of the parameter T by
some function η : R≥0 → R≥0, i.e.

N := |Aρ(T )| =
∑

k∈Aρ(T )

1 � η(T ).

We will relate the discrete problem (7.17) to a continuous integral. To this end, we need the
auxiliary set

Eρ(T ) :=
{
x ∈ Rd≥0 : ρ(x) ≥ e−T

}
,

which fulfills
Aρ(T ) = Eρ(T ) ∩ Nd0.

Moreover, let

A�ρ (T ) :=
⋃

k∈Aρ(T )

d⊗
j=1

[kj , kj + 1) ⊂ Rd≥0.

Then, it holds
Aρ(T ) ⊂ Eρ(T ) ⊂ A�ρ (T ).

For the treatment of (7.17) the following Lemma will be useful.

Lemma 7.6. Let ρj : R≥0 → R+ be monotonically decreasing and fulfill

sup
x∈R+

ρj(x− 1)

ρj(x)
<∞ for j = 1, . . . , d.

Then it holds ∑
k∈Nd0\Aρ(T )

ρ(k) �d,ρ
∫
Rd≥0\Eρ(T )

ρ(x) dx.

Proof. ∑
k∈Nd0\Aρ(T )

ρ(k) =

∫
Rd≥0\A�ρ (T )

ρ(bxc) dx

=

∫
Rd≥0\A�ρ (T )

ρ(bxc)
ρ(x)

ρ(x) dx

≤ sup
z∈Rd≥0\A�ρ (T )

ρ(bzc)
ρ(z)

∫
Rd≥0\A�ρ (T )

ρ(x) dx.
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7.4 Error bounds for (sub-)exponential decay 125

Now, using (Rd≥0 \ A�ρ (T )) ⊂ (Rd≥0 \ Eρ(T )), the claim follows by∫
Rd≥0\A�ρ (T )

ρ(x) dx ≤
∫
Rd≥0\Eρ(T )

ρ(x) dx

and
ρ(bzc)
ρ(z)

≤ ρ(z − 1)

ρ(z)
.

Remark 7.7. The conditions for Lemma 7.6 are easy to verify. For example, assume that
ρj(k) � e−akp and hence

e−a(k−1)p

e−akp
= exp(a(kp − (k − 1)p), (7.18)

which is constant for p = 1. Moreover, for p ∈ (0, 1) the concavity of k 7→ kp yields that
(7.18) is monotonically decreasing, yet bounded from below by zero. Therefore, Lemma 7.6 is
applicable. However, for p > 1, the convexity of k 7→ kp implies that (7.18) is monotonically
increasing and therefore unbounded, which implies that Lemma 7.6 is not applicable in this
case.

Now, we can apply this approach to the setting of (sub-)exponentially decaying ρ, which appears
e.g. in the treatment of analytic function spaces [80, 153].

7.4 Error bounds for (sub-)exponential decay

In this section, we extend the approach of [80] to the more general setting

ρ(k) = exp

− d∑
j=1

ajk
p
j

 , p ∈ (0, 1] and a ∈ Rd+. (7.19)

We will relate the discrete summation problem to a continuous integration problem. To this
end, we define the sets

Aa,p(T ) =

k ∈ Nd0 :

d∑
j=1

ajk
p
j ≤ T

 ⊂ Nd0

and

Ea,p(T ) =

x ∈ Rd≥0 :

d∑
j=1

ajx
p
j ≤ T

 ⊂ Rd≥0.

Clearly, the quasi-optimal index set Aρ(T ) = {k ∈ Nd0 : ρ(k) ≥ e−T } related to (7.19) is given
by Aa,p(T ).
The next Lemma links our problem to the incomplete Gamma function.
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126 7 Quasi–optimal tensor product integration in RKHS

Lemma 7.8. For p ∈ (0,∞) and a ∈ Rd+ it holds that

∫
Rd+\Ea,p(T )

exp

− d∑
j=1

ajx
p
j

 dx = p−d

 d∏
j=1

a
− 1
p

j

 ∫
Rd+\E1,1(T )

exp

− d∑
j=1

yj

 d∏
j=1

y
1
p
−1

j

 dy.

Proof. The equality follows by the change of variable yj = ajx
p
j .

Next, we set β := 1/p and concentrate on the integral

∫
Rd+\E1,1(T )

exp

− d∑
j=1

yj

 d∏
j=1

yβ−1
j

 dy,

which for d = 1 equals the upper incomplete Gamma function.

∞∫
T

exp (−y1) yβ−1
1 dy1 = Γ(β, T ).

Before we proceed, we briefly discuss the incomplete Gamma function.

Remark 7.9. (Comments on the incomplete Gamma function Γ)

1. If S ∈ R≥0 is fixed, Γ(β, S) is strictly increasing in β. If on the other hand β ∈ N is fixed,
Γ(β, S) is a strictly decreasing function in S. This can easily be seen from the integral
representation

Γ(β, S) =

∫ ∞
S

tβ−1e−t dt.

2. For S = 0, it holds ∫ ∞
0

e−ttβ−1 dt = Γ(β, 0) = Γ(β), (7.20)

which for β ∈ N equals (β − 1)!. This implies

S∫
0

exp (−t) tβ−1 dt = Γ(β)− Γ(β, S). (7.21)

3. For β ∈ N, we have the equality, cf. [1]

Γ(β, S)

Γ(β)
= e−S

β−1∑
k=0

Sk

k!
. (7.22)

The following bounds for Γ(β, S) will be useful.
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7.4 Error bounds for (sub-)exponential decay 127

Lemma 7.10. For β ∈ N and S ∈ R≥0, it holds that

e−SSβ−1 ≤ Γ(β, S).

Moreover, for B > 1 and S ≥ B(β − 1), it holds that

Γ(β, S) ≤ B

B − 1
e−SSβ−1.

In particular, we have for S ≥ β

e−SSβ−1 ≤ Γ(β, S) ≤ β e−SSβ−1.

Proof. The lower bound follows from (7.22), while the upper bound is proven in [25].

Moreover, we will need the following lemma.

Lemma 7.11. For n, k ∈ N0, it holds that∫ S

0
(S − x)kxn dx = Sk+n+1 k!n!

(k + n+ 1)!
.

Proof. The change of variable z = 1− S−1x yields∫ S

0
(S − x)kxn dx = Sk+n+1

∫ 1

0
zk(1− z)n dz. (7.23)

Now we use n times integration by parts to obtain∫ 1

0
zk(1− z)n dz =

[
zk+1

k + 1
(1− z)n

]1

0

− n

k + 1

∫ 1

0
zk+1(−1)(1− z)n−1 dz

=
n

k + 1

∫ 1

0
zk+1(1− z)n−1 dz

=
n(n− 1)

(k + 1)(k + 2)

∫ 1

0
zk+2(1− z)n−2 dz

= . . .

=
n(n− 1)(n− 2) . . . (n− (n− 1))

(k + 1)(k + 2)(k + 3) . . . (k + (n− 1) + 1)

·
∫ 1

0
zk+(n−1)+1(1− z)n−(n−1)−1 dz

=
n!k!

(k + n)!

∫ 1

0
zk+n dz

=
n!k!

(k + n)!

1

k + n+ 1
=

n!k!

(k + n+ 1)!
,

which in combination with (7.23) proves the claim.
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128 7 Quasi–optimal tensor product integration in RKHS

Proposition 7.12. For S ∈ R≥0, β ∈ N and d ∈ N we have

∫
{∑d

j=1 yj≤S}

exp

− d∑
j=1

yj

 d∏
j=1

yβ−1
j dy = Γ(β)d − Γ(β)d

Γ(βd, S)

Γ(βd)
. (7.24)

Proof. We use mathematical induction in d. To this end, we note that (7.24) holds true for
d = 1, cf. (7.21). Let us assume that it holds for d ∈ N. Then we can compute for d+ 1

∫
{∑d+1

j=1 yj≤S}

exp

− d+1∑
j=1

yj

 d+1∏
j=1

yβ−1
j dy

=

S∫
0

e−y1yβ−1
1

∫
{∑d+1

j=2 yj≤S−y1}

exp

− d+1∑
j=2

yj

 d+1∏
j=2

yβ−1
j dy

=

S∫
0

e−y1yβ−1
1

(
Γ(β)d − Γ(β)d

Γ (βd, S − y1)

Γ(βd)

)
dy1

= (Γ(β)− Γ(β, S)) Γ(β)d − Γ(β)d

Γ(βd)

S∫
0

e−y1yβ−1
1 Γ (βd, S − y1) dy1.

(7.25)

Concentrating on the integral, we continue by using (7.22) and Lemma 7.11 to compute

S∫
0

e−y1yβ−1
1 Γ (βd, S − y1) dy1 =

S∫
0

e−y1yβ−1
1 Γ(βd)e−(S−y1)

βd−1∑
k=0

(S − y1)k

k!
dy1

=Γ(βd)e−S
βd−1∑
k=0

S∫
0

(S − y1)kyβ−1
1

k!
dy1

=Γ(βd)e−S
βd−1∑
k=0

Sk+β(β − 1)!

(k + β)!

=Γ(βd)e−SΓ(β)

βd−1∑
k=0

Sk+β

(k + β)!
.

(7.26)

Combining (7.25) with (7.26) and using (7.22) twice, we obtain

∫
{∑d+1

j=1 yj≤S}

exp

− d+1∑
j=1

yj

 d+1∏
j=1

yβ−1
j dy

128



7.4 Error bounds for (sub-)exponential decay 129

= (Γ(β)− Γ(β, S)) Γ(β)d − Γ(β)d

Γ(βd)

S∫
0

ey1yβ−1
1 Γ (βd, S − y1) dy1

= Γ(β)d+1 − Γ(β)dΓ(β)e−S
β−1∑
k=0

Sk

k!
− Γ(β)d

Γ(βd)
Γ(βd)e−SΓ(β)

βd−1∑
k=0

Sk+β

(k + β)!

= Γ(β)d+1 − Γ(β)d+1e−S
(
β−1∑
k=0

Sk

k!
+

βd−1∑
k=0

Sk+β

(k + β)!

)

= Γ(β)d+1 − Γ(β)d+1e−S
β(d+1)−1∑

k=0

Sk

k!

= Γ(β)d+1 − Γ(β)d+1 Γ(β(d+ 1), S)

Γ(β(d+ 1))
.

Proposition 7.12 in combination with (7.20) yields the following equality.

Corollary 7.13. For d ∈ N, p ∈ (0, 1], 1/p ∈ N and T ∈ R≥0 we have

∫
Rd+\E1,1(T )

exp

− d∑
j=1

yj

 d∏
j=1

y
1
p
−1

j

 dy = Γ(1/p)d
Γ(d/p, S)

Γ(d/p)
.

Moreover, using Lemma 7.8 and 7.6, we arrive at the following result.

Theorem 7.14. Let a ∈ Rd+ and p ∈ (0, 1] such that 1/p ∈ N. Then it holds for T ≥ 0

∑
k∈Nd0\Aa,p(T )

exp

− d∑
j=1

ajk
p
j

 �d,a,p Γ(1/p)d
Γ(d/p, T )

Γ(d/p)
�d,a,p Γ(d/p, T ).

To get a complete picture, we still need to derive an estimate for the cost of Q̌Aa,p(T ), i.e. we
need to derive bounds for the cardinality |Aa,p(T )|. We generalize the result in [14] for p = 1
to arbitrary p ∈ (0, 1]. To this end, we note that it holds

|Aa,p(T )| = vol A�a,p(T ), where A�a,p(T ) =
⋃

k∈Aa,p(T )

[k,k + 1). (7.27)

The following Lemma relates (7.27) to the volume of Ea,p(T ).

Lemma 7.15. For p ∈ (0, 1] and a ∈ Rd+ it holds that

vol Ea,p(T ) ≤ |Aa,p(T )| ≤ vol Ea,p

T +
d∑
j=1

aj

 .
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130 7 Quasi–optimal tensor product integration in RKHS

Proof. The claim follows by the inclusions

Ea,p(T ) ⊆ A�a,p(T ) ⊆ Ea,p

T +
d∑
j=1

aj

 ,

of which the first one is obvious. The second one follows from aj(kj + 1)p ≤ ajk
p
j + aj if

p ∈ (0, 1].

Next, we note that it holds for all a ∈ Rd+ and p ∈ (0,∞), cf. [160, Sec. 3], that

vol Ea,p(T ) =

 d∏
j=1

a
−1/p
j

T
d
p

Γ(1 + 1/p)d

Γ(1 + d/p)
,

which for the special case 1/p ∈ N reads

vol Ea,p(T ) =

 d∏
j=1

a
−1/p
j

T
d
p

((1/p)!)d

(d/p)!
. (7.28)

Combining (7.28) with Lemma 7.15 we have arrived at the following theorem, which generalizes
the result in [14].

Theorem 7.16. For p ∈ (0, 1] with 1/p ∈ N and a ∈ Rd+, the cardinality |Aa,p(T )| can be
bounded from below and above by d∏

j=1

a
−1/p
j

T
d
p

((1/p)!)d

(d/p)!
≤ |Aa,p(T )| ≤

 d∏
j=1

a
−1/p
j

T +
d∑
j=1

aj

 d
p

((1/p)!)d

(d/p)!
.

Setting N = |Aa,p(T )| and defining

gm(a) =

 d∏
j=1

aj

1/d

and κ(x) := (x!)1/x

we can deduce from Theorem 7.16 that it holds

T ≤ N
p
d

 d∏
j=1

a
1/p
j

p/d(
(d/p)!

((1/p)!)d

)p/d
=
κ(d/p)

κ(1/p)
gm(a)N

p
d

T ≥ N
p
d

 d∏
j=1

a
1/p
j

p/d(
(d/p)!

((1/p)!)d

)p/d
−

d∑
j=1

aj =
κ(d/p)

κ(1/p)
gm(a)N

p
d −

d∑
j=1

aj .

(7.29)

Now we are prepared to prove the main result of this section.
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Theorem 7.17. For p ∈ (0, 1] with 1/p ∈ N and a ∈ Rd+, it holds that

∑
k∈Nd0\Aa,p(T )

exp

(
−

d∑
j=1

ajk
p
j

)
�d,a,p exp

(
−κ(d/p)

κ(1/p)
gm(a)N

p
d

)
·N1− p

d .

Proof. Using Theorem 7.14, the monotonicity of Γ(d/p, ·) in combination with (7.29) and
Lemma 7.10, we can compute for T > d/p∑

k∈Nd0\Aa,p(T )

e−
∑d
j=1 ajk

p
j �d,a,p Γ(d/p, T )

≤ Γ

d
p
,
κ(d/p)

κ(1/p)
gm(a)N

p
d −

d∑
j=1

aj


�d,a,p exp

−κ(d/p)

κ(1/p)
gm(a)N

p
d +

d∑
j=1

aj


·

κ(d/p)

κ(1/p)
gm(a)N

p
d −

d∑
j=1

aj

 d
p
−1

�d,a,p exp

(
−κ(d/p)

κ(1/p)
gm(a)N

p
d

)
·
(
κ(d/p)

κ(1/p)
gm(a)N

p
d

) d
p
−1

�d,a,p exp

(
−κ(d/p)

κ(1/p)
gm(a)N

p
d

)
·N1− p

d .

In order to obtain a more simple upper bound, we use Stirling’s approximation to bound

κ(d/p)

κ(1/p)
>

(2π)
1

2(d/p) (d/p)
1+ 1

2(d/p) e−1

ep(1/p)1+p/2e−1
>

(d/p)e−1

ep(1/p)1+p/2e−1
= de−ppp/2, (7.30)

which implies the following Corollary, because e−axpxb �a,p,b e−(a−ε)xp for all ε > 0.

Corollary 7.18. Under the assumptions of Theorem 7.17, it holds

∑
k∈Nd0\Aa,p(T )

exp
(
−

d∑
j=1

ajk
p
j

)
�d,a,p exp

(
−d e−ppp/2gm(a)N

p
d

)
.

Remark 7.19. Note at this point that for p = 1 both, Theorem 7.17 and Corollary 7.18 recover
the exact result from [80].

Finally, we are in the position to derive the desired upper bound for the worst-case error. To
this end, we recall (7.16). Inserting the results from this section, we arrive at the following
theorem.
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Theorem 7.20. Let a ∈ Rd+ and p ∈ (0, 1] such that 1/p ∈ N. Assume that for each j = 1, . . . , d
a sequence of optimally weighted nested quadrature rules Q̌(j)

X
(j)
k

is given and the associated
hierarchical quadrature rules fulfill ‖∆̌(j)

k ‖H?Kj � exp(−ajkp).
Then, a quasi–optimal index set for the sparse tensor product algorithm (7.1) is given by
Aa,p(T ) =

{∑d
j=1 ajk

p
j ≤ T

}
and the worst-case error of Q̌Aa,p(T ) in HK(d)

=
⊗d

j=1HKj can
be bounded by ∥∥∥LΩ(d)

− Q̌Aa,p(T )

∥∥∥
H?K(d)

�a,d,p exp

(
−κ(d/p)

κ(1/p)
gm(a)N

p
d

)
·N

1
2
− p

2d

�a,d,p exp
(
−d e−ppp/2gm(a)N

p
d

)
. (7.31)

Using Theorem 7.17 and (7.16) we compute

Proof.

∥∥∥LΩ(d)
− Q̌Aa,p(T )

∥∥∥
H?K(d)

=

 ∑
k∈Nd0\Aa,p(T )

‖∆k‖2HK(d)

1/2

�a,d,p

 ∑
k∈Nd0\Aa,p(T )

exp
(
−

d∑
j=1

2ajk
p
j

)1/2

�a,d,p
(

exp

(
−κ(d/p)

κ(1/p)
gm(2a)N

p
d

)
·N1− p

d

)1/2

= exp

(
−κ(d/p)

κ(1/p)
gm(a)N

p
d

)
·N

1
2
− p

2d .

The inequality (7.31) follows from (7.30), cf. Corollary 7.18.

7.5 Numerical experiments

This section is devoted to the validation of the algorithm proposed in Section 7.2 on the one
hand and the theoretical results from Section 7.4 on the other. To this end, we compute
optimal index sets A by means of Algorithm 7 and compute the worst-case error associated to
Q̌A using the worst-case error formula (7.15). As underlying univariate quadrature rules for
approximation of LΩj in HKj , we will employ the optimally weighted nested quadrature rules
obtained by the OMP greedy approach from Section 5.3.
The numerical results are then compared to the worst-case error predicted by Theorem 7.20,
i.e.

wce(Q̌Aa,p(T ),HK(d)
) �a,d,p exp

(
−κ(d/p)

κ(1/p)
gm(a)N

p
d

)
·N

1
2
− p

2d , (‡)

where the values of a and p stem from (sub-)exponential upper bounds on the hierarchical
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quadrature rules of the form

‖∆̌(j)
k ‖H?Kj ≤ c exp(−ajkpj ), j = 1, . . . , d.

To this end, we need a bound for ‖∆(j)
k ‖H?Kj . Here, Proposition 7.3 implies the bound

‖∆̌(j)
k ‖H?Kj =

√
‖Ř

X
(j)
k−1

‖2H?Kj
− ‖Ř

X
(j)
k

‖2H?Kj
≤ ‖Ř

X
(j)
k−1

‖H?Kj , (7.32)

where, throughout this section, ‖Ř
X

(j)
k−1

‖H?Kj is the worst-case error of the optimally weighted
univariate quadrature rule using the points X(j)

k = (ξ
(j)
1 , . . . , ξ

(j)
k+1) that are constructed by the

OMP greedy method from Section 5.3.
We compare the optimally weighted sparse grid algorithm with classical sparse grids that are
based on non-optimal univariate quadrature rules. Then, however, it is not possible to automat-
ically construct optimal index sets that minimize the worst-case error, because the worst-case
error formula does not offer a suitable simplification.

7.5.1 Hardy space

The d-fold tensor product of Hardy spaces

Hr = Hr1 ⊗ · · · ⊗Hrd

consists of functions that are analytic in polydiscs

Dr = {z ∈ Cd : |zj | < rj}

with radii r1, . . . , rd ∈ [1,∞).
The performance of the OMP greedy method in univariate Hr has been studied in Section 6.2.
Our first example consists of a d-fold tensor product of Hr with either r = 1.01 or r = 1.25. As
these are isotropic examples, we will omit the parameter j in the following.
From Figure 6.4 in combination with (7.32), we obtain the bounds

‖∆k‖H?1.01
� exp(−0.41k) and ‖∆k‖H?1.25

� exp(−0.85k),

respectively. These values are inserted for aj into (‡) with p = 1 and plotted as dashed lines
in the upper row of Figure 7.1. Clearly, the observed worst-case errors of QA, where A is
constructed automatically by Algorithm 7, match the predicted rate of a sparse grid method
with quasi–optimal index set in Hr.
Moreover, in both cases the optimally weighted tensor product method clearly outperforms the
sparse grid based on Clenshaw-Curtis quadrature and the classical Smolyak index set. However,
for r = 1.25 the difference is less prominent than for r = 1.01. For a larger radius r the error
of both methods improves substantially.
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Figure 7.1: Worst-case errors in tensor products of Hardy spaces H1.01 and H1.25.

In the lower row of Figure 7.1, the worst-case errors of QA for dimensionalities d = 2, . . . , 6
are given. We can see the deterioration of the convergence rate as the dimensionality d of the
tensor product space increases. However, the super-algebraic rate is clearly visible in all the
considered cases.
As before, the dashed line represents the bound (‡). Here, it is only given for d = 6 where it
matches the observed worst-case error quite well.
Finally, in Figure 7.2 an index set derived by Algorithm 7 for the bivariate tensor product
Hardy space H1.25 ⊗ H1.25 is depicted. It basically has the expected structure {k1 + k2 ≤ T},
i.e. a simplex. The point set associated to this particular index set is given on the right-hand
side.
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Figure 7.2: Optimal index set with associated N = 116 points for integration in the Hardy
space H2

1.25. The colors encode the magnitude of ‖∆̌k‖.

7.5.2 Taylor space generated by the di-logarithm

The d-fold tensor product of the Taylor space TLi2 is denoted by T dLi2
and contains functions on

[−1, 1]d whose mixed partial derivatives of order one are in H1 =
⊗d

j=1 H1, i.e.

∂|u|∏
j∈u ∂xj

f(x) ∈ H1 for all |u|∞ ≤ 1.

The performance of the OMP greedy method in univariate TLi2 has been studied in Section 6.3.
From Figure 6.9 in combination with (7.32) we obtain the bound

‖∆k‖T ?Li2
� exp(−2.8

√
k).

This is inserted for aj into (‡) with p = 1/2 and plotted as dashed lines in Figure 7.3. Clearly,
the observed worst-case errors of QA, where A is constructed automatically by Algorithm 7
based on the univariate OMP greedy point set for TLi2 , match the predicted rate.
Moreover, we get for the Clenshaw-Curtis method in the univariate TLi2 the algebraic conver-
gence rate n−s with s = 5/2 from Figure 6.9. Inserting this into the standard sparse grid error
bound N−s log(N)(d−1)(s+1/2), cf. [140], yields the observed rate of the Clenshaw Curtis sparse
grid. The sub-exponential rate obtained by the optimal cubature rule offers a clear advantage
over the algebraic rate of the conventional Clenshaw-Curtis sparse grid.
Moreover, in Figure 7.4 an index set generated by Algorithm 7 for the bivariate Taylor space
T 2

Li2
is depicted. It has approximately the expected structure {k1/2

1 + k
1/2
2 ≤ T}, i.e. a ball

with respect to the `1/2 quasi norm. The associated point set is given on the right-hand side.
It appears that the points get denser around the boundary of [−1, 1]2 than it is the case for the
Hardy example from before.
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Figure 7.3: Worst-case error in the Taylor space TLi2 generated by the di-logarithm.
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Figure 7.4: Optimal index set with associated N = 180 points for integration in the bivariate
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Figure 7.5: Worst-case errors in the Hermite spaceM3/4.

7.5.3 Hermite space

The d-fold tensor product of the Hermite spaceMτ is denoted byMd
τ and contains functions

on Rd whose Hermite coefficients

f̂k =
1

(2π)d/2

∫
Rd
f(x)

 d∏
j=1

Hkj (xj)

 e−
xᵀx

2 dx

are summable with respect to the weight induced by τ = (τ1, . . . , τd) ∈ (0, 1)d, i.e.

∑
k∈Nd0

f̂2
k

d∏
j=1

τ
−kj
j .

The performance of the OMP greedy method in the univariateMτ has been studied in Section
6.4.
From Figure 6.10 in combination with (7.32) we obtain for the asymptotics of the univariate
quadrature rules the estimate

‖∆k‖M?
0.75
� exp(−0.39k).

This is inserted for aj into (‡) with p = 1 and plotted as dashed lines in 7.5. Clearly, the observed
worst-case errors of QA, where A is constructed automatically by Algorithm 7 based on the
univariate OMP greedy point set forM0.75, match the predicted rate of a sparse grid method
with quasi–optimal index set in M?

0.75. Moreover, we compare the optimally weighted tensor
product method with classical sparse grids based on Gauss-Hermite quadrature, which is not
nested. Even though the Gauss-Hermite based sparse grid exhibits super algebraic convergence
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Figure 7.6: Optimal index set with associated N = 97 points for integration in the bivariate
Hermite spaceM2

3/4. The colors encode the magnitude of ‖∆̌k‖.

it is clearly dominated by the approach that is specifically tailored to the Hermite space by
using optimal weights and the OMP greedy points.
As the dimension d gets larger the isotropic problem gets considerably harder, as it can be
observed on the right-hand side plot of Figure 7.5. Here, the worst-case errors of the optimally
weighted tensor product rules are given for dimensionalities d = 2, . . . , 6. Clearly, for both, d = 2
and d = 6, our predicted convergence rate matches the one that is computed by Algorithm 7.
Finally, in Figure 7.6 an automatically generated index set and the associated point set are
given. Here, similarly to the Hardy example, the index set has the expected structure of a
regular simplex, i.e. {k1 + k2 ≤ T}. The points are distributed regularly within the region
where the Gaussian measure exhibits its biggest mass, i.e. they are centered around zero and
get less dense in regions with large distance from the origin.

7.5.4 An anisotropic example

Finally, we will deal with an anisotropic example, i.e. tensor products of different function
spaces. Here, we consider

H1 ⊗H1.25 ⊗ · · · ⊗H1.25︸ ︷︷ ︸
(d−1) times

,

i.e. the tensor product of a Sobolev space with the (d−1)-fold tensor product of analytic Hardy
spaces.
In Figure 7.7, the worst-case errors associated to this setting are plotted. We considered di-
mensions d = 1, . . . , 6. For d = 1, the Hardy space is not present at all and we observe the rate
N−1, which can be expected for the univariate Sobolev space. Now, when the dimension d is
increased, the convergence rate basically stays the same and the dimensionality of the Hardy
space only influences the preasymptotic regime. For the setting of linear information, this kind
of behaviour was predicted e.g. in [42].
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Figure 7.7: Left: Worst-case error in mixed-Sobolev-Hardy space. Right: An index set typical
for this constellation.

On the right-hand side of Figure 7.7, an index set for the bivariate case H1⊗H1.25 is depicted.
Clearly, the greedy approach from Algorithm 7 correctly identifies the structure of this space and
pays more emphasis in the directions associated to the Sobolev space. This is not surprising
because substantially more points are required in the Sobolev direction than in the Hardy
directions in order to balance all the error contributions.
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8 Applications

This chapter is concerned with the application of this thesis’ results to practical integration
problems. To this end, we first deal with some simple test functions that fit into the different
settings considered so far.
Then, we deal with an integration problem from econometrics, where researchers often face
smooth and moderate-dimensional integrals, which are ideal to be treated with sparse grid
techniques [87]. Here, we consider discrete choice models which aim at explaining and predicting
the behaviour of individuals that are facing the choice between two or more discrete alternatives.
Examples are the decision which car to buy or whether to invest savings into risky or more
conservative asset classes. We concentrate on the multivariate probit model whose estimation
requires the computation of multivariate normal probabilities. To this end, we use the so-called
Genz algorithm [66] in combination with optimal tensor products of the quadrature rules for
the Taylor space generated by the di-logarithm, i.e. TLi2 .
Our second application is related to differential equations which often depend on parameters
that are not always known precisely. Therefore, practitioners are interested in the uncertainty of
the solution, given the uncertainty of the input. Here, we concentrate on an elliptic differential
equation whose diffusion coefficient is parameterized on d patches of the spatial domain. The
computation of the mean of the solution as well as the mean of other quantities of interest
derived from particular solutions requires the solution of high-dimensional integrals as well.
In both, the econometric model problem and also the parametric differential equation, we
identify scenarios where the approach developed in this thesis offers a substantial reduction
of computational cost over conventional methods. However, there are also settings where our
approach is not better, but not worse either.

8.1 Synthetic test functions

To validate our construction we start with simple test functions that have a certain multiplica-
tive structure. We compare dimension-adaptive sparse grids, cf. Section 2.4.3, that are based
on our new optimally weighted and nested quadrature rules with other state-of-the-art cubature
algorithms. Here, we consider dimension-adaptive sparse grids based on Clenshaw-Curtis and
Leja points as well as plain Monte Carlo and quasi–Monte Carlo based on the Sobol sequence.
Our first test function is

fd(x) =
d∏
j=1

1 +
((1− xj)(1 + xj))

7/8

8
, (8.1)

which is bounded in [−1, 1] but has a singular first derivative. Therefore, it fits into the setting
of TLi2 , i.e. the Taylor space of bounded analytic function with derivative in the Hardy space
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Figure 8.1: Test function (8.1) associated to TLi2 .

H1. Since this space is generated by the di-logarithm Li2, we use the sparse grid that is based
on the OMP greedy quadrature rule obtained by Algorithm 6 with weight ν(x) =

√
1− x2. It

is denoted by SG(DiLog). Moreover, we consider SG(CC) and SG(Leja) which are dimension-
adaptive sparse grids based on Clenshaw-Curtis and Leja quadrature, respectively.
The results for dimension d = 2 and d = 8 are given in Figure 8.1. The new approach clearly
offers an advantage over the conventional methods, which only converge algebraically. However,
the SG(DiLog) approach exhibits a super-algebraic rate as it is predicted by the results in
Chapter 7.
The next example is related to the Hardy space Hr with r > 1. Since we are on a bounded
domain and all derivatives of functions in Hr are bounded in [−1, 1], we can use the unweighted
OMP greedy quadrature obtained by Algorithm 4 as building block for the dimension-adaptive
sparse grid denoted by SG (Hardy).
We consider the test function

fd(x) =
d∏
j=1

(
1 +

1

2j(1.02− xj)(1.02 + xj)

)
, (8.2)

which clearly fulfills fd ∈ H1.02.
The results are given in Figure 8.2 for dimensions d = 2 and d = 8. Even though the Leja-based
sparse grid is pre-asymptotically inferior to all the other considered methods, in the long run
it achieves the same asymptotic convergence rate as the sparse grid that is specifically tailored
to the Hardy space H1.02. However, in d = 8 the preasymptotic problems of the Leja approach
gets so bad that it converges even worse than Monte Carlo, at least in the regime up to 105

points. However, SG (Hardy) reaches a relative error of 10−6 with less than 3 × 104 function
values, whereas the Clenshaw-Curtis based adaptive sparse grid SG (CC) needs more than 106

points for the same accuracy.
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Figure 8.2: Test function (8.2) for the Hardy space setting.

Our final example is related to the Hermite space and deals with integration on R with respect
to the Gaussian probability density function, i.e.

∫ ∞
−∞

f(x)
e−

x2

2

√
2π

dx. (8.3)

The test function is

fd(x) =
d∏
j=1

exp

(
− t2

2(1− t2)
x2
j + xj

)
, (8.4)

where we choose t = 0.9 to fit into theM0.9 setting.
We compare the performance of the dimension-adaptive sparse grids based on the optimal
quadrature rule obtained by Algorithm 6 with ν(x) =

√
exp(−x2/2), i.e. SG (optimal). We

compare this with Monte Carlo that is based on random function values drawn according to
the standard normal distribution on Rd. Moreover, we consider sparse grids based on the Leja
sequence from Section 2.3.4, which is suited for the integration problem (8.3). Finally, we
consider sparse grids based on Gauss-Hermite, which, however, are not nested.
In Figure 8.3, the relative integration errors for d = 2 and d = 6 are given. For small dimen-
sionalities the polynomial based approaches SG (Leja) and SG (Hermite) achieve exponential
convergence, albeit at a slower rate than the optimally weighted sparse grid SG (optimal).
However, as the dimension increases the polynomial based approaches get difficulties because
on their first level they are exact for constant functions. The function in (8.4), however, is far
away from being constant. Instead, for large dimensions it behaves like a Dirac function which
is difficult to approximate with polynomials.
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Figure 8.3: Test function Hermite space given in (8.4).

8.2 Computing multivariate normal probabilities in econometrics

Econometrics is a discipline from economics that is concerned with the extraction of economic
phenomena from real-world data based on the concurrent development of theory and observa-
tion. Many models that aim to explain real world phenomena involve variables or parameters
that cannot be directly observed. An example are so-called discrete choice models which aim
to explain, and predict choices between two or more discrete alternatives. Here, the choice of a
certain alternative depends on the utility it provides for an individual, which of course chooses
the alternative with highest utility. However, the utility is usually not observable and has to be
estimated by means of other quantities that are observable and linked to utility by an economic
model.

8.2.1 Discrete choice models

The utility of alternative j = 1, . . . , J for individual m = 1, . . . ,M , say Um,j , is not observable.
Instead, a large class of econometric models [152] assumes that there holds a relationship of the
form

Um,j =

q∑
l=1

βlz
(m,j)
l + εm,j = βᵀz(m,j) + εm,j , (8.5)

where the vector z(m,j) = (z
(m,j)
1 , . . . , z

(m,j)
q ) ∈ Rq contains observable properties of the alter-

natives and the individuals. The error terms εm = (εm,1, . . . , εm,J),m = 1, . . . ,M represent
unobserved characteristics of the alternatives and the individuals that are modelled by inde-
pendent and identically distributed random variables. After a distribution for εm has been
fixed, the unknown parameters β = (β1, . . . , βq) can be estimated from observed data, i.e. each
individual m = 1, . . . ,M chooses an alternative j(m) ∈ {1, . . . , J} if his utility Um,j(m) for j(m)
is larger than the utility of the alternatives Um,k, k 6= j(m).
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The conditional probability of this observed choice is

Pm(β) = P[Um,j(m) ≥ Um,k for all k = 1, . . . , J |z(m,1), . . . ,z(m,J)]

= P[βᵀz(m,j(m)) + εm,j(m) ≥ βᵀz(m,k) + εm,k for all k = 1, . . . , J |z(m,1), . . . ,z(m,J)]

= P[εm,k − εm,j(m) ≤ βᵀ(z(m,j(m)) − z(m,k)) for all k = 1, . . . , J |z(m,1), . . . ,z(m,J)]

=: P[x ≤ b(m)(β)],
(8.6)

where x = (x1, . . . , xJ−1) is distributed like the (J − 1) nontrivial differences of the error
terms εm,k− εm,j(m) and bm(β) ∈ RJ−1 is given by bk(β) = βᵀ(z(m,j(m))−z(m,k)) for k 6= j(m).
Assume that the distribution of x is absolutely continuous with respect to the Lebesgue measure,
i.e. there exists a probability density function ϕ such that P[x ∈ A] =

∫
Rd χA(x)ϕ(x) dx. Each

conditional choice probability Pm(β),m = 1, . . . ,M then can be written as

Pm(β) = P[x ≤ bm(β)] =

∫ b
(m)
1 (β)

−∞
· · ·
∫ b

(m)
J−1(β)

−∞
ϕ(x) dx. (8.7)

For now assume that (8.7) is known and can be evaluated. Then, the likelihood of the observed
choices equals

M∏
m=1

Pm(β). (8.8)

Maximizing (8.8) with respect to the unknown parameters β is the so-called maximum likelihood
estimator. We denote β∗ = arg minL(β) as the set of parameters that explains the observed
data best. Moreover, maximizing (8.8) is equivalent to maximizing the log-likelihood function

L(β) :=
1

M
log

(
M∏
m=1

Pm(β)

)
=

1

M

M∑
m=1

logPm(β). (8.9)

This is usually done by standard approaches from numerical optimization, e.g. Newton-Raphson
type algorithms [114]. However, if the integral in (8.7) does not have a closed-form solution,
the log-likelihood function has to be approximated by numerical cubature methods. Here, each
summand in (8.9) requires the solution of a multivariate integral.
To this end, assume that P̃m(β) ≈ Pm(β), m = 1, . . . ,M are approximations to (8.7) obtained
by numerical cubature. The approximated log-likelihood function then reads

L̃(β) =
M∑
m=1

log(P̃m(β)).

The error of this approximation in a monotone norm ‖ · ‖ can then be bounded by

∥∥∥L̃(β)− L(β)
∥∥∥ =

1

M

∥∥∥ M∑
m=1

log(P̃m(β))− log(Pm(β))
∥∥∥
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=
1

M

∥∥∥ M∑
m=1

log

(
P̃m(β))

Pm(β)

)∥∥∥
=

1

M

∥∥∥ M∑
m=1

log

(
1 +

P̃m(β))− Pm(β)

Pm(β)

)∥∥∥
≤ 1

M

M∑
m=1

∥∥∥ P̃m(β)− Pm(β)

min(Pm(β), P̃m(β))

∥∥∥,
where the last inequality follows from log(1 + x) ≤ x and the triangle inequality.
Therefore, the approximation error of the log-likelihood function basically depends on the rel-
ative integration error of (8.7).

8.2.2 Multinomial probit and Genz algorithm

The multinomial probit model [152] assumes that the error terms in (8.5) are jointly normal
distributed. The (J − 1) differences of the error terms are therefore also jointly normal dis-
tributed. Denote the covariance matrix of this joint distribution by Σ ∈ R(J−1)×(J−1). For
every evaluation of L(β) there have to be computed M integrals of the form

Pm(β) =
1√

det(Σ)(2π)d

∫ b
(m)
1 (β)

−∞
. . .

∫ b
(m)
J−1(β)

−∞
exp

(
−1

2
xᵀΣ−1x

)
dx. (8.10)

There are several approaches to tackle this problem, e.g. using spherical coordinate transfor-
mations [47], locally adaptive schemes [137] or the partially analytic simulator [146].
However, the most efficient approach turned out to be the GHK simulator which is equivalent
to the Genz-Algorithm, which relies on a sequence of variable transformations to obtain an
integration problem that is defined on the open unit cube. This approach was independently
developed by Genz [66], Geweke and Hajivassiliou [24, 71] and Keane [97]. In statistics, this
method is often referred to as Genz-algorithm, while in econometrics it is called GHK-simulator.
In this setting, regular sparse grids based on the Gauss-Legendre quadrature were firstly utilized
in [86]. In the following, we will demonstrate that the sparse grid approach can benefit from
our new univariate quadrature formulas. We remark that this approach can also be applied to
the computation of other probabilities, e.g. the t-distribution [67].

8.3 Application to the Genz algorithm

The Genz algorithm consists in a reformulation of the (J −1)-dimensional integral (8.10) on an
unbounded domain as a (J − 2)-dimensional integral on the unit cube (0, 1)J−2. For the sake
of a consistent notation we now set d := J − 2 and recall that the evaluation of the likelihood
function for multinomial probit models boils down to the computation of

F (b) :=
1√

det(Σ)(2π)d

∫ b1

−∞
. . .

∫ bd+1

−∞
exp

(
−1

2
xtΣ−1x

)
dx, (8.11)
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where Σ ∈ R(d+1)×(d+1) is a covariance matrix which depends on the joint probability distribu-
tion of the differences of the error terms in (8.6). F (b) has to be evaluated for many different
b ∈ Rd+1, already for a single evaluation of (8.9).
The Genz-algorithm [66] consists of several transformations and finally leads to the integral

F (b) = b̂1

∫
(0,1)d

d+1∏
i=2

b̂i(x1, . . . , xi−1) dw, (8.12)

where the b̂i are recursively defined by

b̂i(x1, . . . , xi−1) = Φ

C−1
i,i ·

bi − i−1∑
j=1

Ci,j · Φ−1(xj · b̂j(x1, . . . , xj−1)

 . (8.13)

Here, the matrix C ∈ R(d+1)×(d+1) denotes a Cholesky factor1 of the covariance-matrix, i.e.
CCT = Σ, and Φ : R→ (0, 1) is the cumulative Gaussian distribution function.
The main advantage of the Genz-algorithm in a dimension-adaptive sparse grid setting, cf.
[79], stems from the fact that it enforces a priority ordering onto the variables x1, . . . , xd−1,
where x1 contributes the most and xd contributes the fewest to the value of F (b). This is
because xd appears in only one factor of (8.12), while x1 appears in all of them. Furthermore,
the dimensionality of the original integration problem is reduced by one from d + 1 to d. A
disadvantage is of course the increased cost for the evaluation of the transformed integrand in
formula (8.12). Moreover, while the original integrand was analytic in the whole complex plane,
the new integrand is only analytic within the open disc {z ∈ C : |z − 1

2 | <
1
2}. This is due to

the inverse cumulative distribution function Φ−1 that introduces a singularity at the origin and
in some dimensions a fast growth of the integrand for arguments close to one.
Taking a close look at (8.12), we note that each factor of the integrand (8.13) is [0, 1]-valued.
In particular, it is bounded. Computing the partial derivatives of (8.13) explicitly for d > 2 is a
complicated task because of the recursive nature of b̂i. However, for d = 1 a simple application
of the chain rule reveals that the first derivative can be singular because of the boundary
singularities of Φ−1.
This motivates using our multivariate cubature rules that are constructed for integration in
the Taylor space TLi2 which contains functions that are bounded on the unit disc and have
derivatives in the Hardy space H1. Since H1 contains singular analytic functions like e.g.
x 7→ x−p, p ∈ (0, 1/2) or x 7→ log(x)q, q ∈ N, we believe that this is a sensible choice.
In our numerical experiments we compare the dimension-adaptive sparse grid approach, cf.
Section 2.4.3, based on the symmetric OMP greedy points tailored to the space TLi2 , denoted
by SG (DiLog) with dimension-adaptive sparse grids based on Clenshaw Curtis quadrature,
denoted by SG (CC) and Sobol QMC as well as plain Monte Carlo. Note that Leja-based
sparse grids are not applicable here because the Genz integrand cannot be evaluated at ±1.
This is due to the singularity of the inverse cumulative distribution function Φ−1.
We consider a special covariance structure for which the integral in (8.11) has a closed form
solution [53, 66]. Namely, we assume that the covariance matrix Σ has constant variance Σi,i = 1

1Cholesky factorization is here only unique modulo row and column permutation.
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Figure 8.4: Computing multivariate normal probabilities with constant boundary vector b.

and covariance Σi,j = vi · vj for i 6= j, where vi ∈ (−1, 1), i = 1, . . . , d+ 1. We remark that the
normalization of the variance to one is not a restriction because it is always possible to shift
the variance via a diagonal transformation to the boundaries of integration b1, . . . , bd+1.
In our first example, we choose a constant correlation Σj,k = ρ0 = 0.1 and all bj = 1

2 . In
Figure 8.4, it can be observed that the dimension-adaptive sparse grid approach is superior to
(Q)MC for small values of d. Especially if it is based on the new generalized optimally weighted
nested quadrature rules tailored to the TLi2-space, it performs very well and super-algebraic
convergence is clearly visible. As the dimensionality increases, the integration problem gets
harder, but the relatively low correlation of this example leads to a fast decay of the importance
of higher order interactions between the dimensions. The dimension-adaptive sparse grids
correctly detect which directions are important and exploits the low effective dimensionality.
Therefore, the convergence rate for the d = 16 dimensional problem is not much worse than for
the 8-dimensional one.
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Figure 8.5: Computing multivariate normal probabilities with varying boundary vector b.

In our second example, we use different values for the boundaries, namely bj = −1 + j
10 and a

bigger correlation Σj,k = ρ0 = 0.25. The convergence behaviour is similar to the first example,
as can be seen from Figure 8.5. This demonstrates that our new approach indeed allows to deal
with varying boundary values as it is needed in practical applications.

8.4 Parametric PDEs with analytic regularity

The rapid growth in compute power as well as the development of advanced numerical simulation
techniques allows to use computer simulations to produce reliable and accurate results when the
input data is known exactly. However, in many applications there is a relatively large amount
of uncertainty in the input data such as model coefficients, forcing terms, boundary conditions
and geometry [6]. This can be due to measurement errors, but some quantities cannot even be
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observed at all and are only given as probabilistic description. Then it is desirable to quantify
the uncertainty of the simulation’s output, given the uncertainty of the input data which usually
propagates through the model. Therefore, also the quantities derived from the simulation are
random variables, whose expectation and (co-)variance are of great interest.
In this thesis, we consider a well-established model problem [6, 41, 83, 110, 112] for uncertainty
quantification of PDEs, namely a parameterized elliptic diffusion problem. Assume that D is a
convex Lipschitz domain and (Ω,F , µ) a complete probability space on a domain Ω ⊂ Rd with σ-
algebra F ⊂ 2Ω of events and probability measure µ : F → [0, 1]. We assume that µ is absolutely
continuous with respect to the Lebesgue measure which implies that dµ(x) = ω(x) dx, for a
probability density function ω : Ω→ R+.
The random elliptic diffusion problem consists in finding a solution u : D × Ω → R which
µ-almost surely satisfies

−divy (a(y,x)∇yu(y,x)) =g(y) for all y ∈ D and x ∈ Ω

u(y,x) =0 for all y ∈ ∂D and x ∈ Ω.
(8.14)

Here, divy and ∇y act on the spatial variable y ∈ D ⊂ Rs, s ∈ {1, 2, 3} only. The loading
g ∈ L2(D) is assumed to be deterministic. But the diffusion coefficient a(y,x) depends, beside
on y, also on the parametric variable x ∈ Ω ⊂ Rd, d ∈ N. Therefore, the solution u of (8.14)
depends on the parametric variable x as well.
In order to guarantee the existence of a solution for almost all x ∈ Ω, we assume, cf. [6, 40],
the uniform ellipticity of the problem, i.e. there exists 0 < amin < amax <∞ such that

amin ≤ a(y,x) ≤ amax for all (y,x) ∈ D × Ω.

Defining V := H1
0 (D) and its dual V ? = H−1(D), cf. [26], the Lax-Milgram Lemma then

implies the existence of a weak solution u(·,x) to (8.14), i.e. for almost all x ∈ Ω it holds∫
D
a(y,x)∇yu(y,x) · ∇v(y) dy =

∫
D
∇f(y) · ∇v(y) dy for all v ∈ V. (8.15)

This solution satisfies the estimate

‖u(·,x)‖V ≤
‖f‖V ?
amin

.

Often, engineers are interested in a so-called quantity of interest (QoI) Q : V → R that is
derived from the solution u(·,x). Since the solution depends on x also the QoI depends on x
and induces a mapping f : Ω→ R given by

f(x) = Q(u(·,x)).

Frequently, it is assumed that Q is a linear functional on V . Examples are the mean of u(·,x)
over some domain D̃ ⊆ D, i.e.

f(x) =

∫
D̃
u(y,x) dy
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or the evaluation of u(·,x) or its gradient at a point τ ∈ D, i.e.

f(x) = u(τ,x) or f(x) = ∇yu(y,x)|y=τ .

The QoI can either be reconstructed as a function, or its expectation and also higher order
moments, can be computed. Since we deal with multivariate integration, we will approximate
the expectation of f , i.e. we will aim for the computation of∫

Ω
f(x)ω(x) dx.

Note that each evaluation of f now requires the solution of (8.14) with parameters x ∈ Ω and
the subsequent evaluation of the functional Q.

8.5 Application to affine linear diffusion coefficients

A special case of the parametric diffusion coefficient a(y,x) is of the form

a(y,x) = ā(y) +
d∑

k=1

xjψj(y),

which is referred to as affine linear diffusion coefficient, cf. [41, 153]. Now, assume that a(y, ·)
can be continued holomorphically to Cd and a(·, z) ∈ L∞(D) for all z ∈ Cd. Defining the poly
disc

Dr :=
{
z ∈ Cd : |zj | < rj , j = 1, . . . , d

}
assume that there exists a positive δ < amin and r = (r1, . . . , rd) > 1 such that it holds for all
z ∈ Dr and all y ∈ D that

< a(y, z) ≥ δ.

Then, we say that a : D × Ω → R satisfies the (δ, r)-polydisc uniform ellipticity assumption
DUE(δ, r).
By Theorem 1 in [153], the solution map

x 7→ u(·,x)

can be continued holomorphically to Dr if a satisfies the DUE(δ, r), cf. also [41]. This holds for
the QoI f(x) = Q(u(·,x)) as well [81]. This motivates using our optimally weighted cubature
rules that are tailored to the Hardy space

Hr =

d⊗
j=1

Hrj

of functions that are analytic in polydiscs Dr.
In order to avoid the discussion about the additional error that is introduced by the numerical
approximation of u(·,x) by e.g. finite element discretization, we consider a simple model prob-
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lem whose solution cannot be determined in closed-form, but can be computed exactly using
piecewise quadratic finite elements.

8.5.1 Model problem

As a model problem we consider Example 2.2 from [7], see also [41].
Let (Dj)

d
j=1 be a partition of a bounded Lipschitz domain D ⊂ Rs, s ∈ {1, 2, 3}, i.e.

D =

d⋃
j=1

Dj

and

a(y,x) := 1 +
d∑
j=1

xjψj(y), (8.16)

where
ψj(y) =

1

rj
χDj (y)

is the characteristic function of Dj , scaled with the factor r−1
j .

For Ω(d) = [−1, 1]d, we note that the problem (8.14) is elliptic if rj > 1, j = 1, . . . , d and
therefore has a unique solution u(·,x) for all x ∈ [−1, 1]d. Moreover, (8.16) satisfies DUE(δ, r),
which implies the analyticity in Dr of the solution map.
Now assume that the spatial dimension is one, i.e. s = 1 in (8.14) and D = [0, 1]. The problem
(8.14) then reads

− d

dy

(
a(y,x)

d

dy
u(y,x)

)
= g(y) for all y ∈ D and x ∈ Ω(d)

u(0,x) = u(1,x) = 0 for all x ∈ Ω(d).

(8.17)

This is equivalent to

−
(

1 +
xj
rj

)
d2

dy2
u(y,x) = g(y) for all y ∈ Dj and x ∈ Ω(d). (8.18)

Now, let G(y) be a second antiderivative of g, i.e. G′′(y) = g(y). Then, the solution to (8.17)
is a piecewise function and on each Dj it holds

u(·,x)|Dj ∈ span {χDj (y)1, χDj (y)y, χDj (y)G(y)},

which amounts to 3d degrees of freedom of the exact solution to the equation (8.18) for fixed
x. Because the solution u(·,x) has to be continuous on D and fulfill the boundary condition
u(0,x) = u(1,x) = 0, there are 3d− 2− (d− 1) = 2d− 1 remaining degrees of freedom of the
exact solution to (8.17).
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Moreover, if we set g(y) ≡ 1, the problem reads

−
(

1 +
xj
rj

)
d2

dy2
u(y,x) = 1 for all y ∈ Dj and x ∈ Ω(d) (8.19)

and for every y ∈ Ω(d), the solution u(·,y) can now be computed exactly by piecewise quadratic
finite elements on [0, 1] because now G(y) = 1

2y
2. Assuming that each patch Dj is of the form

Dj =

[
j − 1

d
,
j

d

]
,

the basis functions are chosen to be the quadratic Lagrange polynomials on each Dj defined by
their values at (j−1)/d, 2j−1

d and j
d . The weak formulation (8.15) then leads to a sparse system

of linear equations, whose solution yields the values uk = u(yk,x) of u(·,x) at yk = k/(2d),
k = 1, . . . , 2d− 1.

8.5.2 Numerical results

In this section, we will compare the performance of dimension-adaptive sparse grids based on
the optimally weighted nested quadrature rules computed by Algorithm 4 to the performance of
classical integration methods like plain Monte Carlo or Sobol quasi–Monte Carlo, which in the
following plots is denoted by Sobol QMC. Moreover, we use the dimension-adaptive approach
based on Clenshaw-Curtis, which is denoted by SG (CC) and Leja points as discussed in Section
2.3.4, denoted by SG (Leja). These represents the current state-of-the-art for the integration of
smooth multivariate functions [13, 37, 108, 111, 112, 153]. Since the integrands are analytic in
a region strictly larger than the domain of integration [−1, 1]d, the sparse grids based on Leja
points, as well as on Clenshaw-Curtis, and the respective optimal quadrature rules are expected
to yield super-algebraic convergence rates.
To this end, we first consider an isotropic example with relatively large radius of analyticity in
every dimension. The quantity of interest Q is chosen to be the area below the solution u(·,x),
i.e. the integral with respect to the spatial variable y over D = [0, 1]

f(x) = Q(u(·,x)) =

∫
[0,1]

u(y,x) dy, (8.20)

where u(·,x) is a solution to (8.19).
In Figure 8.6 the relative integration errors are given as log-log-plot for dimension d ∈ {2, 4, 6, 8}.
As the experiments in Section 6.2 suggest, there is not much of a difference in using classical
polynomial based methods compared to the optimal approach in Hardy spaces Hr with large
radius of analyticity r. We can see that for small point numbers N the Leja points perform
worse than Clenshaw-Curtis quadrature. We believe that this is because on the first level the
Leja sequence uses the point 1, while the Clenshaw-Curtis method and also the Sobol method
have their first point equal to 0. Asymptotically the Leja based sparse grid can benefit from
its finer granularity, i.e. the points do not increase exponentially on each level. However, the
effect that is already visible in d = 2 becomes even more prominent in d = 6 and d = 8, where
it takes about 105 points for the SG (Leja) method to overtake SG (CC). Still, both methods
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Figure 8.6: Isotropic example with large domain of analyticity with QoI given by (8.20).

exhibit a convergence rate that decays faster than any algebraic rate N−s, which is due to the
analyticity of the integrand.
Moreover, we note that the dimension-adaptive sparse grid based on the optimally weighted
nested quadrature rules for the Hardy space with radius r = 4 outperforms all the other
methods. However, in d = 2 the benefit over Leja points is rather small.
The picture changes when decreasing the radius of analyticity. To this end, in Figure 8.7 we
consider the same setup as in Figure 8.6 albeit with r = 1.1, which is substantially smaller than
before. Now, the bad preasymptotic behaviour of the Leja based adaptive sparse grid is even
more prominent, especially when the dimension gets large. For d = 8, it is even less effective
than the plain Monte Carlo approach.
However, the sparse grid based on the nested optimally weighted quadrature for the Hardy space
Hr with r = 1.1 is the method of choice for all the considered dimensionalities d = 2, 4, 6, 8. For
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Figure 8.7: Isotropic example with moderate radius of analyticity with QoI given by (8.20).

the eight-dimensional example it achieves a relative error of 10−5 with about N = 104 points,
while the Sobol quasi–Monte Carlo method needs about N = 3·105 points. Therefore, using the
approach proposed in this thesis saves more than 95% of the compute power over conventional
approaches.
In Figure 8.8 the results for r = 1.01 are given. The effects that became visible in Figure 8.7 are
now even more prominent. The Leja points suffer substantially from their bad pre-asymptotic
behaviour that even leads to an increasing error for N ≤ 20 in d = 2. For d = 8, convergence
is not even visible at all. Therefore, it seems sensible to start the Leja sequence at the point 0
and not at 1. This is plausible because functions in H1.01 contain functions with much faster
growth close to the boundary than functions in H1.1 or H4.
The picture for the other considered cubature rules basically remains the same as before.
Clenshaw-Curtis based adaptive sparse grids still exhibit super-algebraic convergence, yet it is
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Figure 8.8: Isotropic example for small radius of analyticity with QoI given by (8.20).

not competitive with the sparse grid approach based on the nested optimally weighted quadra-
ture rules tailored to Hr with r = 1.01.
Up to now all the considered examples dealt with a setup where all the rj , j = 1, . . . , d coincide.
Next, we consider an anisotropic example. To this end, we assume that rj = 1 + 2j

100 , i.e. the
radii of the polydiscs increase with the dimensionality. In Figure 8.9 the relative integration
errors are given as log-log-plots for dimensions d ∈ {2, 4, 8, 16}. Since we start with rather small
radii, it is not surprising that already in d = 2 the optimally weighted adaptive sparse grids
yield a substantial improvement over the other considered approaches, saving more than 90%
of the evaluations. As the dimensionality increases, the integration problem becomes harder
and more evaluations are needed to achieve a high accuracy for the relative integration error.
However, from d = 8 to d = 16 the picture basically does not change. This is because the higher
dimensions are so smooth that they hardly contribute to the integral at all. For d = 32, which
is not depicted here, there is also no difference visible.
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Figure 8.9: Anisotropic example for dimensions d ∈ {2, 4, 8, 16} with QoI given by (8.20).

We observe a substantial benefit when employing the optimally weighted quadrature rules
for the Hardy space within the dimension-adaptive sparse grids. However, we respected the
anisotropy of the problem in the construction of the optimally weighted quadrature rules. This
means that for each coordinate direction a different quadrature rule was used, each tailored to
the regularity of the respective dimension. This was not the case for the other methods, which,
besides of the dimension-adaptive construction of the sparse grid, used the same underlying
univariate quadrature rule for all the coordinate directions.
The next example has an anisotropic structure as well, albeit now the radii are given by
rj = 1 + 0.08 · 2j . In Figure 8.10, it can be seen that the difference between the sparse grid
based on optimally weighted quadrature rules and the conventional sparse grids is now less
prominent. This is explained by the fact that for larger radii the performance of optimal and
polynomial quadrature rules in Hardy spaces basically is the same, cf. Section 6.2. Again, the
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Figure 8.10: Anisotropic example for dimensions d ∈ {2, 4, 8, 16} with QoI given by (8.20).

picture does not change much from d = 8 to d = 16, which is due to the exponentially increasing
radii of analyticity.
Until now we concentrated on the functional (8.20) that represents the spatial expectation of
the solution as quantity of interest. Finally, we consider a different QoI, namely the functional

Q(u(·,x) = δ1/2(u(·,x)) = u(0.5,x), (8.21)

which represents the evaluation of the solution in the middle of its domain, i.e. at y = 0.5

We observe in Figure 8.11 that the choice of the functional does not influence the performance of
the different algorithms. As before, for small dimensionality, e.g. d = 4, the new approach based
on optimally weighted quadrature rules that are tailored to the respective Hardy space leads
to a reasonable advantage over the conventional schemes. In larger dimensions, the difference
becomes even more prominent. For example, in d = 16 dimensions, the Clenshaw-Curtis based
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Figure 8.11: Anisotropic examples with the QoI defined in (8.21).

sparse grid needs about 100 times more evaluations of the integrand than the new approach
to obtain a relative accuracy of 10−7. Given that each evaluation requires the solution of a
differential equation, this factor needs to be multiplied with the cost of the finite element or
finite differences approximation of this solution.
Therefore, choosing an appropriate cubature rule for the problem at hand can make the differ-
ence between a computation that can be done on a laptop or an expensive parallel cluster.
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9 Conclusion

In this final chapter we summarize the results of this thesis, discuss questions that have been
left unanswered and give an outlook on future research.

9.1 Summary

This thesis dealt with the construction of algorithms for numerical integration of multivariate
functions. We considered functions from tensor products of reproducing kernel Hilbert spaces
(RKHS) and concentrated on algorithms that use optimal weights with respect to the worst-case
error.
After giving a brief overview on numerical integration and its relationship to information-based
complexity in Chapter 2, we recalled the theory of RKHS in Chapter 3. Here, we derived the
well-known worst-case error formula in a general setting as well as some results on algorithms
with optimal weights. This was the functional theoretic foundation for the remainder of this
thesis. Finally, we gave several examples for RKHS that are important in numerical analysis
and scientific computing. Here, we also discussed the Taylor space TLi2 which is generated by
the di-logarithm and contains bounded analytic functions with derivatives in the Hardy space
H1. To our best knowledge, this space has not appeared anywhere in the literature before,
although it proved to be very useful for certain applications from econometrics.
The first main contribution of this thesis was Chapter 4, where we investigated to which extent
optimal weights can improve the performance of Monte Carlo and Halton cubature in func-
tion spaces with dominating mixed smoothness Hs

mix. Conventional Monte Carlo and Halton
cubature only achieve convergence rates of N−1/2 and N−1+ε, ε > 0, respectively, which is
independent of the smoothness parameter s ≥ 1. Here, we observed that both methods can
achieve a worst-case error of N−s+ε, ε > 0 if optimal weights are employed. The second goal of
Chapter 4 was the development of a theoretical framework that can predict the aforementioned
numerical results. Here, we used a recently developed oversampling approach [39, 106] to con-
struct stable auxiliary cubature rules whose properties imply the convergence of the optimal
worst-case error with the asymptotical rate N−s+1/2 log(N)ds−1/2.
However, this approach is not suited for spaces of analytic functions. Moreover, the complexity
of constructing optimal cubature weights for unstructured point sets is O(N3), which is prob-
lematic for practical applications that often require large point numbers N . Therefore, point
sets are desirable, which have a structure that can be exploited to compute optimal cubature
weights at reduced cost complexity. Here, we used the sparse grid technique which relies on
combinations of well-chosen tensor products of univariate quadrature rules. Moreover, if the
univariate quadrature rule uses optimal weights, the associated sparse grid cubature is also
optimally weighted and can be assembled at cost O(N2).
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Therefore, we studied optimally weighted univariate quadrature rules in Chapters 5 and 6. Here,
we first dealt with the problem of choosing optimal quadrature points, whose associated optimal
weights are all positive. Even though the computation of optimal points is an ill-conditioned
problem, it turned out that in one dimension it can be reformulated as a certain nonlinear
system of equations which is stable and can be solved by Newton’s method. This approach
was validated in a number of relevant kernel Hilbert spaces and proved to be superior to all
the other considered state-of-the-art approaches like Gaussian quadrature, Clenshaw-Curtis or
Leja points. Moreover, we discussed the construction of optimally weighted nested quadrature
rules. To this end, we proposed a weighted variant of orthogonal matching pursuit (OMP)
to construct maximally nested quadrature points with a greedy procedure. Compared to their
optimal counter parts, these points achieve almost the same convergence rate. In certain settings
they perform even better than the non-nested Gaussian quadrature rules. Moreover, it turned
out that the resulting quadrature weights are stable in the sense that their `1-norm is uniformly
bounded. This is analogous to Leja points, which share this stability property, even though
there is no theoretical explanation for it yet. Another interesting property is that in certain
settings the empirical distribution of the OMP greedy points converges to the distribution of the
optimal point sets. This is another similarity to Leja points, which distribute asymptotically
like Gauss-Legendre points on [−1, 1].
Chapter 7 was built onto the aforementioned results for the univariate setting, since a sparse
grid that is based on optimally weighted nested quadrature rules is also optimal with respect to
the weights. This property implied a simplified worst-case error representation that allowed to
construct quasi–optimal index sets with a well-established greedy approach known as dimension-
adaptivity. In combination with the greedy construction of the univariate nested quadrature
rules, we thus have constructed a true black-box approach to numerical integration in RKHS,
which only requires the univariate kernels as input.
The second part of Chapter 7 was devoted to a priori error bounds for quasi-optimal sparse grids
that use (sub-)exponentially convergent quadrature rules. Here, we extended the results from
[80] and improved on [13, 153]. These theoretical results, as well as our greedy construction of
quasi-optimal index sets, were validated in several function spaces.
Finally, in Chapter 8 we demonstrated the practical relevance of cubature rules that are tailored
to specific RKHS. First, we considered the computation of multivariate normal probabilities by
the Genz-algorithm, which is the main bottleneck in the estimation of probit models. The
most common approach leads here to integrands that are bounded and analytic but have sin-
gular derivatives. Therefore, classical quadrature rules with polynomial degree of exactness
deteriorate to an algebraic rate of convergence. Our new approach, however, converges super-
algebraically, even in higher dimensions.
Moreover, we dealt with parametric differential equations. It was proven in [41, 81, 153] that
for affine linear diffusion coefficients the parametric solution belongs to certain tensor products
of Hardy spaces. Here, we could demonstrate that an optimally weighted sparse grid technique
which respects the structure of the multivariate Hardy space can substantially outperform
classical approaches based on Leja points or Clenshaw-Curtis.
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9.2 Outlook

There are several directions in which this thesis could be expanded or complemented. We will
comment on some of them in the following.
First of all, it would be desirable to prove an upper bound for optimally weighted Monte Carlo
cubature in Sobolev spaces with mixed smoothness Hs

mix that has the observed N−s main rate.
We are convinced that the approach from Section 4.2 is able to close the currently existing gap
in the main rate, if it is properly refined, cf. Remark 4.6. Besides, we also observed that classical
quasi–Monte Carlo points, like the Halton sequence, can benefit from using optimal weights.
An adaption of the proof for random points to the QMC setting is already work in progress.
Moreover, instead of aiming for weights with minimal `2-norm, one could go for the `1-norm.
The induced sparsity of the solution could improve the powers of the log-terms, cf. Remark 4.7.
Regarding optimal quadrature points, we observed that in the Hardy spaceHr, r > 1 exponential
convergence rates beyond the theoretical predicted r−2n are possible, especially when r is close
to one. Here, one could try to extend the results in [3], where matching upper and lower bounds
for optimal quadrature points in the case r = 1 were proven.
Moreover, it is remarkable that the OMP greedy construction yields the optimal convergence
rate in Sobolev spaces and half of the optimal convergence rate in analytic function spaces.
This behaviour resembles the relationship between Kolmogorov width and the error of empirical
interpolation, cf. [50]. However, a direct transfer of the proof technique was not possible so far.
In Chapter 6 we obtained evidence that the OMP greedy points have the same empirical dis-
tribution as the associated optimal points. This property is shared by Leja and Gaussian
points, which also distribute in the same way. This is proven using logarithmic potential the-
ory [108, 132]. An alteration of this technique that is applicable to kernel functions instead of
polynomials, would certainly be an interesting, yet very challenging problem.
Instead of applying the OMP greedy approach to the univariate quadrature problem and using
tensor products for multivariate problems, a direct application in the multivariate setting is
also possible. But then we recur to the setting of O(N3) complexity for the construction of
the optimal weights. However, if the kernel has certain symmetry properties, the approach
from Section 5.2.4 can be extended to the multivariate case es well, allowing to reduce the
computation of certain symmetric point sets with 2dN points to the case of N points. The
total reduction in complexity could therefore amount to a factor of (2d)3 = 8d.
This approach could also lead to interesting applications in machine learning, where numerical
integration schemes were recently utilized to construct low dimensional feature spaces, called
random Fourier features [35, 127].
Finally, we remark that we only considered affine linear diffusion coefficients for the parametric
differential equation in Section 8.4. The case of log-normal distributed random fields is also im-
portant. However, a suitable RKHS that contains the parametric solution has to be determined
first.
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